Intentionally Blank Slide

The EPRI SuperGrid Initiative -Update-

Paul M. Grant

Visiting Scholar in Applied Physics, Stanford University EPRI Science Fellow (*retired*) IBM Research Staff Member Emeritus Principal, W2AGZ Technologies <u>w2agz@pacbell.net</u> www.w2agz.com

Chauncey Starr 2000 George E. Pake Prize, American Physical Society National Medal of Engineering, 1990 Legion d'Honneur, Republique Francais Founder, Electric Power Research Institute <u>cstarr@epri.com</u>

Steve Eckroad Project Manager, EPRI Superconductivity Destinations 122 <u>seckroad@epri.com</u>

5th EPRI Superconductivity Conference & Task Force Meeting 20 - 21 September 2005, Albany, NY

www.w2agz.com/epri-sctf5.htm

"A Thread Across the Ocean"

"The Story of the Trans-Atlantic Cable (1854 – 1866)" John Steele Gordon

The After-Story

What Kept Them Going?

- The investors knew, that if communications with Europe could be cut from 2 weeks to 2 minutes, they'd all get...
- FILTHY RICH!
 - Estimates are that the total cost of the project in 2005 dollars was \$100 M
 - 1867 revenue in 2005 dollars was <u>\$10 M</u>
 - Go figure ...

The SuperGrid Vision

A Symbiosis of

Nuclear/Hydrogen/Superconductivity

Technologies supplying Carbon-free, Non-Intrusive Energy for all Inhabitants of Planet Earth

SuperCities & SuperGrids

SuperCables !

The Hydrogen Economy

- You have to make it, just like electricity
- Electricity can make H_2 , and H_2 can make electricity ($2H_2O \Leftrightarrow 2H_2 + O_2$)
- You have to make a lot of it
- You can make it cold, 419 F (21 K)

P.M. Grant, "Hydrogen lifts off...with a heavy load," Nature 424, 129 (2003)

Diablo Canyon

Co-Production of Hydrogen and Electricity

Source: INEL & General Atomics

"Hydricity" SuperCables

SuperCable Monopole

Power Flows

P _{sc} = 2 V IA _{sc} , where	Electricity
P _{sc} = Electric power flow V = Voltage to neutral (ground) I = Supercurrent A _{sc} = Cross-sectional area of superco	onducting annulus
P _{H2} = 2(QpvA) _{H2} , where	Hydrogen
P_{H2} = Chemical power flow Q = Gibbs H ₂ oxidation energy (2.46 ρ = H ₂ Density v = H ₂ Flow Rate	eV per mol H ₂)

Hydricity Scaling Factor

Dimensionless, geometry-independent scaling factor defines relative amounts of electricity/hydrogen power flow in the SuperCable:

$$R_{e/h} \equiv (J/Q\rho)(|V|/\nu)$$

"Energy Density" "Pressure"

Electric & H₂ Power

Electricity

Power (MW)	Voltage (V)	Current (A)	Critical Current Density (A/cm ²)	Annular Wall Thickness (cm)
1000	+/- 5000	100,000	25,000	0.125

Hydrogen (LH₂, 20 K)

Power (MW)	Inner Pipe Diameter, D _{H2} (cm)	H ₂ Flow Rate (m/sec)	"Equivalent" Current Density (A/cm²)
500	10	3.81	318

SuperCable H₂ Storage

<u>Some Storage</u> <u>Factoids</u>	Power (GW)	Storage (hrs)	Energy (GWh)
TVA Raccoon Mountain	1.6	20	32
Alabama CAES	1	20	20
Scaled ETM SMES	1	8	8

One Raccoon Mountain = 13,800 cubic meters of LH2

LH₂ in 10 cm diameter, 250 mile bipolar SuperCable = Raccoon Mountain

 $\rm H_2$ Gas at 77 K and 1850 psia has 50% of the energy content of liquid $\rm H_2$ and 100% at 6800 psia

Supercritical H₂ SuperCable

A Canadian's View of the World

Design for eventual conversion to high pressure cold or liquid H₂

LNG SuperCable

dc vs. ac: ABB Itaipu Study

Sayerville, NJ \rightarrow Levittown LI, NY

- 600 MW (+/- 250 kV, 1200 A)
- 65 miles (105 km)
- \$400 M
- 2007

Financials			
40 yrs @ 4%:	\$ 20M		
LOM:	1 M		
NOI (100%):	5 M		

Т 77 К	C/P \$/kA×m	Cost (\$M)
Cu	7	1.8
HTSC	100	25.1

HTSC Cost = \$87 M

Specifications

2-1000 MW HVDC Bipolar Circuits

- Circuit 1: 130 miles, Greene County \rightarrow Bronx County
- Circuit 2: 140 miles, Albany County \rightarrow New York County
- Each Circuit: +/- 500 kV, 1000 A Bipolar (2 cables ea.)

<u>Financials</u>

\$750 M (\$400 M "VC", \$350 M "Futures")

- Loan Payment (4%, 40 yrs, 750 M\$) =
- Labor, Overhead, Maintenance =
- Tariff =
 - Profit (NOI) @ 50% Capacity =
 - Profit (NOI) @ Full Capacity =

35 M\$/yr 5 M\$/yr 0.5 ¢/kWh 4 M\$/yr 48 M\$/yr

Why didn't it go forward?

" J_c 's" of Common Metals (77 K)

TABLE I

COST/PERFORMANCE FOR COMMON WIRE METALS AT 15 MW/CC DISSIPATION^a

Metal	ρ	D	Price	${J_E}^{\tt V}$	$\mathbf{J}_{E}{}^{W}$	C/P
	Ω cm	g/cm ³	¢/g	A/cm ²	A/cm^2	\$∕kA×
						m
Cu	2.5×10-7	8.92	0.20	4.00	245	7.21
Al	2.4×10-7	2.70	0.15	4.17	250	1.66
Ag	2.9×10-7	10.5	15.3	3.45	227	705

<u>Power</u> dissipation defined as equivalent to an HTSC wire transporting 15,000 A/cm² sustaining a voltage drop of 1 μ V/cm, or 15 mW/cm³. J_E^V is the volume equivalent current density with respect to the HTSC wire, and J_E^W the power dissipation equivalent.

Could dc Cables be the HTSC "Thread?"

- Advantages of dc
 - Only dc can go long distances
 - Allows asynchronous connection of ac grids
 - Power flow can be controlled quickly (HTSC?)
- Advantages of HTSC dc
 - Can wheel enormous amounts of power over very long distances with minimal loss

Two IBM Physicists (1967)

Superconducting Lines for the Transmission of Large Amounts of Electrical Power over Great Distances

R. L. GARWIN AND J. MATISOO

- $Nb_3Sn(T_c = 18 \text{ K}) @ 4.2 \text{ K}$
- 100 GW (+/- 100 kV, 500 kA)
- 1000 km
- Cost: \$800 M (\$8/kW) (1967)

\$4.7 B Today!

LASL SPTL (1972-79)

Specifications

- 5 GW (+/- 50 kV, 50 kA)
- PECO Study (100 km, 10 GW)

BICC HTSC dc Cable (1995)

Design Target

- 400 MW, 100 km
- Flowing He, 0.2 kg/s, 2
 MPa, 15 65 K
- Cooling Losses: 150 kW

Prototype Specs

- 400 MW
 +/- 20 kV, 10 kA
- Length: 1.4 m
- Diameter: 4 cm
- He (4.2 40 K)

e-Pipe

e-Pipe Specs (EPRI, 1997)

Capacity	5 GW (+/- 50 kV,50 kA)
Length	1610 km
Temperature Specs: - 1 K/10 km @ 65 K - 1 W/m heat input	- 21.6 kliters LN ₂ /hr - 100 kW coolers - 120 gal/min
Vacuum: - 10 ⁻⁵ – 10 ⁻⁴ torr	 - 10 stations - 10 km spaced - 200 kW each

e-Pipe/Gas/HVDC Cost Comparison

Marginal Cost of Electricity (Mid Value Fuel Costs)

SuperCable Parameters

•	Power =	5	GW
•	Voltage =	25	+/- kV
•	Current =	100	kA
•	Jc =	25000	A/cm^2
•	Dcryo =	5	cm
•	A* =	3.629	cm^2
•	t(sc) =	0.243	cm
•	R* =	1.075	cm
•	B =	0.8	Т

AMSC Tape Jc(T, B)

High Amplitude Transient Current Losses (ac & energize) "Bean Model"

$$H = 4 \times 10^{-9} I_0^2 F$$
 W/cm

Io (A)	F (PL)	H (W/m)
100,000	60	2.4 × 10 ⁵
100,000	1/hour	0.3
100,000	1/day	0.01

Possibly could reverse line in one hour!

Small Amplitude Losses (Load Fluctuations)

$$H = \frac{4 \times 10^{-10} (\Delta I)^3 F}{J_c R^2} \quad \text{W/cm}$$

Load Fluctuation Losses over a 1 hour period

∆ (%)	∆I (A)	$\Delta P (MW)$	H (W/m)
1	1000	50	4 × 10 ⁻⁷
10	10000	500	4 × 10 ⁻⁴
20	20000	1000	3 × 10 ⁻³
30	30000	1500	1 × 10 ⁻²

OK, as long as changes occur slowly!

Small Amplitude Losses
(Load Fluctuations)
$$H = \frac{4 \times 10^{-10} (\Delta I)^3 F}{J_c R^2} \quad \text{W/cm}$$

...and sometimes even when they're fast!

Consider 1 MW worth of customers coming in and out every millisecond, (<u>e.g., 10,000</u> <u>teenagers simultaneously switching 100 W</u> <u>light bulbs on and off</u>) resulting in $\Delta I = 20$ A, but a heat load of only 10 µW/m

Small Amplitude Losses (Ripple)

$$H = \frac{4 \times 10^{-10} (\Delta I)^3 F}{J_c R^2} \quad \text{W/cm}$$

3-Phase Converter: F = 360 Hz

∆ (%)	∆I (A)	$\Delta P (MW)$	H (W/m)
1	1000	50	0.50
2	2000	100	3.99
3	3000	150	13.46
4	4000	200	31.91
5	5000	250	62.32

Radiative Heat In-Leak

$$W_R = 0.5\varepsilon\sigma (T_{amb}^4 - T_{SC}^4)/(n-1)$$
, where

 W_R = Power radiated in as watts/unit area $\sigma = 5.67 \times 10^{-12} \text{ W/cm}^2 \text{K}^4$

$$T_{amb} = 300 K$$

$$T_{sc} = 65 - 77 K$$

 ϵ = 0.05 per inner and outer tube surface

 $D_{sc} = 5 \text{ cm}$

n = number of layers of superinsulation (10)

Then $W_R = 0.2 \text{ W/m}$

Fluid Dynamics of Liquid Nitrogen Flow through a 5-cm Diameter Pipe at 1 bar

T °K	ρ kg/m ³	μ μ Pa×s	μ²/ρ ndyne	V m/s	Re 10 ⁶
77	808	163	3290	4	9.91
65	860	280	9148	4	12.3

$$\operatorname{Re} = \rho VD / \mu \approx \frac{\operatorname{Inertial Forces}}{\Gamma}$$

Viscous Forces

Thus, it takes about 30 - 100 dynes "push" on an object to overcome viscous forces exerted by the liquid nitrogen

Friction Losses arising from pumping LN_2 through a 5-cm pipe at a flow rate of 4 m/s

$$p_{loss} = \lambda \ (l / d_h) \ (p \ v^2 / 2)$$

where

$$p_{loss}$$
 = pressure loss (Pa, N/m²

 $\lambda = friction coefficient$

l = length of duct or pipe (m)

 d_{k} = hydraulic diameter (m)

$$W_{\rm loss} = M P_{\rm loss} / \rho ,$$

Where M = mass flow per unit length $P_{loss} =$ pressure loss per unit length $\rho =$ fluid density

Colebrook- Weymouth Equation

 $1 \ / \ \lambda^{1/2} = -2.0 \ \log_{10} \left[\ (2,51 \ / \ (\text{Re} \ \lambda^{1/2})) + (\varepsilon \ / \ d_h \) \ / \ 3,72 \ \right]$

ε = 0.015 mm						
(stainless steel)						
	W _{loss} (W/m)					
77 K	3.81					
65 K	4.05					

Heat to be Removed by LN₂

 $dT/dx = W_T/(\rho v C_P A)$, where

dT/dx = Temp rise along cable, K/m $W_T = Total$ Heat Generated per unit Length $\rho = Density$ v = Flow Rate (4 m/s) $C_P = Heat$ Capacity A = Tubular Area (D = 5 cm)

Т	ρ	C _P	W _T	dT/dx
°K	kg/m³	J/kg × m	W/m	°K/km
77	808	2040	5	0.4
65	860	2003	5	0.4

To offset a 1 K temperature increase, refrigeration stations would be needed every 2.5 km – <u>way too close!</u>

To-Do List

- Fine-Tune All Parameters
 - Diameter, Flow Rate, Temperature, Pressure, Power
 - Site Preparation, Materials Delivery and Construction
- Magnetic Field Issues
 - Anelastic losses (conductor tapes)
 - Spacing of Monopoles (2 100,000 A cables 1 m apart experience a mutual force of 2000 N/m!)
- Engineering Economy Study
 - How important really is wire cost?
 - How big a project for a reasonable NOI (size matters!)?

Find a "Get Rich Quick" Commercial Opportunity!

EPRI Handouts (See Steve Eckroad)

- White Paper (Chauncey Starr)
- "Maulbetsch Report" (John Maulbetsch)

Visits

Department of Energy (July 2005)

- Jim Daley & Kevin Kolevar (Electricity, etc.)
- Ray Orbach & Tom Vanek (Science)
- Shane Johnson (Nuclear)

Exposure (2005)

(http://www.w2agz.com/epri-sctf5.htm)

Publications

- Grant, "The SuperCable: Dual Delivery of Hydrogen and Electric Power," IEEE PES*
- Grant, "The SuperCable: Dual Delivery of Chemical and Electric Power," IEEE Trans. Appl. Super. 15, 1810*
- Grant, "Cryo-Delivery Systems for the Co-Transmission of Chemical and Electrical Power," J. Cryo. Eng. (to be published)*
- Grant, "Garwin-Matisoo Revisited," SUST (to be published)*

Presentations

- Grant, Presentations at conferences associated with the above three publications
- Grant, "System, Construction and Integration Issues for Long Distance, High Capacity, Ceramic HTSC dc Cables," PacRim 6, Maui

<u>Press & Popular</u>

- Grant, "Nuclear Energy's Contribution to the City of the Future," Nuclear Future, Vol. 1, No. 1, p.17
- Starr, interview in Fortune Magazine, 8 August
- Grant, Overbye & Starr, "Continental SuperGrid," Scientific American, to appear in early 2006

*Peer Reviewed

Take-Home Reading Assignment www.w2agz.com/epri-sctf5.htm

- 1. Garwin and Matisoo, 1967 (100 GW on Nb₃Sn)
- 2. Edeskuty, 1972 (LASL dc SPTL, 5 GW, PECO)
- 3. Lasseter, et al., 1994 (HTSC dc Networks)
- 4. Beale, et al., 1996 (BICC HTSC dc, 400 MW)
- 5. Grant, 1996 (Promises, promises...ASC 96)
- 6. Schoenung, Hassenzahl and Grant, 1997 (5 GW on HTSC @ LN₂, 1000 km)
- 7. Proceedings, SuperGrid Workshops, 2002 & 2004 (be sure to open Bibliography page !)
- 8. Neptune HVDC Cable, 2005
- 9. Grant, "London Calling," Nature review of "Thread Across the Ocean."

...and there will be a quiz next time I see you all!