

Developing Superconducting Fault Current Limiter at ABB

M. Chen, M. Abplanalp, M. Lakner, W. Paul ABB Switzerland, Corporate Research, CH-5405 Baden, Switzerland D. Braun, W. Hofbauer ABB Switzerland, High Voltage Technologies, CH-8050 Zurich, Switzerland

□ Introduction

- Basic design aspects
- Materials requirement
- □ Characterization of Bi-2212 SCFCL component
- □ Status of development on SCFCL component
- □ Application
- Conclusions and outlook

Why Current Limiter

Measures for Current Limitation

- □ Air-coils (reactors)
- Artificially increased reactance in transformers
- Artificial splitting of grids
- □ Fast breaker (mechanical or electronic)
- Explosive fuse
- □ LC-Circuits (will be de-tuned in case of a fault)
- PTCs : strong non-linear R(T)
- non-linear resistances: semiconductor (e.g. diodes)
 - iron core coils
 - superconductor

Status of SCFCL development

YBCO-coated conductor

□ 3 phase 1.2 MVA prototype: SIEMENS plates (10 x 10 cm), Au bypass

Bi-2212 bulk conductor

- □ 1.2 MVA "inductive" prototype:
 ♦
 ♦
 ►
 tubes (φ = 40 cm)
 1 year operation in Swiss Hydropower Plant
- resistive/hybrid prototype: EA-tech. (& VA Tech) rods (0.25 x 2.5 x 25 cm³)
- □ 6.4 MVA single phase "resistive" lab model:
 8
 8
 8
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 9
 <p
- ☐ 10 MVA 3 phase resistive type: Nexans tube (∅ 0.3 cm x 0.9 m), steel bypass

昆明,06-2004

Nonlinear Characteristic of a Superconductor

E(j)-characteristic of Bi-2212 at 77 K

E(j)-characteristic of Bi-2212 at 77 K

© ABB Switzerland, MkC

т

ထို

Basic principle of SCFCL

time

Test of 1.2 MVA SCFCL in Hydro power plant

The first HTS installation at utility site

- 10

KW Löntsch, Glarus, CH, 1996

- Instantaneous limitation
- no over-voltages
- □ recovery time: a few sec.
- □ no aging (within 1 year)
- open cooling system
 high losses

"resistive" SCFCL

Basic Design-Rules

Rated power:

$$P = I_N U_N$$

<u>Normal operation</u>: $I_N = A j_c$

- I_N = nominal current
- j_c = critical current density, HTS
- A = cross-section of HTS

Current Limitation: $U_N = L E_{max}$ U_N = nominal voltage $E_{max} = "max. electric field" of HTS$ L= length of HTS

Materials requirements

Normal operation:

=> reduce cooling cost

- => low ac-losses
 - => small dimension \perp to B-field \rightarrow thin conductor
 - => field compensation \rightarrow conductor design

Current limitation:

=> Non-uniform quench, i.e. hot-spots (voltage driven situation)

=> electrical and/or thermal stabilization

=> electrical bypass and/or heat sink

- => withstand high magnetic and thermo-mechanical stresses
- => mechanical reinforcement (especially for brittle HTS-ceramic)

=> composites

SCFCL component based on Bi-2212

Test set-up of 6.4 MVA model

Test of 6.4 MVA laboratory model

 \Box Grids, where the I_{pf} has reached the design value of the breakers:

- Grid-Coupling
- Additional power source in existing grid (HV or MV)

 \Box New installations where $I_{pf}/I_r >> 10$

- Protection of Auxiliary Line
- Supply of local industry on MV-level
- Several generators connected to one busbar
- Transformer with reduced impedance
- New grids (industrial, distribution, transmission)

O ABB Switzerland, MkC - 17 -

Grid Coupling –RWE case

Simulation of short circuit in coupled grid

Application Challenges

Conductors

- Reliability: repetitive operations
- Cost: reduce high price / performance (=transformer)
- Technical spec: oco immediate reclosure may be required
- Limitation factor: high jc needed for better limitation

Cooling system

- First investment: price has to come down
- Maintenance: minimum maintenance
- Refill system: possible in a group

Customer acceptance

- Conservative approach: LN2
- Reliability, availability
- Back up solution: needed initially

- 20

Way forward

Technology maturity

- demonstrator demonstrated, meeting some commercial applications
- Ready for functional prototype

Pre-commercilisation

- More detailed evaluation needed (technical spec vs future grid)
- Full scale functional prototype needed to demonstrate for application

Commercialisation

- Niche application, e.g. grid coupling
- Full application depends on low cost conductor and much reduced cooling
- Full commercial potential depends on up-scaled prototype, better conductor
- Functional prototype needed
- Limited application in niche areas possible
- Large scale application ← low cost conductor & low cost reliable cryogenic

Conclusions

- SCFCL composite component based on Bi-2212 developed
- 6.4 MVA single phase SCFCL developed
- SCFCL technology (Bi-2212) justify functional prototype
- Potential first application evaluated
 - particularly suited for high prospective fault current
 - ideal performance for grid coupling
- Functional prototype needed for
 - customer acceptance and field experience
 - confirmation of market
- Limited application in niche areas possible
- Large scale application critically depends
 - Iow cost conductor
 - Iow cost reliable cryogenic
 - improved materials performance

昆明,06-2004

- 22

#