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Preface

The objective of this book is to provide an up-to-date comprehensive descrip-
tion of the Kamimura–Suwa model, which is the first of the present repre-
sentative two-component theories in high temperature superconductivity. In
1986 George Bednorz and Karl Alex Müller made the remarkable discovery
of superconductivity with an unbelievingly high value of Tc = 35K, by substi-
tuting Ba2+ ions for La3+ ions in the antiferromagnetic insulator La2CuO4.
Soon after this discovery Tc rose to 90 K by synthesizing YBa2Cu3O7−η with
a deficit in oxygen. Further exploration for new copper oxide superconducting
materials with higher Tc led to the discovery of Bi–Sr–Ca–Cu–O, Tl–Ba–Ca–
Cu–O and Hg–Ba–Ca–Cu–O compounds in subsequent years. The new class
of copper oxide compounds mentioned above is called “cuprates”. At present
Tc = 135 K under ambient pressure and Tc = 164 K under 31 GPa observed
in HgBa2Ca2Cu3O8 are the highest value so far obtained. The Kamimura–
Suwa model, which was originally developed in 1993, is a theory of these
real copper oxide superconducting materials. Since undoped La2CuO4 is a
Mott–Hubbard antiferromagnetic insulator, its electronic structure can not
be explained by the ordinary one-electron energy band theory. In this context
the important role of electron-correlation was pointed out.

On the other hand, a d-hole state in each Cu2+ ion in the ligand field with
octahedral symmetry is orbitally doubly-degenerate so that it is subject to
strong Jahn–Teller interaction in La2CuO4. As a result, a CuO6 octahedron
in La2CuO4 is elongated along the c-axis due to the Jahn–Teller distortion.
In this circumstance most proposed models so far assume that hole-carriers
itinerate in the CuO2 layers perpendicular to the c-axis. However, when hole-
carriers are doped into cuprates, CuO6 octahedrons or CuO5 pyramids are
deformed so as to minimize the total electrostatic energy of a whole system.
We call this kind of deformation the “anti-Jahn–Teller effect”, because the
CuO6 octahedrons or CuO5 pyramids elongated by the Jahn–Teller interac-
tion along the c-axis in undoped materials shrink along the c-axis so as to
partly cancel the energy gain due to the Jahn–Teller effect by doping the
carriers. As a result, the energies of two kinds of orbital become closer again.

The Kamimura–Suwa model, abbreviated as the K–S model, takes ac-
count of both effects of the electron correlation and lattice distortion due to
the anti-Jahn–Teller effect on equal footing. As a result, two kinds of multiplet
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in the presence of local antiferromagnetic order due to the localized spins
play an important role in determining the electronic structures of cuprates
and creating the d-wave pairing mechanism of superconductivity. This book
clarifies the important roles of both electron correlation and lattice distortion
in real cuprate materials with hole-doping. In particular, it is clarified that
two-component scenario and inhomogeneity are key factors in high temper-
ature superconductivity in cuprates. Eleven chapters among the 14 chapters
in this book are devoted to describing the many-body-effect-including elec-
tronic structures, Fermi surfaces, normal-state properties of superconducting
cuprates and the mechanism of high temperature superconductivity in an
instructive way, based on the K–S model. Readers will understand that a
number of theoretical predictions by the K–S model have been proven ex-
perimentally by various recent experiments. This book is written in a self-
contained manner in which, for the most part, readers will understand the
basic physical foundations even if they are not trained in advanced many-
body techniques.

Tokyo Hiroshi Kamimura
March 2005 Hideki Ushio

Shunichi Matsuno
Tsuyoshi Hamada
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1 Introduction

Superconductivity was first discovered in Hg at 4.2 K in 1911 by Heike Kamer-
lingh Onnes [1]. Since then, superconductivity has been found in many metal-
lic elements of the periodic systems, alloys and intermetallic compounds.
Theory of superconductivity was given by Bardeen, Cooper and Schrieffer
(BCS) in 1957 [2]. Until 1986, Tc of 23.4 K observed in Nb3Ge was the high-
est. In 1986 George Bednorz and Karl Alex Müller [3] made the remarkable
discovery of superconductivity that brought an entirely new class of solids
with an unbelievably high value of Tc = 35 K to the world of physics and
materials science. A new superconducting material was La2CuO4 in which
the ions of Ba2+, Sr2+ or Ca2+ were doped to replace some of La3+ ions
and hole-carriers are created. This discovery was the dawn of the era of
high temperature superconductivity(HTSC). Soon after this discovery, Tc

rose to 90 K when La3+ ions were replaced by Y3+ ions and a superconduct-
ing material of YBa2Cu3O7−η with a deficit in oxygen was made [4]. Further
exploration for new copper oxide superconducting materials with higher Tc

has led to the discovery of Bi–Sr–Ca–Cu–O [5], Tl–Ba–Ca–Cu–O [6] and
Hg–Ba–Ca–Cu–O [6, 7] compounds in subsequent several years. At present
Tc = 135 K under ambient pressure and Tc = 164 K under 31 GPa observed
in HgBa2Ca2Cu3O8[8] are the highest values so far obtained. The historical
development of superconducting critical temperature since 1911 is schemati-
cally shown in Fig. 1.1. The new class of copper oxide compounds mentioned
above are called “cuprates”.

The crystal structure of cuprates are layered-perovskite, consisting of
CuO2 planar sheets and interstitial insulating layers. Since the latter lay-
ers block the CuO2 interlayer interactions, those are called “blocking layers”.

In order to help the readers of this book with regard to the overall un-
derstanding of the crystal structures of cuprates at the beginning, we sketch
the features of the crystal structures of representative superconducting hole-
doped cuprates from (La, Ba)2CuO4 with Tc = 35 K to TlBa2Ca2Cu3O9

with Tc = 115 K (HgBa2Ca2Cu3O8 with Tc = 135 K) in Fig. 1.2, although
we describe the crystal structures of cuprates in detail in the following chap-
ter. The crystal structure of cuprates is classified into three types according
to the types of Cu–O networks, such as octahedron type (T -phase), square-
type (T ′-phase) and pyramid-type (T ∗-phase) [9]. They are also classified
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Fig. 1.1. The historical development of critical temperatures in the superconduct-
ing materials

by the number of CuO2 sheets. In the case of lanthanum compounds, hole-
carriers are produced by substituting Ba2+, Sr2+ or Ca2+ ions for La3+ ions
in La2CuO4, while in other cuprates hole-carriers are provided from excess
oxygen in blocking layers. These hole carriers mainly move along the CuO2

planes.
The parent compound La2CuO4 is experimentally an antiferromagnetic

(AF) insulator[10] with a Néel temperature TN = 240 K for three-dimensional
AF ordering. When an ordinary one-electron band theory is applied to the
electronic structure of La2CuO4, it gives a metallic state, because each Cu2+

ion in La2CuO4 has one d hole. Thus one-electron band calculations are not
applicable to La2CuO4. Besides this fact, there is a good deal of evidence that
even the normal state properties of the cuprates differ remarkably from those
of ordinary metals and superconductors and that conventional one-electron
band theory may not be applicable.
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(a) (La,Ba)2CuO4 (b) YBa2Cu3O7 (c) Bi2Sr2CaCuO8 (d) TlBa2Ca2Cu3O9

      (HgBa2Cu3O8)

Fig. 1.2. Sketch of crystal structures of representative hole-doped cuprates

In the context of failure of the application of one-electron band theory to
explain the experimental fact that La2CuO4 is an antiferromagnetic insulator,
the important role of strong electron correlation was pointed out first by
Phillip Anderson [11, 12]. On the other hand, Bednorz and Müller pointed out
the important role of the strong electron-lattice interactions in cuprates, from
the standpoint that a d-hole state in each Cu2+ ion in La2CuO4 is orbitally
doubly-degenerate so that it is subject to strong Jahn–Teller interaction [1,
13]. In fact, a CuO6 octahedron in La2CuO4 is elongated along the c-axis due
to the Jahn–Teller distortion and a d hole in each Cu2+ ion occupies a dx2−y2

orbital, where the z-axis is taken along the c-axis [14]. Since the discovery of
high temperature superconductivity, many theories, including conventional
and unconventional mechanisms, have been proposed.

In order to clarify the mechanism of high temperature superconductivity,
however, we first have to know the electronic structures of cuprates. In this
respect there seems to be general agreement that CuO2 layers play a main role
in superconductivity and normal-state transport. In this view, most theories
proposed so far are based on an orbital consisting of Cu dx2−y2 orbital and
O pσ orbital extended over a CuO2 layer. However, the hole-doped cuprates
consist of pyramid-type CuO5 or octahedron-type CuO6 clusters and have
shown different features of superconducting and normal-state properties ex-
perimentally. Thus it seems difficult to explain the different features of super-
conducting and normal-state properties of various cuprates by using a theory
based on CuO2 layers.

Furthermore, when hole-carriers are doped into cuprates by the substitu-
tion of divalent ions for lanthanum trivalent ions in lanthanum cuprate com-
pounds or by the introduction of excess or deficit of oxygen, CuO6 octahedron
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clusters or CuO5 pyramid clusters are deformed so as to minimize the to-
tal electrostatic energy of a whole system. We call this kind of deformation
“anti-Jahn–Teller effect”, because the CuO6 octahedrons or CuO5 pyramids
elongated by the Jahn–Teller interaction along the c-axis in undoped materi-
als are deformed so as to partly cancel the energy gain due to the Jahn–Teller
effect by doping the carriers. In the case of La2−xSrxCuO4 (abbreviated as
LSCO hereafter), for example, apical oxygen in an elongated CuO6 octahe-
dron along the c-axis in La2CuO4 tends to approach Cu ions by the “anti-
Jahn–Teller effect”. Thus, in LSCO, elongated and contracted octahedrons
are mixed. This does not mean that, in the underdoped regime of low hole-
concentration, only ten to fifteen percent of CuO6 octahedrons are deformed
by the anti-Jahn–Teller effect while the remaining octahedrons are elongated.
In order to reduce the kinetic energy of hole-carriers, the hole-carriers may
be considered to move in an averagely deformed crystal. Thus a hole-carrier
may have a character of a large polaron, as Müller first pointed out [1, 13].

In this context, both effects of the electron correlation and lattice distor-
tion due to the anti-Jahn–Teller effect play important roles in determining
the electronic structures of cuprates. However, most theories so far proposed
mainly consider the former effect. Noticing the importance of the effects of
the electron correlation and lattice distortion, Kamimura and Suwa [15] con-
sidered both effects on equal footing and developed a theory which is applica-
ble to real cuprates. The theory by Kamimura and Suwa is now called “the
Kamimura–Suwa model”, which is abbreviated as “the K–S model”.

The aim of this book is to clarify the important roles of both electron
correlation and lattice distortion in real cuprate materials with hole-doping,
based on the K–S model. Since theoretical models based on two-dimensional
CuO2 planes have been reviewed or developed by a number of review articles
or texts [16, 17, 18, 19, 20, 21, 22, 114], in this book we will concentrate first on
describing the electronic structures of cuprates calculated by first-principles
calculations based on the K–S model. Then we will focus on applying the
K–S model to calculating various physical properties of normal and super-
conducting states of cuprates and on investigating whether the K–S model
can clarify various anomalous behaviours observed in cuprates, by comparing
the calculated results with experimental results.

Although we do not intend to review the theoretical models so far pro-
posed, we will briefly review some of important models in Chap. 3 from our
personal views. From Chaps. 4 to 14 our descriptions are concentrated on the
whole activity of the K–S model for hole-doping cuprates. In this book the
topic of electron-doped cuprates is not included. In cuprates the CuO6 octa-
hedrons or CuO5 pyramids form a CuO2 plane and various kinds of stacking
of the CuO2 planes compose a different kind of cuprates. When hole-carriers
are doped, carriers move primarily on a CuO2 plane. In the hole-concentration
of the underdoped regime, only about ten to fifteen percent of CuO6 octahe-
drons or CuO5 pyramids are occupied by holes as an average. Thus a dopant
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hole hops between the highest occupied states in many-electron states called
“multiplets” of a CuO6 octahedron or a CuO5 pyramid. Thus one must cal-
culate multiplets as accurate as possible by first-principles methods. For this
purpose the method of first-principles variational calculations called multi-
configuration selfconsitent field method with configuration interaction (ab-
breviated as MCSCF-CI method) is developed for a CuO6 octahedron or a
CuO5 pyramid cluster with one dopant hole in Chap. 5. Before that, the
description of a cluster model is given in Chap. 4. It is clear that the strong
electron correlation creates localized spins around Cu sites while the anti-
Jahn–Teller effect leads to the coexistence of the Zhang–Rice spin-singlet
multiplet and the Hund’s coupling spin-triplet multiplet, where the ener-
gies of both multiplets are nearly the same in the underdoped regime. The
results of the lowest electronic states calculated by the MCSCF-CI method
for LSCO, YBa2Cu3O7−δ (abbreviated as YBCO7−δ) and Bi2Sr2CaCu2O8+δ

(abbreviated as Bi2212) are presented in Chaps. 5 to 7.
In the underdoped regime, the doping concentration of hole-carriers is

low. In this case, it is shown on the basis of the results of the first-principles
cluster calculations that, when the localized spins form antiferromagnetic
(AF) ordering in a spin-correlated region of finite size, a hole-carrier can hop
between the highest occupied levels in the Zhang–Rice spin-singlet multiplet
and the Hund’s coupling spin-triplet multiplet without destroying the AF
order. This is the essence of the Kamimura–Suwa model (K–S model). In
Chaps. 8 to 10 the essence of the K–S model, the validity of the K–S model
in real cuprates and an approximation method of solving the K–S Hamil-
tonian to represent the K–S model are described. In Chap. 11 the calculated
results of the energy bands, the Fermi surfaces and the density of states are
presented. In these results the many-body effects such as the exchange inter-
actions between the carrier spins and the localized spins, etc., are included in
the electronic structures of a hole-carrier system in the sense of the mean field
approximation, while the localized spins form the antiferromagnetic order in
the spin-correlated region. These results give an antiferromagnetic insulator
when the cuprates are undoped. From this result one can understand that
the energy band and Fermi surfaces calculated by the K–S model are com-
pletely different from those obtained from the ordinary Fermi-liquid picture.
In Chap. 11 the calculated Fermi surfaces of LSCO are compared with the
Fermi arcs observed by angle resolved photoemission experiments (ARPES).
One can see a very good quantitative agreement between theory and experi-
ment by Yoshida and his coworkers [23, 24, 25], indicating the strong support
of the K–S model from experiments.

By using the results of the many-body-effect-including energy bands,
Fermi surfaces and the density of states calculated by the mean-field ap-
proximation for the exchange interaction between the carrier’s and localized
spins, the normal-state properties such as the electrical resistivity, the Hall
effect, the electronic entropy, the magnetic properties, etc., are calculated.



6 1 Introduction

These calculated results are compared with experimental results of anom-
alous normal state properties in Chap. 12. In particular, it is clarified for
the first time from the quantitative standpoint that the effective mass of a
hole-carrier is about six times heavier than the free electron mass even in
the well-overdoped region. According to the K–S model, an origin for the
heavy mass is due to the interplay between the electron correlation and the
local lattice distortion. In this respect we can say that the electron-lattice
interactions in cuprates are strong and that a hole-carrier in the hole-doped
cuprates has a nature of a large polaron.

In order to investigate whether the electron-lattice interaction is really
strong or not, the electron-lattice interactions in cuprates are calculated for
LSCO in Chap. 13, and it is shown that they are really strong. By using
these calculated results, the momentum- and frequency-dependent electron–
phonon spectral functions are calculated for all the phonon modes in LSCO.
It is shown that the momentum-dependent spectral functions have a feature
of d-wave symmetry and that the occurrence of d-wave, even for phonon-
involved mechanisms, is due to the interplay between the electron–phonon
interaction and the underlying AF order in the metallic state in the K–S
model. Finally in Chap. 14 we first prove rigorously that a characteristic
electronic structure of the K–S model causes an anomalous effective electron-
electron interaction between holes with different spins and that this effective
electron-electron interaction leads to d-wave symmetry in the superconduct-
ing gap function. Indeed Kamimura, Matsuno, Suwa and Ushio showed for the
first time on the basis of the K–S model that the symmetry of superconduc-
tivity gap is d-wave even for the phonon-mechanism, when a superconducting
state coexists with the local AF order [26, 27, 28, 29, 30].

Then the hole-concentration dependence of the superconducting transi-
tion temperature Tc and of the isotope effect α are calculated by solving the
linearized Eliashberg equation. In the K–S model a metallic region in the
underdoped regime is finite due to a finite spin-correlation length. However,
this metallic region is more expanded in its area from the spin-correlated
region by the spin-fluctuation effect characteristic of the two-dimensional
Heisenberg spins systems in the AF localized spins. By determining the size
of the metallic region so as to reproduce Tc = 40 K at the optimum doping in
LSCO, one can see that the size of a metallic region at the optimum doping
is about 30 nm. From this result it is concluded that the superconducting
regions in the underdoped regime of hole-concentration are inhomogeneous.
In this way Chap. 14 is devoted to the description of a theory of high tem-
perature superconductivity based on the K–S model.
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2 Experimental Results
of High Temperature Superconducting Cuprates

2.1 Introduction

In this chapter we describe some important features of copper oxides observed
from experiments. Since the discovery of high temperature superconducting
cuprates, numerous experiments have been performed, and hence it is im-
possible to mention all of them in this book. Thus let us concentrate on
experimental results which are closely related to the topics of this book.

In the following, we first show typical crystalline structures of cuprate
families and point out characteristics of these structures. Then, in the follow-
ing sections, various physical quantities are briefly explained.

2.1.1 Basic Crystalline Structures of Cuprates

All the cuprate families are characterized by the fact that they are all metal
oxide (MO) materials with quasi-two dimensional layered structures in which
copper oxide layers are always contained. They all consist of alternate stack-
ing of copper oxide-layers (CuO2-layers) and the so-called blocking layers [31],
as shown in Fig. 2.1. There are three kinds of CuO2-layers; consisting of (1)
CuO6 octahedrons, (2) CuO5 pyramids, and (3) CuO4 squares as shown in
Fig. 2.1. Matrix systems are distinguished by metallic atoms which construct
blocking layers or by atoms sandwiched by CuO2-layers.

In every case, we have a two-dimensional sheet consisting of CuO2 as
a unit. Thus we distinguish oxygen atoms which surround a Cu atom in
two ways; in-plane O and apical O. In Fig. 2.2, we show crystal struc-
tures of La2−xSrxCuO4 (LSCO), Nd2−x−ySrxCeyCuO4 (NSCCO) [32], and
Nd2−xCexCuO4 (NCCO) [33] as having the most fundamental structures of
cuprates. They all have one CuO2-layres in each unit cell: CuO2-layers in
LSCO consist of CuO6 octahedrons, in NSCCO CuO2-layers consist of CuO5

pyramids, and CuO2-layers in NCCO consist of CuO4 square. These basic
structures are called T -phase, T ∗-phase, and T ′-phase, respectively [33]. It is
noted that the first two phases only allow hole-doping while materials with
T ′-phase allow electron-doping only. We also stress here that all cuprates that
have higher Tc than 30 K consist of at least one CuO6-based or CuO5-based
CuO2-layer per periodicity.
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Fig. 2.1. Example of a cuprate family. Here, crystal structures of
Bi2Sr2Can−1CunO4+2n+δ with n = 1, 2, 3 are shown. Oxygen atoms are not drawn
for simplicity
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Fig. 2.2. Schematic picture for basic elements of CuO2-layer in HTSC. (a) CuO6

octahedron, CuO5 pyramid and CuO4 square. (b) Schematic picture of CuO2-layers
consisting of above mentioned elements. (c) Basic crystal structures of HTSC
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As for “multi-layered” materials such as Bi2Sr2Can−1CunO4+2n+δ (ab-
breviated as Bi22(n−1)n) shown in Fig. 2.1, we observe that there are layers
of CuO5-pyramids face to face separated by metal oxygen (MO)-layers for
bi-layer materials like Bi2212. As for Bi2223, we have two layers of CuO5

pyramids and one CuO2 layer in a unit cell. There are various kinds of
cuprate families distinguished by constituent of metal atoms in the position
of blocking layers. Such cuprate families are denoted by those metal atoms,
namely LaSrCuO (=LSCO), YBaCuO (=YBCO), BiSrCaCuO (=BSCCO),
etc. Among the same families of cuprates, the maximum superconducting
transition temperature Tc increases with the number of CuO2-layers in the
unit cell up to n = 3. For example, in BSCCO system shown in Fig. 2.1,
single-layered Bi2201 has the maximum Tc about 40 K while three-layered
Bi2223 has maximum Tc up to 120 K. Some materials allow more than three
layers but Tc is found to lower by increasing the number of CuO2-layers.

As for the material dependence of the maximum Tc, it varies from 40 K for
LSCO to 80 K for HgCaCuO for single-layered systems. In addition, the c-axis
resistivity ρc experiments [34] show that the strength of two-dimensionality
is not directly related to the maximum Tc of each materials.

2.1.2 Ability of Changing Carrier Concentration

As we mentioned above, we distinguish the matrix materials by the ele-
ments in blocking layers and elements which are sandwiched between CuO2-
layers. Typical matrix systems are given as follows: La2CuO4, YBa2Cu3O6+x,
Bi2Sr2Can−1CunO4+2n, Tl2Ba2Can−1CunO4+2n (TBCCO), and HgCanCun

O1+2n+δ (with HgCaCuO, no stoichiometric structures are obtained), etc.
In any materials, hole carriers are mainly confined to CuO2-layers, and the
insulating states correspond to the states where all Cu atoms in CuO2-
layers are Cu2+ ions. A Cu2+ ion takes 4s03d9 configuration with the total
spin of S = 1/2, and this situation is reflected in the experimental find-
ings that all the stoichiometric matrix materials with no hole carrier have
three-dimensional antiferromagnetic (3DAF) order whose magnetic transi-
tion temperatures TN are around 240 K∼300 K [35, 36, 37].

All cuprate families allow non-stoichiometry. That is, we can change car-
rier hole concentration continuously by various methods without changing
crystalline structure. As for the La2CuO4 system, substituting La atoms with
Sr atoms from the stoichiometric La2CuO4, we have La2−xSrxCuO4.

2.2 Experimental Results of Cuprates

In this section we briefly discuss physical properties of superconducting
cuprates obtained from experiments. As we have noticed, a tremendous
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amount of experiments have been performed. Here we concentrate on de-
scribing just a few of them which are closely related to the topics of this
book.

2.2.1 The Phase Diagram of Cuprates

As we have just mentioned, we can vary the hole concentrations of super-
conducting cuprates by the substitution of metallic atoms, by adding excess
oxygen atoms or by reducing oxygen atoms. The range of the hole concen-
tration, which can be realized by the above-mentioned methods, varies with
matrix materials, but it is widely believed that all cuprates have the same
phase diagram schematically shown in Fig. 2.3.

SCSC

T
electron-doped system hole-doped system

Normal Metal Normal Metal

hole concentration x

xopt

underdoped overdoped

“pseudogap”  transition

3D AF

SC

low-energy pseudogap

high-energy pseudogap

Fig. 2.3. Phase diagram of cuprates. The dash lines in the electron-doped system
represent the electron-doping concentration dependence of the Néel temperature
TN when oxygen is not reduced

Let us first discuss the phase diagram of hole-doped materials. When the
hole concentration x is very small, there exists a static three-dimensional
(3D) antiferromagnetic (AF) Néel order. Upon doping, this AF-structure is
destroyed rapidly and vanishes at about x ∼ 0.05 for LSCO, and simulta-
neously superconductivity (SC) appears. By further doping, the supercon-
ducting transition temperature Tc rises but it reaches a maximum value at
the concentration xopt ∼ 0.15 for LSCO [35]. Then upon further doping, Tc

decreases and finally it reaches 0 K. For other materials, xopt takes a larger
value, but if we estimate the number of holes per CuO2-layer p by exper-
iments and regard Tc as a function of p, it is known that the optimum pc

where Tc takes the maximum value does not vary so much by materials [38].
As for the maximum value of Tc, it varies depending on matrix materials;
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from about 40 K of the first-discovered LSCO to 164 K of the HgCaCuO at
31 GPa. We call the hole-concentration region where Tc goes upward by the
increase of hole-concentration “underdoped region”, and the region where
Tc goes downward, “overdoped” region. The hole-concentration at which Tc

reaches a maximum value is called “optimum doping”.
The characteristic feature of x-dependence of Tc, Tc(x), is that it is bell-

shaped as schematically shown in Fig. 2.3. If the presence of the 3D AF-order
at low hole-concentration has a decisive effect on suppressing the occurrence
of superconductivity, the Tc(x) curve is expected to rise steeply immediately
as the AF-order vanishes. But this is not the case for hole-doped cuprates,
because Tc(x) increases gradually with increasing x. This means that the
AF-correlation has some role in superconducting properties.

In connection with the x-dependence of Tc, a phase diagram shown in
Fig. 2.3 has been suggested for hole-doped cuprates by various experimental
results such as NMR [39, 40, 41, 42], ARPES [43, 44, 45], tunneling [46, 47],
electronic transports and magnetism [48, 49], electronic specific heat [50, 51],
neutron scattering [52, 53], optical properties [54, 55], etc. According to this
phase diagram, there are two kinds of “transition-lines” in addition to Tc(x),
which are often called “low-energy pseudogap” and “high-energy pseudogap”.
We will discuss their origins in Chap. 12.

As for electron-doped materials such as Nd2−xCexCuO4, 3D AF-order
remains for larger doping concentration as shown schematically in Fig. 2.3. If
electron-doped materials are not reduced by oxygen, it is known that no su-
perconductivity occurs at all. By the small reduction of oxygen, 3D AF-order
disappear more quickly by electron doping and superconductivity appears
immediately after 3D AF-order vanishes. Then it takes the maximum Tc of
23 K at around electron concentration x ∼ 0.18 for Nd2−xCexCuO4−δ and
Tc becomes zero at around x ∼ 0.22.

2.2.2 The Symmetry of the Gap

The high resolution of angle resolved photo-emission spectroscopy (ARPES)
achieved in the last decade enables us to investigate the k-dependence of
the gap function of superconducting cuprates. Many experiments suggested
that the amplitude of the gap function vanishes along the lines kx = ±ky

[44, 56, 57]. Existence of “nodes” on the gap function has been strongly sug-
gested from various other experiments, too. For example, NMR relaxation
rate experiments showed that there are no Hebel–Slichter peaks on temper-
ature dependence of relaxation rates (T1T )−1 and (T1T )−1 decreases with
temperature T in powers of T [58, 59]. In the case of ordinary superconduc-
tors, it is known that (T1T )−1 has a peak just below Tc and then it decreases
with temperature T decreasing as exp(−∆/T ), reflecting the non-vanishing
s-wave gap symmetry (see, for example, [60]). Strong evidence for d-wave
symmetry is also obtained from experiments such as penetration depth mea-
surement [61, 62, 63], specific heat [64, 65, 66], Raman scattering [67, 68],
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Fig. 2.4. Schematic configuration of π-junction experiment. If HTSC has d-
symmetry, cancellation of phase factor causes zero current for zero flux modulo
quantum flux while maximum tunneling current is achieved for half quantum flux
modulo quantum flux

tunneling [69, 70], etc. These experimental results are naturally understood
if we adopt a picture of dx2−y2-symmetry for the symmetry of the super-
conducting gap. However, there is one more possibility for the anisotropy of
the gap function; the strongly anisotropic s-wave symmetry. We cannot deter-
mine either of the symmetry, dx2−y2-symmetry or the anisotropic s-symmetry
(extended s-symmetry), is true for HTSC from ARPES experiments alone.

Distinguishing the dx2−y2-symmetry from the anisotropic s-symmetry is
possible by experimental methods which can detect the phase of the gap
function directly. One such experimental method, which uses Josephson tun-
neling between cuprates and ordinary s-wave superconductors was proposed
by Sigrist and Rice [71]. Since it detects the sign change, i.e., the change of
phase by π, it is called “π-junction experiment”. Schematic configuration of
the π-junction experiment is shown in Fig. 2.4. Similar kinds of experiments
were actually performed for hole-doped YBCO by Wollam et al. [72] and
by Tsuei et al. [73]. Their results support d-wave symmetry and now the
same kind of experiments have been done for various kinds of hole-doped
cuprates [74, 75]. As for electron-doped materials, early experimental re-
sults suggested s-symmetry but recently π-junction experiments were also
performed for electron-doped materials [76] and from these experimental re-
sults, it seems that cuprates always have dx2−y2-symmetry, although several
arguments have been made for the appearance of other symmetries. (see [77]
for example)

So far we have described experimental results which are directly related to
the contents of the present book. Experimental results which are specifically
related to the K–S model will be discussed in respective chapters.



3 Brief Review of Models of High-Temperature
Superconducting Cuprates

3.1 Introduction

In the present chapter we give a brief review of theories of high temperature
superconductivity (HTSC). A considerable number of theories have been pro-
posed since the discovery of HTSC, but here we review just a few of them
which have a different nature. Roughly speaking, we can classify them into
two models: Theories that essentially rely on the Fermi liquid picture and
those which presume a much more exotic picture as the basic electronic struc-
ture of cuprates. Many theories adopt a view that strong electron-correlation
plays an important roll in determining the electronic structure of cuprates,
and since there is no standard method to treat strongly correlated electronic
systems, theories differ even in the understanding of the normal state of
HTSC. In the following we mainly discuss theories with strong electron-
correlation.

Before explaining theories of HTSC, let us first look at some basic features
of cuprates. As we mentioned, all cuprates have quasi-two dimensional struc-
tures with layers consisting of Cu and O, and there are three basic structures
for the CuO2-layer: one consisting of CuO6 octahedrons, one consisting of
CuO5 pyramids, and one consisting of CuO4 planes, as shown in Fig. 3.1. In
every case, we have a two-dimensional sheet consisting of CuO2 as a unit.
Thus we distinguish oxygen atoms which surround a Cu atom in two ways;
in-plane O and apical O.

(a) (b) (c)

Fig. 3.1. Schematic picture for basic elements of CuO2-layer in cuprates. (a) CuO4

plane, (b) CuO5 pyramid, and (c) CuO6 octahedron
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It is known that in some cuprate materials, such as the first-discovered La-
system, undoped materials show no superconductivity and they are even
insulators with static antiferromagnetic order. Upon doping, they become
metallic and show superconductivity. From a naive point of view, since they
have odd numbers of electron per unit cell, they should be half-filled metals.
This discrepancy between the “naive” theoretical consideration and experi-
mental results can be easily understood if we take account of the effect of the
strong Coulomb repulsion. As shown in Fig. 3.2(a), electrons at each Cu-site
cannot be itinerant due to the strong on-site Coulomb repulsion U and also
due to the energy difference ∆ of one-electron states between the Cu 3dx2−y2

state and O 2pσ state. This physical picture also enables us to explain why
such insulating materials show anti-ferromagnetism. Virtual processes shown
in Fig. 3.2(b) gives rise to an anti-ferromagnetic (AF) superexchange interac-
tion J between neighbouring localized electrons on Cu-sites via intervening
O2− ions.

Upon doping, the AF-transition temperature TN falls quickly and systems
become metallic. And by further doping, superconductivity appears and the
transition temperature Tc becomes higher and then reaches a maximum value.
By further doping, Tc decreases and drops to 0 K. These features are already
shown in Fig. 2.3 in Chap. 2.

Now let us introduce various theories proposed for HTSC.

tU

3d x -y2 2

Cu O

2p 3d x -y2 2

Cu
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Cu O
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t

(b)

Fig. 3.2. Schematic diagram of the electronic state of the insulating phase in copper
oxides. U denotes the on-site Coulomb repulsion (the Hubbard U), t the transfer
integral between Cu 3dx2−y2 and O 2pσ orbitals, and ∆ the difference of one-
electron energy between Cu 3dx2−y2 and O 2pσ orbitals. (a) Because of the large
value of U, electrons are localized on each Cu site. (b) Schematic picture showing
the origin of superexchange interaction J between two neighbouring Cu-site spins.
Successive virtual transfer of localized electrons shown in the perturbation processes
(4 to 1) apparently favors the antiferromagnetic configuration of the two electrons
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3.2 Brief Review of Theories for HTSC

3.2.1 Jahn–Teller Polarons and Bipolarons

A Cu2+ ion in a crystal placed in surroundings of octahedral symmetry has
a ground state which is orbitally doubly-degenerate. As a result, it is subject
to the Jahn–Teller distortion according to the Jahn–Teller theorem [78]. As
described in a previous chapter, the crystal structure of undoped La2CuO4 is
tetragonal at high temperatures. This lower symmetry of La2CuO4 has been
considered to be due to the Jahn–Teller distortion. Then, when hole-carriers
are introduced into La2CuO4 by substituting Sr2+ ions for La3+ ions, api-
cal oxygen in a CuO6 octahedron in La2CuO4 tends to approach Cu ions
by the “anti-Jahn–Teller effect” so that a CuO6 elongated octahedron in
La2CuO4 deforms in such a way that the Cu-apical O distance is contracted
in La2−xSrxCuO4 (abbreviated as LSCO hereafter), as we described in a pre-
vious section. We call the former and the latter “elongated” and “deformed”
octahedrons, respectively. When these hole-carriers interact with distorted
CuO6 octahedrons via electron-lattice interactions, they become polarons.
These polarons are called “Jahn–Teller (JT) polarons” [79, 80, 81, 82, 83, 84].
When the transfer integral of a hole-carrier t is much smaller than the Jahn–
Teller stabilization energy EJT, a severely confined self-trapped state around
an octahedron site is produced. Such a state is called a “small polaron”. On
the other hand, when t is much larger than EJT, a hole-carrier can distort
CuO6 octahedrons over many lattice distances. Such a hole-carrier is called
a “large polaron” [84, 85, 86].

When an electron–phonon coupling constant is large, Alexandrov and
Mott [87] argued a possible appearance of a bipolaronic charged Bose liquid.
They argued that two JT-polarons form a bounded pair in the real space
which they call a “bipolaron”, and the superconductivity of cuprates comes
from the Bose condensation of these bipolarons in cuprates. From the stand-
point that superconducting cuprates are heavily-doped ionic insulators with
local distortions, the formations of various types of bipolaron, such as small
bipolarons, large bipolarons, JT-bipolarons, etc. have been suggested as a
mechanism of high temperature superconductivity [20, 80, 81, 84, 86, 87, 88].
In fact, Bednorz and Müller [3] made a discovery of superconducting cuprates
by considering that materials with a strong JT effect may reveal superconduc-
tivity with high Tc. So far we have described a qualitative aspect of the bipo-
laron mechanism. From a quantitative perspective, there are various problems
to be clarified. In particular, recent Angle-Resolved-Photoemission (ARPES)
experiments by Yoshida and his coworkers [23, 24, 25] clearly showed the
existence of “Fermi arcs” for LSCO, which may be considered as the arc sec-
tion of a Fermi surface. These experimental results are not compatible with
bipolaron models in which hole-carriers form bosonic particles. Further, a
hopping process from deformed octahedrons to elongated octahedrons some-
times makes polarons localized, or makes the mass of a polaron heavier. As a
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result a superconducting transition temperature Tc may not be high enough
to produce high temperature superconductors. In this book, we will investi-
gate these problems quantitatively.

3.2.2 The Resonating Valence Bond (RVB) State
and Quasi-particle Excitations

Assuming that the hole-carriers itinerate in the CuO2 planes, the RVB state
[89] is represented by the single-band Hubbard Hamiltonian,

H =
∑
nmσ

t{c†nσcmσ + h.c.} +
∑

Unn↑nn↓ , (3.1)

where cnσ (c(†)nσ) denotes the annihilation (creation) operator of an electron
with spin σ on the Cu 3dx2−y2 (hereafter dx2−y2) at the nth site of a CuO2-
layer, nnσ the number operator with spin σ at the nth site, while t denotes
the transfer between neighbouring Cu dx2−y2 sites, U the on-site Coulomb
repulsion, i.e., the Hubbard interaction between electrons on the same copper
site with different spins. As seen from the model Hamiltonian it only consid-
ers the highest occupied level of CuO2-layer, the Cu dx2−y2 level. If we start
from the half-filled state, i.e., the system with one hole per Cu atom, because
of the strong on-site Hubbard interaction U , the system is considered to be
an antiferromagnetic insulating system with the superexchange interaction
J = t2/U . Anderson considered that the ground state of the system is well
described by the so-called resonating valence bond (RVB) state, which was
first introduced by Anderson himself for other antiferromagnetic Heisenberg
spin systems [90]. The RVB state is expressed by the superposition of many
configurations of the local singlet pairs (spin singlet states consist of two
neighbouring Cu localized dx2−y2 spins) as illustrated in Fig. 3.3. Reflecting
the low dimensionality of CuO2-layers, localized spins should have a strong
quantum fluctuation effect and Anderson proposed the RVB state as a can-
didate for the ground state of the single Hubbard model of two-dimensional
square lattice system at the half-filling. We readily see that the RVB state
has no long-range antiferromagnetic order from Fig. 3.3.

+

+etc., singlet pair

Fig. 3.3. Schematic picture for the RVB ground state. Localized Cu spins form a
local singlet pair and the RVB ground state is expressed as the superposition of all
configurations of states like those illustrated in the figure
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Using the second quantization, the RVB state is written as follows.

ΨRVB ∝ PN

(∑
n,m

δ±ui,n−mc†n↑c
†
m↓

)N

Ψ0 , (3.2)

where c†nσ is the creation operator of an electron with spin σ at the nth site
and PN is the projection operator to the fixed total number N state with no
doubly occupied states on each Cu atom sites. The uis with i = 1, 2 denote
the unit vectors of the square lattice system, which connect neighbouring Cu
sites, and the summation for n and m is taken all over the lattice sites, 2N
being the number of Cu atoms in the system. The summation in (3.2) is taken
over all neighbouring Cu sites n and m. On the other hand, it is known that
the BCS ground state with N ′-Cooper pairs can be written as [60]

ΨBCS ∝ PN ′

(∑
n,m

g(n − m

)
c†n↑c

†
m↓)

N ′
Ψ0 , (3.3)

where g(n) is a pair function of the BCS state and PN ′ is the projection op-
erator to the fixed total number N ′ state. One readily sees a strong analogy
in the form of two wave functions ΨRVB and ΨBCS . From this observation,
Anderson argued that the ground state of the hole-doped CuO2-layer be-
comes superconducting with the ground state wave function ΨRVB, which is
illustrated in Fig. 3.4.

+

+etc.

holons

Fig. 3.4. Schematic picture for the RVB ground state with a finite hole concentra-
tion. In this case, local singlet pairs are formed by all Cu sites except for vacant
sites as shown in the figure. In the figure we have two holons

As for the one-particle excitation, Anderson predicted a much more exotic
picture. If we introduce a hole in the half-filled RVB state, inevitably there
appears an unpaired electron spin and a vacant state with charge +e as seen
from Fig. 3.5. From the energetic point of view there is no need for the
unpaired spin and the vacant site to be bounded each other. Then Anderson
concluded that the unpaired spin and vacant site can itinerate independently
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+etc.

spinon

holon

Fig. 3.5. Schematic picture for spinon, holon excitations in the RVB model

with the aid of transfer integral t. As a result we have two kinds of quasi-
particle excitations in the RVB state. The neutral spin 1/2 excitation is called
“spinon” excitation and the +e charged spin 0 excitation is called “holon”
excitation. The ground state of the RVB state for finite hole concentration x
(3.3) is then regarded as the Bose condensed state of holon excitations.

The effective Hamiltonian for low-energy phenomena is derived from the
single-band Hubbard Hamiltonian (3.1) by an appropriate canonical trans-
formation and it is written as follows.

HRVB =
∑
nmσ

t{Pnc
†
nσcmσPm + h.c.} +

∑
nm

Jsn · sm , (3.4)

where Pn = 1− nn↑nn↓ is the projection operator at the nth site to exclude
the doubly occupied state and sn denotes the spin operator at the nth Cu
site if there is just one electron on this site, otherwise the zero operator. The
RVB Hamiltonian, which has far less degrees of freedom compared with the
single Hubbard Hamiltonian, is still practically unsolvable. The reduction is
expressed by Pn, which has abstract, mathematical form, so that the treat-
ment of this term is a main difficulty in solving the problem. On the other
hand, the spinon–holon picture can be understood intuitively. That is, we
see some features of the model without solving the problem rigorously. As
we see from Fig. 3.6, a holon motion inevitably destroys local singlet cou-
pling of the RVB state. Then it is expected that the effective transfers for

unpaired spinonholon
holon transfer

Fig. 3.6. Schematic diagram explaining the frustration effect of a holon motion. If
a holon transfers to the neighbouring Cu site, it inevitably destroys the local singlet
pair formed in that site, and as a result two unpaired spins appear
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holon-excitations are much reduced from the bare t because of this frustra-
tion effect. Since the superconducting transition in the RVB state can be
treated as the Bose condensation of holons, the reduction of the transfer of
a holon, i.e., enhancement of the effective mass of a holon, suppresses the
superconducting transition temperature Tc.

3.2.3 The d–p Model

From optical [91, 92] and X-ray absorption (XAS) [93, 94] experiments, it
is revealed that O 2p orbitals play significant roles in the electronic state of
hole-doped systems. Taking this fact into account, Emery [95] proposed a
model Hamiltonian which includes O 2pσ orbitals in a CuO2-layer. Because
this model considers not only the Cu dx2−y2 orbitals but also in-plane O 2pσ

orbitals, it is called the d–p model. A schematic picture of the d–p model
is given in Fig. 3.7. The figure is written from the hole picture so that the
“one electron” level of O 2pσ orbital is higher than that of Cu dx2−y2 and
all the O 2pσ levels are empty at the half filling state. When we introduce
one hole in this system, it is accommodated in an O 2pσ orbital or an upper
Hubbard level of Cu dx2−y2 as shown in Fig. 3.7(a). Then a hole becomes
itinerant by the mixing of these two levels, which form a band with typical
energy level between the O 2pσ level and the upper Hubbard Cu dx2−y2 level.
Emery and others who support the d–p model assigned this band to the
so-called “mid-gap state” found in optical and X-ray absorption experiments
of cuprates [91, 93]. The important point is that this “mid-gap state” energy

t

U3d x -y2 2Cu

O 2p

O

Cu

(a) (b)

t

U.H.

L.H.

Cu 3dx -y2 2

O

2p

tpp

tpd

Fig. 3.7. Schematic diagram describing the d–p model in the hole picture. (a)
Schematic diagram for the Hubbard interaction U , difference of one-electron level
∆ between O 2pσ and Cu dx2−y2 , and the transfer integral tdp between O 2pσ

and Cu dx2−y2 in the d–p model. Solid arrows represent localized spins while a
dashed arrow represents a doped hole. UH denotes the upper Hubbard level and
LH the lower Hubbard level of Cu dx2−y2 . Here, the hole picture is taken so that
empty orbitals of O 2pσ levels correspond to the fully occupied state in the ordinary
picture. (b) Schematic picture of O 2pσ orbitals and Cu dx2−y2 orbital, and the
transfer tdp between O 2pσ and Cu dx2−y2 , the transfer tpp between O 2pσs are
shown
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is much smaller than the estimated Hubbard U of Cu dx2−y2 , U ∼ 10eV,
and it is close to the estimated energy difference of Cu dx2−y2 and O 2pσ, a
few eV. This suggests that doped holes have strong O 2pσ character.

The d–p model itself does not concern the origin of the superconductivity
of cuprates. It explains the basic electronic structure of copper oxides. As
for the mechanisms of HTSC, there are two different approaches: One from
the standpoint of strongly correlated interaction and the other from, essen-
tially, the viewpoint of weakly correlated Fermi liquid. The former approaches
derive the effective Hamiltonians from the d–p model Hamiltonian, provided
that the ground state of the half-filled system of the d–p model is an insulat-
ing Heisenberg antiferromagnet. The latter approaches are essentially based
on the conventional Fermi liquid picture. They are based on the perturbation
expansion, i.e., treating the Hubbard term as the perturbed Hamiltonian.
These approaches are described in the subsequent subsections.

3.2.4 The t–J Model

As we have seen in the preceding subsection, if we introduce a hole in the
ground state of the d–p model at the half filling, we have a state which is
written as the superposition of O 2pσ and upper Hubbard Cu dx2−y2 . Zhang
and Rice [96] argued that this state is written as the superposition of local
singlet states; namely, a dopant hole around a Cu site form a singlet state
with a localized Cu hole spin, as illustrated in Fig. 3.8, and this singlet state
(Zhang–Rice singlet) itinerates in the CuO2-plane. They also showed that
the effective Hamiltonian of the model can be derived from the d–p model by
an appropriate approximation. The resultant effective Hamiltonian has the
following form:

Fig. 3.8. Schematic picture of Zhang–Rice singlet. A dopant hole in O 2pσ orbitals
surrounding a Cu site forms a spin singlet with the localized spin on the Cu site
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Ht−J = Ht +HJ

=
∑
n m

t{c†n σcn σ + h.c.} +
∑
n m

JSn · Sm (3.5)

where Sn x + iSn y = c†n ↑cn ↓, Sn z = {nn ↑ − nn ↓}/2.
Since this Hamiltonian consists of the transfer part Ht and antiferromag-

netic interaction part HJ , it is called the t–J Hamiltonian, and a system
described by Ht−J is called “t–J” model. The itinerancy of the Zhang–Rice
singlet state as a quasi-particle state can be described by the “t–J Hamil-
tonian”, Ht−J in (3.5).

Since the t–J Hamiltonian is derived from the effective Hubbard Hamil-
tonian (3.5), the exotic picture of quasi-particle excitation of the RVB state
is inherited to the t–J model. Then there are two kinds of condensation
transition. Namely, BCS like spinon pairing condensation and the Bose con-
densation of the holon system. From the mean-field calculation for the t–J
model, the spinon pairing transition temperature TS is found to decrease
with increasing hole concentration. On the other hand, the Bose condensa-
tion temperature TB increases as the hole concentration increases [97]. The
superconducting transition is considered to be realized in the temperature
region where both Fermion (spinon) condensation and Boson (holon) con-
densation occur. As a result we obtain the “bell-shaped” character for the
Tc(x)-curve from the t–J model.

Moreover, the t–J model can explain the pseudogap behaviour of observed
experiments by assigning a pseudogap transition to the Fermion condensation
line. The phase diagram shown in Fig. 3.9 looks consistent with experimental
results. These results are mainly obtained by the mean field approximation
to the spinon and holon excitations with the slave-boson or the slave-fermion

hole concentration x

T

SC

Normal Metal

Bose Condensation Line of Holons

Spinon-pair Condensation Line

“Spin-Gap” State

Fig. 3.9. Phase diagram of the t–J model obtained from the mean field approxi-
mation [97]
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method. However, there are critical opinions for using the simple mean-field
approximation to the exotic spinon–holon picture. In the mean-field approx-
imation for the slave-boson or slave-fermion method, for example, the sum
of the average numbers of spinons and holons must be one. From this, the
average number of spinons becomes large in the underdoped region of holons
which contribute to superconductivity. According to the RVB theory and
thus the t–J model, the spinons contribute to the formation of large Fermi
surfaces. Thus the appearance of a large Fermi surface is expected for the
underdoped region. However, recent ARPES experiments by Yoshida et al.
[23, 24, 25] clearly shows that this is not the case. In this context, the jus-
tification of the t–J model by the mean-field approximation is questionable
unless one can obtain a direct experimental evidence for the existence of
spinon and holon excitation.

3.2.5 Spin Fluctuation Models

Starting from the single-band Hubbard model [98, 99, 100], the d–p model
[101], or an electron dispersion obtained from the “LDA-band calculations
plus Hubbard U” (the LDA+U band calculations) by treating in a semi-
empirical formalism [102], another model has been introduced as regards the
mechanism of high-Tc.

Near the half-filled level, strong Hubbard U repulsion between electrons
causes the enhanced q, ω-dependent spin susceptibility χ(q, ω). It takes a
large value around Q = (π/a, π/a) where a denotes the lattice constant for
the CuO2 plane. This fact reflects the nearly antiferromagnetic nature of the
system. This large spin fluctuation causes an “overall” attractive interaction
between quasi-particles with different spins, thus leading to the supercon-
ducting transition. Theories depending on such mechanisms are called “spin
fluctuation” models. Here we use the word “overall” in the above sentence
because the interaction caused by the antiferromagnetic spin fluctuation has
both repulsive and attractive components and it appears that in the k-space
it is always positive, i.e., repulsive. From the perturbation theory, the dressed
electron–electron interaction Veff is written in terms of U and χ(q, ω), and its
q-dependence is similar to that of χ(q, ω), i.e., it takes a small value around
q = 0, while it takes a very large value at q = Q = (π/a, π/a). Together
with the shape of the Fermi surface which has a large partial density of states
around (π/a, 0) and (0, π/a), we obtain dx2−y2-wave superconductivity which
is consistent to the experimental results.

There are various models starting from the above mentioned picture. In
other words, these theories identify the origin of Cooper pair interaction in
HTSC with a large anti-ferromagnetic spin fluctuation of the system, but
they differ in their detail; they differ in the approximation methods to solve
a similar type of model Hamiltonians. These theories can explain normal
state properties of cuprates such as magnetic properties or optical responses.
In most of the theories of this category, they rely on strong antiferromagnetic
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fluctuation effect so that Tc inevitably becomes larger as the hole concen-
tration decreases. This is apparently against the experimental results. One
idea to avoid this discrepancy between theories and experimental results is to
include terms in the perturbation expansion which we usually do not count
in a simple approximation, i.e., in the random phase approximation (RPA).
[100, 101]. In any case, some self-consistent conditions for the Geen’s function,
the proper self-energy part and the irreducible vertex part are derived, and to
solve equations for these many-body correlation functions with self-consistent
conditions is a main task in this field.

3.2.6 The Kamimura–Suwa Model
and Related Two-Component Mechanisms

3.2.6.1 On the Kamimura–Suwa (K–S) Model

Theories so far reviewed start by assuming that the hole-carriers move in
a CuO2 plane, followed by a refinement which makes use of disposal para-
meters to fit experimental data. This procedure makes it difficult to assess
the predictive nature of the model, for example, how cuprates containing a
CuO6 octahedron or a CuO5 pyramid may give rise to different features of
high Tc superconductivity. In order to address this problem, Kamimura and
his coworkers have carried out a series of theoretical studies, beginning with
the calculations of the electronic structure of LSCO from first principles by
Kamimura and Eto [103, 104]. In these first principles calculations, Kamimura
and Eto took account of the local distortion of a CuO6 octahedron when Sr2+

ions are substituted for La3+ ions in LSCO. That is, when La3+ ions are re-
placed by Sr2+ ions, apical oxygen in CuO6 octahedrons tend to approach Cu
ions so as to gain the attractive electrostatic energy. Such a contraction effect
of the apical O–Cu distance in a CuO6 octahedron by doping was predicted
theoretically by Shima and his coworkers in 1988 [106] and supported by var-
ious experimental groups by the neutron time of flight experiments in 1990s
[107, 108, 109]. As a result the octahedrons which were elongated along the
c-axis by the Jahn–Teller effect in the undoped La2CuO4 shrink by doping
the divalent ions for the trivalent ions. We call this local distortion of CuO6

octahedrons “anti-Jahn–Teller effect”. A similar anti-Jahn–Teller effect also
occurs in other cuprates in which the hole-doping is caused by the excess
of oxygen in blocking layers. Thus CuO6 octahedrons or CuO5 pyramids in
cuprates are deformed in a form of contraction or elongation along the c-axis.

Kamimura and his coworkers have tried to solve the many-electron lowest
state called “multiplet” of a CuO6 or a CuO5 cluster in cuprates as accurately
as possible by Multi-Configuration Self-Consistent Field Method with Config-
uration Interaction (MCSCF-CI), by taking account of the anti-Jahn–Teller
effect. It has been shown that the anti-JT effect plays an important role in
introducing two kinds of multiplets (or orbitals) which are very close in their
energies. The results of first-principles cluster calculations mentioned above
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have led to the Kamimura–Suwa model. Based on the results of MCSCF-
CI calculations, Kamimura and Suwa showed that the hole-carriers in the
underdoped regime of cuprates form a metallic state, by taking the Zhang–
Rice singlet and the Hund’s coupling triplet alternately in the presence of
the local AF order constructed by the localized spins in a CuO2 plane. The
metallic state in cuprates constructed in the above-mentioned way is nowa-
days called the “Kamimura–Suwa model” which is abbreviated as the K–S
model. We may say that the K–S model was the onset of “two-component
theories”, whose various modifications are nowadays adopted by a number of
theoretical models.

Theoretically the result of the LDA + U band calculation by Anisimov,
Ezhov and Rice [110] has supported the K–S model, while experimental evi-
dence for the K–S model has been reported by Chen and coworkers [93] and by
Pellegrin and coworkers [94] independently by performing the experiments of
polarized X-ray absorption spectra for LSCO, and also by Merz and cowork-
ers [111] by the experiment of site-specific X-ray absorption spectroscopy for
Y1−xCaxBa2Cu3O7−y.

In order to solve the K–S model quantitatively, Kamimura and Ushio
[112, 113] proposed the mean-field treatment for the exchange interaction
between the spins of hole-carriers and of the localized holes in the same
CuO6 octahedron (or CuO5 pyramid), which is a very important interaction
in the K–S model.

By applying the mean-field treatment to the K–S effective Hamiltonian,
the above exchange interaction can be expressed as a form of an effective
magnetic field acting on the carrier spins. In this way the carrier system and
the localized spin systems can be separated. As a result, the electronic struc-
ture of a hole-carrier system on the K–S model can be expressed in a form of
a single-electron-type band structure in the presence of AF order in the local-
ized hole-spin system, where the single-electron-type band structure includes
many-body effects such as the exchange interaction between the spins of a
hole-carrier and of a localized hole in the mean-field sense. Based on the mean-
field approximation for the localized spin system by Kamimura and Ushio,
the many-body-effect including energy band, Fermi surfaces and the density
of states can be calculated. Further thermal, transport and optical properties
of the underdoped cuprates can be calculated by the above-mentioned energy
bands and wavefunctions, and the calculated results are compared with ex-
perimental results. Summarizing the description of the K–S model, we can say
that the K–S model in the underdoped regime of cuprates has the following
two important features; (1) two-component scenario in a metallic state such
as the coexistence of Zhang–Rice singlet and Hund’s coupling triplet in the
presence of local AF order and (2) inhomogeneous superconducting state due
to inhomogeneous charge distribution in a metallic state. With respect to the
first feature, one may also say the coexistence of two kinds of orbital, the b1g

bonding orbital consisting of mainly four oxygen pσ orbitals in a CuO2 plane
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and the a1g antibonding orbital consisting of mainly Cu dz2 orbital from the
standpoint of orbital characters. Similar two-component mechanisms have
been developed by several theoretical groups by considering both dx2−y2 and
dz2 orbitals [114, 115, 116, 117, 118]. In particular, Bussmann-Holder and her
coworkers [114, 116] have developed a two-component theory similar to the
K–S model by taking account of the orthorhombic distortions.

3.2.6.2 Is a Superconducting State
in Cuprates Homogeneous or Inhomogeneous?

As regards the second feature, a controversial question of whether the su-
perconducting state in cuprates is inhomogeneous or not has been recently
raised. Concerning this question, a number of international conferences on in-
homogeneity and stripes have been held in various places and a considerable
number of papers have been published. With regard to the K–S model, as we
shall describe later in this book, a metallic state is certainly inhomogeneous
in the sense that a metallic state is bounded by spin-flustration regions on
the boundary of an AF spin-correlated region. A superconducting as well as a
metallic state are extended by the spin-fluctuation effect in a two-dimensional
AF Heisenberg spin system like percolation. Thus this superconducting state
is surrounded by insulating regions. In this sense the superconducting state
on the K–S model may be said to behave like a dynamical stripe. Since Tran-
quada and his coworkers [119] reported in 1995 on the dynamical modulation
of spin and charge in LSCO, the static and/or dynamic charge and/or spin
stripes have been the subject of many theoretical and experimental studies.
Since the aim of this chapter is not to review these works, here it suffices to
mention references related to work on stripes and inhomogeneity. Here we will
mention only the name of conference proceedings which one of the present
authors attended, rather than mentioning a huge number of individual pa-
pers. Those are the first and third international conferences on stripes and
high Tc superconductivity, which were held in Rome in 1996 [120] and 2000
[121], respectively. Further we would also like to mention papers published
in Sect. 3.8 entitled “Stripe Phase and Charge Ordering” in the proceedings
of the international conference on Materials and Mechanisms of Supercon-
ductivity High Temperature Superconductors VI, Part III, which was held in
Houston in 2000 [122].



4 Cluster Models
for Hole-Doped CuO6 Octahedron
and CuO5 Pyramid

4.1 Ligand Field Theory for the Electronic Structures
of a Single Cu2+ Ion in a CuO6 Octahedron

The crystal structure of La2CuO4 is tetragonal at high temperatures and is
of a layer-type. In this crystal structure a CuO2 unit forms a square planar
network in each layer (on x–y plane) perpendicular to the c-axis, as seen
in Fig. 4.1, where each Cu2+ ion is surrounded by six O2− ions nearly oc-
tahedrally. The many-electron ground state called “multiplet” for a Cu2+

ion (3d9), placed in surroundings that are of octahedral symmetry, is 2Eg,
orbitally doubly-degenerate with the basis functions dz2 and dx2−y2 . Thus
it is subject to the Jahn–Teller distortion. As a result this CuO6 octahe-
dron is stretched along the c-axis, producing two long (2.41 Å) and four short
(1.89 Å) Cu–O lengths [123] by Jahn–Teller effect [78].

In a crystalline field with tetragonal symmetry, 2Eg state is further split
into 2A1g and 2B1g, where A1g and B1g are the irreducible representation
of the D4h group. In La2CuO4, a Cu2+ ion in a CuO6 octahedron is mainly
subject to a crystalline field with tetragonal symmetry, so that the five-fold
degenerate d orbitals of the Cu2+ ion with 3d9 electron configuration are split
into b1g, a1g, b2g and eg orbitals as shown in Fig. 4.2, where the behaviour of
the orbital splitting by the cubic field is also shown. Thus a hole occupies an

dz2

dx2−y2

Fig. 4.1. A CuO2 plane which forms a planar network in each layer. The Cu dx2−y2

and dz2 orbitals are drawn together
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Fig. 4.2. The energy splitting of Cu2+ orbitals in spherical, cubic and tetragonal
symmetry

antibonding b1g orbital, denoted by b∗
1g, which is mainly constructed of the

Cu dx2−y2 orbital with the hybridization of surrounding four O pσ orbitals
in a CuO2 plane.

4.2 Electronic Structures
of a Hole-Doped CuO6 Octahedron

When dopant holes are introduced in La2CuO4, there are two possibilities for
orbitals to accommodate a dopant hole in CuO6. One case is that a dopant
hole occupies an antibonding a∗1g orbital consisting of the Cu dz2 orbital
and the surrounding six oxygen pσ orbitals, and its spin becomes parallel
by Hund’s coupling with localized spin of S = 1/2 around a Cu site, which
occupies the b∗

1g orbital. This spin–triplet multiplet is called “Hund’s coupling
triplet”, denoted by 3B1g, as shown in Fig. 4.3(a). The other case is that a
dopant hole occupies a bonding b1g orbital consisting of four in-plane oxygen
pσ orbitals with a small Cu dx2−y2 component, and its spin becomes anti-
parallel to the localized spin in the b∗

1g orbital as shown in Fig. 4.3(b). This
multiplet is denoted by 1A1g. Since the 1A1g state corresponds to the spin–
singlet state proposed by Zhang and Rice, which is also a key constituent state
in the t–j model [96], we call the 1A1g multiplet the “Zhang–Rice singlet”.

4.3 Electronic Structure
of a Hole-Doped CuO5 Pyramid

Like LSCO, when holes are doped in superconducting YBCO7 with Tc = 90 K
or Bi2212 with δ = 0.25 with Tc = 80 K, there are two possibilities for orbitals
to accommodate a dopant hole in a CuO5 pyramid. One case is that a dopant
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Fig. 4.3. (a) Schematic view of 3B1g multiplet called the Hund’s coupling triplet in
a CuO6 octahedron. A solid arrow represents a localized spin while an open arrow
the spin of a hole carrier which occupies an antibonding a∗

1g orbital shown in the
figure. (b) Schematic view of 1A1g multiplet called the Zhang–Rice singlet, in which
a hole occupies a bonding b1g orbital shown in this figure
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Fig. 4.4. (a) Schematic view of 3B1 multiplet, called the Hund’s coupling triplet,
in a CuO5 pyramid. A solid arrow represents a localized spin while an open arrow
the spin of a hole carrier which occupies an antibonding a∗

1 orbital shown in the
figure. (b) Schematic view of 1A1 multiplet called the Zhang–Rice singlet, in which
a hole occupies a bonding b1 orbital shown in this figure

hole occupies an antibonding a∗1 orbital consisting of a Cu dz2 orbital and five
surrounding oxygen pσ orbitals, and its spin becomes parallel to a localized
spin of S = 1/2 around a Cu site, by Hund’s coupling. This multiplet is
the “Hund’s coupling triplet” denoted by 3B1, as shown in Fig. 4.4(a). The
other case is that a dopant hole occupies a bonding b1 orbital consisting of
four in-plane oxygen pσ orbitals with a small Cu dx2−y2 component, and its
spin becomes anti-parallel to the localized spin as shown in Fig. 4.4(b). This
multiplet is the “Zhang–Rice singlet” denoted by 1A1.

4.4 Anti-Jahn–Teller Effect

As we have already described, a regular octahedron in La2CuO4 is elongated
along the c-axis by the Jahn–Teller-effect. In order to investigate whether the
Jahn–Teller interaction still plays a role in the local distortion of the CuO6

octahedron in the case of hole-doped cuprates, Shima, Shiraishi, Nakayama,
Oshiyama and Kamimura calculated in 1987 the optimized Cu–apical O dis-
tance in the CuO6 octahedrons by minimizing the total energy of doped
La2−xSrxCuO4 as a function of hole-concentration x up to x = 1.0. The
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calculation was performed by the first-principles norm-conserving pseudopo-
tential method within the local density functional formalism (LDF) [106]. The
doping effect of Sr is treated by adopting the virtual crystal approximation
for disordered La2−xSrxCuO4 crystal, in which the virtual atoms consisting
of La and Sr are placed with the mixing ratio of (2 − x) to x for La to Sr
atom on all the La sites. This approximation is expected to be reasonably
accurate for such alloy systems of La and Sr ions whose ionic radii are nearly
the same. As the lattice constants and the Cu–O(x, y) distance in the CuO2

plane changes little from those in pure La2CuO4 even in the case of Sr doped
La2−xSrxCuO4, all the lattice parameters except the Cu–apical O distance
along the z axis are fixed to those values in pure La2CuO4; d(Cu–O(x, y)) =
1.89 Å, d(Cu–La) = 4.78 Å, and the distance of c-axis = 13.25 Å.

In Fig. 4.5 the total energies thus minimized are plotted as a function
of Cu–O(z) distance for X = 0.0, 0.1, 0.3 and 0.5, which correspond to
x = 0.0, 0.2, 0.6 and 1.0 respectively, in the ordinary formula La2−xSrxCuO4.
Minimum positions are indicated by arrow for each X. In Fig. 4.6 the op-
timized Cu–O(z) distances as a function of X are presented. As shown in
this figure, the optimized Cu–O(z) distance is 2.41 Å at X = 0 and 2.34 Å at
X = 0.1. When the hole-concentration x increases beyond X = 0.3, the Cu–
O(z) distance begins to decrease rapidly, and when X is 0.5, at which all
Cu ions in LaSrCuO4 becomes Cu3+, the Cu–apical O(z) distance becomes
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Fig. 4.5. The calculated total energy as a function of the Cu–apical O distance
for each value of Sr content x in La2−xSrxCuO4 (after Shima et al. [106]), where it
should be noted that X in the figure corresponds to x/2
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Fig. 4.6. The optimized Cu–apical O distance as a function of Sr content x in
La2−xSrxCuO4 (after Shima et al. [106]), where it should be noted that X in the
figure corresponds to x/2

1.89 Å which is the same value as the Cu–O(x, y) distance. The calculated
result of 2.41 Å for X = 0.0 coincides well with the observed value of the
Cu–apical O distance in the undoped La2CuO4. Thus the calculated results
in Figs. 4.5 and 4.6 clearly indicate that the Cu–apical O distance in the
undoped La2CuO4 is elongated up to 2.41 Å by the Jahn–Teller interaction.
Then, when the hole-concentration x increases, all the Jahn–Teller elongated
CuO6 octahedrons shrink by doping divalent Sr ions for trivalent La ions.
The calculated result by Shima et al. showed clearly that the contraction of
the Cu–apical O distance from the Jahn–Teller elongated value of 2.41 Å oc-
curs so as to gain the attractive electrostatic energy in the presence of the
virtual atoms with character of (2 − x) La and x Sr. As a result the total
energy gained by the Jahn–Teller effect was reduced by the doping effect in
a virtual crystal of La2−xSrxCuO4. From this fact we call the contraction
effect of the Cu–apical O distance due to doping the “anti-Jahn–Teller ef-
fect”. In the following chapter we will show by first-principles calculations
that the lowest energies of the Hund’s coupling triplet and the Zhang–Rice
singlet become nearly the same through the anti-Jahn–Teller effect. Thus the
two-component system such as the coexistence of the Hund’s coupling triplet
and the Zhang–Rice singlet becomes essentially important in forming a su-
perconducting state as well as a metallic state in superconducting cuprates.

4.5 Cluster Models and the Local Distortion
of a Cluster by Doping Carriers

In the following chapters we will calculate the lowest energies of the Hund’s
coupling triplet and the Zhang–Rice singlet by taking account of the anti-
Jahn–Teller effect. For this purpose we first have to develop a new method of
first-principles calculation for a cluster system. Simultaneously, it is necessary
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to set up a cluster model for first-principles calculations. As such a model for
cluster calculations, we adopt a CuO6 cluster embedded in the LSCO com-
pound, and a CuO5 cluster embedded in YBCO7 or Bi2212 compounds. We
label the oxygen in a CuO2 plane as O(1), and the apical oxygens as O(2). We
use the lattice constants reported in [124] for LSCO and in [125] for YBCO7.
The number of electrons is determined so that a formal charge of copper
is +2e and that of oxygen is −2e for an undoped case. Then we consider
hole-doped systems for LSCO and YBCO by subtracting one electron.

To include the effect of the Madelung potential from the exterior ions
outside a cluster under consideration, the point charges are placed at exterior
ion sites in a way of +2e for Cu and Ba, −2e for O, and +3e for La, Y and Bi.
The number of point charges considered in the first principle calculations is
168 for CuO6 and 300 for CuO5. These point charges determine the Madelung
potential at Cu, O(1) and O(2) sites within a cluster. Kondo [126] also pointed
out this important role of the Madelung potential,

In superconducting cuprates we take account of the effects of the local
distortions of a CuO6 octahedron or CuO5 pyramid from its elongated form
by the anti-Jahn–Teller effect, which plays an important role in determining
the lowest state of a CuO6 octahedron or CuO5 pyramid. Thus the con-
traction effect in the distance between the Cu atom and the apical oxygens,
which are located above (and below) the Cu atom in the CuO2 planes, can
be taken into account seriously in our theoretical calculations for the present
two-component system. So far any model has not seriously considered such
distortion effect due to the anti-Jahn–Teller effect, except our calculations
[103, 104]. Recently a number of experimental results indicate that the dis-
tance between the apical O atom and the Cu atom is reduced when holes
are doped into superconducting cuprates such as LSCO [108, 123], YBCO
[107, 109] and Bi2212 with δ = 0.25 [5, 127], supporting the theoretical pre-
diction by Shima et al.

In the case of a CuO6 cluster in LSCO, Kamimura and Eto [104] varied the
Cu–apical O(2) distance c, according to the experimental results by Boyce et
al. [123] and to the theoretical result by Shima et al. [106]. The distance c is
taken as 2.41 Å, 2.35 Å, 2.30 Å and 2.24 Å, depending on the Sr concentration
where 2.41 Å and 2.30 Å correspond to the value of c in the cases of x = 0.0
(undoped) and of x = 0.2, respectively, in the La2−xSrxCuO4 formula. In the
case of a CuO5 cluster, on the other hand, the Cu(2)-apical O(2) distance is
taken as 2.47 Å for insulating YBCO6 and 2.29 Å for superconducting YBCO7

with Tc = 90 K following the experimental results by neutron [107] and X-ray
[109] diffraction measurements, where Cu(2) represents Cu ions in a CuO2

plane while Cu(1) represents Cu(1) ions in a Cu–O chain. In the case of
superconducting Bi2212 with δ = 0.25 (Tc = 80 K), the distance between Cu
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and apical O in the CuO5 pyramid is 2.15 Å [127], and it is surprisingly short.
On the other hand, the distance between Cu and O(1) in a CuO2 plane is
1.91 Å, which is nearly equal to that of La2SrCuO4.

Since we have set up a cluster model for LSCO, YBCO and Bi2212, we are
going to proceed to first-principles calculations to calculate the lowest-state
energy of each cluster system in the following several chapters.



5 MCSCF-CI Method: Its Application
to a CuO6 Octahedron Embedded in LSCO

5.1 Description of the Method

In order to calculate the lowest energy of a CuO6 cluster or a CuO5 pyra-
mid embedded in cuprates based on the cluster models for LSCO, YBCO
and Bi2212 set up in Chap. 4, we adopt a method of Multi-Configuration
Self-Consistent Field with Configuration Interaction (MCSCF-CI), which was
developed by Eto and Kamimura in 1987 [103, 104].

The MCSCF-CI method [128, 129, 130] is the most suitable variational
method to calculate the ground state of a strongly correlated cluster system.
Kamimura and Eto applied this method to LSCO to calculate the electronic
structure of a CuO6 octahedron embedded in LSCO for the first time. Then,
by applying this method to Cu2O11 dimer in undoped La2CuO4, Eto and
Kamimura showed [103, 104] that the holes are localized around Cu sites and
these localized holes form a spin–singlet state corresponding to the Heitler–
London states in a H2 molecule. This result is consistent with the experimen-
tal results of Mott–Hubbard insulator for La2CuO4.

Later Kamimura and Sano [131] and Tobita and Kamimura [132] applied
the MCSCF-CI method to YBCO and Bi2212, respectively, and calculated
the electronic structure of a CuO5 pyramid embedded in YBCO7 and Bi2212
with δ = 0.25. In this section we give a brief review of how to use this method
for the calculations of the lowest state energies of the 1A1g (or 1A1) multiplet
in the case of a CuO6 octahedron (or CuO5 pyramid) and 3B1g (or 3B1)
multiplet. A variational trial function for the Zhang–Rice singlet 1A1g (or
1A1) in the MCSCF-CI method is taken as,

ΦS = C0|ψ1αψ1βψ2αψ2β · · ·ψnαψnβ|
+
∑

i

∑
a

Caa
ii | · · ·ψi−1αψi−1βψi+1αψi+1β · · ·ψaαψaβ| , (5.1)

while that for the Hund’s coupling triplet 3B1g (or 3B1) is chosen as,

ΦT = C0|ψ1αψ1β · · ·ψn−1αψn−1βψpαψqα|
+

∑
i

∑
a

Caa
ii | · · ·ψi−1αψi−1βψi+1αψi+1β · · ·ψaαψaβψpαψqα| , (5.2)
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where 2n is the number of the electrons in the clusters, and | · · · · · · | represents
a Slater determinant. For example, 2n = 86 for a CuO6 octahedron cluster,
and 2n = 76 for a CuO5 pyramid cluster. Orbitals ψp and ψq in (5.2) are
always singly occupied. In (5.1) and (5.2) all the two-electron configurations
are taken into account in the summation over i and a so that the electron-
correlation effect is effectively included in this method. By varying ψi’s and
coefficients C0 and Caa

ii , the energy for each multiplet is minimized. The
one-electron orbitals are determined.

Next, the CI (configuration interaction) calculations are performed, by
using the MCSCF one-electron orbitals ψi’s determined above, as a basis set
and the lowest energy of each multiplet is obtained. Since a main part of
the electron-correlation effect has already been included in determining the
MCSCF one-electron orbitals, a small number of the Slater determinants are
necessary in the CI calculations. Thus one can get a clear-cut-view of the
many-electron states by this MCSCF-CI method, even when the correlation
effect is strong. Thus the MCSCF-CI method is the most suitable variational
method for a strongly correlated cluster system [130].

In the MCSCF method all the orbitals consisting of the Cu 3dx2−y2 , 3dz2 ,
4s and O 2p orbitals are taken into account in the summation over i and a
in (5.1) and (5.2). In the CI calculation, all the single-electron excitation
configurations among these orbitals are taken into account.

5.2 Choice of Basis Sets in the MCSCF-CI Calculations

We express the one-electron orbitals by linear combinations of atomic or-
bitals, where Cu 1s, 2s, 3s, 4s, 2p, 3p, 3d and O 1s, 2s, 2p orbitals are taken
into account as the atomic orbitals. Each atomic orbital is represented by a
linear combination of several Gaussian functions. For Cu 3d, 4s and O 2s, 2p
atomic orbitals, we prepare two basis functions called “double zeta” for each
orbital. Those are (12s6p4d)/[5s2p2d] for Cu [133] and (10s5p)/[3s2p] for O
[134].

As for the oxygen ions, the diffuse components are usually used by re-
searchers in the quantum chemistry. The diffuse components, however, cause
problems for the point charge approximation outside of the cluster when a
cluster is embedded in a crystal, because the diffuse components reach the
nearest neighbour sites with considerable amplitudes. Instead of using the
diffuse components for O2−, Eto and Kamimura [103, 104] used extended
O 2p basis functions which were originally prepared for a neutral atom, by
introducing a scaling factor of 0.93. Then they multiplied all the Gaussian
exponents in the double zeta base for the oxygen 2p orbitals by the same
scaling factor of 0.93. This value of the scaling factor was determined so that
the energy of an isolated O2− ion should coincide with that obtained by the
Hartree-Fock calculation.
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5.3 Calculated Results
of Hole-Doped CuO6 Octahedrons in LSCO

As a model for cluster calculation by the MCSCF-CI method, we first choose
a CuO6 cluster in the LSCO compound as an object of study. Since the
behaviours of planar and apical oxygen in a CuO6 octahedrons in cuprates
are very different, we investigate them in detail by labeling the oxygen in a
CuO2 plane as O(1) and the apical oxygen as O(2). As regards the lattice
constants, we use them, as reported in [124], for LSCO.

Now we discuss the calculated results of a CuO6 octahedron by the
MCSCF-CI method. In the MCSCF-CI calculation Kamimura and Eto con-
sidered both the 1A1g and 3B1g multiplets independently. Then they com-
pared the respective energies of both states to determine which is the ground
state, varying the Cu–O(2) distance reflecting the anti-Jahn–Teller effect. In
the following subsections we present the calculated results of 1A1g and 3B1g

multiplets separately.

5.3.1 The 1A1g Multiplet (the Zhang–Rice Singlet)

The many-electron wavefunctions of the 1A1g multiplet are listed in Fig.
5.1, as a function of Cu-O(2) distance c. The sketch of one-electron orbitals
which are obtained by the MCSCF method are shown in Fig. 5.2. As seen
in Fig. 5.1, the many-electron wavefunction mainly consists of three electron
configurations. In the first electron configuration at the left column in the fig-
ure, which has the largest coefficient, the Cu dx2−y2-O(1) pσ antibonding b1g

orbital, ψ5, is unoccupied. In the second electron configuration at the center
in the figure, the bonding orbital, ψ4, is unoccupied while the antibonding
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Fig. 5.1. The many-electron wavefunctions of 1A1g state in the hole-doped CuO6

cluster. The Cu–O(2) distance, c, is (a) 2.41 Å, (b) 2.35 Å, (c) 2.30 Å and (d) 2.24 Å,
respectively. The atomic orbital with the largest component in each MCSCF one-
electron orbital is attached in the right side
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Ψ1 Ψ4 Ψ5

Fig. 5.2. The MCSCF one-electron orbitals optimized for 1A1g state in the hole-
doped CuO6 cluster (c = 2.41 Å). The upper row shows the wavefunctions perpen-
dicular to the CuO2 plane, while the lower row shows the wavefunctions in the
CuO2 plane. The contour lines are drawn every 0.05 a.u.

orbital, ψ5, is doubly occupied. Thus the mixing between the first and the
second configurations indicates that the holes occupy both of the Cu dx2−y2

and the O(1) pσ orbitals of b1g symmetry and that a dopant hole forms a
spin-singlet pair with the localized hole which occupies an antibonding b1g

orbital, b∗
1g. This situation corresponds to the Zhang–Rice singlet multiplet

[96].
In the third electron configuration at the right column in Fig. 5.1, the

a1g orbital, ψ1, is unoccupied while the b1g orbitals, ψ4 and ψ5, are dou-
bly occupied. The ψ1, shown in Fig. 5.2, is almost localized at Cu dz2 . This
configuration appears for the following reason. When two holes are at a Cu
site, the on-site Coulomb repulsion, the so-called Hubbard U , raises the en-
ergy. The Coulomb repulsion is smaller when the holes occupy both the dz2

and the dx2−y2 orbitals than when they remain only in the dx2−y2 orbital.
Thus the mixing of the (dz2)2 and the (dx2−y2)2 electron configurations re-
duces the Hubbard U at the Cu site effectively, compared with the single
configuration (dx2−y2)2. This effect becomes larger as the Cu–O(2) distance
decreases, as shown in Fig. 5.1.

5.3.2 The 3B1g Multiplet (the Hund’s Coupling Triplet)

The 3B1g many-electron wavefunction is shown in Fig. 5.3. The a∗1g orbital,
ψ4, and the b∗

1g orbital, ψ5, are singly occupied and the two electrons couple
to form a spin triplet by Hund’s coupling. In ψ5, dx2−y2 is mixed with O(1)
pσ while ψ4 consists almost entirely of dz2 , as shown in Fig. 5.4. The strength
of the on-site exchange energy, Hund’s coupling, can be estimated from the
energy difference between the 3B1g state and the excited 1B1g state. The
estimated value is about 2.0 eV.
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Fig. 5.3. The many-electron wavefunctions of 3B1g state in the hole-doped CuO6
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Fig. 5.4. The MCSCF one-electron orbitals optimized for 3B1g state in the hole-
doped CuO6 cluster (c = 2.41 Å). The upper row shows the wavefunctions perpen-
dicular to the CuO2 plane, while the lower row shows the wavefunctions in the
CuO2 plane. The contour lines are drawn every 0.05 a.u.

As the Cu–O(2) distance decreases and hence the CuO6 cluster ap-
proaches a regular octahedron by doping, the 1B1g state becomes more stable.
This is because the energy difference between the b∗

1g orbital and the a∗1g or-
bital becomes smaller, so that the Hund’s coupling becomes more effective.

5.4 Energy Difference between Zhang–Rice Singlet (1A1g)
and Hund’s Coupling Triplet (3B1g) Multiplets

The calculated energy difference between the 1A1g and the 3B1g states is
shown in Fig. 5.5, as a function of the Cu–O(2) distance. The figure indicates
that the ground state of the CuO6 cluster changes from the 1A1g state to
the 3B1g state when the Cu-O(2) distance decreases. The distance at which
the transition occurs corresponds to the doping concentration x ∼ 0.1 in the
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Fig. 5.5. The energy difference between the 3B1g and the 1A1g multiplets, as a
function of the Cu–O(2) distance, c, in the hole-doped CuO6 cluster. The Cu–O(1)
distance, a, is fixed at 1.889 Å. The Cu–O(2) distance c is (A) 2.41 Å (undoped
case), (B) 2.35 Å, (C) 2.30 Å (La1.8Sr0.2CuO4) and (D) 2.24 Å, respectively

La2−xSrxCuO4 formula. Although the ground state of a CuO6 octahedron
embedded in LSCO changes from 1A1g to 3B1g multiplet by the anti-Jahn–
Teller effect due to doping Sr2+ ions for La3+ ions, the energy difference
between two multiplets in the underdoped hole-concentration regime is very
small, i.e., at most 0.1 eV as seen in Fig. 5.5. Therefore, when the CuO6

octahedrons form a CuO2 network in LSCO, the transfer interaction between
neighbouring octahedrons acts to mix two multiplets easily. This will lead to
the Kamimura–Suwa model, as will be seen in Chap. 8.



6 Calculated Results
of a Hole-Doped CuO5 Pyramid
in YBa2Cu3O7−δ

6.1 Introduction

In this chapter we discuss the results calculated with the MCSCF-CI method
for a hole-doped CuO5 pyramid in superconducting YBa2Cu3O7 (abbrevi-
ated as YBCO7) with Tc = 90 K and insulating YBa2Cu3O6 (abbreviated as
YBCO6) performed by Kamimura and Sano [131]. The crystal structure of
YBCO7 is shown in Fig. 6.1(a). For comparison that of the insulating YBCO6

is also shown in Fig. 6.1(b). A remarkable difference in the crystal structures

Y
Ba
Cu(1)
Cu(2)
O

(a) YBa2Cu3O7 (YBCO7) (b) YBa2Cu3O6 (YBCO6)

CuO2 plane

CuO2 plane

O chainCu

Fig. 6.1. The crystal structures of YBCO7−δ. (a) The orthorhombic structure of
superconducting YBCO7. (b) The tetragonal structure of insulating YBCO6
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of YBCO7 and YBCO6 is that there exists a Cu–O chain in YBCO7. Like
LSCO, there are two orbitals, an antibonding a1 orbital, a∗1, and a bonding
b1 orbital, b1, as possible orbital states to accommodate dopant holes, where
a point group of CuO5 pyramid is C4v. The sketch on the spatial extension of
a∗1 and b1 orbitals are shown in Fig. 4.4(a) and 4.4(b) in Chap. 4. As a result
one has to deal with the 1A1 and 3B1 multiplets independently following the
MCSCF-CI method. In doing so, we take into account the effect of Madelung
potential from exterior ions outside the cluster by placing the point charge,
+2 at Cu(2) in CuO2 plane, +2 at Ba, +3 at Y, and −2 at O. As for the
charge of Cu in the Cu–O chain (Cu(1)), q, we have taken q = +1 for insulat-
ing YBCO6 from experimental (NMR) result [135]. This value is consistent
with a condition of charge neutrality. However, in superconducting YBCO7,
the value of q is not clear. Thus Kamimura and Sano [131] calculated the
energy difference between the 1A1 and 3B1 multiplets in the case of YBCO7

as a function of q and then investigated the effect of inhomogeneous hole
distribution in the Cu–O chain on the electronic state.

6.2 Energy Difference between 1A1 and 1B1 Multiplets

The calculated energy difference between the 1A1 and the 3B1 multiplets
by Kamimura and Sano is shown in Fig. 6.2 as a function of the charge of
Cu(1), q. The value of q and the existence of O2− ions in a Cu–O chain play
a crucial role in determining the Madelung energy at apical O site. There is
an energy difference of 1.3 eV between 3B1 and 1A1 multiplets in insulating
YBCO6, as seen in Fig. 6.2 (closed circle), where the distance between Cu(2)
and apical O, c, is taken as 2.47 Å. Cava et al. [107] observed the change of
the apical O–Cu distance in YBCO as shown in Fig. 6.3 as a function of hole-
concentration, where the apical O–Cu distance is denoted as Cu2-O1. One
can see from this figure that the apical O–Cu distance in a CuO5 pyramid
in YBa2CuOx decreases sharply from 2.44 Å to 2.29 Å as the oxygen content
x changes from 6.4 to 7.0, where YBCOx shows the highest Tc of 90 K with
x = 7.0.

In the case of insulating YBCO6, the energy difference between 3B1 and
1A1 multiplets is 1.3 eV, as shown by the closed circles in Fig. 6.2, where
the distance between Cu(2) and apical O ions is fixed at 2.47 Å. In Fig. 6.2
the open circles show the energy difference for superconducting YBCO7 as a
function of q, where c is fixed at 2.29 Å and oxygen atoms are introduced into
a Cu–O chain. It is clear from this figure that, when the value of q decreases,
the ground state of the CuO5 pyramid in YBCO7 changes from the 1A1 to 3B1

around the q ≈ 1.45. This is because, as the value of q decreases and thus the
Maderung potential at the apical oxygen site decreases, the energy difference
between the a∗1 orbital which contains the pz orbital at apical oxygen site and
the b1 orbital becomes smaller, so that the role of Hund’s coupling becomes
more effective.
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Fig. 6.2. The energy difference between the 3B1 and the 1A1 multiplets, as a
function of the charge of a Cu(1) ion in the Cu–O chain, q, in the hole-doped
CuO5 cluster embedded in YBCO6 and YBCO7. The closed circle represents the
energy difference between the 3B1 and the 1A1 multiplets in insulating YBCO6

[136, 137]. The open circles represent the energy difference between the 3B1 and
the 1A1 multiplets in superconducting YBCO7 as a function of constant q for all
Cu(1) ions, where c is fixed at 2.29 Å. Further the solid diamonds represent the
calculated results in the case of CDW in a Cu–O chain

6.3 Effect of Change Density Wave (CDW)
in a Cu–O Chain

In a previous section we saw that in superconducting YBCO7 the calculated
lowest state energy is very sensitive to the charge of Cu(1) in the Cu–O chain,
q. In this section we discuss how the multiplets of a CuO5 pyramid are affected
by the inhomogeneous hole distribution in a Cu–O chain, that is the charge
density wave (CDW), based on the calculated results by Kamimura and Sano
[131]. The existence of such CDW in a Cu–O chain in YBCO7 was reported by
various experimental groups. For example, a scanning tunneling microscopy
(STM) experiment [138], neutron inelastic scattering experiments [139] and
diffuse X-ray scattering [140] have reported on the existence of CDW in a
Cu–O chain in YBCO7. In this context Kamimura and Sano [131] tried to
clarify theoretically how the CDW in the Cu–O chains affect the electronic
structure of a hole-doped CuO5 pyramid. This was the first theoretical study
on the CDW effect in a Cu–O chain on the electronic structure of a CuO5

pyramid in YBCO7. Following Kamimura and Sano [131], let us explain how
the CDW in a Cu–O chain influences the electronic structure of a CuO5

pyramid.
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Fig. 6.3. The variation of the lattice parameters with oxygen content x in the
YBa2Cu3Ox (after [107])

Suppose that the charge of a Cu(1), q, is +2.5 and that the states of
holes in a Cu–O chain are expressed by a one-dimensional energy band. This
means that there are 1.5 holes in a Cu–O chain and that three quarters
of the energy band for a Cu–O chain are filled by holes. In this case the
Fermi wavenumber kF is given by π/4a approximately, where a is a Cu(1)–
Cu(1) distance along the chain and it is 3.8 Å for YBCO7. Thus the CDW
modulation-wavelength becomes 15.2 Å, because the modulation wavelength
λCDW is given by λCDW = 2π/2kF and it is nearly equal to 4a. This value is
consistent with the experimental results [138, 139], since the observed modu-
lation wavelength of CDW in a Cu–O chain takes a value between 13 ∼ 16 Å.
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In superconducting YBCO7 an oxygen introduced in a Cu–O chain produces
two holes in a unit cell consisting of a Cu–O chain and two CuO2 planes.
Considering the charge of +3e for Y, +2e for Ba, +2e for Cu(2) and −2e
for O in CuO2 plane, +1e for Cu(1) and −2e for O in a Cu–O chain, and
further distributing the charge of dopant holes over both a Cu–O chain and
two CuO2 planes in a unit cell, the following equation holds for a relation
between the number of holes in Cu–O chain, η, and that of a CuO2 plane, ζ,
in the unit cell from the condition of the charge neutrality;

η + 2ζ = 2 . (6.1)

Then the charge of Cu in a Cu–O chain, q, is related to η by the relation
q = 1 + η. Since the values of η and ζ have not been determined experi-
mentally so far, Kamimura and Sano calculated the lowest energies of the
1A1 and 3B1 multiplets by varying a value of η. In the case of the uniform
charge distribution for the charge of Cu(1) in a Cu–O chain, for example,
for q = +2.5, η becomes 1.5 and thus ζ is 0.25 from (6.1). This means that
one hole exists per four CuO5 pyramids. Since a CuO5 pyramid is embed-
ded in YBCO7, one must take into account the effect of Madelung poten-
tial from exterior ions outside the pyramid by putting the point charge +2e
at Cu(2) in CuO2 plane, +2e at Ba, +3e at Y, −2e at O. As to the charge
of Cu(1) in a Cu–O chain, one may place the point charges according to the
CDW modulation-wavelength, as shown on line A in Fig. 6.4. For example,
Cu(1)+1.75 ions are placed at the interval of every four Cu(1) sites along the
line of the Cu–O chain. This corresponds to the case that the Cu(1) right
above the CuO5 pyramid under consideration has the charge of +1.75e, while
the charge of +2.75e is placed at remaining Cu(1) sites on the line A. Thus
the averaged charge of Cu(1) atoms on the line A is +2.5e. In the same way
one may put the charge of +3e at Cu(2) sites at the interval of four sites
with the same modulation as that of the Cu–O chain and put the charge of
+2e at the remaining Cu(2) sites on the line B as seen in Fig. 6.4. The line B
includes the CuO5 pyramid under consideration. Thus the averaged charge of
the Cu(2) ions and the averaged hole concentration in a CuO2 plane on the
line B becomes 2.25e and 0.25, respectively. As to the charges of all the Cu(2)
ions except those on the line B, one can take +2.25e as an averaged charge,
while as regards the charges of all the Cu(1) ions except the Cu(1) ions on
the line A, one can take +2.5e as an averaged charge, as shown in Fig. 6.4.
In this way the CDW-like hole distribution is formed under the condition in
which the charge neutrality is kept.

On the basis of the charge distribution shown in Fig. 6.4, Kamimura and
Sano have calculated the lowest energies of the 1A1 and 3B1 multiplets by the
MCSCF-CI method. The calculated results are shown by solid diamonds in
Fig. 6.2, where the energy difference between the 1A1 and 3B1 multiplets is
shown on the vertical axis and q̄ on the horizontal line represents the averaged
charge of Cu(1) ions in a Cu–O chain. For comparison, we also show by open



48 6 Calculated Results of a Hole-Doped CuO5 Pyramid in YBa2Cu3O7−δ

Cu(1)  in a Cu-O chain

CuO2 plane

Cu-O chain

Calculated CuO5 pyramid

+1.75+1.75 +1.75+2.75+2.75+2.75+2.75+2.75+2.75

+2.0+2.0+2.0+2.0 +2.0 +2.0 +3.0+3.0

CDW modulation wavelength

Average charge 
of Cu(1)  +2.5

line B

line A

Average charge 
of Cu(2)  +2.25

The charge q of
each Cu(2) +2.25

The charge q of
each Cu(1) +2.5

CuO2 plane

Cu-O chain

Cu(2)  in a CuO2 plane 4a (2π/2kF (q=2.5))

O-2

Fig. 6.4. The charge distribution of Cu(1) ions in Cu–O chains and of Cu(2) ions
in CuO2 planes for the case in which the charge of Cu(1) is modulated by the CDW
modulation wavelength and the average value of Cu(1)’s charge, q̄, is equal to 2.5.
The line A represents the Cu–O chain which includes the Cu(1) ion right above the
hatched CuO5 pyramid under consideration. The electronic structure of a CuO5

pyramid marked by hatch on line B is calculated by the MCSCF-CI method in
the presence of the CDW charge distribution shown in this figure, whose effect is
considered as the Madelung potential in the MCSCF-CI calculations

circles the energy difference between the 1A1 and 3B1 multiplets calculated
for the case of the constant charge distribution in a Cu–O chain as a function
of q [136, 137].

As shown in Fig. 6.2, in the case of the constant charge distribution of
the Cu(1) ions in Cu–O chain, the energy difference between 1A1 and 3B1

multiplets is larger than that in the case of CDW. For example, the former is
1.55 eV for q = +2.5. In the CDW case shown by solid diamonds in Fig. 6.2,
the calculated energy difference between the 1A1 and the 3B1 multiplets is
significantly reduced. For example, in the case of q̄ = +2.5 it becomes 0.65 eV.
Thus the electronic structure is strongly affected by the charge distribution in
a Cu–O chain caused by CDW. The decrease of the energy difference between
these two multiplets is reasonable because in this case the Madelung potential
at the apical O in a CuO5 pyramid becomes lower for hole carriers. However,
since the holes in Cu–O chains occupy both Cu(1) and O sites, the charge
of Cu(1) in a Cu–O chain becomes lower than +2.5e. This favors the 3B1

multiplet energetically, because the Madelung potential at the apical O site
becomes further lower for a hole carrier so that a probability of occupying
the apical O site increases for the hole carrier. In the case of YBCO, the 1A1
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multiplet is always lower in its ground state energy than the 3B1 multiplet.
Thus we conclude that, when the averaged charge of Cu(1) ions takes a value
between 2.0 and 2.3, the energy difference between the 1A1 and 3B1 multiplets
becomes of the same order of magnitudes as transfer interaction between 3B1

and 1A1 multiplets at neighbouring CuO5 pyramids, 0.4 eV, by the existence
of CDW in a Cu–O chain. In this context a hole carrier can hop between 1A1

and 3B1 multiplets on the neighbouring CuO5 pyramids, when the CDW
exists on the Cu–O chains. This makes the existence of the Kamimura–Suwa
model possible.



7 Electronic Structure of a CuO5 Pyramid
in Bi2Sr2CaCu2O8+δ

7.1 Introduction

In this chapter we discuss the calculated results for the electronic struc-
tures of a CuO5 pyramid embedded in Bi2Sr2CaCu2O8+δ with use of the
MCSCF-CI method by Tobita and Kamimura [132]. The high Tc supercon-
ductors of the Bi–Sr–Ca–Cu–O materials system were discovered by Maeda
et al. in 1988 [5]. The composition of these materials is determined as
Bi2Sr2Can−1CunO4+2n+δ with n being 1, 2, and 3. To distinguish the values
of different n, these compounds are distinguished as Bi2201 (n = 1), Bi2212
(n = 2) and Bi2223 (n = 3), where Tc of Bi2201, Bi2212 and Bi2223 are 20
and 80, 110 K, respectively. The number of the CuO2 planes increases with
increasing n. These compounds have the Bi2O2 blocking layers. In the chem-
ical formula of “Bi2Sr2CaCu2O8+δ”, δ represents the excess of oxygen. When
excess oxygen does not exist, i.e. δ = 0, this material is an insulator. When
excess oxygen is introduced, hole carriers are supplied into the CuO2 planes,
and this material shows superconductivity. When increasing the value of δ,
Tc of Bi2212 rises. Thus many researchers regard the excess of oxygen as an
origin of carriers which are responsible for superconductivity.

7.2 Models for Calculations

Figures 7.1(a) and (b) show the crystal structures of Bi2212 for δ = 0 and
δ = 0.25, respectively. In these structures, the distance between Cu and apical
O in the CuO5 pyramid cluster is 2.15 Å for δ = 0.25 [127]. It is very short
compared with the distance in insulating Bi2212 with δ = 0 which is 2.47 Å.
Thus the local distortion of CuO5 pyramids is expected to play an important
role in determining their electronic structure.

We consider that the case of δ = 0.25 corresponds to the optimum doping
in Bi2212. In this section, we pay attention to the electronic structures of a
CuO5 pyramid in the cases of δ = 0 and δ = 0.25. According to the obser-
vation by transmission electron microscope (TEM) [141], the Bi2O2 blocking
layers are slightly distorted from the crystal structures shown in Figs. 7.1(a)
and (b), and undulation appears along the b axis. Thus, a real crystal struc-
ture of Bi2212 is more complex than the structures shown in Figs. 7.1(a) and
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Fig. 7.1. The crystal structures of Bi2Sr2CaCu2O8+δ. Here, (a) and (b) represent
the structures for δ = 0 [5] and 0.25, respectively

(b). The origin of this distorted structure may be considered for the follow-
ing reasons: The excess oxygen enters into the middle of the Bi2O2 blocking
layers. Depending on whether the Bi2O2 blocking layers include the excess
oxygen or not, the Bi2O2 blocking layers show a slightly irregular structure.
However, the hole carriers cannot recognize such a slight change of the struc-
ture, because its mean free path is much longer than Cu–O–Cu distance. In
this context Tobita and Kamimura [132] used the average structures shown
in Figs. 7.1(a) and (b) for the calculation of electronic structures. Further,
in the case of δ = 0.25, the excess oxygen of charge −0.5e are placed at four
sites in every middle region between the Bi2O2 blocking layers, because the
hole carriers are subject to the average Madelung potential from the excess
oxygen of charge −2e, which are distributed randomly between the Bi2O2

blocking layers. We call the crystal structure shown in Fig. 7.1(b) a “virtual
crystal structure” in this respect.

In calculations by Tobita and Kamimura, 742 and 846 ions outside the
CuO5 pyramid under consideration are treated as point charges to consider
the effect of Madelung potential for the case of δ = 0 and δ = 0.25, respec-
tively. Then they calculated the electric structures of a single CuO5 pyramid
using the crystal structures shown in Figs. 7.1(a) and (b) for the case of δ = 0
and δ = 0.25, respectively.

7.3 Calculated Results

The calculated energy difference between the 1A1 and 3B1 states is about
2.15 eV for the case of δ = 0. The energy of the 1A1 state is lower than that of
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the 3B1 state. Since the transfer interaction between neighbouring pyramids
is about 0.4 eV, a dopant hole is localized around a particular CuO5 pyramid
in the case of δ = 0. As a result Bi2212 with δ = 0 is an insulator, consistent
with experimental results [5, 127].

For the case of δ = 0.25, on the other hand, the energy difference between
the 1A1 and 3B1 states is about 0.034 eV. The energy of the 1A1 multiplet is
still lower than that of the 3B1 multiplet. Since this energy difference is very
small compared with the transfer interaction between the b1 and a∗1 orbitals
in the neighbouring CuO5 pyramids, which is about 0.4 eV, two states are
mixed by the transfer interaction between the neighbouring CuO5 pyramids,
and a coherent state is expected to be composed in a superconducting Bi2212
material, when the localized spin forms an antiferromagnetic order in a spin-
correlated region, as will be described in the following chapter.

A reason why the difference between the 1A1 and 3B1 states decreases is
the following: As the value of δ increases, the Madelung potential at an apical
oxygen site decreases. As a result the energy difference between the energy
of the a∗1 orbital, which contains the pz orbital at the apical oxygen site, and
that of the b1 orbital becomes smaller, so that the Hund’s coupling becomes
more effective. Thus, the energy difference between the 1A1 and 3B1 states
becomes smaller.

7.4 Remarks on Cuprates
in which the Cu–Apical O Distance is Large

As we have described in this chapter, in the case of Bi–Sr–Ca–Cu–O mate-
rials system, the dopant holes are provided from the excess oxygen in the
Bi2O2 blocking layers. A similar situation appears in other cuprates such
as TlBa2CaCu2O7 (Tl1212) with Tc = 103 K [6] and HgBa2Ca2Cu3O8+δ

(Hg1223) Tc = 135 K [8]. In these cases the blocking layers are negatively
charged after dopant holes are provided into the CuO2 layers. Thus an exis-
tence probability of hole-carriers at apical oxygen sites is not low, even when
the apical O–Cu distance is very large such as 2.76 Å and 2.74 Å in Tl1212
and Hg1223, respectively, because the attractive electrostatic interaction fa-
vors the hopping of hole-carriers to the apical oxygen sites, which are close
to the blocking layers. Thus the Kamimura–Suwa model holds even when
the apical O–Cu distance is large, although the mixing ratio of the Hund’s
coupling triplet into the Zhang–Rice singlet is small, compared with the cases
of LSCO, YBCO7, Bi2212 materials, in which the apical O–Cu distance is
shorter than 2.41 Å, the length between apical O and Cu ions in the Jahn–
Teller elongated octahedron or pyramid.

Further, in Tl1212 and Hg1223, the length of the c-axis is much
longer than those of LSCO, YBCO7, Bi2212. This indicates that the two-
dimensional nature is stronger in Tl1212 and Hg1223, favoring the occurrence
of higher values of Tc in superconductivity.



8 The Kamimura–Suwa (K–S) Model:
Electronic Structure of Underdoped Cuprates

8.1 Description of the Model

Now we construct the many-electron electronic structure of underdoped
cuprates, based on the calculated results of a CuO6 octahedron embedded in
LSCO and of a CuO5 pyramid in YBCO7 and Bi2212 described in Chaps.
4 to 7. Before presenting results, we briefly describe the theoretical treat-
ment made by Kamiumra and Suwa [15], which is now called the Kamimura–
Suwa (K–S) model. As an example, we choose LSCO here. According to the
Kamimura–Suwa model, there exist areas in each CuO2 layer in which the lo-
calized spins form the antiferromagnetic (AF) order. Here we call these areas
“spin-correlated regions”. The size of each spin-correlated region is character-
ized by the spin-correlation length. Then, following the results of Kamimura
and Eto [104], a dopant hole with up spin in a spin-correlated region occupies
an a∗1g orbital, φa∗

1g
, at CuO6’s with localized up-spins, because of an energy

gain of about 2 eV due to the intra-atomic exchange interaction between the
spins of an a∗1g hole and of a localized hole in an antibonding b1g orbital (b∗

1g)
(Hund’s coupling) within the same CuO6 octahedron, as shown in Fig. 8.1(c).
As a result the spin-triplet 3B1g multiplet is created. Since Hund’s coupling
prevents a hole with up spin from occupying an a∗1g orbital in a CuO6 octahe-
dron with a localized down-spin, a hole with up-spin in a CuO6 octahedron
with a localized up-spin can not hop into neighbouring a∗1g orbital. Instead,
it can enter into a bonding b1g orbital, φb1g , in a neighbouring CuO6 octa-
hedron with a localized down-spin without destroying the antiferromagnetic
order. In this case there is the energy gain of about 4.0 eV due to the antifer-
romagnetic exchange interaction between holes in bonding and antibonding
b1g orbitals, as shown in Fig. 8.1(c). This results in the Zhang–Rice singlet
state 1A1g.

By taking account of the energy difference between the a∗1g and b1g

orbitals, the energy difference between the highest occupied states in the
3B1gand 1A1g multiplets becomes of the same order of magnitudes as a trans-
fer interaction between a∗1g and b1g orbitals in the neighbouring CuO6 octa-
hedrons. In this way the dopant holes can move resonantly from a CuO6 to
a neighbouring CuO6 in a CuO2 layer by the transfer interaction of about
0.3 eV without destroying the local antiferromagnetic (AF) order, as shown
in Figs. 8.1(a) and (b). Such coherent motion of the dopant holes is possible
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Fig. 8.1. Schematic view of the K–S model in LSCO, representing the coherent
motion of a dopant hole from 3B1g multiplet (a∗

1g orbital state) to 1A1g multiplet
(b1g orbital state) in the presence of the AF ordering of the localized spin system.
Here (a) and (b) correspond to a coherent motion of up-spin and down-spin states
of dopant holes, respectively, where a dopant hole of a solid white arrow at the left-
hand side in (a) and (b) moves to positions of dotted white arrows in turn by the
transfer interactions. Figure (c) represents a coherent motion of an up-spin carrier
from 3B1g to 1A1g multiplet. It should be noticed that the relative position of a∗

1g

and b1g levels changes according to the doping concentration. The energy levels in
this figure are obtained from the results of Kamimura and Eto ([104])

when the spin-correlation length is much larger than the distance between
neighbouring copper sites and the magnitudes of transfer interactions be-
tween neighbouring CuO6 octahedrons are comparable to the energy differ-
ence between the highest occupied orbital states in the Zhang–Rice singlet
and the Hund’s coupling triplet. As a result a metallic state is created due
to the delocalization effect of the dopant hole, and it simultaneously causes
d-wave superconductivity when the temperature is below Tc, as was shown by
Kamimura et al. [30]. We will describe d-wave superconductivity in Chap. 14.

Kamimura and Suwa [15] expressed the above coherent motion of dopant
holes with up and down spins in a metallic state with the following forms of
Bloch-type wave functions:

Ψkα(r)χ =
∑

R

exp (ik · R)
[
Akφa∗

1g
(r − R) +Bkφb1g(r − R − a)

]
αχ

(8.1)

and

Ψkβ(r)χ =
∑

R

exp (ik · R)
[
Akφa∗

1g
(r − R − a) +Bkφb1g(r − R)

]
βχ

(8.2)
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where α and β represent the up- and down-spin states of a dopant hole,
respectively. Further, the spin function χ represents the antiferromagnetic
ordering state of the Cu localized spins in a CuO2 layer, where the up and
down localized spins are assigned at R and R + a Cu sites, respectively.
Furthermore, a is a vector representing the distance between Cu sites with
localized up and down spins in an antiferromagnetic unit cell. The summation
over R is taken for the antiferromagnetic unit cells. In both (8.1) and (8.2),
the first and the second terms in the square brackets represent the Hund’s
coupling and Zhang–Rice multiplets, respectively. In the case of YBCO7, the
coherent motion of a dopant hole due to the alternate appearance of the 1A1

and 3B1 multiplets is also possible when the CDW exists in a Cu-O chain as
described in Chap. 6, and in Bi2212 the coherent motion always occurs for
δ = 0.25, as shown in Chap. 7.

A schematic picture of the K–S model in YBCO7 and Bi2212 representing
the coherent motion of a dopant hole with up and down spins in the presence
of local AF order is shown in Fig. 8.2. As mentioned in Sect. 4.4, the distance
between apical oxygen and Cu in CuO6 octahedrons in LSCO [108, 123] or
CuO5 pyramids in YBCO [107, 109] and Bi2212 [5, 127] becomes shorter due
to the anti-Jahn–Teller effect when the hole-concentration changes from an
insulating phase to a superconducting phase. In order for the K–S model to
hold, the effects of the local lattice distortions due to the anti-Jahn–Teller
effect are essentially important.
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Fig. 8.2. Schematic view of the K–S model in YBCO7 and Bi2212, representing
the coherent motion of a dopant hole from 3B1 multiplet (a∗

1g orbital state) to 1A1

multiplet (b1g orbital state) in the presence of the AF ordering of the localized spin
system. Here (a) and (b) correspond to up-spin and down-spin states of dopant
holes, respectively, where a dopant hole of a solid white arrow at the left-hand side
in (a) and (b) moves to positions of dotted white arrows in turn by the transfer
interactions
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8.2 Experimental Evidence
in Support of the K–S Model

8.2.1 Existence of the Antiferromagnetic Spin Correlation
in the Underdoped Regime

In the Kamimura–Suwa model the spin-correlation length must increase in
the underdoped region when the hole concentration increases, in order for
every hole-carrier to move over a considerable distance without interacting
with each other. As the result of the delocalization effect of hole carriers,
a metallic state is created. As to the hole-concentration dependence of the
spin correlation length, Mason et al. [142], Yamada et al. [143] and Lee et al.
[53] reported that the spin-correlation length in the underdoped region of
La2−xSrxCuO4 increases from x = 0.05, the onset of superconductivity, with
increase of hole concentration x and reaches a value of more than 50 Å for
the optimum doping (x = 0.15). These experimental results support the
K–S model in which a metallic and superconducting state corresponds to a
coherent state characterized by the coexistence of the local AF ordering and
of the ordering with regard to the alternating appearance of the 3B1g and
1A1g multiplets in the carrier system.

8.2.2 Coexistence of the 1A1g and the 3B1g Multiplets

In order to investigate the coexistence of the 3B1g and 1A1g multiplets in
the underdoped regime, Chen et al. [93] performed polarization-dependent
X-ray absorption measurements for O K and Cu L edges in LSCO. For the
Cu L edge, they observed a doping-induced satellite peak (L3’) for both
polarizations of the electric vector of the X-rays E, parallel and perpendicular
to the c-axis, in a shoulder area of the doping-independent Cu L3 line, with an
intensity ratio of about 1 to 9, where a main L3 line corresponds to transitions
from a Cu 2p core level to the upper Hubbard Cu dx2−y2 band, indicating the
existence of the localized spins. Since the former (E ‖ c) and the latter (E ⊥c)
polarizations detect the Hund’s coupling triplet (3B1g) and the Zhang–Rice
singlet (1A1g), respectively, the appearance of the doping-induced satellite
peak for both polarizations at the same energy suggests that the state of the
dopant holes must be a single coherent state consisting of the Hund’s coupling
triplet multiplet and the Zhang–Rice singlet multiplet. For Tl2Ba2CaCu2O8

and Tl2Ba2Ca2Cu3O3 as well as LSCO, Pellegrin et al. [94] also found the
polarization dependence similar to that found by Chen et al. for LSCO [93].

In 1989 Bianconi et al. [144] also reported that the peak energy separation
between transitions for polarizations parallel and perpendicular to the c-axis
in LSCO decreases towards zero when the Sr concentration increases from a
non-superconducting regime to a superconducting regime, consistent with the
above experimental results. The existence of localized spins on Cu indicated
by the observation of the Cu L3 line is also supported by neutron scattering
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experiments. For example, Birgeneau et al. [145] showed the coexistence of
the spin-correlation of localized spins in the AF order and superconductivity
in LSCO; that is, the spins of Cu dx2−y2 holes form a two-dimensional (2D)
local antiferromagnetic (AF) order even in the superconducting state.

Recently the site-specific X-ray absorption spectroscopy of YBa2Cu3O6.91

with Tc = 92 K by Merz et al. [111] determined the hole distribution in a
CuO2 plane, at an apical O site and in a Cu–O chain. According to this
result the experimental values of hole distribution in a CuO2 plane, at an
apical O site and in a Cu-O chain are 0.40, 0.27 and 0.24, respectively. These
results are consistent with the theoretical values calculated by Kamimura
and Sano [131]. In particular, this experimental result clarified an important
role of an apical oxygen site in a CuO5 pyramid in the electronic structure of
superconducting YBCO6.91. This is an important experimental evidence for
the K–S model.

8.3 Hamiltonian for the Kamimura–Suwa Model
(The K–S Hamiltonian)

Kamimura and Suwa introduced the following effective Hamiltonian HKS in
order to describe the K–S model. As seen below, it consists of five terms: the
effective one-electron Hamiltonian Heff for a∗1g(a

∗
1) and b1g(b1) orbital states,

the transfer interaction between neighbouring CuO6 octahedrons (CuO5

pyramids) Htr, the superexchange interaction between the Cu dx2−y2 local-
ized spins HAF, and the exchange interactions between the spins of dopant
holes and dx2−y2 localized holes within the same CuO6 octahedron (CuO5

pyramid) Hex, and the repulsive interaction between dopant holes on a∗1g(a
∗
1)

or b1g(b1) orbital within the same CuO6 octahedron (CuO5 pyramid) HU.
Thus we have

HKS = Heff +Htr +HAF +Hex +HU

=
∑

i,m,σ

εmC
†
imσCimσ +

∑
〈i,j〉,m,n,σ

tmn

(
C†

imσCjnσ + h.c.
)

+ J
∑
〈i,j〉

Si · Sj +
∑
i,m

Km si,m · Si + U
∑
i,m

n̂i,m,↑n̂i,m,↓ , (8.3)

where εm (m = a∗1g(a
∗
1) or b1g(b1)) represents the effective one-electron en-

ergy of the a∗1g(a
∗
1) and b1g(b1) orbitals, C†

imσ and Cimσ the creation and an-
nihilation operators of a dopant hole in m-type orbital with spin σ in the ith
CuO6 octahedron or ith CuO5 pyramid, respectively, tmn the effective trans-
fer integrals of a dopant hole between m-type and n-type orbitals of neigh-
bouring CuO6 octahedrons (CuO5 pyramids), J the superexchange coupling
between the spins Si and Sj of dx2−y2 localized holes in the b∗

1g (b∗
1) orbital
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at the nearest neighbour Cu sites i and j (J > 0 for AF interaction), Km the
exchange integral between the spin of a dopant hole si,m and a dx2−y2 local-
ized spin Si in the ith CuO6 octahedron or ith CuO5 pyramid (Ka∗

1g
(Ka∗

1
)

< 0 for the Hund’s coupling spin triplet multiplet with a∗1g(a
∗
1) orbital state

and Kb1g(Kb1) > 0 for the Zhang–Rice spin singlet multiplet with b1g(b1) or-
bital state), and U the Hubbard U -like interaction with n̂i,m,σ = C†

imσCimσ,
where n̂i,m,σ is a number operator. Here si,m =

∑
σσ′ C

†
imσσσσ′Cimσ′ with

Pauli matrices σσσ′ . When the total number of dopant holes in a system
consisting of L sites is denoted as N , the following relation holds;∑

i,m,σ

〈n̂i,m,σ〉 = N . (8.4)

Hereafter we call the effective Hamiltonian of the K–S model (8.3) the K–S
Hamiltonian. The role of each term in the K–S Hamiltonian (8.3) is schemat-
ically shown in Fig. 8.3.

K

J

∆ε

∗− ε∆ε = ε
a1g

∗a1g

∗a1g
∗a1g

b1g

t ∗a1g b1g
t

b1gb1g
t

b1g
K

U

U

a1g

d

b1g

x2 − y2

∗

Fig. 8.3. Schematic explanation of the various interactions in the K–S Hamiltonian.
Black arrows represent the localized spin at Cu site, while white arrows represent
the spins of dopant holes

As regards the parameters in the K–S Hamiltonian (8.3), we adopt the
following values; J = 0.1 from the experiment of the magnetic Kerr rotation
[146] and also from the experiments by the neutron inelastic scattering[145],
ta∗

1ga∗
1g

= 0.2, tb1gb1g = 0.4, ta∗
1gb1g =

√
ta∗

1ga∗
1g
tb1gb1g ∼ 0.28, εa∗

1g
= 0,

εb1g = 2.6, Ka∗
1g

= −2.0, Kb1g = 4.0 in units of eV, where the values of Hund’s
coupling exchange constant Ka∗

1g
and Zhang–Rice exchange constant Kb1g are

taken from the first principles cluster calculations for a CuO6 octahedron in
LSCO [104], and the energy difference of the effective one-electron energies
between a∗1g and b1g orbital states, εb1g − εa∗

1g
= 2.6, is determined so as

to reproduce the energy difference between the 3B1g and 1A1g multiplets in
the MCSCF-CI cluster calculations [103]. On the other hand, the values of
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Cu O Cu O Cu O Cu O Cu O Cu O

Carrier

Spin

Spin-correlated region (antiferromagnetic order)

Fig. 8.4. Illustration of the two story house model and of how a hole carrier
with up-spin itinerates within a spin-correlated region. The lower story consists
of the Cu localized spins, which form the antiferromagnetic ordering in a spin-
correlated region. In the upper story, a carrier with up-spin enters into the Cu-
second-floor due to the Hund’s coupling effect with Cu localized up-spins in the
lower story (Hund’s coupling triplet) while it enters into the hybridized state of
O-bridge and Cu-third-floor at the Cu houses with localized down-spins due to the
antiferromagnetic interaction between the carrier’s and localized spins (Zhang–Rice
singlet)

ta∗
1ga∗

1g
and tb1gb1g are chosen so as to reproduce the antibonding a∗1g and

bonding b1g bands in the band structure of La2CuO4 [106, 147, 148]. When
we solve the K–S Hamiltonian for the multiplets of the Hund’s coupling
triplet and of the Zhang–Rice singlet in a CuO6 octahedron by using the
parameters determined above, we find that energy difference between the
highest occupied levels in the Hund’s coupling triplet and Zhang–Rice singlet
which include the effect of the exchange interaction Hex is 0.1 eV. Thus the
highest levels of the Hund’s coupling triplet and Zhang–Rice singlet are mixed
by transfer interaction of ta∗

1gb1g (∼ 0.28).
As a result a hole-carrier moves coherently by taking the 3B1g to 1A1g

multiplets alternately in the presence of the local AF order. Thus the K–S
model holds.

8.4 Concluding Remarks

Originally the Kamimura–Suwa model was named by one of the present au-
thors (Kamimura) as “two-story house model” [27], before HTSC researchers
called it the K–S model. That is, looking at Figs. 8.1, 8.2 and 8.3, Kamimura
called the K–S model and the K–S Hamiltonian in (8.3) the “two story house
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model”. According to him, the upper story corresponds to the carrier states
consisting of two kind of orbitals a∗1g and b1g, while the lower story corre-
sponds to the system of the localized spins, as shown in Fig. 8.4. Each house
represents a Cu house, in which the lower story corresponds to the b∗

1g orbital
while the upper story consists of the second and third floors with characters
of a∗1g and b1g orbitals, respectively. In the lower story a Cu d-hole with
dx2−y2 character is localized with up spin or down spin. They form an AF
order by the superexchange interaction in the spin correlated region. As for
the upper story, the room is connected with the neighbouring Cu houses by
bridges of oxygen pσ orbitals (the b1g orbitals). As a result a hole carrier
in the upper story move from an a∗1g second floor room in a Cu house with
an up-localized spin (right-hand side of the figure) to a b1g third floor room
in the neighbouring Cu house with down-localized spin through the O pσ

bridge, etc. Thus a metallic state is created in the upper story for an area of
spin-correlated region while the lower story contributes a local AF order in
the spin-correlated region.



9 Exact Diagonalization Method
to Solve the K–S Hamiltonian

9.1 Introduction

In the previous chapter we described the essence of the K–S model. A prob-
lem with which we are now going to be concerned is how to solve the K–S
Hamiltonian HKS in (8.3), which was described in detail in the Sect. 8.3. In
this chapter we try to solve the K–S Hamiltonian exactly for a system of a
finite size. Simultaneously we investigate the validity of the K–S model when
a single hole-carrier is doped into 1D chain and 2D square quantum spin
systems, and also when two hole-carriers are doped.

For the purpose of investigating the validity of the K–S model, we first
calculate the spin-correlation function and the orbital correlation function, by
diagonalizing the K–S Hamiltonian with the exact diagonalization method in
the cases of a single hole-carrier and two hole-carriers. The calculated results
for the K–S model are presented in Sects. 9.3, 9.4 and 9.5. In order to clarify
an important role of the coexistence of two kinds of orbitals, a∗1g and b1g

orbitals in the K–S model mentioned in Chap. 8, we investigate the case
where there is only a single orbital state by taking the energy difference
between two kinds of orbitals, ∆ε (= εb1g − εa∗

1g
), in the K–S Hamiltonian to

be infinity. This corresponds to the case of the Zhang–Rice singlet.
Further we calculate the radial distribution function between two hole-

carriers, which is a characteristic quantity for a two-carrier system. The cal-
culated results are presented in Sect. 9.6.

9.2 Description of the Method: Lanczos Method

In this chapter we adopt the exact diagonalization method. In order to solve
the K–S Hamiltonian as accurately as possible, we have to adopt a model sys-
tem of finite size. As an object of study we consider a two-dimensional square
lattice with 4 × 4 sites shown in Figs. 9.1(a) and (b), because in cuprates a
CuO2 plane which is similar to a 2D square lattice plays an important role.
We also consider a 1D chain lattice with L (4 ≤ L ≤ 20) sites in order to
investigate the effect of dimensionality.

The representations of the site numbers in the 2D square lattice and in
the 1D chain lattice are shown in Figs. 9.1(a) and (c), respectively. In the 2D
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Fig. 9.1. Schematic views of the model systems: (a) 2D square lattice; (b) the
numbered sites in the 2D square lattice, where equivalent sites are denoted by the
same number. (c) 1D chain lattice with numbering sites

square system the equivalent sites are chosen as shown in Fig. 9.1(b). The
S = 1/2 spins which are placed at each site represent the localized spins in
the K–S model. They are coupled by the superexchange interactions JSi ·Sj ,
the third term in (8.3), to form the AF order in the absence of dopant carriers.
Applying the Lanczos method to these systems with the periodic boundary
condition (PBC), we study the ground state for the K–S Hamiltonian in the
following two cases; (1) a single doped hole-carrier (N = 1) and (2) two doped
hole-carriers (N = 2).

In order to obtain the ground state based on the the K–S model, we
have to diagonalize the K–S Hamiltonian HKS for a system of finite size.
If the size of a system is small enough to be diagonalized, all the matrix
elements of the K–S Hamiltonian, HKS, are stored within the computational
memories at one time. However, if a system size exceeds around 10 sites for
the K–S model, it is difficult to diagonalize HKS exactly due to the memory
limitations. The K–S model with a single dopant hole has 8 states per site,
because there appear two multiplets, 1A1g and 3B1g, for either of the up and
down localized spins in the AF order. Thus a finite system of L sites has 8L

states in principle, which is ∼ 1.0 × 109 for L = 10. In this context we pay
attention to the ground state and the low-lying excited states. In this case,
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among the exact diagonalization methods, the Lanczos method [16, 149, 150]
is appropriate. Let us describe the algorithm of the Lanczos method below.

Suppose that the Hamiltonian H which we want to solve is transformed
to tridiagonal H ′. When a transformation which transforms to tridiagonal
H ′ is denoted by P , we have the relation of P−1HP = H ′. First the initial
vector |u0〉 in the Hilbert space of the model being study is selected. Then we
generate a new vector by applying the Hamiltonian H to the initial vector
|u0〉. Consequently we obtain

|u1〉 = H|u0〉 − 〈u0|H|u0〉
〈u0|u0〉 |u0〉 , (9.1)

where 〈u0|u1〉 = 0 holds. Here 〈u| represents a transposed vector of a vector
|u〉. Further we are able to obtain a new vector |u2〉 that is orthogonal to the
previous two vectors |u0〉 and |u1〉 as

|u2〉 = H|u1〉 − 〈u1|H|u1〉
〈u1|u1〉 |u1〉 − 〈u1|u1〉

〈u0|u0〉 |u0〉 . (9.2)

It can be easily checked that 〈u1|u2〉 = 〈u0|u2〉 = 0. This procedure can be
generalized by defining the nth orthogonal basis recursively as

|un+1〉 = H|un〉 − αn|un〉 − βn−1|un−1〉 , (9.3)

where n = 0, 1, 2, . . . , and the coefficients αn and βn are given by

αn =
〈un|H|un〉
〈un|un〉 , (9.4)

βn−1 =
〈un|un〉

〈un−1|un−1〉 . (9.5)

In this basis the tridiagonal Hamiltonian matrix H ′ can be expressed as

H ′ =

⎛
⎜⎜⎜⎜⎜⎝

α0 β1 0 0 . . .
β1 α1 β2 0 . . .
0 β2 α2 β3 . . .
0 0 β3 α3 . . .
...

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎠ . (9.6)

In this way the tridiagonal H ′ is diagonalized easily with use of ordinary li-
brary subroutines such as the bisection method, etc. However, it is impossible
to completely diagonalize the K–S Hamiltonian, HKS, because a number of
interactions equal to the size of Hilbert space are needed. In practice, this
would demand a considerable amount of CPU time. However, one of the ad-
vantages of this method is that adequately accurate information about the
ground state of HKS can be obtained after a small number of iterations. In
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the present case, we are able to diagonalize H ′ by a number of iterations of
the order of ∼ 100.

In the present calculations the z-component of the total spins in the 2D
and 1D systems, Sz

total, is fixed to be a minimum value. For example, in the
case of a 2D system of 16 sites with a single dopant hole, the minimum value of
the z-component of the total spins is 1/2 (Sz

total = 1/2) since the total number
of the spins of S = 1/2 in the AF order and in the hole-carrier system is 17.
In the case of a 2D system of 16 sites with two dopant holes, on the other
hand, the minimum value of the total spins is 0 since the number of spins in
this case is 18. All the bases which construct a wavefunction in the above two
cases satisfy a minimum value of the z-component of the total spins. Besides,
in the case of two dopant holes we have constructed a wavefunction so as to
satisfy the Pauli principle.

As regards the parameters in (8.3), we adopt the values described in
Chap. 8. These are J = 0.1, Ka∗

1g
= −2.0, Kb1g = 4.0, ta∗

1ga∗
1g

= 0.2, tb1gb1g =
0.4, ta∗

1gb1g =
√
ta∗

1ga∗
1g
tb1gb1g ∼ 0.28, εa∗

1g
= 0, εb1g = 2.6 in units of eV.

By using bases mentioned above and these parameters, we solve the ef-
fective Hamiltonian of the K–S model in (8.3).

9.3 Calculated Results
for the Spin-Correlation Functions

In discussing the calculated results, it is helpful to consider first a case without
spin fluctuations in the localized spin system in order to appreciate the nature
of the electronic state of a single dopant hole. For this purpose, let us suppose
that the complete antiferromagnetic (AF) ordering, i.e., Néel order, has been
established among the localized spins. In this case we have only to consider a
term of z-component Sz

i S
z
j and sz

i,mS
z
i in the Heisenberg Hamiltonian HAF

and Hex in (8.3). Then the ground-state energy for the 2D square lattice of
L sites with a single dopant hole is obtained, in units of eV, as

E1h
Neel = −1

4
zJL× 1

2
− 1.517 , (9.7)

where L is the number of the localized spins, and z is the number of nearest
bond around a site. We obtained E1h

Neel = −2.317 eV in (9.7) with z = 4
and L = 16. In this case the wavefunction of a hole is extended over the
whole system and the numerical values for the squares of the components a∗1g
and b1g orbital states in the wavefunction for a dopant hole with up-spin are
shown in Fig. 9.2. Although there is a tendency that a dopant hole alternately
occupies the two orbitals, a∗1g and b1g, site by site [15] (a “zigzag” like state),
its wavefunction spills out due to a quantum-mechanical tunneling effect, so
that every orbital component has a finite amplitude at each site.

In order to fully take into account the spin fluctuation effect of the AF
order due to the localized hole spins, Hamada, Ishida, Kamimura, and Suwa
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Fig. 9.2. Numerical values for the squares of a∗
1g and b1g orbital states in the

wavefunction of the hole with up-spin in the case where the spins of localized holes
form the AF order in the Néel state. The direction of the localized spins at A and
B sublattice is upwards and downwards, respectively

[151] carried out the exact diagonalization of the K–S Hamiltonian using
the Lanczos method for a 2D square lattice system with 16 (4×4) sites which
consists of 16 localized spins and a single itinerant hole, applying the periodic
boundary condition. We note that, for a 4× 4 square lattice with a periodic
boundary condition, there are only six sites which are not equivalent. These
independent sites are numbered as shown in Fig. 9.1(b). The localized spins
at these sites are classified as A and B by two sublattices, depending on the
directions of up or down spins when there are no dopant holes. The calculated
ground-state energy of (8.3) with a single hole is E1h

g = −2.934 eV. This is
lower than E1h

Neel (= −2.317 eV) in (9.7) with z = 4 and L = 16. Hereafter we
omit the unit of energy eV. The difference of energy ∆E1h

g , which is defined
as ∆E1h

g = E1h
g − E1h

Neel, is −0.617. This means that the ground state in the
K–S Hamiltonian is more stable due to the spin fluctuation effect, compared
with that in the Néel order system.

On the other hand, we consider the case of a spin system without any
dopant hole (un-doped case). It is well known that the energy of ground
state for the antiferromagnetic Ising model is represented as − 1

4JzL × 1
2 .

This means that the ground state of the antiferromagnetic Ising spin system
is consistent with the Néel state. When the ground-state energy in the un-
doped case is denoted by E0h

Neel, the calculated value of E0h
Neel is −0.8 for

a 2D square lattice with 16 sites. If the spin fluctuation is introduced into
the antiferromagnetic Ising spin system, the antiferromagnetic Heisenberg
model is obtained where the ground-state energy for the latter is calculated
to be E0h

g = −1.123. The energy difference ∆E0h
g , defined by ∆E0h

g = E0h
g −

E0h
Neel, is −0.323. Further Hamada et al. [151] calculated the energy difference

between E1h
g and E0h

g , ∆E1−0
g , and that between E1h

Neel and E0h
Neel, ∆E

1−0
Neel.

These are ∆E1−0
g = −1.811 and ∆E1−0

Neel = −1.517. Thus ∆ ≡ ∆E1−0
g −

∆E1−0
Neel = −0.294. From this fact and from the comparison between ∆E1h

g

and ∆E0h
g , we can say that the K–S model with a single dopant hole is more

stabilized not only by the spin fluctuation effect but also by the exchange
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Fig. 9.3. The dependence of the ground-state energy per lattice-site L, E1h
g (L)/L,

on the lattice-size L for a 1D chain lattice of L sites with a single dopant carrier.
The circles represent the ground-state energy per lattice-site in the case that L is
an even number. The squares correspond to the case when L takes an odd number

interaction between the spins of a dopant hole and a localized hole, Hex in
(8.3).

Hamada et al. [151] also calculated the ground-state energy in a 1D chain
lattice with L sites. It is impossible to calculate when varying the size of
lattice in a 2D system due to the memory limitations. In a 1D chain system,
however, we are able to solve the K–S Hamiltonian within the range of 4 sites
to 20 sites. Let us denote the ground-state energy for L sites with a single
dopant carrier byE1h

g (L). The calculated result of E1h
g (L) is shown in Fig. 9.3.

In the case of the 1D Heisenberg model (un-doped case), generally there are
two curves for the size dependence of the ground-state energy corresponding
to the following two cases: (1) The lattice site number L is an odd number;
(2) that of L is an even number. The separation between two curves is large
due to the effect of the spin frustration effect in the AF order in the localized
spin system when a size of the system is small. On the other hand, in the
case of the K–S model in a 1D system, the system-size dependence of the
ground-state energy is quite different. There is no separation between two
curves corresponding to two cases where L is an odd number and an even
number, even though the system size is small. In fact, there is only a single
line in a relation of energy vs. system size, as shown in Fig. 9.3. This means
that a dopant hole which itinerates in a system can suppress the energy loss
due to the spin frustration in the AF order for the K–S model.

In this section, we investigate how much the AF order survives in the
localized spin system in the presence of dopant holes, by calculating the
spin-correlation function between the localized spins. When the number of
dopant holes in the system is N(≥ 1), the spin-correlation function between
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Fig. 9.4. The calculated results of the spin-correlation function η1(r1j) and the
difference of spin-correlation function from that of the un-doped system ∆η1(r1j)
along two paths of (a) 1-2-3-5-6 and (b) 1-2-4-5-6 in a 2D square lattice, as a
function of the distance between sites 1 and j

the localized spins is defined by

η
N

(rij) = 〈Si · Sj〉 , (9.8)

where rij is a position vector connecting sites i and j, where rij = ri − rj .
The calculated results of the spin-correlation function for the 2D and the 1D
systems with a single hole-carrier, η1(r1j), are shown in Figs. 9.4(a) and (b)
and Fig. 9.5, respectively. These functions are as a function of the distance
between sites j and 1.

Then we compare the values of η1(r1j) with the spin-correlation function
calculated for a 2D AF system with no dopant holes (un-doped case), which
is denoted by ηu(r1j). The difference between η1(r1j) and ηu(r1j), ∆η1(r1j)



70 9 Exact Diagonalization Method to Solve the K–S Hamiltonian

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9

C
o

rr
el

at
io

n
 f

u
n

ct
io

n
s

j

η1 (r1j)
∆η1 (r1j)

Fig. 9.5. The calculated results of the spin-correlation function η1(r1j) and the
difference of spin-correlation function from that of the un-doped system ∆η1(r1j)
in a 1D chain lattice of 16 sites, as a function of the distance between sites 1 and j.
Due to the periodic boundary condition, a horizontal axis is taken to j = L/2 + 1.
As a result the results from j = 1 to 9 is shown

(= η1(r1j) − ηu(r1j)), is shown by dotted lines in Fig. 9.4 for the case of
i = 1. We note in Fig. 9.1(b) that there are two paths connecting sites 1
and 6, i.e., 1-2-3-5-6 and 1-2-4-5-6. These paths show that the sites on the
two sublattices appear alternately. The calculated results for the correlation
functions corresponding to the paths 1-2-3-5-6 and 1-2-4-5-6 are shown in
Fig. 9.4(a) and Fig. 9.4(b), respectively. From these results, it is concluded
that the AF ordering in the localized spin system is not destroyed even in
the presence of a dopant hole. In fact, |∆η1(r1j)| is considerably smaller than
|ηu(r1j)| in the hole-doped system. In other words, this result means that a
dopant hole in a 4× 4 2D lattice does not have a significant effect on the AF
order.

On other hand, the calculated results for the spin-correlation functions
η1(r1j) and the difference of the spin-correlation functions ∆η1(r1j) in a 1D
system are shown in Fig. 9.5. It is seen from Fig. 9.5 that |∆η1(r1j)| in a 1D
system approaches to |ηu(r1j)| as j becomes larger. Thus we can say that the
a dopant hole considerably affects a whole localized spin system in the case
of a 1D system.

From the above calculated results, we conclude that the AF order in the
localized spin system in the 2D system is not influenced by doping a single
hole-carrier while that in the 1D system is disturbed, as far as the K–S model
is concerned.

Now we proceed to investigate whether the AF order is influenced by
doping two hole-carriers for 1D and 2D systems, based on the K–S model.
For this purpose we calculate the spin-correlation function η2(rij) between



9.3 Calculated Results for the Spin-Correlation Functions 71

1 2 3 5 6

j

(a)

1 2 4 5 6

C
o

rr
el

at
io

n
 f

u
n

ct
io

n
s

j

(b)

C
o

rr
el

at
io

n
 f

u
n

ct
io

n
s

η2 (r1j)
∆η2 (r1j)

η2 (r1j)
∆η2 (r1j)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Fig. 9.6. The calculated results of the spin-correlation function η2(r1j) and its
difference from that of the un-doped system ∆η2(r1j) in a 2D square lattice of
4 × 4 sites with two hole-carriers (a) for the path 1-2-3-5-6 and (b) for the path
1-2-4-5-6. These quantities are shown as a function of the distance between sites 1
and j

the localized spins at sites ri and rj in the presence of two hole-carriers, and
the difference of spin-correlation functions between an un-doped case and a
two-hole case, ∆η2(rij), which has been defined in (9.8), where rij = ri−rj .
Like the case of a single hole-carrier, we calculate these quantities for a 1D
chain lattice and a 2D square lattice system.

First the calculated results of η2(r1j) for a 2D square lattice are shown
in Figs. 9.6(a) and (b), as a function of the distance between sites j and 1.
Similarly to the case of a single hole-carrier, we show η2(r1j) along the two-
paths 1-2-3-5-6 and 1-2-4-5-6 in Figs. 9.6(a) and (b), respectively. Then we
compare the calculated values of η2(r1j) with the spin-correlation function
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Fig. 9.7. The calculated results of the spin-correlation function η2(r1j) and its
difference from that of the un-doped system ∆η2(r1j) in a 1D chain lattice of 16
sites with two hole-carriers, where these quantities are shown as a function of the
distance between sites 1 and j. Due to the periodic boundary condition, a horizontal
axis is taken to be j = L/2 + 1. Thus it is enough to show the result from j = 1
to 9

for the 2D AF system with no holes (the un-doped case), the latter of which
is denoted by ηu(r1j). The difference between η2(r1j) and ηu(r1j), ∆η2(r1j)
(= η2(r1j)−ηu(r1j)), is shown by dotted lines in Fig. 9.6. From these results,
it is concluded that the 2D AF order in the localized spin system is not
destroyed even in the presence of two dopant holes. This feature is similar
to the one obtained in the case of a single dopant hole in the localized spin
system.

Now the calculated results of η2(r1j) for a 1D chain lattice are shown
in Fig. 9.7, as a function of the distance between j and 1 along a chain.
Comparing the results in Fig. 9.7 with those in the Fig. 9.6, ∆η2(r1j) for the
1D case is a little larger than ∆η2(r1j) for the 2D case. This means that the
spin fluctuation effect in a 1D system is more remarkable than that in a 2D
system, as is well known. As a result the K–S model is a little disturbed in a
1D system.

In summary, we have presented the calculated results of η(r1j) and
∆η(r1j) for a 1D chain lattice and a 2D square lattice in the two cases of a
single hole-carrier and two hole-carriers. In order to clarify an effect by hole-
carriers on the AF order in the localized spin system, we have investigated
the difference of the spin-correlation functions between an un-doped case and
an N -carrier case with N = 1 or 2 for a 1D chain system and a 2D square
system. By comparing the results in Fig. 9.8(a) with those in Fig. 9.8(b), we
can say that the AF order in the localized spin system is more disturbed by
the presence of carriers in the 1D chain system than in the 2D square system.
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Fig. 9.8. The calculated results derived from the difference of the spin-correlation
function from that of the un-doped system, ∆ηN (r1j), (a) in a 2D square sys-
tem and (b) in a 1D chain system. A perpendicular axis represents the value of
(−1)j−1∆ηN (r1j). Factor (−1)j−1 is multiplied by ∆ηN (r1j) in order to clarify the
change of the spin-correlation function by doping the hole-carriers

Further we can see that the disturbance in the AF order is more remarkable
in a single carrier case than in the two-hole case. However, the AF order
around j = 2 in the 1D chain system is more disturbed in the two hole case
while the AF order in the single hole case is disturbed over a long distance
with zigzag behaviour. By comparing the results of the single hole case with
two hole case, we may conclude that the K–S model holds more favorably
when the carrier concentration increases.
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9.4 Calculated Results
for the Orbital Correlation Functions

Next we investigate whether a dopant hole is itinerant or not by examining
a behaviour of its wavefunction in 1D and 2D systems. Although complete
itinerancy can not be concluded from the calculated results of the present
systems, it is nevertheless possible to discuss whether there is the tendency
of the wavefunction of a dopant hole extending over the whole system. For
this purpose, we calculated the off-diagonal orbital correlation function for a
dopant hole defined by

ζmn(rij) =
∑
r′σ

〈C†
rij+r′mσ

Cr′nσ〉 , (9.9)

where ζmn(rij) represents the correlation between m-type orbital at the ith
site and n-type orbital at jth site. If a dopant hole were localized, this cor-
relation function would decay rapidly. We have calculated ζmn(rij) for the
three cases; m = n = a∗1g, m = n = b1g, and m = a∗1g and n = b1g, which we
denote by ζaa(rij), ζbb(rij) and ζab(rij), respectively.

First, we investigate the dependence of an off-diagonal orbital correlation
function between the first nearest neighbour sites in a 2D system on the
energy difference between a∗1g and b1g orbitals, ∆ε. If a dopant hole transfers
like a metallic state based on the K–S model, the value of ζab(rij) between
the fist nearest neighbour sites should be at least larger than one of ζaa(rij)
and ζbb(rij) between the first nearest neighbour sites. The calculated results
of the ∆ε dependence of off-diagonal orbital correlation function in a 2D
system are shown in Fig. 9.9. From this figure we can see that, when the
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Fig. 9.9. The dependence of the off-diagonal orbital correlation functions between
first nearest neighbour sites on the energy difference between a∗

1g and b1g orbitals,
∆ε, for a 2D system with a single hole-carrier
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energy difference between two orbitals takes a value from 1.5 eV to 2.6 eV, it
is advantageous for a hole-carrier to move between two orbitals alternately.

Based on the results of the first-principles cluster calculation with the
MCSCF-CI method for LSCO, Kamimura and Suwa obtained the value of
the energy difference between a∗1g and b1g orbitals, ∆ε in the K–S Hamil-
tonian, to be 2.6 eV. This value, derived from the results of the first-principles
calculation, lies within the energy range from 1.5 eV to 2.6 eV suggested from
Fig. 9.9. This result supports the validity of the K–S model. But it is insuf-
ficient to discuss the itinerancy of a dopant hole only from the off-diagonal
orbital correlation function between the first nearest neighbour sites. Accord-
ingly, for ∆ε = 2.6 eV in a 2D system with a single dopant hole, we investi-
gate the off-diagonal orbital correlation function for a distant site from j = 1.
Figures 9.10(a) and (b) show how ζaa(r1j), ζbb(r1j) and ζab(r1j) vary with
site j along the paths 1-2-3-5-6 and 1-2-4-5-6, respectively, where site i is
taken to be 1. As seen in Fig. 9.10, ζmn(r1j) does not decay over the size of
the system, suggesting that a hole does not localize even in the presence of
AF order.

On the other hand, in the same procedure as the case of a 2D system,
the dependence of the off-diagonal orbital correlation function between the
first nearest neighbour sites for the case of a 1D system is shown in Fig. 9.11.
As shown in Fig. 9.11, the off-diagonal orbital correlation functions in a 1D
system are very sensitive to the change of the energy difference between two
orbitals, ∆ε. In contrast to the case of a 2D square lattice, the energy region
in which a dopant hole can hop between two orbitals is very narrow. We
can see from Fig. 9.11 that when ∆ε takes a value in the energy range from
2.3 eV to 2.6 eV, the itinerant motion of a dopant hole becomes possible. Like
the case of a 2D system, the calculated results of the off-diagonal orbital
correlation function at a site far from a first nearest neighbour site in a 1D
chain lattice with a single dopant hole is shown in Fig. 9.12. As j increases,
ζaa(r1j), ζab(r1j) and ζbb(r1j) decrease gradually. However, these values are
so small that a metallic state based on the K–S model is not possible in a 1D
system.

According to the present results for the Heisenberg spin Hamiltonian for
the localized spin system in (8.3), ζaa(r1j), ζbb(r1j) and ζab(r1j) show an
oscillating behaviour with changing site j. From this result we can say that
the spin fluctuation in the AF order assists the “zigzag”-like states. To be
more precise, an alternating behaviour of the increase and decrease in the
magnitudes of ζaa(rij), ζbb(rij) and ζab(rij) appears when rij connecting
two sites varies between different sublattices. This behaviour is due to the
aid of the spin fluctuation effect in the localized spin system.



76 9 Exact Diagonalization Method to Solve the K–S Hamiltonian

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 5 6

C
o

rr
el

at
io

n
 f

u
n

ct
io

n
s

j

(a)

1 2 4 5 6

C
o

rr
el

at
io

n
 f

u
n

ct
io

n
s

j

(b)

ζaa(r1j)

ζab(r1j)

ζbb(r1j)

ζaa(r1j)

ζab(r1j)

ζbb(r1j)

Fig. 9.10. The calculated results of the off-diagonal orbital correlation functions
for a dopant hole; ζaa(r1j), ζab(r1j) and ζbb(r1j): (a) for the path 1-2-3-5-6 and
(b) for the path 1-2-4-5-6. In these calculations the energy difference between a∗

1g

and b1g orbitals is chosen to be 2.6 eV

9.5 The Case of a Single Orbital State

In this section, we investigate the case where only a single orbital state exists
in the Hamiltonian (8.3) in order to understand the importance of the coex-
istence of the two kinds of orbital states a∗1g and b1g in the metallic state in
cuprates, especially in a 2D system. In particular, we pay a special attention
to the case where only the Zhang–Rice singlet state exists [96]. In order to
treat this special case the absolute value of εb1g (εb1g < 0) in the K–S Hamil-
tonian (8.3) is taken to be very large, compared with εa∗

1g
. As a result, only
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Fig. 9.11. The dependence of the off-diagonal orbital correlation functions between
first nearest neighbour sites on the energy difference between a∗

1g and b1g orbitals,
∆ε, for a 1D chain system with a single hole-carrier
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Fig. 9.12. The calculated results of the off-diagonal orbital correlation functions
in a 1D chain system with a dopant hole; ζaa(r1j), ζab(r1j) and ζbb(r1j), when the
energy difference between a∗

1g and b1g orbitals is 2.6 eV

the b1g orbital state plays a role. The remaining parameters are taken as the
same as those in the case where the two orbitals a∗1g and b1g coexist.

We call this case “one-orbital case”. Apparently the ground state in this
case consists of the Zhang–Rice singlets, where a dopant hole occupies only
the b1g orbital. Figure 9.13 shows the calculated spin-correlation function
(η1(r1j)) and its difference from ηu(r1j), i.e., ∆η1(r1j) for the “one-orbital
case”. This result clearly shows that ∆η1(r1j) is comparable to η1(r1j)
and thus in the “one-orbital case” the AF order is destroyed. As for the
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Fig. 9.13. The calculated results of the spin-correlation function η1(r1j) and the
difference of spin-correlation function from that of the un-doped system ∆η1(r1j)
for εb1g = −100 eV: (a) for the path 1-2-3-5-6 and (b) for the path 1-2-4-5-6

off-diagonal orbital correlation for a dopant hole, only ζbb(r1j) is considered.
The calculated result of ζbb(r1j) is shown in Fig. 9.14 as a function of the
distance between sites 1 and j. From this result we can say that a dopant
hole is localized within the space of several sites. This may correspond to a
situation similar to the case in which a localized spin-polaron is formed in a
single band system. Here, in order to check this inference, we calculated the
spin-correlation function between a spin of a dopant hole and a localized spin
in the underlying AF lattice. The calculated results are shown in Fig. 9.15.
From the results in Fig. 9.15 we may say that a spin polaron is formed around
j = 1. Consequently we conclude that the coexistence of two orbitals a∗1g and
b1g plays an important role in making a dopant hole itinerant in a cuprates
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Fig. 9.14. The calculated results of the off-diagonal orbital correlation function for
the dopant hole in the “Zhang–Rice case”, ζbb( r1j), where we take εb1g = −100 eV:
(a) for the path 1-2-3-5-6 and (b) for the path 1-2-4-5-6

in the presence of AF order. Finally a remark is made on the t–J model [96].
In the t–J model the Zhang–Rice singlet is considered to be a quasi-particle
while in the present calculation the Zhang–Rice singlet has been treated as
one of the states in the ground state.

9.6 Calculated Results
of the Radial Distribution Function
for Two Hole-Carriers

The radial distribution function between two hole-carriers is introduced in
order to investigate a spatial correlation between two hole-carriers. The radial
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Fig. 9.15. The calculated results of the spin-correlation function between a spin
of a hole-carrier in the b1g orbital and localized spins in 2D AF order, 〈s1,b1g ·Si〉,
for εb1g = −100 eV. An ith site is chosen along two paths of (a) 1-2-3-5-6 and (b)
1-2-4-5-6, respectively

distribution function is denoted as Pmn(R) for the distance between two hole-
carriers, R = |ri − rj |. Pmn(R) represents a spatial distribution of two hole-
carriers for the case where one hole-carrier is located at a place ri occupying
the m-type orbital and the other is located at a place rj occupying the n-
type orbital. By using the number operator n̂i,m(= n̂i,m,↑ + n̂i,m,↓), Pmn(R)
is defined as

Pmn(R) =
∑
〈i,j〉

〈n̂i,mn̂j,n〉 . (9.10)

Here n̂i,m,↑ and n̂i,m,↓ are the number operators for the holes in m-type
orbital at ith site with up-spin and down-spin, respectively. Further by taking
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Pa∗1ga∗1g(R), Pa∗1gb1g(R) and Pb1gb1g(R). Initial point of R is placed at O as shown

in the illustration of figure, where the first hole lies at O

summation over all the orbitals (m,n = a∗1g or b1g), Ptotal(R) is defined as

Ptotal(R) =
∑
m,n

Pmn(R) , (9.11)

where Ptotal(R) is normalized to 1, that is
∫
Ptotal(R) dR = 1. There are three

types of Pmn(R); m = n = a∗1g, m = a∗1g and n = b1g, and m = n = b1g,
which are denoted as Pa∗

1ga∗
1g

(R), Pa∗
1gb1g(R) and Pb1gb1g(R), respectively.

The calculated radial distribution functions of the three types Pmn(R) and
of Ptotal(R) are shown in Fig. 9.16 for various sites in the 2D square lattice,
A, B, C, D and E, where the first hole is located at O site and the second
hole moves from O site to A, B, C, D and E. From Fig. 9.16 we can see that
Pmn(R) shows the zigzag-like behaviour. Further the following conclusions
emerge from the calculated results shown in Fig. 9.16, in particular from the
result for Ptotal(R): (1) The case where two holes are located at O and C
sites is the highest probability and the case where two holes are located at
O and A sites appears with higher probability. This indicates the coulomb
repulsion between hole-carriers is not strong. In both cases the directions of
the localized spins in the AF order are opposite. The present calculated result
is in good agreement with the experimental results on the coherent length of
Cooper pair, which is 10 to 15 Å, because the distance between O and A site
is nearly 10 Å. (2) A reason why Pa∗

1gb1g(R = 0) has a finite value instead of
zero value is due to the fact that the two holes with opposite spins may come
to the same site even though the Hubbard-U interaction exists.



10 Mean-Field Approximation
for the K–S Hamiltonian

10.1 Introduction

In Chap. 9, we described one of the methods to solve the K–S Hamiltonian,
i.e., the exact diagonalization method. However, since this method is ap-
plicable only to a system of a finite size, we have to develop a new method
to solve the K–S Hamiltonian for a real cuprate material. For this purpose,
in this chapter we will develop a method of solving the K–S Hamiltonian in
an approximate way, which is called a mean-field approximation.

Let us now explain the mean-field approximation for the K–S Hamil-
tonian. In order to solve the K–S Hamiltonian (8.3) in Chap. 8, we tried
to separate a hole-carrier system and a system of the localized spins which
occupy the upper Hubbard b∗

1g band and form the antiferromagnetic (AF)
ordering due to the superexchange interaction between the localized spins,
J in (8.3). For this aim we assume that a spin-correlated region is widely
spread, and we treat the the exchange interaction between the spins of a
dopant hole and a localized spin in (8.3),

∑
i,m Kmsim ·Si, in the mean field

approximation by replacing the localized spins Si’s by its average value 〈Si〉.
This method was developed by Kamimura and Ushio, and numerical calcu-
lations have been performed by Ushio and Kamimura. In this method the
values of Si at T = 0 K are taken as the average values of 〈Si〉, that is +1
for A-site and −1 for B-site. Thus the effect of the localized spins is dealt
with like a molecular field acting on a dopant hole. This approximation is
called “mean-field approximation”.

In order to derive the effective one-electron-type Hamiltonian for the
dopant holes, we determine the “molecular field” of the localized spins so as
to reproduce the results of first-principles calculation for a CuO6 octahedron
by Kamimura and Eto [104]. In other words, we determine the effective-one-
electron type Hamiltonian in a periodic system so that the energy of 3B1g

and 1A1g multiplets calculated by using the effective one-electron-type Hamil-
tonian coincides with that of first-principles cluster calculations by Kamimura
and Eto, and further assume that the lifetime broadening effect due to the
finite spin correlation length is neglected.

In this context the calculation of the effective one-electron-type band
structure of the carrier system is performed by renormalizing the effects of
the exchange integral between the spins of a dopant hole and a localized spin
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into the carrier states. In doing so one should first note that the holes which
are accommodated in the antibonding b∗

1g orbitals are localized at Cu site
by the strong U effect and the spins of localized holes in b∗

1g orbitals are
coupled antiferromagnetically due to the superexchange interaction between
the localized spins, the third terms with J in the right hand side of (8.3).

Since the dopant holes move coherently over a long distance without de-
stroying the AF order, occupying from the high-spin 3B1g multiplet to the
low-spin 1A1g multiplet and then to the high-spin 3B1g multiplet in the “mole-
cular field” of the localized spins, we take a unit cell so as to contain two
neighbouring CuO6 octahedrons with up- and down-localized spins called A-
and B-sites. Further, in order to realize the alternate appearance of b1g and
a∗1g orbitals through O pσ orbitals, we take into account the CuO2 network
structure explicitly and consider the 34 × 34 dimensional matrix (H̃(k)),
where 2px, 2py and 2pz atomic orbitals for each of eight oxygen atoms and
3dyz, 3dxz, 3dxy, 3dx2−y2 and 3dz2 atomic orbitals for each of two Cu atoms
in the unit cell are taken as the basis functions. This Hamiltonian matrix
H̃(k) consists of two parts; the one-electron part H̃0(k), and the effective-
interaction part H̃int(k), which comprises the many-body interactions such
as the exchange interaction between the spins of carriers and localized holes
in (8.3) and Hubbard U interaction for the localized holes in b∗

1g orbitals.
Then, in the case of a dopant hole with up-spin, the energy of b∗

1g state in
a CuO6 cluster with localized up-spin (A-site) is taken to be high so that the
b∗

1g state at A-site is filled with holes even in undoped La2CuO4, while the
energy of b∗

1g state in a CuO6 cluster with localized down-spin (B-site) is low
so that there are no holes in the b∗

1g state at B-site, i.e., the b∗
1g states at B-

sites are empty. The difference between the energy of b∗
1g states at A-site and

B-site is due to the strong U effect. Further, the energy of a∗1g state at A-site
is taken to be higher than that at B-site by Hund’s coupling energy, while
the energy of b1g state at B-site is taken to be higher than that at A-site by
the spin-singlet coupling in 1A1g state, so as to reproduce the characteristic
electronic structure where up-spin carriers take the 3B1g state at A-site and
the 1A1g state at B-site. In this chapter the energy of b∗

1g, b1g or a∗1g state
indicates the energy for a electron but not a hole.

In this way one can include the many-body interaction effects of the Hub-
bard U interaction for the localized holes in b∗

1g orbital as well as of the
exchange interaction in the K–S Hamiltonian (8.3) in the the 34 × 34 di-
mensional effective-interaction part H̃int(k). Further, all the matrix elements
related to the transfer interactions which appear in the one-electron part
of the 34 × 34 dimensional Hamiltonian matrix, H̃0(k), can be estimated
from the Slater–Koster (SK) parameters. In the present calculation we use
the values of the SK parameters fitted to an APW band calculation [152]
by De Weert et al. [153] and thus the one-electron part of the Hamiltonian,
H̃0(k), reproduces the APW bands well.
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In order to obtain H̃int(k), we first construct the eigenstates localized at
A-site or B-site by taking the linear combination of the doubly degenerated
eigenstates of H̃0(k0), where vector k0 indicates ( π

2a ,
π
2a , 0) with a being the

lattice constant in CuO2 plane. The resultant eigenstates are
∑

l cos( π
2axl +

π
2ayl)ϕal and

∑
l sin( π

2axl + π
2ayl)ϕal, which we consider to be localized at

A-site and B-site respectively, where ϕal are the Wannier type eigenstates of
H̃0(k0).

If we take these functions as a basis function, the effective-interaction part
H̃int(k) is obtained, by choosing the energy of the b∗

1g state at A-site, that of
b∗

1g state at B-site, that of b1g state at B-site, that of a∗1g state at A-site and
that of a∗1g state at B-site so as to reproduce the energy difference between
multiplet 3B1g and 1A1g calculated by Kamimura and Eto [104]. Then by
a unitary transformation we can obtain the expression of H̃int(k0) with the
ordinary basis of Wannier type atomic functions.

The method described above is similar in its idea to the (LDA+U) method
developed by Anisimov et al. [154] for copper oxides, but the interactions are
treated accurately in the present method, while Anisimov et al. treated U
as a disposal parameter. As described above, all the matrix elements in the
34× 34 dimensional Hamiltonian matrix (H̃) become one-electron type, and
thus we can diagonalize it easily. In this way we can obtain a band structure
including the many-body effects in a molecular field approximation for LSCO.

10.2 Slater–Koster Method: Its Application to LSCO

The Slater–Koster method [155], in which the analytical form of the tight
binding (TB) Hamiltonian is fitted to the first-principles band calculation,
can be used to give insight into difficult problems which are intractable with
a standard first-principles calculation method. Therefore, it has been used
to consider the structural phase transition associated with a charge density
wave [156], the phonon spectra and the electron–phonon mediated supercon-
ductivity in high Tc cuprates [157, 158]. In the present chapter we use the
Slater–Koster (SK) method as a starting point for a many-body calculation
of the electronic structure of LSCO. The SK method was first applied to
LSCO by De Weert et al. [153]. They determined the on-site matrix elements
and the overlap integrals so as to fit the analytical form of the tight bind-
ing Hamiltonian to the first-principles APW calculation. They performed the
augmented-plane-wave (APW) calculation to generate the eigenvalues En(k)
and the angular momentum components, Qnlm(k), which mean the fraction
of electronic charge in the nth band for the lth angular momentum compo-
nent of the mth basis atom. In the Slater–Koster fits they identify the angular
momentum components as the squares of the norms of the coefficients of TB
wave functions in terms of atomic-like orbitals. In order to generate the TB
band with a proper angular momentum character, they minimize the func-
tional F =

∑
k,n[fn(k)]2, where
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fn(k) =
∣∣EAPW

n (k) − ESK
n (k)

∣∣+∑
lm

∣∣QAPW
nlm (k) −QSK

nlm(k)
∣∣ /W ,

where the superscripts APW and SK denotes the first-principles calculated
values and the Slater–Koster values, respectively, and W is a weight used to
adjust the relative importance of En(k) and Qnlm(k) in their fit. Thus the
SK method affords a basis for a “tight binding” Hamiltonian as a starting
point for many-body calculations. In this section we develop a formalism of
a “tight binding” Hamiltonian for the undistorted crystal structure by using
the Slater–Koster parameters.

In the tight-binding model, the Bloch functions are constructed from the
atomic orbitals ϕa(r − Rlµ) as

Φ0
µak(r) =

1√
N

∑
l

eik·Rlµϕa(r − Rlµ) , (10.1)

where Rlµ = Rl + τµ represents the position of the µth ion in the lth unit
cell, τµ the position of the µth ion in the unit cell, N the total number of
unit cells in the crystal, k a wave vector and a specifies an orbital.

Neglecting the overlap integrals, the energy eigenvalues and the wave
functions are obtained by solving the following equation,

Det|H̃0(k) − E0
nk1̃| = 0 , (10.2)

where H̃0(k) is the Hamiltonian matrix and 1̃ the unit matrix. The energy
eigenvalues E0

nk and the wave functions Ψ0
nk(r) are represented by using the

transformation matrix Ũ

Ẽ0(k) = Ũ−1(k)H̃0(k)Ũ(k) (10.3)

Ψ0
nk(r) =

∑
µa

Uµa,n(k)Φ0
µak(r) , (10.4)

where Ẽ0(k) = E0
nk1̃. The matrix elements of the Hamiltonian H̃0(k) is

defined by

H0
µaνb(k ) = 〈Φ0

µak |He|Φ0
νbk 〉 , (10.5)

where He represents the one-electron Hamiltonian which may be regarded to
include a part of electron correlation because the Slater–Koster (SK) para-
meters are determined so as to reproduce the electronic energy and the wave
functions of first-principles band calculation. This Hamiltonian matrix H̃0(k)
is expressed by taking the atomic orbitals as bases in the following way,

H0
µaνb(k) =

∑
l−l′

e−ik·(Rlµ−Rl′ν)H0
lµal′νb (10.6)

where
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H0
lµal′νb = 〈ϕa(r − Rlµ)|He|ϕb(r − Rl′ν)〉 . (10.7)

Further, all the matrix elements related to the transfer interactions which
appear in the Hamiltonian matrix (H̃0(k)) are expressed in terms of the
SK parameters, which represent the transfer integrals between two atomic
orbitals, cm at the origin and c′m at an arbitrary position R, where c and
c′ represent s, p and d, and m denotes the magnetic quantum number of
the orbital angular momentum with respect to the direction of R. The SK
parameters are conventionally symbolized as t(cc′σ), t(cc′π) and t(cc′δ), cor-
responding to m = 0, ± 1 and ±2, respectively.

In the present treatment we restrict the basis functions to include 2px,
2py and 2pz atomic orbitals for each oxygen atom and 3dyz, 3dxz, 3dxy,
3dx2−y2 and 3dz2 atomic orbitals for each Cu atom in the unit cell. Then the
Hamiltonian matrix is expressed by 17 SK parameters if we consider only
first neighbour interactions. They are listed in Table 10.1. In this table, for
instance, t(ddσ) represents the transfer integrals between two neighbouring
Cu d orbitals with the magnetic quantum number m = 0 of the orbital
angular momentum with respect to the Cu–Cu direction.

The Hamiltonian matrix is shown in Table 10.2, and the detailed expres-
sions of its matrix elements are given in Sect. 10.5 “Appendix A” at the end
of this chapter.

10.3 Computation Method to Calculate
the Many-Electron Energy Bands:
Its Application to LSCO

High-energy neutron scattering studies have shown a persistence of 2D an-
tiferromagnetic spin correlation in the superconducting state of LSCO [159],
and the ARPES results by Aebi et al. [160] have proved the prediction of a√

2×√
2 antiferromagnetic local order. In this section we develop a computa-

tional method to calculate a new electronic structure in the superconducting
concentration region based on the K–S model, in which, if the localized spins
form AF ordering in a spin-correlated region, the carriers take the 3B1g high-
spin multiplet state and the 1A1g low-spin multiplet state alternately in this
spin-correlated region. In this respect a unit cell is taken so as to include
two neighbouring CuO6 octahedrons with localized up- and down-spins. This
unit cell is called “antiferromagnetic (AF) unit cell”, and two neighbouring
CuO6 octahedrons are called A-site and B-site, respectively.

The Hamiltonian matrix H̃(k) consists of two parts; the one-electron part
H̃0(k), and the effective-interaction part H̃int(k), as described in a previous
section. In the AF unit cell, the one-electron part Hamiltonian matrix H̃0(k)
is expressed by the following 34 × 34 matrix

H̃0(k) =
[
H̃0

AA(k) H̃0
BA(k)

H̃0
AB(k) H̃0

BB(k)

]
, (10.8)
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Table 10.1. Slater–Koster parameters
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On-site parameters

O(1): in plane E1
p

O(2): apical E2
p

Cu Edxy

Edx2−y2 = Edz2

First-neighbor parameters

Cu–Cu t(ddσ)
t(ddπ)
t(ddδ)

Cu–O(1) t1(dpσ)
t1(dpπ)

Cu–O(2) t2(dpσ)
t2(dpπ)

O(1)–O(1) t1(ppσ)
t1(ppπ)

O(1)–O(2) t2(ppσ)
t2(ppπ)

O(2)–O(2) t3(ppσ)
t3(ppπ)
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Table 10.2. Matrix elements of H̃0(k)

O(1)1 O(1)2 O(2)1 O(2)2 Cu
x y z x y z x y z x y z xy yz zx x2 − y2 z2

x E1 0 0 T1 T2 0 T4 0 T5 T ∗
4 0 T ∗

5 0 0 0 T13 T14
O(1)1 y E1 0 T2 T1 0 0 T6 0 0 T ∗

6 0 T15 0 0 0 0
z E1 0 0 T3 T5 0 T7 T ∗

5 0 T ∗
7 0 0 T15 0 0

x E1 0 0 T ′
6 0 0 T ′ ∗

6 0 0 T ′
15 0 0 0 0

O(1)2 y E1 0 0 T ′
4 T ′

5 0 T ′ ∗
4 T ′ ∗

5 0 0 0 T ′
13 T ′

14
z E1 0 T ′

5 T ′
7 0 T ′ ∗

5 T ′ ∗
7 0 T ′

15 0 0 0
x E2 0 0 T8 T10 T11 0 0 −T ∗

16 0 0

O(2)1 y E2 0 T10 T8 T12 0 −T ∗
16 0 0 0

z E2 T11 T12 T9 0 0 0 0 −T ∗
17

x E2 0 0 0 0 T16 0 0
O(2)2 y E2 0 0 T16 0 0 0

z E2 0 0 0 0 T17
xy E3 0 0 0 0
yz E4 0 0 0

Cu zx E5 0 0
x2 − y2 E6 T18

z2 E7

Table 10.3. The values of Slater–Koster parameters determined by De Weert et al.

O(1)1 O(1)2 O(2)1 O(2)2 Cu
x y z x y z x y z x y z xy yz zx x2 − y2 z2

x E1 0 0 T1 T2 0 T4 0 T5 T
−
4

0 T
−
5

0 0 0 T13 T14
O(1)1 y E1 0 T2 T1 0 0 T6 0 0 T

−
6

0 T15 0 0 0 0

z E1 0 0 T3 T5 0 T7 T
−
5

0 T
−
7

0 0 T15 0 0

x E1 0 0 T ′
6 0 0 T

′ −
6

0 0 T ′
15 0 0 0 0

O(1)2 y E1 0 0 T ′
4 T ′

5 0 T
′ −
4

T
′ −
5

0 0 0 T ′
13 T ′

14
z E1 0 T ′

5 T ′
7 0 T

′ −
5

T
′ −
7

0 T ′
15 0 0 0

x E2 0 0 T8 T10 T11 0 0 −T
−

16
0 0

O(2)1 y E2 0 T10 T8 T12 0 −T
−

16
0 0 0

z E2 T11 T12 T9 0 0 0 0 −T
−

17
x E2 0 0 0 0 T16 0 0

O(2)2 y E2 0 0 T16 0 0 0
z E2 0 0 0 0 T17

xy E3 0 0 0 0
yz E4 0 0 0

Cu zx E5 0 0
x2 − y2 E6 T18

z2 E7

where H̃0
AA(k), H̃0

BA(k), H̃0
AB(k) and H̃0

BB(k) are the 17×17 matrices which
represent Hamiltonian matrix elements between A- and A-sites, B- and A-
sites, A- and B-sites, and B- and B-sites, respectively. These elements are
defined in Table 10.3, and the expressions of these matrix elements are given
in Sect. 10.5 “Appendix B” at the end of this chapter. In the present cal-
culation we have used the values of the SK parameters fitted to the APW
calculation [152] by De Weert et al. [153]. Those values are given in Table 10.4.

Now we take account of the many-body interaction terms of Hamiltonian
(8.3) in the 34 × 34 dimensional effective-interaction part H̃int(k). In order
to include the effects of the exchange integrals between the spin of a dopant
hole and localized spin, Ka∗

1g
and Kb1g in (8.3) and the Hubbard U -like para-

meter into the many-electron energy bands of a hole-carrier system, we first
construct the antibonding b∗

1g orbital at A-site and B-site, mainly from a Cu
dx2−y2 atomic orbital, the bonding b1g orbital at A-site and B-site from the
O pσ orbitals in a CuO2 layer hybridized by a Cu dx2−y2 atomic orbital, and
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Table 10.4. Matrix elements of H̃0
AA(k), H̃0

AB(k), H̃0
BA(k) and H̃0

BB(k), where
T− = T (−kz)

On-site parameters in Rydbergs

O(1): in plane E1
p 0.2965

O(2): apical E2
p 0.3333

Cu Edxy 0.3506
Edx2−y2 Edz2 0.4375

First-neighbour parameters in Ry

Cu–Cu t(ddσ) 0.0048
t(ddπ) −0.0049
t(ddδ) −0.0058

Cu–O(1) t1(dpσ) 0.0921
t1(dpπ) 0.0631

Cu–O(2) t2(dpσ) 0.0418
t2(dpπ) 0.0277

O(1)–O(1) t1(ppσ) 0.0431
t1(ppπ) −0.0282

O(1)–O(2) t2(ppσ) −0.0152
t2(ppπ) −0.0144

O(2)–O(2) t3(ppσ) 0.0126
t3(ppπ) −0.0018

a∗1g orbital at A-site and B-site from Cu dz2 orbital and O pσ orbitals in a
CuO2 layer and O pz orbitals of apical oxygen. The antibonding b∗

1g orbitals
at A-site and B-site accommodate up-spin and down-spin holes, respectively,
due to the Hubbard U interaction and the superexchange interaction. Then
the a∗1g orbital at A-site and the b1g orbital at B-site participate in forming
the 3B1g high-spin multiplet and the 1A1g low-spin multiplet, respectively,
with the localized b∗

1g holes.
We construct localized states at A-site and B-site by taking a linear com-

bination of the doubly degenerated eigenstates of the one-electron Hamil-
tonian H̃0(k0) where vector k0 indicates ( π

2a ,
π
2a , 0). This is possible because

the eigenstates |k0〉 and | − k0〉 are degenerate, reflecting the fact that the
difference between two wave vectors, k0 and −k0, coincides with a recipro-
cal lattice vector. The resultant eigenstates are

∑
l cos( π

2axl + π
2ayl)ϕal and∑

l sin( π
2axl + π

2ayl)ϕal, respectively, where ϕal are the Wannier type eigen-
states of H̃0(k0), which are localized at the lth site and constructed with a
linear combination of atomic orbitals. Strictly speaking, these eigenstates are
not localized only at a particular site, but we consider these eigenstates as
those localized at A-site and B-site. Using the transformation matrix Ũ(k0),
which yields such localized eigenstates, H̃0(k0) is diagonalized;

Ũ−1(k0)H̃0(k0)Ũ(k0) = Ẽ0(k0) . (10.9)
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The eigenstates of Ẽ0 are expressed as linear combinations of atomic orbitals
localized at A-site or B-site, such as a∗1g orbital at A-site, a∗1g orbital at
B-site, b∗

1g orbital at A-site, b∗
1g orbital at B-site, and so on. In order to

construct, for example, a∗1g orbital at B-site, in numerical calculations we
take a linear combination of two degenerate a∗1g orbitals which correspond to
the eigenstates |k0〉 and | − k0〉 so that the component of Cu dz2 orbital at
A-site disappears.

If we include the effects of the exchange interaction between the spin
of a dopant hole and a localized spin, K in (8.3) into the carrier states,
then, in the case of a dopant hole with up-spin, the energy of an electron
occupying the a∗1g state at A-site is taken to be higher than that at B-site by
Hund’s coupling energy, which is 2 eV [103]. On the other hand, as regards
the energy of an electron occupying the b1g state at B-site, it is first taken
to be higher than that at A-site by the energy of the spin-singlet coupling
in 1A1g multiplet which is 4 eV [103]. Then we have to proceed to include
the effect of the crystalline potential in LSCO in the energy of b1g state.
The effect corresponds to the energy difference between the 3B1g and 1A1g

multiplets due to the Madelung potential. According to the cluster calculation
by Kamimura and Eto [103], this energy difference is found to be 2 eV. Thus
2 eV should be added to the on-site energy of the b1g orbital, while leaving the
on-site energy of the a∗1g orbital remains unchanged. As a result the energy
of b1g state at B-site, which is the sum of the spin-singlet coupling energy,
4 eV, and the on-site energy of b1g orbital, 2 eV, becomes 6 eV. Thus the
up-spin carriers take the 3B1g state at A-site and the 1A1g state at B-site in
the underdoped region. Lastly the energy of b∗

1g state in a CuO6 cluster with
localized up-spin (A-site) is taken to be higher than that in a CuO6 cluster
with localized down-spin (B-site) by the Hubbard U parameter, which is
taken as 10 eV in the present treatment. Thus the localized spin band b∗

1g

becomes separated from the hole carrier system.
Then the total Hamiltonian H̃(k) is constructed with the one-electron

part and the effective-interaction part, and the effective-interaction part has
the eigenvalue of the b∗

1g state at A-site which is +10 eV, that of b∗
1g state at

B-site −10 eV, that of b1g state at B-site +6 eV, that of a∗1g state at A-site
+1eV and that of a∗1g state at B-site −1 eV. Here it should be noted that
H̃(k) is the Hamiltonian matrix for a electron but not a hole. Then the total
Hamiltonian H̃(k) should be transformed by transformation matrix Ũ(k0),
as

Ũ−1(k0)H̃(k0)Ũ(k0) = Ẽ0(k0) + Ẽint(k0) , (10.10)

where
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Ẽint(k0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
+10

−10
. . .

+1
−1

. . .
+6

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

...
A-site b∗

1g

B-site b∗
1g

...
A-site a∗1g
B-site a∗1g
...
B-site b1g

...

(10.11)

with the energy being measured in eV. By inverse transformation we can
obtain, H̃int(k0) = Ũ(k0)Ẽint(k0)Ũ−1(k0). A similar calculation with respect
to k′

0=( π
2a ,− π

2a , 0) gives H̃int(k′
0) as well.

Then, using the approximation that the effective-interaction term H̃int

has matrix elements only between nearest neighbour atomic orbitals, we can
represent the k dependence of the effective-interaction part of the Hamil-
tonian matrix, H̃int(k), as is shown in Sect. 10.5 “Appendix C” at the end
of this chapter. Then we can determine 〈a|H̃even

int |b〉 and 〈a|H̃odd
int |b〉, where

“even” and “odd” mean that the interchanging of the two atomic orbitals,
a and b, produces +1 and −1 in sign, respectively. In this way we can in-
clude the exchange interaction terms of the K–S Hamiltonian (8.3) and the
Hubbard U interaction for the localized holes in b∗

1g orbital in the the 34×34
dimensional effective-interaction part H̃int(k). As for the value of the differ-
ence between εa∗

1g
and εb1g in (8.3), it is taken so as to reproduce the energy

difference between multiplets 3B1g and 1A1g calculated by Kamimura and
Eto [104].

As described above, all the matrix elements in the 34 × 34 dimensional
Hamiltonian matrix (H̃) become of one-electron type as the result of the
mean field approximation, and thus we can diagonalize it easily. In this way
we can obtain a band structure including the many-body effects, which is
treated as a molecular field acting on the dopant holes for LSCO. In the
following we will present the results of the many-body included energy band
for LSCO calculated by the computational method described in the present
chapter.

10.4 Computation Method Applied to YBCO Materials

So far we have described a method for deriving the energy bands including the
many-body effects based on the K–S model following Ushio and Kamimura,
and applied it to LSCO. In this section we will apply the present method
to YBCO7, following calculations by Nomura and Kamimura [105]. In the
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case of LSCO, Ushio and Kamimura expressed the first-principles augmented-
plane-wave (APW) or linearized-augmented-plane-wave (LAPW) band struc-
ture of La2CuO4 in terms of a tight-binding (TB) band structure following
De Weert et al. [153], and calculated various physical properties such as
electron–phonon interaction, Hall coefficient, resistivity, etc.

Thus such TB parametrization is an important tool for calculating a num-
ber of physical properties. In this context Nomura and Kamimura performed
the TB parametrization for YBCO7. Although the TB parametrization was
already done by De Weert et al. for YBCO7, Nomura and Kamimura found
that wavefunctions corresponding to each TB energy band by De Weert et al.
are not consistent with those obtained by APW or LAPW band structure
calculated for YBCO7. In this context Nomura and Kamimura performed
newly the TB parametrization for the energy bands numerically calculated
for YBCO7 to reproduce not only the energy band shape but also wavefunc-
tions for each band. In this section we describe their method with regard to
the Slater–Koster fits for YBa2Cu3O7.

As we described in previous sections, the Slater–Koster (SK) method
[155], which treats TB matrix elements and overlap integrals as disposable pa-
rameters to be determined by fitting the TB band structure to first-principles
calculated energy bands, can be used to give insight into difficult problems
which are intractable with a standard first-principles calculation method. In
the case of YBCO7, Krakauer et al. [161] performed LAPW calculations to
generate eigenvalues En(k) and angular momentum components Qnlm(k) of
an energy band. Here Qnlm(k) means the fraction of electronic charge in the
nth band for the lth angular momentum component of the mth basis atom.
This quantity is used to decompose the density of states. Then De Weert
et al. determined the SK parameters to reproduce the bands presented by
Krakauer et al. near the Fermi level.

They omitted Ba atoms and restricted the basis to Y-d, Cu-d, and O-p
states, obtaining a 41×41 secular equation. They considered first-, second-,
and third-neighbour hopping elements, so that the TB fit required 79 SK pa-
rameters. The CuO2 planes consist of sites denoted Cu(2), O(2), and O(3),
and the chain atoms are denoted as Cu(1) and O(1). The O(4) sites lie be-
tween chain and plane copper atoms, but are much closer to the chain Cu(1)
sites. In this compound, none of the atoms sit at sites of local cubic or even
tetragonal symmetry. Thus, all the p and d bands have, in principle, crystal-
field splittings. This is particularly important for Cu(1), which has a very
asymmetric local environment. Consequently, De Weert et al. described the
O-p on-site energies with three distinct values, and the Cu-d on-site energies
with five distinct values. The coordinates of the atoms they used are given
in Table 10.5, and the neighbour distances they used are in Table 10.6. The
structure is orthorhombic, with 13 atoms per unit cell distributed among
eight distinct sites. The following lattice constants are adopted for YBCO7

[153], a = 7.2249 a.u., b = 1.01655 a.u., and c = 3.05599 a.u.
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Table 10.5. Structure of YBa2Cu3O7. a = 7.2249 a.u., b = 1.01655a, c = 3.05599a

Atom x(unit of a) y(unit of b) z(unit of c)

Y 0.500 0.500 0.500
Ba 0.500 0.500 0.1846
Ba 0.500 0.500 0.8154
Cu(1) 0.000 0.000 0.000 Chain
Cu(2) 0.000 0.000 0.3551 Plane
Cu(2) 0.000 0.000 0.6449 Plane
O(1) 0.000 0.500 0.000 Chain
O(2) 0.500 0.000 0.3781 Plane
O(2) 0.500 0.000 0.6219 Plane
O(3) 0.000 0.500 0.3779 Plane
O(3) 0.000 0.500 0.6221 Plane
O(4) 0.000 0.000 0.1579
O(4) 0.000 0.000 0.8421

Table 10.6. Yttrium, copper, and oxygen neighbours for YBa2Cu3O7 (units of
a = 7.2249 a.u.). (∗ indicates that parameters for neighbours at b = 1.01655a were
the same as for this neighbour.)

First neighbours
Cu(1) Cu(2) O(1) O(2) O(3) O(4)

Y · · · 0.8393 · · · 0.6301 0.6305 · · ·
Cu(1) 1.000∗ · · · 0.5083 · · · · · · 0.4825
Cu(2) 0.8856 · · · 0.5049 0.5048 0.6026
O(1) 1.000∗ · · · · · · 0.7006
O(2) 0.7463 0.7130 0.8384
O(3) 0.7463 0.8427
O(4) 0.9651

Second neighbours
Cu(2) O(2) O(3) O(4)

Cu(2) 1.000∗ 0.9564 0.9613 · · ·
O(2) 1.000∗ · · · · · ·
O(3) 1.000∗ · · ·
O(4) 1.000∗

Third neighbours
O(2) O(3)

Cu(2) 1.1350 1.1239
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Fig. 10.1. The energy bands in YBa2Cu3O7 near the Fermi level

The shape of the bands presented by De Weert et al. [153] shows excellent
agreement near the Fermi level compared with that presented by Krakauer
et al. by LAPW calculations. However, by calculating the character of wave-
functions for several energy bands at and just below the Fermi level, Nomura
and Kamimura found that the characters of wavefunctions in the energy
bands by De Weert et al. are completely different from the results calcu-
lated by Yu et al. [148], Andersen et al. [162], and so on. Figure 10.1 shows
the energy bands for YBCO7 near the Fermi level. According to Yu et al.
or Andersen et al., the number 1 band, enclosed with a circle in Fig. 10.1,
consists mainly of Cu(1)dy2−z2-O(1)py-O(4)pz orbitals, the number 2 and 3
bands consist mainly of Cu(2)dx2−y2-O(2)px-O(3)py orbitals, and the num-
ber 4 band consists mainly of Cu(1)dyz-O(1)pz-O(4)py orbitals, while ac-
cording to the TB bands presented by De Weert et al., the number 1 band
in Fig. 10.1 consists mainly of Cu(1)dyz-O(1)pz-O(4)py orbitals, the number
2 and 3 bands consist mainly of Cu(2)dxy-O(2)py-O(3)px orbitals, and the
number 4 band consists mainly of Cu(1)dxy-O(1)px orbitals. Thus, we have
to say that the SK parameters in YBCO7 determined by De Weert et al. are
not appropriate. In this context, Nomura and Kamimura redetermined the
SK parameters for YBCO7 in such a way as to fit the character of wavefunc-
tions to that estimated by Yu et al. [148], Andersen et al. [162], and so on,
as well as the shape of the present TB bands to that presented by Krakauer
et al. near the Fermi level.

In the calculation of the TB bands by SK method, Nomura and Kam-
mimura omitted Y and Ba atoms, and restricted the bases only to Cu-d
and O-p states. As a result, a 36×36 secular equation for the TB Hamil-
tonian is obtained. In their calculation they considered first-, second-, and
third-neighbour hopping elements, so that the fit of the TB bands to the
bands numerically calculated by Krakauer et al. required 71 SK parameters.
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Fig. 10.2. The bands for YBa2Cu3O7 by using the SK parameters determined
by us

The coordinates of the atoms they used are given in Table 10.5, and the
neighbour distances they used are given in Table 10.6. The SK parameters
determined by them are given in Table 10.7, and the fitted bands are shown
in Fig. 10.2. The Fermi level lies at 0.442 Ry, which is almost exactly equal to
the LAPW value, 0.442 Ry [161]. The number 1 band, corresponding to the
number enclosed with a circle in Fig. 10.1, consists mainly of Cu(1)dx2−y2-
Cu(1)dz2 -O(1)py-O(4)pz orbitals, the number 2 and 3 bands consist mainly of
Cu(2)dx2−y2-O(2)px-O(3)py orbitals, and the number 4 band consists mainly
of Cu(1)dyz-O(1)pz-O(4)py orbitals. These are consistent with the results
obtained by Yu et al., Andersen et al., and others.

Let us explain in more detail about what is the most serious difference
between the SK parameters determined by Nomura and Kamimura and those
presented by De Weert et al. In the SK parameters of De Weert et al.,
the on-site parameters for Cu(1)dyz, O(2)py and O(3)px which are 0.3956,
0.2909, 0.3420 Ry, respectively, and the first neighbour parameters for Cu(1)-
O(1)pdπ, Cu(2)-O(2)pdπ and Cu(2)-O(3)pdπ, which are 0.1035, 0.0842 and
0.0565 Ry in absolute values, respectively, are much larger than those listed
in Table 10.7. In particular, as to the SK parameters which lead to the energy
bands at and above the Fermi level, those related to π character are larger
than those related to σ character in De Weert et al.’s paper, just opposite to
the trend in this chapter. This is a reason why the wavefunctions of energy
bands numbered 1, 2, 3 and 4 calculated by the SK parameters of De Weert
et al. are different from those of Yu et al., of Anderson et al. and also of
Nomura and Kamimura.

By the SK method, Nomura and Kamimumra determined 71 SK parame-
ters by fitting the TB bands to both numerically-calculated energy bands and
wavefunctions. In their calculation they also showed that the SK parameters
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Table 10.7. The SK parameters for YBa2Cu3O7

On-site parameters

Cu(1): dxy 0.2169 O(1): px 0.2530
dyz 0.3082 py 0.3071
dzx 0.3349 pz 0.2878
dx2−y2 0.3525 O(2): px 0.2700
dz2 0.3516 py 0.2000

Cu(2): dxy 0.2500 pz 0.2700
dyz 0.3124 O(3): px 0.2000
dzx 0.2737 py 0.2700
dx2−y2 0.2500 pz 0.2700
dz2 0.3100 O(4): px 0.1931

py 0.3268
pz 0.2494

First-neighbour parameters

Cu(1)–Cu(1): ddσ -0.0200 O(1)–O(1): ppσ 0.0254
ddπ 0.0008 ppπ 0.0119
ddδ -0.0020 O(1)–O(4): ppσ 0.0123

Cu(2)–Cu(2): ddσ -0.0060 ppπ 0.0341
ddπ 0.0035 O(2)–O(2): ppσ 0.0350
ddδ -0.0030 ppσ -0.0145

Cu(1)–O(1): pdσ -0.1173 O(2)–O(3): ppσ 0.0830
pdπ 0.0615 ppπ -0.0330

Cu(1)–O(4): pdσ -0.0500 O(2)–O(4): ppσ 0.0200
pdπ 0.0353 ppπ -0.0100

Cu(2)–O(2): pdσ -0.0800 O(3)–O(3): ppσ 0.0250
pdπ 0.0150 ppπ -0.0145

Cu(2)–O(3): pdσ -0.0750 O(3)–O(4): ppσ 0.0300
pdπ 0.0150 ppπ -0.0150

Cu(2)–O(4): pdσ -0.0300 O(4)–O(4): ppσ 0.0300
pdπ 0.0140 ppπ -0.0050

Second-neighbour parameters

Cu(2)–Cu(2): ddσ -0.0020 O(2)–O(2): ppσ 0.0100
ddπ 0.0012 ppπ -0.0050
ddδ -0.0002 O(3)–O(3): ppσ 0.0100

Cu(2)–O(2): pdσ -0.0100 ppπ -0.0050
pdπ 0.0045 O(4)–O(4): ppσ 0.0080

Cu(2)–O(3): pdσ -0.0100 ppπ -0.0150
pdπ 0.0045

Third-neighbour parameters

Cu(2)–O(2): pdσ -0.0025 Cu(2)–O(3): pdσ -0.0025
pdπ 0.0010 pdπ 0.0010
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previously determined by De Weert et al. do not reproduce the wavefunctions
of the bands near the Fermi level so that their values for the SK parameters
are not appropriate. In this respect we would like to make a further remark
as to the SK parameters by De Weert et al..

Following Kamimura and Ushio and using the results of the cluster calcu-
lations by the Kamimura and Sano, Nomura and Kamimumra calculated the
many-electron energy bands, the Fermi surfaces and density of states on the
basis of the K–S Hamiltonian for the Kamimura–Suwa model. Here we would
like to point out that the Fermi surfaces calculated by the SK parameters of
De Weert et al. do not have closed surfaces for carriers originated from CuO2

planes and are extremely different from those observed by experiments, while
the Fermi surfaces obtained by other groups are closed shapes although there
is difference in their size, small and large.

10.5 Appendix

In this section the detailed expressions of the matrix elements in Tables 10.2,
10.3 and H̃int in Sect. 10.3 are given in Appendices A, B and C, respectively.

Appendix A

The matrix elements of the Hamiltonian matrix shown in Table 10.2, are
expressed with 17 SK parameters as

E1 = E1
p

E2 = E2
p

E3 = Edxy + 2 t(ddπ)(cos kxa+ cos kya)
E4 = Edxy + 2 t(ddπ) cos kya+ 2 t(ddδ) cos kxa

E5 = Edxy + 2 t(ddπ) cos kxa+ 2 t(ddδ) cos kya

E6 = Edx2−y2 +
[

3
2
t(ddσ) +

1
2
t(ddδ)

]
(cos kxa+ cos kya)

E7 = Edx2−y2 +
[

1
2
t(ddσ) +

3
2
t(ddδ)

]
(cos kxa+ cos kya)

T1 = 2 [ t1(ppσ) + t1(ppπ) ] cos
kxa

2
cos

kya

2

T2 = −2 [ t1(ppσ) − t1(ppπ) ] sin
kxa

2
sin

kya

2

T3 = 4 t1(ppπ) cos
kxa

2
cos

kya

2
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T4 = 2 [ l21 t2(ppσ) + (1 − l21) t2(ppπ) ] cos
kxa

2
ei 0.364kzc/2

T5 = i 2l1n1 [ t2(ppσ) − t2(ppπ) ] sin
kxa

2
ei 0.364kzc/2

T6 = 2 t2(ppπ) cos
kxa

2
ei 0.364kzc/2

T7 = 2 [ n2
1 t2(ppσ) + (1 − n2

1) t2(ppπ) ] cos
kxa

2
ei 0.364kzc/2

T ′
4 = 2 [ l21 t2(ppσ) + (1 − l21) t2(ppπ) ] cos

kya

2
ei 0.364kzc/2

T ′
5 = i 2l1n1 [ t2(ppσ) − t2(ppπ) ] sin

kya

2
ei 0.364kzc/2

T ′
6 = 2 t2(ppπ) cos

kya

2
ei 0.364kzc/2

T ′
7 = 2 [ n2

1 t2(ppσ) + (1 − n2
1) t2(ppπ) ] cos

kya

2
ei 0.364kzc/2

T8 = 4 [ l22 t3(ppσ) + (1 − l22) t3(ppπ) ] cos
kxa

2
cos

kya

2
ei 0.272kzc/2

T9 = 4 [ n2
2 t3(ppσ) + (1 − n2

2) t3(ppπ) ] cos
kxa

2
cos

kya

2
ei 0.272kzc/2

T10 = −4l22 [ t3(ppσ) − t3(ppπ) ] sin
kxa

2
sin

kya

2
ei 0.272kzc/2

T11 = i 4l2n2 [ t3(ppσ) − t3(ppπ) ] sin
kxa

2
cos

kya

2
ei 0.272kzc/2

T12 = i 4l2n2 [ t3(ppσ) − t3(ppπ) ] cos
kxa

2
sin

kya

2
ei 0.272kzc/2

T13 = i
√

3 t1(pdσ) sin
kxa

2

T14 = −i t1(pdσ) sin
kxa

2

T15 = i 2 t1(pdπ) sin
kxa

2

T ′
13 = −i

√
3 t1(pdσ) sin

kya

2

T ′
14 = −i t1(pdσ) sin

kya

2

T ′
15 = i 2 t1(pdπ) sin

kya

2
T16 = t2(pdπ)ei 0.364kzc/2

T17 = t2(pdσ)ei 0.364kzc/2

T18 =
√

3
2

[ − t(ddσ) + t(ddδ) ] (cos kxa− cos kya) (10.12)

where
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l1 =
0.5a√

(0.5a)2 + (0.364c/2)2

n1 =
0.364c/2√

(0.5a)2 + (0.364c/2)2

l2 =
0.5a√

2(0.5a)2 + (0.272c/2)2

n2 =
0.272c/2√

2(0.5a)2 + (0.272c/2)2
(10.13)

Appendix B

The matrix elements in Table 10.3 are expressed with SK parameters as
follows. The on-site elements of H̃0

AA(k) and H̃0
BB(k) are given below;

E1 = E1
p

E2 = E2
p

E3 = Edxy

E4 = Edxy

E5 = Edxy

E6 = Edx2−y2

E7 = Edx2−y2 ,

(10.14)

The diagonal elements of H̃0
AB(k) and H̃0

BA(k) are given below;

E1 = 0
E2 = 0
E3 = +2 t(ddπ)(cos kxa+ cos kya)
E4 = +2 t(ddπ) cos kya+ 2 t(ddδ) cos kxa

E5 = +2 t(ddπ) cos kxa+ 2 t(ddδ) cos kya

E6 = +
[

3
2
t(ddσ) +

1
2
t(ddδ)

]
(cos kxa+ cos kya)

E7 = +
[

1
2
t(ddσ) +

3
2
t(ddδ)

]
(cos kxa+ cos kya) ,

(10.15)

Finally the off-diagonal elements of H̃0
AA(k) and H̃0

BB(k) are given below;

T1 =
1

2
[ t1(ppσ) + t1(ppπ) ] (ei

kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )
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T2 = − 1

2
[ t1(ppσ) − t1(ppπ) ] (ei

kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )

T3 = t1(ppπ)(ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )

T4 = [ l21 t2(ppσ) + (1 − l21) t2(ppπ) ] e−i
kxa
2 ei 0.364kzc/2

T5 = −l1n1 [ t2(ppσ) − t2(ppπ) ] e−i
kxa
2 ei 0.364kzc/2

T6 = t2(ppπ)e−i
kxa
2 ei 0.364kzc/2

T7 = [ n2
1 t2(ppσ) + (1 − n2

1) t2(ppπ) ] e−i
kxa
2 ei 0.364kzc/2

T ′
4 = [ l21 t2(ppσ) + (1 − l21) t2(ppπ) ] e−i

kya

2 ei 0.364kzc/2

T ′
5 = −l1n1 [ t2(ppσ) − t2(ppπ) ] e−i

kya

2 ei 0.364kzc/2

T ′
6 = t2(ppπ)e−i

kya

2 ei 0.364kzc/2

T ′
7 = [ n2

1 t2(ppσ) + (1 − n2
1) t2(ppπ) ] e−i

kya

2 ei 0.364kzc/2

T8 = [ l22 t3(ppσ) + (1 − l22) t3(ppπ) ](ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T9 = [ n2
2t3(ppσ) + (1 − n2

2) t3(ppπ) ] (ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T10 = −l22 [ t3(ppσ) − t3(ppπ) ] (ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T11 = l2n2 [ t3(ppσ) − t3(ppπ) ] (ei
kxa
2 e−i

kya

2 − e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T12 = l2n2 [t3(ppσ) − t3(ppπ) ] (−ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T13 = −
√

3

2
t1(pdσ)e−i

kxa
2

T14 =
1

2
t1(pdσ)e−i

kxa
2

T15 = − t1(pdπ)e−i
kxa
2

T ′
13 =

√
3

2
t1(pdσ)e−i

kya

2

T ′
14 =

1

2
t1(pdσ)e−i

kya

2

T ′
15 = − t1(pdπ)e−i

kya

2

T16 = t2(pdπ)ei 0.364kzc/2

T17 = t2(pdσ)ei 0.364kzc/2

T18 = 0 , (10.16)

and for the off-diagonal elements of H̃0
AB(k) and H̃0

BA(k)

T1 =
1

2
[ t1(ppσ) + t1(ppπ) ] (ei

kxa
2 ei

kya

2 + e−i
kxa
2 e−i

kya

2 )

T2 =
1

2
[ t1(ppσ) − t1(ppπ) ] (ei

kxa
2 ei

kya

2 + e−i
kxa
2 e−i

kya

2 )

T3 = t1(ppπ) cos
kxa

2
(ei

kxa
2 ei

kya

2 + e−i
kxa
2 e−i

kya

2 )
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T4 = [ l21 t2(ppσ) + (1 − l21) t2(ppπ) ] ei
kxa
2 ei 0.364kzc/2

T5 = l1n1 [ t2(ppσ) − t2(ppπ) ] ei
kxa
2 ei 0.364kzc/2

T6 = t2(ppπ)ei
kxa
2 ei 0.364kzc/2

T7 = [ n2
1 t2(ppσ) + (1 − n2

1) t2(ppπ) ] ei
kxa
2 ei 0.364kzc/2

T ′
4 = [ l21 t2(ppσ) + (1 − l21) t2(ppπ) ] ei

kya

2 ei 0.364kzc/2

T ′
5 = l1n1 [ t2(ppσ) − t2(ppπ) ] ei

kya

2 ei 0.364kzc/2

T ′
6 = t2(ppπ)ei

kya

2 ei 0.364kzc/2

T ′
7 = [ n2

1 t2(ppσ) + (1 − n2
1) t2(ppπ) ] ei

kya

2 ei 0.364kzc/2

T8 = [ l22 t3(ppσ) + (1 − l22) t3(ppπ) ] (ei
kxa
2 ei

kya

2 + e−i
kxa
2 e−i

kya

2 )ei 0.364kzc/2

T9 = [ n2
2 t3(ppσ) + (1 − n2

2) t3(ppπ) ] (ei
kxa
2 ei

kya

2 + e−i
kxa
2 e−i

kya

2 )ei 0.272kzc/2

T10 = l22 [ t3(ppσ) − t3(ppπ) ] (ei
kxa
2 ei

kya

2 + e−i
kxa
2 e−i

kya

2 )ei 0.272kzc/2

T11 = l2n2 [ t3(ppσ) − t3(ppπ) ] (ei
kxa
2 ei

kya

2 − e−i
kxa
2 e−i

kya

2 )ei 0.272kzc/2

T12 = l2n2 [ t3(ppσ) − t3(ppπ) ] (ei
kxa
2 ei

kya

2 − e−i
kxa
2 e−i

kya

2 )ei 0.272kzc/2

T13 =

√
3

2
t1(pdσ)ei

kxa
2

T14 = −1

2
t1(pdσ)ei

kxa
2

T15 = t1(pdπ)ei
kxa
2

T ′
13 = −

√
3

2
t1(pdσ)ei

kya

2

T ′
14 = −1

2
t1(pdσ)ei

kya

2

T ′
15 = t1(pdπ)ei

kya

2

T16 = 0

T17 = 0

T18 =

√
3

2
[ − t(ddσ) + t(ddδ) ] (cos kxa − cos kya) , (10.17)

where

l1 =
0.5a√

(0.5a)2 + (0.364c/2)2

n1 =
0.364c/2√

(0.5a)2 + (0.364c/2)2

l2 =
0.5a√

2(0.5a)2 + (0.272c/2)2

n2 =
0.272c/2√

2(0.5a)2 + (0.272c/2)2
. (10.18)
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Appendix C

By using the approximation that the effective-interaction term H̃int has non-
vanishing matrix elements only for those between nearest neighbour atomic
orbitals, we can represent the k dependence of the effective-interaction part
of the Hamiltonian matrix, H̃int(k), as follows;

For on-site elements of H̃0
AA(k) and H̃0

BB(k),

E1 = E1
p

E2 = E2
p

E3 = Edxy

E4 = Edxy

E5 = Edxy

E6 = Edx2−y2

E7 = Edx2−y2 ,

(10.19)

for the diagonal elements of H̃0
AB(k) and H̃0

BA(k),

E1 = 0
E2 = 0
E3 = +2 t(ddπ)(cos kxa+ cos kya)
E4 = +2 t(ddπ) cos kya+ 2 t(ddδ) cos kxa

E5 = +2 t(ddπ) cos kxa+ 2 t(ddδ) cos kya

E6 = +
[

3
2
t(ddσ) +

1
2
t(ddδ)

]
(cos kxa+ cos kya)

E7 = +
[

1
2
t(ddσ) +

3
2
t(ddδ)

]
(cos kxa+ cos kya) ,

(10.20)

for the off-diagonal elements of H̃0
AA(k) and H̃0

BB(k)

T1 =
1

2
[ t1(ppσ) + t1(ppπ) ] (ei

kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )

T2 = − 1

2
[ t1(ppσ) − t1(ppπ) ] (ei

kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )

T3 = t1(ppπ)(ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )

T4 = [ l21 t2(ppσ) + (1 − l21) t2(ppπ) ] e−i
kxa
2 ei 0.364kzc/2

T5 = −l1n1 [ t2(ppσ) − t2(ppπ) ] e−i
kxa
2 ei 0.364kzc/2

T6 = t2(ppπ)e−i
kxa
2 ei 0.364kzc/2

T7 = [ n2
1 t2(ppσ) + (1 − n2

1) t2(ppπ) ] e−i
kxa
2 ei 0.364kzc/2
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T ′
4 = [ l21 t2(ppσ) + (1 − l21) t2(ppπ) ] e−i

kya

2 ei 0.364kzc/2

T ′
5 = −l1n1 [ t2(ppσ) − t2(ppπ) ] e−i

kya

2 ei 0.364kzc/2

T ′
6 = t2(ppπ)e−i

kya

2 ei 0.364kzc/2

T ′
7 = [ n2

1 t2(ppσ) + (1 − n2
1) t2(ppπ) ] e−i

kya

2 ei 0.364kzc/2

T8 = [ l22 t3(ppσ) + (1 − l22) t3(ppπ) ] (ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T9 = [ n2
2t3(ppσ) + (1 − n2

2) t3(ppπ) ] (ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T10 = −l22 [ t3(ppσ) − t3(ppπ) ] (ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T11 = l2n2 [ t3(ppσ) − t3(ppπ) ] (ei
kxa
2 e−i

kya

2 − e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T12 = l2n2 [t3(ppσ) − t3(ppπ) ] (−ei
kxa
2 e−i

kya

2 + e−i
kxa
2 ei

kya

2 )ei 0.272kzc/2

T13 = −
√

3

2
t1(pdσ)e−i

kxa
2

T14 =
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and for the off-diagonal elements of H̃0
AB(k) and H̃0
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where

l1 =
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2(0.5a)2 + (0.272c/2)2
. (10.23)

where a and b denote 2px, 2py and 2pz atomic orbitals for each of eight
oxygen atoms and 3dyz, 3dxz, 3dxy, 3dx2−y2 and 3dz2 atomic orbitals for
each of two Cu atoms in the antiferromagnetic unit cell.



11 Calculated Results
of Many-Electrons Band Structures
and Fermi Surfaces

11.1 Introduction

In Chap. 10, for one of the approximation methods to solve the K–S Hamil-
tonian, we described a method of the mean-field approximation for treating
a system of localized spins in the local antiferromagnetic (AF) order. By ap-
plying the mean-field approximation to the K–S Hamiltonian, the exchange
interaction Hex in the K–S Hamiltonian can be expressed in the form of an
effective magnetic field acting on the spins of the hole-carriers in a carrier
system.

As a result, the electronic structure of a hole-carrier system on the K–S
model can be expressed in the form of a single-electron-type band structure
in the presence of AF order in the localized spin system, where the exchange
interaction between the spins of a hole-carrier and of a localized hole is in-
cluded in a single-electron type energy band in the mean-field sense.

In this chapter we describe the results of the effective one-electron-type
band structure and Fermi surface calculated by the method described in the
previous chapter.

11.2 Calculated Band Structure Including
the Exchange Interaction between the Spins
of Hole-Carriers and Localized Holes

In a previous chapter, we showed that all the matrix elements in the 34× 34
dimensional Hamiltonian matrix H̃(k) are expressed as one-electron type
quantities due to the mean-field approximation. By diagonalizing it, we ob-
tained a one-electron type band structure including the many-electron effects
such as the exchange interaction between the spins of a dopant hole and lo-
calized spin in the K–S Hamiltonian. In the effective one-electron type band
structure thus obtained, the antibonding b∗

1g orbitals which have a main char-
acter of Cu dx2−y2 atomic orbital are separated from a hole-carrier system.
These b∗

1g orbitals are localized at Cu site by the strong U effect and the
spins of localized holes in b∗

1g orbitals are coupled antiferromagnetically by
the effect of the superexchange interaction between the localized spins.
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Fig. 11.1. The many-body-effect included band-structure for up-spin dopant holes,
obtained by solving the effective one-electron-type 34×34 dimensional Hamiltonian
matrix H̃ for an antiferromagnetic unit cell. The highest occupied band is marked
by the #1 band. The ∆-point corresponds to (π/2a, π/2a, 0), while the G1-point
to (π/a, 0, 0). In this figure the Cu–O–Cu distance, a, is taken to be unity

In Fig. 11.1, the band structure for up-spin dopant holes calculated by
Ushio and Kamimura for LSCO is shown for various values of wave-vector
k and symmetry points in the antiferromagnetic (AF) Brillouin zone, where
the AF Brillouin zone is also shown in the left hand side of the figure. The
same band structure shape is also obtained for down-spin dopant holes. Here
one should note that the energy in this figure is taken to be electron-energy
but not hole-energy, and the Hubbard bands for localized b∗

1g holes do not
appear in this figure.

In the undoped La2CuO4, all the bands except for the upper Hubbard b∗
1g

band are occupied by electrons so that La2CuO4 is an insulator, consistent
with experimental results. In this respect the present band structure is com-
pletely different from the ordinary energy band of the Fermi-liquid picture
calculated by the local density approximation (LDA). The localized holes are
accommodated in the upper Hubbard b∗

1g band, which consists mainly of Cu
dx2−y2 orbitals, leading to the formation of the AF spin ordering, while the
dopant holes in the highest band in Fig. 11.1, marked by #1, have mainly O
pσ character. Thus the present theory shows that La2CuO4 is a mixed type
of charge transfer insulator and Mott–Hubbard insulator, consistent with the
experimental result [10, 163].

Now let us dope holes into this undoped La2CuO4. When Sr are doped,
holes begin to occupy the top of the highest band in Fig. 11.1 marked by #1
(referred as the conduction band hereafter) at ∆ point which corresponds
to (π/2a, π/2a, 0). At the onset concentration of superconductivity, xc, the
Fermi level EF is located at the energy of E = 9.04 eV just below the top of
the #1 band at ∆, which is also a little higher than that of the G1 point. Here
the G1 point in the AF Brillouin zone lies at (π/a, 0, 0), and corresponds to a
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saddle point of the van Hove singularity as seen in Fig. 11.1. The characteristic
feature of the #1 conduction band is the existence of the flat band along
the line from G1 to ∆. This feature is consistent with the ARPES data by
Shen et al. [56] and Desseau et al. [164], who observed an extended region of
flat band very near EF around M point, which corresponds, in the present
notation, to G1 in the AF Brillouin zone, (π/a, 0, 0).

The wave function of the conduction band for up-spin holes consists of
a∗1g orbitals at A-site and b1g orbitals at B-site, as will be shown in Fig. 11.9
in Sect 11.4. Besides the localized b∗

1g holes in the upper Hubbard bands,
a∗1g orbitals at A-site and b1g orbitals at B-site form the 3B1g multiplet and
1A1g multiplet, respectively. Thus the present calculated results realize the
electronic structure of the K–S model, where the hole-carriers take 3B1g and
1A1g alternately in the spin-correlated region of the local AF order.

In the present calculation we have assumed the long range Néel order,
while the results of neutron inelastic scattering experiments [145] suggest that
the localized spins in a two-dimensional (2D) CuO2 plane are fluctuating and
there is no long range Néel order in the superconducting regime, although
the local AF order has been observed. Thus it is necessary to discuss how the
spin fluctuation of localized spins in the 2D Heisenberg AF order affects the
electronic and magnetic properties of LSCO. Let λs be a characteristic length
of the spin-correlated region, in which the coherent motion of a dopant hole
is retained due to the existence of the local AF order.

In this spin-correlated region, the frustrated spins on its boundary change
their directions by the fluctuation effect in the 2D Heisenberg AF spin system
during the time of τs defined by τs ≡ h̄/J , with J being the superexchange
interaction (∼0.1 eV) [146]. In this case the hole-carriers at the Fermi level
may move coherently much longer than the observed spin-correlation length,
when the traveling time of a hole-carrier at the Fermi level over an area of
the spin-correlation length, which is given by τF ≡ λs/vF, is longer than τs,
where vF is the Fermi velocity of a hole-carrier at the Fermi level. This is the
case for underdoped LSCO, because τs is of the order of 10−15 sec while τF is
of the order of 10−14 sec for the underdoped region of x = 0.10 to x = 0.15 in
LSCO. In this way the region of a metallic state becomes much wider than the
spin-correlation length so as to reduce the increase of the kinetic energy due
to the confinement of hole-carriers in the spin-correlated region. A behaviour
of coherent motion of a hole-carrier across the boundary of a spin-correlated
region thus described is schematically shown in Fig. 11.2. The length of a
wider metallic region is denoted by �0. This �0 is much wider than λs. The
electronic, thermal and magnetic properties of cuprates are determined by
the hole-carriers in a metallic region of �0.
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Fig. 11.2. Schematic picture of a hole-carrier motion across the boundary of a
spin-correlated region λs, by the 2D spin-fluctuation effect. By choosing a system
of 11 localized spins along one direction, this picture shows schematically why a
metallic region is wider than that of the local AF region

11.3 Calculated Fermi Surface
and Comparison with Experiments

Now we construct the Fermi surfaces (FS), based on the calculated conduc-
tion band shown in Fig. 11.1. This Fermi surface is also completely different
from that of an ordinary Fermi liquid picture calculated by the local density
approximation (LDA), as already pointed out in a previous section, because
the conduction band in the present result is fully occupied by electrons in the
undoped case while the LDA band always yields a metallic state. Further, a
carrier system with up or down spin has a respective Fermi surface, although
their shape and their position in k-space are the same. The Fermi surface is
constructed by connecting the points in the k-space at which the Fermi distri-
bution function shows discontinuity. In Fig. 11.3 the Fermi surface structure
thus obtained for x = 0.15 is shown as an example, where one Fermi surface
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Fig. 11.3. The Fermi surface for x = 0.15 calculated for the #1 band. Here two
kinds of Brillouin zones are also shown. One at the outermost part is the ordinary
Brillouin zone corresponding to an ordinary unit cell consisting of a single CuO6

octahedron and the inner part is the folded Brillouin zone for the AF unit cell
in LSCO. Here the kx axis is taken along ΓG1, corresponding to the x-axis (the
Cu–O–Cu direction) in a real space

consists of two pairs of extremely flat tubes. Two Fermi surfaces of each
pair face each other along bisectors between kx- and ky-axes. These Fermi
surfaces in each pair are separated by the reciprocal lattice vectors in the
AF Brillouin zone; QAF1 = (π/a, π/a, 0) or QAF2 = (−π/a, π/a, 0), i.e., AF
reciprocal unit vectors. The cross-section of each Fermi surface is very small
as seen in Fig. 11.3. This unique feature of the Fermi surface structure is con-
sistent with recent experimental results of the angle-resolved photoemission
(ARPES) by various experimental groups.

In order to compare with the experimental results of ARPES for LSCO,
we have calculated the Fermi surface of in La2−xSrxCuO4 for the following
hole-concentrations x = 0.025, x = 0.05, x = 0.075, x = 0.1, x = 0.125, and
x = 0.15. These Fermi surfaces are projected on the kx − ky plane of the
two-dimensional AF Brillouin zone. These are shown in Figs. 11.4(a), (b),
(c), (d), (e) and (f). As seen in these figures, the calculated Fermi surfaces
are small. However, because of the finite life time of carriers due to the finite
size of a metallic region in which the K–S model can be applied, a part of
Fermi surfaces in the second AF Brillouin zone is not observed definitely.
Recently the Fermi arcs in the first AF Brillouin zone are observed clearly
by the ARPES experiment for La2−xSrxCuO4 by Yoshida et al. [23, 24, 25].
For example, the experimental results of Fermi arcs for La2−xSrxCuO4 from
x = 0.03 to 0.15 are shown in Fig. 11.5, where points in the central parts of
bow-shape strips in the figure correspond to the Fermi arcs.

In Fig. 11.6, the calculated results shown in Figs. 11.4(a), (b), (c), (d),
(e) and (f) are superposed on the experimental results by Yoshida et al. [25].
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Fig. 11.4. The calculated Fermi surface (FS) of LSCO for (a) x = 0.025,
(b) x = 0.05, (c) x = 0.075, (d) x = 0.1, (e) x = 0.125, and (f) x = 0.15 based on
K–S model, drawn in the two dimensional AF Brillouin zone for the convenience
of comparison with the results observed by ARPES. Inner edges of FS which cor-
respond to the so-called Fermi arcs are shown by solid lines while the outer edges
are represented by dotted lines due to vagueness from the lifetime broadening

Fig. 11.5. Doping dependence of Fermi surfaces of La2−xSrxCuO4 from x = 0.03
to 0.15, observed in ARPES by T. Yoshida et al. after [25] and [23]. Points in the
central parts of bow-shape strips represent Fermi arcs

As seen in Fig. 11.6, the agreement between the calculated results and the
observed ones is surprisingly good. Thus we can say that recent ARPES
experiments by Yoshida et al. provide clear experimental evidence for the
K–S model.

As regards other cuprates such as superconducting Bi2Sr0.97Pr0.03CuO6+δ

(Bi2201) compounds which includes a single CuO2 layer in a unit cell like
LSCO [165], the observed Fermi surface structure is very similar to the present
theoretical results. Fermi surface structures for Bi2Sr2CaCu2O8+δ (Bi2212)
determined by angle-resolved photoemission [56, 160, 164, 166] are also very
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Fig. 11.6. Observed doping dependence of Fermi surfaces of La2−xSrxCuO4 from
x = 0.03 to 0.15, observed in ARPES by T. Yoshida et al. The calculated results
based on the K–S model for x = 0.05 and x = 0.15 shown by thin curves are
superimposed on the experimental results obtained by Yoshida et al.

similar to the present result, although the Fermi surface structure for Bi2212
is more complicated due to the existence of two CuO2 layers in a unit cell.
Shen et al. [56] and Desseau et al. [164] mapped out the near-EF electronic
structure and Fermi surface of Bi2212 by angle-resolved photoemission. They
observed an extended region of the flat CuO2 derived bands very near EF

around M point, which is the G1 point in our notation, and also the strong
tendency of the nesting of the Fermi surface along the nesting vectors Q1

or Q2. Further, Aebi et al. [160, 166] found a c(2 × 2) superstructure on
the Fermi surface, suggesting the short range antiferromagnetic correlation,
consistent with the prediction by Ushio and Kamimura. Further, Marshall et
al. [43] also observed a small Fermi surface structure for the underdoped Dy
concentration of Bi2Sr2Ca1−xDyxCu2O8+δ with Tc = 65 K, consistent with
the prediction of a small Fermi surface by Kamimura and Ushio.

Although the present calculation is based on a periodic system with the
antiferromagnetic order, in a real system the spin correlation length is finite so
that the appearance of the small Fermi surface structure has a finite lifetime.
As a result, various phenomena based on the present small Fermi surface
structure are expected to have lifetime broadening effects. For example, the
outer edge of each section in the Fermi surface structure shown by dotted
lines in Fig. 11.4(a)–(e) is not sharp compared with its inner edge in the
first AF Brillouin zone due to the above lifetime broadening effect, so that it
might be very difficult to see both edges of each section in the Fermi surface
clearly in the angle-resolved photoemission experiments. This is one of the
reasons why the angle-resolved photoemission experiments can not clearly
determine whether the Fermi surfaces are large or small. When the spin-
correlation length becomes smaller with increasing hole-concentration, the
regions of antiferromagnetic ordering become comparable to the mean-free
path of carriers from the over-doped to the well over-doped region. Thus the
K–S model does not hold in these hole concentration region. In particular,
the superexchange interaction between localized spin via intervening O2− ions
is destroyed when the hole-concentration increases in the overdoped region.
As a result small Fermi surfaces change into a large Fermi surface. This
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may explain the “cross-over phenomena” observed in various normal state
transport properties. For example, the spin susceptibility change from a 2D
AF characteristic to a Pauli-like behaviour, and the high-energy pseudogap
appears.

In connection with the appearance of the small Fermi surface one might
question whether the Fermi surface should include the contribution from
the localized spin or not in connection with Luttinger’s theorem [167]. The
present small Fermi surface does not include the contribution from localized
spins. However, this does not contradict the Luttinger theorem because the
antiferromagnetic order coexists locally in the present case.

Finally a brief remark is made on the origin of the incommensurate peak
observed in the inelastic neutron scattering experiment [168, 169]. A possible
explanation for the origin of the incommensurate peaks is given by the unique
shape of the Fermi surface structure based on the K–S model. As we have
already pointed out, there is a possibility of nesting between Fermi surfaces
with different spins along the nesting wave vectors of Qγ with γ = 1 and
2, which are deviated from an AF reciprocal unit vector QAF1 = (π, π, 0)
by (−δπ, 0, 0) and (0,−δπ, 0), or along the nesting wave vectors of Qγ with
γ = 3 and 4, which are deviated from another AF reciprocal unit vector
QAF2 = (−π, π, 0) by (δπ, 0, 0) and (0,−δπ, 0). The latter case is shown in
Fig. 11.7. This nesting may be related to the appearance of incommensurate
peaks in the spin excitation spectra of LSCO observed by neutron diffraction
experiments [168, 169]. The incommensurability δ observed in neutron dif-
fraction experiments for LSCO is compared with the calculated values of δ
which are determined from the position of the nesting wave vector Qγ for the
calculated Fermi surfaces. The calculated results are plotted with open circles
in Fig. 11.8, for various Sr concentrations. It shows non-linearity, consistent
with the experimental results by Endoh et al. [170] and Thurston et al. [171].

Γ

Qγ

QAF

kx

ky

Fig. 11.7. The Fermi surface in the kx-ky plane for x = 0.1 in the AF Brillouin
zone of LSCO, and schematic view of the nesting vectors Qγ with γ = 3 or 4 and
the AF reciprocal unit vector QAF2 = (−π, π, 0)
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Fig. 11.8. Incommensurability δ in reciprocal lattice unit (r.l.u.). The open circles
are the calculated results, while daggers and stars represent experimental results
by Mason et al. [168] and Endoh et al. [170] respectively

As regards small Fermi surfaces, we should mention that Wen and Lee also
obtained theoretically small Fermi pockets at low doping, which continuously
evolve into a large Fermi surface at high doping concentrations [172].

11.4 Wavefunctions of a Hole-Carrier
with Particular k Vectors and the Tight Binding (TB)
Functional Form of the #1 Conduction Band

In Fig. 11.9 the wave functions of an up-spin carrier in the antiferromagnetic
(AF) unit cell are shown for ∆ and G1 points in the AF Brillouin zone, where
the right hand side of the figure corresponds to a CuO6 cluster with localized
up-spin (A-site) while the left hand side corresponds to a CuO6 cluster with
localized down-spin (B-site) in the AF unit cell. In this figure a main orbital
component at each site is shown for A and B sites.

The calculated values for the mixing ratio of the in-plane Opσ, apical Opz,
Cu dx2−y2 and dz2 orbitals in the wave function for five k values along the
line from G1 to ∆ in the AF Brillouin zone are shown in Table 11.1, where
the probability of finding a hole in each atomic orbital is shown. One can
see from Fig. 11.9 and Table 11.1 that, in a certain concentration below the
onset of superconductivity in which the Fermi level EF crosses the #1 band
at k2 in Table 11.1, the holes with up-spin are accommodated in b1g orbital
constructed mainly from the oxygen pσ orbitals in a CuO2 plane, consistent
with the result of the cluster calculation by Kamimura and Eto[104], while in
the superconducting concentration region, which corresponds to k3 and k4

in Table 11.1, the holes move coherently from a∗1g orbital at the A-site to b1g

orbital at the B-site.
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Fig. 11.9. The wave functions at ∆ and G1 points. Here, the right hand side of
the figure corresponds to a CuO6 cluster with localized up-spin (A-site) and the
left hand side to a CuO6 cluster with localized down-spin (B-site)

Table 11.1. The mixing ratio of the in-plane Opσ, apical Opz, Cu dx2−y2 and Cu
dz2 orbitals in the wave functions for five k values in the AF Brillouin zone along
the line G1 to ∆

k (kx, ky, kz) in-plane Opσ apical Opz Cu dx2−y2 Cu dz2

k1 ( 1
2
π, 1

2
π, 0) 0.61 0.0 0.39 0.0

k2 ( 3
8
π, 5

8
π, 0) 0.58 0.003 0.37 0.05

k3 ( 1
4
π, 3

4
π, 0) 0.49 0.01 0.33 0.17

k4 ( 1
8
π, 7

8
π, 0) 0.41 0.02 0.29 0.28

k5 (0, π, 0) 0.38 0.02 0.28 0.32

The calculated result in Table 11.1 shows that the mixing ratio of the 1A1g

state to the 3B1g state at the k2 value of (3π/8, 5π/8, 0) in the underdoped
regime of LSCO is 7 to 1. Thus, although the alternating appearance of the
Zhang–Rice singlet 1A1g and the Hund’s coupling triplet 3B1g is a charac-
teristic feature of the K–S model in the underdoped superconducting regime
of LSCO, the result of Table 11.1 indicates that the weight of the 1A1g state
in the many-electron wave function of the K–S model is about seven times
larger than that of the 3B1g. This result is consistent with the experimental
one obtained the polarized X-ray absorption spectra (XAS) by C. T. Chen
et al. [93].
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Reflecting the alternate appearance of a∗1g and b1g orbitals among A and
B sites, the top of the conduction band (#1 band) in Fig. 11.1 appears at the
∆ point in the AF Brillouin zone, where the ∆ point corresponds to (π/2a,
π/2a, 0). The conduction band is approximately expressed in the following
tight binding (TB) form;

εk = A [cos(akx + aky) + cos(−akx + aky)]
+ B cos(akx + aky) cos(−akx + aky)

+ C cos(akx + aky) cos(−akx + aky) cos
a

2
kx cos

a

2
ky cos

c

2
kz

+ D [cos(akx + aky) + cos(−akx + aky)] cos
a

2
kx cos

a

2
ky cos

c

2
kz

+ E0 . (11.1)

Here a and c are the lattice constants of the tetragonal unit cell, where
a = 3.78 Å and c = 13.25 Å. The values of coefficient A to E0 in (11.1) are
determined so as to reproduce the numerically calculated conduction band
by Ushio and Kamimura [112]. The values of A to E0 thus determined are
A = −0.3311 eV, B = −0.3936 eV, C = −0.0006 eV, D = −0.0047 eV and
E0 = 8.647 eV. The lower energy region of the conduction band below 8.0 eV
in Fig. 11.1 does not fit well to the one calculated numerically. However,
this disagreement does not influence the calculated results in the underdoped
region because only the higher energy region of the conduction band above
E ≥ 8.9 eV contributes to the electronic structure for the hole concentration
region of x ≤ 0.4.

11.5 Calculated Density of States

We have also calculated the density of states of the conduction band (#1
band) in LSCO. The calculated density of states is shown as a function of
energy in Fig. 11.10, where the origin of the energy is taken at the top of the
conduction band (# 1 band) at the ∆ point. The density of states for the
conduction band has a sharp peak at EF corresponding to x ∼ 0.3 in La2−x

SrxCuO4. The appearance of this sharp peak is due to a modified type of
a saddle point singularity at G1 point, as described below. The energy of
the conduction band near the G1 point increases towards the ∆ point (along
the direction of a point (±π

a ,±π
a , 0)), while it decreases towards the Γ point

(along the direction of a point (±π
a , 0, 0) or a point (0,±π

a , 0)). Thus the G1

point corresponds to the van-Hove singularity of the saddle-point type.
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Fig. 11.10. The density of states of LSCO as a function of energy. The solid
lines are those calculated from the #1 band in the renormalized band structure
[113, 173]. The energy is measured from the top of the band. Holes enter from the
top of the band at energy = 0

11.6 Remarks on the Simple Folding
of the Fermi Surface into the AF Brillouin Zone

In this section we would like to remark that the appearance of the center
of the Fermi surfaces at the ∆ point is due to the alternant appearance
of 1A1g and 3B1g multiplets among A and B sites, but not the result of a
simple folding of the ordinary Brillouin zone into the AF Brillouin zone. Thus
the presence of Fermi surfaces in the underdoped region is a characteristic
feature of the K–S model with a two-component scenario. In this respect let
us assume now a simple folding of a b1g band in the presence of the AF order.
Then the dopant holes are accommodated from the top of the upper branch of
the folded b1g band at Γ -point, which corresponds to the k value of (0, 0, 0),
since the undoped La2CuO4 is the mixture of Mott–Hubbard type- and of
charge-transfer type-insulator, and both the upper and the lower branches
of the folded b1g bands are fully occupied by electrons in the undoped case.
Therefore the center of the Fermi surface is at Γ -point in this case. On the
other hand, according to the present calculation, the b1g and a∗1g bands split
into four bands in the presence of AF order. The upper two bands among
the four bands correspond to a character consisting of a∗1g orbitals at A-site
and b1g orbitals at B-site while the character of lower two bands consist
of a∗1g orbitals at B-site and b1g orbitals at A-site. Since both the b1g and
the a∗1g bands are fully occupied by electrons in the undoped La2CuO4, the
dopant holes are accommodated from the top of the conduction band (#1
band), and thus the character of the highest band is not pure b1g orbitals,
but the mixture of two kinds of orbitals, a∗1g and b1g. Therefore, the result
of the present calculation that the ∆-point is the top of this highest band is
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not obtained by a simple folding of an energy band due to the presence of
the AF order. Thus, in order to obtain the present Fermi surface structure,
it is essential to take account of the alternating appearance of b1g and a∗1g
orbitals for a dopant hole in addition to b∗

1g orbital for a localized spin. Thus
the present Fermi structure of the underdoped region shown in Fig. 11.3 and
11.4 is characteristic of the K–S model.



12 Normal State Properties of La2−xSrxCuO4

12.1 Introduction

In Chap. 10 we described the mean-field approximation as one of approx-
imate methods to solve the K–S Hamiltonian of (11.1). Perhaps the most
important consequence of this approximation is that, having dealt with the
strong exchange interactions between the spins of hole-carriers and the lo-
calized spins in the fourth term of the K–S Hamiltonian in the mean field
approximation, the transport, thermal and paramagnetic properties of the
underdoped cuprates can be calculated within the framework similar to a
single particle band structure. In this case, an assumption of a large size of
an AF lattice is made, but the exchange interactions between the spins of
dopant and localized holes are included in the form of an effective magnetic
field in the present first principles calculations of the many-body energy band
structures for a carrier system, as we showed in Chaps. 10 and 11. Hence,
as we described in Chap. 11, the hole-carriers are to be found in the many-
body energy bands consisting mainly of the characters of copper dz2(a∗1g)and
oxygen pσ(b1g) orbitals, which are full in the un-doped state, leading to the
Mott–Hubbard insulator, and the dopant holes can move relatively freely in
the CuO2 plane by taking the character of a Zhang–Rice singlet and Hund’s
coupling triplet alternately between neighbouring sites in the presence of the
AF order due to the localized spins. The carrier is thus mobile while the un-
derlying AF ordering is preserved, resulting in a metallic state with itinerant
holes.

In this chapter we will calculate various normal state properties such
as the electrical resistivity, Hall effect, electronic entropy, etc., by using the
many-body included energy bands, the density of states and Fermi surfaces
obtained in the mean-field approximation for the K–S Hamiltonian. We will
show in this chapter that observed anomalous behaviours of various normal
state properties in the underdoped region of cuprates can be explained suc-
cessfully by the K–S model without introducing disposal parameters. Finally
we will also discuss how the observed “high-energy-pseudogap” can be ex-
plained on the basis of the K–S model.
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12.2 Resistivity

We begin with discussing the anomalous behaviour of electrical resistivity of
underdoped cuprates by choosing LSCO as an example of the present study.
As regards the electrical resistivity of La2−xSrxCuO4 (sometimes abbrevi-
ated as LSCO), Nakamura and Uchida [174] measured the temperature de-
pendence of the in-plane and out-of-plane resistivity with regard to the CuO2

plane of a single crystal of LSCO. Their result is shown in Fig. 12.1, where
the upper and lower panels show, respectively, the in-plane- and out-of-plane-
resistivity of LSCO for various hole concentrations (x). These experimental
results show a remarkable difference in the temperature dependence of the
underdoped regime between the in-plane-resistivity ρab and out-of-plane re-
sistivity ρc. In other words, (1) as regards ρab, it shows a linear temperature-
dependent metallic conductivity in a wide temperature range from high tem-
peratures above room temperature down to Tc, as already shown by Takagi
and his coworkers for epitaxial films [10, 175], while (2) ρc is two orders of
magnitude larger in its values than those of ρab for every x and it shows
a striking feature of non-metallic behaviour in its temperature dependence
for underdoped hole concentrations. Those anomalous behaviours of ρab and
ρc mentioned above can be explained naturally by the K–S model from a
qualitative point of view, as seen below: Since the Fermi surfaces in the K–S
model for the underdoped regime are small, the electron–phonon scatter-
ings with small momentum transfer are possible. As a result the resistivity

Fig. 12.1. Temperature dependence of the in-plane (upper panel) and out-of-plane
(lower panel) resistivity for single crystals with various concentration of LSCO
(After Nakamura and Uchida [174])
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depends on temperature linearly down to very low temperatures near Tc.
Thus the linear temperature dependence of ρab can be explained by the or-
dinary mechanism of electron–phonon scattering for resistivity, based on the
K–S model. On the other hand, one can explain the non-metallic behaviour
of ρc in the underdoped regime by the characteristic feature of the K–S model
that the metallic regions in a CuO2 plane are distributed inhomogeneously.
In other words, since the inhomogeneous distribution of metallic regions over
the CuO2 planes are different for every CuO2 plane, the magnitudes of the
transfer interactions of a hole-carrier between inter-planes in the underdoped
region is random and small, depending on the way of distribution of metal-
lic regions on two neighbouring CuO2 planes. As a result, the conduction
mechanism along the c-axis is due to hopping rather than a coherent transfer
for the underdoped region. In this context we predict that the temperature-
and concentration-dependence of the c-axis conduction in a cuprate has a
semiconducting feature. Now we will calculate the temperature dependence
of the in-plane resistivity along the ab plane ρab. The Fermi surface struc-
ture of the K–S model in the kx–ky plane of the AF Brillouin zone is very
similar to that of the higher-stage graphite intercalation compounds (GICs),
in which the Fermi surface consists of four pockets of small area. In calcu-
lating the in-plane resistivity of higher-stage GICs, Inoshita and Kamimura
found that the resistivity is proportional to T in the low temperature region
due to the intra-pocket scattering and to T 2 in the high temperature region
due to the inter-pocket scattering [176]. Following their method we will cal-
culate the temperature dependence of the in-plane resistivity by adopting a
simplified model of small Fermi surfaces(SF) shown in Fig. 11.3 of Chap. 11.
For this purpose the phonon-limited resistivity in LSCO is calculated from
the well-known variational expression for the resistivity of metals [177]. The
resistivity formula due to collisions of the hole-carriers with lattice phonons
is given below [176, 177],

ρ(T ) =
Aπ

2e2kBT

∫ ∫
ωq |gk,K |2 ·

[
cosh

(
h̄ωq

kBT

)
− 1

]−1

× [(vk − vK) · u]2
dSk

vk

dSK

v
K

, (12.1)

with

A =
[∫ ∫

(vk · u)(vK · u)(vk · vK)
dSk

vk

dSK

vK

]−1

, (12.2)

where gk,K is the electron–phonon matrix element between the states of the
wave vectors k and K of an electron which interacts with a phonon of the
wave vector q and the frequency ωq with q = K − k, vk the group velocity
of an electron in the state k, which is given by vk = ∂Ek/∂k, h̄ωq the
phonon energy, u the unit vector in the direction of the external electric field
which is parallel to the x-axis, and

∫
dSk denotes an integration over the

Fermi surface. Since the Fermi surface section in the kx–ky plane is small
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Fig. 12.2. The calculated temperature dependence of the resistivity in the ab
plane, ρab, of LSCO for various hole concentrations

in the K–S model, the phonons of small wave vectors are involved in the
mechanism of causing resistivity. Thus gk,K is expressed by the following
form: |gk,K |2 = (N/2Mωq) · (C · q)2, with C being a coupling constant
whose dimension is energy. Further, the phonon dispersion along the c-axis
is small, so that one can express the phonon dispersion in a two-dimensional
q space as h̄ωq = vs · q⊥ = vs ·

√
q2
x + q2

y, with the sound velocity vs, where

vs is 5 ×105 cm/s for LSCO [178].
The calculated results of resistivity in the ab plane of LSCO are shown

in Fig. 12.2 as a function of temperature T for x = 0.05, 0.1 and 0.15 in
La2−xSrxCuO4. Because the resistivity in the underdoped region of LSCO is
governed by the electron–phonon scattering with small momentum trans-
fer inside the same Fermi surface of small area, a linear temperature-
dependence of the resistivity appears even in a low temperature region, such
as below 150 K, consistent with the observed resistivity in normal state of
La2−xSrxCuO4 by Nakamura and Uchida [174] and Takagi et al. [175]. The
calculated concentration dependence of ρab is also consistent with experi-
mental results by Nakamura and Uchida [174] and Takagi et al. [175]. For the
values of x above 0.18, the observed temperature dependence in resistivity
deviates upward from the linear dependence in a low temperature region.
Since the K–S model does not hold in the well-overdoped region and Fermi
surfaces change from small ones to a larger one, the above mentioned devi-
ation from T -linear resistivity in the low-temperature region may be due to
this effect.

According to Inoshita and Kamimura, the electron–phonon scattering
between the neighbouring FS pockets becomes dominant above 150 K, and
this gives rise to T 2 temperature dependence in ρab. In the higher tempera-
ture region, however, the electron–phonon scattering within a large FS will
contribute to the T -linear temperature dependence to ρab. When temperature
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increases, the slope of T -linear dependence becomes different, from that in
the low-T region, because the K–S model will not hold in higher temperature
region so that small Fermi surfaces will change to a large FS, as will be seen
later in Sects. 12.5 and 12.6.

12.3 Hall Effect

The observed Hall coefficient of LSCO, RH, has also shown an anomalous
behaviour. The Hall data for LSCO show a drop in RH by two orders of
magnitude as x increases from x = 0.1 to 0.3. Then a sign change of RH

from a hole-like to an electron-like character occurs at around x = 0.3 [10,
179]. In this section we will show that these anomalous behaviours of the
Hall coefficient can be explained by the K–S model without introducing any
adjustable parameters.

For this purpose we use the formula derived by Schimizu and Kamimura
[180], by substituting − ∂f

∂Ek
for the δ-function in their formula. The formula

for the Hall coefficient RH thus obtained is given as follows:

RH =
4π3

ec

∫
BZ

dk
∂Ek

∂kx

[
∂Ek

∂kx

∂2Ek

∂k2
y

− ∂Ek

∂ky

∂2Ek

∂kx∂ky

](
− ∂f

∂Ek

)
[∫

BZ

dk

(
∂Ek

∂kx

)2

(− ∂f

∂Ek
)

]2 , (12.3)

where Ek represents the energy dispersion of a hole-carrier, and f(Ek, µ) the
Fermi distribution function at energy Ek and chemical potential µ. By using
the effective one-electron type energy band for the hole-carriers derived by
Ushio and Kamimura for LSCO which was presented in Chap. 11 [112], we
have calculated both the hole-concentration- and temperature- dependences
of RH. The calculated results of RH in La2−xSrxCuO4 for T = 80 K and
300 K are shown as a function of x in Fig. 12.3, where the experimental
results of RH by Takagi et al. [10] are also shown for comparison. It is seen
from this figure that the calculated results of RH decrease like 1/x in very low
concentrations. Then in underdoped to overdoped region it decreases more
rapidly than the 1/x behaviour and at around x ∼ 0.3 the Hall coefficient
changes its sign from positive (hole-like) to a negative one (electron-like). This
behaviour in the x dependence of RH coincides well with the experimental
results by Takagi et al. [10]. According to the present theoretical result, the
reason for the sign change of RH is due to the fact that, in the region of
0.3 ≥ x, the four small pockets of Fermi surface change into a large Fermi
surface as shown in Figs. 12.4 and 12.5 and that, on the large Fermi surface
the second derivatives of the energy dispersion such as ∂2Ek

∂k2
y

change their
sign over a dominant region of the Fermi surface. This leads to the negative
Hall coefficient RH at T = 0 K in the well overdoped concentration region.
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Fig. 12.3. The calculated concentration dependence of the Hall coefficient RH for
T = 80K and T = 300 K based on the K–S model, together with the experimental
results by Takagi et al. [10]

Fig. 12.4. The Fermi surface for x = 0.15 based on K–S model. Here two kinds of
Brillouin zones are also shown. One at the outermost part is the ordinary Brillouin
zone and the inner part is the folded Brillouin zone for the antiferromagnetic unit
cell in LSCO. Here the kx axis is taken along ΓG1, corresponding to the x-axis (the
Cu–O–Cu direction) in a real space, where Γ = (0, 0, 0) and G1 = (π/a, 0, 0)

When temperature increases, the holes with higher energy than Fermi energy
contribute more to the Hall coefficient of a negative sign. In other words, at
temperatures higher than 300 K, the dominant number of holes lie on the
states for which the second derivatives of the energy dispersion is negative.
As a result the Hall coefficient becomes negative at higher temperatures. In
this way the K–S model can explain the anomalous behaviour of the observed
Hall effect without introducing any disposal parameter.
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Fig. 12.5. The Fermi surface for x = 0.35 based on K–S model. Here two kinds of
Brillouin zones are also shown. One at the outermost part is the ordinary Brillouin
zone and the inner part is the folded Brillouin zone for the antiferromagnetic unit
cell in LSCO. Here the kx axis is taken along ΓG1, corresponding to the x-axis (the
Cu-O-Cu direction) in a real space

As regards the temperature dependence of the Hall effect, we can also
calculate the Hall angle θH as a function of temperature, where the Hall
angle θH is defined by tan−1(σxy/σxx). Since cot θH is given by

cot θH =
1

σxxRHH
, (12.4)

where H is an external magnetic field, we have calculated the temperature-
dependence of cot θH by using the calculated results of (12.1), (12.2) and
(12.3) for LSCO for several values of x in the underdoped region. We find
that cot θH is proportional to T 2. This is consistent with recent experiments
of LSCO by Ando and his coworkers [181].

They have ascribed the peculiar T -dependence of cot θH to the flat band
near G1 point. The flat band, however, is apart from Fermi energy in the
underdoped region of LSCO and it is not probable that the peculiar T -
dependence of cot θH is due to the flat band near G1 point. As will be de-
scribed in the following section based on K–S model, however, the heavy mass
band in the LF-phase contributes to the peculiar T -dependence of cot θH .
Thus the peculiar T -dependence of cot θH observed by Ando and his cowork-
ers also supports the K–S model.

12.4 Electronic Entropy

Electronic entropy also exhibits an anomalous behaviour in its unusual doping
dependence in La2−xSrxCuO4(abbreviated as LSCO), as observed by Loram
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et al. [182]. According to their experimental results, when the hole concen-
tration (x) increases, the electronic entropy increases and takes a maximum
around x = 0.25. Then a question arises how one can explain the appearance
of the maximum. Since the electronic entropy depends crucially on the density
of states, it contains important information on the metallic state of cuprates.
When we adopt the mean-field approximation for the K–S Hamiltonian, we
can calculate the electronic entropy as functions of hole-concentration (x)
and temperature (T ) from the following well-known formula

S(T, x) = −kB

∫ ∞

−∞

[
f(ε, µ) ln f(ε, µ)

+
{
1 − f(ε, µ)

}
ln
{
1 − f(ε, µ)

}]
ρ(ε) dε , (12.5)

where ρ(ε) is the density of states function and f(ε, µ) the Fermi distribution
function at energy ε and chemical potential µ.

In this context, Kamimura, Hamada and Ushio [183] calculated the x
and T dependences of the electronic entropy S(T, x) of LSCO for T = 100 K
and 200 K, by inserting ρKS(ε) into ρ(ε) in (12.5), where ρKS(ε) represents
the density of states for the highest occupied band in LSCO calculated by
Ushio and Kamimura [112], which was given as the #1 band in Fig. 11.1 in
Chap. 11. The calculated electronic entropy functions of LSCO at T = 100 K
and 200 K, SKS(100, x) and SKS(200, x), are shown by solid curves in Fig. 12.6,
along with the measured values by Loram et al. [182] shown by filled squares
for comparison. Reflecting the appearance of a saddle point singularity in
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Fig. 12.6. The calculated electronic entropies of LSCO at T = 100K and T =
200K, SKS(100, x), SKS(200, x), based on the K–S model (solid curves), and that
of the “LDA state” at T = 100K, SLDA(100, x), based on LDA density of states
(thin solid line). The experimental results of Loram et al. [182] are also shown
by closed squares for comparison. Note that both the calculated values and the
experimental data for the 200 K entropy have been shifted to aid clarity
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ρKS(ε) at x = 0.3 shown in Fig. 11.10, the electronic entropy increases up to
around x = 0.25, where both the calculated and measured entropy reach a
broad maximum. The agreement between the calculated entropy functions at
100 K and 200 K, SKS(100, x) and SKS(200, x), and the experimental results
by Loram et al. [182] are a strong vindication of the theoretical treatment of
the K–S model. Here it should be emphasized that there are no adjustable
parameters in this calculation, and the doping dependence of the chemical
potential µ, i.e., µ(x), has also been explicitly taken into account. For com-
parison we have also calculated the entropy function using the density of
states function, ρLDA(ε), obtained from the conduction band calculated by
Shima et al. [106] in the local density approximation (LDA). By repeating
the calculation, inserting ρLDA(ε) for ρ(ε) in (12.5), we have generated the
LDA entropy function, SLDA(100, x). The calculated SLDA(100, x) is shown
as a thin solid line in Fig. 12.6 as a function of hole concentration x at
T = 100 K. It is clearly seen that the calculated entropy function based on
the LDA band is too small, and has no maximum, exposing the inadequacy of
the electronic band structure based on the LDA band, even in the overdoped
region. The lack of agreement between experimental results and the LDA en-
tropy function on the one hand, and the rather good agreement between the
experimental results and the K–S entropy function on the other, confirms the
importance of including the electron correlation and local lattice distortion
of CuO6 octahedrons in any computational models for the cuprates. These
many-body and lattice distortion coupled effects have been taken into ac-
count in the K–S model but not in LDA. Here we call the latter LDA band
the “LDA state”. The present results also suggest a significant mass enhance-
ment of the hole-carriers. We can estimate that the effective mass of itinerant
holes is about six times the free electron mass. Since this mass enhancement
of hole-carriers is partly due to the effects of local lattice distortion based
on the anti-Jahn–Teller distortion, we expect a large isotope effect in super-
conductivity, such as that observed in HgBa2CuO4O8 and La1.94Sr0.06CuO4

reported by Mülller [184], which we will describe in Chap. 14. The agreement
between the K–S entropy function and experiments leads us to conclude that
the metallic state described by the K–S model is appropriate for the cuprates
in the normal state.

As we have described a number of times so far, the metallic regions on
the K–S model are inhomogeneous, because the spin-correlated regions which
trigger the metallic regions are distributed randomly over the CuO2 planes.
Further, the metallic regions are widely expanded by the dynamical effects
of the 2D spin-fluctuation in the 2D AF Heisenberg spin system, compared
with the length of the spin-correlated regions, as we described in detail in
Sect. 11.2. Further we may say that the hole-carriers in the metallic state in
the overdoped region have partly the nature of a large polaron with the six
times heavier effective mass of a free electron mass.
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12.5 Validity of the K–S Model
in the Overdoped Region and Magnetic Properties

When the hole-carrier concentration increases in the overdoped region be-
yond the optimum doping concentration, the occupation rate of hole-carriers
at the oxygen sites in a CuO2 plane also increases. As a result, the number
of O2− closed shell configurations in a CuO2 plane decreases. This means
that superexchange interaction between localized spins via intervening O2−

ions in a CuO2 plane is partly destroyed, and the effective superexchange
interactions between the localized spins at Cu sites become weak. In this cir-
cumstance the local AF order in the underdoped region diminishes beyond
the optimum doping and disappears at a certain hole concentration xc in the
overdoped region. In this context we may say that a kind of Néel tempera-
ture related to the local AF order in a spin-correlated region is dependent
on the hole-concentration x, and thus we denote it by T̂N(x). Since T̂N(x)
decreases with increasing x in the overdoped region beyond the optimum
doping xopt, it vanishes at xc. Thus the K–S model does not hold in the hole
concentration beyond xc. In order to investigate the magnetic behaviour in
the normal state, detailed experimental investigations for the temperature-
and hole-concentration dependences of the spin susceptibility have been car-
ried out by various experimental groups [10, 185, 186, 187, 188, 189] for
the normal state of LSCO. According to these experimental results, the ob-
served spin susceptibility χm shows the anomalous temperature dependence
in the underdoped region in such a way that χm exhibits a broad maximum
as a certain temperature Tmax, indicating a two-dimensional (2D) antiferro-
magnetic (AF) behaviour due to the localized spins around Cu sites below
Tmax. Miyashita [190], and Okabe and Kikuchi [191] obtained such anomalous
temperature dependence theoretically by performing quantum Monte Carlo
simulation for the S = 1/2 2D AF Heisenberg spin system on the square lat-
tice of a finite size. Experimentally, however, this maximum disappears in the
overdoped region beyond x ≈ 0.2(= xc), suggesting the suppression of the
in-plane Cu–Cu superexchange interaction in a CuO2 plane. This behaviour
is consistent with the prediction by the K–S model that the superexchange
interaction via the intervening O2− ions becomes ineffective at xc when the
hole concentration increases in the overdoped region. As a result the shape
of the Fermi surfaces changes from small ones to a larger one with a heavy
effective mass, and the K–S model does not hold in the overdoped region
beyond xc. Thus the spin susceptibility changes from 2D antiferromagnetic
behaviour to Pauli-like behaviour. Here we should remark that the existence
of a flat band of the heavy effective mass with a large FS may be an origin of
the T 2 dependence of cot θH observed by Ando et al. [181], as we mentioned
in Sect. 12.3.

A similar situation also appears even in the underdoped region when
the temperature increases for a fixed hole concentration in the underdoped
region. In other words, when the temperature increases for a certain hole
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concentration x0 in the underdoped region in which the K–S model holds,
the Fermi surfaces change from small ones to a larger one when temperature T
exceeds T̂N(x0), at which the local AF order disappears. As a result, the spin
susceptibility is expected to change from a 2D AF behaviour to a Pauli-like
behaviour. Based on this argument, we can define the high energy pseudogap
from the standpoint of the K–S model. In the following section we will discuss
an origin of the high-energy pseudogap based on the K–S model not only from
a qualitative standpoint but also from a quantitative standpoint.

12.6 The Origin of the High-Energy Pseudogap

12.6.1 Introduction

In connection with the anomalous hole-concentration dependences of the elec-
tronic entropy and of static spin susceptibility described in Sects. 12.3 and
12.4, Loram and his coworkers [182] proposed the concept of the “pseudogap”
from the standpoint of the Fermi liquid picture, by attributing the anomalous
behaviours to the reduction of the density of states near the Fermi energy,
called the pseudogap. On the other hand, Nakano and his coworkers [192]
found from their measurements of magnetic susceptibility and electrical re-
sistivity for LSCO that there are two crossover lines, Tmax(x) and T ∗(x) (Tc

< T ∗ < Tmax), in the T -x phase diagram of cuprates with a superconduct-
ing transition temperature Tc, both of which decrease monotonically with
increasing hole concentration x, as shown in Fig. 12.7. The upper crossover
line Tmax represents the temperature below which the magnetic susceptibility
exhibits a broad peak, arising from the gradual development of 2D antifer-
romagnetic spin correlation, while the lower crossover line T ∗ represents the
temperature below which a spin gap may open up in the magnetic excitation
spectrum around q = (π, π). Now Tmax and T ∗ are called the “high-energy”
and “low-energy” pseudogaps, respectively.

In this section we will discuss the origin of the high-energy pseudogap
on the basis of the K–S model. In the course of calculating the high-energy
pseudogap, we will discuss again the electronic entropy. Although we have
shown in Sect. 12.4 that the anomalous concentration dependence of the
electronic entropy can be explained successfully by the K–S model over the
wide range of hole-concentration from underdoped to well-overdoped region
without introducing any adjustable parameters, the argument in Sect. 12.4
has clarified that the K–S model does not hold in the concentration beyond
xc, where the shape of the Fermi surface changes from small ones to a large
one due to the disappearance of local AF order. Thus we have to reinvestigate
the behaviour of the electronic entropy in the overdoped region beyond xc. We
will show on the basis of the K–S model that the origins of both Tmax and the
strange hole-concentration-dependence of the electronic entropy are explained
by a unified mechanism of phase change between the phase consisting of small
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Fermi surfaces (abbreviated as “SF-phase”) and the phase consisting of a
large Fermi surface (abbreviated as “LF-phase”).

12.6.2 Calculation of Free Energies of the SF- and LF-Phases

According to the description mentioned in Sect. 12.4, the electronic structure
of LSCO changes from the SF-phase to the LF-phase at xc in the overdoped
region when x increases. Similarly, when the temperature increases for a
fixed hole concentration in the underdoped regime, the local AF order is
destroyed so that the SF-phase is considered to change to the LF-phase at a
certain temperature T0. We consider that T0 may correspond to Tmax in the
experiments by Nakano et al. [192].

When we write the difference between the free energies per Cu ion of the
LF- and SF-phases as

∆F (T, x) = FLF(T, x) − FSF(T, x) , (12.6)

Tmax and the critical concentration xc are defined as ∆F (Tmax, x) = 0 and
∆F (T = 0, xc) = 0, respectively. First the internal energy in the SF-phase is
expressed in the following way;

ESF(T, x) = ESF(0, 0) + E
(SF)
kin (T, x) − E

(SF)
kin (0, 0) , (12.7)

where ESF(0, 0) and E
(SF)
kin (T, x) represent, respectively, the internal energy

per Cu ion in a system of the local antiferromagnetic ordering with T = 0K
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and x = 0 and the kinetic energy per Cu ion in a hole-carrier system with
concentration x at T . Since ESF(0, 0) includes the kinetic energy, we have
to subtract E(SF)

kin (0, 0) from E
(SF)
kin (T, x) in order to avoid the double count-

ing. By using the density of states per Cu ion for the highest energy band
calculated by Ushio and Kamimura [112], ρKS(ε), and the Fermi distribution
function f(ε, µ(x)), E(SF)

kin (T, x) can be expressed as

E
(SF)
kin (T, x) =

∫ ∞

−∞
ε ρKS(ε) f(ε, µ(x)) dε , (12.8)

where we consider explicitly the x-dependence of the chemical potential µ as
µ(x). The entropy per Cu ion in the SF-phase is calculated by a well-known
formula

SSF(T, x) = −kB

∫ ∞

−∞

[
f(ε, µ(x)) ln f(ε, µ(x))

+
{
1 − f(ε, µ(x))

}
ln
{
1 − f(ε, µ(x))

}]
ρKS(ε) dε . (12.9)

Thus the free energy per Cu ion is calculated by the formula,

FSF(T, x) = ESF(T, x) − TSSF(T, x) . (12.10)

Similarly we denote the internal energy per Cu ion in the LF-phase by
ELF(T, x). In the LF-phase the local antiferromagnetic ordering does not
exist so that we first assume that the electronic system may be treated by
an ordinary band theory by the local density approximation (LDA) with the
(1 + x) hole concentration. Thus ELF(T, x) can be expressed as

ELF(T, x) = ELF(0, 0) + E
(LF)
kin (T, x) − E

(LF)
kin (0, 0) , (12.11)

where a conduction band corresponds to a b∗1g energy band with the main
character of Cu dx2−y2 orbital in the LDA band [147]. The ELF(0, 0) rep-
resents the internal energy per Cu ion in the LF-phase with T = 0 K and
x = 0, in which the b∗1g energy band is half-filled. The entropy per Cu ion in
the LF-phase is calculated by

SLF(T, x) = −kB

∫ ∞

−∞

[
f(ε, µ(x)) ln f(ε, µ(x))

+
{
1 − f(ε, µ(x))

}
ln
{
1 − f(ε, µ(x))

}]
ρLDA(ε) dε , (12.12)

where ρLDA(ε) is the density of states for a system with (1 + x) hole con-
centration of the b∗1g energy band. Then the free energy per Cu ion in the
LF-phase is given by

FLF(T, x) = ELF(T, x) − TSLF(T, x) . (12.13)
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The calculated results of SSF(T = 100K, x) and SSF(T = 200K, x),
which have been calculated using ρKS(ε) for the K–S model, have been al-
ready shown in Fig. 12.6. In this figure we have also shown SLF(100, x)
as SLDA(100, x) for “LDA state”. Since we have seen in Fig. 12.6 that
SLF(100, x) is very small compared with experimental results shown by the
solid squares, we have concluded that the electronic state in the overdoped
region beyond xc = 0.25 can not be expressed by the “LDA state” repre-
sented by the ordinary LDA bands. In this context, we have modified the
density of states of the LDA b∗1g band so as to reproduce the experimental
values of electronic entropy in the overdoped region above xc. The density
of states calculated by Ushio and Kamimura in the SF-phase, ρKS(ε), and
the modified density of states in the LF-phase which we denote ρ∗LDA(ε) are
shown in Figs. 12.8(a) and (b), respectively. The modified density of states
at a van Hove singularity which lies at the center of the band is about 6
times larger than that of the LDA band. We call the new state the “modi-
fied LDA state”. Since the observed maxima in the x-dependence of entropy
in LSCO appear around x = 0.25 both for T = 100 K and 200 K, we adopt
xc = 0.25 [14]. By using the modified density of states ρ∗LDA(ε) for ρLDA(ε) in
(12.12), we have recalculated the electronic entropies for T = 100 K and 200 K
for the concentration region beyond xc, which are denoted by S∗

LDA(100, x)
and S∗

LDA(200, x), respectively. The calculated results of S∗
LDA(100, x) and

S∗
LDA(200, x) for x > xc are shown in Fig. 12.9 together with SKS(100, x)

and SKS(200, x). Experimental results by Loram et al. are also shown by
closed squares in Fig. 12.9. As seen in this figure, we can explain successfully
the observed x-dependence of the electronic entropies both in the under-
doped and overdoped region, by defining the effective mass of a dopant hole
in the overdoped region to be six times heavier than the free electron mass.
Although the discontinuity appears around xc in Fig. 12.9, this should be

(a) SF-phase (b) LF-phase

0.12 eV

εε

ρKS(ε)

εLDA(xc)
εKS(xc)

εKS(0)

εLDA(0) half filled

ρLDA(ε)

Fig. 12.8. (a) The density of states calculated by Ushio-Kamimura ρKS(ε) in the
SF-phase. (b) The modified density of states for the b∗1g band ρ∗

LDA(ε) in the LF-
phase, so as to reproduce the observed electronic entropy by Loram et al. [193]
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LDA state” at T = 100K and 200K, S∗

LDA(100, x) and S∗
LDA(200, x), based on LDA

density of states. The experimental results of Loram et al. [182] are also shown
by closed squares for comparison. Note that both the calculated values and the
experimental data for the 200 K entropy have been shifted to aid clarity

smeared out by taking account of the broadening effect of Fermi surfaces in
the SF-phase. From this result we conclude that the appearance of the maxi-
mum in the observed entropy may be considered as an experimental evidence
for a phase change from the SF-phase to the LF-phase at xc. Further, from
the modified density of states ρ∗LDA(ε) for the “modified LDA state”, we con-
clude that the effective mass of hole carriers are about 6 times heavier than
the free electron mass in the overdoped region. Since the effective mass of the
hole carriers in the highest occupied (#1) band in the underdoped region in
Fig. 11.1 is about ten times heavier than the free electron mass [112], we may
say that the hole carriers in the superconducting cuprates behave like large
polarons with heavy mass.

12.6.3 Origin of the “High-Energy” Pseudogap

By using the density of states of the highest occupied (#1) band [112], ρKS(ε),
for the underdoped to overdoped region below xc and the modified density
of states for the b∗1g band in the “modified LDA state”, ρ∗LDA(ε), for the
overdoped region above xc, Tmax is calculated from the following equations;

∆F (Tmax, x) = 0 , (12.14)

where
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∆F (T, x) = F ∗
LF(T, x) − FSF(T, x)

=
{
E∗

LF(T, x) − TS∗
LF(T, x)

}− {
ESF(T, x) − TSSF(T, x)

}
= E∗

LF(0, 0) − ESF(0, 0) +
{
E

∗(LF)
kin (T, x) − E

∗(LF)
kin (0, 0)

}
− {

E
(SF)
kin (T, x) − E

(SF)
kin (0, 0)

}− T
{
S∗

LF(T, x) − SSF(T, x)
}

= EAF +
∫ ∞

−∞
ε ρ∗LDA(ε) f(ε, µ(x)) dε−

∫ εLDA(0)

−∞
ε ρ∗LDA(ε) dε

−
{∫ ∞

−∞
ε ρKS(ε) f(ε, µ(x)) dε−

∫ εKS (0)

−∞
ε ρKS(ε) dε

}
− T

{
S∗

LF(T, x) − SSF(T, x)
}
. (12.15)

Here EAF ≡ E∗
LF(0, 0) − ESF(0, 0). Further εKS(0) and εLDA(0) repre-

sent the band energies of the highest occupied (#1) [112] band and of the
“modified b∗1g band” for x = 0, respectively, as shown in Figs. 12.8(a) and (b).
Tmax is calculated from (12.14) and (12.15) as a function of x. In doing so, the
value of EAF is found to be 0.043 eV by inserting Tmax = 1000 K at x = 0 into
(12.14) and (12.15), where Tmax = 1000 K at x = 0 is obtained by extrapolat-
ing the experimental data by Nakano and his coworkers [188, 192] to x = 0.
The EAF thus determined corresponds to the energy change from the half-
filled band in the LF-phase to a Mott–Hubbard insulator in the SF-phase.
Furthermore, information about the energy difference, εLDA(0) − εKS(0), is
necessary. We determine it by requiring that ∆F (T = 0 K, x) vanishes at
xc. As for xc, 0.25 is chosen from the concentration at which the entropy
shows a maximum in the experimental data by Loram et al. [182]. Then we
have determined εLDA(0) − εKS(0) to be 0.12 eV. Using EAF = 0.043 eV and
εLDA(0) − εKS(0) = 0.12 eV, we have calculated the x-dependence of Tmax

from (12.14) and (12.15) quantitatively. The calculated result is shown in
Fig. 12.10. When the calculated x-dependence of Tmax is compared with that
observed for LSCO by Nakano et al. [192], shown in the inset of Fig. 12.10,
we find that the agreement is fairly good. Thus, from the standpoint of the
K–S model one may say that the phase change between the SF- and LF-
phases corresponds to the “high-energy” pseudogap, Tmax. As shown in the
phase diagram of Fig. 12.7, we may call a region below the curve of Tmax

the “pseudogap region”, where SF- and LF-phases coexist. Because of this
coexistence of two phases, we expect that the temperature dependences of
spin susceptibility and Fermi surface are conspicuous.

In this section we have shown from the calculations of the electronic en-
tropies in the SF- and LF-phases and also from the calculated free energy
difference between the SF- and LF-phases based on the K–S model that both
the observed peculiar x-dependences of entropy by Loram et al. and of the
observed Tmax by Nakano et al. can be explained by a unified mechanism of
a phase change between the SF- and LF-phases in the K–S model. Further,
by fitting the calculated x-dependence of the electronic entropy to the one
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in LSCO. The experimental data for Tmax by Nakano et al. [192] are also shown,
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observed in the overdoped region beyond xc = 0.25, we may understand that
the hole carriers in cuprates behave like large polarons with an effective mass
of about six times heavier than the free electron mass. We can say that the
origin of the heavy effective mass is due to the interplay between the electron
correlation and the local lattice distortion of CuO6 octahedrons. Finally we
would like to make brief comments on the origin of “low-energy pseudogap”
T ∗ shown in Fig. 12.7. According to the K–S model, T ∗ corresponds to the
spin-excitation-energy in the metallic region of a finite size. We can estimate
this energy from the spin-wave excitation spectrum around the edge of the AF
Brillouin zone calculated by Suzuki and Kamimura for the magnon spectra
in K2NiF4 [194].



13 Electron–Phonon Interaction
and Electron–Phonon Spectral Functions

13.1 Introduction

In 1996, by choosing LSCO as an object of study, Kamimura, Matsuno, Suwa
and Ushio [30] showed quantitatively on the basis of the K–S model that the
electron–phonon interactions in cuprates are very strong and that the in-
terplay between the electron–phonon interaction and local antiferromagnetic
(AF) order gives rise to the Cooper pairs of dx2−y2 symmetry. This result was
the first theoretical support for the original idea by Bednorz and Müller in
their discovery of high temperature superconductivity, that strong electron–
phonon interactions in oxides may lead to the invention of new supercon-
ducting materials which can go beyond the superconductors governed by the
BCS theory. In 2001 Lanzara and her coworkers [195] presented experimental
evidence for strong electron–phonon coupling in cuprates by investigating the
electronic quasiparticle dispersions in three different families of Bi2212 with
use of the angle-resolved photoemission spectroscopy (ARPES). In this con-
text, we will describe in detail in this chapter the method of how to calculate
the electron–phonon interactions and the electron–phonon spectral functions
in the K–S model following the theory of high temperature superconductivity
developed by Kamimura and his coworkers [26, 30].

13.2 Calculation of the Electron–Phonon Coupling
Constants for the Phonon Modes in LSCO

All relevant properties of the electron–phonon systems, including supercon-
ductivity, are derived from the electron–phonon spectral functions α2F , which
are defined as follows,

α2F↑↑(Ω,k,k′) = ρ(EF)
∑

γ

V γ
↑ (k,k′)V γ

↑ (−k,−k′)
2ωγ

q
δ(Ω − ωγ

k′−k
) , (13.1)

α2F↑↓(Ω,k,k′) = ρ(EF)
∑

γ

V γ
↑ (k,k′)V γ

↓ (−k,−k′)
2ωγ

q
δ(Ω − ωγ

k′−k
) . (13.2)

Here α2F↑↑(Ω,k,k′) and α2F↑↓(Ω,k,k′) are the spectral functions which are
related to the processes of virtual emission and absorption of various modes
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of phonons by the interaction with a single electron and to the scattering
processes of a pair of electrons from a pair state (k ↑,−k ↓) to a different
pair state (k′ ↑,−k′ ↓), respectively. Further, ρ(EF) is the density of states
at the Fermi energy EF. The electron–phonon interaction matrix element
between the k and k′ states with spin σ, V γ

σ (k,k′), is defined as follows:

He−p =
∑

Kkk′qγσ

V γ
σ (k,k′)√
Nωγ

q

c†
kσ

ck′
σ

(
bqγ + b†−qγ

)
δk,k′

+q+K , (13.3)

where bqγ is an annihilation operator of phonon mode γ with momentum q,
ωγ
q the phonon frequency of the wave vector q in the AF Brillouin zone, N

the total number of AF unit cells in a crystal, and δk,k′
+q+K takes the value

1 only when k − k′ − q coincides with a reciprocal lattice vector in the AF
Brillouin zone, K, and 0 for other cases. The spectral function α2F↑↑(Ω,k,k′)
causes a mass enhancement of an electron near the Fermi surface due to
the electron–phonon interaction and a finite lifetime of quasi-particle states.
On the other hand, the spectral function α2F↑↓(Ω,k,k′) contributes to the
formation of the Cooper-pair with spin-singlet. These two kinds of spectral
functions in (13.1) and (13.2) are different from each other in the present case
due to the fact that the wave function for up-spin carriers differs from that
for down-spin carriers, although they are the same in the ordinary BCS case.
Frequently this electron–phonon spectral function is averaged over either one
of k and k′ or over both of the k and k′ values in the electron states (k,k′)
on the Fermi surface, as is shown below,

α2F↑↓(Ω,k) =
1

ρ(EF)

∑
k′

α2F↑↓(Ω,k,k′)δ(E0

k′ − EF) , (13.4)

α2F↑↓(Ω) =
1

ρ(EF)2
∑
kk′

α2F↑↓(Ω,k,k′)δ(E0
k − EF)δ(E0

k′ − EF) . (13.5)

Here we pay attention to the spectral function for a spin–singlet defined
on the Fermi surface and averaged over kz-axis. Such a spectral function is
denoted by α2F↑↓(Ω, θ, θ′), which is defined as follows,

α2F↑↓(Ω, θ, θ′) =
1

ρ(EF)2N

∑
kk′q

α2F↑↓(Ω,k,k′)

×δk,k′
+q+Kδ(E0

k − EF)δ(E0

k′ − EF)

×δ(θ − tan−1 ky

kx
)δ(θ′ − tan−1

k′y
k′x

) . (13.6)

Here ρ(EF) and E0
k are the density of states of hole carriers at the Fermi

energy and the energy of the many-body-effect included band dispersion at a
wave-vector k, respectively, both of which have been calculated in Chap. 11.
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Following the method of Motizuki, Suzuki and Shirai [156, 157, 158], we will
derive the expression of a spectral function in the tight binding form in the
next section.

In this section we describe the formalisms of how to calculate the spectral
functions, based on the many-body-effect included tight binding Hamiltonian
(11.1) given in Chap. 11. With the use of the electron–phonon coupling con-
stant V γ

σ (k,k′) defined in (13.3), the momentum-dependent spectral function
for a singlet Cooper pair, α2F↑↓(Ω, θ, θ′), is expressed as follows,

α2F↑↓(Ω, θ, θ′) =
1

ρ(EF)

∑
kk′q

∑
γ

V γ
↑ (k,k′)V γ

↓ (−k,−k′)
2Nωγ

q

×δk,k′
+q+Kδ(E0

k − EF)δ(E0

k′ − EF)δ(Ω − ωγ

k′−k
)

×δ
(
θ − tan−1 ky

kx

)
δ

(
θ′ − tan−1

k′y
k′x

)
. (13.7)

Now we calculate the momentum-dependent spectral function by aver-
aging it with respect to phonon frequency ωγ

q ; in other words by replacing
δ(Ω−ωγ

k′−k
) by the phonon density of states P (Ω). The obtained expression

is the following:

α2F↑↓(Ω, θ, θ′) = ρ(EF)N
∑

γ

〈V γ
↑ (kk′)V γ

↓ (−k − k′)〉av.

2Ω
P (Ω) . (13.8)

Here 〈· · ·〉av. means the average over kz and k′z on the Fermi surfaces, where
ky/kx = tan θ and k′y/k

′
x = tan θ′.

In order to obtain the electron–phonon interaction, we calculate the
change of the energy bands when the ions are displaced by a small amount
δRlµ from their equilibrium positions Rlµ. Following the method of Motizuki
et al. [156, 157, 158], we adopt the Fröhlich approach, in which one assumes
that the atomic wave functions are not changed when the ions are displaced
by a small amount. Thus we use the atomic wave functions which move rigidly
with ions, in calculating the energy bands for a displaced structure. There-
fore, the basis function in the displaced structure becomes ϕa(r−Rlµ−δRlµ)
and the Bloch function in the displaced structure is constructed as follows:

Φµak(r) =
1√
N

∑
l

eik·Rlµϕa(r − Rlµ − δRlµ) , (13.9)

where Rlµ = Rl + τµ represents the position of the µth ion in the lth unit
cell, τµ the position of the µth ion within the unit cell, N the total number of
the unit cells in a crystal, k a wave vector, and a specifies an atomic orbital.
Then the matrix elements of the Hamiltonian are defined by

Hµaνb(k ,k′) = 〈Φµak |He|Φνbk ′〉 , (13.10)
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where He represents the effective one-electron Hamiltonian derived in
Chap. 11. This Hamiltonian matrix is expressed by inserting (13.9) into
(13.10) as follows;

Hµaνb(k,k′) =
∑
l−l′

e−ik·Rlµeik′·Rl′νHlµa,l′νb , (13.11)

where

Hlµa,l′νb = 〈ϕa(r − Rlµ − δRlµ)|He|ϕb(r − Rl′ν − δRl′ν)〉 . (13.12)

The matrix element Hlµa,l′νb is a function of R which is the difference between
the position vectors of the two ions. In the following we calculate the many-
body-effect included energy bands and expand them in terms of the atomic
displacements δRα

lµ or their Fourier transformations uα
qµ defined by,

δRα
lµ =

1√
N

∑
q

eiqRlµuα
qµ , (13.13)

where α indicates x, y and z. By expanding the energy bands up to the
first order in δRα

lµ or uα
qµ, the Hamiltonian matrix element Hµaνb(k,k′) is

expressed as

Hµaνb(kk′) = H0
µaνb(k)δkk′ +

∑
q

∑
µ′α

Ṫα
µ′(µak, νbk′)uα

qµ′δk−q,k′ . (13.14)

Here H0
µaνb(k) is the Hamiltonian matrix element for an undistorted struc-

ture and Ṫα
µ′(µak, νbk′) is a quantity related to the derivative of a transfer

interaction or of an on-site energy with regard to a displacement. The defin-
ition of Ṫα

µ′(µak, νbk′) is given as follows;

Ṫα
µ (µ′akν′bk′) =

1√
N

[δµµ′Tα
µ′a, ν′b(k

′) − δµν′Tα
µ′a, ν′b(k)] for µ′a �= ν′b ,

Ṫα
µ (µ′akν′bk′) =

1√
N
T �α

µc, ν′b(k
′ − k) for µ′a = ν′b , (13.15)

where

Tα
µ′a, ν′b(k) =

∑
l−l′

e−ik·(Rlµ′−Rl′ν′ )Tα
lµ′a, l′ν′b , (13.16)

T �α
µc, ν′b(k) =

∑
l−l′

e−ik·(Rlµ−Rl′ν′ )T �α
lµc, l′ν′b , (13.17)

Tα
lµ′a, l′ν′b =

∂

∂Rα
Hlµ′a, l′ν′b|R=R

lµ′−R
l′ν′

, (13.18)

T �α
lµc, l′µ′a(µ) =

∂

∂Rα
Hl′µ′a, l′µ′a|R=Rlµ−R

l′µ′
. (13.19)
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Then the electron–phonon interaction in (13.3) is calculated on a tight bind-
ing model as follows;

V γ(k,k − q) =
∑
µα

1√
Mµ

εγµα(q)gα
µ (kk − q) , (13.20)

gα
µ (kk′) =

∑
nµ′a

∑
n′ν′b

[A†(k)]nµ′a[Ṫα
µ (kk′)]µ′a, ν′b[A(k′)]ν′bn′ εγ , (13.21)

where

εγ = 1 · · · for the process where pseudo-momentum k′ − k + q = 0
= −1 · · · for the process where pseudo-momentum k′ − k + q = K .

(13.22)

In (13.20) and (13.21), [A(k′)]ν′bn′ is the (ν′bn′)-th element of the transfor-
mation matrix in the undistorted structure, εγµα(q) the polarization vector of
µth atom for a phonon mode γ with α = x, y, z, and K the reciprocal lattice
vector in the AF Brillouin zone. The detailed expressions of the electron–
phonon matrix elements at the µ-th atom between k and k′ states are given
in the appendix at the end of this chapter.

In carrying out calculations of the spectral function for LSCO in the
following chapter, one can see a reason why the electron–phonon interactions
which scatter a pair of electrons from one pair state (k ↑,−k ↓) to a different
pair state (k′ ↑,−k′ ↓) are repulsive for some combinations of (k,k′) while
attractive for others for the K–S model.

13.3 Calculation of the Spectral Functions
for s-, p- and d-waves

Following the method of Motizuki et al. [156, 157, 158], we will express the
band structure numerically calculated in Chap. 11 in a tight binding analyti-
cal form, and calculate the spectral function α2F↑↓(Ω, θ, θ′), by using the ex-
pressions of gα

µ (k,k′) and V γ(k,k′) based on the tight binding model, which
are given in the appendix of this chapter. In the present theory, for the origins
of the electron–phonon interactions gα

µ (k,k′), we consider the change of both
the transfer interactions and the on-site energies due to the displacement of
atoms for each phonon mode [178, 196]. The change of the on-site energies has
not been taken into account in the treatment of Motizuki et al. In the present
theory, the derivatives of transfer integrals between Cu and O in CuO2 plane
are taken into account through the derivatives of the Slater Koster parame-
ter, t′1(dpσ) = dt1(dpσ)/dR = 2.6 eVÅ−1, calculated by DeWeert et al. [153].
(With regard to the Slater–Koster parameters, readers should read Chap.
10.) As for the effect of the displacement of atoms upon the on-site energies



144 13 Electron–Phonon Interaction and Electron–Phonon Spectral Functions

in the tight binding band, we calculate the change of the energies of the 1A1g

and 3B1g multiplets, dEA1g/dR and dEB1g/dR, by using the calculated re-
sults of energy difference with respect to the distance of Cu and apical O by
Kamimura and Eto [104]. From the result of Kamimura and Eto we find that
E′

B1g
≡ dEB1g/dR=2.8eV Å−1 and E′

A1g
≡ dEA1g/dR=2.2 eV Å−1, where

EB1g and EA1g denote the on-site energy of 3B1g and 1A1g , respectively, as
we already described in Chap. 5.

As an example of the calculated results, we present the calculated re-
sults of the θ and θ′ dependence of the electron–phonon spectral functions
α2F↑↓(Ω, θ, θ′) for an A1g phonon mode in Figs. 13.1–13.4, that for an Eu

phonon mode in Figs. 13.5–13.8 and the calculated results of the θ and θ′

dependence of α2F↑↑(Ω, θ, θ′) for an A1g phonon mode in Figs. 13.9–13.12
for La2−xSrxCuO4. For convenience of readers, all the figures from Fig. 13.1
to Fig. 13.16 are placed at the end of this section.

The θ-dependence of the spectral functions may be more easily understood
from Fig. 13.13 and Fig. 13.14, where the calculated results of the spectral
functions α2F↑↓ are shown, respectively, as a function of θ for fixed values of
Ω and θ′ for an A1g phonon mode in which the apical oxygens move vertically

Fig. 13.1. The θ and θ′ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an A1g phonon mode shown in the inset of the figure
for fixed values of Ω and θ′, in LSCO with tetragonal symmetry. The spectral
function α2F↑↓(Ω, θ, θ′) is shown for 0 ≤ θ ≤ π/2 and 0 ≤ θ′ ≤ π/2. Here Cu–O–
Cu distance a is taken as unity
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Fig. 13.2. The θ and θ′ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an A1g phonon mode shown in the inset of the figure
for fixed values of Ω and θ′, in LSCO with tetragonal symmetry. The spectral
function α2F↑↓(Ω, θ, θ′) is shown for π/2 ≤ θ ≤ π and 0 ≤ θ′ ≤ π/2. Here Cu–O–
Cu distance a is taken as unity

Fig. 13.3. The θ and θ′ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an A1g phonon mode shown in the inset of the figure
for fixed values of Ω and θ′, in LSCO with tetragonal symmetry. The spectral
function α2F↑↓(Ω, θ, θ′) is shown for π ≤ θ ≤ 3π/2 and 0 ≤ θ′ ≤ π/2. Here Cu–O–
Cu distance a is taken as unity
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Fig. 13.4. The θ and θ′ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an A1g phonon mode shown in the inset of the figure
for fixed values of Ω and θ′, in LSCO with tetragonal symmetry. The spectral
function α2F↑↓(Ω, θ, θ′) is shown for 3π/2 ≤ θ ≤ 2π and 0 ≤ θ′ ≤ π/2. Here
Cu–O–Cu distance a is taken as unity

Fig. 13.5. The θ and θ′ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an Eu phonon mode shown in the inset of the figure.
The spectral function α2F↑↓(Ω, θ, θ′) is shown for fixed values of Ω and θ′, in
LSCO with tetragonal symmetry. The spectral function α2F↑↓(Ω, θ, θ′) is shown
for 0 ≤ θ ≤ π/2 and 0 ≤ θ′ ≤ π/2. Here Cu–O–Cu distance a is taken as unity
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Fig. 13.6. The θ and θ′ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an Eu phonon mode shown in the inset of the figure.
The spectral function α2F↑↓(Ω, θ, θ′) is shown for fixed values of Ω and θ′, in
LSCO with tetragonal symmetry. The spectral function α2F↑↓(Ω, θ, θ′) is shown
for 0 ≤ θ ≤ π/2 and 0 ≤ θ′ ≤ π/2. Here Cu–O–Cu distance a is taken as unity

Fig. 13.7. The θ and θ′ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an Eu phonon mode shown in the inset of the figure.
The spectral function α2F↑↓(Ω, θ, θ′) is shown for fixed values of Ω and θ′, in
LSCO with tetragonal symmetry. The spectral function α2F↑↓(Ω, θ, θ′) is shown
for 0 ≤ θ ≤ π/2 and 0 ≤ θ′ ≤ π/2. Here Cu–O–Cu distance a is taken as unity
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Fig. 13.8. The θ and θ′ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an Eu phonon mode shown in the inset of the figure for
fixed values of Ω and θ′, in LSCO with tetragonal symmetry. The spectral function
α2F↑↓(Ω, θ, θ′) is shown for 0 ≤ θ ≤ π/2 and 0 ≤ θ′ ≤ π/2. Here Cu–O–Cu distance
a is taken as unity

Fig. 13.9. The θ and θ′ dependence of the momentum-dependent spectral function
α2F↑↑(Ω, θ, θ′) calculated for an Eu phonon mode shown in the inset of this figure,
for fixed values of Ω. The spectral function α2F↑↑(Ω, θ, θ′) is shown for 0 ≤ θ ≤ π/2
and 0 ≤ θ′ ≤ π/2. Here Cu–O–Cu distance a is taken as unity
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Fig. 13.10. The θ and θ′ dependence of the momentum-dependent spectral func-
tion α2F↑↑(Ω, θ, θ′) calculated for an Eu phonon mode shown in the inset of this
figure, for fixed values of Ω. The spectral function α2F↑↑(Ω, θ, θ′) is shown for
π/2 ≤ θ ≤ π and 0 ≤ θ′ ≤ π/2. Here Cu–O–Cu distance a is taken as unity

Fig. 13.11. The θ and θ′ dependence of the momentum-dependent spectral func-
tion α2F↑↑(Ω, θ, θ′) calculated for an Eu phonon mode shown in the inset of this
figure, for fixed values of Ω. The spectral function α2F↑↑(Ω, θ, θ′) is shown for
π ≤ θ ≤ 3π/2 and 0 ≤ θ′ ≤ π/2. Here Cu–O–Cu distance a is taken as unity
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Fig. 13.12. The θ and θ′ dependence of the momentum-dependent spectral func-
tion α2F↑↑(Ω, θ, θ′) calculated for an Eu phonon mode shown in the inset of this
figure, for fixed values of Ω. The spectral function α2F↑↑(Ω, θ, θ′) is shown for
3π/2 ≤ θ ≤ 2π and 0 ≤ θ′ ≤ π/2. Here Cu–O–Cu distance a is taken as unity

for a CuO2 plane (Fig. 13.13) and for an Eu phonon mode in which the oxygen
ions move within a CuO2 plane (Fig. 13.14).

As seen in Figs. 13.1–13.8, the momentum-dependent spectral functions
for a singlet Cooper pair, α2F↑↓(Ω, θ, θ′), shows a sharp k-dependence. Its
k-dependence follows dx2−y2 symmetry. The sharp peaks of the spectral func-
tion near G1 points, (±π/a, 0, 0) and (0,±π/a, 0), are due to the appearance
of the van Hove singularity in the density of states (DOS) at G1 points. Sum-
marizing the calculated results of α2F↑↓(Ω, θ, θ′) for LSCO, we can say that
the s-component almost vanishes while the d-component is conspicuous.

Then, by summing up the contributions from all the phonon modes shown
in Table 13.1 at the end of this chapter to the spectral function, we have
calculated the s-wave component of spectral function α2F

(0)
↑↓ (Ω) and its d-

wave component α2F
(2)
↑↓ (Ω), which are defined from α2F↑↓(Ω, θ, θ′) as follows:

α2F↑↓(Ω, θ, θ′) =
1
2π

∞∑
n=0

α2F
(n)
↑↓ (Ω) cosnθ cosnθ′ . (13.23)

As will be explained in the next chapter, the d-wave component α2F
(2)
↑↓ (Ω)

contributes to the appearance of d-wave superconductivity. As a result we
find that, for phonon modes in which oxygen and copper ions vibrate within
a CuO2 plane such as a breathing mode, the d-wave component in the spectral
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Fig. 13.13. The θ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an A1g phonon mode shown at the bottom of this
figure for fixed values of Ω and θ′. In this case θ′ is taken a value near G1 point,
i.e., (π/a, 0, 0). Here Cu–O–Cu distance a is taken as unity

function is negative (repulsive) and the s-wave component is very small. Thus
the in-plane modes do not contribute to the formation of Cooper pairs. On
the other hand, for the phonon modes in which the apical oxygen ions and La
ions move vertically for CuO2 plane, the d-wave component of the spectral
function, α2F

(2)
↑↓ (Ω), has a positive (attractive) sign, and the s wave compo-

nent is very small. In Fig. 13.15 we show the calculated results of the total
contribution for the d-wave components of the spectral function, α2F

(2)
↑↓ (Ω),

from all the phonon modes of LSCO.
We can obtain the value of electron–phonon coupling constant for d-wave

pairing, λd by integrating the positive part of the calculated d-wave compo-
nents of the spectral function α2F

(2)
↑↓ (Ω) over the phonon frequency Ω, as

shown in the following expression.

λd = 2
∫ ∞

0

1
2α

2F
(2)
↑↓ (Ω)
Ω

dΩ . (13.24)
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Fig. 13.14. The θ dependence of the momentum-dependent spectral function
α2F↑↓(Ω, θ, θ′) calculated for an Eu phonon mode shown at the bottom of this
figure for fixed values of Ω and θ′. In this case θ′ is taken a value near G1 point,
i.e., (π/a, 0, 0). Here Cu–O–Cu distance a is taken as unity

The value of λd thus calculated for x = 0.15 is 1.96. From this result we
can say that LSCO is the superconductor of a strong coupling. In Fig. 13.16
we also give the calculated results of the total contribution to the spectral
function α2F↑↑(Ω). In this case only the s-component α2F

(0)
↑↑ (Ω) appears.

This causes a mass enhancement of the electronic states.
In the electron– and spin–structures of the K–S model characterized by

the alternant appearance of the a∗1g and the b1g orbitals and by the differ-
ent spatial distribution of Bloch wave functions for up-spin and down-spin
dopant holes, the electron–phonon interaction matrix element for an up-spin
hole-carrier, V γ

↑ (k,k′), becomes different from that for a down-spin carrier,
V γ
↓ (k,k′) and thus, α2F↑↓(Ω, θ, θ′) changes its sign. This situation makes the

k dependence of α2F↑↓(Ω, θ, θ′) much more conspicuous and stronger than
in the case of an ordinary BCS case. We can say that the present results
of α2F

(2)
↑↑ (Ω) are probably the first quantitative calculation of the electron–

phonon spectral function for a d-wave superconductivity in real materials.
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Fig. 13.15. The d-wave component of the spectral function, α2F
(2)
↑↓ (Ω), calculated

for LSCO with x = 0.15, due to the contribution from all the phonon modes in
LSCO

Fig. 13.16. The spectral function, which contributes to mass enhancement,
α2F

(0)
↑↑ (Ω), calculated for LSCO with x = 0.15, due to the contribution from all

the phonon modes in LSCO
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Table 13.1. Normal modes corresponding to ∆-line, (0,0)→(π,0), for LSCO. The
mass ratio to satisfy the orthogonality relation are omitted in the table. See S. Mase
et al., Phonon Dispersion Curves of High Tc Superconductors I. (La1−xSrx)2CuO4,
J. Phys. Soc. Jpn. 57 (1988) 607

La1 La2 Cu O(1)1 O(1)2 O(2)1 O(2)2 mode

La (100) (100) (100) (100) (100) (100) (100) Eu

(010) (010) (010) (010) (010) (010) (010) Eu

(001) (001) (001) (001) (001) (001) (001) A2u

(100) (1̄ 00) (100) (1̄ 00) Eg

(010) (0 1̄ 0) (010) (0 1̄ 0) Eg

(001) (00 1̄ ) (001) (00 1̄ ) A1g

Cu ( 3̄
4
00) ( 3̄

4
00) (100) (100) (100) ( 3̄

4
00) ( 3̄

4
00) Eu

(0 3̄
4
0) (0 3̄

4
0) (010) (010) (010) (0 3̄

4
0) (0 3̄

4
0) Eu

(00 3̄
4
) (00 3̄

4
) (001) (001) (001) (00 3̄

4
) (00 3̄

4
) A2u

O(1) s (100) (1̄00) Eu

(010) (01̄0) Eu

O(1) b (200) (1̄00) (1̄00) Eu

(020) (01̄0) (01̄0) Eu

(002) (001̄) (001̄) A2u

(001) (001̄) B2u

O(2) s (001) (001) (001̄) (001̄) A2u

(001) (001̄) (001̄) (001) A1g

O(2) b (100) (100) (1̄00) (1̄00) Eu

(010) (010) (01̄0) (01̄0) Eu

(100) (1̄00) (1̄00) (100) Eg

(010) (01̄0) (01̄0) (010) Eg

In the following chapter we will show that this characteristic k depen-
dence produces a large d-wave component of the spectral function. In the
ordinary BCS case, a d-wave component is always small because of the posi-
tive definite k dependence of α2F↑↓(Ω, θ, θ′). Thus the present electron– and
spin–structures in the K–S model are the key factors in creating d-wave pair-
ing in the phonon mechanism [30].

In the following chapter we will calculate various superconducting prop-
erties of cuprates, such as the hole-concentration dependence of Tc, isotope
effects, etc.

13.4 Appendix

Appendix D. The Explicit Forms
of the Electron–Phonon Interaction

In this appendix the explicit forms of the electron–phonon interaction gα
µ (kk′)

are given for µ = Cu, O(1)1, O(1)2, O(2)1 and O(2)2 which are the copper
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atom, the oxygen atoms in CuO2 plane and the apical oxygen atoms, respec-
tively.

g
x
Cu(kk

′
) = − 1√

N
[ A

∗
s (k)16A(k

′
)1T

x
1,16(k

′
)
∗

+ A
∗
(k)1As(k

′
)16T

x
1,16(k)

+A
∗

s (k)17A(k
′
)1T

x
1,17(k

′
)
∗

+ A
∗
(k)1As(k

′
)17T

x
1,17(k)] ,

g
x

O(1)1 (kk
′
) = +

1√
N

[ A
∗

s (k)1A(k
′
)16T

x
1,16(k

′
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∗
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′
)1T

x
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∗
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′
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x
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′
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∗
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′
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x
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∗
] ,

g
y
Cu(kk

′
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N
[ A

∗
s (k)16A(k

′
)5T

y
5,16(k

′
)
∗

+ A
∗
(k)5As(k

′
)16T

y
5,16(k)

+A
∗
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′
)5T

y
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′
)
∗

+ A
∗
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′
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y
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′
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1√
N

[ A
∗

s (k)5A(k
′
)16T

y
5,16(k

′
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∗
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′
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∗
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′
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y
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∗
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′
)5T

y
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∗
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z
Cu(kk

′
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N
[ A

∗
s (k)17A(k

′
)9T

z
9,17(k

′
)
∗

+ A
∗
(k)9As(k

′
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z
9,17(k)
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∗
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′
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′
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N
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∗

s (k)9A(k
′
)17T

z
9,17(k

′
) + A

∗
(k)17As(k

′
)9T

z
9,17(k)

∗
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′
)17T

�z
9,17(k
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∗
s(k)16A(k

′
)16T
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9,16(k
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O(2)2 (kk
′
) = +

1√
N

[ A
∗

s (k)12A(k
′
)17T

z
12,17(k

′
) + A

∗
(k)17As(k

′
)12T
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12,17(k)
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(13.25)

where A(k)i is the ith element of the transformation matrix and As(k)i is
defined as,

As(k)i = −A(k)i when γ is 2nd-mode and i is B-site
= A(k)i otherwise .

(13.26)

The matrix elements of the transfer interactions in (8.10), between an A-site
and another A-site or between a B-site and another B-site, Tα

µ′aν′b(k), are
expressed as follows,

T x
1,16(k) = T x

O(1)1x Cux2−y2(k) =
√

3
2

t′1(pdσ)e−i kxa
2 = −T x

16,1(k)∗ ,

T x
1,17(k) = T x

O(1)1x Cuz2(k) = − 1
2
t′1(pdσ)e−i kxa

2 = −T x
17,1(k)∗ ,

T y
5,16(k) = T y

O(1)2y Cux2−y2(k) = −
√

3
2

t′1(pdσ)e−i
kya

2 = −T y
16,5(k)∗ ,

T y
5,17(k) = T y

O(1)2y Cuz2(k) = − 1
2
t′1(pdσ)e−i

kya

2 = −T y
17,5(k)∗ ,

T z
9,17(k) = T z

O(2)1z Cuz2(k) = t′2(pdσ)e−i kz0.364c/2 = −T z ∗
17,9 (k) ,

T z
12,17(k) = T z

O(2)2z Cuz2(k) = t′2(pdσ)ei kz0.364c/2 = −T z ∗
17,12 (k) ,
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T �z
9,16(k) = T �z

O(2)1z Cux2−y2(k) = E′
A1g

e−i kz0.364c/2 = T �z∗
12,16(k) ,

T �z
9,17(k) = T �z

O(2)2z Cuz2(k) = E′
B1g

e−i kz0.364c/2T �z∗
12,17(k)

(13.27)

where t′i(pdσ) is the derivative of transfer integral between a Cu d orbital and
a neighbouring O p orbital. The transfer integral ti(pdσ) have been defined
in Sect. 3.2. For the matrix elements between A-site and B-site, those are
expressed as

T x
1,16(k) = T x

O(1)1x Cux2−y2(k) =
√

3
2

t′1(pdσ)ei kxa
2 = −T x

16,1(k)∗ ,

T x
1,17(k) = T x

O(1)1x Cuz2(k) = − 1
2
t′1(pdσ)ei kxa

2 = −T x
17,1(k)∗ ,

T y
5,16(k) = T y

O(1)2y Cux2−y2(k) = −
√

3
2

t′1(pdσ)ei
kya

2 = −T y
16,5(k)∗ ,

T y
5,17(k) = T y

O(1)2y Cuz2(k) = − 1
2

t′1(pdσ)ei
kya

2 = −T y
17,5(k)∗ ,

T z
9,17(k) = T z

O(2)1x Cuz2(k) = 0 = −T z ∗
17,9 (k) ,

T z
12,17(k) = T z

O(2)2x Cuz2(k) = 0 = −T z ∗
17,12 (k) .

(13.28)

Appendix E. Repulsive Electron–Phonon Interaction
between Up- and Down-Spin Carriers
with Different Wave Function

As we mentioned in Chap. 8, the wave function for up-spin carriers is different
from that for down-spin carriers, which makes the electron–phonon coupling
constant for up-spin carriers different from that for down-spin carriers. Now
we will explain why V γ

↑ (k,k′) is different from V γ
↓ (k,k′). Any phonon mode

in the ordinary Brillouin zone develops two branches, as a result of folding
it into the AF Brillouin zone. One branch corresponds to “acoustic type
mode” in which the motion of the two neighbouring CuO6 octahedra with
localized up- and down-spins is the same except for the phase factor exp(iq ·
a), while the other corresponds to “optic type mode” in which the motion of
the two neighbouring CuO6 octahedra is opposite except for the phase factor
exp(iq · a). If we denote the positions of two atoms in the lth AF unit cell
whose distance is separated by a, the translation vector from one Cu atom
to a neighbouring Cu atom, by Rlµ1 and Rlµ2, then Rlµ2 = Rlµ1 + a. The
displacement of the atom at Rlµ2, δRlµ2, is related to that at Rlµ1, δRlµ1,
as

δRlµ2 = ± exp(iqa)δRlµ1 , (13.29)
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where the sign + and − correspond to “acoustic type phonon mode” and
“optic type phonon mode” respectively. Here it should be noted that a is a
non-primitive translation vector in the AF unit cell, though it is a primitive
translation vector in the ordinary unit cell. By using Bloch theorem, the wave
functions for up- and down-spin carriers are written as

Ψk↑(r) = exp(ikr)uk↑(r) (13.30)

Ψk↓(r) = exp(ikr)uk↓(r) (13.31)

where uk↑(r) and uk↓(r) have the periodicity of the lattice of the AF unit
cell. In the present model, the effective Hamiltonian for up- and down-spin
carriers, Heff↑(r) and Heff↓(r), satisfy the relation Heff↓(r + a) = Heff↑(r),
and uk↑(r) and uk↓(r) satisfy the relation:

uk↓(r + a) = uk↑(r) . (13.32)

This leads to the relation

Ψk↓(r + a) = exp(ika)Ψk↑(r) (13.33)

From (6.3), (13.29) and (13.33) it is clear that V γ
↑ (k,k′) and V γ

↓ (k,k′) satisfy
the following relation;

V γ
↑ (k,k′) = ± exp(iK · a)V γ

↓ (k,k′) , (13.34)

where K = k − k′ − q and a = (a, 0, 0). The vector K takes a value of
mQ1 + nQ2 = (π/a, π/a, 0)m+(−π/a, π/a, 0)n, withm and n being integers.
And exp(iK ·a) takes a value of +1 or −1, depending on whether a scattering
process is normal or umklapp.

For the electron–phonon interaction matrix element in the case of an
ordinary unit cell without the AF order, Ṽ γ(k,k′), we have

Ṽ γ
↑ (k,k′)Ṽ γ

↓ (−k,−k′) =
∣∣∣Ṽ γ

↑ (k,k′)
∣∣∣2 (13.35)

and in this case the spectral function α2F̃↑↓(Ω, θ, θ′) is always positive, i.e.,
attractive, for any combination of k and k′. In the case of the AF unit cell
which we are considering in this paper, however, we have

V γ
↑ (k,k′)V γ

↓ (−k,−k′) = ± exp(iK · a)
∣∣∣V γ

↑ (k,k′)
∣∣∣2 (13.36)

and α2F↑↓(Ω, θ, θ′) changes its sign according to the sign of ± exp(iK · a).

Appendix F. D-wave Component of a Spectral Function
and D-wave Superconductivity

In order to study the possibility of the occurrence of d-wave superconductiv-
ity, we have to solve the k-dependent Eliashberg equation. Let a set of func-
tions, FJ(k)’s, be complete and orthonormal when integrated on the Fermi
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surfaces. It is clear that FJ(k)’s reflect the symmetry of the band structure.
In terms of this set of functions we can write

∆(ω,k) =
∑

J

∆J (ω)FJ (k) (13.37)

Z(ω,k) =
∑

J

ZJ(ω)FJ (k) (13.38)

α2F↑↑(Ω,k,k′) =
∑
JJ ′

α2F↑↑JJ ′(Ω)FJ(k)FJ ′(k′) (13.39)

α2F↑↓(Ω,k,k′) =
∑
JJ ′

α2F↑↓JJ ′(Ω)FJ(k)FJ ′(k′) . (13.40)

With the use of these expansion coefficients of the gap function ∆(ω,k), the
renormalization function Z(ω,k) and the spectral functions α2Fs,s′(Ω,k,k′),
we obtain the following linearized Eliashberg equation for anisotropic super-
conductivity.

[1 − ZJ (ω)] ω =
∑
J′

∫ ∞

−∞
dω′

∫ ∞

0

dΩ
ρ(ω′Z(ω′))

ρ(EF )
α2F↑↑JJ′ (Ω)I(ω, ω′, Ω) (13.41)

[∆(ω)Z(ω)]J = −
∑
J′

∫ ∞

−∞
dω′

∫ ∞

0

dΩ
ρ(ω′Z(ω′))

ρ(EF )
α2F↑↓JJ′ (Ω)I(ω, ω′, Ω)

∆J′ (ω′)
ω′

(13.42)

where

I(ω, ω′, Ω) =
1 − f(ω′)
ω −Ω − ω′ +

f(ω′)
ω +Ω − ω′ (13.43)

f(ω) =
1

1 + exp(ω′/kT )
(13.44)

Here ρ(ω) is the renormalized density of states of the hole carrier at energy
ω. As we have already noted in Chap. 6, the spectral function which appears
in the formula for the renormalization function (13.41), must be α2F↑↑JJ ′(Ω)
because this term contains the processes of virtual emissions and absorptions
of various modes of phonons by a single electron, while the spectral function
in (13.42) is α2F↑↓JJ ′(Ω), which contains scattering processes of a pair of
electrons from one pair state (k ↑,−k ↓) to a different state (k′ ↑,−k′ ↓).

From the two dimensional properties of LSCO, it seems to be an ade-
quate approximation to take cosnθ’s as the complete and orthonormal set of
functions, FJ(k)’s, where θ = tan−1(ky/kx). Then the linearized Eliashberg
equation becomes,

[1 − Zn(ω)] ω =
∑
n′

∫ ∞

−∞
dω′

∫ ∞

0

dΩ
ρ(ω′Z(ω′))

ρ(EF )
α2F↑↑nn′ (Ω)I(ω, ω′, Ω) (13.45)

[∆(ω)Z(ω)]n = −
∑
n′

∫ ∞

−∞
dω′

∫ ∞

0

dΩ
ρ(ω′Z(ω′))

ρ(EF )
α2F↑↓nn′ (Ω)I(ω, ω′, Ω)

∆n′ (ω′)
ω′

(13.46)
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where

∆(ω, θ) =
∑

n

Cn∆n(ω) cos(nθ) (13.47)

Z(ω, θ, θ′) =
∑

CnZn(ω) cos(nθ) (13.48)

α2F↑↓(Ω, θ, θ′) =
∑
nn′

CnCn′α2F↑↓nn′(Ω) cosnθ cosnθ′ . (13.49)

where Cn = 1/
√

2π for n = 0 and Cn = 1/
√
π for n �= 0. In Chap. 6 we have

calculated the spectral function and shown that among the components of the
spectral function, α2F↑↑nn′(Ω)’s and α2F↑↓nn′(Ω)’s, all terms are small and
negligible except for α2F↑↑0,0(Ω) and α2F↑↓2,2(Ω). Following the expressions
in Chap. 6, we include the normalization factor Cn in the expressions of
α2F and for simplicity we use the notation α2F

(0)
↑↑ (Ω) and 1

2α
2F

(2)
↑↓ (Ω) for

α2F↑↑0,0(Ω) and α2F↑↓2,2(Ω) respectively. Hereafter we use this notation.
Then we obtain the following equation,

[1 − Z0(ω)]ω =
∫ ∞

−∞
dω′

∫ ∞

0

dΩ
ρ(ω′Z(ω′))
ρ(EF )

α2F
(0)
↑↑ (Ω)I(ω, ω′, Ω) (13.50)

∆2(ω)Z0(ω) = −
∫ ∞

−∞
dω′

∫ ∞

0

dΩ
ρ(ω′Z(ω′))
ρ(EF )

α2F
(2)
↑↓ (Ω)
2

I(ω, ω′, Ω)
∆2(ω′)
ω′

(13.51)

Note that the component of the spectral function which connects the s- and
d-wave symmetry, α2F↑↓2,0(Ω), vanishes from C4 symmetry, and that the d-
wave component of the spectral function α2F

(2)
↑↓ (Ω) is large while the s-wave

component α2F
(0)
↑↓ (Ω) is negligibly small, as we have seen in Chap. 6. The d-

wave component α2F
(2)
↑↓ (Ω) contributes to the formation of d-wave pairing as

is known from (13.51). These results establish the appearance of the d-wave
superconductivity in LSCO system.



14 Mechanism
of High Temperature Superconductivity

In this chapter we explain how superconductivity occurs within the frame-
work of the K–S model and clarify the key factors for determining the super-
conducting transition temperature Tc [28].

After an instructive discussion, we show that a characteristic electronic
structure of the K–S model described in preceding chapters causes an anom-
alous effective electron–electron interaction between holes with different
spins. One can see that the effective pairing interaction caused from the
electron–phonon interaction on the K–S model becomes repulsive or attrac-
tive, in contrast to ordinary BCS cases in which the effective interaction
is always attractive. In the following section we consider a simplified model
derived from the electron–phonon interaction on the K–S model as an in-
structive method, and explain that d-wave symmetry is favored compared
with s-wave symmetry in some parameter range for the K–S model.

We then discuss the effect of a finite spin-correlation length in the under-
lying AF-localized spin system. The finite size of the AF-correlation length
observed in experiments suppresses the occurrence of superconductivity, and
hence the interplay between the strong electron–phonon interaction and the
local AF order in a finite size determines a superconducting transition tem-
perature.

Because the present system has strong electron–phonon interaction, we
have to go beyond the weak coupling calculation not to overestimate Tc. For
this purpose, we employ a strong coupling treatment similar to McMillan’s
[197]. After the formalism is described briefly, we show the numerical results
for hole concentration x-dependences of Tc and isotope effect α in the final
section.

Since a considerable part of this chapter is devoted to the description
of theoretical formulation, if readers have interests mainly in how the K–S
model heads to d-wave pairing and in the calculated results of Tc and the
isotope effect α in LSCO as a function of hole-concentration x, we suggest
they read Sects. 14.1, 14.2 and 14.6.
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14.1 Introduction

One might consider that the electron–phonon interaction can explain the
high temperature superconductivity in the cuprates, like conventional super-
conducting systems. However a simple Cooper-pairing picture derived from
the traditional point of view can hardly explain the d-wave symmetry ob-
served in real cuprates since the Cooper pair interaction derived from the
electron–phonon interaction always favors the formation of the s-wave sym-
metry. As seen in the calculation of the momentum-dependent spectral func-
tion α2F↑↓(Ω, θ, θ′) in Chap. 13, however, in the K–S model the spatial dif-
ference of up- and down-spin wave functions due to the local AF order causes
the d-wave pairing even for the electron–phonon interaction. In this chapter
we will prove it rigorously.

Now let us describe why the traditional BCS pairing favors the s-wave
pairing. In a usual metal, the effective electron–electron interaction derived
from electron–phonon interaction is written as,

V (k, �) = g∗(k, �)g(k, �)
2ωq

(εk − ε�)2 − ω2
q

, (14.1)

where, εk is the kinetic energy of a carrier hole with momentum k. The
process mentioned above corresponds to the scattering of electrons with mo-
mentum k and −k to momentum � and −� by the virtual emission and
simultaneous absorption of a phonon with momentum q = � − k, as illus-
trated in Fig. 14.1 (for the derivation of (14.1), see [60] for example). The
factors g(k, �) and g∗(k, �) correspond to the emission and absorption of a
phonon, respectively. Since the term g∗(k, �)g(k, �) is always positive, the
effective interaction between a Cooper pair with relative momenta 2k and
2�, with k and � both being near the Fermi surface, is always attractive. It
is readily understood from the BCS equation that no sign change in the gap
near the Fermi surface is favored. Thus the s-symmetry is realized.

l -l

k -k

Fig. 14.1. Schematic picture of the effective electron–electron interaction derived
from the electron–phonon interaction. The black circle represents the coupling con-
stant between up-spin particles and phonons while the white circle, down-spin par-
ticles
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14.2 Appearance
of Repulsive Phonon-Exchange Interaction
in the K–S Model

As described in the preceding section, the effective pairing interaction which is
derived from electron–phonon interaction has a factor which takes the form of
(absorption process of a phonon) × (emission process of a phonon). Because of
the time-reversal symmetry of a system, the former term (absorption process)
is generally the complex conjugate of the latter term (emission process).

From this fact it seems that the realization of d-wave pairing within the
electron–phonon interaction scheme is hopeless. But if we examine closely
how the coupling constant g of electron–phonon interaction was derived,
we see that the explicit form of electron wave function plays an important
role. Namely, if the spatial distributions of the wave function for up-spin
carrier and down-spin carrier differ, there is no need for the relation (ab-
sorption process)∗ = (emission process) to be satisfied for scattering inter-
actions of Cooper pairs. Indeed, for the electronic structure in the present
K–S model, we shall find that the (absorption process) term is not simply the
complex conjugate of the (emission process), but differs by a sign ± accord-
ing to the momentum transfer q. Once the relation (absorption process) ∗ =
− (emission process) is established for a particular momentum transfer q,
then the effective interaction derived from this process gives rise to a re-
pulsive term, which favors the sign change of the gap function during the
scattering process caused by the virtual exchange of a particular momentum
q phonon mentioned above. This is the scenario of the present theory. In
the next subsection we derive the selection rule for what kind of exchange
process yields the minus factor. Then in the following section, we will show
that the interplay of such interaction and the Fermi surface structure of the
K–S model really favors the d-wave symmetry.

14.2.1 The Selection Rule

In this subsection we show that the electron–phonon coupling constant de-
pends on the spin of the carrier and the phonon momentum q within the
framework of the K–S model. In general, the electron–phonon interaction
comes from displacement of atoms from their equilibrium positions. It is well
known that the scattering of a hole-carrier due to the displacement of atoms
can generally be written as follows;

g(k,k′)σ =
∫

drvq(r)ψ∗
k′ ,σ(r)ψk,σ(r) , (14.2)

where vq(r) denotes the scattering interaction term and ψk(′),σ(r) represents
the normalized Bloch wavefunction with wavenumber k(′). Note that this
is the most general expression for electron–phonon interaction. By Bloch’s
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theorem, we can write vq(r) = eiq·ruq(r), with uq(r) having the periodicity

of a normal unit cell while ψk(′),σ(r) = eik(′)·rφk(′),σ(r), where φk(′)(r) has
the periodicity of an AF unit cell. Then using the AF periodicity, we can
rewrite the integral (14.2) as follows.

g(k,k′)σ =
∑
Rn

∫
∆

dreiq·(r−Rn)uq(r − Rn)ψ∗
k′ ,σ(r − Rn)ψk,σ(r − Rn)

=
∑
Rn

e−i(k−k′+q)·Rn

∫
∆

drei(k−k′+q)·ruq(r)φ∗
k′ ,σ(r)φk,σ(r) .

(14.3)

Here Rn’s run through all the AF-unit-vectors and ∆ denotes the inte-
gral over the AF-unit cell. The sum

∑
Rn

ei(k−k′+q)·Rn yields the term∑
Q δk−k′+q Q, which means the conservation of pseudo-momentum with the

AF-periodicity during scattering processes, where Q’s represent the recipro-
cal vectors of the AF-periodicity. Then (14.3) becomes

g(k,k′)σ =
∑
Q

δk−k′+q Q

∫
∆

drei(k−k′+q)·ruq(r)φ∗
k′ ,σ(r)φk,σ(r) . (14.4)

Now we show that the electron–phonon coupling constants g(k,k′)↑ and
g(k,k′)↓ are spin-dependent based on the K–S model. First, let us estab-
lish the relation between φk,↓(r) and φk,↑(r).

In the preceding chapter we obtained the following equality (see (13.33)
in Appendix E, Chap. 13) for the Bloch functions in the K–S model:

ψk(′),−σ(r) = eik·u1ψk(′),σ(r − u1) . (14.5)

Hence we have
φk(′),−σ(r) = φk(′),σ(r − u1) . (14.6)

Noticing that uq(r) has the periodicity of a normal unit cell, the integral for
the g(k,k′)−σ is now written as,

g(k,k′)−σ =
∑
Q

δk−k′+q Q

∫
∆

drei(k−k′+q)·ruq(r)φ∗
k′ ,−σ

(r)φk,−σ(r)

=
∑
Q

δk−k′+q Q

×
∫

∆

drei(k−k′+q)·ruq(r)φ∗
k′ ,σ(r − u1)φk,σ(r − u1)

=
∑
Q

δk−k′+q Qe
i(k−k′+q)·u1

×
∫

∆+u1

drei(k−k′+q)·ruq(r)φ∗
k′ ,σ(r)φk,σ(r)

= ei(k−k′+q)·u1g(k,k′)σ . (14.7)
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Here, on going from the second row to the third row in (14.7), we have
changed an integral variable from r to r +u1 and have used the normal unit
cell periodicity for the function uq(r), where u1 is a vector connecting with
Cu–O–Cu distance. On going from the third row to the last row in (14.7),
we have used the fact that integrals of periodic functions over the periodicity
are unique and do not depend on the choice of a region of periodicity.

From the pseudo-momentum conservation we obtain k − k′ + q = K,
with K being a reciprocal vector in the AF Brillouin zone. That is, K =
(nπ/a,mπ/a), where n, m are integers which satisfy the condition n + m
being even. Since u1 = (a, 0), one can derive the following relation from
(14.7);

g(k,k′)−σ = (−1)ng(k,k′)σ . (14.8)

Note that both n and m take even numbers or odd numbers at the same
time, so that (14.8) preserves the tetragonal symmetry. On the derivation of
(14.8), we have only used (14.6). Then one may wonder if the same conclusion
is drawn for systems with the normal periodicity by formally folding a system
to the AF-periodicity. Equation (14.8) itself surely holds for the system with
the normal periodicity. But from the pseudo-momentum conservation law,
we have

k − k′ + q = K . (14.9)

Thus no peculiar thing occurs in the case of the normal periodicity, pseudo-
momentum conservation requires that K’s appearing in (14.9) must be the
reciprocal vectors of the normal periodicity. Hence the factor (−1)n in (14.8)
is always equal to unity. On the other hand, (14.8) yields the non-trivial result
of having opposite sign between g(k,k′)↑ and g(k,k′)↓ for some k, k′ and
q in any systems with AF-periodicity and the different spatial distributions
between up- and down-spin electrons, such as spin density wave (SDW) states.
But SDW states are of course insulating so that we do not have much interest
in the context of the superconductivity.

Based on the K–S model, we have shown that the electron-coupling con-
stants of different spin carriers can really differ by a sign, but there is still
an ambiguity for the expression of (14.8). The ambiguity comes from the
fact that k’s have the AF-periodicity, while q’s have the normal periodicity.
This ambiguity is taken away by requiring that k’s are confined to the first
AF-Brillouin zone (AF-BZ), while q’s are confined to the first Brillouin zone
of the normal periodicity (normal BZ). For the scattering from momentum
�-state to k-state, we have two kinds of process for the same phonon branch,
reflecting the fact that phonons have the normal unit cell periodicity while
carriers have the AF-unit cell periodicity.

In the two processes the pseudo-momenta k − � + q differ from the zero
vector by the reciprocal lattice vector ±Q1 with Q1 = (π/a, π/a), ±Q2 with
Q2 = (−π/a, π/a) or ±Q1 ±Q2 (or, equal to the zero vector). Then we have
sign change of the electron–phonon interaction g↓(�,k) and g↑(�,k) which
occurs for the case where the difference of pseudo-momentum equals to ±Q1
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or ±Q2. Because of the pillar-type structures of Fermi surfaces on the K–S
electronic model obtained in Chap. 11 (see Fig. 11.3, Fig. 11.4), in most of
scattering processes which are important for the formation of Cooper pairs,
the sign change occurs.

As seen from the figure, two processes corresponding to the same pseudo-
momentum transfer k−� in the AF-periodicity always have different signs for
dominant interactions in Cooper pairing. For this sign change we can derive
a more simple rule from Fig. 14.2. Let us say that a wave vector belongs
to A-Brillouin zone when it can be placed in the first AF Brillouin zone
by the translation of AF-reciprocal lattice vector K = nQ1 + mQ2 with
n+m being an even number while it belongs to B-Brillouin zone when n+m
is an odd number. Then we see from the figure that for each momentum
transfer k−�, the momenta of phonons involved in the two processes may be
placed in the A- or the B-Brillouin zone. If we call the process with phonon
momentum in the A-Brillouin zone a “Normal ”-process N and the other
“Umklapp”-process U, we can say that the above two contributions create the
sign change in the electron–phonon interaction, such as g(k, �)σN − g(k, �)σU

or g(k, �)σU − g(k, �)σN, which varies when � changes with k being fixed.

A
B

O
B

-K1

kl

-Q
2

-Q
1

q
U

q
N

B

Q
1

1

2

AF-BZ

normal BZ

Fig. 14.2. Schematic picture for the selection rule, where a scattering process from
the point A to B is chosen as an example. Note that there are two phonon processes
(dashed and dotted arrows) within the same phonon branch. Under the antiferro-
magnetic periodicity, B1 and B2 points are equivalent to point B. Vectors Q1 and
Q1 − Q2 in the figure correspond to K vector in the text (see 14.9). As a conse-
quence, the scattering process represented by the dashed arrow gives an attractive
interaction while the dotted arrow yields a repulsive interaction in this case. Thus
there exist two contributions to the scattering A to B, which have different sign.
Competition between two processes A→B1→B and A→B2→B determines the sign
of attractive or repulsive interaction. Note that if the momentum of phonon qN is
in the first AF-Brillouin zone, then the other qU is not
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Then we readily see from the figure that the effective interaction has a strong
� dependence, leading to the sign change of the effective interaction.

14.2.2 Occurrence of the d-wave Symmetry

In this subsection we describe how the dx2−y2-symmetry pairing observed in
experiments [56, 59, 72, 75] occurs in the present model within the framework
of the weak coupling, i.e., within the second order perturbation theory. More
realistic strong coupling treatment will be given in the following section, but it
is instructive to understand the mechanism intuitively in the present section.
For readers who have interests in the calculated results of superconducting
properties in real cuprates and in the comparison between theoretical and
experimental results, they may jump to Sect. 14.6, by skipping from this
subsection to Sect. 14.5.

In the present model, we show that the occurrence of the dx2−y2-symmetry
pairing depends on two factors. One is the appearance of effective repulsive
interactions due to phonon-exchange as described in the preceding subsection
and the other is the characteristic shape of the Fermi-surface derived by
Kamimura and Ushio [112, 113], which consists of four sections of small,
elongated ellipsoidal form as illustrated in Fig. 11.3 in Chap. 11. We also
note that the van Hove singularity point is placed at the G1 point (π/a,0),
where the bent parts of the Fermi surface have a large value of the partial
density of the states. As a result, scattering from these bent regions of the
Fermi surface to other bent regions, is a main contribution to the formation
of a Cooper pair. Then for the dx2−y2-wave pairing, the sign change of the
effective interaction V (k, �) is favored depending on placements of the two
vectors such as shown in Fig. 14.3.

To see this, let us consider the following weak coupling-equation for the
k-dependent gap function ∆(k, T ) at temperature T .

∆(k, T ) = −
∑

�

V (k, �)
∆(�, T )
2E(�)

tanh[βE(�)/ 2] , (14.10)

E(k) =
√
ξ(k)2 +∆(k, T )2, β = 1/T .

Here, ξ(k) is the kinetic energy of a carrier hole with momentum k measured
from the chemical potential µ and V (k, �) represents the effective interac-
tion. From Fig. 14.3 and (14.10) we easily see that if V (k, �) in Fig. 14.3 is
attractive and V (k′, �) is repulsive, dx2−y2-gap is really favored.

Now let us investigate what kind of symmetry is favored by various types
of effective interactions V ’s by simplified weak coupling model calculations.
The V (k, �) term and ∆(�) term are of course continuous functions of �, but
for simplicity we smear out its momentum dependence by taking the sum
over the regions around the Fermi surface as shown in Fig. 14.4, i.e., we set
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Fig. 14.3. Schematic picture of scattering from � to k′ by the pairing interaction.
These two processes mainly contribute to the formation of the superconducting
gap. If the scattering from � to k is attractive and the one � to k′ is repulsive, the
formation of the dx2−y2 -gap is favored together with the sign change of dx2−y2 -gap
symmetry. Amplitude and sign of the dx2−y2 -gap function is shown schematically
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X 1

X 3 X 4
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Y3 Y4

G1

G1

Fig. 14.4. Intuitive illustration of the averaging of the pairing interaction described
in the text. For dx2−y2 -symmetry, the gap function is positive in the dark-coloured
regions and negative in the light-coloured regions. Pair interaction is effective in
these thin ellipsoidal regions
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∆x =
∫

X1

dk∆(k, T )/S ,

∆y =
∫

Y1

dk∆(k, T )/S ,

V1 =
4∑

i=1

∫
Xi

d�

∫
X1

dkV (k, �)/S2 ,

V2 =
4∑

i=1

∫
Yi

d�

∫
X1

dkV (k, �)/S2, where, S is given as

S =
∫

Xi

d� =
∫

Yi

d� ,

where the integral regions X1−4 and Y1−4 are shown in the figure. The regions
X1−4 correspond to the parts of thin shells around the Fermi surface of
thickness 2ωD ( ωD being the Debye frequency) defined by |ξ(k)| < ωD where
the gap function takes a positive value, while Yi’s correspond to the part
where the gap is negative in the case of dx2 − y2-symmetry. This means that
we reduce the problem to a problem of solving the averaged value of gap
amplitude by averaging the interactions. From the tetragonal symmetry of
the system we have,

∆x = ±∆y . (14.11)

Here, the plus sign corresponds to s-symmetry, while the minus corresponds
to dx2 − y2-symmetry. Simply writing the absolute values of ∆x and ∆y as
∆, now the gap equation is reduced to

1 = −ρF(V1 ± V2)
∫ ωD

0

dξ
tanh[βE/ 2]

E(ξ)
, (14.12)

E(ξ) =
√
ξ2 +∆(T )2 ,

where ωD is the Debye frequency and ρF is the density of the states at the
Fermi level. By introducing non-dimensional quantities

λ1 = −ρFV1, λ2 = −ρFV2, λ± = λ1 ± λ2 , (14.13)

Equation (14.12) becomes

1 = λ±
∫ ωD

0

dξ
tanh[βE(ξ)/ 2]

E(ξ)
, (14.14)

which coincides with the form of the ordinary BCS equation. Thus we can
immediately obtain the transition temperature Tc as follows

T (±)
c = 1.13ωDe

−1/λ± , (14.15)

where the sign ± corresponds to s- or d-symmetry. Here we should stress that
the gap (14.14) has a solution only when λ± > 0. This means that the overall
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interaction must be attractive. When both λ+ and λ− take positive values,
the criterion of whether s- or d-gap occurs is given as follows. Namely, if
Tc

(+) >Tc
(−) is satisfied, we have the s-symmetry; if Tc

(+) <Tc
(−) is satisfied,

we have the d-symmetry.
As we have noted, the largest contributions for the formation of the gap

function comes from regions nearby the G1 point at which the band disper-
sion takes the van-Hove singularity. Then the averaged interactions V1,2’s
are roughly estimated from values of V (k(′), �)’s in Fig. 14.3. If the value
V (k′, �)s in Fig. 14.3 is negative, i.e., the interaction is attractive, we have
V1 < 0, while if V (k, �)’s is positive, i.e., repulsive interaction, we have V2 > 0.
Then we have

λ1 > 0 , λ2 < 0 , (14.16)

and as a result
λ− > λ+ , λ− = λ1 + |λ2| > 0 , (14.17)

so that
T (−)

c > T (+)
c . (14.18)

This shows stability of d-symmetry compared with s-symmetry in the above
mentioned parameter region. In the present simplified model, clearly the λ2 =
0 line corresponds to the boundary separating the regions where s-symmetry
or d-symmetry is preferred.

By directly solving the gap (14.10) numerically, we obtain essentially the
same result. The result of numerical calculations for the ground state is shown
in Fig. 14.5. In the numerical calculation we adopt a simplified form for the
effective interaction. That is,

V (k, �) = −ΛN, or − ΛU . (14.19)

N

U

s-

d-

wave

wave

N

s- wave

d- wave

extended s-wave

non-super

parameter range

for LSCO

Fig. 14.5. Numerical result for simplified pair interaction with coupling constants
ΛN and ΛU. Here, positive values of Λ’s correspond to attractive interactions
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Here, the selection of ΛN or ΛU depends on the momentum transfer q = k−�.
Subscript N represents normal scattering and U represents Umklapp scatter-
ing in the AF Brillouin zone. Signs of Λ’s are given to coincide with the
conventional notation, i.e., a positive value of Λ corresponds to the attractive
interaction. From Fig. 14.5 we readily see that the result of the much sim-
plified treatment of (14.14) is reproduced. One exception is the occurrence
of strongly anisotropic s-wave solution (extended s-wave), which has almost
0-gap amplitude around ∆ points (±π/a,±/a) [28].

In this way the problem of whether we can explain dx2−y2-symmetry
within the present model is reduced to calculating Λ’s from realistic electron–
phonon interaction model. The calculation has been done by Ushio and
Kamimura using a semi-empirical method developed by Motizuki et al. [198],
and they found that λ1 and λ2 almost have the same magnitude with opposite
sign, where λ2 is negative [112]. Thus we conclude that in the present model,
superconductivity with dx2−y2-gap symmetry appears. As is well known, the
effective pairing interaction derived from the electron–phonon interaction in
conventional metallic systems is always attractive, the sign change of the ef-
fective interaction really reflects the unique feature of electronic states of the
K–S model.

As we have already mentioned, in the numerical calculation we used a
much simplified form for the effective interaction instead of the form derived
from the second order perturbation shown in (14.1). We did not use this in-
teraction in the present calculation because it is known that such a treatment
overestimates the Cooper pair coupling formation. A proper treatment should
include effects which tend to suppress superconductivity, and in general we
have to take account of the electron–phonon interaction up to the infinite
order of the perturbation expansion.

14.3 Suppression of Superconductivity by Finiteness
of the Anti-Ferromagnetic Correlation Length

So far we have investigated whether superconductivity occurs by the electron–
phonon interaction based on the K–S model. In the preceding section we
assumed the existence of static anti-ferromagnetic order, but in a realistic
system such a long-range static order is not observed, reflecting the low-
dimensionality of copper-oxide systems. Instead, the spin-correlation length
λs is finite, and thus we have to consider the finite-size effect of a metallic
state due to the finite anti-ferromagnetic spin correlation length. This causes a
finite lifetime effect on a hole-carrier excitation. In addition to a finite lifetime
effect due to the inelastic interaction between quasi-particle excitations, a
quasi-particle excitation has a finite lifetime due to the dynamical 2D-AF
fluctuation in the localized spin system, as we described in detail in Fig. 11.2
in Sect. 11.2.



172 14 Mechanism of High Temperature Superconductivity

14.3.1 Influence of the Lack of the Static, Long-Ranged AF-Order
on the Electronic Structure

As mentioned in Sect. 8.2.1, it is known from neutron scattering experi-
ments that two-dimensional anti-ferromagnetic correlation exists throughout
the carrier concentration region where the superconducting transition oc-
curs [159, 171, 199]. The result of neutron inelastic scattering experiments
indicates that each CuO2-layer consists of regions of average size λs × λs

within which the AF-order due to the localized spins exists. Boundaries of
AF-ordered regions are not of classical form and they fluctuate in the sense
of quantum mechanics. The scale of AF-ordered region λs can be estimated
from neutron inelastic scattering experiments as an inverse of the half width
of the anti-ferromagnetic incommensurate peaks, which corresponds to the
AF-correlation length [37, 53, 142]. Because of the finiteness of AF-ordered
range, we can no longer consider that Bloch functions discussed in the pre-
ceding chapter are well defined over a whole CuO2-layer. However, we can
still draw a quasi-particle excitation picture by recognizing that the hole-
carrier excitation has a considerably long lifetime due to the fluctuation
of the AF-background even in low temperatures (see Fig. 11.2, Fig. 14.6).
Namely, the quasi-particle-excitation is well defined in one AF-ordered re-
gion in which a hole-carrier can move freely. In other words, it has a much
longer “mean free path” than the spin-correlation length, i.e., �0 > λs. Then
letting v = ||vp||, vp = ∇pξ(k) be the velocity of the hole-carrier, the
lifetime τh of the excitation is determined from the relation,

vτh = �0 . (14.20)

In calculating Tc of cuprates based on the K–S model, we have to take this
finite lifetime effect into account.

*

1A1g

b1g

a1g

*b1g

3B1g

Fig. 14.6. Schematic diagram of AF-fluctuation effect. A quasi-particle excitation
is well defined in the region of size �0 × �0
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14.3.2 Suppression of Superconductivity
Due to the Finite Lifetime Effect

Let us recall the form of the effective interaction derived from electron–
phonon interaction in (14.1). This term comes from a exchange process of
a virtual phonon, and it has retardation effect, i.e., the interaction is not
instantaneous. And without any disturbance, this virtual process is effective
to infinite time range. Namely, the interaction is attractive when the condi-
tion |ε(k)− ε(k′)| < ωq is satisfied and from the energy-time uncertainty this
means that the interaction which occurs in the time range T > τD = 1/ωD

is always attractive. But in the present model, because of the finite lifetime
effect mentioned in the preceding subsection, we no longer have effective
pairing interaction of infinite time range. That is, interaction of a time range
longer than τhF ≡ �0/vF between two quasi-particles with the Fermi velocity
vF, is ineffective because of the finite correlation length of the localized AF-
spin system, causes changes of the electronic structure of hole-carrier states.
Hence two hole-carriers are not able to couple beyond the time τhF .

Let us apply this finite lifetime effect. We require any virtual phonon
exchange process in the present model must be completed within the time
range ∆t = τhF . Then the gap (14.14) is rewritten as

1 = λ−
∫ ωD

ωhF

dξ
tanh[βE(ξ)/ 2]

E(ξ)
, (14.21)

where ωhF = 1/ τhF represents the lower cut-off parameter which comes from
the finite lifetime effect, and for the Tc-equation we have

1 = λ−
∫ ωD

ωhF

dξ
tanh[βcξ/ 2]

ξ
, where βc = 1/Tc . (14.22)

The velocity of a hole-carrier varies with its momentum, and the cut-off con-
stant ωhF depends on the momentum of the hole-carrier in general. But what
we are studying now is the simplified (14.22), so we will treat ωhF as a para-
meter and ignore its momentum dependence. In the numerical calculation we
have treated the velocity of hole-carriers to be a constant Fermi-velocity vF ,
which is the averaged value of velocities over the Fermi surface for the hole
concentration x = 0.15, and we treated the mean free path of hole-carriers �0
discussed in the preceding section as a parameter. Then ωhF , which is given
by ωhF = vF/ �0, was treated as a parameter in the calculation for Fig. 14.7.

The result of numerical calculations of (14.22) is given in Fig. 14.7. Here
the electron–phonon coupling constant λ− is also treated as a parameter. It is
seen from the figure that the rate of decrease of the transition temperature Tc

with decreasing �0 is slow when �0 is large enough. Then when �0 decreases
to a certain value (depending on the coupling constant λ−) Tc begins to
drop rapidly. The value of ωhF at which Tc vanishes is determined from the
following equation.
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Fig. 14.7. Calculated result of Tc for three values of electron–phonon coupling
constant λ− for simplified interaction with the finite AF-correlation length effect.
�0 gives the lower cut-off parameter ωhF by ωhF = vF/�0 (see the text)

1 = λ−
∫ ωD

ωhF

dξ
1
ξ

= ln
[
ωD

ωhF

]
. (14.23)

From this, we obtain

ωhF = ωDe
−1/ λ− . (14.24)

The result is rather a trivial one. If the pairing coupling constant is small,
then Tc vanishes for a small ωhF , while in the λ− → ∞ limit, Tc does not
vanish unless ωhF reaches ωD [27].

14.4 Strong Coupling Treatment
of Conventional Superconducting System

In this section we describe briefly the Green’s function method which is used
for conventional strong coupling systems (for detailed treatment, see [200,
201]). As is well known, this method enables us to calculate various physical
quantities without calculating eigenfunctions of the system: We can compute
physical quantities including the effect of interaction Hamiltonian up to the
infinite order of perturbation, without dropping the most important parts
of perturbation series. First, we discuss the Green’s function method in the
normal state of a usual metallic system. Then we show how the method is
applied to a conventional superconducting system.

14.4.1 Green’s Function Method in the Normal State

In the Heisenberg picture, the one-body Green’s function of a carrier system
is defined as
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G(x,x′, t) =
{−i � ψσ(x, t)ψ†

σ(x′, 0) � if t > 0
i � ψ†

σ(x′, 0)ψσ(x, t) � if t ≤ 0 (14.25)

where, ψσ(x, t) is the field operator of the spin σ carrier system and �· · ·� de-
notes the thermal average, namely, �A�=Tr{Ae−β(H−µN)}/Tr{e−β(H−µN)}.
Here, we used the grand-canonical ensemble of the system for convenience.
We also introduce the non-perturbed Green’s function G0 by

G0(x,x′, t) =

{
−i � ψH0(x, t)ψ

†
H0

(x′, 0) � if t > 0
i � ψ†

H0
(x′, 0)ψH0(x, t) � if t ≤ 0

(14.26)

where H0 is the Hamiltonian for the free carrier system and ψH0(x, t) means
that the field operator is evolving by the non-perturbed H0. We dropped
spin indices just for simplicity. Then the equation for G (the Feynman–Dyson
equation) in the normal state is given as

G(x,x′, t) = G0(x,x′, t)

+
∫ ∫ ∫ ∫

G(x,x2, t− t2)dt2dx2

×Σ(x1,x2, t2 − t1)dt1dx1G0(x1,x
′, t1) ,

(14.27)

where the Σ-term represents the so-called irreducible self-energy part. Once
the Σ-term is known, it is quite easy to determine G. To understand this,
let us express the above equation in the (ω, k) space, i.e., the Fourier trans-
formed space. Then the equation is written as,

G(ω,k) = G0(ω,k) +G0(ω,k)Σ(ω,k)G(ω,k) (14.28)

By dividing both sides of the equation by G(ω,k)G0(ω,k), the equation
reduces to

1
G(ω,k)

=
1

G0(ω,k)
−Σ(ω,k) , (14.29)

so that computing the Σ(ω,k) term becomes a main task in this formalism.
The irreducible self energy part Σ(k, ω) is formally written as perturbation
expansion by the interaction Hamiltonian. Every term in this expansion series
has one-to-one correspondence to graphical representation, well known as
Feynman graphs, and with the aid of Feynman graph expansion, we can
discuss the Feynman–Dyson equation more intuitively (see Fig. 14.8). The
wavy line contained in each graph represents the phonon Green’s function
D(x,x′, t) which is defined as

Dα(x,x′, t) =
{−i � ϕH0(x, t)ϕH0(x

′, 0) � if t > 0
i � ϕH0(x

′, 0)ϕH0(x, t) � if t ≤ 0 (14.30)

where ϕα(x, t) is the phonon’s field operator in Heisenberg picture and α
denotes the phonon branch. We have to construct the Feynman equation for
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G(ω, k) G0(ω, k)

= +

+

ω0

+ + etc.

Fig. 14.8. The Feynman diagram for the carrier system. The thick line represents
the complete Green’s function and the thin line denotes the non-perturbed Green’s
function, while the wavy line represents the phonon Green’s function
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Fig. 14.9. (a) The Feynman diagram for the phonon system. (b) The bubble
diagram

phonons as well as that of hole carriers. It is known that in the Feynman
equation for phonons, the processes expressed in Fig. 14.9(a) have the most
important contributions to the perturbation expansions. So we just omit other
diagrams. Then the Feynman equation in the Fourier transformed space is
reduced to

1
D(ω,k)

=
1

D0(ω,k)
− g2Π0(ω,k) , (14.31)

where g is the electron–phonon coupling constant and D0(ω, q) is the non-
perturbed phonon Green’s function, and Π0(ω,k), the so called bubble dia-
gram expressed in Fig. 14.9(b), is defined as

Π0(ω,k) = −2i
∫

dq

(2π)D

∫
dω′

2π
G(ω′, q)G(ω + ω′,k + q) . (14.32)
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Here, D denotes the dimension of the system. Thus in the case of high-
temperature superconductivity, we set D = 2.

It is known that the Π0(ω, k)-term contributes to a shift of phonon fre-
quency and introduces finite lifetime for a phonon excitation. The former
effect can dramatically change the phonon’s real Green’s function from the
non-perturbed one, which appears in the case of charge density wave (CDW)
instability, known as the Kohn anomaly. On the other hand, the latter effect is
generally harmless in the present treatment. Since experimental results show
that there is no CDW instability except for the very special value of hole
concentration ratio x = 0.125, for simplicity we omit not only finite lifetime
effects but also treat phonon dispersions as renormalized in the following nu-
merical calculation, i.e., the effects of shift of phonon frequencies are already
included in the expression of dispersion relations. We note that this method
is widely used in past theoretical studies for strong-coupled superconductors
[197, 201]. Then within the present approximation, the perturbed phonon
Green’s functions have the same form as the non-perturbed ones.

Let us return to the carrier system. Graphically, the irreducible self-energy
term Σ is expressed by all the graphs, each of which represents consequent
virtual emission and absorption of phonons. But such graphs that are uncon-
nected or can be separated into two parts by cutting the graph at a point
on a line which represents carrier’s Green’s function must be omitted. These
properties are the reason we call the term irreducible (see Fig. 14.10). Intro-
ducing just one more term called the irreducible vertex part Γ , we can then
rewrite the irreducible self energy term in terms of the carrier and phonon
Green’s functions and the irreducible vertex part as follows.

(a)

(a)

(b)

(b)

Fig. 14.10. (a) Graphical explanation of the irreducible self energy part and the
irreducible vertex part and (b) reducible parts. If we cut the graphs of (b) at points
marked by crosses, these graphs become unconnected
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Σ(ω,k) =
∑
α

∫
dq

(2π)D

∫
dω′

2π
g∗α,qDα(ω′, q)G(ω − ω′,k − q)Γ (ω′, q) ,

(14.33)
where g∗α,q is the coupling constant of electron–phonon interaction. As seen
from Fig. 14.10(b), the irreducible vertex part is regarded as the completely
dressed interaction term. The above expression means that the irreducible
self-energy term Σ(ω,k), which includes all the effects of the electron–phonon
interaction, is given by the same form as that of the second order perturbation
theory, if we use the complete Green’s function G instead of the bare Green’s
function G0 and use the completely dressed interaction Γ instead of the bare
interaction gα,q appearing in the formula of the second order perturbation
theory.

Now we can proceed to the next step. In almost any case we cannot solve
the Feynman equation rigorously, so we must make some approximations to
the equation. As for electron–phonon coupled system, there is a crude but
efficient approximation first pointed out by Migdal [202]. That is, use the bare
electron–phonon interaction gα,q instead of the vertex part Γ (ω′, q) in the
equation for the self energy part just described above. This approximation is
justified under certain kinds of conditions: 1. Phonon momentum q should not
be small. 2. The Fermi surface should not be small. Clearly, the contribution
of phonon modes with small momentum q is small compared with all the
contributions, so that we do not have to worry about the first condition.
But the second condition seems really annoying if we want to apply Migdal’s
approximation to the K–S model, since the Fermi surface shown in Chap. 11
is indeed small in usual sense. Ushio and Kamimura have derived this small
surface by assuming the existence of static AF-structure, but as we mentioned
in this chapter, in a real system the AF-structure is fluctuating dynamically
and it has only finite correlation length. This fact means that, though the
Fermi surfaces in the K–S model are small geometrically, it is large in the sense
of electron–phonon interaction because for the phonon scattering processes,
the wave vectors of hole-carriers must be confined in the first Brillouin zone,
as we have seen in Chap. 11. Thus Migdal’s treatment is valid for the present
case.

Adopting Migdal’s approximation, the Feynman equation is now reduced
to the following equation

Σ(ω,k) = sumα

∫
dq

(2π)D

∫
dω′

2π
g∗α,qDα(ω′, q)gα,qG(ω−ω′,k−q) . (14.34)

Note that the Green’s function in the right hand side of the equation contains
the self-energy part implicitly through (14.29), so that the above equation
should be solved self-consistently. This fact means that the equation includes
an infinite order of perturbations, if not all of them.
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14.4.2 Application of the Green’s Function Method
to a Superconducting State

So far we have discussed the Green’s function method in the normal state of
a usual metallic system. Now we apply the Green’s function method to the
superconducting state first derived by Eliashberg [203]. First, we introduce
the anomalous Green’s function F (x,x′, t) [204] by

F (x,x′, t) =
{ −i � ψ↑(x, t)ψ↓(x′, 0) � if t > 0

i � ψ↓(x′, 0)ψ↑(x, t) � if t ≤ 0 . (14.35)

Then the equation for the superconducting state is written in terms of Gσ

and F in a compact form as first derived by Nambu [205]. Since the Nambu
notation is purely a mathematical one, in the present chapter we describe
the method just briefly and we leave the detailed discussion to the references
already mentioned ([200, 201]). In the Fourier transformed-space, the Green’s
function for momentum k frequency ω and spin ↑ and its complex conjugate
for momentum −k frequency ω and spin ↓ together with the anomalous
Green’s function (and its complex conjugate) form a single 2 × 2 matrix-
formed Green’s function G as follows.

G(ω,k) =
(
G(ω,k) F (ω,k)
F ∗(ω,k) G(ω,k)

)
. (14.36)

Then, introducing the matrix-formed self-energy part Σ(ω,k), the follow-
ing relation holds as in the case of normal state (c.f. (14.29)),

G−1(ω,k) = G−1
0 (ω,k) − Σ(ω,k) , (14.37)

where A−1 denotes the inverse of matrix A, and G0(ω,k) represents the
non-interacting Green’s function, i.e.,

G0(ω,k) =
(
G0(ω,k) 0

0 G∗
0(ω,k)

)
. (14.38)

It is well known that any 2× 2 matrix is always written as a linear superpo-
sition of the unit matrix τ0 = I and the Pauli matrices τi, i = 1− 3. Explicit
forms of τ matrices are given by

τ0 =
(

1 0
0 1

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (14.39)

Using this notation, the matrix-formed self-energy term Σ(ω,k) appearing
in (14.37) can generally be written as

Σ(ω,k) = ω(1 − Z(ω,k))τ0 + χ(ω,k)τ3 + φ1(ω,k)τ1 + φ2(ω,k)τ2 , (14.40)

where τ0 denotes the unit matrix and functions Z, χ, φ1 and φ2 can be
arbitrary functions of k and ω at this stage. From this point of view, solving
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the Feynman–Dyson equation is the same as determining the form of four
functions Z, χ, φ1 and φ2. The form of the coefficient of the unit matrix
τ0 given in the above equation is for later convenience; we could have just
written the coefficient of τ0 such as X(ω,k). Since X(ω,k) is known to be
the odd function of ω from general argument, Z(ω,k) is the even function of
ω, where Z ≡ 1 corresponds to the non-perturbed case. Note that Σ ≡ 0 in
the non-perturbed case.

The factor Z in (14.40) is called the renormalization factor, and it is
known to lower the transition temperature, and it does not appear in the
second-order perturbation theory. This is the main reason we have adopted
the Green’s function method. Without the renormalization factor Z, there
arises a risk of overestimating Tc, which we must avoid. Other functions χ,
φ1 and φ2 have physical significance too. Roughly speaking, χ corresponds
to the Hatree–Fock term in the second order perturbation theory, and in the
later calculations we neglect it since we can include this effect in one-electron
energy dispersion and it does not affect the superconductivity of the sys-
tem. φ1 and φ2 correspond to the gap function of the superconductor. More
precisely the function ∆(ω,k) =

√
(φ1(ω,k)/Z(ω,k))2 + (φ2(ω,k)/Z(ω,k))2

corresponds to the frequency-dependent gap function of the system (for ex-
ample, see [200]). And we also note here that the gauge invariance of the
present system enables us to set φ2 ≡ 0. Namely, the total Hamiltonian of
the system does not change under the gauge transformation T (θ),

H = T (θ)HT (θ)† , (14.41)

where T (θ) = exp[iθτ3] is the (global) gauge transformation. Then if Σ(ω,k)
gives the irreducible self energy of the system, T (θ)Σ(ω,k)T (θ)† can also
be the solution of the Feynman–Dyson equation and we can eliminate the
τ2-term in Σ(ω,k) from any solution by choosing the appropriate value of θ.
So hereafter let us consider the self energy term which has no τ2-term. Then
the self-energy part is determined from the Feynman equation as in the case
of normal state, and it is given as follows.

Σ(ω,k) =
∑
α

∫
dq

(2π)D

∫
dω′

2π
g(α, q)∗τ3Dα(ω′, q)G(ω−ω′,k−q)g(α, q)τ3 .

(14.42)
Here,Dα is the phonon Green’s function for the phonon mode α as before, and
the Migdal’s approximation has already been made in deriving the (14.42).
That is, in the present treatment the irreducible vertex part is simply sub-
stituted by the bare vertex term g(α, q)τ3 instead of the complete one. The
Green’s function in the right hand side of (14.42) depends on the self-energy
part Σ through (14.37), and hence basically, we are able to solve the equation
for Σ in (14.42) self-consistently, once the phonon Green’s functions Dα and
the electron–phonon coupling constants gα,q are given.
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14.4.3 Inclusion of Coulomb Repulsion

So far we have not discussed the effect of Coulomb repulsion between hole-
carriers, which of course must be included in the calculation of Tc. The bare
Coulomb interaction is instantaneous and long-ranged, but after we take into
account the screening effect it is no more instantaneous nor long-ranged.
Inclusion of Coulomb interaction has a long history for conventional super-
conducting metals (see [201], for example). Most of them are based on the
free electron model, with sufficiently large electron density, either of which of
course does not hold in the present case, where the electronic structure has
a highly tight binding character with low carrier density. But because of this
fact we can get rid of the somewhat complicated arguments made in refer-
ences mentioned above. Using the tight-binding structure from the beginning
means that much of the Coulomb interaction is already included in the deter-
mination of many-body-effect including band structures in the K–S model.
That is, in the K–S model hole-carriers with up and down spins occupy dif-
ferent orbitals of a∗1g and b1g symmetry inside the same CuO6 octahedron.
Further, owing to the low density of hole-carriers, two hole-carriers with oppo-
site spins are well separated. In fact, the results of the exact-diagonalization
study of the K–S model described in Chap. 9 has shown that the calculated
radial distribution function reveal the highest probability when two holes are
separated by 8.7 Å, which is close to the experimental results on the coher-
ent length of a Cooper pair. Thus we conclude that the Coulomb interaction
is small enough in the electronic states of the K–S model, and hence we
can reasonably neglect the Coulomb repulsion parameter µc in the present
calculation.

14.4.4 Tc-Equation in the Strong Coupling Model

An application of the Green’s function method in conventional supercon-
ductors was first discussed in detail by McMillan [197]. In his treatment he
reduced the Feynman equation (14.42) with four variables ω and k to the
equation with one variable ω. We will follow his argument but there is one
important difference in the present treatment. In other words, we have to treat
d-wave symmetry instead of s-wave symmetry, which McMillan had consid-
ered. It appears that the extension of McMillan’s treatment to the (14.42)
for arbitrary temperature is difficult but applicable to the Tc-equation, as
we shall discuss in the following. Thus we concentrate on the application of
McMillan’s method to the Tc-equation. In the following, we derive the general
form of a Tc-determining equation first.

If the temperature T included implicitly in (14.42) is close enough to the
superconducting transition temperature Tc, then the amplitude of anomalous
Green’s function F (ω,k) is small. In the limit T →Tc, the equation is reduced
to the linear equation with respect to the anomalous Green’s function, which
corresponds to the off-diagonal part of the matrix-formed Green’s function
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G. The linearized equation is then given as follows. We first write the form
of the self-energy part Σ

Σ(ω,k) = ω(1 − Z(ω,k))τ0 − χ(ω,k)τ3 − δφ(ω,k)τ1 , (14.43)

where δφ is infinitesimal quantity around T ∼Tc and since χ and Z functions
are continuous function of temperature T, they can be set to those of TcTc.
From (14.37), we have

G(ω,k) = (G−1
0 (ω,k) − Σ(ω,k))−1 . (14.44)

Recalling the form of the non-perturbed Green’s function G0 in (14.38) and
the from of the self-energy part Σ in (14.43), the linearized Green’s function
Gl(ω,k) which have δφ function up to the first order is easily obtained as

Gl(ω,k) =
ωZ(ω,k)τ0 + (ξk + χ(ω,k))τ3 + δφ(ω,k)τ1

ω2Z2(ω,k) − (ξk + χ(ω,k))2 + iδ
, (14.45)

where δ denotes a positive infinitesimal. Then the linearized Feynman–Dyson
equation becomes

Σ(ω,k) =
∫

dq

(2π)D

∫
dω′

2π
1
ρF

∫
dΩα2F (Ω,k, �)D(ω − ω′, Ω)τ3Gl(ω′, �)τ3 .

(14.46)
Here ρF denotes the density of states of the carrier system at the Fermi level,
and the α2F -term in the above equation comes from all the contributions of
the phonon modes, and is defined as

α2F (Ω,k, �) = ρF

∑
α

δ(Ω − ωα(k − �))g∗α(k, �)gα(k, �) , (14.47)

where ρF denotes the density of the states at the Fermi level. As we have
seen, the electron–phonon coupling constant g depends on the spin of the
hole-carrier in the K–S model. At present, we neglect that fact for simplicity.
After the final form of the Tc equation is obtained, we give the prescription
for the spin-dependent case. If one wishes to treat the problem properly,
an interaction term proportional to the unit matrix τ0 also appears. The
coefficient corresponds to the case g↓ = −g↑, and the proper treatment leads
us to precisely the same form of Tc-equation we give in the following.

Now let us proceed. The function D(ω,Ω) in (14.46) has the same form
as the Green’s function of phonon with frequency Ω. It is easy to see that
the delta function in the definition of the α2F -term reproduces (14.42), when
α2F (Ω,k, �) is integrated over Ω.

Following McMillan, we change the integral variables for the � integration.
First, we consider the χ(ω, �) part. It is known that in general this term does
not have remarkable ω-dependence. Therefore, comparing the coefficient of
the τ3-term for the bare Green’s function with that of the complete Green’s
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function, we understand the effect of χ-term as a deviation of the carrier-
energy-dispersion from the bare one. (Change of ξ(k) to ξ(k) + χ(∗,k).) We
include this effect in the dispersion relation from the beginning; we need
not consider the χ-term anymore. Hereafter we denote ξ(k) the renormalized
carrier hole energy measured from the chemical potential. Then the volume
element d�/(2π)D can be written as ρ(ξ)dξdS(�), where ρ(ξ) denotes the
density of the states over an equal-energy surface defined by ξ(�) = ξ, and
dS(�) is an area element on this surface. As a result (14.46) is now expressed
by changing of variables described above as follows.

ω(1 − Z(ω, ξ,k))τ0 − δφ(ω, ξ,k)τ1

=
∫

dω′

2π

∫
dξ′

ρ(ξ′)
ρF

∫
dS(�)

∫
dΩα2F (Ω, ξ,k, ξ′, �)

×D(ω − ω′, Ω)τ3
ω′Z(ω′, ξ′, �)τ0 + δφ(ω, ξ′, �)τ1

ω′2Z2(ω′, ξ′, �) − ξ′2 + iδ
τ3 . (14.48)

For the case of an isotropic s-wave which McMillan had treated, the ξ′-
integration in (14.48) can be made analytically with several assumptions. In
the present K–S model we have d-wave symmetry which is of course highly
anisotropic and we cannot ignore �-dependence appearing in the right-hand
side of (14.48). Hence we have to modify somewhat the original McMillan’s
treatment. We shall discuss this in the following section.

14.5 Application of McMillan’s Method
to the K–S Model

In order to apply McMillan’s method to highly anisotropic cases, follow-
ing Allen [201, 206], we introduce a set of basis functions {fn(ξ,k), n =
1, 2, · · · , ξ(k) = ξ} that are orthogonal and complete on the equal energy
surface ξ(k) = ξ in the sense∫

ξ(k)=ξ

f∗
n(ξ,k)fm(ξ,k)dS(k) = δnm , (14.49)

∑
n

fn(ξ,k)∗fn(ξ, �) = δξ(k − �) . (14.50)

Here the subscript attached to the delta function means that it is the delta
function for the equal energy surface. Allen [206] introduced these functions
in analogy with spherical harmonics Ylm(�)/(4π)1/2, and called them “Fermi
surface harmonics”. But we note here that there is no need to require that
functions fn(ξ, �), n = 1, 2, · · · satisfy some special kind of condition com-
ing from the geometric structure of equal energy surfaces, e.g., to be the
eigenfunctions of the Laplace-Beltrami operator on an equal energy sur-
faces ξ(�) = ξ. We just need the ortho-normality of the set of functions
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{fn(ξ, �), n = 1, 2, · · ·}. Now the terms appearing in (14.46) can be expanded
by fn’s using the orthonormal relation (14.49) and (14.50). Namely,

Σ(ω, ξ(�)) =
∑

n

Σn(ω, ξ)fn(ξ, �) (14.51)

Z(ω, ξ(�)) =
∑

n

Zn(ω, ξ)fn(ξ, �) (14.52)

δφ(ω, ξ(�)) =
∑

n

δφn(ω, ξ)fn(ξ, �) (14.53)

1
ω2Z2(ω, ξ(�)) − ξ2

� + iδ
=
∑

n

(
1

ω2Z2(ω, ξ) − ξ2 + iδ

)
n

fn(ξ, �) (14.54)

α2F (Ω, �, q′) =
∑

n

α2Fn,m(Ω, ξ, ξ′)f∗
n(ξ, �)fm(ξ′, q′) (14.55)

Now (14.46) is written as follows.

Σn(ω, ξ) =
∑
m

∫
dω′

2π

∫
dξ′

ρ(ξ′)
ρF

×
∫

dΩα2Fn,m(Ω, ξ, ξ′)D(ω − ω′, Ω)τ3Gl
m(ω′, ξ′)τ3 ,

(14.56)
Σn(ω, ξ) = ω(δ0n − Zn(ω, ξ))τ0 − δφn(ω, ξ)τ1 , (14.57)

Gl
m(ω′, ξ′) =

∑
jk

D(ξ′)mjk{ω′Zj(ω′, ξ)τ0 − δφj(ω′, ξ′)τ1}j

×
(

1
ω′2Z(ω′, ξ′)2 − ξ′2 + iδ

)
k

.

(14.58)

Here, Dmjk’s are the constants which are defined as

fj(ξ, �)fk(ξ, �) =
∑
m

Dmjkfm(ξ, �) , (14.59)

and we took f0 to be constant on each equal energy surface, i.e., totally
isotropic function with respect to the shape of equal energy surface ξ(�) = ξ.

Equation (14.58) is now linearized in terms of the pair function δφ, but
it still has complicated form which clearly comes from fn-expansion. If the
renormalization factor Z(ω, ξ(�)) is totally isotropic, i.e., if it does not depend
on points on the surface ξ = ξ(�) then the equation is reduced to a simple
form as we shall see in the following and we adopt this assumption. As we
have mentioned, we can take any set of functions {fn} as long as fn’s satisfy
(14.49) and (14.50). The main assumption here is that the Z-term is totally
isotropic in terms of the equal-energy surface. Then, as we mentioned, if we
take f0 = κ to be constant on the same surface we have
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Z(ω, ξ(�)) = κZ0(ω, ξ) , (14.60)

with f0 being constant on ξ = ξ(�). Then the function 1/(ω2Z(ω, ξ(�))2 −
ξ(�)2 + iδ) appearing in (14.54) is also totally isotropic so that it is also
proportional to f0, i.e.,

1
ω2Z2(ω, ξ(�)) − ξ(�)2 + iδ

= κ

(
1

(ω2Z(ω, ξ))2 − ξ2 + iδ

)
0

. (14.61)

Then (14.58) becomes

Gl
m(ω′, ξ′) =

∑
j

D(ξ′)mj0{ω′Z(ω′, ξ′)
κ

δj,0τ0 − δφj(ω′, ξ′)τ1}

× 1
κ

1
ω′2Z2(ω′, ξ′) − ξ′2 + iδ

. (14.62)

By the definition of D(ξ)mjk in (14.59) we readily see

Dmj0 = κδmj . (14.63)

Now (14.62) becomes

Gl
m(ω′, ξ′) = {ω′Z(ω′, ξ′)

κ
δm0τ0 − δφm(ω′, ξ′)τ1} 1

ω′2Z2(ω′, ξ′) − ξ′2 + iδ
.

(14.64)
Inserting the above expression for Gl

m appearing in (14.56) we finally have
the equation,

Σn(ω, ξ) =
∑
m

∫
dω′

2π

∫
dξ′

ρ(ξ′)
ρF

∫
dΩα2Fn,m(Ω, ξ, ξ′)D(ω − ω′, Ω)

×{ω′Z(ω′, ξ′)δm0)I − δφm(ω′, ξ′)τ1}
× 1
ω′2Z(ω′, ξ′)2 − ξ′2 + iδ

, (14.65)

Σn = ω(1 − Z(ω, ξ))δn0I − δφn(ω, ξ)τ1 , (14.66)

which corresponds to anisotropic version of McMillan’s equation. Since it is
known that the ω-dependence of the Z-term, particularly its value at ω = 0,
has the most important effect on suppression of superconductivity [197], the
above mentioned approximation to ignore the k-dependence of the Z-term
makes sense and hereafter we will concentrate on solving (14.65).

Now the form of (14.65) allows us to follow McMillan’s method, that
is to perform the ξ′-integral first and reduce the problem of solving a one
variable ω-dependent equation. On performing the ξ′-integral in (14.65), we
use the fact that, in general, the α2F -term in (14.65) does not have significant
ξ, ξ′-dependence so that we can set the α2F -term to be constant as regards to
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variables ξ and ξ′. This means that the left hand side of (14.65) has no longer
ξ-dependence. That is, both the Z-term and δφ are no longer ξ-dependent.
We also ignore the ω-dependence of the Z-term. It is an even function of ω
and has its largest value at ω = 0, and in the limit ω → ∞ it approaches
unity (for example, see [207]). So, substituting Z(ω) by Z(0) nearby ω ∼ 0
does not affect the result much. When ω � 0, other terms appearing in the
right hand side of (14.65) become very small so that even in the region ω � 0
where Z(ω) and Z(0) should differ, the substitution Z(0) → Z(ω) to all ω-
interval is not expected to change the quantitative results of (14.65). (For
similar kinds of treatments, see [208], for example.)

Then the left hand side of (14.65) now depends only on ω and the ξ′-
integral of the right hand side can be done analytically just the same as
McMillan’s treatment and given as

Σn =
∑
m

∫
dω′ ρ(Z(0)ω′)

ρF

∫
dΩα2Fn,m(Ω)I(ω,Ω, ω′)

ω′Z(0)τ0 − δφm(ω′)τ1
|ω′Z(0)| .

(14.67)
Here the function I(ω,Ω, ω′) is defined by

I(ω,Ω, ω′) =
N(Ω) + 1 − f(ω′)
ω + iδ −Ω − ω′ +

N(Ω) + f(ω′)
ω + iδ +Ω − ω′ , (14.68)

where N(Ω) denotes Bose distribution function N(Ω) = 1/(eβcΩ − 1) and
f(ω′) denotes the Fermi distribution function f(ω′) = 1/(1+eβcω′

). Since we
are now considering the Tc equation, we set βc = 1/Tc in the above expression.
The derivation of (14.67) from (14.65) by ξ′-integral is a purely mathematical
one, and it is the same for conventional strong-coupling treatments. (For
details, see [201], Sect. 12. As seen from the reference, we need one more
mathematical step for the derivation of (14.67) from (14.65), namely the
spectral representation of the Gl-term. Then the origin of the temperature-
dependent term I in (14.67) becomes clear.)

Now we divide the gap equation into two parts. One for the determination
of the renormalized factor Z(0) and the other for the determination of the
infinitesimal gap function δφn. Namely,

(1 − Z(0))ω =
∑
m

∫
dω′ ρ(Z(0)ω′)

ρF

∫
dΩα2F0,m(Ω)I(ω,Ω, ω′)

ω′

|ω′| , (14.69)

δφn(ω) =
∑
m

∫
dω′ ρ(Z(0)ω′)

ρF

∫
dΩα2Fn,m(Ω)I(ω,Ω, ω′)

δφm(ω′)
|ω′Z(0)| .

(14.70)

As we have mentioned, we can adopt any kind of basis function set fn as
long as it satisfies the ortho-normal condition, and we have already set f0

to be the totally isotropic function, i.e., to be constant on each equal energy
surface ξ(�) = ξ. Now, as for f2, we assume that it is proportional to δφ(�),
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which has d-symmetry and is of course orthogonal to f0. (f1 corresponds
to p-symmetric function which is out of scope in the present book). Then
(14.69)–(14.70) are written as

(1 − Z(0))ω =
∫

dω′ ρ(Z(0)ω′)
ρF

∫
dΩα2F0,0(Ω)I(ω,Ω, ω′)

ω′

|ω′| , (14.71)

Z(0)δ∆2(ω) =
∫

dω′ ρ(Z(0)ω′)
ρF

∫
dΩα2F2,2(Ω)I(ω,Ω, ω′)

δ∆2(ω′)
|ω′| .

(14.72)

Here the superconducting gap function ∆ is defined as ∆ = φ/Z. (Remark:
This definition is valid to all temperature T <Tc, and it is known that the
energy of a hole-carrier excitation is given as E(k) =

√
ξ(k)2 +∆(k)2.)

Lastly, let us remember the two effects unique to the K–S model: (1) the
electron–phonon coupling constant depends on spin, and (2) the electron–
phonon interaction is ineffective for frequencies lower than ωhF . The α2F0,0

in (14.71) comes from the exchange processes by the same hole carrier while
α2F2,2 represents the effect of phonon exchange between carriers with differ-
ent spins. To show the spin-dependencies, let us write the α2F -terms explic-
itly with spin indices, which appear through ωhF . As for the effect of ωhF ,
we insert ω′2/(ω′2 + ω2

hF
) in (14.71) and (14.72) instead of the simple cut-off

which we introduced in the preceding chapter to avoid undesirable singular
behaviour caused by the step function cut-off in the refined strong coupling
treatment. Then the final form of the Tc-equation for the K–S model is

(1 − Z(0))ω =
∫

dω′ ω′2

ω′2 + ω2
hF

ρ(Z(0)ω′)
ρF

×
∫

dΩα2Fσ,σ,0,0(Ω)I(ω,Ω, ω′)
ω′

|ω′| ,
(14.73)

Z(0)δ∆2(ω) =
∫

dω′ ω′2

ω′2 + ω2
hF

ρ(Z(0)ω′)
ρF

×
∫

dΩα2F↑,↓,2,2(Ω)I(ω,Ω, ω′)
δ∆2(ω′)
|ω′| .

(14.74)

14.6 Calculated Results
of the Superconducting Transition Temperature
and the Isotope Effects

14.6.1 Introduction

In solving (14.73) and (14.74), we make further approximations. First, even
for high-Tc systems, Tc is low enough compared with typical phonon frequency
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such as the Debye frequency ωD , i.e., ωD � Tc. Thus we neglect the Bose
function N(Ω) which appeared in the expression of the I-function in (14.68).
We also adopt the same approximation method as that treated by McMillan
in [197]. Then, defining the non-dimensional coupling constant λd and non-
dimensional self-energy interaction constant λ0, respectively, by

λd =
∫

dΩ
α2F↑,↓:2,2(Ω)

2Ω
, (14.75)

and

λ0 =
∫

dΩ
α2Fσ,σ:0,0(Ω)

2Ω
, (14.76)

we finally obtain the following equations to calculate Tc which we call the
“Tc-equation”:

1 = λ′
∫ ωD

0

dω′ ω′2

ω′2 + ω2
hF

[ρ(ω′Z(0)) + ρ(−ω′Z(0))]
ρF

tanh(ω′/2Tc)
2ω′ ,

(14.77)

Z(0) = 1 + λ0

∫ ∞

0

ω′2

ω′2 + ω2
hF

[ρ(ω′Z(0)) + ρ(−ω′Z(0))]
ρF

ωD

(ω′ + ωD)2
dω′ ,

(14.78)

where ρ(ω) is the energy-dependent density of states, ωD the Debye frequency
of the system and

λ′ =
λd

Z(0)
. (14.79)

From the definition of Z-term by (14.78), Z(0) is always larger than unity
and therefore it is readily known that the effective coupling constant λ′ be-
comes smaller than the “bare” coupling constant λd. In numerical calculations
we adopt α2F (Ω)-functions calculated numerically by Ushio and Kamimura
[112] for LSCO, which was given in Fig. 13.15 in Sect. 13.3. As for the spatial
dependence of the gap function δ∆2(ω,k) in the k-space, we have set

δ∆(ω,k) = δ∆0(ω) cos[2θ(k)] , (14.80)

where θ(k) is an angle between k and the x-axis. This is equivalent to setting
the function f2, which appeared in the preceding section, as

f2(k) = κ2 cos[2θ(k)] , (14.81)

where κ2 is a normalization factor. Then, reexpressing the α2F↑,↓:2,2(Ω) in
(14.75) by α2F

(2)
↑↓ (Ω) in (13.23) in Chap. 13, α2F

(2)
↑↓ (Ω) in (14.75) is calcu-

lated as
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α2F
(2)
↑↓ (Ω) =

∫
ξ(�)=0

∫
ξ(k)=0

d�dkα2F↑↓(Ω, �,k)f2(�)f2(k) . (14.82)

Here we use the wave-vectors � and k instead of θ and θ′ in (13.23) and neglect
the ξ-dependence of the α2F since it is a slowly varying function of ξ, one-
electron energy measured from the Fermi energy. As for the Debye frequency
we put h̄ωD = 50 meV, and for the non-dimensional coupling constant λd,
we have obtained the value of λd = 1.96 [28, 112] in (13.24) in Chap. 13.

In the preceding chapter we treated ωhF to be directly derived from the
AF-correlation of the system, i.e., ωhF = vF/�0, where �0 is an average length
of a metallic region, which is much longer than the spin-correlation length in
the local AF order λs, due to the AF-fluctuation, as we described in detail in
Fig. 11.2 in Chap. 11. In other words, if a “boundary” between two “distinct”
AF-regions are static, then �0 becomes equal to λs, but in the present spin-
fluctuating system in the 2D Heisenberg AF spin system, the fluctuation
is dynamic, and so we do not have distinct boundaries. Itinerancy of a hole-
carrier in the K–S model is acquired by taking an alternate multiplet structure
of 1A1g and 3B1g from site to site without destroying the underlying AF-
order. Since this physical picture is a quantum-mechanical one, in general a
hole-carrier can itinerate over a distance much longer than λs itself. At the
present, we do not have the relation between �0 and λs. Thus in the present
numerical calculations, we treat the mean free path of a hole-carrier �0 to
be a parameter which is proportional to the AF correlation length λs in its
hole-concentration dependence.

14.6.2 The Hole-Concentration Dependence of Tc

We now show the results of numerical calculations. We have calculated the
hole concentration (x)-dependencies of transition temperature Tc(x) and
isotope effect α(x) [26]. We first show the calculated results of Tc(x) in
Fig. 14.11. The existence of the lower cut-off parameter ωhF described in
Chap. 13 plays an important role together with the spin-dependent electron–
phonon coupling. As we have seen, ωhF is written as

ωhF =
v(k)
�0(x)

, (14.83)

where v(k) denotes the group velocity of a hole-carrier with momentum k
and �0(x), the “mean free path” of a hole-carrier in the metallic region at hole
concentration x. Thus ωhF has k-dependence but in the present calculation
we neglect it for simplicity. For v(k), we adopt the averaged Fermi velocity
vF(x) on the Fermi surface which corresponds to the hole concentration x and
thus ωhF has the x-dependence. Since we can easily show that vF(x)>∼v(k)
with k nearby the Fermi-surface which has a main contribution to the gap
formation, this simplification has no effect of overestimating Tc. Now we have
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Fig. 14.11. The calculated x-dependence of Tc for LSCO. The thick solid line repre-
sents the calculated Tc(x) curve and the thin solid line represents the x-dependence
of “mean free length” �0 of hole-carriers. Experimental data are taken from [35].
�0(x) is fitted to reproduce the experimental results for Tc(x), and x-dependence of
�0 is taken so as to be consistent with neutron scattering experiments. For detail,
see the text

ωhF(x) =
vF(x)
�0(x)

. (14.84)

To calculate Tc(x), we have to determine the x-dependence of �0(x), but up
to the present we do not have a reliable method of calculating �0(x) from
the K–S effective Hamiltonian directly. Then, as we have seen in Sect. 11.2
it is quite natural to assume that the “mean free path” of a hole-carrier �0 is
proportional to the antiferromagnetic (AF) correlation length of the localized
spin system, that is

�0(x) = γλs(x) , (14.85)

where λs(x) is the AF-correlation length at the hole concentration x. As
regards the x-dependence of λs(x), we use the experimental results of λs(x)
reported by Yamada et al. [143] and Lee et al. [53] up to the optimum doping
(x = 0.15). Beyond x = 0.15, there are no available experimental data at
present. Here we assume that λs(x) decreases monotonically from x = 0.15 to
xc = 0.25, at which the AF order disappears, as we described in Sect. 12.5. For
the very low hole-concentration region of x < 0.05 we adopt λs = 3.8 Å/

√
x

following the experimental results by Birgeneau et al. [36, 145]. Using the
above-mentioned x-dependence of λs(x) and using a relation of �0 = γλs(x),
we have calculated Tc as a function of x. In doing so we have determined
a value of constant γ to be 5, so as to reproduce the experimental value of
Tc = 40 K at optimum doping xc = 0.15 [35], by using the experimental value
of λs(x = 0.15) = 50 Å [53, 143] and the density of states of the K–S model
ρKS(ε) calculated in Sect. 11.5 (see Fig. 11.5). As seen from Fig. 14.11, we can
successfully reproduce the observed bell shaped x-dependence of Tc. From the
result we can say that the increase of Tc with increasing x in the underdoped
region is due to the increase of the density of states with increasing the energy
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in ρKS(ε) while the decrease of Tc in the overdoped region with increasing x is
due to the pair-breaking effect related to the decrease of the local AF order by
the destruction of effective superexchange interactions in the AF-correlated
region.

From the empirical value of γ = 5, we can say that a metallic region is
spread over 25 nm for the optimum doping of LSCO. This means that the
superconducting regions are inhomogeneous in cuprates, at least for LSCO.
Recently Lang et al. [209] reported the granular structure of high-Tc super-
conductivity in underdoped Bi2212 by using scanning tunneling microscopy
(STM). Their STM studies have revealed an apparent segregation of the elec-
tronic structure into superconducting domains that are ∼ 3 nm in size. Since
STM studies concern with a much higher energy region over the Fermi en-
ergy, the discrepancy between the size of an empirically-determined metallic
region and the size determined by STM might be due to the difference in the
time scales caused from the different energy regions with which the present
theory and STM experiments are concerned.

14.6.3 Isotope Effects

Next we show the calculated result of the isotope effect in Fig. 14.12 [26].
The isotope effect is measured by a constant α which is defined by

α = −d lnTc

d lnM
, (14.86)

where M denotes the mass of constituent atoms. In the BCS theory, Tc is
just proportional to the Debye frequency ωD , and since ωD generally has
M -dependence of ωD ∝ M−0.5, thus we have α = 0.5 for weak coupled
superconductors. But in the strong coupling regime, we do not have such

Tc(K)

hole concentration x

40

30

20

10

  0
0 0.1 0.2 0.3

1.0

2.0

0

Isotope effect α

Fig. 14.12. The calculated x-dependence α(x) of the isotope effect. Here, the solid
line represents α(x). The dashed line represents the calculated Tc(x), shown for
reference
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a simple relation, even in the conventional superconductors. In the present
calculation we also use ωD ∝ M−0.5 with regard to the M -dependence of
Tc. The calculated results are shown in Fig. 14.12. As seen from the figure,
the isotope effect α becomes very large when x is small, while around the
optimally doped region α is 0.39, which is slightly smaller than that of the
BCS value, 0.5. In the present calculation, however, the mass of all constituent
atoms has been changed by the ratio of the mass of 18O to that of 16O.
Therefore, the calculated value of 0.39 is overestimated.

As we have seen, in Tc-equation (14.77), Tc depends on the density of
states ρ through the factor ρ = ρ(Z(0)ω) where Z(0) > 1. Since the den-
sity of the states (DOS) of the K–S model ρKS(ε) has a significant energy-
dependence, the isotope effect becomes dependent on the hole-concentration
x critically. In particular α becomes large in a low-concentration region where
ρKS is small and thus Tc is also small. This peculiar x-dependence of isotope
effect is one of the characteristic features of the isotope effect, obtained from
the K–S model. In Fig. 14.2, the calculated results are compared with ex-
perimental results of LSCO by Crawford et al. [210, 211], who made the
substitution of 18O for 16O in LSCO. In the figure the experimental results
are shown by solid squares and diamonds. We can see that there are good
agreement between the calculated results of the K–S model and the experi-
mental results shown by the solid squares in the underdoped and overdoped
region below 0.2 (x < 0.2), where the K–S model holds.

14.7 Final Remarks

Recently a number of papers related to the phonon mechanism have been
published. Although the phonon mechanisms in these papers are different
from the mechanisms of superconductivity due to the K–S model with two-
component scenario described in Chap. 13 and the present chapter, in closing
this chapter we would like to mention some of the papers as references [212,
213, 214, 215, 216, 217, 218, 219, 220].
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