SYMPOSIUM ON HTS CABLE APPLICATIONS June 24, 2004 Kunming

Key Participants of the Project

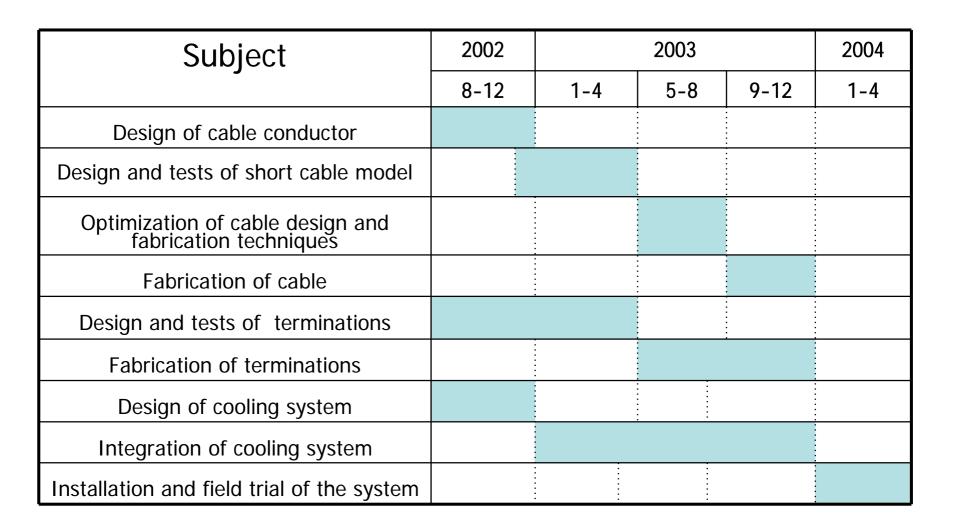
□ Innopower

- □ Yunnan Electric Power Group
- □ Institute of Plasma Physics, Academia Sinica
- □ Tsinghua University
- lnnoST
- □ Vacree
- □ Shanghai Cable Works
- □ Huazhong University of Science and Technology

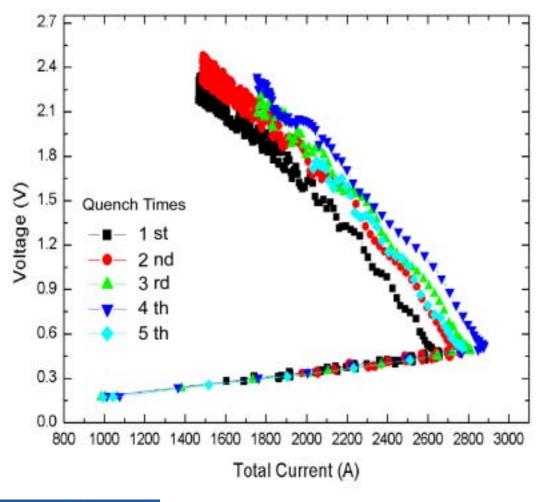
This project is supported by

China's Ministry of Science, Hi-tech Development Plan (863 plan)

□Beijing Municipal Government

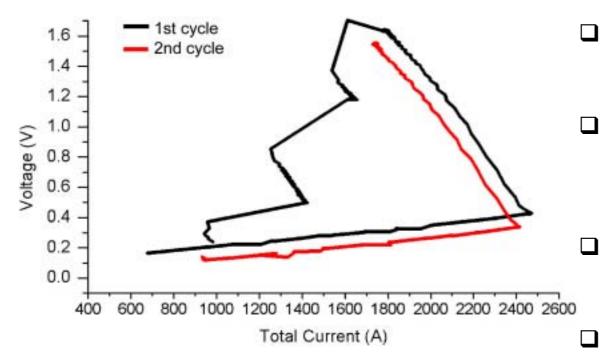

□Yunnan Provincial Government

Subject	Specification	Subject	Specification
Mode of Cable	Three single phase, Outdoor	Operation Altitude	1,900m
Length	33.5m (flange to flange)	Outer Diameter of Cable	112mm
Rated Voltage	35kV	Cooling Fluid	LN2
Rated Current	2kA(rms)	Cooling Capacity	2,000W at 75K
Shortcut Current	20kA/2S	Inlet Temperature	70~72K
Dielectric Type	Warm	Outlet Temperature	74~76K
Installation Bending Angle	90°	Reliability Requirement	>20000 hours



Project Chronicle

AC Current Carrying Capacity of a Cable vs Ic of tapes

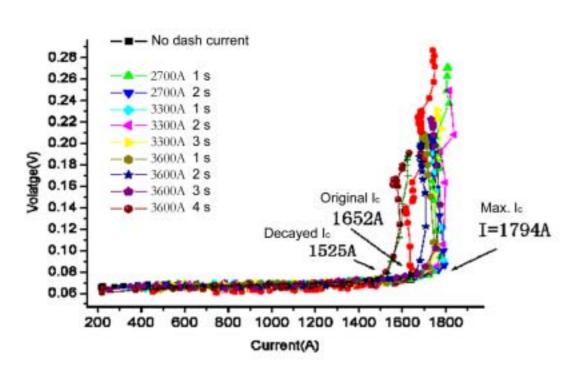


Immo

- A 2 layer, 3m cable consists of 37 (18, 19) BSCCO tapes. The Ic's of tapes are 70~80A.
- The start ac effective critical current of the cable was
 2642 A, the max. was 2897
 A.
- □ The results indict:
- The critical current of the cable does not decline after a quench;
- 2. The effective ac critical current of the cable > Σ Ic/1.141.

Technical Report Short Sample Test

Superconductivity Restoration Characteristic

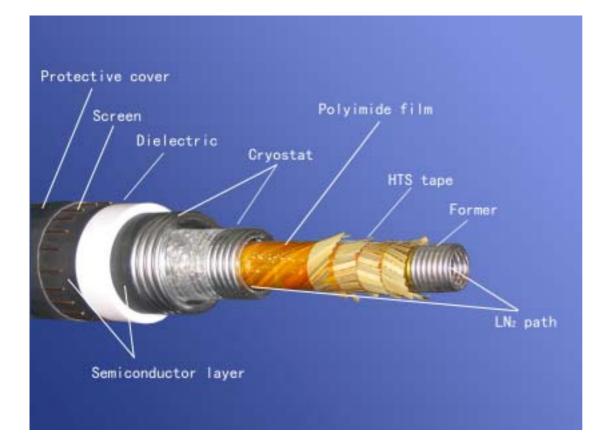


- A 2 layer, 3 m cable consists of 40 (20, 20) BSCCO tapes.
 - The effective critical current of the cable was 2500 A.
 - After superconductivity quenched, V↑,I↓ as the transformer setting unchanged.
 - After reducing the output of the transformer, V ↓, saw small I↑.
 - When I < 900 A, the cable restored superconductivity, and a new cycle began.

Short Sample Test

Large Current Exercise Test for Cable Shortcut Current Capacity

Technical Report



- A 1 layer, 1 m cable consists of 18 BSCCO tapes.
- AC current of 2700-3600A
 was applied to the sample
 for a time period of 1-4S.
- Each time after applying the current, the I-V curve was measured.
- The I-V curves were compared.
- □ The results indict:
- There is no meaningful change in I-V curve in the first 8 tests.
- 2. After applying 3600A for 4S, the critical current of the cable was decreased by 8%.

Physical Parameters

33.5 m Cable

Former ID/OD(with Braiding): *30/35 mm* Layers of HTS tape: 4 Number of HTS tape: 90(21,24,24,21) Ic of HTS tape: 60-80 A (77K, self field) ID/OD of cryostat: 43/70 mm **Dielectric material:** XLPE Thickness of dielectric: 11.9mm Overall linear specific weight: 9.2kg/m

33.5 m Cable

Electric Insulation

Factory sample test:

Partial discharge(ac 39 kV) <1 pc

AC withstand voltage *104 kV*, *4h*, *passed*

Impulse voltage 250 kV, 10+, 10-, passed

Field AC withstand voltage(with terminations):

55 kV, 5 min, passed

33.5 m Cable

Delectric

Resistance: Phase A > $100000 M\Omega$ Phase B > $100000 M\Omega$ Phase C > $100000 M\Omega$

Experimental Data

Capacitance: Phase A *15060 pF* Phase B *15060 pF* Phase C *15080 pF*

Loss:

Phase A *0.024%* Phase B *0.023%* Phase C *0.024%*

Protective layer resistance: Phase A **52300 M** Ω Phase B **52400 M** Ω Phase C **47600 M** Ω

33.5 m Cable

DC Resistance Cable + terminations

at 300K: Phase A *10.6 mΩ* Phase B *10.1 mΩ* Phase C *10.2 mΩ*

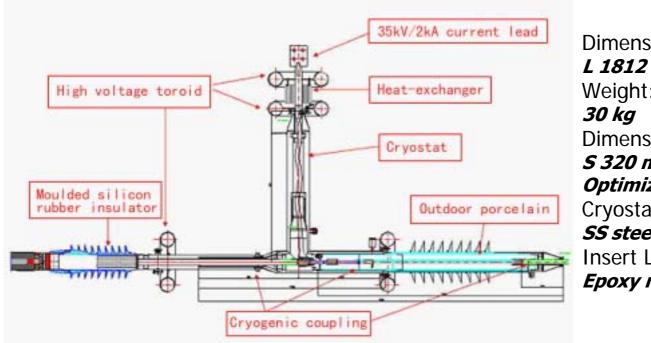
at 74K: Phase A **85 μΩ** Phase B **84 μΩ** Phase C **84 μΩ**

33.5 m Cable

Phase

Phase shift between I and V at operation of 1500A at 74K: Phase A **83.0°** Phase B **84.6°(-95.4°)** Phase C **85.1°**

AC loss


at 1500A, 74K: *26-30W/phase* Determined by caloric method.

Physical Parameters

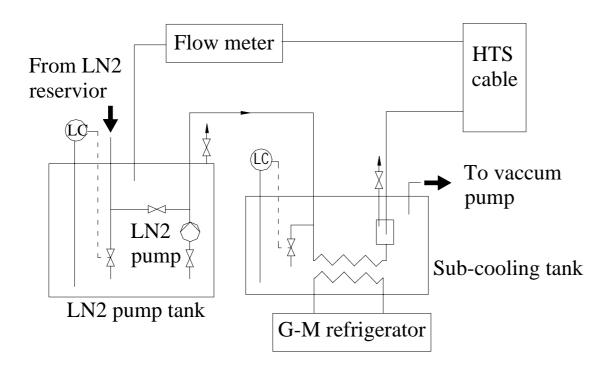
Terminations

Dimension: *L 1812 mm; H 1468 mm* Weight: *30 kg* Dimension of current lead: *S 320 mm²; L 860 mm Optimized at 1220 A* Cryostat: *SS steel, evacuated* Insert LN2 pipe: *Epoxy resin tube*

Terminations

Factory sample test: Partial discharge(ac 39kV) <10 pc AC withstand voltage 65 kV, 4h, passed Joule heat at 1220A at working: 52 W Heat inleak: 38-42 W

Terminations


Resistance at 300K: *47 μΩ* Resistance at working: *40 μΩ*

Physical Parameters

Cooling System

7 sets of G-M Cryorefrigerators operating in parallel

2000W cooling capacity at 75 K

Liability > 20000 hours

Energy saving by controlling the number of cryorefrigerators operating based on heat load

Cooling System

Purge (dry N₂ gas): 20-24 hours

Pre-cooling: *15-20 hours*

Number of Cryorefrigerators working at normal load(800-1500A: **4-5**

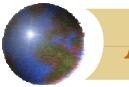
LN2 flow rate: **600-900 L/h**

Monitoring & Control

Parameters monitored

Temperatures: In/out of each phase; out of pump tank; In/out of subcooling tank; Coldhead of each cooler; Cooling water Pressure: In/out of Pump tank; In/out of each phase; Subcooling tank LN2 tank LN2 flow rate: Each phase; Water LN2 level: Pump tank Subcooling tank LN2 tank Current: Each phase Voltage: Each phase

Monitoring & Control



Control parameters:

On/off for each cooler LN2 flow rate Break/close for bus line breaker (send request to the substation main control) **Breaking/closing sequence:** For breaking Close conventional bus line Break HTS cable (<0.5 S) For closing Close HTS cable Break conventional bus line (<0.5 S)

For live-grid trial operation, at 13:35 of April 19, 2004, the system was connected to the grid, at a load of 1600A, providing electricity to 4 industrial customers (including 2 *metallurgical refineries*) and about 100,000 residential population.

Prospect of Applications

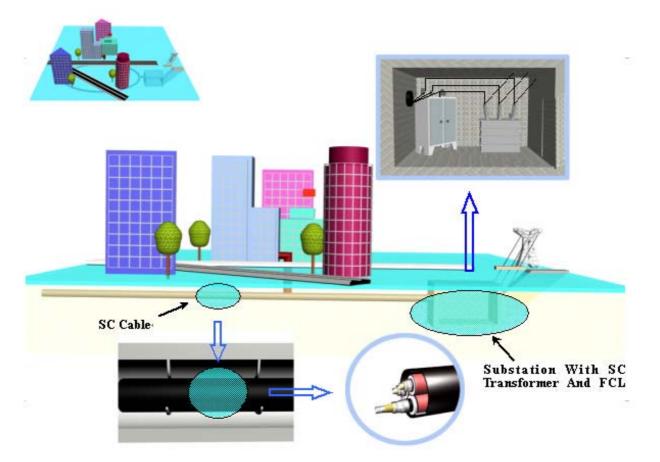
Near Future Applications of HTS Cable

Replacing old cables in existing tunnels and trenches to increase capacity From substation to large capacity refineries and plants

Near Future Applications of HTS Cable

From generator to transformer, typically, 24kV/20-30kA, 20-200m

Metropolitan constant voltage network



Future City's Main Electric Power Network

(underground transmission system)

Thanks, have a nice day!

Innopower Address:

7 E Rongchang Rd., Longsheng Industrial Park

Beijing Economic & Technological Development Zone

Beijing 100176

China

Tel:+86-10-67879900 Fax:+86-10-67877502 www.innopower.com

