
Introduction to Unconventional
Superconductivity

Manfred Sigrist

Theoretische Physik, ETH-Hönggerberg, 8093 Zürich, Switzerland

Abstract. This lecture gives a basic introduction into some aspects of the unconventional supercon-
ductivity. First we analyze the conditions to realize unconventional superconductivity in strongly
correlated electron systems. Then an introduction of the generalized BCS theory is given and sev-
eral key properties of unconventional pairing states are discussed. The phenomenological treatment
based on the Ginzburg-Landau formulations provides a view on unconventional superconductivity
based on the concept of spontaneous symmetry breaking. Finally some aspects of two examples
of unconventional superconductors will be discussed: high-temperature superconductivity and spin-
triplet superconductivity in Sr2RuO4.
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INTRODUCTION

Superconductivity remains to be one of the most fascinating and intriguing phases of
matter even nearly hundred years after its first observation. Owing to the breakthrough in
1957 by Bardeen, Cooper and Schrieffer we understand superconductivity as a conden-
sate of electron pairs, so-called Cooper pairs, which form due to an attractive interaction
among electrons. In the superconducting materials known until the mid-seventies this
interaction is mediated by electron-phonon coupling which gises rise to Cooper pairs in
the most symmetric form, i.e. vanishing relative orbital angular momentum and spin sin-
glet configuration (nowadays called s-wave pairing). After the introduction of the BCS
concept, also studies of alternative pairing forms started. Early on Anderson and Morel
[1] as well as Balian and Werthamer [2] investigated superconducting phases which later
would be identified as the A- and the B-phase of superfluid 3He [3]. In contrast to the
s-wave superconductors the A- and B-phase are characterized by Cooper pairs with an-
gular momentum 1 and spin-triplet configuration. This was the beginning of the era of
unconventional superconductivity, condensates of Cooper pairs of lower symmetry, in
contrast to the conventional superconductors with the most symmetric Cooper pairs.

The discovery of superfluidity in the 3He in 1971 by Osheroff, Richardson and Lee
gave the first example of unconventional Cooper pairing [4]. In 3He other pairing mecha-
nisms are obviously of non-phononic origin, based on van der Waals and spin fluctuation
mediated interactions [3, 5]. Moreover, 3He is the prime example for a strongly corre-
lated Fermi liquid where the short range repulsive interaction leads to strong renormal-
isations of the quasiparticle mass and other quantities. Alternative pairing mechanism
and strong correlation effects are key elements to prevent electrons from undergoing
conventional s-wave pairing.

The natural aim to find among solids a system with unconventional Cooper pairing



was not satisfied until much latter when at the end of seventies and beginning of the
eighties two novel classes of strongly correlated materials were found among which
some were superconducting - the heavy Fermion compounds [6, 7, 8] and organic con-
ductors [9, 10]. The first type of materials are intermetallics containing rare earth ions
and the second are highly anisotropic conductors based organic units. Although it is not
clear until today which form of Cooper pairing is realized in many of these materials,
some of them possess complex phase diagrams with several different superconducting
phases, firmly establishing the unconventional nature. In both types of material super-
conductivity emerges out of phase that are nearly magnetic or evolve under pressure
from a magnetically ordered state. In 1986 the discovery of high-temperature supercon-
ductivity in cuprate compounds with layered perovskite structure announced the era of
unconventional superconductivity to a wider community [11]. This system dominates to
the present days the study of superconductivity. A few years were necessary to estab-
lish the unconventional character to pairing for the cuprates. Cooper pairs possess in the
quasi-two-dimensional systems a so-called spin singlet dx2−y2-wave structure [12, 13].
In cuprate materials the important role of magnetism in the context of the unusual metal-
lic properties and superconductivity is underlined by the fact that this superconductor
emerges from an antiferromagnetic Mott-insulator upon carrier doping [14].

The essential role which magnetism could play for unconventional superconductivity
became one of the guiding strategies in the nineties in the search for new materials.
Striking examples of superconductivity associated with magnetic phases are several Ce-
based compounds where superconductivity is associated with a quantum critical point
of an antiferromagnetically ordered phase. CeIn3 [15], CePd2Si2 [15, 16] and CeMIn5
(M=Co,Rh,Ir) [17, 18] are a few examples of this type. Surprisingly superconductivity
was also found inside a ferromagnetic phases in UGe2 [19], URhGe [20] and ZrZn2 [21],
possibly connected with the corresponding magnetic quantum phase transition.

Sr2RuO4 whose superconductivity was discovered in 1994 deserves a special place
as an exemplary case of an unconventional superconductor resulting from a strongly
correlated Fermi liquid phase [22]. In various respects it may be considered as an analog
to 3He, including the pairing symmetry which is closely related to the A-phase of the
superfluid. Many aspects of this superconductor have been explored in much detail
during the last ten years [23, 24]

More recently the superconducting skutterudites such as PrOs4Sb12 have been
aroused much interest as new examples of heavy Fermion materials with multiple
superconducting phases [25]. The exploration of superconductivity in materials with
geometrically frustrated crystall lattices has been a further recent focus. This in-
cludes NaxCoO4 intercalated with water which has been considered as a realization
of superconductivity on a triangular lattice [26]. Also superconductivity in metalls
with the pyrochlor structure belong to this class such as Cd2Re2O7 [27] and AOs2O6
(A=Cs,Rb,K) [28], although it is not clear whether they are unconventional. Crystal
structure can have an even crucial impact on superconductivity than in the case of
frustrated lattices, if inversion symmetry is missing. As we will see later inversion
together with time reversal invariance are among the key symmetries for Cooper pair
formation. The discovery of superconductivity in the heavy Fermion systems CePt3Si
and UIr have reopened the discussion of superconductivity in this kind of systems [29].

During the past two decades we experience important developments in the field of



unconventional superconductivity, from the side of new materials as well as theoretical
understanding. New strategies for the discovery of unconventional superconductors bear
fruits besides the tremendous progress in sample production which is a mandatory
accessory for the observation of unconventional superconducting phases which are
very sensitive to material disorder effects. These lecture notes cover a few aspects and
developments in the field of unconventional superconductivity. Naturally this overview
is selective and the viewpoint is biased by the preferences of the lecturer.

CONVENTIONAL VERSUS UNCONVENTIONAL
SUPERCONDUCTIVITY

The most fundamental experimental aspect of superconductivity is the screening of a
magnetic field, the Meissner-Ochsenfeld effect, which implies also the existence of per-
sistent electric currents. The microscopic theory which provides such a feature is based
on the coherent state introduced by Bardeen, Cooper and Schrieffer. In this chapter we
will give a brief introduction to this BCS state (screening effects, however, will be only
addressed later in the context of the phenomenological Ginzburg-Landau formulation)
and motivate the generalization beyond the standard BCS theory of conventional super-
conductivity. We will compare also the electron-phonon mechanism for superconduc-
tivity with possible alternative mechanisms, in particular, based on effective interaction
originating from spin fluctuations.

Standard BCS theory

It is convenient for the further discussion to first introduce the basics of the meanfield
formulation of the BCS theory using a very simple model. The formation of Cooper
pairs which is at the heart of the microscopic theory of Bardeen, Cooper and Schrieffer,
requires the presence of an attractive interaction between electrons. For our purpose
it is sufficient to use a structureless contact interaction which yields the following
Hamiltonian in a second-quantization language,

H = ∑
!k ,s

ξ!k c†
!k s

c!k s +g ∑
!k ,!k ′,!q

c†
!k+!q ,↑

c†
!k ′−!q ,↓

c!k ′↓c!k↑ . (1)

where c†
!k s

(c!k s) creates (annihilates) an electron with momentum !k and spin s. The
first term is the kinetic energy accounting for the band structure of the metal, where
ξ!k is measured relative to the chemical potential µ , i.e. ξ!k = ε!k − µ = h̄2

2m(!k 2 − k2
F)

for a parabolic band. The second term describes the two-particle interaction which
is represented by a structureless scattering matrix element g. This corresponds to a
attractive contact interaction U(!r − !r′ ) = gδ (!r − !r′ ) (with g < 0) such that V!k ,!k ′ =
V (!q = !k −!k ′) =

∫
d3rU(!r )ei!q ·!r = g. Note that in this case only particle of opposite

spin interact.



For the BCS theory the relevant scattering processes are those of particle pairs with
vanishing total momentum, belonging to the set of states {|!k ↑〉⊗ |−!k ↓〉}. Therefore
we concentrate on the reduced Hamiltonian

H = ∑
!k ,s

ξ!k c†
!k s

c!k s +g ∑
!k ,!k ′

c†
!k↑

c†
−!k↓

c−!k ′↓c!k ′↑ . (2)

ignoring all other pair scattering events. Bardeen, Cooper and Schrieffer introduced the
following variational ground state

|ΦBCS〉 = ∏
!k

{
u!k + v!k c†

!k↑
c†
−!k↓

}
|vac〉 (3)

where |vac〉 denotes the electron vacuum (|u!k |
2 + |v!k |

2 = 1). This is a coherent states of
electron pairs (Cooper pairs) giving a lower energy than the bare Fermi gas.

An alternative approach which provides also straightforwardly the quasiparticle spec-
trum of the coherent state is given by the mean field theory which allows us to reduce
the interaction part. Among the possible meanfields we use the off-diagonal

b!k =
〈

c−!k↓c!k↑

〉
(4)

which connects states of particle numbers different by 2, as suggested by the variational
state (3). Note that the expectation value 〈A〉 = tr[exp(−βH )A]/tr[exp(−βH )]. We
may interpret b!k as the wavefunction of the Cooper pairs in momentum space. Inserting
c−!k↓c!k↑ = b!k +{c−!k↓c!k↑−b!k} into the Hamiltonian and neglecting terms quadratic in
{. . .} (we assume 〈|{. . .}|2〉 ' |b!k |

2) we obtain the meanfield Hamiltonian

H = ∑
!k ,s

ξ!k c†
!k s

c!k s +g ∑
!k ,!k ′

b∗!k ′c−!k↓c!k↑ +b!k ′c†
!k↑

c†
−!k↓

−b∗!k b!k ′ (5)

= ∑
!k ,s

ξ!k c†
!k s

c!k s −∑
!k

(
∆∗c−!k↓c!k↑ +∆c†

!k↑
c†
−!k↓

)
−∆∗b!k (6)

with ∆ = −g∑!k ′ b!k ′ . It is now straightforward to find the quasiparticle spectrum of this
one-particle Hamiltonian by introducing new Fermion operators γ!k s with the property
γ̇†
!k s

= i[Hm f ,γ†
!ks

] = E!k γ†
!k s

. To reach such a diagonalization of the Hamiltonian we use
the Bogolyubov transformation

c!k↑ = u∗!k γ!k 1 + v!k γ†
!k 2

and c−!k↓ = −v∗!k γ!k 1 +u!k γ†
!k 2

(7)

with
∣∣u!k

∣∣2 +
∣∣v!k

∣∣2 = 1 and indices 1 and 2 stands for the electron like and hole like
quasiparticle. Note that the functions u!k and v!k are identical with those of the variational
state (3). The Hamiltonian acquires the diagonal form

Hm f = ∑
!k

[ξ!k −E!k +∆b!k ]+∑
!k

E!k (γ†
!k1

γ!k 1 + γ†
!k 2

γ!k 2) (8)
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FIGURE 1. Schematic quasiparticle spectrum: The solid line shows the spectrum with a finite energy
gap and the dashed line corresponds to the spectrum for ∆ = 0 with the same quasiparticle occupation.
States with E < 0 are occupied by quasiparticles and empty for E > 0. Obviously the opening of the gap
lowers the groundstate energy.

where the quasiparticle energy is given by E!k =
√

ξ 2
!k

+∆2, The spectrum of the Hamil-
tonian has two branches which originate from electron and hole branches. The attractive
interaction g leads to an instability of the Fermi surface and the opening of a gap 2∆ (see
Fig.1). The gap is the result of ’hybridizing’ electron-like and hole-like quasiparticles
leading to new quasiparticles as a superposition of electron- and hole-like character.

The energy gap has to be determined self-consistently from the ”gap equation”:

∆ = −g∑
!k

b!k = −g∑
!k

u∗!k v!k [1− f (E!k )] = −g∑
!k

∆
2E!k

tanh
(

E!k
kBT

)
(9)

with the Fermi factor f (E) = 1/(1 + eE/kBT ). Note that this energy gap ∆(T ) only
depends on temperature. We define the critical temperature Tc as the temperature where
the gap vanishes. In the limit ∆ → 0 of Eq.(9) we obtain the linearized gap equation
determining Tc:

∆ = −g∆∑
!k

1
2ξ!k

tanh
( ξ!k

kBT

)
⇒ 1 = −g

∫
dξ N(ξ )

2ξ tanh
(

ξ
kBTc

)
. (10)

where N(ξ ) is the density of states of the electrons. This integral has a logarithmic
divergence for ξ →±∞. Thus we need to introduce a cutoff energy εc to obtain sensible
result. This corresponds to a characteristic energy scale of the attactive interaction and
is assumed to be much smaller than the Fermi energy or the band width, the electronic
energy scale. In other words we may say that the attractive interaction is only present
in a narrow energy range around the Fermi surface. Then it seems legitimate to assume



that the density of states is constant, N(ξ ) → N0, yielding:

1 = −gN0

∫ εc

−εc

dξ
ξ tanh

(
ξ

2kBTc

)
= −gN0ln

(
1.14εc

kBTc

)
(11)

from which we derive
kBTc = 1.14εce−1/|g|N0 . (12)

The critical temperature Tc depends on the cutoff energy εc.
The energy gap at zero temperature is also straightforwardly calculated using the same

energy cutoff:

1 = −gN0

∫ εc

0

dξ√
ξ 2 +∆2

= −gN0 sinh−1 εc

∆
(13)

such that
∆(T = 0) ≈ 2εc e−1/|g|N0 = 1.764kBTc . (14)

Obviously we can express the gap by Tc with a universal proportionality factor and
without the appearance of εc. This is the signature of the scheme which we call ”weak-
coupling” approximation. It is possible to express physical quantities cutoff-free, if Tc is
known.

Finally we estimate the condensation energy at T = 0 which corresponds to the energy
gain due to the opening of the gap. Since this gap is very small the condensation energy
originates from the modification of the quasi particle states very close to the Fermi
energy. Therefore we obtain

Econd = ∑
!k

[
ξ!k −E!k +∆b!k

]
≈−1

2
N0 |∆|2 . (15)

The condensation energy depends on the density of states at the Fermi surface and the
zero-temperature gap magnitude. Thus within the weak coupling meanfield treatment
Econd is determined by the modified quasiparticle spectrum only (Fig.1).

Electron-Phonon interaction and Coulomb Repulsion

So far the nature of the model interaction was not specified in our discussion. We now
turn to the electron-phonon mediated interaction and which closely connected with the
Coulomb interaction. Thus, it is necessary examine also the effect of Coulomb repulsion
on the pairing of electrons. Electron possesses charge and spin degrees of freedom. In
a metal Coulomb interaction coupling to charge is renormalized through many body
effects.

V!k ,!k ′ =
4πe2

q2ε(!q ,ω)
(16)

where !q = !k −!k ′. The dielectric constant ε(!q ,ω) describes the effect of dynamical
screening of charge fluctuations. This occurs due to the rearrangement of the electrons



as well as the polarization of the elastic (positively charged) ionic lattice of the metal i.e.
due to phonons. We can decompose the renormalized interaction into two corresponding
parts

V eff
!k ,!k ′ =

4πe2

q2 + k2
T F︸ ︷︷ ︸

renorm. Coulomb

+
4πe2

q2 + k2
T F

ω2
q

ω2 −ω2
q︸ ︷︷ ︸

electron-phonon

, (17)

with h̄ω = ε!k −ε!k ′ . where the first is due Thomas-Fermi screening which is considered
as instantaneous so that we ignore the frequency dependence. The screening length is

λT F = k−1
T F with k2

T F =
6πe2ne

εF
, (18)

which is of the order of a few lattice constants, making the interaction very short
ranged. The second part due to the phonons, in the same way short ranged, involves the
dynamics of the ions which slow compared electronic time scales. Here ωq describes
the spectrum of the acoustic phonons ωq = sq at long wave-lengths, implying the Debye
energy h̄ωD as a characteristic energy scale. This interaction is attractive for frequencies
|ω| < ωq ≤ ωD and repulsive otherwise. In this way the Debey frequency appears as a
natural energy cutoff εc. We will now use a simple model given by Anderson and Morel
to discuss the superconducting instability including the repulsive part of the Coulomb
interaction which we had ignored in the introduction above [30].

Anderson-Morel-Model

Including now also the effect of the repulsive Coulomb interaction we set up a
simplified weak-coupling model which keeps the most essential features of the electron
band and the structure of the interaction (17). The electron band is characterized by its
width W = 2EF with the chemical potential in the center and a constant density of states
N(ξ ) = N0. The interaction is divided into a repulsive and an attractive part Vee and Vep,
respectively, originating from the two parts in (17). The energy range of the attractive
part is centered around the Fermi energy bounded by the cutoff energy εD = h̄ωD while
the repulsive part extends over the whole band width. Thus we define

Ṽ!k ,!k ′ = V ee
!k ,!k ′ +V ep

!k ,!k ′

⇒






N0V ee
!k ,!k ′ = N0V ee(ξ!k ,ξ!k ′) =

{
µ > 0 for −W ≤ ξ!k ,ξ!k ′ ≤W
0 else

N0V ep
!k ,!k ′ = N0V ep(ξ!k ,ξ!k ′) =

{
−λ < 0 for − εD ≤ ξ!k ,ξ!k ′ ≤ εD
0 else

(19)
with ξ!k = ε!k − εF . We set up the corresponding BCS-type Hamiltonian with the mo-
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FIGURE 2. Model interaction: The left panel shows the basic energy dependence of the interaction (17).
The right panel is a very simplified model interaction with the essential features of an overall repulsive
interaction with an attractive part around the Fermi energy.

mentum dependent interaction

H = ∑
!k ,s

ξ!k c†
!k ,s

c!k ,s +
1

2Ω ∑
!k ,!k ′

Ṽ!k ,!k ′c†
!k↑

c†
−!k↓

c−!k ′↓c!k ′↑ (20)

which we decouple in the analogous way as in the previous section leading to the gap
equation

∆!k = −∑
!k ′

Ṽ!k ,!k ′〈c−!k ′↓c!k ′↑〉 , ∆∗
!k = −∑

!k ′

Ṽ!k ,!k ′〈c†
!k ′↑

c†
−!k ′↓

〉 . (21)

We introduce the simplifying form

∆!k = ∆(ξ!k )g!k , (22)

where g!k describes the angular structure of the gap which is also a function of the energy.
We reduce the linearized gap equation to the form

∆(ξ ) = −N0

∫
dξ ′Ṽ (ξ ,ξ ′)

tanh(βξ ′/2)
ξ ′ ∆(ξ ′) , (23)

where Ṽ (ξ ,ξ ′) is defined as

Ṽ (ξ ,ξ ′) =
1
Ω ∑

!k ,!k ′

g∗!kV!k ,!k ′g!k ′δ (ξ −ξ!k )δ (ξ ′−ξ!k ′) . (24)

where V!k ,!k ′ is taken from (19). This interaction requests that g!k = 1. Sinc the approxi-
mation for the band structure and the pairing interaction in (19) give to distinct energy
regions we also put the analogous parametrization ansatz for the gap

∆(ξ ) =






∆1 for |ξ | < εD

∆2 for εD < |ξ | < W
. (25)
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FIGURE 3. The left panel shows the density of states of the simple model and the right panel gives the
schematic energy dependence of the gap as a function of ξ .

With this simplifications we arrive at the following two linearized coupled gap equations

∆1 = (λ −µ)∆1

∫ εD

0
dξ ′ tanh(βξ ′/2)

ξ ′ −µ∆2

∫ W

εD
dξ ′ tanh(βξ ′/2)

ξ ′

= (λ −µ)∆1 ln(1.14εD/kBT )−µ∆2 ln(W/εD)

∆2 = −µ∆1

∫ εD

0
dξ ′ tanh(βξ ′/2)

ξ ′ −µ∆2

∫ W

εD
dξ ′ tanh(βξ ′/2)

ξ ′

= −µ∆1 ln(1.14εD/kBT )−µ∆2 ln(W/εD) .

(26)

The condition that ∆1,2 ,= 0 (non-zero determinant) defines Tc:

kBTc = 1.14εD exp
(
− 1

λ −µ∗

)
(27)

with
µ∗ =

µ
1+ µ ln(W/εD)

. (28)

This has a structure similar to that of the previous section apart from the fact that the
effect of the attractive potential is slightly diminished. A finite transition temperature
exist as long as λ > µ∗. The important result is that the effect of the repulsive Coulomb
interaction does not enter in its full strength but is renormalized. The reduction depends
on the ration W/εD, i.e. the ratio of the energy scales involved. This renormalization of
the Coulomb repulsion displays the retardation effect of the electron-phonon interaction.
The polarization of the ionic lattice due to electron persists on time scales much longer
the characteristic time scale of the electron (∼ h̄/EF ' ω−1

D . Thus an electron interact
with another electron via lattice deformation without having to be at the same time at
the same position in the lattice.

The gap as a function of ξ changes sign at εD which allows to optimize the pairing
energy taking the different sign of the interaction into account.

A similar form for Tc comes out of the full retarded solution of the equations of
the superconducting instability by means of the Eliashberg-formulation in the so-called



strong coupling limit:

kBTc = 0.7εDexp
(
− 1.04(1+λ )

λ −µ∗(1+0.62λ )

)
. (29)

This form is due to Mac Millan and takes also the effect of the quasiparticle renormal-
ization due to the electron-phonon interaction into account [31], contained in the factor
(1+λ ) of the numerator in the exponent. While the most simple weak-coupling form for
Tc gives that Tc ∝ ωD we expect to observe the so-called isotope effect, i.e. Tc ∝ M−1/2

ion ,
since ωD ∝ M−1/2

ion . Including retardation effects, however, gives a new dependence of Tc
on the cutoff energy so that we find deviation from the simple form of the isotope effect.

Strongly correlated electron systems

In simple metals it is rather easy for the electron-phonon interaction to overcome the
Coulomb repulsion through the retardation effect. The conduction electrons are much
faster than the ions and move basically as free particles. In so-called strongly correlated
electron systems, however, electrons are often more close associated with atomic orbitals
and retain more of their localized character, like in transition metal oxides or rare-earth
intermetallics forming so-called heavy Fermion systems. The nearly localized electrons
are considerably slower in their motion such that Coulomb interactions are comparable
to the kinetic energy or even larger. In the heavy Fermion materials the characteristic
energy scale associated with the carriers at the Fermi energy is even smaller that the
Debye energy. Under such conditions the retardation effect does not provide sufficient
help and Coulomb interaction dominates over the attractive electron-phonon coupling.

Symmetry of the pair wave function

Both the Coulomb and the electron-phonon interaction are very short ranged and may
be viewed practically as contact interactions so that they are felt by two electrons only
if they can be found with a finite probability at the same spot. Considering the pair
wavefunction

ψ(!r ,s;!r ′,s′) = f (
∣∣!r −!r ′

∣∣)χ(s,s′) (30)

the obital part f (!r ) has to be in the l = 0-channel for a rotationally symmetric systems
and the spin configuration has spin-singlet character (only particles of the opposite spin
can meet at the same point). For λ < µ∗ the Cooper pairing instability is suppressed by
Coulomb interaction. The short-ranged repulsive interaction can be avoided by electron
pairs with a non-vanishing orbital angular momentum l > 0. Then the pair wavefunc-
tion vanishes for the two electrons at the same place ( f (r) ∝ rl for r → 0). Cooper pairs
in a rotationally symmetric environment satisfy the following basic symmetry require-
ments. The fact that two identical Fermions pair requires that their wave functions is



antisymmetric under exchange of the two electrons yields following conditions:

ψ(!r ′,s′;!r ,s) = −ψ(!r ,s;!r ′,s′) = f (−{!r −!r ′})χs′,s

⇒






f (−!r ) = f (!r ), χs,s′ = −χs′,s, l = 0,2,4, ..., S = 0

f (−!r ) = − f (!r ), χs,s′ = χs′,s, l = 1,3,5, ..., S = 1

(31)

As parity is given by (−1)l , even partity means spin singlet and odd parity means
spin triplet pairing. From this viewpoint we define a conventional superconductor as a
condensate of l = 0 Cooper pairs, i.e. the most symmetric pairing state. Unconventional
are all other states with l > 0. This distinction is not restricted to rotation symmetric
systems, but can be applied in the modified form also to real metals which possess
(lower) point group symmetry of the crystalline lattices. There the angular momentum
is replaced by the irreducible representations of the point group, as we will see later.

Alternative mechanisms

If the short-ranged Coulomb repulsion jams the electron-phonon interaction for pair-
ing, alternative pairing interactions have to be found. Both interactions are of less im-
portance, if pairing is realized in a channel different from the most symmetric one.

g!k ;s,s′ = 〈c−!k ,sc!k s′〉 with ∑
!k

g!k ;s,s′ = 0 (32)

which means that there is no pairing amplitude for electrons on the same position.
Mechanisms giving rise to this kind of pairing should provide a not too short-ranged
interaction.

Kohn and Luttinger asked in 1965 the question whether pairing would be possible
based poorly on Coulomb interaction [32]. Their pairing mechanism is based on a
part of the renormalized Coulomb interaction which we had ignored. Due to the sharp
Fermi edge in metals the renormalized Coulomb interaction possesses also a long-range
oscillatory tail. These are the Friedel oscillations giving rise to a potential of the large-r
form

V (r) =
cos2kFr

r3 . (33)

which has obviously both attractive as well as repulsive parts. Pairing states of higher
angular momentum would be able to take advantage of the attractive portion of V (r).
The resulting critical temperature obtained from this interaction is

Tc

TF
. e−(2l)4

(34)

with l > 0. Although the relevant energy scale is the Fermi energy or band width, this
mechanism is irrelevant for real superconductivity, since even for l = 1 the achievable Tc



would be of order of 10−7 ×TF . Nevertheless it is possible to undergo a superconduct-
ing transition at very low temperature if no other instability has happened. An approach
resulting in more feasible critical temperatures was given by Berk and Schrieffer [33],
who studied the exchange of spin fluctuations. In contrast to the electron-phonon inter-
action and the Kohn-Luttinger mechanism which are based on the electron charge only,
the spin plays the key role in this case.

Mechanism based on spin-fluctuation exchange

The electron-phonon mechanism is based on the polarizability of the elastic ionic
lattice in a metal. In a similar way also spins can form a polarizable medium and
yield an effective interaction among electrons. These polarizable spins can be localized
degrees of freedom or the spins of the conduction electrons themselves. Nearly magnetic
materials are most suitable for this type of interaction. We will illustrate this here on the
example of a nearly ferromagnetic metal, described by the Stoner model.

We consider an electron with spin !S at the position !r and time t. By means of
the exchange interaction (exchange hole) the electron spin polarizes the spin of the
surrounding electrons. In this way it acts like a local magnetic field of the form

!H (!r , t) = − I
µBh̄

!S (!r , t) (35)

where µB is the Bohr magneton and I = U/Ω is derived from the exchange interaction

Hex =
∫

d3rd3r′Uδ (!r −!r ′)ρ↑(!r )ρ↓(!r ′) (36)

which appears here as a repulsive contact interaction of strength U between electrons of
opposite spin (ρs(!r ) denotes the density of electrons of spin s at !r , Ω is the volume).
According to linear response theory, the electron spins will respond to the local field as
described by the dynamical spin susceptibility

!S(!r ′, t ′) = µB

∫
d3r dt χ(!r ′−!r , t ′− t) !H (!r , t) (37)

assuming χ(!r , t) to be isotropic in spin space. Again invoking the exchange interaction
it is possible to derive an effective Zeeman energy for the spin density at (!r ′, t ′).

∆E = −µB

h̄
!S (!r ′, t ′) · !H (!r ′, t ′) =

I
h̄
!S(!r ′, t ′) ·µB

∫
d3r dt χ(!r ′−!r , t ′− t)!H (!r , t) (38)

which can be reformulated in terms of electron spin densities,

Hs f = − I2

h̄2

∫
d3r d3r′

∫
dt dt ′ χ(!r −!r ′; t − t ′) !S(!r , t) · !S (!r ′, t ′) . (39)
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FIGURE 4. Process of pair scattering of electrons due to spin flucutions, i.e. paramagnon exchange.

and can be rewritten in momentum space as

Hs f = − 1
Ω

I2

4

∫
dω ∑

!q ,!k ,!k ′

Re(χ(!q ,ω))

× ∑
s1,s2,s3,s4

{c†
!k+!q ,s1

!σ s1s2c!k ,s2
} · {c†

!k ′−!q ,s3
!σ s3s4c!k ′,s4

}
(40)

This scattering process is shown diagrammatically in Fig.4. In order to be specific in the
form of the interaction we approximate the spin susceptibility by its RPA form:

χ(!q ,ω) =
χ0(!q ,ω)

1− Iχ0(!q ,ω)
(41)

with

χ0(!q ,ω) ≈ N0

(
1− !q 2

12k2
F

+ i
π
2

ω
vF |!q |

)
q ' 2kF ; , ω ' εF (42)

where χ0(!q ,ω) is the bare dynamical susceptibility of the isotropic electron gas. For a
parabolic band (i.e. no nesting features) the static susceptibility is maximal for !q = 0
where χ(!q = 0,ω = 0) = N0/(1− IN0). The divergence of the susceptibility for 1 = IN0
is the well-known Stoner’s instability corresponding to the onset of ferromagnetic order.
Turning to the imaginary part of χ we find for a given !q a maximum as a function
of ω , which is interpreted as a rather broad resonance, called paramagnon, with the
approximate dispersion ω0q = 2

πIN0
(1− IN0)vFq for small !q (Fig.5).

By analogy to the electron-phonon interaction, we use the electron-paramagnon cou-
pling as a pairing potential (spin fluctuation exchange mechanism). Limiting ourselves
to the Cooper pairing channel the interaction term is written as

H ′
s f = ∑

!k ,!k ′
∑

s1,s2,s3,s4

V!k ,!k ′;s1s2s3s4
c†
!k ,s1

c†
−!k ,s2

c−!k ′,s3
c!k ′,s4

(43)
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FIGURE 5. Real and imaginary part of the dynamical susceptibility. The static real part of χ has a
maximum at !q = 0. The imaginary part shows a broak peak whose center is used to give an ω-!q relation
describing the paramagnon as a strongly damped collective excitation.

with

V!k ,!k ′;s1s2s3s4
= −I2

4
Reχ(!k −!k ′,ω = ε!k − ε!k ′)!σ s1s4 · !σ s2s3 . (44)

Since the Cooper scattering matrix element is spin dependent, we obtain different values
for the spin-singlet and spin-triplet configuration:

V s
!k ,!k ′ =

3I2

4
Reχ(!k −!k ′,ω = ε!k − ε!k ′) for S = 0 ,

V t
!k ,!k ′ = −I2

4
Reχ(!k −!k ′,ω = ε!k − ε!k ′) for S = 1 ,

(45)

Obviously this is repulsive for the singlet, but attractive in the triplet channel. Thus
odd-parity pairing states are favored with l = 1,3,5, .... Similar to electron-phonon
interaction retardation effects play a role. The attraction is obtained roughly within an
energy range ω < ω0q providing the natural energy cutoff from the maximal paramagnon
resonance energy for q ∼ 2kF :

εc =
8

πIN0
(1− IN0)EF (46)

It is important to notice that εc ' EF near the Stoner instability, an effect of the so-called
critical slowing down (spin fluctuations become slower). Examining all possibilities we
find that the l = 1-state is the most favored odd-parity state of this interaction. We choose
for the gap function ∆!k = ∆g!k with

gα
!k

= Ylα(k̂) =






1√
2k

(kx + iky) α = +1

kz

k
α = 0

1√
2k

(kx − iky) α = −1

, (47)



the three l = 1 spherical harmonics (k̂ =!k/k). Projecting with this g!k we define

Ṽ (ξ ,ξ ′) = − I2

4Ω ∑
!k ,!k ′

gα
!k

χ(!k −!k ′,ω = 0)gα
!k ′δ (ξ −ξ!k )δ (ξ ′−ξ!k ′)

≈






V1 |ξ |, |ξ ′| < εc

0 otherwise

(48)

where
V1 = − I

12
IN0

(1− IN0)2 . (49)

Since we are now left with a BCS-like formulation, it is straightforward to derive the
critical temperature is

kBTc = εce−1/λs , (50)

with

λs = N0V1 =
1

12

(
IN0

1− IN0

)2
. (51)

Assuming the Coulomb repulsion as a contact interaction we do not have a correction in
the exponent in the case of l > 0. It is important note here that while the Coulomb and
electron-phonon interaction has usually the range of the Thomas-Fermi screening length,
the paramagnon mediated interaction is longer ranged with the magnetic correlation
length ξ as the length scale. The correlation length is defined as

ξ 2
s ∼

∫
d3rr2〈!S(!r ) · !S (0)〉 (52)

Since we have an Ornstein-Zernike form for the static susceptibility, we can write for
the static susceptibility

χ(!q) ∝ 1
1+ξ 2

s !q 2 (53)

which compared with (42, 41) leads to

ξ 2
s =

1
12k2

F

IN0

1− IN0
. (54)

The correlation length diverges at the Stoner instability point favoring higher angular
momentum pairing. Eventually the !q -dependence of the pairing interaction apart from
the spin dependence, is decisive for the choice of the pairing state.

Superconducitivity in the vicinity of magnetic quantum critical point

Based on these considerations we construct now a phase diagram for the spin triplet
state near a quantum phase transition to ferromagnetic order. Although we have done
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FIGURE 6. Schematic phase diagram of the superconducting phase (SC) near the ferromagnetic quan-
tum critical point.

some rough approximations, a qualitative view is still illustrative. The Stoner-criterion
1− IN0 = 0 defines the zero-temperature transition point so that we may take IN0 as the
controlling parameter which might be changed in real material, for example, by applying
pressure. For IN0 > 1 the metal has a finite Curie-temperature TC ∝ (IN0−1)1/2 ( in the
standard mean field approach).

In the paramagnetic region there are two basic trends determining the superconducting
transition temperature Tc. The coupling constant V1 diverges while the cutoff energy εc
vanishes at the quantum critical point. This gives rise to the non-monotonous behavior
of Tc which passes a maximum with increasing IN0 and vanishing at the quantum critical
point. While the exact behavior is modified by the renormalization of the quasiparticle
weight close to the quantum critical point which has been ignored here, the fact that Tc
goes through a maximum and disappears right at the quantum critical point. [34, 35].

We do not touch here the question whether superconductivity would also appear in-
side the ferromagnetic phase within our theory. It has been shown by Fay and Appel that
spin polarized pairing states (so-called non-unitary states) are possible [34]. This kind
of finding is very interesting in the context of the earlier mentioned superconductivity in
UGe2, URhGe and ZrZn2 which are superconducting inside the ferromagnetic region.
In these materials there is no superconductivity in the paramagnetic region which is dif-
ficult to understand within our discussion. So far there is no system known where the
phase diagram of Fig.6 would apply. The situation in the very recently discovered super-
conducting phase at the ferromagnetic quantum critical point in UIr is not clear yet [36]
In particular, this material has the complication that it has no inversion center. On the
other hand, there are many examples for superconductivity in connection with quantum
phase transitions to antiferromagnetic order as also discussed in the introduction.

GENERALIZED BCS-THEORY

After having discussed the motivation to consider superconductivity due to Cooper pairs
of general structure, we would like to introduce here the generalize formulation of the



BCS theory and discuss some of the basic properties of unconventional superconductors
[37]. For this purpose we do not invoke any particular pairing mechanism nor assume a
special symmetry of the metal. Nevertheless, in some cases complete rotation symmetry
will be imposed to do concrete calculations.

The Gap Function

The generalized BCS theory relies on an extended form of the microscopic interaction
where we consider again only the scattering of electron pairs with vanishing total
momentum which is attractive. The correspondig Hamiltonian can be written as

H = ∑
!k ,s

ξ!k c†
!k s

c!k s +
1
2 ∑

!k ,!k ′
∑

s1,s2,s3,s4

V!k ,!k ′;s1s2s3s4
c†
!k s1

c†
−!k s2

c−!k ′s3
c!k ′s4

(55)

with pair scattering matrix elements

V!k ,!k ′;s1s2s3s4
= 〈−!k ,s1;!k ,s2|V̂ |−!k ′,s3;!k ′,s4〉 . (56)

Due to Fermionic anticommutation rules the following relations must hold

V!k ,!k ′;s1s2s3s4
= −V−!k ,!k ′;s2s1s3s4

= −V!k ,−!k ′;s1s2s4s3
= V−!k ,−!k ′;s2s1s4s3

. (57)

We consider a weak-coupling approach with an interaction attractive in an energy range
defined by a cutoff εc, i.e. the scattering matrix elements are non-zero for −εc <
ξ!k ,ξ!k ′ < εc εc and εc ' EF .

Analogous to the simple case we introduce an off-diagonal mean-field

b!k ,ss′ = 〈c−!k sc!k s′〉 (58)

which leads to the mean field Hamiltonian

H ′ = ∑
!k ,s

ξ!k c†
!k s

c!k s −
1
2 ∑

!k ,s1,s2

[
∆!k ,s1s2

c†
!k s1

c†
−!k s2

+∆∗
!k ,s1s2

c!k s1
c−!k s2

]
+K + small terms ,

(59)
where

K = −1
2 ∑

!k ,!k ′
∑

s1,s2,s3,s4

V!k ,!k ′;s1s2s3s4
〈c†

!k s1
c†
−!k s2

〉〈c−!k ′s3
c!k ′s4

〉. (60)

The generalized gap ∆!k ;ss′ are defined as a function of !k and the spins (s,s′) by the
self-consistent equations

∆!k ,ss′ = − ∑
!k ′,s3s4

V!k ,!k ′;ss′s3s4
b!k ,s3s4

,

∆∗
!k ,ss′

= − ∑
!k ′s1s2

V!k ′,!k ;s1s2s′sb
∗
!k ,s2s3

.
(61)



The gap function is now a complex 2×2 complex matrix in spin space

∆̂!k =
( ∆!k ,↑↑ ∆!k ,↑↓

∆!k ,↓↑ ∆!k ,↓↓

)
. (62)

The structure of the gap function is related to the wave function of the Cooper pairs,
b!k ,s1s2

. In order to get a deeper insight into the symmetry properties of the gap function,
we separate b!k ,s1,s2

into an orbital part and a spin part

b!k ,s1s2
= φ(!k )χs1s2 , (63)

The parity of the orbital part and the spin configuration are linked due to the antisym-
metry condition of the many-Fermion wave functions as mentioned above:

Even Parity: φ(!k ) = φ(−!k ) ⇔ χs1s2 = 1√
2
(| ↑↓〉− | ↓↑〉) spin singlet

Odd Parity: φ(!k ) = −φ(−!k ) ⇔ χs1s2 =






| ↑↑〉

1√
2

(| ↑↓〉+ | ↓↑〉)

| ↓↓〉

spin triplet

(64)
Consequently, the gap function obeys the following rules:

∆!k ,s1s2
= −∆−!k ,s2s1

=






∆−!k ,s1s2
= −∆!k ,s2s1

even

−∆−!k ,s1s2
= ∆!k ,s2s1

odd
(65)

or in short notation
∆̂!k = −∆̂T

−!k (66)

Based on these points, we parametrize the form of the 2×2 matrix representing the gap
function. For even parity (spin singlet), we only need a scalar function ψ(!k ),

∆̂!k =
( ∆!k ,↑↑ ∆!k ,↑↓

∆!k ,↓↑ ∆!k ,↓↓

)
=
(

0 ψ(!k )
−ψ(!k ) 0

)
= iσ̂yψ(!k ) . (67)

which satisfies ψ(!k ) = ψ(−!k ). For the odd parity case, the spin triplet configuration
has to be represented by three components which we introducte as the vector function
!d (!k ) in the following form

∆̂!k =
( ∆!k ,↑↑ ∆!k ,↑↓

∆!k ,↓↑ ∆!k ,↓↓

)

=
(

−dx(!k )+ idy(!k ) dz(!k )
dz(!k ) dx(!k )+ idy(!k )

)
= i
(

!d (!k ) · !̂σ
)

σ̂y ,

(68)



with !d (!k ) = − !d (−!k ). This notation will turn out to be very useful considering rota-
tions in spin space as will see shortly. We find that

∆̂!k ∆̂†
!k

= |ψ(!k )|2σ̂0 spin singlet

∆̂!k ∆̂†
!k

= | !d |2σ̂0 + i( !d × !d ∗) · !̂σ spin triplet .
(69)

While for the spin singlet case leads always to ∆̂!k ∆̂†
!k

∝ σ̂0, the unit matrix, in the spin
triplet channel also components different from σ̂0 is possible. Pairing states with non-
zero !q(!k ) = i !d (!k )× !d (!k )∗ are called non-unitary and are related to pairing with some
intrinsic spin polarization, since !q(!k ) is connected with the spin expectation value
tr[∆̂!k ∆̂†

!k
!̂σ ] for momentum !k . As will become clear below a necessary condition for

!q ,= 0 is broken time reversal symmetry.

Symmetry aspects

Cooper pairs consist of two electrons of opposite momentum (⇒ zero-momentum
pairs) which are degenerate in energy. There are certain key symmetries which guarantee
the possibility to find such states at the Fermi energy.

For spin singlet pairing the key symmetry is time reversal invariance [38]. Starting
with an electronic state with momentum !k and spin up ↑, we obtain a proper degenerate
partner state by time reversal K̂:

K̂|!k ↑〉 = |−!k ,↓〉 (70)

such that we have the necessary partner states to form spin singlet Cooper pairs: |!k ↑
〉, |−!k ↓〉.

Spin triplet pairing requires in addtion to time reversal the inversion symmetry Î to
generate the proper partner states [39]. We start from the same state and obtain

K̂|!k ↑〉 = |−!k ,↓〉 , Î|!k ↑〉 = |−!k ,↑〉 , ÎK̂|!k ↑〉 = |!k ,↓〉 (71)

which allows us to form all possible spin triplet configurations.

We want to review the important symmetries and examine their effect on the gap
functions. This will be important in the future discussion of the superconducting phases,
in particular, in the context of phenomenological description. The symmetries relevant
to us are rotations in real and spin space, time reversal, inversion and U(1)-gauge
symmetry.
Orbital rotation:

gc!k ,s = cR(g)!k ,s gc†
!k ,s

= c†
R(g)!k ,s

(72)

g∆̂!k = ∆̂R(g)!k (73)



where R(g) is the rotation matrix in three dimensiona corresponding the operation of g.
Spin rotation:

gc!k s = ∑
s′

DS (g)ss′c!k s′ and gc†
!k s

= ∑
s′

DS (g)∗s′sc
†
!k s′

(74)

g∆̂!k = D̂τ
S (g)∆̂!k D̂S (g). (75)

where
D̂S (g) = ei!S ·!φ (76)

with !φ the rotation vector of the operation g. Spin rotation has naturally no influence on
a singlet configuration because the total spin is zero. On the other hand, the triplet case
corresponds to the usual rotation applied on the !d -vector

g !d (!k ) = R̃S (g) !d (!k ) (77)

with R̃S (g) the three-dimensional representation of the corresponding rotation. One
would note that the gap function is then represented in spin space as a spin pointing
along the !d -vector

dx{−| ↑↑〉+ | ↓↓〉}− idy{| ↑↑〉+ | ↓↓〉}+dz{| ↑↓〉+ | ↓↑〉} (78)

This rather simple behavior under spin rotation is the benefit of the above parametriza-
tion of the gap function.
Time-reversal symmetry K̂

K̂c!k s = ∑
s′

(−iσ̂ y)ss′c
†
−!k ,s′

(79)

K̂∆̂!k = σ̂ y∆̂∗
!k

σ̂ y (80)

We used K̂ = −iσ̂ yĈ with Ĉ the operator of complex-conjugation. Note that K̂ is
antilinear.
Inversion symmetry Î

Îc!k ,s = c−!k ,s ⇒ Î∆̂!k = ∆̂−!k =






+∆̂!k spin-singlet

−∆̂!k spin-triplet
(81)

U(1)-gauge symmetry:

Φ̂c!k s = eiφ/2 ⇒ Φ̂∆̂!k = ∆̂!k eiφ (82)

Results for the scalar function ψ and the vector function !d are summarized below.



Operation Singlet Triplet

Fermion exchange ψ(!k ) = ψ(−!k ) !d (!k ) = − !d (−!k )

Orbital rotation gψ(!k ) = ψ(R(g)!k ) g !d (!k ) = !d (R(g)!k )

Spin rotation gψ(!k ) = ψ(!k ) g !d (!k ) = R̃S (g) !d (!k )

Time-reversal K̂ψ(!k ) = ψ∗(−!k ) K̂ !d (!k ) = − !d ∗(−!k )

U(1)-gauge Φ̂ψ(!k ) = eiφ ψ(!k ) Φ̂ !d (!k ) = eiφ !d (!k )

Examples of Gap functions

We introduce here several typical forms of gap functions on a spherical Fermi surface,
which will later used as examples to discuss some properties of the unconventional
superconducting phases. In particular, we are interested in the quasiparticle gap which
is given in the general formulation of the gap function by

|∆!k |
2 =

1
2

tr
(

∆̂†
!k

∆̂!k

)
=






|ψ(!k |2 spin singlet

| !d (!k )|2 spin triplet
(83)

and is essential for the discussion of the elementary low-energy excitations in the
superconducting phase. Note that for non-unitary states

|∆!k±|
2 = | !d (!k )|2 ±| !d ∗(!k )× !d (!k )| (84)

with two different gaps.

Isotropic pairing: There are conventional and unconventional pairing states which have
isotropic properties. The conventional spin singlet pairing in the l = 0 (s-wave) channel
is given by

ψ(!k ) = ∆0 , (85)

which gives obviously rise to an isotropic quasiparticle gap |∆!k | = |∆0|.
Among the unconnventional states there is one spin triplet state, the Balian-

Werthamer-state which also has an isotropic gap [2]. Its !d -vector is given by

!d (!k ) =
∆0

kF
(x̂kx + ŷky + ẑkz) =

∆0

kF




kx
ky
kz



 , (86)



superfluid 

30

10

20

40

p 
 (b

ar
)

B

A

1 2 3
T (mK)

solid

Fermi liquid
normal

FIGURE 7. Phase diagram of 3He.

so that the !d is pointing isotropically outwards on the Fermi surface. The gap is then

|∆!k |
2 =

1
2

tr(∆̂†
!k

∆̂!k ) = | !d (!k )|2 = |∆0|2
|!k |2

k2
F

= |∆0|2 , (87)

While the quasiparticle gap is the same for both states, we will see below that they are
different in their spin susceptibility. Note that the Balian-Werthamer state corresponds
to the B-phase of superfluid 3He [3, 5].

Anisotropic spin-singlet state: We consider here one example for l = 2, a so-called
d-wave pairing state:

ψ(!k ) =
∆0

kF
(k2

x − k2
y) (88)

It has line nodes for (kx,ky) ‖ (±1,±1) and represents the pairing realized in high-
temperature superconductors. Other good candidates for related forms of ”d-wave”
pairing are found among the heavy fermions superconductors, such as UPd2Al3, CeIn3,
CePd2Si2, etc. which are associated with quantum phase transitions to antiferromagnetic
order.

Anisotropic spin-triplet state: One of the most interesting anisotropic spin triplet pairing
(l = 1 or p-wave) states is

!d (!k ) =
∆0

kF
ẑ(kx ± iky) , (89)

with

|∆!k |
2 = |∆0|2

k2
x + k2

y

k2
F

. (90)

This gap has point nodes for!k ‖ (0,0,±1). Interestingly this this state has a finite orbital
angular momentum along the z axis, Lz =±1, so that it is sometimes called chiral p-wave



state or ABM-phase (Anderson Brinkmann Morel) [1, 40]. This type of Cooper pairing
is realized in 3He under pressure as the so-called A-Phase [3, 5] and in the quasi-two
dimensional metal Sr2RuO4 [23].

Nonunitary state: All previous examples have been so-called unitary states, (∆̂†
!k

∆̂!k ∝
σ 0). A well-known example of a non-unitary state is

!d (!k ) =
∆0

kF
(x̂− iŷ)kz ⇒ ∆̂!k =

(
−kz 0

0 0

)
, (91)

which corresponds to the A1-Phase of 3He. This state shows pairing only in one of the
two spin state (| ↑↑〉, and not in the state | ↓↓〉). We see that

i !d (!k )∗× !d (!k ) = ẑ
|∆0|2k2

z

k2
F

(92)

gives the spin expectation value for the Cooper pair. This state leaves half of all electrons
unpaired and is hard to stabilize due to reduced condensation energy. In 3He it appears
only in magnetic field which provides a bias for different spin directions. A similar
bias appears of course also in ferromagnetic metals. Thus the superconducting phases in
UGe2, URhGe and ZnZr2 are most likely non-unitary.

Bogolyubov Quasiparticles and Self-Consistent Equations

We can diagonalize the mean-field Hamiltonian (59) by means of Bogolyubov trans-
formation. It is convenient to rewrite (59) in the following form

H = ∑
!k

C†
!k
Ê!k C!k +K , (93)

with

C!k =





c!k↑
c!k↓

c†
−!k↑

c†
−!k↓




and Ê!k =

1
2




ξ!k σ̂0 ∆̂!k

∆̂†
!k

−ξ!k σ̂0



 . (94)

We are now searching the diagonalized form

H = ∑
!k

A†
!k

Ê!k A!k +K (95)

where

A!k =





a!k↑
a!k↓

a†
−!k↑

a†
−!k↓




and Ê!k =





E!k+ 0 0 0
0 E!k− 0 0
0 0 −E−!k+ 0
0 0 0 −E!k−



 . (96)



The Bogolyubov transformation is given by the unitary matrix Û!k with

Û!k =




û!k v̂!k

v̂∗
−!k

û∗
−!k



 ⇒ C!k = Û!k A!k and Ê!k = Û†
!k
Ê!kÛ!k (97)

and Û!kÛ†
!k

= Û†
!k

Û!k = 1̂.
We restrict ourselves to the case of unitary pairing. This ensures that E!k = E!k+ =

E!k−. The solution of the eigenvalue problem leads to û!k and v̂!k

û!k =
(E!k +ξ!k )σ̂0√
2E!k (E!k +ξ!k )

and v̂!k =
−∆̂!k√

2E!k (E!k +ξ!k )
(98)

and the energy

E!k =
√

ξ 2
!k

+ |∆!k |2 with |∆!k |
2 =

1
2

tr
(

∆̂†
!k

∆̂!k

)
. (99)

With the new quasiparticle operators (61) we can express the self-consistence or gap
equation using 〈a†

!k s
a!k ′s′〉 = δ!k!k ′δss′ f (E!k ) where f (E) = 1/(exp(E/kBT ) + 1) is the

Fermi distribution function:

∆!k ,s1s2
= − ∑

!k ′,s3s4

V!k ,!k ′;s1s2s3s4

{

∑
s′

v!k s4s′u!k s′s3
〈a−!ks′a

†
!k s′

〉−u!k s4s′v!k s′s3
〈a†

!k s′
a!k s′〉

}

= − ∑
!k ′,s3s4

V!k ,!k ′;s1s2s3s4

∆!k ′,s4s3

2E!k
tanh

(
E!k

2kBT

)

(100)
We introduce now a newly parametrized pairing interaction term in order to obtain a

simpler form of the self-consistence equation,

V!k ,!k ′;s1s2s3s4
= J0

!k ,!k ′σ̂ 0
s1s4

σ̂ 0
s2s3

+ J!k ,!k ′ !̂σ s1s4 · !̂σ s2s3 , (101)

consisting of a spin independent or density-density term and spin-spin exchange cou-
pling. In the following we assume that these interactions are only non-zero in a certain
range around the Fermi energy with a cutoff energy εc. For spin singlet pairing the gap
equation can be expressed for ψ(!k ),

ψ(!k ) = −∑
!k ′

(J0
!k ,!k ′ −3J!k ,!k ′)
︸ ︷︷ ︸

= vs
!k ,!k ′

ψ(!k ′)
2E!k ′

tanh
(

E!k ′

2kBT

)
(102)



and |∆!k |
2 = |ψ(!k )|2. For spin triplet channel, the gap equation takes the form

!d (!k ) = −∑
!k ′

(J0
!k ,!k ′ + J!k ,!k ′)
︸ ︷︷ ︸

= vt
!k ,!k ′

!d (!k ′)
2E!k ′

tanh
(

E!k ′

2kBT

)
(103)

with |∆!k |
2 = | !d (!k )|2.

Critical tempeature and gap magnitude at T = 0

The linearized gap equation can now be used to determine the critical temperature.
We consider first the spin singlet case

ψ(!k ) = −∑
!k ′

vs
!k ,!k ′

ψ(!k ′)
2ξ!k ′

tanh
( ξ!k ′

2kBT

)

= −N0〈vs
!k ,!k ′ψ(!k ′)〉!k′ ,FS

∫ εc

0
dξ 1

ξ tanh
(

ξ
2kBT

)

︸ ︷︷ ︸
= ln(1.13εc/kBT )

(104)

where 〈. . .〉!k ,FS denotes the angular average over the Fermi surface. This equation can
be expressed as a eigenvalue problem

−λψ(!k ) = −N0〈vs
!k ,!k ′ψ(!k ′)〉!k′ ,FS , (105)

leading to
kBTc = 1.14εce−1/λ . (106)

Here λ is a dimensionless and positive parameter. The superconducting instability corre-
sponds to the highest eigenvalue (highest Tc) of (105) which determines also the structure
of the Cooper pairs.

The spin-triplet case has an analogous gap equation which for the evaluation of Tc
takes the form

−λ !d (!k ) = −N0〈vt
!k ,!k ′

!d (!k ′)〉!k ′,FS (107)

and the same type of solutions. Naturally the solution of the instability problem is
specific to the pairing interaction.

We now turn to the zero-temperature limit and determine the gap for the case of
spin singlet pairing. We introduce ∆m as the maximal gap and write ψ(!k ) = ∆mg̃!k with
|g̃!k | ≤ 1. The gap at T = 0 is obtained from the equation

∆mg̃!k = −N0

〈
vs
!k ,!k ′∆mg̃!k ′

∫ εc

0
dξ 1√

ξ 2 + |∆mg̃!k ′|2

〉

!k ′,FS

. (108)



Multiplying both sides with g̃∗!k and averaging !k over the Fermi surface, using (105) and
integrating over ξ , we obtain eventually

1 = −λ
〈
|g̃!k |

2 ln
(

2εc

|∆mg̃!k |

)〉

!k ′,FS
= −λ ln

(
2εc

∆m

){
1−〈|g̃!k ′ |2 ln(|g̃!k ′|)〉!k ′,FS

}
.

(109)
From this we get the ratio of the maximal gap and Tc to be

∆m

kBTc
= 1.76 exp

(
−〈|g̃!k ′|2 ln(|g̃!k ′|)〉!k ′,FS

)
≥ 1.76 , (110)

While this ratio is universal for the isotropic Fermi surface in the case g̃!k = 1, we see
that it in general depends on the gap anisotropy. Like in conventional superconductors,
in this ratio the cutoff energy has been eliminated, such that we can express the gap
magnitude by Tc, i.e. we are dealing with the weak-coupling limit.

Condensation energy at T = 0

We now compute the condensation energy at T = 0 within the weak coupling ap-
proach. Starting from Hamiltonian (59), we obtain in the Bogolyubov transformed for-
mulation

H ′ =
1
2 ∑

!k ,s

E!k

(
a†
!k ,s

a!k ,s −a−!k ,sa
†
−!k ,s

)
+K . (111)

with

K =
1
2 ∑

!k ,s1,s2

∆∗
!k ,s1s2

∆!k ,s2s1

2E!k
tanh

(
E!k

2kBT

)
. (112)

Then, the condensation energy at T = 0 is given by

Econd = 〈H ′〉∆ −〈H ′〉∆=0 =
1
2 ∑

!k ,s

(ξ!k −E!k )+
1
2 ∑

!k ,s1,s2

∆∗
!k ,s1s2

∆!k ,s2s1

2E!k

= 2N0

∫ εc

0
dξ (ξ −〈

√
ξ 2 + |∆!k |2〉!k ,FS)+

〈
|∆!k |

2
∫ εc

0
dξ 1√

ξ 2 + |∆!k |2

〉

!k ,FS

≈−N0

2
〈|∆!k |

2〉!k ,FS = −N0

2
|∆m|2〈|g̃!k |

2〉!k ,FS ,

(113)
under the assumptions that |∆!k | ' εc and for simplicity, that N0 is isotropic.
(For an anisotropic Fermi density N0(k̂), we can extend this expression Econd =
−(1/2)〈N0(k̂)|∆!k |

2〉!k ,FS.) Using now (110) we can compare different condensation



energies

Econd = −N0

2
〈|∆mg̃!k |

2〉!k ,FS

= −1
2

N0 (1.76 kBTc)2 〈|g̃!k |
2〉!k ,FS exp(−〈|g̃!k |

2 ln |g̃!k |〉!k ,FS)

(114)

It is now obvious that an isotropic gap under these conditions gives the largest gain
in condensation energy and explains why among the spin triplet state the BW-state is
most stable, if no bias in the pairing interaction (spin-orbit coupling and strong coupling
effects) favors a different state.

Specific heat discontinuity at Tc

A characteristic feature of the second order normal-superconductor phase transition
is the jump in specific heat at Tc which is related to the release of entropy through the
opening of the gap at the Fermi surface. First, we write the specific heat starting from
the general form for the entropy:

S = −2kB

Ω ∑
!k

{
f (E!k )ln( f (E!k ))+(1− f (E!k )) ln(1− f (E!k ))

}
(115)

leading to

C = T
dS
dT

= − 2
Ω ∑

!k

E!k
d f (E!k )

dT

= −2N0

T

∫ +∞

−∞
dξ
〈∂ f (E!k )

∂E!k

{
E2

!k
− T

2
∂ |∆m(T )|2

∂T
|g̃!k |

2
}〉

!k ,FS

(116)

The specific heat of the normal state is easily obtained by setting ∆m = 0,

Cn = −2N0

T

∫ +∞

−∞
dξ ∂ f (ξ )

∂ξ ξ 2 ≈ 2π2k2
B

3
N0T , (117)

with the standard Sommerfeld T-linear dependence. The jump in specific heat depends
on the variation of the gap with temperature. It can be expressed as

∆C
Cn

∣∣∣∣
T=Tc

=
C−Cn

Cn

∣∣∣∣
T=Tc

=
3

2π2k2
BT

〈|g̃!k |
2〉!k ,FS

∂ |∆m(T )|2

∂T

∣∣∣∣
T→Tc−

= 1.43
〈|g̃!k |

2〉2
!k ,FS

〈|g̃!k |4〉!k ,FS

(118)



This result infers that the specific heat discontinuity is less pronounced in anisotropic
gap functions than in the isotropic case. The entropy change is smaller for a given gap
size ∆m in the anisotropic case, since quasiparticle excitations with lower energy are still
allowed.

To show the last equality in (118), the temperature dependence of ∆m has to be
determined. For this purpose we return to the gap equation which we want to consider
near Tc. Using the definition of λ we have the relation

1
λ = − ln

(
T
Tc

)
−

∫ εc

0
dξ 1

ξ tanh
(

ξ
2kBT

)
. (119)

With this expression of λ for an arbitrary T , we find

〈|g̃!k |
2〉!k ,FSln

(
T
Tc

)
=

∫ εc

0
dξ
〈
|g̃!k |

2 1
E!k

tanh
(

E!k
2kBT

)〉

!k ,FS

−〈|g̃!k |
2〉!k ,FS

∫ εc

0
dξ 1

ξ tanh
(

ξ
2kBT

)

= |∆m|2b〈|g̃!k |
4〉!k ,FS

(120)

with
b = −

∫ +∞

−∞
dξ d

dξ 2

{
tanh(ξ/2kBTc)

2ξ

}
=

7ζ (3)
8π2k2

BT 2
c

. (121)

Note that ζ (3) = ∑∞
n=1 n−3 ≈ 1.2 is the ζ Riemann function. Thus, in the vicinity of Tc,

we have

|∆m(T )|2 ≈
〈|g̃!k |

2〉!k ,FS

b〈|g̃!k |4〉!k ,FS

(
1− T

Tc

)
= 9.4 (kBTc)2

〈|g̃!k |
2〉!k ,FS

〈|g̃!k |4〉!k ,FS

(
1− T

Tc

)

= 5.3 |∆m(0)|2
(

1− T
Tc

) 〈|g̃!k |
2〉!k ,FS

〈|g̃!k |4〉!k ,FS
exp(〈|g̃!k |

2 ln |g̃!k |〉!k ,FS)

(122)

which inserted into (118) gives the result presented for the specific heat discontinuity.
This behavior of ∆m(T ) is general for the mean-field description of a second-order phase
transition.

Low Temperature Properties

The low temperature properties of superconductors are governed by the low-energy
quasiparticle excitations. Thus, in the frame of generalized BCS theory, the key quantity
which controls the thermodynamics is the quasiparticles density of states. As will be-
come clear immediately, the topology of the nodes in the gap function is very decisive
in this respect.



The density of states is defined as

N(E) =
2
Ω ∑

!k

δ (E!k −E) . (123)

where we use the Bogolyubov quasiparticles spectrum

E!k =
√

ξ 2
!k

+ |∆!k |2 . (124)

We decompose the!k -integral into the (radial) energy ξ part and the angular part (average
over the Fermi surface):

N(E) = N0

∫ dΩ!k
4π

∫
dξ δ (

√
ξ 2 + |∆mg̃!k |2 −E)

= N0

∫ dΩ!k
4π

E√
E2 −|∆mg̃!k |2

= N0〈
E√

E2 −|∆mg̃!k |2
〉!k ,FS .

(125)

The density of states for an isotropic gap function g̃!k = 1 is straightforward :

N(E) = N0






0 |E| < ∆m

E√
E2 −|∆m|2

∆m ≤ |E|
(126)

No state can be found with energies below ∆m and a characteristic square-root singularity
signals the onset of continuous spectrum above ∆m. At higher energies the density of
states approaches the normal state value, so that the influence of superconductivity is
restricted to an energy range of several times the gap.

Turning to anisotropic gap functions we find an important change in the density of
states, since ”subgap” states appear. First we consider a gap with line nodes. As a simple
example we take ∆!k = ∆m cosθ which has a line node in the x-y-plane. We obtain

N(E) = N0
E

∆m

∫ +1

−1
dxRe

(
1√

(E/∆m)2 − x2

)
= N0

E
∆m






π
2

|E| < ∆m

arcsin
(

∆m

E

)
∆m ≤ |E|

(127)
Indeed a finite density of states is found below the maximal gap, down to zero energy.
However, the density of states vanishes in a characteristic way at E = 0, In the case of
line nodes it is a linear behavior. The singularity at E = ∆m is replaced by a cusp. The
anisotropy smoothens the singularity found for the isotropic gap.

The second class of node topology are the point nodes. As an example we consider
|∆!k | = ∆m sinθ which has z-axial symmetry with point nodes along z-direction. The
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FIGURE 8. Quasiparticle density of states N(E) for the isotropic gap, the gap with point nodes and line
nodes.

density of states has then the form

N(E) = N0
E

∆m

∫
dxRe

(
1√

x2 +((E/∆m)2 −1)

)
= N0

E
∆m

ln

∣∣∣∣∣
1+ E

∆m

1− E
∆m

∣∣∣∣∣ (128)

which also vanishes continuously when E → 0. but here with a quadratic behavior
N(E) ∝ E2, due the fact that fewer excitations with nearly zero-energy are accessible
than in the case of line nodes. At E = ∆m N(E) is logarithmically divergent.

We examine now the influence of the node topology on the low-temperture thermody-
namics using the example of the specific heat. The isotropic gap leads us to the result of a
conventional superconductor. We can safely assume that at very low temperature the gap
magnitude has saturated and does not change much anymore. Therefore the behavior of
the specific heat is dominated by the quasiparticle density of states.

C(T ) =
2
Ω ∑

!k

E!k
d f (E!k )

dT
=

∫
dE N(E) E

d f (E)
dT

=
∫

dE N(E)
E2

kBT 2
1

4cosh2(E/2kBT )

≈ N0

4kBT 2

∫ ∞

∆m
dE

E3
√

E2 −∆2
m

eE/kBT ≈ N0kB

(
∆m

kBT

)2√
2πkBT ∆me−∆m/kBT .

(129)
This exponential behavior is typical of a gaped system (thermally activated), like in
a semiconductor. The gap sets a natural energy scale which can be derived from the
exponential behavior.



For line or point nodes this thermally activated behavior is covered by the low-lying
quasiparticle states. Simple scaling in the integrals show that the powerlaw in the density
of states at E → 0, N(E) ∝ En, translates directly to a powerlaw in the temperature
dependence:

C(T) =
∫

dE N(E)
E2

kBT 2
1

4cosh2(E/2kBT )

∝
∫

dE En E2

kBT 2
1

4cosh2(E/2kBT )
∝ T n+1 .

(130)

The prefactor is determined by the detailed form of the angle dependence and is not
necessarily connected with ∆m in a simple way. It is important to note that this behavior
is only really valid for T ' Tc, and is not easily observed in experiments, since various
other influences can complicate the behavior. In particular, impurity scattering changes
the low-energy density of states strongly.

More generally, thermodynamic quantities are governed by the density of states so
that they usually have a powerlaw behavior for nodal superconductors. Here are a few
examples of such thermodynamic quantities. A particularly important quantity is the
London penetration depth, because here only contributions of the superconducting part
are involved, while for most other quantities also the crystal lattice or other contributions
are involved. For an arbitrary field direction we find

λ (0)−2 −λ (T )−2 = 2
∫

dEN(E)
(
−∂ f (E)

∂E

)
T→0→ const.T n (131)

for N(E) ∝ En. Thus the London penetration depth approaches its zero-temperature
value also in a powerlaw, if the nodes can be found in the gap. For specific direction
where the screening currents are moving parallel to node directions these powerlaws are
corrected to higher exponents.

Quantity Line nodes Point nodes

spec. heat C(T) T 2 T 3

London penetration length λ (T)−λ (0) T (T 3) T 2 (T 4)

NMR 1/T1 T 3 T 5

heat conductivity κ(T ) T 2 T 3

ultrasound absorption α(T ) T (T 3) T 2 (T 4)



Items with T a (T b) are direction dependent and possess different powerlaws depending
on the orientation of fields or polarizations of the ultrasound.

Spin Susceptibility

The spin susceptibility provides an excellent means to distinguish between spin sin-
glet and spin triplet pairing. In spin singlet superconductors the spin susceptibility is
suppressed because Cooper pairs have to be broken up in order to polarize the electron
spins. Spin triplet superconductors are more easily spin polarized since the Cooper pairs
keep an S = 1 degree of freedom, at least for certain orientations.

We consider here superconductor were the external magnetic field only couples
through Zeeman coupling, i.e. we ignore the orbital coupling which is responsible for
Meissner screening. The external magnetic field is chosen to lie along the z-axis:

HZ = −µBHz ∑
!k

{
c†
!k↑

c!k↑− c†
!k↓

c!k↓

}
(132)

We tackle the problem by distinguishing two distinct cases of the gap matrix. First,
consider a superconducting state with only off-diagonal gap matrix elements, i. e. ∆!k↑↑ =
∆!k↓↓ = 0. This includes both spin-singlet pairing (∆!k↑↓ = −∆!k↓↑) as well as triplet-
pairing (∆!k↑↓ = ∆!k↓↑ ⇒ !d ‖ ẑ with equal spin-pairing in the x-y-plane). In this case the
quasiparticles Hamiltonian becomes diagonal

HQP = ∑
!k

{
E!k↑a†

!k↑
a!k↑ +E!k↓a†

!k↓
a!k↓

}
(133)

with E!ks =
√

ξ 2
!k

+ |∆!k |2 − sµBHz and s =↑,↓ or +,−. The induced magnetization is

Mz = µB ∑
!k

〈c†
!k↑

c!k↑− c†
!k↓

c!k↓〉 (134)

with
〈c†

!k s
c!k s〉 = ∑

s′=±

{
|u!kss′ |

2 f (E!ks′)+ |v!kss′ |
2 (1− f (E!ks′)

)}
. (135)

Note that |u!k ss′|
2 ∝ δss′ , |v!k ss′|

2 ∝ |∆!k ss′|
2 and |u!k↑↑|

2 + |v!k↑↓|
2 = 1. It follows that

Mz = µB ∑
!k

(
f (E!k↑)− f (E!k↓)

)
Hz→0−→ −2µ2

BHz ∑
!k

∂ f (E!k )
∂E!k

. (136)

Finally the spin susceptibility reads

χ⊥ =
Mz

Hz
= 2µ2

BN0

∫ dΩ!k
4π

∫
dξ 1

4kBT cosh2(E!k /2kBT )

= χP

∫ dΩ!k
4π Y (k̂;T ) = χPY (T )

(137)
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FIGURE 9. Spin susceptibility in the superconducting phase: For spin singlet pairing the susceptibility
vanishes at T = 0. The precise T -dependence is determined by the gap structure. For the BW-phase the
spin susceptibility drops to 2χp/3 in all field directions. The ABM-phase has an anisotropic susceptibility
which remains constant for !d · !H = 0.

with χP = 2µ2
BN0 the Pauli spin susceptibility of the normal state. The function Y (k̂;T )

is the!k -dependent Yosida function, and Y (T) is the angle-average Yosida function. Note
that both functions depends on the precise !k -dependence of the quasiparticle spectrum.
Above T = Tc, it is equal to 1, and below Tc the T -dependence depends on the concrete
shape of the gap function. In any case for a finite gap Y goes to zero at T = 0.

The resulting spin susceptibility parallel to the field in the superconducting phase is
suppressed both for spin-singlet pairing and spin-triplet pairing (Fig.9). This is due to
the fact that in the spin-triplet superconducting state the spin orientation is confined in
the x-y-plane. We do not consider here that the Zeeman coupling might induce a change
of the superconducting phase.

We now move on to the case of the diagonal gap matrix ∆!k↑↓ = ∆!k↓↑ = 0 and
∆!k↑↑ = ∆!k↓↓ ( !d ⊥ ẑ). This corresponds to spin-triplet pairing with a spin orientation
parallel to the z-axis. The energies in the quasiparticle-spectrum (133) are now E!k s =√

ξ 2
!k s

+ |∆!k ss|2 with ξ!k s = ξ!k − sµBHz.
The expectation value (135) of the magnetization (134) now reads

Mz = µB ∑
!k

{
ξ!k↑
E!k↑

tanh
( E!k↑

2kBT

)
−

ξ!k↓
E!k↓

tanh
( E!k↓

2kBT

)}

Hz→0−→ −2µ2
BHzN0

∫ dΩ!k
4π

∫
dξ d

dξ

{
ξ

E!k
tanh

(
E!k

2kBT

)}
= χPHz

(138)

In this case the spin susceptibility remains unchanged. Indeed, if the magnetic field



lies parallel to the spin orientation of the triplet Cooper pair there is no need for pair
breaking in order to polarize the spin. Also the essential conditions to form Cooper pairs
of degenerate electron states with both spins parallel (or antiparallel) to the magnetic
field is satisfied.

Based on the two special results there are two cases for the spin susceptibility in spin
triplet superconductors:

χ(T ) = χP






1 !d (!k ) ⊥ !H

∫ dΩ!k
4π Y (k̂;T) !d (!k ) ‖ !H

, (139)

It becomes obvious that the susceptibility remains unchanged if the !d -vector lies for all
!k in the plane perpendicular to the magnetic field. On the other hand, the susceptibility
vanishes at T = 0, if !d is parallel to the field for all !k . The generalization for arbitrary
fields and spin triplet gap functions yields

χ(T )µν = χP

∫ dΩ!k
4π

{

δµν −Re
dµ(!k )∗dν(!k )

| !d (!k )|2
(1−Y (k̂;T ))

}

(140)

in which Mµ = ∑ν χµν Hν .
We consider here as a first example the BW-phase for which !d (!k ) = ∆0(x̂kx + ŷky +

ẑkz). The calculation by (140) leads to

χBW (T)µν = χPδµν

(
1− 1

3
(1−Y(T ))

)
. (141)

The spin susceptibilty is isotrop and reaches 2χP/3 for T = 0. A further example is the
ABM-state for which we have !d (!k ) = ∆0ẑ(kx + iky). In this case the susceptibility reads

χ(T ) = χP






Ȳ ABM(T ) !H ‖ z

1 !H ⊥ z
, (142)

with Ȳ ABM(T) the Yosida-Function for the ABM-state after integration over the Fermi
surface. This phase might be realized in Sr2RuO4 from spin susceptibility measurements
for fields in the x-y-plane [82].

Obviously it is not only possible to distinguish between spin singlet and spin triplet
pairing, but also between different spin triplet state as long as the !d -vector is sufficiently
”pinned” due to spin-orbit coupling. The spin susceptibility cannot be measured directly
by the sample magnetization because of Meissner-screening. However, a local probe like
nuclear magnetic resonance (NMR) measurements allow us to observe the temperature
dependence of the local susceptibility in the mixed phase (vortex phase) of the supercon-
ductor, by looking at the Knight shift, the shift of resonance lines in the NMR spectrum
[41]. Similar measurements are also possible with muon spin relaxation.



The Paramagnetic Limit

The response to Zeeman coupling can play an important role in superconductors with
very short coherence lengths ξ0 = h̄v f /π|∆|. The coherence length can be viewed as the
extension of the Cooper pairs. The upper critical field Hc2 due to the orbital depairing
depends on ξ0 in the following way

Hc2 =
Φ0

2πξ 2
0

(143)

so that Hc2 can acquire large values for small ξ0. If this is the case depairing due to
Zeeman spin splitting can become decisive for the destruction of the superconductivity.
This phenomenon is called paramagnetic limiting (or Pauli- , Chandrasker- or Clogston-
limiting). The paramagnetic limiting field is connected with the spin susceptibility in the
following way. We have to compare the superconducting condensation energy with the
magnetization energy which could be reached by the application of a magnetic field:

EZ = −1
2 ∑

µ,ν
(χPδµν −χ(T )µν)HµHν ⇔ Econd = −N0

2
|∆m|2〈|g!k |

2〉!k ,FS

(144)
where we have restricted the comparison to T = 0 and χp = 2µ2

BN0. For spin-singlet
superconductors, we immediately find that a critical field where the two energies are
identical.

Hp =
1

µB
√

2
|∆m|

√
〈|g!k |2〉!k ,FS . (145)

Thus for Hc2 > Hp superconductivity would break down at H = Hp, actually as a dis-
continuous first order transition unlike the second order transition for orbital depairing
at Hc2. This condition on Hc2 is generally quite restrictive, so that it is generally not so
easy to find superconductors displaying paramagnetic limiting.

If paramagnetic limiting is absent, it can be taken as a sign for spin triplet pairing.
However, the effect is field direction dependent in general, since the magnetic energy

EZ = −χP

2
Re

〈
dµ(!k )∗dν(!k )

| !d (!k )|2

〉

!k ,FS

HµHν , (146)

has to be compared with the condensation energy. For instance the the ABM-phase
discussed earlier would not be paramagnetically limited for fields in the x-y plane.



PHENOMENOLOGICAL THEORY AND SYMMETRIES

The description of superconductivity based on the theory of phase transition by
Ginzburg-Landau is one of the corner stones of our phenomenological understanding of
superconductivity in general. The particular strength of this phenomenological theory
lies in its generality allowing a formulation even without any detailed microscopic
understanding of a superconductor. The key quantity is the order parameter describing
the superconducting phase. This order parameter vanishes in the normal state, T > Tc,
and grows continuously from zero below Tc. The crucial aspect of the Ginzburg-Landau
theory lies in the concept of spontaneous symmetry breaking at a (continuous) second
order phase transition. This suggests to base the theory on symmetrical grounds which is
a powerful strategy as we will show below. The fundamental symmetry to be broken in
the superconducting phase is U(1)-gauge symmetry. This suggests an order parameter
which would change under the operation of Φ̂ ∈U(1). While this is the only important
symmetry for conventional superconductors, we will see below that time reversal and
point group symmetry of a crystal can also appear in general as broken symmetries in
unconventional superconductors [42, 43]

Conventional Superconductors

In order to introduce some basic concepts, it is useful to study first the Ginzburg-
Landau phenomenology of conventional superconductors. One choice for the order
parameter is the gap function ∆ = −gb!k which indeed changes under U(1)-gauge
operation by a phase and becomes continuously finite below Tc. Alternatively we could
choose b!k itsself as the pair wavefunction. In any case we define an order parameter η
as ∆ = η(!r ,T) as a space and temperature dependent complex wavefunction describing
the superconducting condensate (related also with the density of coherent Cooper pairs).
This order parameter changes under basic symmetries as

time reversal : K̂η = η∗

U(1) gauge : Φ̂η = ηeiφ
(147)

where the vector potential and the electron field operators change under gauge transfor-
mation as

Ψ̂(!r ) , !A(!r ) ⇔ Ψ̂(!r )eieχ(!r )/h̄c , !A(!r )+ !∇ χ(!r ) (148)

with φ = 2ieχ/h̄c, since η ∝ 〈Ψ̂Ψ̂〉. Consequently a finite order parameter picks a certain
phase which can be changed by U(1)-gauge transformation, breaking this symmetry.

Following Landau we expand the free energy around Tc in the order parameter η .
The free energy is a scalar under symmetry operations belonging to the group G =
K ×U(1). The most general form including the possibility of spatial variations of the



order parameter is given by

F[η, !A ;T ] =
∫

Ω
d3r

[
a(T)|η|2 +b(T )|η|4 +K(T )|!Πη|2 +

1
8π (!∇ × !A)2

]
, (149)

with
!Π =

h̄
i
!∇ +

2e
c

!A . (150)

the canonical ”momentum” (gradient) of the Cooper pairs of charge 2e. Only powers of
η∗η appear which are invariant under time reversal as well as U(1)-gauge operations.
We stop the expansion at fourth order. The third term describes the stiffness of the order
parameter against spatial modulations and contains the minimal coupling between the
order parameter and the vector potential and giving this term a gauge invariant form.
This term reflects one of the important consequences of a state with broken U(1)-gauge
symmetry as we will see below. Finally the last term is the magnetic field energy. The

a(T ) ≈ a′(T −Tc) , a′ > 0 ,

b(T ) ≈ b(Tc) = b > 0 ,

K(T ) ≈ K(Tc) = K > 0 ,

(151)

so that a(T) changes sign at T = Tc and F is bound towards negative values. For given
temperature we find the equilibrium state by minimizing the free energy variationally
with respect to η and !A .

We discuss first the uniform superconducting phase ignoring spatial variations and the
magnetic field:

0 =
∂F
∂η∗ = a(T)η +2bη|η|2 ⇒ |η|2 =






0 T > Tc

−a(T )
2b

T ≤ Tc

(152)

The order parameter satisfies the requirement to be only non-zero below Tc and to grow
continuously from zero. We can now use this solution to calculate some thermodynamic
quantities such as entropy and specific heat:

−S =
dF
dT

= −Sn + |η|2 da
dT

+
∂F
∂η

dη
dT

+
∂F
∂η∗

dη∗

dT︸ ︷︷ ︸
=0

,

C = T
dS
dT

≈Cn +a′T
d|η|2
dT

⇒ ∆C|T=Tc = C−Cn|T=Tc =
a′2

2b
=

8π2k2
BTcN0

7ζ (3)
Ω .

(153)



Using the specific heat result we can related the ratio a/b to the microscopic parameter.
The latest enables us to relate a′2/b to the microscopic parameters of the BCS theory.
Assuming that the order parameter corresponds to the gap we can derive the coefficients
as

a′ = ΩN0

Tc
and b = Ω 7ζ (3)N0

16π2k2
BT 2

c
. (154)

Now we turn to the general inhomogenous form of the order parameter and the vector
potential. The given expansion of the free energy is valid for variations of the order
parameter on length scales much longer the zero-temperature coherence length ξ0. The
variational minimization of the free energy with respect to both η and !A leads to the
Ginzburg-Landau equations

aη +2bη|η|2 −K!Π∗ · !Πη = 0

2e
c

K
{

η∗!Πη +η !Π ∗η∗
}
− 1

4π
!∇ × (!∇ × !A) = 0

(155)

The second equation can be rewritten as the stationary Maxwell equations which links
current and magnetic field

!∇ × !B =
4π
c

2eK
{

η∗!Πη +η !Π ∗η∗
}

=
4π
c

!j , (156)

with !j as the supercurrent. For a uniform order parameter |η|, this equation can be
simplified into an equation for the magnetic field only

!∇ × (!∇ × !B) = −4π
c

8e2

c
K|η|2 !B ⇒ !∇ 2 !B =

1
λ 2

L

!B , (157)

which is the London equation describing the screening of the magnetic field. This is
an essential consequence of the broken U(1)-gauge symmetry and corresponds to the
Higgs-mechanism in gauge field theories making gauge fields massive by violating
gauge symmetries. A result of the London equation is that an external magnetic field
can only penetrate a sample on length λL, the London penetration length:

λ−2
L =

32πe2

c2 K|η|2 =
4πe2ns

mc2 (158)

where the second equality gives the standard form of λL with ns as the superfluid density.
Note that ns is the electronic density ne at T = 0. Near the phase transition one finds

ns(T ) = 2ne

(
1− T

Tc

)
=

7ζ (3)ne

8(πkBTc)2 |η|
2 , (159)

which relates K to microscopic parameters

K =
7ζ (3)ne

64πm(πkBTc)2 . (160)



There is a second important length scale in the Ginzburg-Landau equation, the coherence
length ξ . We look at the terms of the first equation in (155), which are linear in the order
parameter. Here we can define ξ naturally as a characteristic length.

(
a(T )−Kh̄2!∇ 2

)
η = a(T )

{
1−ξ 2!∇ 2

}
η

⇒ ξ (T )2 = − h̄2K
a(T )

=
h̄2K

2b|η|2 =
h̄2v2

F
8π|η|2 ∝ Tc

Tc −T
,

(161)

which we may compare with coherence length ξ0 = h̄vF/π|∆| at T = 0.

Generalization to unconventional order parameters

The extension of the phenomenological theory to general superconducting order
parameters requires to include further symmetries of the system. This leads us to the
classification of the possible order parameters in terms of the irreducible representations
of the corresponding symmetry group analogous to the stationary states in quantum
mechanics. In the standard case the second order phase transition can be restricted to a
single representation.

To explain this point we consider again the linearized gap equations we had derived
ealier for spin singlet and spin triplet pairing with the gap functions ψ(!k ) and !d (!k ),
respectively.

−λψ(!k ) = −N0〈vs
!k ,!k ′ψ(!k ′)〉!k ′,FS for spin singlet pairing

−λ !d (!k ) = −N0〈vt
!k ,!k ′

!d (!k ′)〉!k ′,FS for spin triplet pairing
(162)

where all symmetries are incorporated in the pairing interaction. This is an eigenvalue
problem which gives possible transition tempertures Tc. The largest one defines the
real physical instability temperature of the normal state. This corresponds here to the
largest eigenvalue λ . The eigenfunctions belong to irreducible representations whose
dimensionality gives the degeneracy of a given eigenvalue. We have shown in the
previous chapter how the gap functions is transformed under symmetry operations.
These operations include besides the time reversal and the U(1)-gauge symmetry also
the orbital and the spin rotation. In solids the orbital rotation is limited to the point group
operation of the crystal lattice. Thus we will not be allowed to use the relative angular
momentum l to label the irreducible representations of SO(3). We will also assume that
spin-orbit coupling is sufficiently strong, so that one can consider the spin to be ”frozen”
to the lattice and rotate together with the orbital rotations.

We now would like to construct a free energy that describes a phase transition to
an unconventional superconducting phase. Following Landau’s recipe we pick the gap
function with the highest Tc and decompose in the independent basis functions of this



representation, {ψm(!k )} or { !d m(!k )}:

ψ(!k ) = ∑
l

ηmψm(!k ) and !d (!k ) = ∑
l

ηm !d m(!k ) . (163)

where the sum runs over all basis functions of the relevant irreducible representation. It is
thus assumed that all other representations have sufficiently lower critical temperatures
to be ignored safely. We will use the coefficients ηm as order parameters in the free
energy. The free energy F must be real and a scalar functional of the general order
parameter ηm and also of the vector potential so it is denoted F[ηm, !A ;T ], with T the
temperature parameter. All ηm transform under symmetry operations like coordinates
in the basis of functions {ψm(!k )} or { !d m(!k )}, and transform as η → η∗ (η → eiφ η)
under time-reversal (U(1)-gauge) operation. The generic form of the scaler F is given
by

F[ηm, !A ;T ] = Fn(T )+
∫

d3r

{
a∑

m
|ηm|2 + ∑

m1,···,m4

bm1,···,m4η∗
m1

η∗
m2

ηm3ηm4

+ ∑
m1,m2

∑
n1,n2

Km1m2,n1n2 (Πn1ηm1)
∗ (Πn2ηm2)+

1
8π (!∇ × !A)2

} (164)

where
a = a′(T −Tc) , a′,bm,Kmm′,nn′ > 0 and !Π = !∇ + i

2e
h̄c

!A , (165)

and Fn(T ) the normal state free energy, which will omitted from now on. The parameters
are chosen to satisfy the symmetry condition. The important merit of this formulation
is that the we can formulate this theory based on a few material dependent parameters
which should be determined either experimentally or derived from a microscopic theory.
This theory goes beyond the weak-coupling approach we had used in the previous
chapter and is therefore more general.

Superconductor with tetragonal crystal structure

We consider here a superconductor in a system with tetragonal crystal structure and
strong spin-orbit coupling. This provides one of the most illustrative examples among
the possible unconventional superconductors. In addition there are important uncon-
ventional superconductors of this symmetry, e.g. the high-temperature superconductors
and Sr2RuO4. Thus the releventa point group is D4h and complete the symmetry group
G = D4h×K ×U(1) (spin rotation due to spin-orbit coupling is tied to orbital rotation).
For this symmetry group we give the irreducible representations labeled as for D4h with
their character table and basis functions for both the even- and odd-parity case (label g
for “gerade”) and odd parity (label u for “ungerade”).



Γ E 2C4 C2 2C′
2 2C′′

2 I 2S4 σh 2σv 2σd Basis function
A1g 1 1 1 1 1 1 1 1 1 1 ψ = 1
A2g 1 1 1 -1 -1 1 1 1 -1 -1 ψ = kxky(k2

x − k2
y)

B1g 1 -1 1 1 -1 1 -1 1 1 -1 ψ = k2
x − k2

y
B2g 1 -1 1 -1 1 1 -1 1 -1 1 ψ = kxky
Eg 2 0 -2 0 0 2 0 -2 0 0 ψ = {kxkz,kykz}
A1u 1 1 1 1 1 -1 -1 -1 -1 -1 !d = x̂kx + ŷky
A2u 1 1 1 -1 -1 -1 -1 -1 1 1 !d = x̂ky − ŷkx
B1u 1 -1 1 1 -1 -1 1 - 1 - 1 1 !d = x̂kx − ŷky
B2u 1 -1 1 -1 1 -1 1 -1 1 - 1 !d = x̂ky + ŷkx
Eu 2 0 -2 0 0 -2 0 2 0 0 !d = {ẑkx, ẑky}

Reading from the characters of the identity element E, we have four one dimensional
irreducible representations and one two-dimensional representation for even and odd
parity. Note that the representation A1g includes the conventional superconducting phase
while all others are necessarily unconventional.

It is easy to see that all one-dimensional representations will lead to a Ginzburg-
Landau theory identical to that of the conventional superconductor, since there is
only one order parameter component, ψ(!k ) = ηψ0(!k ) or !d (!k ) = η !d 0(!k ). The two-
dimensional representation is much more interesting because of its two basis func-
tion and thus a functional that depends on two complex order parameter components
!η = (ηx,ηy)

ψ(!k ) = ηxkxkz +ηykykz or !d (!k ) = ηxẑkx +ηyẑky (166)

This additional degrees of freedom yield a more complicated general form of the free
energy:

F[!η , !A ;T ] =
∫

d3r
[

a(T )|!η |2 +b1|!η |4 +
b2

2
{η∗2

x η2
y +η2

x η∗2
y }+b3|ηx|2|ηy|2

+K1{|Πxηx|2 + |Πyηy|2}+K2{|Πxηy|2 + |Πyηx|2}

+K3{(Πxηx)∗(Πyηy)+ c.c.}+K4{(Πxηy)∗(Πyηx)+ c.c.}

+K5{|Πzηx|2 + |Πzηy|2}+
1

8π (!∇ × !A)2
]

(167)
with a(T ),bi and Ki real material dependent coefficients. It is important to realize that the
two components are closely connected with each other as can be seen in the forth-order
and the gradient terms.



Uniform phases

First we address the homogeneous superconducting phase without external magnetic
fields. Thus we ignore the gradient terms and minimize the remaining free energy. A
convenient parametrization simplifies the discussion:

!η = η0(cosα,eiγ sinα) ⇒ F = aη2
0 +[4b1 +

1
4

sin2 2α(b3 +b2 cos2γ)]η4
0 (168)

Since the free energy should always be bound below the following constraints for the
coefficients have to be satisfied,

4b1−b2 +b3 > 0 and 4b1 +b2 +b3 > 0 . (169)

We find that for b3 +b2 cos2γ > 0 the angle α = 0,π/2 minimizes the free energy. The
condition b3 +b2 cos2γ < 0 yields α = ±π/4 as a stable angle. Depending on the sign
of b2 either γ = 0,π or γ =±π/2 gives a minimal free energy. This leads to three distinct
superconducting phases whose range in parameter space (b2,b3) is shown in the phase
diagram. We call these phase A, B and C.

Phase ψ(!k ) !d (!k ) broken symmetry

A kz(kx ± iky) ẑ(kx ± iky) U(1),K

B kz(kx ± ky) ẑ(kx ± ky) U(1),D4h → D2h

C kzkx,kzky ẑkx, ẑky U(1),D4h → D2h

Each phase is two-fold degenerate besides the continuous U(1)-gauge degeneracy. Be-
sides the U(1) gauge symmetry also other symmetries are broken: the A-phase violates
time reversal symmetry and the B- and C-phases break rotation symmetry reducing D4h
(tetragonal) to D2h (orthorhombic). Time reversal violation is connected with special
magnetic properties as we will show below. The reduced crystal symmetry yields lat-
tice deformation, although these are rather small. The structure of the quasiparticle gap
allows us to make a statement on the relative stability of the three phases within the
weak-coupling scheme. The B- and C-phase have an equivalent gap structure and are
degenerate for a spherical Fermi surface. The A-phase has less nodes than the B- and C-
phase, e.g. in the triplet case A has only two point nodes while the other two have two line
nodes. Consequently, the A-phase is more stable. Naturally, Fermi surface anisotropies
and other corrections may shift the situation towards the B- and C-phase. It is a gen-
eral trend that time reversal symmetry breaking phases gain more condensation energy
within weak-coupling theory of multi-component BCS condensates.
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FIGURE 10. Phase diagram of the three stable phases of the Eg,u-representation.

London equation

The complex structure of the gradient terms is reflected in the supercurrent density
which enters the London equation. The currents result from the variation of the free
energy function with respect to !A , !j = −c∂F/∂ !A :

jx = 8πe
[
K1η∗

x Πxηx +K2η∗
y Πxηy +K3η∗

x Πyηy +K4η∗
y Πyηx + c.c.

]

jy = 8πe
[
K1η∗

y Πyηy +K2η∗
x Πyηx +K3η∗

y Πxηx +K4η∗
x Πxηy + c.c.

]

jz = 8πeK5{η∗
x Πzηx +η∗

y Πzηy + c.c.} .

(170)

This structure yields a tensorial form for the London equations

!∇ 2Bx = λ−2
1 Bx +λ−2

3 By
!∇ 2By = λ−2

3 Bx +λ−2
2 By

!∇ 2Bz = λ−2
4 Bz

(171)

where the coefficients for homogeneous order parameters are given by

λ−2
1 =

32π2e2

c2 {K1|ηx|2 +K2|ηy|2} , λ−2
2 =

32π2e2

c2 {K1|ηy|2 +K2|ηx|2} ,

λ−2
3 =

32π2e2

c2 (K3 +K4)(η∗
x ηy +ηxη∗

y ) , λ−2
4 =

32π2e2

c2 K5|!η |2 .

(172)
We find a diagonal form for the A-phase with λ−2

3 = 0 and λ1 = λ2 which is isotropic
in the x-y-plane. On the other hand, the B- and C-phase lead to main axis forms which
are anisotropic in the x-y-plane. This means also that the screening currents and, thus,



the London penetration depths are different for different orientations in the plane. This
may observed, for example, in the structure of the vortex lattice, whose structure is
depending on the vortex-vortex interaction. If the vortex lattice for fields along the z-
axis has orthorhombic symmetry, the B- or C-phase would be realized.

Broken time-reversal symmetry and magnetism

The A-phase characterized by the gap functions

ψ(!k ) = ηkz(kx ± iky) and !d (!k ) = η ẑ(kx ± iky) . (173)

has Cooper pair states with a finite angular momentum along the z-axis.

!M = 〈ψ∗(!k )i!k × !∇!k ψ(!k )〉FS = ±ẑ〈k2
z (k

2
x + k2

y)〉FS ,= 0 (174)
Such states with a finite angular momentum average over the Fermi surface have been
called ”ferromagnetic” by Volovik and Gorkov [44, 42]There are also time reversal sym-
metry breaking phases where the Cooper pairs do not possess a net angular momentum,
which are called ”antiferromagnetic”. An example for an antiferromagnetic time reversal
symmetry breaking phase is the so-called d + is-wave state which is a complex superpo-
sition of a conventional s-wave pairing state and the B1g d-wave state of the tetragonal
system.

ψ(!k ) = s+ id(k2
x − k2

y) ⇒ !M =

〈


2dkzky{s− id(k2

x − k2
y)}

−2dkzkx{s− id(k2
x − k2

y)},
−4dkxky{s− id(k2

x − k2
y)}




〉

FS

= 0 .

(175)
Because Cooper pairs are charged the angular momentum Lz = ±1 of the A-phase

generates a magnetic moment which introduces intrinsic magnetism into the supercon-
ducting state. However, this magnetism cannot be so easily observed. The Cooper pairs
overlapp and the ”orbital currents” which induce the magnetic moment cancel each other
in the depth of the superconductor. Moreover Meissner-Ochsenfeld screening would ex-
pell any magnetization from the bulk. Hence the only realm for the observation of mag-
netism is in regions where both effects are diminished. Such region can be provided by
inhomogeneties and interfaces in the superconductor, e.g. impurities or surfaces.

Magnetism near the surface

We consider now the time-reversal violating A-phase in the vicinity of a surface. The
boundary conditions are not trivial as they require a closer view on the interference be-
havior of Cooper pairs scattered at the surface. Let us assume that the normal vector of
the planar surface is directed along the x-axis. For specular reflection the parallel com-
ponents ky and kz of the momentum are conserved, while the perpendicular component
kx is inverted, i.e. kx → −kx. This behavior leads to a different behavior of the two or-
der parameter components at the surface. Under reflection kzkx (ẑkx) changes and kzky



(ẑky) conserves the sign. Due to this property the former suffers a destructive, the latter
a constructive interference, leading to a suppression of the order parameter component
ηx and leaving ηy constant or even slightly enhanced. We use a variational approach to
the behavior of the order parameter with the boundary conditon

ηx|x=0 = 0 ,
∂ηy

∂x

∣∣∣∣
x=0

= 0 (176)

and
ηx(x) = η0tanh

(
x
ξ

)
and ηy = ±iη0 (177)

for x ≥ 0 and the surface at x = 0. Here ξ is the coherence length and the bulk value of
the order parameter is given by

η2
0 =

a′(Tc −T )
4b1 −b2 +b3

. (178)

This simple form captures the essential features of the superconducting phase at the
surface. In particular, it is now interesting to study the supercurrents near the surface.
We use the expressions in Eq.(170) and find that there is naturally no current running
perpendicular to the surface: jx = 0. Moreover there is no current along the z-axis.
Neglecting the vector potential, we obtain for the current density parallel to the y-
direction a finite value:

jy(x) = 16πeh̄K3ηy
∂ηx

∂x
= −16πeh̄

ξ
iηyη0

cosh2(x/ξ )
. (179)

This corresponds to a current spontaneously flowing parallel to the surface without
applying a magnetic field. The extension of the current density towards the bulk is
characterized by ξ . The direction of the current depends on the sign of ηy and is thus
directly related to the orientation of in Cooper pair angular moment.

If the magnetic field outside of the superconductor vanishes, the obtained current layer
would result in a constant magnetic field inside. This unphysical result is corrected, if we
include the vector potential and solve corresponding ”London equation” with the source
current jy(x) of (179).

∂ 2Ay

∂x2 − 1
λ 2 Ay =

4π
c

jy(x) (180)

The magnetic field inside the superconductor dacays to zero with the length scale λ ,
which is realized by a screening current density flowing in opposite direction to the
spontaneous current such that the net integrated current vanishes at the surface (Fig.11).
The net magnetization remains finite in the complete solution and shows that the intrinsic
magnetism of the angular momentum of the Cooper pairs is only visible at the edge of
the superconductor.

It can be shown in an analogous manner that spontaneous currents occur around impu-
rities and other defects in the superconductor. Such defects are also domain walls in the
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FIGURE 11. Distribution of spontaneous currents parallel to the surface and magnetic field. Screening
currents in opposite direction ensure that the magnetic field vanishes in the bulk of the superconductor.
The spontaneous current possesses the length scale ξ , the screening currents λ .

superconducting phase between the two stable states with Lz = +1 and Lz = −1. Con-
sequently, a time reversal symmetry breaking superconductor would possess a rather
broadly scattered internal magnetization due to inhomogeneities of the superconduct-
ing condensate. Such a random field distribution can be observed by local probes of
the magnetic field. Most suitable are muons which by means of zero-field muon relax-
ation techniques provides a very suitable means to detect a randomly distributed field
by means of the muon spin depolarization rate. In this way intrinsic spontaneous mag-
netism has been observed in the superconducting phase, giving a rough estimate of the
generated fields of 0.1− 1 Gauss. These materials are the spin-triplet superconductor
Sr2RuO4 [45], the heavy Fermion superconductor U1−xThxBe13 with 0.018≤ x ≤ 0.045
[46], UPt3 [49] and in skutterudite PrOs4Sb12 [52]. These results have been interpreted
as evidence for time reversal symmetry breaking superconducting phases.

Multiple Superconducting Phase Transitions

Unconventional superconductors are characterized by the symmetries which are bro-
ken at the onset of superconductivity. Since a conventional superconductor only breaks
U(1)-gauge symmetry, only one kind of phase transition is possible. In contrast the pos-
sibility of violating several symmetries allows for several superconducting phase tran-
sitions and complex phase diagrams of superconducting phases. Thus the observation
of multiple superconducting phase transitions and different phases is a clear proof for
unconventional superconductivity as long as the materials are of highquality to exclude
different material phases in the same sample.

We would like here to illustrate the problem of multiple transitions on a simple model.
For this purpose we use again the case of the two-component order parameter leading



to the A-, B- or C-phase. The situation will now be modified slightly be reducing the
crystal symmetry, say by a uniaxial distortion in a specific direction (e.g. x-direction)
to reduce the tetragonal symmetry (D4h) to a orthorhomibic one (D2h). This lifts the
degeneracy to the two components leading to different transition temperatures in the
instability analysis, or the second order term of the Ginzburg-Landau free energy:

a′(T −Tc)|!η |2 → a′(T −Tcx)|ηx|2 +a′(T −Tcy)|ηy|2 (181)

The splitting of the transition temperatures is assumed to be small compared to Tc
(|Tcx −Tcy| ' Tcx,y) so that we do not need to alter any of the other parameters in the
free energy expansion. We replace now the second order term in the free energy F[!η ,T ]
and analyze the phase transitions. We take Tcx > Tcy. Thus the first instability goes to a
phase with only the ηx-component finite:

!η (T ) =




ηx(T)

0



=





a′(Tcx −T )
2b1

0



 (182)

for temperatures just below Tcx. Now consider the question at which temperature the
other component would appear. We tackle this problem by studying the instability
conditions for ηy in the Ginzburg-Landau free energy. Thus we extract the effective
second order term in ηy:

{
a′(T −Tcy)+(2b1 +b3)|ηx(T)|2

}
|ηy|2 +

b2

2
η2

x (T)(η∗2
y +η2

y ) (183)

where ηx is real given by (182). This is a bilinear form in (ηy,η∗
y ) and can written with

a component form for (ηy,η∗
y ).

(η∗
y ,ηy)Â

(
ηy
η∗

y

)
(184)

with

Â =
(

a′(T −Tcy)+(2b1 +b3)|ηx(T)|2 b2η2
x (T)

b2η2
x (T) a′(T −Tcy)+(2b1 +b3)|ηx(T)|2

)

(185)
The new critical temperature is defined by the first zero of the determinant when the
temperature is lowered, i.e. :

a′(T −Tcy)+(2b1−b2 +b3)|ηx(T )|2 = 0 ⇒ η∗
y +ηy = 0 , (186)

a′(T −Tcy)+(2b1 +b2 +b3)|ηx(T )|2 = 0 ⇒ η∗
y −ηy = 0 . (187)

This yields to the following possible transition temperatures :

T ′
cy± = Tcy

1−R±Tcx/Tcy

1−R±
with R± =

2b1 ±b2 +b3

2b1
. (188)
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where + and − signs yield the imaginary (186) or real solution (187), respectively, for
ηy. The larger T ′

cy determines a physical second phase transition and is determined by
the coefficients b2 and b3. The phase diagram in Fig.10 yields the region. In the range of
the A-phase ηy is imaginary, in B real and no second phase transition occurs in region C
of the phase diagram.

The two phase transitions are both of second order in our example and lead to a
sequential symmetry breaking:

G = D2h ×K ×U(1) Tcx−→ D2h ×K
T ′

cy−→
{

D2h range A
K range B (189)

The first transition removes the U(1)-gauge symmetry yielding superconductivity. In
the range A the time reversal symmetry is broken and in the range B the orthorhombic
symmetry is removed. Note that the phase previously associated with range C in the
phase diagram has the same crystal symmetry reduction as induce by the assumed
uniaxial distortion. For this reason there is no further symmetry breaking possible in
this range.

How can we observe consecutive superconducting transtions? The resistivity vanishes
already at the frist transtions and shows no features at the second. The most common
quantity is the specific heat which shows a discontinuity at each second order phase
transition. However, also collective modes are very suitable for detection of phase tran-
sitions. The sound velocity of ultrasound shows rather pronounced change at phase tran-
sitions for longitudinal polarization. There are, however, interesting selection rules for
transverse polarized sound waves which can be used to obtain more information about
the nature of the superconducting phase transition. Anomalies in the lower critical mag-
netic field Hc1 give a further possibility to locate a second superconducting transition.
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Anomalies of the upper critical field Hc2 can give an indication for additional transi-
tions, however, this requires a careful extrapolation to zero field in order to find the cor-
responding T ′

c . If the second transition involves the violation of time reversal symmetry
the onset of a signal in the zero-field muon spin relaxation determines the transition
[46, 49]. In fact in all systems where one has observed multiple superconducting phase
transitions the signature of broken time reversal symmetry was detected. Such systems
are U1−xThxBe13 (0.018 < x < 0.045) (Fig.12), UPt3 (Fig.13) and PrOs4Sb12.

HIGH-TEMPERATURE SUPERCONDUCTORS

High-temperature cuprate superconductors have been in the focus of condensed matter
research ever since their discovery by Bednorz and Müller in 1986 [11]. Although the
roughly twenty years have brought much insight in this complex system, it is fair to
say that our knowledge of many essential points is still limited. One aspect which can
be considered as established is the unconventionality of the superconducting phase. The
evidence for a so-called dx2−y2-wave state is overwhelming and it seems not so difficult
to argue for this pairing symmetry from theoretical point of view. Even more intriguing
is the fact that this superconducting phase emerges from a strongly correlated electron
system with a pronounced trend towards antiferromagnetism. In the chapter we will
give a brief overview on two of the most popular points of view on the issue of high-
temperature superconductivity, keeping in mind that this field is still widely open. Then
we will review also the most important experiments which have been used for the high-
temeprature superconductors to test the pairing symmetry.



Electronic model

High-temperature superconductors belong to a class of transition metal oxides with
a layered perovskite structure. Copper is the only transition metal yielding high-
temperature superconductivity. One of the most simple compounds is La2−xSrxCuO4
where x corresponds to the carrier-doping concentration as we will point out later. We
start with the ”parent”-compound La2CuO4 (x = 0) which consists of copper-oxide-
layers separated by La-ions. This is an ionic crystal where the elements enter as La3+,
Cu2+ and O2−. While La- and O-ions are electronically in a nobel gas configuration the
Cu-ion has a partially filled 3d-shell. Starting from the 3d104s1-configuration we end up
with 3d9, i.e. one d-electron missing. The d-orbital degeneracy is lifted by the crystal
field in particular the octahedral oxigene cage around each Cu-ion which gives rise to
an essential cubic symmetry, such that the d-level splitts into two subsets:

eg :
{

3dx2−y2

3d3z2−r2
t2g :






3dyz
3dzx
3dxy

(190)

A slight tetragonal deformation of the O-octahedra splits these levels additionally such
that the electron vacancy would reside in the eg-dx2−y2-orbital. Strong Coulomb repul-
sion essentially prevents the Cu-3d-orbitals from being doubly occupied by a second
hole and gives rise to the formation of a filled lower and an empty upper Hubbard-
band spitted by the Coulomb energy Ud ≈ 10eV. Inbetween the oxigene 2p-hole band
is located with a finite gap ∆ to the upper 3dx2−y2-Hubbard band (Ud > ∆). Any dis-
persion of the 3dx2−y2-hole would occur through the completely occupied O-2p-states
lying between to Cu sites. This is prevented by the charge transfer gap to the 2p-levels,
corresponding to the situation of a charge transfer insulator (Fig.14). Thus every Cu-site
carries a spin S = 1/2 spin which interact through superexchange yielding a quasi-two-
dimensional Heisenberg antiferromagnet:

HH = J ∑
〈i, j〉

!̂S i · !̂S j , (191)

where J ∼ 0.12eV is the coupling strength. The stochiometric compound is an insu-
lator with antiferromagnetic order. Only carrier doping leads to a metallic state which
eventually provides the condition for superconductivity.

We know both types of high-temperature superconductors, electron- and hole-doped
systems. La2CuO4 is the parent compound for a hole-doped compound. We will concen-
trate to this case of hole-doping which is much better explored than the electron-doped
compounds. From Fig.14 it is obvious that doped holes (in contrast to doped electrons)
do not enter the Cu 3d-orbitals, but the 2p-orbitals of the oxigenes. Hole-doping is re-
alized chemically by replacing La3+-ions by Sr2+-ions removing an additional electron
from the copper-oxide plane.

Zhang and Rice have shown that the additional holes spread over the four O 2p-
orbitals around a Cu-site hybridizing with the 3dx2−y2-orbital to form a strong spin
singlet, the so-called Zhang-Rice singlet [53]. The singlet formation leads to the removal
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of the S = 1/2 spin degree of freedom which was associated with the Cu site. The Zhang-
Rice singlet can also hop between the Cu-sites yielding mobile vacancies in the spin
lattice (Fig.15).The dynamics of the doped system is described by the so-called t-J-
model, the natural extension of the Heisenberg-Hamiltonian in this context:

HtJ = −t ∑
〈i, j〉,s

[
c†

is(1−ni,−s)(1−n j,−s)c js +h.c.
]
+ J ∑

〈i, j〉

!S i · !S j . (192)
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The first term is formulated as a hopping Hamiltonian for electrons with the matrix
element −t (∼ 0.4eV ) incorporating a strict constraint. The factors (1−ni,−s)(1−n j,−s)
project on a subspace of the usual electron configuration space, ensuring that never
more than one electron occupies a site. With this Hamiltonian we describe the interplay
between the dynamics of mobile holes and the antiferromagnetic correlations. Despite
the simplicity of the Hamiltonian it is absolutely not trivial to extract the low-energy
physics of this system.

We may hope that essential features of the weakly hole-doped cuprate are captured
by the t-J-model and answer the question of how does the metallic state emerge out of
a doped magnetic insulator and eventually gives rise to superconductivity with an un-
precedented high transition temperature? The phase diagram, temperature versus hole-
concentration, shows that the antiferromagnetic phase is quickly destroyed by doping.
The system reaches a state of a strange metal and superconductivity with maximal Tc
around a doping concentration of δ ≈ 0.15. In the phase diagram Fig.16 there is a in-
termediate phase between the antiferromagnetic phase and the superconducting dome,
which is called pseudo gap phase, due to the reduction of low-energy magnetic excita-
tions below a temperature T ∗. In the ”strange metal” phase as well as the pseudo gap re-
gion the charge carriers do not behave like a standard Fermi liquid. Only for rather large
doping the Fermi liquid-like behavior is recovered. However, here the superconductivity
disappears eventually. Taking the maximal Tc as a reference point, the so-called optimal
doping δopt , one generally distinguishes two regions, the underdoped side with δ < δopt
and the overdoped side with δ > δc. In the following we address these two regions with
different schemes. First we will consider the underdoped regime where correlation ef-
fects are very important and where we study to the t-J-Hamiltonian as the basic model.
Later we will turn to the overdoped region which we tackle from the viewpoint of a
Fermi liquid with strong antiferromagnetic spin fluctuations.



Underdoped Regime and RVB concept

The challenge of description of the underdoped phase lies in capturing the essence of
the carrier motion in a background of spins with a strong antiferromagnetic correlation.
Anderson proposed shortly after the discovery of high-temperature superconductivity
that magnetism would evolve into a resonating valence bond (RVB) state which would
be very favorable for Cooper pairing [55]. The RVB phase is characterized by very
short-range spin singlet correlation, in contrast to the infinite range correlation of the
antiferromagnetic order. This phase embodies the key features to identify the pseudo gap
phase and the mechanism of the superconductivity. The t-J-model which we introduced
above seems to be most suitable for a theoretical study of this aspect.

One strategy to study ground state properties of the t-J-model is the technique of the
Gutzwiller projection which is a variational approach. We consider a suitable ”uncorre-
lated” state |ψ0〉 and create a correlated state by projecting out all configurations with
doubly occupied sites. This is done with the Gutzwiller projection operator P̂:

∣∣ψg
〉

= P̂ |ψ0〉 with P̂ = ∏
i

(1−ni↑ni↓) (193)

Among the very best starting states are actually BCS-type of states,

|ψ0〉 = ∏
k<kF

(u!k + v!k c†
!k↑

c†
−!k↓

) |0〉 . (194)

where one finds that variationally most favorable state is the one where Cooper pairs
possess dx2−y2-symmetry (for a very insightful review see [56]).

Gutzwiller’s Approximation

Although the structure of P̂ is simple, it is generally difficult to calculate with this
operator. The expectation value

Eg =
〈ψg|HtJ|ψg〉
〈ψg|ψg〉

=
〈ψ0|P̂HtJP̂|ψ0〉

〈ψ0|P̂|ψ0〉
(195)

and the variational minimization is usually done by means of variational Monte Carlo
techniques [56].

An interesting approach which gives an interesting qualitative view of the correlation
effects in the t-J-model is called Gutzwiller approximation. The idea of this approxi-
mation is to renormalize matrix elements by means of statistical counting of real space
configurations. Thus the fully correlated Hamiltonian HtJ will be replaced by an effec-
tive Hamiltonian without constraints.

HG = −gtt ∑
〈i, j〉,s

[
c†

isc js +h.c.
]
−µ ∑

i,s
ni,s +gJJ ∑

〈i, j〉

!S i · !S j . (196)



Renormalization factors gt and gJ are determined by comparing the constrained and
unconstraint expectation values:

〈
c†

isc js

〉
= gt

〈
c†

isc js

〉

0
hopping (197)

〈
!S i · !S j

〉
= gJ

〈
!S i · !S j

〉

0
spin exchange (198)

〈
c†

i↑c†
j↓

〉
= g∆

〈
c†

i↑c†
j↓

〉

0
pairing (199)

with 〈· · ·〉 the expectation values in the constrained Hamiltonian and 〈· · ·〉0 the expecta-
tion values in the unconstrained Hamiltonian. Moreover, a pairing renormalization factor
g∆ is introduced in order to discuss the renormalization of the pairing gap even though
it does not explicitly appear in the renormalized Hamiltonian.

First we consider gt for the particle hopping:

〈ψ|c†
isc js|ψ〉 = gt 〈ϕ0|c†

isc js |ϕ0〉 (200)

where |ψ〉 is a state where all configurations of double occupancy are absent, while |ϕ0〉
is an uncorrelated state with |ψ〉 ↔ √gt |ϕ0〉. Only states with one particle on site j and
none on site i are relevant in |ψ〉 so that we approximate gt through the comparison of
configurational probabilities:

P(↑,0)+P(↓,0) = gt [P0(↑,0)+P0(↓,0)] . (201)

Here P and P0 are the probabilities for constraint and unconstraint configurations, re-
spectively. The left-hand side is the density of electron multiplying the density of holes
n(1−n). The right-hand side reads

P0(↑,0)+P0(↓,0) =
〈
ni↑(1−n j↑)

〉
0 +
〈
ni↓(1−n j↓)

〉
0

= 〈ni〉0 −
〈
ni↑n j↑

〉
0 −
〈
ni↓n j↓

〉
0

(202)

which yields approximatively n− n2/4− n2/4, since electrons are supposed to be un-
correlated. Then, gt results as

gt ≈
2(1−n)

2−n
(203)

The same reasoning can be done for the exchange renormalization parameter. Now we
have ∣∣s,s′

〉
↔√

gJ
∣∣s,s′

〉
0 . (204)

Since the process involves two electrons, exactly one on two neighboring sites, the
probabilities of configurations give

∑
s,s′

P(s,s′) = gJ ∑
s,s′

P0(s,s′) . (205)



The left-hand side is n2. For electrons on neighboring sites i and j, the right-hand side is

∑
s,s′

〈
ni,s(1−ni,−s)n j,s′(1−n j,−s′)

〉
0 =

〈
nin j

〉
0 −2

〈
nin j↑n j↓

〉
0 +4

〈
ni↑ni↓n j↑n j↓

〉
0 .

(206)
This is approximated as n2 −2n(n/2)2 +4(n/2)4 = (2−n)2n2/4 so that

gJ ≈
4

(2−n)2 (207)

Finally we consider the renormalization of the pairing amplitudes, g∆. This is an off-
diagonal expectation value which couples states with different total number of electrons.
Thus the matrix elements take the form

〈ψ(N)|c†
i↑c†

j↓ |ψ(N −2)〉 = g∆ 〈ϕ0(N)|c†
i↑c†

j↓ |ϕ0(N −2)〉 ⇔ (208)
|ψ(N)〉 → γN |ϕ0(N)〉 and |ψ(N −2)〉 → γN−2 |ϕ0(N −2)〉 , (209)

with g∆ = γNγN−2. The probabilities of the relevant configurations are

P(↑,↓) =
n2

4
= γ2

NP0(↑,↓) = γ2
N〈ni↑n j↓〉0 = γ2

N
n2

4
(210)

so that γN = 1. In the same way we evaluate

P(0,0) = (1−n)2 = γ2
N−2P0(0,0) = γ2

N−2
〈
(1−ni↑)(1−n j↓)

〉
= γ2

N−2

(
1− n

2

)2
,

(211)
leading to γN−2 = 2(1−n)/(2−n) such that

g∆ =
2(1−n)

2−n
= gt , (212)

Both hopping and pairing are connected with the quasiparticle weight of the electrons at
the Fermi surface, which is reduced through the correlation effects. We find that both gt
and g∆ vanish as we approach half-filling, n → 1. It is obvious that the charge fluctua-
tions under the constraint would be suppressed giving rise to increasing difficulties for
hopping due to the lack of free sites. In much the same way the BCS pairing is relying
on the availability on configurations with unoccupied sites. On the other hand, we find
that gJ takes its maximal (enhanced) value at half filling, since this yields with security
configuration where neighboring sites are occupied by just single electrons.

Mean field treatment

The Fermionic operators which we use in HG are now not constraint anymore and
within our approximation the effect of projections is incorportated by the renormaliza-
tion factors. Nevertheless, we are still confronted with a many-body problem which we



would like to tackle by means of a mean field ansatz to decouple the Heisenberg part
of HG. It turns out that the following two types of mean fields are giving a description
which carries the idea obtained from the above variational treatment:

χi j =
〈

c†
isc js

〉

0
and ∆i j =

〈
c†

i↑c†
j↓

〉

0
, (213)

where χi j is a hopping mean field and ∆i j is a BCS-like pairing mean field. Note that we
neglect here the staggered magnetic moment as another obvious mean field. These are
nearest-neighbor mean fields which are considered to be unform throughout the system
with

χi,i+âx = χx , χi,i+ây = χy , ∆i,i+âx = ∆x , ∆i,i+ây = ∆y . (214)

The transformation to momentum space leads to the following effective (one-particle)
mean field Hamiltonian

HMF = ∑
!k ,s

ξ!k c†
!k ,s

c!k ,s −∑
!k

{
∆∗

!k
c!k↓c!k↑ +h.c.

}
+

3Jg j

2 ∑
!k

{∣∣χ!k

∣∣2 +
∣∣∆!k

∣∣2
}

(215)

with

ξ!k = −2 ∑
α=x,y

{
gtt +gJ

3J
4

χα

}
coskα −µ

= ε!k −µ −gJ
3J
2 ∑

α=x,y
χα coskα (216)

∆!k = −gJ
3J
2 ∑

α=x,y
∆α coskα (217)

and ε!k =−2tgt(coskx +cosky). The self-consistence equations lead to a stable solution
with

χx = χy = χ and ∆x = −∆y = ∆ (218)

for sufficiently low temperatures. The energy spectrum of the Bogolyubov quasiparticles
is given by

E!k = ±
√

ξ 2
!k

+ |∆!k |2 (219)

with an energy gap. The mean field ∆!k has an onset temperature T ∗ which gradually
decreases from a high value at half filling upon increasing δ = 1− n and eventually
reaches zero aroung δ ∼ 0.3. The onset of the hopping mean field lies higher and has no
straightforward physical interpretation.

Despite the formal analogy the mean field ∆!k is not the BCS superconducting order
parameter which we only obtain with proper renormalization taking the restricted charge
fluctuations into account. We find

∆BCS,!k = g∆∆!k =
2(1−n)

2−n
∆!k (220)
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such that the energy scale and correspondingly the superconducting transition tempera-
ture lies below T ∗. Indeed we find through the renormalization a dome shape as is known
from the experiment. Note however that quasiparticle gap measured would correspond
to the ∆!k , the gap of the RVB phase and the reduction for ∆BCS corresponds only to the
characteristic temperature scale Tc.

The symmetry of the Cooper pairs is unconventional with a spin singlet even parity
state in the D4h-representation B1g:

ψ(!k ) = ∆(coskx − cosky) (221)

which corresponds to the dx2−y2-wave state found in experiment. Beyond the supercon-
ducting phase in low-doping region we find a phase with an excitation gap below T ∗.
Although the onset of this phase is sharp within the present mean field description, it is
interpreted as the pseudo gap phase. Experimentally there is no sharp transition at T ∗,
but a wide crossover. This phase corresponds here to Anderson’s RVB phase, a short-
ranged spin singlet liquid as well described by the BCS-like state. The superconducting
instability is reduced through suppression of charge fluctuations close to half-filling.

Interestingly, this pseudogap phase is predicted to have the same gap structure as the
superconducting phase. Indeed experimental results confirm this and can be counted as
further supporting evidence for this theory [66]. In this way much of the features of the
phase diagram can be reproduced. Antiferromagnetism is spared out, because the mean
field theory overestimates the stability o magnetic order.

Alternative approach to the underdoped phase

A similar result is obtained by the so-called slave-boson theory which is an alternative
technique to handle non-holonomic constraints such as ∑s c†

iscis ≤ 1 [57]. One introduces
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a decomposition of the electron operator:

cis = b†
i fis , c†

is = f †
isbi ⇒ ∑

s
f †
is fis +b†

i bi = 1 (222)

This decomposition splits the electron into a bosonic operator representing the absence
of an electron and a fermionic operator for the spin, if an electron is on the site. The
former is called holon and the latter spinon. Within the most simple scheme these two
degrees of freedom are behaving independently. This feature corresponds to the concept
of spin-charge separation, well-known in the one-dimensional correlated electron sys-
tems (Luttinger liquids) [58]. Obviously an electron if extracted from the system would
have to combine both degrees of freedom so that this method allows us to give account
of the absence of sharp quasiparticles in certain ranges of the phase diagram for the
photoemission experiments.

The t-J-model formulated in this composite-fermion language can be again treated by
mean field approximation introducing analogous to above

χi j =
〈

f †
is f js

〉
and ∆i j =

〈
f †
i↑ f †

j↓

〉
. (223)

for the fermionic spinon part and B = 〈bi〉 for the bosonic holon part, where B is the
mean field of the Bose-Einstein condensation (BEC) of the holons, a coherent state.
Note that the real superconducting BCS order parameter is given by

∆i j,BCS =
〈

c†
i↑c†

j↓

〉
=
〈
bib j

〉〈
f †
i↑ f †

j↓

〉
= b2∆i j . (224)

In this approach the pseudogap phase is a BCS-like phase of the spinons while super-
conductivity requires the condensation of the holons in addition to the Cooper pairing of
the spinons (SC=RVB+BEC) (see Fig.18). Analogous to the Gutzwiller approximation
method one finds here an RVB phase below a characteristic temperature T ∗ and super-
conductivity appears at lower temperature. The holon condensation temperature grows



linearly with the hole density, while T ∗ decreases. Where the two temperatures cross we
find the maximal Tc (optimal doping). In the overdoped regime we above the supercon-
ducting phase no spinon pairing while the holons are condensed. The presence of the
condensate allows to find a coherent part in the electron weight, so that one could inter-
pret the normal state here as Fermi liquid-like. The spinon-holon picture is complicated
by the fact that two degrees of freedom are coupled by a U(1)-gauge field. Hence the
spin-charge separation is to some extent a spurious feature of the theory [57].

While the RVB-phase gives an elegant interpretation of the underdoped region, it is
difficult to establish this picture firmely. The situation is complicated by the fact that
many different states seem to have comparable energy. Disorder can stabilize phase-
separated states leading to the formation of charged stripes in a spin background. Other
candidates have been the flux state or the d-density wave state which could compete
with the RVB phase. Another attempt to explain the pseudogap phase is based on
an extended region of superconducting fluctuations. Cooper pairs are created at high
temperature but do not form a phase coherent condensate. Each of these proposed phases
and concepts relies on a set of experiments for their support. However, no satisfactory
description of the emergence of the cuprated physics in the underdoped region out of an
antiferromagnetic insulator has been given so far.

Overdoped Regime

In the overdoped regime the normal state properties turn into a more standard metal
state. The t-J-model of the weakly-doped system is obsolete here and the description
in terms of a Fermi liquid phase with rather strong antiferromagnetic spin fluctuations
looks more appropriate. This provides an alternative route to the description of high-
temperature superconductivity, sparing out the complications of the underdoped (al-
though there are attempts to extend this kind of analysis into the underdoped region;
this is, however, beyond the scope of our lecture) [59]. The starting point is the Hub-
bard model in two dimensions from which we may derive an effective spin fluctuation
based interaction between electrons, which is eventually responsible for the formation of
Cooper pairs. Alternatively the spin fluctuations can also be introduced as a phenomeno-
logical input.

Effective spin fluctuation model

Restricting to the spin fluctuation induced interaction part we can introduce to follow-
ing effective Hamiltonian:

Hs f = ∑
!k ,s

ξ!k c†
!k s

c!k s −
1

2N2 ∑
!k ,!k ′,!q

∑
s1,s2,s3,s4

v(!q)!σ s1s2 · !σ s3s4c†
!k+!q ,s1

c!k s2
c†
!k ′−!q ,s3

c!k ′,s4
,

(225)
with the band energy ξ!k (=−2t(coskx +cosky)−µ for a simple nearest-neighbor tight-
binding model), N as the number of sites of the lattice. The effective interaction has the



form
v(!q) = U +U2χ(!q) with χ(!q) =

χ0(!q)
1−Uχ0(!q)

. (226)

with the approximative RPA form for the static spin susceptibility χ(!q) where χ0(!q)
is the spin susceptibility of the free electron system. Since we are concerned with
the possibility of Cooper pairing, we ignore all scattering events apart form the pair
scattering in the Cooper channel. Hence the interaction part of the Hamiltonian reduces
to the following terms in which we separate out the spin-singlet and the spin-triplet part:

Hpair =
1

N2 ∑
!k ,!k ′

∑
s

{
V t

!k ,!k ′(c
†
!k ,s

c†
−!k ,s

c−!k ′,sc!k ′,s + c†
!k ,s

c†
−!k ,−s

c−!k ′,−sc!k ′,s)

+V s
!k ,!k ′c

†
!k ,s

c†
−!k ,−s

c−!k ′,−sc!k ′,s

}
,

(227)

with the spin-triplet and spin-singlet coupling matrix elements,

V t
!k ,!k ′ = −1

4

[
v(!k −!k ′)− v(!k +!k ′)

]
resp. V s

!k ,!k ′ =
3
4

[
v(!k −!k ′)+ v(!k +!k ′)

]
,

(228)
In the sense of the weak-coupling these matrix elements are non-zero only within an
energy region of width 2εc around the Fermi energy. The interaction contains two parts,
a repulsive onsite interaction U preventing to pair in the most simple s-wave form, and
a susceptibility dependent part on which we will focus now. The susceptibility can in
priniciple be calculated in the RPA scheme using the given band structure. Even more
sophisticated approaches developed for itinerant electron systems close to magnetic
transitions may be applied such as the self-consistent renormalization scheme [54]. In
order to keep matters simple we assume a simple form for the susceptibility which gives
the essential features of the interaction. We parameterize χ(!q ) as

χ(!q) ≈ χ0[1−b f (!q)] with f = cosqx + cosqy , (229)

This χ(!q) describes antiferromagnetic spin fluctuations, if it is maximal at !q = !Q =
(π/a,π/a) (a: lattice constant), i.e. b > 0. In contrast, negative b corresponds to ferro-
magnetic spin fluctuations.

This approximation allows us now to write pairing matrix elements in a particular
easy form where we can recognize the pairing symmetries involved. For the spin singlet
part we obtain

V s
!k ,!k ′ =

3U
2

− 3U2χ0

4
b
{

f (!k −!k ′)+ f (!k +!k ′)
}

=
3U
2

− 3U2χ0

4
b
{
(coskx + cosky)(cosk′x + cosk′y)

+(coskx − cosky)(cosk′x − cosk′y)
}

(230)



and the analog for the spin-triplet part

V t
!k ,!k ′ =

χ0U2

4
b
{

f (!k −!k ′)− f (!k +!k ′)
}

=
χ0U2

2
b
{

sinkx sink′x + sinky sink′y
}

.

(231)

Owing to this simplification in (229) both matrix elements possess a factorized form
from which we immediately read the symmetry of the pair wave function as well as the
coupling constant:

V!k ,!k ′ = ∑
n

gnψn(!k )ψ∗
N(!k ′) (232)

with gn as coupling constant and ψn(!k ) the corresponding gap function form. Since we
are considering here a basically tetragonal system, the symmetry classification of the
pairing state for D4h applies, which had given in the previous chapter. We can recognize
states belonging to the representations A1g,B1g and Eu. We give here the list of possible
states and their names as they are often used in literature:

Γ gap function coupling constant name type
A1g 1 U s-wave repulsive

A1g coskx + cosky −3U2χ0b
4

extended s-wave attractive
A2g sinkx sinky(coskx − cosky) – – absent

B1g coskx − cosky −3U2χ0b
4

dx2−y2-wave attractive
B2g sinkx sinky – dxy-wave absent

Eu {sinkx,sinky}
U2χ0b

4
p-wave repulsive

Note that the state called “extended s-wave” is not a real s-wave state although it belongs
to the representation A1g. The amplitude of this function vanishes when both electrons
are on the same lattice point since

1
N ∑

!k

(coskx + cosky) = 0 . (233)

For antiferromagnetic spin-fluctuations, only A1g (extended s-wave) and B1g pairing
states give rise to an attractive interaction. Both are associated with the spin-singlet
channel. (Note that for negative b, i.e. ferromagnetic spin fluctuations, the representation
Eu would provide the only channel with attractive interaction.)

We now have to address the instability condition. The linearized gap equation has the
form

−λψ(!k ) = −〈N0(k̂)V s
!k ,!k ′ψ(!k ′)〉!k ′,FS (234)

and look for the highest eigenvalue λ (N0(k̂): angle dependent density of states on the
Fermi level). It is easy to see that the instability is not only depending on the coupling



constant which is identical for the extended s-wave and the dx2−y2-wave state, but also
the gap function form on the Fermi surface plays a role, in particular the Fermi surface
average:

I[ψ] = 〈N0(k̂)|ψ(!k )|2〉!k ,FS . (235)

We find that I[ψA1g] < I[ψB1g], i.e. the leading instability results from dx2−y2 -wave
pairing. It is easy to see that the extended s-wave state has a small gap function over
all the Fermi surface, while the dx2−y2-wave state has nodes along the (11)-direction, but
is largest along the (10)- and (01)-direction where the density of state is largest in the
two-dimensional electron system.

The discussion based on the spin fluctuation based mechanism leads to the same pair-
ing state symmetry as the Gutzwiller-approximation for the t-J-model. This consistent
result is not so surprising in view of the fact that the interaction term in the t-J-model is
in its structure also a spin fluctuation type of interaction. Moreover the approach (229)
leads to the same mathematical structure for both cases. This result is especially satis-
factory as the experiments confirm this shape of the pairing interaction.

Testing the Pairing Symmetry

The pairing symmetry has been one of the most important question of the early 1990s
also from the experimental point of view. The presence of line nodes constitute one
important characteristic feature of the dx2−y2-wave state. These nodes can be approached
by a number of ways. However, the nodes alone do not give the entire picture of the pair
wave function. It is also important to establish the phase structure.

Line nodes

The probably first indication for line nodes came from experiments which probe the
low-energy (temperature) quasiparticle spectrum. These were the NMR-1/T1 measure-
ments which noted a T 3-powerlaw behavior for T → 0 [61]. Moreover a T -linear behav-
ior has been seen in the low-temperature London penetration depth [62]. Both results
are compatible with line nodes. The fact that here Tc is extremely high made it naturally
easier to address these powerlaws experimentally than in most other unconventional su-
perconductors.

Evidence of line nodes came also from quasiparticle tunneling spectroscopy, in par-
ticular, scanning tunneling microscopy which measures the tunneling conductivity as a
function of the applied voltage on c-axis facing surfaces [63]. The conductivity gives a
picture of the local density of state at given energy E = −eV with V as the voltage. The
characteristic V-shape of a quasiparticle spectrum with line nodes was observed.

These experiments indicating line nodes could not decide however on the position of
the line nodes. Here the tremendous improvement of the energy resolution of the angle
resolved photoemission spectroscopy played a crucial role [64, 65, 66]. This technique
allowed to observe for the first time a superconducting gap on the Fermi surface and even



node

FIGURE 19. The angular dependence of the gap structure obtain by angle resolved photoemission
spectroscopy in Bi2Sr2CaCu2O8+δ [65].

to map out its angular dependence. The results clearly showed nodes along the (11)-
direction compatible with the dx2−y2-wave state (Fig.19 [66]. In this case too the large
energy scale of the superconducting gap is essential for the observation of the angular
structure of the gap. No similar measurements for other unconventional superconductors
have been possibile so far.

Phase sensitive tests - interference and frustration

The above tests provide strong experimental evidence for the dx2−y2-wave state. How-
ever, they do not address the real symmetry aspect of this pairing state. The important
point lies in the property that a 90◦-rotation around the z-axis leads to a sign change
of ψ(!k ) = coskx − cosky. The above measurements do not give a direct access to this
phase information.

Information on the phase of the order parameter can, however, be obtained from the
Josephson effect, the coherent tunneling of Cooper pairs between two superconductors
linked by a tunneling contact. The tunneling current depends on the phase of the order
parameter on the two sides of the contact interface:

I = Ic sin(φ2 −φ1) (236)

where Ic is the maximal current (Josephson coupling) and φ1,2 are the phases of the order
parameter (gap function / pair wave function) on the side 1 and 2, respectively. This stan-
dard formula is simple and unproblematic for conventional superconductors. However,
in the case of unconventional superconductors geometric aspects of the interface start to
play a role. For the dx2−y2-wave phase the phase of the order parameter is different along
the x- and along the y-direction. The phase difference for the two directions is π . Thus,
having contacts on two interfaces, x- and y-oriented, then the their current-phase rela-
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FIGURE 20. Set up for a SQUID phase sensitive probe using a d-wave and a conventional s-wave
superconductor which has Josephson contact along two perpendicular faces [70, 67].

tion would be shifted by π . This property has been used to probe this symmetry feature
through an interference experiment.

We consider the configuration as given in Fig.20 where a conventional superconductor
is coupled to a dx2−y2-wave superconductor on two orthogonal faces. This is a typical
SQUID (Superconducting QUantum Interference Device) where the flux gives via an
Aharanov-Bohm-type effect for the Cooper pairs a periodic interference pattern of the
maximal current as a function of the magnetic flux threading the SQUID-loop. The total
current through this device consists of the contributions of the two junctions 1 and 2:

I = I1 + I2 = Ic1 sinϕ1 + Ic2 sin(ϕ2 +α) with ϕ1 −ϕ2 = 2π Φ
Φ0

(237)

with Φ0 = hc/2e is the superconducting magnetic flux quantum. The second term
involves a phase shift α which is π in the present situation. It is easy to calculate the
maximal current assuming Ic1 = Ic2 = Ic.

Imax(Φ) = Ic

∣∣∣∣cos
(

π Φ
Φ0

+
a
2

)∣∣∣∣ . (238)

While the standard SQUID (α = 0) shows a maximum for Φ = nΦ0, the configuration
with the d-wave superconductor (α = π) is shifted by half a flux quantum with a
maximum for Φ = (n/2 + 1)Φ0 (see Fig.21. This type of experiments have indeed
been performed in the specified configuration with YBa2Cu3O7 by several groups with
a positive result giving an even stronger support for the realization of dx2−y2-wave
symmetry in the cuprate superconductors [71, 72, 73, 67].

Another related experiment addresses the phase frustration effect in a superconducting
loop where a π-shift like this is buildt in. We assume that the superconducting loop does
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FIGURE 21. Interference pattern of a SQUID: Standard pattern (upper panel); π-shifted pattern (lower
panel).

not allow any flux to leak out so that enclosed flux is defined by the following condition

0 =
∮

d!s ·
(

!∇φ − 2π
Φ0

!A
)

= 2πn+∑
i

αi −2π Φ
Φ0

(239)

where the sum runs overall Josephson junction in the loop and αi denotes the phase shift
(0,π) (n: integer). Note that these phase shifts are not gauge independent. However,
the sum does not change under any gauge transformation in any of the superconducting
segments along the loop. One always finds ∑i αi = πn′, either with n′ an even or an odd
integer, i.e. ”even” and ”odd” is invariant under gauge transformation. This leads to the
following flux quantization:

Φ =






Φ0n even

Φ0

(
n+

1
2

)
odd

(240)

In case of an even number of π-shifts we have the standard flux quantization in terms of
an integer number of flux quanta. In contrast, for an odd number of π-shifts we encounter
a ”half-integer” flux quantization. A particular consequence of the latter case is that there
is no zero-flux situation. We call such a loop frustrated, since there is no situation in
which the phase is a constant throughout the loop. The SQUID loop in Fig.20 has an
odd number of π-shifts and would carry half-integer flux quanta.

Tsuei and co-workers created small loops of this kind by growing tiny YBa2Cu3O7-
loop (diameter ∼ 60 µm) on top of tricrystalline substrate [74]. In this way arrived at a
loop consisting of three differently oriented film segments. The geometry was chosen in
a way that the loop would be frustrated. Indeed the measurment of the magnetic flux in
the superconducting phase showed that there is a half-integer quantization in this loop,
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FIGURE 22. Loop with four segments whose phase shift are α1−4.
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FIGURE 23. Magnetic field distribution measured by a scanning SQUID microscope for four
YBa2Cu3O7 loops on a tricrystal substrate (white lines indicate the grain boundaries). Three loops have
no frustration (1,2 and 3) and the center loop 4 is frustrated. There is no magnetic flux in the loops 1, 2
and 3, but half a flux quantum (Φ0/2 in the loop 4 [74, 13].

while reference loops showed standard flux quantization. These experiments have been
repeated for other cuprate superconductors with the same result and are viewed as the
most beautiful phase sensitive test for d-wave pairing in these materials [13].

Other phase sensitive test based on scattering states

Interestingly potential scattering leads to an additional phenomenon which can be
used to obtain information about the phase structure of the pair wave function. Ordinary
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FIGURE 24. Andreev scattering with a specularly scattering surface. The electron and hole path
connect two momentum direction where the gap function has opposite sign.

potential scattering from impurities and lattice defects is generally destructive for uncon-
ventional pairing. The reason lies in the destructive interference effects, if Cooper pairs
are scattered between momenta for which the pair wave function has different phase.
Thus one would expect that actually the disorder intrinsic to the doped cuprates would
be an obstacle for d-wave pairing. Surprisingly the doping which introduces disorder
between the copper-oxide planes has little effect on Tc. Only impurities implanted in the
plane acts detrimental to superconductivity, such as the Zn-impurities replacing Cu.

On the level of quasiparticles potential scattering generates localized low-energy
states. This is particularly impressive near surfaces with a normal vector (11). Specular
surface scattering in the cooper-oxide plane connects Cooper pair states with momenta
for which the pair wave functions has opposite sign (Fig.24). If a low-energy (subgap)
electron is scattered at the surface back into the condensate it suffers a so-called Andreev
reflection resulting in a hole which retraces the trajectory of the electron. In this was the
hole returns back to the condensate and releases via Andreev reflection an electron which
takes again the path of the original electron. This corresponds to a closed trajectory of a
”particle” and hence constitutes a bound state at the surface. It can be shown on general
grounds (e.g. by Bohr-Sommerfeld quantization) that such a π-phase shift yields yields
to bound quasiparticle states at zero-energy. Since all states of this kind suffering a
π-phase shift through scattering have zero energy, this gives rise to a large density of
states at E = 0. Such states have been successfully observed by inplane quasiparticle
tunneling experiments and represent a further strong support for the d-wave symmetry
[75, 76, 77]. Also the scattering at an impurities generates similar subgap bound states
localized around the scattering center. The typical features for an d-wave pairing state
have been observed by STM spectroscopy [78]

The evidence for d-wave pairing is overwhelming. While the spin fluctuation and
RVB-based descriptions provide a pairing mechanism which leads to the proper pairing



symmetry, still many questions on the cuprate superconductors remain open, in particu-
lar, in the context of the pseudogap phase of the underdoped region of the phase diagram
(Fig.16).

SPIN TRIPLET SUPERCONDUCTIVITY IN STRONTIUM
RUTHENATES

The discovery of high-temperature superconductivity in quasi-two-dimensional copper-
oxide compounds has a initiated the search for other transition metal oxide superconduc-
tors of similar structure. In 1994 the team of Maeno and Bednorz reported the discovery
of superconductivity in Sr2RuO4 which has a layered perovskite structure like La2CuO4
[22]. In constrast to the cuprates Sr2RuO4 is a low-temperature superconductor with
Tc ≈ 1.5K. In most respects this materials is different from the cuprates. It is in stochio-
metric composition metallic and displays Fermi liquid behavior at temperature below
∼ 40K. The conductivity is very different in the basal plane and along the z-axis even a
very low temperature, showing that also this material has pronounced two-dimensional
behavior. The Fermi liquid parameters indicate strong correlation effects very similar
(even on a quantitative level) to the quantum liquid 3He. The analogy with 3He led to
the proposal that the superconductivity in Sr2RuO4 would be also based on the odd-
parity spin triplet pairing. Over the years strong evidence has accumulated identifying
the superconducting phase as a so-called chiral p-wave state, a time reversal symmetry
breaking state: !d (!k ) = ẑ(kx ± iky) [23, 24].

Electronic structure

The electronic structure is dominated by the 4d-t2g-orbitals of the Ru-ions which form
in each plane a square lattice. There are 4 electrons per ion as Ru4+, which disperse via
π-hybridization with the 2p-orbitals of the O-ions. The result are three essentially two-
dimensional bands. The α- and β -band are derived from the two orbital dyz and dzx
which each on their own would give a one-dimensional band. Their hybridization via
next-nearest-neighbor hopping leads to two two-dimensional Fermi surface a hole- and
an electron-like pocket, α and β , respectively. The corresponding Hamiltonian has the
form

Hαβ = ∑
!k ,s

{
εkyc

†
!k 1s

c!k 1 + εkxc
†
!k 2s

c!k 2 +g!k

(
c†
!k 1s

c!k 2 + c†
!k 2s

c!k 1

)}
(241)

with εk = −2t cosk − µ and g!k = 4t ′ sinkx sinky (indices dyz → c!k 1s and dzx → c!k 2s).
The third band, γ-band, is decoupled due different parity with respect to the reflection
z →−z as it is derived from dxy. The corresponding Hamiltonian is

Hγ = ∑
!k

ε ′!k c†
!k 3s

c!k 3 (242)
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FIGURE 25. Fermi surfaces of Sr2RuO4 measured by ARPES. We distinguish hole-like pockets α
and electron-like sheets β and γ . The sheets α and β result from the hybridization of the two crossing
one-dimensional bands (dashed white lines) [80].

with ε ′!k = −2t(coskx + cosky)− 4t ′′ coskx cosky − µ ′ including next-nearest-neighbor
hopping (dxy → c!k 3s). The charge distribution is 2 : 1 between the (α/β )- and the γ-
bands. The resulting Fermi surface agree surprisingly well with the Fermi surfaces ob-
served in detailed de Haas-van Alphen experiments [79] and ARPES [80] measurements
(Fig.25).

Possible spin triplet superconducting phases

We now consider the possible superconducting phases in this system from a symmetry
point of view. We pose the preconditions that the Cooper pairs consist of electrons in the
same RuO2-plane of the tetragonal crystal lattice and that spin-orbit coupling is now
weak. Under these restricting conditions we find the following spin singlet states.

Γ ψ(!k )

A1g ∆0

A2g ∆0kxky(k2
x − k2

y)

B1g ∆0(k2
x − k2

y)

B2g ∆0kxky

Eg –



Note that the two-dimensional Eg-representation does not provide a state. The basis
functions have the form (kxkz,kykz) and are not inplane pairing states as the presence of
the kz-component shows. The spin triplet gap functions are given by

Γ !d (!k ) Jz

A1u ∆0(x̂kx + ŷky) 0

A2u ∆0(x̂ky − ŷkx) 0

B1u ∆0(x̂kx − ŷky) ±2

B2u ∆0(x̂ky + ŷkx) ±2

Eu ∆0ẑ(kx ± iky) ±1

For all states we have also given the z-component of the total angular momentum
(as defined for a cylindrically symmetric system). We have chosen the time reversal
symmetry breaking state for Eu, since it maximizes the weak coupling condensation
energy among the possible combinations in this representation.

Interestingly all the spin triplet state listed have a degenerate weak-coupling conden-
sation energy, as this depends only on the quasiparticle gap:

∆!k = | !d (!k )| = ∆0

√
k2

x + k2
y (243)

This degeneracy would be lifted for example by spin-orbit coupling. For the spin sin-
glet case there is no such a problem, since the gap functions possess very distinct
anisotropies.

Experimental identification of pairing symmetry

As mentioned earlier there is convincing evidence for spin triplet pairing with the
symmetry !d (!k ) = ẑ(kx ± iky). A first proof for unconventional superconductivity is
provided by the sensitivity of the Tc to non-magnetic impurities [81]. The transition
temperature is suppressed with increasing impurity concentration. The threshold mean
free path of the conduction electrons needs to be longer than roughly 100 nm which
corresponds approximately to the zero-temperature coherence length.

A rather direct test for triplet pairing is the measurement of the spin susceptibility
which is possible in the superconducting phase via the NMR Knight shift. Early on
experiments showed that the spin susceptibility stays constant for magnetic fields in
the basal plane indicating a !d -vector parallel to the z-axis [82]. In another experiment,
the muon zero-field relaxation rate displays an pronounced continuous increase of the
intrinsic magnetic field spread pointing towards a time reversal symmetry breaking



superconducting phase [45]. From our classification we see that under the restriction to
inplane pairing there is no spin singlet pairing phase with broken time reversal symmetry.
On the other hand, both experiments are consistent with each other in selecting !d (!k ) =
ẑ(kx ± iky).

There is further experimental evidence for this pairing state. Very recently a first phase
sensitive test of the SQUID-type has been reported [83]. In contrast to the case discussed
for the dx2−y2-wave spin singlet superconductor, the conditions here is less intuitive. A
first problem which has to be settled is the Josephson effect between a spin singlet and
a spin triplet superconductor, since the SQUID device contains junctions between the
triplet and a conventional superconductor. There are two obstacles to be overcome. The
pair wave functions in the two superconductors do not match in the parity of their orbital
part and also not in the spin part. The first point is solved through the fact that an interface
naturally breaks parity. The second requires magnetically active tunneling, i.e. spin flip
processes in tunneling. This appears automatically when the two superconductors are
different in spin-orbit coupling, so that the matching of electron spinor wavefunctions
removes spin conservation in tunneling. Symmetry considerations lead to the following
expression for the coupling:

J ∝ Im〈ψ(!k )∗ !d (!k ) · {!n ×!k}〉!k ,FS (244)

where !n is the normal vector of the interface on the spin triplet superconductor side.
We see that there is only coupling in the basal plane for !d ‖ ẑ. The orbital and spin
part have no independent selection rules anymore, but only the total angular momentum
!J · !n perpendicular to the junction. For the gap function !d (!k ) = ẑ(ηxkx + ηyky) with
the normal vector !n ‖ x we find the the s-wave order parameter couples to the ηy
component. In this way !J · !n = 0 is realized for the Cooper pairs on both sides. The
SQUID device follow the basic design proposed by Geshkenbein and co-workers [69]
as shown in Fig.26. The s-wave superconductor is attached on two opposite sides so
that !n has opposite sign. In this way there is a phase shift of π in the SQUID loop and,
analogously to the d-wave SQUID of the cuprate superconductors, we expect a shift of
the interference pattern by half of a flux quantum. This effect has indeed been observed
recently by Nelson et al. [83].

The order parameter of !d (!k ) = ẑ(kx ± iky) has two complex components. This has
various consequences. For example the mixed phase is influenced by the nature of the
order parameter. The vortex lattice has square coordination for fields along the z-axis, in
contrast to the triangular form in the standard case. This was predicted by Agterberg [84]
and subsequently experimentally verified by Riseman et al. [85]. Additionally the field
distribution in the mixed phase, measured by muon spin relaxation, shows peculiarities
which are characteristic for a two-component order parameter [86].

Thermodynamic measurements do not allow to make a clear statement about the order
parameter symmetry so far. Many data seem to point towards a phase with line nodes
[23]. However, the situations is more complicated due to the presence of several bands
which make the data analysis rather complex [87, 88].
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FIGURE 26. SQUID setup with a diametral junction configuration following Geshkenbein et al. [69].

Microscopic origin of the chiral p-wave state

The microscopic origin of the interaction yielding spin triplet pairing is unclear. On
the one hand, one may argue that Sr2RuO4 would be close to a ferromagnetic phase.
The Ruddelson-Popper series of compounds Srn+1RunO3n+1, where n is the number
of RuO2-layers per unit cell, goes towards ferromagnetism with growing n. The infinite-
layer compound SrRuO3 is ferromagnetic with TC = 165K. From this viewpoint a mech-
anism based on ferromagnetic spin fluctuations seems to be an appealing proposal. How-
ever, neutron scattering data do not support this idea. Rather strong spin fluctuations at
an incommensurate wave vector have been observed [89] which readily can be identified
with a nesting vector associated with the α-β bands, a reminiscent of their quasi-one-
dimensional nature [90, 105] (see Fig.27). Thus spin fluctuations as a pairing mechanism
do not provide a clear-cut picture. Theoretical studies show therefore a wide spread of
possible pairing mechanisms [91, 92, 93, 94, 95, 96, 97, 98].

There is another important issue concerning the stability of the chiral p-wave state
connected with the degeneracy within the weak-coupling limit. It is spin-orbit coupling
which is most relevant for lifting this degeneracy, although it has been shown that certain
higher-order feedback effects favor actually the chiral p-wave state [99, 100]. The effect
of spin-orbit coupling discussed on the level of the Cooper pairs can be discussed by
using a phenomenological approach. Introducing the general order parameter

!d (!k ) = ∑
µ=x,y,z

∑
i=x,y

Aµiµ̂ki (245)

we find the following second order term in the Ginzburg-Landau free energy in the
absence of spin-orbit coupling

F2 = a′(T −Tc)tr(Â†Â) , (246)

i.e. any spin-triplet state has the same Tc. Eventually, the fourth order terms determine
the combinations of spin and orbital components in order to maximize the condensa-
tion energy. The feedback effects modify the fourth order terms [99, 100]. Spin-orbit



α,β γ

FIGURE 27. Static spin susceptibility χ(!q) for the two subsystems: (a) the α-β -band with pronounced
peak by !Q ic ≈ (π/3,π/3,0) due to nesting features; (b) the γ-band with softer features [105].

coupling for a tetragonal material can be cast into following potential for the Cooper
pairs

V̂ = a1!L · !S +a2LzSz with






Sid j = −iεi jldl

Lik j = iεi jlkl

(247)

(εi jl: total antisymmetric tensor). From this we derive the following second order term:

〈 !d (!k )∗{V̂ !d (!k )}〉!k ,FS ⇒ Fso = −α ∑
µ,ν

{A∗
µµAνν −A∗

µνAνµ} (248)

with α = a1 +a2. These additional terms split the Tc.

Tc(a) = Tc(0)− α
a′

(|Jz|−1) . (249)

The Tc depends on the total angular momentum Jz and on α . The sign of α determines
whether the states with Jz = ±2 or Jz = 0 have the highest Tc. Annoyingly the chiral
p-wave state cannot be stabilized in this way [101, 96, 102, 97]

On the microscopic level we can introduce spin-orbit coupling on the Ru-ion acting
only within the 4d-t2g-orbitals:

Hso = iλ ∑
m,n,l

εlmn ∑
!k ,s,s′

c†
!k ls

c!k ms′σ
n
ss′ . (250)

This added to the tight-binding Hamiltonian (241,242) leads to a modified band struc-
ture. Examining this Hamiltonian we find that starting out from the independent orbitals
(dyz,dzx,dxy) we can obtain in lowest order perturbation in the spin-orbit coupling and
the interorbital hybridization that the degeneracy is lifted by a spin dependent Cooper
pair scattering between the orbitals dyz and dzx with the matrix element proportional to

λ t ′〈kxkyẑ · { !d 1(!k )× !d 2(!k )}〉!k (251)



where !d 1 and !d 2 are the gap functions associated with the orbital dyz and dzx, respec-
tively. Obviously the !d -vectors have to lie in the x-y-plane in order to reach a finite
matrix element. It is easy to verify that the possible states stabilized are characterized by
Jz = 0 or ±2 depending on the sign of λ . This is in agreement with the phenomenological
analysis above [102].

In order to stabilize the chiral p-wave state an additional indirect spin anisotropy has
to enter via the pairing interaction [103, 105, 96, 102]. This means that interactions
involving spin densities have to play a certain role in the pairing mechanism in order
to pin the orientation of the !d -vector additionally. The spin fluctuation mechanism, for
example, involves the anisotropies of the dynamical spin susceptibility resulting from
spin-orbit coupling in the multi-band systems (250). The static susceptibility shows very
clear properties in this respect:

χzz(!q) < χ+−(!q) for !q → 0

χzz(!q) < χ+−(!q) for !q = !Q ic

(252)

where !Q ic ≈ (π/3,π/3,0) is the wave vector of the (dominant) incommensurate spin
correlation [105, 106]. The small-q contribution is inplane polarized and the incom-
mensurate fluctuations are z-axis polarized [107]. The former favors, of course, inplane
equal-spin pairing for the spin triplet channel, since the small-q scattering is favorable
for odd-parity pairing[103]. The z-axis polarization on the other hand, is essential for
certain spin fluctuation based mechanisms combining the scattering around !Q ic and
special nesting feartures of the Fermi surface to obtained an inplane equal-spin pairing
state [92, 94]. While this aspect suggests that spin fluctuations are involved in the pairing
mechanism, it is not clear whether they are necessarily the dominant part. In addition the
view on the spin dynamics alone neglects contributions from vertex corrections (renor-
malized coupling matrx elements) which are possibily important for the selection of the
pairing state as well [91, 96].

We have two competing trends due to spin-orbit coupling. If the α-β -bands are
dominating the superconductivity, then likely the states with !d ⊥ ẑ will be stabilized. On
the other hand, a dominating γ-band would entirely be determined by the contributions
of the anisotropic spin fluctuations stabilizing a state with !d ‖ ẑ corresponding to the
chiral p-wave phase. Therefore, a γ-band dominating the superconducting instability
while the α-β -bands are only passively involved, provides good conditions to favor
the chiral p-wave state over the others [104, 96]. This ideas of the dominant γ-band
receives strong support from the analysis of various thermodynamic measurements such
as the specific heat [88, 108], the London penetration depth [109, 110] etc. These results
suggest that the α-β -bands only contribute at rather low temperature noticably to the
superconductivity. This aspect makes the search for gap anisotropies, even with nodal
features, very challenging [108].

The fact that there are obviously two trends to lift the degeneracy among the different
spin triplet states hints that the energy scales involved in the end are rather small despite
the rather strong spin orbit coupling (λ ∼ 1000K). There are several renormalizing
steps which reduce finally the magnitude of effect on the Cooper pair energy. For
example the matrix element (251) is reduced through the fact that contributions to the



!k average come from the region at the Fermi level where the two bands cross. Also the
contribution of the anisotropy of the spin susceptibility can only result in a fraction of
Tc. Consequently the anisotropy pinning of the !d -vector is likely weak. Indeed recent
Knight shift measurement for fields along the z-axis suggest that for fields of several
hundreds of Oe the !d may have flipped into basal plane [111].

The inhomogeneous 3-Kelvin phase

Finally we would like to briefly review a quite unexpected finding in Sr2RuO4. Inves-
tigating Ru-Sr2RuO4 eutectic samples it was found that an inhomogeneous supercon-
ducting phase appears at higher temperature than the bulk superconductivity, roughly
around T ∗ ∼ 3K. This inhomogeneous phase was then called ”3K-phase”. Below T ∗

superconductivity nucleates on islands which eventually grow together to form the uni-
form bulk phase as the temperature reaches Tc ≈ 1.5K. The signature of the phase is the
gradual drop of the resistance for Tc < T < T ∗[112]. The Ru-Sr2RuO4 eutectic consists
of many µm-size Ru-metal inclusions in the otherwise pure Sr2RuO4. The experimental
evidence points towards the nucleation of superconductivity at the interface between Ru
and Sr2RuO4 in a way that in a tiny layer the conditions for Cooper pairing is improved
[113]. The nucleation of such a filamentary form of superconductivity has been con-
firmed by measurments of the upper critical field. For filamentary superconductors the
temperature dependence of the upper critical field has an exponent α < 1 in

Hc2(T ) ∝ (T ∗−T )α (253)

where α has been fitted to the value 0.7. This means a clear deviation from the standard
bulk Hc2 which has a linear dependence [114, 115].

A fascinating aspect of this eutectic system is that the nucleated order parameter has
a p-wave component whose lobes lie parallel to the interface. This corresponds to time
reversal symmetry conserving phase, so that the bulk transition is not merely a perco-
lation transition as in inhomogeneous conventional superconductors. This transition is
time reversal symmetry breaking in order to arrive at the chiral p-wave phase. The study
of the structure of the inhomogeneous phase shows that the transition to the bulk phase
may be even more complex. The inhomogeneous phase viewed as a network of super-
conducting islands weakly coupled among each other, which is intrinsically frustrated
due to the internal phase structure. Thus, the evolution of the superconducting phase as
the temperature is lowered could lead through regimes where spontaneous supercurrents
are flowing in the frustrated network, rather similar to the frustrated loops discussed in
the context of phase sensitive test for d-wave superconductivity [113]. For such a phase
there is so far only indirect evidence by the observation that the critical currents in the
3-K phase are not invariant under the operation J → −J [116]. This indicates that in
the complex network of superconducting islands the time reversal symmetry has been
broken.

It is a lucky coincidence that Sr2RuO4 provides us with this highly complex inhomo-
geneous phase besides much other exciting physics of an unconventional superconduc-



tor. While a great deal of the properties of this superconductor has been understood by
now there are still many questions. In particular, the pairing mechanism and its connec-
tion to the magnetic properties have not been put into a transparent form. Sr2RuO4 will
in any case serve in future as an exemplary system for discussing unconventional su-
perconductivity as many of the generic non-trivial aspects are realized here. As a Fermi
liquid phase it constitutes also the electronic analog of the most intriguing superfluid,
3He.

CONCLUSION

In this lecture we have covered a few of the essential parts to describe and understand
unconventional superconductivity. This field is quickly developing due to impressive
progress in the production of high-quality materials during recent years. High quality
is mandatory to find unconventional superconductivity, since anisotropic Cooper pairs
are easily destroyed by scattering at defects in the samples. Among the unconventional
superconductors we do not only find those with the highest Tc but many with fascinating
and puzzling properties making them despite most low Tcs a most attractive subject of
research. Many of the new superconductors require from us to extend our views and
ideas of superconductivity.

Finally I would like to recommend for further reading several reviews and books
which go in many parts much deeper than it was possible in this lecture. Among the
books to recommend are V.P. Mineev and K.V. Samokhin, Introduction to Unconven-
tional Superconductivity (Gordon and Breach, Science Publisher, 1999), K.H. Benne-
mann and J.B. Ketterson, The Physics of Superconductors, Vol. I / II (Springer, 2003).
Reviews on recent developments for the heavy Fermion superconductors are by P.
Thalmeier and G. Zwicknagl (Handbook on the Physics and Chemistry of Rare Earths,
Vol. 34, 135 (2005)), by R.H. Heffner and M.R. Norman (Comments Condens. Matter
Phys. 17, 361 (1996)) and specifically on UPt3, which we had not touched in much detail
in the lecture, by R. Joynt and L. Taillefer (Rev. Mod. Phys. 74, 235 (2002)).
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