The effect of low energy Ar^+ ion bombardment on epitaxy and oxidation of thin films of CuO_x

Gertjan Koster¹, Hideki Yamamoto^{1,2}, Wolter Siemons^{1,3}, Arturas Vailionis¹, R.H. Hammond¹, P.M. Grant⁴, T.H. Geballe¹ and M. Beasley¹

¹Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA

²NTT Basic Research Laboratories, Kanagawa, Japan

³Inorganic Materials Science, Faculty of Science and Technology, Twente University, The Netherlands

⁴W2AGZ Technologies, Palo Alto, CA

Here we present a detailed study on the growth of epitaxial CuOx thin films on single crystal substrates (MgO and SrTiO₃) by MBE. *In situ* photo electron spectroscopy (XPS and UPS) is used to establish the degree of oxidation of Cu, while *in situ* electron diffraction (LEED and RHEED) monitor the crystal structure of the growing thin film. We particularly pay attention to the valence state of Cu and the crystal symmetry as influenced by a combination of the substrate, activated oxygen and a flux of low energy Ar^+ ions. We observe a rich variety of epitaxial relationships as a function of the flux ratios of three species on the substrate surface (ie, Cu, O^{*} and Ar^+) which will be used to explore the possibility of the highest crystal symmetry achievable in CuO_x system. The relationship between (electronic) properties and crystal structure is being investigated at different lengths using scanning probes. Although the copper system is the focus of this paper, we will also address whether such an approach is feasible for other oxide materials.

This work is supported by DOE, EPRI and Netherlands Organization for Scientific Research (VENI).