### **Symposium on HTS Cable Applications**

# HTS Transmission Network will be the key of 21<sup>st</sup> Century's Power Grid

June 24-25, 2004 昆明(Kunming), China

Ryosuke Hata SUMITOMO ELECTRIC INDUSTRIES, LTD.

### **Improvement Policy of BSCCO wire**



### **CT-OP (ConTrolled Over Pressure)**





### Drastic Improvements on Bi-2223 by New Innovative Process: CT-OP - 100% density of filament -



Effects achieved with CT-OP (1)

High Yield and Long Length by exterminating Defects During Sintering

Improved Jc & Ic by Increased Density up to 100% and Decreased Non-superconducting Phases

|                          | 1atm                  |   | CT-OP                       |            |
|--------------------------|-----------------------|---|-----------------------------|------------|
|                          | 00.4                  |   | 4004                        | ~30%       |
| Critical<br>Current (lc) | 99 A                  |   | ~130A<br>~1,000m            | UP         |
| Critical                 | 26 kA/cm <sup>2</sup> |   | <b>37 kA/cm<sup>2</sup></b> |            |
| Current<br>Density (Jc)  |                       | / |                             | ~40%<br>UP |

### **Effects achieved with CT-OP (2)**



No Need for Additional Metal for Mechanical Properties

Anti-Ballooning when immersed in LN<sub>2</sub>

Ballooning : zero in 1,000m CT-OP Wire

## **Cost Down and Merit Figure of BSCCO wire**

$$M = \frac{\$}{A \cdot m} = \frac{(\$ / m)}{A} \frac{(Cost \downarrow)}{(Ic \uparrow)} \begin{cases} Cable & A \times \# \text{ of wire} \\ Magnet & A \times Turn \end{cases} \xrightarrow{\leftarrow} A \cdot m$$

$$C \operatorname{cost} = \partial D \frac{1}{\alpha \beta} + X$$

(A) Non CT-OP (Old Process)  

$$c_{1} = \partial D \frac{1}{0.2 \times 1}$$
(B) CT-OP (New Process)  

$$c_{2} = \partial D \cdot \frac{1}{0.9 \times 1.3} + X = \partial D \frac{1}{0.9 \times 1.3}$$

- $\partial$  : Available Ic(A)
- D : Merit Figure(\$/A•m)
- $\alpha$  : Yield (Long Wire)
- $\beta$  : Ic Increment Ratio
- X : Cost of CT-OP(\$/m)

Expectation of Cost Reduction  

$$Z = \frac{C_2}{C_1} = \frac{\partial D \cdot \frac{1}{0.9 \times 1.3}}{\partial D \cdot \frac{1}{0.2}} = \frac{0.2}{0.9 \times 1.3} = 0.17 \approx 0.2$$

Long-length(>500m) BSCCO wire is expected to be lower than \$100 / KA · m as a price.

#### Summary: Improvements Achieved by CT-OP Process



(No Additional AC Loss by Metallic Sheath)

#### Comparison of Japan, US, EU, China and Russia

|                     |                      | Japan<br>2004 2000         | US<br>2004 2000      | EU                         | China<br>2004 2000           | Russia                  |
|---------------------|----------------------|----------------------------|----------------------|----------------------------|------------------------------|-------------------------|
| Population          | Million              | 127<br>126                 | 281<br>273           | 456                        | 1270<br>1275                 | 146                     |
|                     | Nation's<br>Currency | 465<br>500<br>Trillion-Yen | 11.0<br>Trillion-USD | <b>8.0</b><br>Trillion-EUR | 10.2<br>8.2<br>Trillion-Yuan | 13.0<br>Trillion-Rouble |
| GDP                 | Trillion-USD         | <b>4.23</b><br>4.43        | 11.0<br>8.90         | 9.70                       | 1.23<br>0.99                 | 0.45                    |
|                     | USD/capita           | <b>33,000</b><br>35,000    | 39,000<br>33,000     | 21,000                     | 970<br>780                   | 3,000                   |
| Electric            | GW                   | 260<br>200                 | 860<br>800           | 650                        | 320<br>240                   | 210                     |
| Power<br>Generation | kW/capita            | 2.0<br>1.6                 | 3.1<br>2.9           | 1.4                        | 0.25<br>0.18                 | 1.44                    |

<Investigated at 2004>

### **Electricity and Economic Growth**



Source : Mohan Munasinghe – World Energy Council Journal (Dec 1991) www.oecdtokyo.org

### **Electricity is Increasing in US**

#### ELECTRICITY AND ECONOMIC GROWTH

The historical importance of electricity to economic growth is expected to continue.





Source: U.S. Department of Energy Transmission Reliability Multi-year Program Plan

### **Transmission Investments are Decreasing in US**

#### U.S. TRANSMISSION INVESTMENTS

Annual investment in transmission facilities has been declining since 1975.



### **Trend of Maximum Electricity (TEPCO in Japan)**



#### Influence of Electricity on Green House Gas Emission

#### Effect of Various Gas on Climate Change



#### Influence of Electricity on Green House Gas Emission

Thermal Power Efficiency and Transmission Loss Rate in Japan



### Environmental and Economic Comparisons between HTS and Conventional Cable Systems

| cable system                        | Conventional                                                                                | HTS                                                                                                               |  |
|-------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Transmission capacity               | 1000 MVAx3 circuits                                                                         | 750 MVAx2 circuits, 2 routes                                                                                      |  |
| Transmission voltage (line to line) | 275 kVrms                                                                                   | 66 kVrms                                                                                                          |  |
| Transmission current                | 2 kArms/phase                                                                               | 6.6 kArms/phase                                                                                                   |  |
| Cable type                          | Single-core XLPE<br>(1x3000mm <sup>2</sup> )                                                | Triple-core in one cryostat,<br>Cold dielectric                                                                   |  |
| Cable size                          | Approx. 170 mm                                                                              | Approx. 135 mm                                                                                                    |  |
| Number of cables                    | 9                                                                                           | 4                                                                                                                 |  |
| Installation                        | Installation of newly<br>constructed 2700mm diameter<br>tunnel                              | Replacement of existing duct                                                                                      |  |
| Cooling                             | Indirect cooling system in<br>tunnel                                                        | Liquid nitrogen circulation                                                                                       |  |
| Transmission loss                   | 740 kW/km<br>(Transmission loss 113<br>kW/km/cct, Cooling system<br>power 400 kW/km/tunnel) | 200 kW/km<br>(Transmission loss 3<br>kW/km/cct, Cryostat invading<br>heat 2 kW/km/cct, Cooling<br>efficiency 10%) |  |
| CO <sub>2</sub> Emission *1         | 778 ton-C/km/year                                                                           | 210 ton-C/km/year                                                                                                 |  |
| Transmission loss cost *2           | ¥64,800,000 /km/year                                                                        | ¥17,520,000 /km/year                                                                                              |  |

\*1 Calculated at carbon conversion rate of 0.12 kg-C/kWh

\*2 Calculated at per kWh generation cost of ¥10

## 100m-114MVA-1000A Cable

Cold dielectric designed 3-Phase in One Cryostat



### **Underground Transmission Cable**



## **HTS Cable is One of OF Cable Family**

|                                        |            | OF Cable                                                             | HTS Cable                                        |              |  |
|----------------------------------------|------------|----------------------------------------------------------------------|--------------------------------------------------|--------------|--|
| Number of Core                         |            | Single or 3-Core                                                     |                                                  |              |  |
| Lasul                                  | Liquid     | Oil (Flammable/Not Green)                                            | Liq N <sub>2</sub> (Inflammable/Green)           |              |  |
| ation                                  | Dielectric | Lapped PPLP (Kraft)<br>Tapes & Oil Composite                         | Lapped PPLP Tapes &<br>Liquid Nitrogen Composite |              |  |
| Meta                                   | al-Sheath  | AI / Pb (Corrugated) SUS Cryostat                                    |                                                  |              |  |
| Liquid Circulation<br>(Forced Cooling) |            | Oil-Pressure-Tank or<br>Oil-Pumping-Station<br>(Oil-Piping, Valves…) |                                                  |              |  |
| Manu                                   | ufacturing | Very Similar                                                         |                                                  | Very Similar |  |
| Installation                           |            | Under Oil-Pressure                                                   | Under Vacuum                                     |              |  |
| Operation                              |            | Oil-Feed-Control<br>(Oil-Circulation-Control)                        | Liq N2-Circulation-Control                       |              |  |

Technologies and Experience of OF Cable Are Indispensable!

#### Wide Range of Technologies for HTS Cable Manufacturing, Installation & Operation



### **Merits of HTS cable**



#### **Establishment of Transmission System Reliability**

|                                                      | Conventional Cable<br>(OF∕XLPE)                                   | Н                                                                                                            | HTS Cable                                                                     |  |  |
|------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--|--|
|                                                      | "3-2"                                                             | "2-2"                                                                                                        | "3-3"                                                                         |  |  |
| Circuit<br>Configuration<br>per<br>Route             |                                                                   | Cooling Cooling                                                                                              | Cooling Cooling Cooling                                                       |  |  |
|                                                      |                                                                   | Station[1] Station[2]                                                                                        | Station[1] Station[2] Station[3]                                              |  |  |
| Normal<br>Condition                                  | 3cct. 2/3 Load Each<br>(67%/cct. × 3=200%)                        | 2cct. Full Load<br>(100%/cct. × 2=200%)<br><capacity route:1=""></capacity>                                  | 3cct. Full Load<br>(100%/cct. × 3=300%)<br><capacity route:1.5=""></capacity> |  |  |
| In case of<br>Emergency<br>Failure on<br>One Circuit | × ~ ~ ~                                                           | Cooling<br>Station[1]                                                                                        | Cooling<br>Station[1] Station[2] Cooling<br>Station[3]                        |  |  |
|                                                      | Full load on 2cct.<br>(100%/cct. × 2=200%)                        | Overload on 1cct.<br>(200%/cct.×1=200%)                                                                      | Overload on 2cct.<br>(150%/cct. × 2=300%)                                     |  |  |
| Economy                                              | Over-redundancy<br>High reliability<br>Less Loss<br>But high cost | Reliability and Not costly in Initial Investment.<br>Less Right of Way,<br>Reduction of Civil and Cable Cost |                                                                               |  |  |

#### Status of Major HTS Cable Test Projects in Japan and Overseas

|                       | TEPCO-SEI                                                     | Southwire-IGC                                          | NKT-NST                                           | Pirelli-AMSC                          |
|-----------------------|---------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|---------------------------------------|
| Government<br>Funding | None<br>(100% Private)                                        | DOE                                                    | Denmark Gov.                                      | DOE                                   |
| Ratings               | 66kV/1kA<br>114MVA                                            | 12kV/1.25kA<br>27MVA                                   | 30kV/2kA<br>103MVA                                | 24kV/2.4kA<br>100MVA                  |
| Length (m)            | 100                                                           | 30                                                     | 30                                                | 120                                   |
| Type of<br>cable test | In-plant test<br>(Yokosuka)                                   | Internal power<br>transmission<br>line<br>(Carrollton) | Internal<br>substation line<br>(Copenhagen)       | Internal substation<br>line (Detroit) |
| Dielectric<br>type    | Cold dielectric                                               | Cold dielectric                                        | Warm dielectric                                   | Warm dielectric                       |
| Features              | Triple-core in one<br>cryostat/<br>flexible type              | Single-core/<br>rigid type                             | Single-core/<br>flexible type                     | Single-core/<br>flexible type         |
| Test status           | Laid:Feb.2001<br>Started: June<br>2001<br>Ended: June<br>2002 | Laid: 1999<br>Started: Jan.<br>2000                    | Laid: 2001<br>Started: May<br>2001<br>Ended: 2003 | Laid: 2001<br>Not Started.            |

### **International Collaboration**



### **Albany Project**

Purpose: Demonstration of the long length HTS cable in the real net work in US Members: Super Power / SEI / Niagara-Mohawk /BOC Project cost :26M\$ including NY (6M\$) and DOE(13M\$)



### **Albany Project Outlook**



### Power cable market of 21<sup>th</sup> Century



|       | Capacity of | Demand growth | Demand        | Peak of | Capacity ratio |
|-------|-------------|---------------|---------------|---------|----------------|
|       | Generation* | rate (%/yr.)  | doubling year | renewal | (2020/2003)    |
| Japan | 260GW       | 0.7%          | 100           | ~2040   | 1.1(286GW)     |
| USA   | 860GW       | 2.0%          | 35            | ~2010   | 1.4(1200GW)    |
| Korea | 50GW        | 9.0%          | 8             |         | 3.7(185GW)     |
| China | 320GW       | 6.0%          | 12            |         | 2.7(860GW)     |

\* (investigated at 2003)

## Conclusion

- (I) 3 HTS Cable Demonstrations in Yokosuka (Japan), Copenhagen (Denmark) and Carrollton (US) were successfully implemented.
- (II) 3 Bi-based Cable projects have started in US under international collaborations. Also, HTS cable Projects are on-going in Korea and China.
- (III) Big Innovation of Bi-based wire has been achieved. Ic, Mechanical Properties, Anti-Ballooning Properties and Yield of Bi-Based wires are simultaneously improved greatly.
- (IV) HTS Cables with Large Transmission Capacity and Low Loss are Environmentally Friendly, hence Indispensable for 21st Century's Power Grid.

