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Preface

Superconductivity remains one of the most interesting research areas in
physics and complementary theoretical and experimental studies have ad-
vanced our understanding of it. In unconventional superconductors, the sym-
metry of the superconducting order parameter is different from the usual s-
wave form found in BCS-like superconductors. For the investigation of these
new material systems, well-known experimental tools have been improved
and new experimental techniques have been developed.

This book is written for advanced students and researchers in the field
of unconventional superconductivity. It contains results I obtained over the
last years with various coworkers. The state of the art of research on high-
Tc cuprates and on Sr2RuO4 obtained from a generalized Eliashberg theory
is presented. Using the Hubbard Hamiltonian and a self-consistent treat-
ment of spin excitations and quasiparticles, we study the interplay between
magnetism and superconductivity in various unconventional superconduc-
tors. The obtained results are then contrasted to those of other approaches.
In particular, a theory of Cooper pairing due to exchange of spin fluctua-
tions is formulated for the case of singlet pairing in hole- and electron-doped
cuprate superconductors, and for the case of triplet pairing in Sr2RuO4. We
calculate both many normal and superconducting properties of these materi-
als, their elementary excitations, and their phase diagrams, which reflect the
interplay between magnetism and superconductivity.

In the case of high-Tc superconductors, we emphasize the similarities of
the phase diagrams of hole- and electron-doped cuprates and give general
arguments for a dx2−y2-wave superconducting order parameter. A compar-
ison with the results of angle-resolved photoemission and inelastic neutron
scattering experiments, and also Raman scattering data, is given. We find
that key experimental results can be explained.

For triplet Cooper pairing in Sr2RuO4, we focus on the important role of
spin–orbit coupling in the normal state and compare the theoretical results
with nuclear magnetic resonance data. For the superconducting state, results
and general arguments related to the symmetry of the order parameter are
provided. It turns out that the magnetic anisotropy of the normal state plays
an important role in superconductivity.

Stuttgart, May 2004 Dirk Manske
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1 Introduction

One of the most exciting and fascinating fields in condensed matter physics
is high-temperature and unconventional superconductivity, for example in
hole- and electron-doped cuprates, in Sr2RuO4, in organic superconductors,
in MgB2, and in C60 compounds. In cuprates, the highest transition temper-
ature (without application of pressure) Tc � 134 K has been measured in
HgBa2Ca2Cu3O8+δ, followed by – to name just a few – Bi2Sr2CaCu2O8+δ

(δ = 0.15 ↔ Tc � 95 K), YBa2Cu3O6+x (x = 0.93 ↔ Tc � 93 K),
Nd2−xCexCuO4 (x = 0.15 ↔ Tc � 24 K), and La2−xSrxCuO4, where, for
an optimum doping concentration x = 0.15, a maximum value of Tc � 39
K occurs. Since 77 K is the boiling temperature of nitrogen, it is now pos-
sible that new technologies, based for example on SQUIDs (superconducting
quantum interference devices) or Josephson integrated circuits [1], might be
developed. However, at present, the critical current densities are still not high
enough for most technology applications. A recent overview an account of the
possible prospects can be found in [2] and references therein.

Throughout this book, we shall focus mainly on Cooper pairing in
cuprates and in Sr2RuO4. All members of the cuprate family discovered so far
contain one or more CuO2 planes and various metallic elements. As we shall
discuss in the next section, their structure resembles that of the perovskites
[3]. It is now fairly well established that the important physics related to
superconductivity occurs in the CuO2 planes and that the other layers sim-
ply act as charge reservoirs. Thus, the coupling in the c direction provides
a three–dimensional superconducting state, but the main pairing interaction
acts between carriers within a CuO2 plane. The undoped parent compounds
are antiferromagnetic insulators, but if one dopes the copper–oxygen plane
with carriers (electrons or holes), the long-range order is destroyed. Note that
even without strict long-range order, the spin correlation length can be large
enough to produce a local arrangement of magnetic moments that differs only
little from that observed below the Néel temperature in the insulating state.
In the doped state the cuprates become metallic or, below Tc, superconduct-
ing.

As mentioned above, in hole–doped cuprates Tc is of the order of 100 K
and in electron–doped cuprates one finds Tc � 25K (as will be explained
later), and thus much larger values of Tc are obtained than in conventional

c© Springer-Verlag Berlin Heidelberg 2004
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2 1 Introduction

strong–coupling superconductors such as lead (Tc = 7.2 K) or niobium (Tc =
9.25 K). Therefore, the phenomenon of high–Tc superconductivity in cuprates
that occurs in the vicinity of an antiferromagnetic phase transition suggests
a purely electronic or magnetic mechanism, in contrast to the conventional
picture of electrons paired through the exchange of phonons. For example, the
simplest idea to explain such high critical temperatures might be to introduce
a higher cutoff energy ωc due to electronic correlations in the system instead of
integrating over an energy shell corresponding to ωD (the Debye frequency),
i.e.

Tc ∝ ωc exp
(
− 1

λ

)
, (1.1)

where λ denotes the usual coupling strength for a given symmetry of the
gap function. In the BCS theory [4], λ is equal to N(0)V , where N(0) is the
density of states (per spin) at the Fermi level and V = const is the attractive
pairing potential acting between electrons, leading to the superconducting
instability of the normal state. If the relevant energy cutoff ωc of the problem
is of the order of electronic degrees of freedom, e.g. ωc � 0.3 eV ≈ 250 K
[5], one can easily obtain a transition temperature of the order of 100 K.
However, as we shall discuss below, in a more realistic treatment the relation
between Tc and λ is not as simple as in (1.1).

Superconductivity in strontium ruthenate (Sr2RuO4) is also very exciting
because its structure is similar to that of the high–Tc cuprate La2−xSrxCuO4

(RuO2 planes instead of CuO2 planes), but its superconducting properties
resemble those of 3He. As will be discussed later in detail, Sr2RuO4 is in the
vicinity of a ferromagnetic transition and thus is a triplet superconductor. It
has a Tc � 1.5 K. Furthermore, in contrast to cuprates, its normal–state be-
havior follows the standard Fermi liquid theory. All this makes the theoretical
investigation of Sr2RuO4 very interesting.

In this book, we present a general theory of the elementary excitations
and singlet Cooper pairing in hole– and electron–doped high–Tc cuprates
and compare our results with experiment. Then, we apply our theory also
to the novel superconductor Sr2RuO4, where triplet pairing is present. We
shall present the structures and electronic properties of the most important
compounds and their possible theoretical descriptions, and then use those
descriptions in the rest of the book. We shall point out some general fea-
tures of many unconventional superconductors and give the main ideas and
concepts used to describe Cooper pairing in these materials. Although it is
known that organic superconductors, heavy–fermion superconductors, and
some other materials cannot be described by the BCS model [4], we con-
sider the theory of BCS–like pairing (or its strong–coupling extension, i.e.
the Eliashberg theory) as a broader and still valid concept in many–body
theory. However, the source of the corresponding pairing interaction has to
be calculated from a microscopic theory. This is one important goal of this
book.
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This Introduction is organized as follows: first, we present the most rele-
vant materials, and their crystal and electronic structures. Then, in Sect. 1.2,
we ask the most important questions in connection with the phase diagram
and the elementary excitations of cuprate high–Tc superconductors, which
will be answered in Chap. 3. In Sect. 1.3, we introduce Sr2RuO4. In Sect. 1.4,
we describe how to find an appropriate Hamiltonian for both cuprates and
ruthenates and give some general arguments about the expected symmetry
of the superconducting order parameter.

1.1 Layered Materials and Their Electronic Structure

Before deriving an electronic theory for Cooper pairing in cuprates, one has to
analyze and understand the underlying crystal structure and corresponding
electronic properties. In general, all high–Tc cuprates are basically tetragonal
with a lattice constant of about 3.8 Å and consist of one or more CuO2 planes
in their structure, which are separated by layers of other atoms (Ba, La, O,
. . . ). The in–plane oxygen bond length is about 1.9 Å. As mentioned above,
most researchers in this field believe that superconductivity is related to pro-
cesses occurring in the CuO2 planes, whereas the other layers simply provide
the carriers. All cuprates have such charge reservoirs. The superconducting
transition temperature Tc seems to depend on the number of CuO2 planes
per unit cell; for example, the three–layer Hg and Tl compounds have a Tc of
134 K and 127 K, respectively. The fact that Tc increases with the number
of layers has led to speculation about increasing Tc up to room temperature
which, however, has not been not realized up to now [6].

In Tables 1.1and 1.2, we present some materials and their corresponding
Tc. For comparison, we also list some “cold” superconductors such as the
heavy–fermion compound UPt3, the BCS–Eliashberg–like superconductors
Nb and Pb, and Nb3Ge, which had the highest Tc before the discovery of
cuprates by Bednorz and Müller in 1986 [7].

We present also the recently discovered (phonon-induced) “high–Tc” su-
perconductor MgB2 and the C60 compounds. Very recently it has been
demonstrated that even iron becomes superconducting at Tc � 2 K, but

Table 1.1. Superconducting transition temperatures of cuprate materials.

Material Tc (K)

HgBa2Ca2Cu3O8+δ 134
Tl2Ca2Ba2Cu3O10 127
YBa2Cu3O7 92
Bi2Sr2CaCu2O8 89
La1.85Sr0.15CuO4 39
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Table 1.2. Superconducting transition temperatures of some “cold” superconduc-
tors, of Sr2RuO4, and of other compounds.

Material Tc (K)

hole–doped C60 52
MgB2 39
Nd1.85Ce0.15CuO4 24
C60 crystal 18
electron–doped C60 12
Nb 9.25
Pb 7.20
Sr2RuO4 1.5
UPt3 0.54

only in its nonmagnetic phase, i.e. when high pressure is applied [8]. For a
more complete list of superconducting materials, see [9, 10].

It is well established that the so–called undoped parent cuprate com-
pounds are insulators and that their Cu spins are ordered antiferromagneti-
cally below a Néel temperature TN . However, this contradicts a simple band-
structure point of view. For example, the formal valencies of La3+, O2−, and
Cu2+ in the parent compound La2SrCuO4 lead to an [Ar] 3d9 state, which
contains a single d–hole located within the planar 3dx2−y2 orbital. Thus, a
naive argument would suggest that the undoped parent compounds are simple
metals, which was also concluded from by early local–density approximation
(LDA) calculations. This is not restricted to La2SrCuO4; in fact, the LDA
behaves similarly for other parent compounds. As we shall discuss later, the
inconsistency of LDA calculations is a direct consequence of an improper
treatment of the strong local Coulomb correlations. On the other hand, it
is obvious that the localized copper spins provide the magnetic moments for
the antiferromagnetic order. The in–plane exchange coupling J|| is generated
by Cu-spin superexchange and can be well described by a two-dimensional
spin–1/2 Heisenberg model. Inelastic neutron scattering (INS) experiments
[11, 12] and Raman scattering [13] have measured J|| ∼ 100 meV and a
large anisotropy with respect to the next unit cell, J⊥/J|| ∼ 10−5 [14, 15].
Therefore, above TN , the spin correlations are essentially two–dimensional.

1.1.1 La2−xSrxCuO4

This compound, usually abbreviated to LSCO, crystallizes in a body–centered
tetragonal structure (similar to K2NiF4) and is shown in Fig. 1.1. The CuO2

planes are approximately 6.6 Å are apart and separated by two LaO planes,
which form the charge reservoir. Each copper atom in the conducting planes
has a bond to oxygen atoms above and below in the c direction, which are
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Fig. 1.1. Structure of the hole-doped high-Tc cuprate La2−xSrxCuO2 (LSCO),
which has a perovskite-like structure with one CuO2 plane per unit cell. It is believed
that the main physics related to Cooper-pairing occurs within the CuO2 planes.

called apical oxygens. This is typical for all hole–doped high–Tc cuprate ma-
terials. Furthermore, the Cu ions are surrounded by octahedra of oxygens as
in a perovskite structure. The Cu–O bond in the c direction is much weaker
than in the ab plane because its length is considerably larger (∼ 2.4 Å) than
the Cu–O distance in the CuO2 planes (∼ 1.9 Å). Thus the dominant bonds
are those in the planes, and the importance of the apical oxygens is still under
discussion.

1.1.2 YBa2Cu3O6+x

In YBCO, there are two CuO2 planes per unit cell, approximately 3.2 Å apart
and separated by yttrium ions. The tetragonal structure of this compound
is shown in Fig. 1.2. The pairs of CuO2 planes are themselves separated by
atoms of barium, oxygen, and copper forming the charge reservoir. The dis-
tance between adjacent pairs of these conducting planes is ∼ 8.2 Å. As is the
case for LSCO, the number of carriers in the CuO2 planes is controlled by
the amount of charge transferred between the conducting layers and charge
reservoir layers. Note that in YBCO there are Cu atoms in the charge reser-
voir, in contrast to LSCO. In combination with oxygen, they form Cu–O
chains along the b direction, which leads to an orthorhombic distortion. The
Cu–O distance is about 1.9 Å, as in the planes. For YBa2Cu3O7, i.e. x = 1,
the chains are well defined, but they are absent for the undoped parent com-
pound YBa2Cu3O6. It is usually believed that adding oxygen to the chains
is equivalent to adding holes to the CuO2 planes. For more details, see [9].
Because of the nonlinear increase of the in–plane hole density with the dop-
ing x, YBCO has a so–called 60 K plateau in its Tc(x) curve, which will be
discussed later.
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Fig. 1.2. Structure of the hole–doped high–Tc superconductor YBa2Cu3O6+x

(YBCO). It consists of two CuO2 planes per unit cell and charge reservoirs. In
contrast to LSCO, YBCO has Cu–O chains, which are formed along the b direc-
tion.

1.1.3 Nd2−xCexCuO4

The structure of this compound, usually abbreviated to NCCO, is body–
centered tetragonal like LSCO and is shown in Fig. 1.3. The difference be-
tween NCCO and LSCO lies in the position of the oxygen atoms of the charge
reservoir. It is interesting to note that LSCO can be easily doped with holes,
while NCCO can be easily doped with electrons. In the NCCO crystal, cop-
per becomes Cu2+, oxygen becomes O2−, and neodymium is in the Nd3+

state. After doping with Ce4+, which replaces Nd ions, the CuO2 planes gain
an excess of electrons. It is believed that an additional electron occupies a
hole of the d shell of Cu (producing a closed–shell configuration) and does
not move to an oxygen site as is the case for hole–doped cuprates. Thus,
different bands are doped by holes and electrons, and one expects, on general
grounds, that the phase diagram of hole– and electron–doped cuprates will
not be symmetric with respect to the carrier concentration x.
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Fig. 1.3. Structure of the electron–doped high–Tc cuprate Nd2−xCexCuO2

(NCCO). This structure is similar to that of LSCO, but no apical oxygen is present.

To briefly summarize this section, we have demonstrated that the main
ingredient of the strong electronic correlations that yield high–Tc supercon-
ductivity is the CuO2 planes. In the following we shall assume that the main
physics and most important properties of cuprates are intimately related to
the electronic correlations within one CuO2 plane. The regions between the
CuO2 planes are believed to act mainly as a charge reservoir. Bilayer ef-
fects are treated elsewhere [16]. Thus the general phase diagram, the pairing
mechanism, the important transport and optical properties, etc. should be
independent of the number of CuO2 layers per unit cell, in principle. These
general questions, motivated by experiment, will be asked in the next section.

1.2 General Phase Diagram of Cuprates
and Main Questions

One fundamental problem which one has to solve is the theoretical description
and understanding of the general phase diagrams of both hole–doped and
electron–doped cuprates, which are shown in Figs. 1.4 and 1.5, respectively.
Although details of the T (x) diagram may differ from material to material,
for practical purposes Fig. 1.4 describes all of the main features of hole–
doped cuprates. As already mentioned, high–Tc superconductivity in hole–
doped cuprates always occurs in the vicinity of an antiferromagnetic (AF)
phase transition, and has its highest Tc for an optimum doping concentration
of around xopt � 0.16. The regions in the phase diagram where x < xopt

and x > xopt are called “underdoped” and “overdoped”, respectively. In
Fig. 1.5, we compare the phase diagram of electron–doped NCCO with that
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Fig. 1.4. Schematic generic phase diagram of hole–doped cuprates. High-Tc su-
perconductivity always occurs in the vicinity of an antiferromagnetic (AF) phase
transition, and the superconducting transition temperature as a function of the
hole concentration, Tc(x), has a characteristic (nearly parabola–like) shape [17].
Below Tc, the corresponding superconducting order parameter is of d–wave sym-
metry. The normal state can be separated into two parts. In the overdoped region,
i.e. x > 0.15, the system behaves like a conventional Fermi liquid, whereas in the
underdoped regime, below the pseudogap temperature T ∗, one find strong antifer-
romagnetic correlations. As is discussed in the text, Cooper pairing can be mainly
described by the exchange of AF spin fluctuations (often called paramagnons),
which are present everywhere in the system. In the doping region between Tc and
T ∗

c (shaded region) local Cooper pair formation occurs. Below Tc these pairs become
phase–coherent and the Meissner effect is observed.

of hole–doped LSCO. The similarities between the two phase diagrams are
remarkable. In particular, both cases reveal an antiferromagnetic phase with
a similar Néel temperature and a superconducting phase in its vicinity. In
the following, we shall describe these phase diagrams in more detail.

1.2.1 Normal–State Properties

It is widely believed that understanding the normal–state properties of high-
Tc cuprates will also shed some light on the mechanism of superconduc-
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Fig. 1.5. Phase diagrams of the electron–doped superconductor NCCO and of
hole–doped LSCO. Superconductivity in the electron–doped cuprates occurs only
in a narrow doping range and has a smaller Tc.

tivity. One important fact which we shall analyze is the asymmetry of the
cuprate phase diagram with respect to hole and electron doping. In the case
of electron–doped cuprates, the antiferromagnetic phase persists up to higher
doping values and superconductivity occurs only in a narrow doping region.
Also, Tc in the electron–doped case is usually smaller than in hole–doped
cuprates, namely approximately 25 K.

Let us start with the analysis of the elementary excitations. Important
data are provided by angle–resolved photoemission (ARPES) studies, which
provide detailed information about the spectral function A(k, ω) (i.e. the lo-
cal density of states) of the quasiparticles. Owing to recent developments in
ARPES, A(k, ω) can be studied with high accuracy versus frequency for a
fixed momentum (energy distribution curve, EDC) and as a function of mo-
mentum at a fixed frequency (momentum distribution curve, MDC). One of
the most important results that one obtains by analyzing MDCs and EDCs
is the renormalized energy dispersion ωk, which is shown in Fig. 1.6. These
experiments reveal a so–called “kink feature”, which reflects a change of
the quasiparticle velocity below kF due to strong correlation effects. The
kink is seen in various hole–doped cuprates, but not in electron–doped ones
[18, 19, 20]. It has been argued in [18] that the kink is seen along all directions
in the Brillouin zone. However, in most of the studies the kink feature has
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Fig. 1.6. ARPES results for the renormalized energy dispersion ωk along different
directions in the first Brillouin zone, as shown in the inset. Taken from [18].

been investigated only along the (0, 0) → (π, π) direction. This is connected
to the fact that along the (0, 0) → (π, 0) direction there are additional effects
such as matrix elements and bilayer splitting which complicate the analysis
of experimental data. Originally, the kink feature was attributed to a cou-
pling of itinerant quasiparticles to phonons, in particular to a longitudinal
phonon mode at 70 meV which behaves anomalously in several experiments
[21]. However, this interpretation has several difficulties. The first relates to
the fact that the in–plane resistivity ρab in hole–doped cuprates (at the opti-
mal doping) is linear with frequency or temperature (whichever dependence
gives the larger value), which is hard to explain within conventional electron–
phonon coupling, which predicts ρab ∝ T 2 or ρab ∝ ω2. At the same time,
in electron–doped cuprates no kink is observed [18], and the resistivity is
quadratic in temperature. Thus, it is not clear whether both sets of results
can be explained assuming the same electron–phonon coupling. In this book
we shall study the spectrum of the elementary excitations, and thus the kink
feature due to coupling of holes or electrons to spin fluctuations. Spin exci-
tations result in a frequency and momentum dependence of the quasiparticle
self–energy which differs from the phonon case. We shall demonstrate that
the kink feature is one of the key facts that can be explained by coupling of
holes to spin fluctuations. Furthermore, the anisotropy in k–space and the
doping dependence of the kink might be seen as a fingerprint of the coupling
to spin fluctuations, too. This will be discussed in detail later.

In general, the normal state can be separated into two parts. In the over-
doped region the system behaves mainly like a conventional Fermi liquid,
whereas in the underdoped case, in particular below the pseudogap temper-
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ature T ∗, the system reveals some unusual properties. For example, a gap
is present in the elementary excitations, strong anisotropies are observed
(caused mainly by the 2D nature of the system), and local magnetic phases
exist. To be more precise, important examples are provided by the 63Cu
spin–lattice relaxation rate and the inelastic neutron scattering intensity in
hole–doped cuprates: while in the overdoped regime the spin–lattice relax-
ation rate 1/T1T increases monotonically as T decreases to Tc, one finds
in the underdoped case that 1/T1T passes through a maximum at the spin
gap temperature T ∗ with decreasing T (see [22] for a review). These results
are confirmed by INS data, where in the underdoped regime, Imχ(Q, ω) at
fixed small ω (� 10–15 meV) also passes through a maximum at T ∗ with
decreasing T [23]. Thus, one of the main theoretical questions for hole–doped
cuprates is to explain the origin of this spin gap temperature in the nor-
mal state and its relation to the underlying mechanism of Cooper pairing.
In addition, ARPES experiments on underdoped Bi2Sr2CaCu2O8+δ show the
presence of a gap with dx2−y2–wave symmetry well above Tc in the charge ex-
citation spectrum [24, 25]. This gap also opens below the temperature T ∗ and
thus seems to coincide with the spin gap temperature. Furthermore, recently
several experiments, including measurements of heat capacity [26], transport
[27], and Raman scattering [28], and, in particular, scanning tunneling spec-
troscopy [29, 30] have confirmed the existence of a gap in the elementary
excitations below T ∗. Thus T ∗ is usually called the pseudogap temperature.
Whether a pseudogap is present in electron-doped cuprates is still a subject
of debate. While measurements of the optical conductivity report a pseudo-
gap similarly to the hole–doped case [31], tunneling data reveal a pseudogap
(i.e. a reduction of the spectral weight at the Fermi level) only below Tc and
when a high magnetic field (> Hc2) is applied [32, 33].

The existence and origin of the pseudogap are another fundamental ques-
tion which we shall address in this book. So far, a few phenomenological mod-
els, such as marginal–Fermi liquid (MFL) [34], nested–Fermi liquid (NFL)
[35, 36], and nearly–antiferromagnetic–liquid (NAFL) [37] models, have been
developed in order to understand the unusual Fermi liquid properties in the
normal state. At the moment it is not clear whether these concepts can also
be applied to electron-doped superconductors.

Another important energy scale is the temperature T ∗
c , which is only

present in the underdoped region and close to Tc. Below T ∗
c , local Cooper

pairs without long-range phase coherence are found [40, 41, 42] (“preformed
pairs”), which become phase–coherent only for temperatures T < Tc where
the Meissner effect is observed. T ∗

c and T ∗ seem to be crossover tempera-
tures rather than true phase transitions (although this is a subject of debate
[38, 39]). As we shall discuss later, T ∗

c is connected with the fact that, in
the doping behavior of the superconducting transition temperature Tc(x), a
maximum around x = 0.15 is found. It has to be clarified whether T ∗

c exists
also in the case of electron–doped cuprates.
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Let us briefly summarize the main questions for the normal state of
cuprates:

– How can we understand the phase diagrams of both for hole– and
electron–doped cuprates, in particular the doping dependence of the char-
acteristic temperatures T ∗(x), T ∗

c (x), and Tc(x)? What is the origin of the
pseudogap? Do T ∗ and T ∗

c exist for electron-doped cuprates?
– What is the origin of the asymmetry of the cuprate phase diagram with

respect to hole and electron doping? Why does superconductivity occur
only within a small doping region, and why does it have a smaller Tc in
the case of electron-doped cuprates?

– How can we describe and understand the elementary excitations in
cuprates, for example the kink feature in hole–doped cuprates and its
absence in electron–doped cuprates?

Finally Fig. 1.4 illustrates that (mainly AF) spin fluctuations are present
in the normal state of hole–doped cuprates; these can be measured by INS
experiments, for example [43]. Spin fluctuations have also been measured in
electron-doped cuprates [44]; however, they are weaker than in hole–doped
cuprates. As already mentioned, their occurrence is related to the quasi–
2D character of the spin correlations within a CuO2 plane, which are more
robust against doping than is the 3D Néel state. The origin of these excita-
tions in hole–doped cuprates is the copper spins, which are surrounded by
itinerant holes which have destroyed the 3D long-range order. Consequently,
the underlying idea for the Cooper-pairing mechanism in high-Tc cuprates is
the exchange of these spin fluctuations between (dressed) holes or electrons
in a generalized Eliashberg-like theory. This will be discussed in detail in
Chap. 2. These ideas are similar to the exchange of “paramagnons” in the
case of triplet pairing in 3He, where the system is close to a ferromagnetic in-
stability [45, 46]. Later in this book we shall use a similar approach to describe
the interesting properties of the novel triplet superconductor Sr2RuO4.

1.2.2 Superconducting State: Symmetry of the Order Parameter

In Fig. 1.4, we also show the Tc(x) curve, which has a characteristic shape
Tc(x) = 1 − (x − 0.16)2, as pointed out in [17, 47]. Below Tc, supercon-
ductivity occurs and it is believed that the order parameter has dx2−y2–wave
symmetry, i.e. ∆k = ∆0 [cos kx−cos ky]/2. The evidence for d–wave pairing in
hole–doped cuprates comes from several sources, in particular phase–sensitive
measurements, NMR studies, penetration depth measurements, ARPES, and
polarization-dependent Raman scattering experiments:

1. Phase sensitive experiments by Wollmann et al. [48] and Kirtley and
Tsuei [49, 50, 51], measuring the phase coherence of YBCO–Pb dc
SQUIDs, have reported a dx2−y2-wave order parameter.
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2. Bourges, Regnault, Keimer, and others have demonstrated that INS ex-
periments reveal a feedback effect of superconductivity on the neutron
scattering intensity. In particular, a strong rearrangement of the spectral
weight, a so–called resonance peak, is observed below Tc (see Fig. 1.7)
[52, 53, 54, 55, 56].1 On general grounds, one expect this peak at a res-
onance frequency ωres ≈ 2∆ where ∆ is the (average) superconducting
gap. INS experiments show intensity below this threshold frequency (i.e.
0 < ω < ωres) also supporting a d–wave gap in the superconducting state.

3. NMR measurements probe the local magnetic field around an atom and
allow the determination of the Cu relaxation rate. Below Tc this relax-
ation rate varies as T 3, in agreement with several predictions for a dx2−y2–
wave order parameter.

4. It follows from simple statistical arguments that the penetration depth λ
of an external magnetic field varies exponentially with T at small tem-
peratures. However, when nodes are present in the superconducting or-
der parameter, and thus Cooper pairs can be broken very easily along
the corresponding directions in the Brillouin zone (BZ), λ should vary
linearly with temperature (or λ ∝ T 2 in the dirty limit). Bonn, Hardy,
and coworkers have reported such behavior in YBCO [57, 58].

5. Shen et al. and Campuzano et al. have reported strong anisotropy of the
superconducting gap using ARPES techniques [59]. Their interpretation
is consistent with a dx2−y2–wave order parameter.

6. Polarization-dependent Raman scattering below Tc measures a pair-
breaking peak and thus (via the Tsuneto function) [60, 61]) the anisotropy
of ∆k. So far, the interpretations of several groups are compatible
with an order parameter that has nodes along the diagonal of the BZ
[62, 63, 64, 65]. Further analytical results for small transferred energies,
i.e. power laws for the observed intensity, support this interpretation.

Obviously, only method 1 reveals clearly a sign change in the supercon-
ducting order parameter; the other techniques can determine only the exis-
tence of nodes. Strictly speaking, some of the results of these experiments
would also be consistent with an extended s–wave gap, i.e. ∆k = ∆0 [cos kx +
cos ky]/2. In addition, another phase–sensitive measurement along the c di-
rection by Li et al., which was suggested by R. Klemm, seems to be incon-
sistent with a dx2−y2–wave gap [66, 67]. Very recently, this experiment has
been repeated and improved and a d–wave gap has been observed [68]. How-
ever, there is still controversy over the interpretation [69]. Furthermore, we
show throughout this book that a d–wave order parameter occurs naturally
if singlet pairing is mediated by AF spin fluctuations. This is related to gen-
eral arguments about a repulsive pairing interaction and will be discussed in
Sect. 1.4.3.
1 A closer inspection for the normal-state data of underdoped YBa2Cu3O6+x [55]

shows that this peak is qualitatively different from the resonance peak [56].
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Fig. 1.7. Neutron scattering intensity versus transferred energy for underdoped
YBCO in the normal state (T = 200 K) and superconducting state (T = 12 K).
In the normal state, an Ornstein–Zernicke behavior is observed. Below Tc, a strong
rearrangement of spectral weight takes place and a resonance peak develops.

New phase–sensitive measurements by Kirtley and Tsuei show strong ev-
idence that the superconducting order parameter of electron–doped cuprates
also has dx2−y2–wave symmetry [51, 70]. This is further supported by mea-
surements of the in–plane penetration depth λ, and ARPES experiments
[71, 72]. This is interesting because it was believed for more than one decade
that NCCO and other electron–doped superconductors were s–wave super-
conductors. In particular, early experiments by Anlage et al. reported that λ
follows an exponential behavior at low temperatures [73], Raman scattering
experiments saw no variation of the scattered intensity as a function of the
applied polarization [74], and no zero–bias peak has been observed [75]. How-
ever, after the recent experiments by Kirtley and Tsuei mentioned above, it
seems clear now that d–wave pairing is present in electron–doped cuprates.
We consider this as an important step towards a unified phase diagram of
hole– and electron–doped cuprates.

We can briefly summarize the questions as follows:

– Why, theoretically, should a dx2−y2–wave gap appear in the case of singlet
pairing due to (repulsive) spin excitations for both hole– and electron–
doped cuprates? Can we exclude a dxy symmetry, for example? How is
this related to the underlying band structure or the character of the quasi-
particles (copper d states versus oxygen p states)?

– Why did earlier experiments on electron–doped cuprates report an s–wave
symmetry of the superconducting order parameter?

– In general, if the order parameter has dx2−y2–wave symmetry, why are
deviations from the simple basis function ∝ [cos kx − cos ky] still possible?
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Are there such deviations and, if so, what is their physical origin and
interpretation?

– How can we describe and understand the “resonance peak” in INS exper-
iments which reflects the interdependence of the elementary excitations
and spin fluctuations? Does this provide information about the pairing
interaction?

Another remarkable feature of the superconducting state of high–Tc

cuprates is that they differ from conventional superconductors by having
a small coherence length ξ. This length is usually associated with the average
size of a Cooper pair, which for conventional superconductors is about 500
Å–104 Å. Therefore the size of a Cooper pair is larger than the average dis-
tance between pairs, resulting in a strong overlap of the corresponding wave
functions. On the other hand, the cuprate superconductors have ξ ∼ 12 Å–15
Å; these values have been obtained mainly from measurements of the upper
critical field Hc2. All high–Tc cuprates are type II superconductors and are
believed to be in the “clean limit” since the mean free path of the carriers
(∼ 150 Å) is much larger than ξ. Note that the coherence length in the c
direction ξc, is only 2 Å–5 Å, i.e. even smaller than the interplanar distance,
while ξ in the planes is about three to four lattice spacings.

1.3 Triplet Pairing in Strontium Ruthenate (Sr2RuO4):
Main Facts and Main Questions

The discovery of high–Tc superconductivity in the cuprates led to extensive
searches for other superconducting transition metal oxides. One important
example is the novel superconductor strontium ruthenate (Sr2RuO4) which
was discovered by Maeno and coworkers in 1994 [76]. Its crystal structure is
isostructural to that of (La,Sr)2CuO4 (shown in Fig. 1.8), but it has Tc � 1.5
K, and, more importantly, is believed to be a triplet superconductor. This
makes a theoretical investigation of Sr2RuO4 very interesting.

The formal valence of the ruthenium ion is Ru4+, i.e. there are four re-
maining electrons within the 4d shell. Similarly to LSCO, the Ru ion sits at
the center of a RuO6 octahedron, and the crystal field of the O2− ions splits
the five 4d states into threefold t2g and fourfold eg subshells. The negative
charge of O2− causes the t2g states to lie lower in energy, and the corre-
sponding xy, xz, and yz orbitals form the Fermi surface. Owing to the large
interplanar separation of the RuO6 octahedra, Sr2RuO4 has only a small en-
ergy dispersion along the c direction. Its highly planar structure leads also
to very weak hybridization between xy orbitals and the xz and yz orbitals.
Band structure calculations confirm these considerations and distribute the
four electrons equally among all three orbitals [78]. The detailed shape of the
Fermi surface has been determined from de Haas–van Alphen oscillations of
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Fig. 1.8. Structure of Sr2RuO4, which is similar to that of the high–Tc cuprate fam-
ily La2−xBaxCuO4. However, its normal and superconducting properties are quite
different from those of cuprates: they resemble more the properties of superfluid
3He, as described in the text. This is discussed in [77].

the magnetization in response to an external field and confirms the sheets of
the Fermi surface predicted by band structure calculations.

Recent studies by means of INS [79] and nuclear magnetic resonance
(NMR) [80] of the spin dynamics in Sr2RuO4 reveal the presence of strong in-
commensurate fluctuations in the RuO2 planes at the antiferromagnetic wave
vector Qi = (2π/3, 2π/3). It was found from band structure calculations [81]
that these fluctuations result from the nesting properties of the quasi-one-
dimensional dxz and dyz bands. The two–dimensional dxy band contains only
weak ferromagnetic fluctuations. In general, owing to spin–orbit coupling or
hybridization, one expects strong spin fluctuations between the RuO2 planes
in the z direction also [82, 83]. However, inelastic neutron scattering [84]
shows that the magnetic fluctuations are purely two-dimensional and origi-
nate from the RuO2 planes. Both behaviors could result as a consequence of
the magnetic anisotropy within the RuO2 planes as indeed was observed in
recent NMR experiments by Ishida et al. [85]. In particular, by analyzing the
temperature dependence of the nuclear spin–lattice relaxation rate for 17O in
the RuO2 planes at low temperatures, these authors have demonstrated that
the out–of–plane component of the spin susceptibility can become almost
three times larger than the in–plane component. This strong and unexpected
anisotropy disappears at approximately room temperature [85].

Superconductivity occurs in Sr2RuO4 only at low temperatures and in
samples with a low residual resistivity, and it occurs out of a normal state that
can be described well within Landau’s Fermi liquid theory. This is in contrast
to high–Tc cuprates. On the other hand, one may argue that Tc � 1.5 K is
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a relatively large transition temperature because the superconducting Tc for
triplet pairing in 3He is about 1 mK and thus three orders of magnitude
smaller. An important result of Landau’s Fermi liquid theory is that the
resistivity ρ at low temperatures T should follow a ρ ∝ T 2 law, which is a
consequence of electron–electron collisions. The observation of this power law
both within the RuO2 planes and perpendicular to them (but with different
prefactors, of course) clearly indicates that Fermi liquid theory is applicable.
Furthermore, measurements of the Fermi velocity by de Haas–van Alphen
experiments show that the effective mass is enhanced by a factor of 3 to 5,
which agrees with values deduced from the specific heat coefficient, which is
linear in T . This is also consistent with Landau’s Fermi liquid theory [77].

In short, many experiments have confirmed that the dominant interactions
in Sr2RuO4 are electron–electron interactions rather than the weaker inter-
actions of the electron–phonon kind. Thus, on general grounds, one would
expect that the superconductivity would turn out to be unconventional. In
general, owing to Pauli’s principle, (pairs of) fermions must have antisymmet-
ric wave functions under particle interchange. For a Cooper pair this implies
a relationship between the orbital and the spin character: orbital wave func-
tions with even values for the orbital number (l = 0, 2, . . . ), as in cuprates,
are even under particle interchange and thus are spin singlets; on the other
hand, odd values (l = 1, 3, . . . ) require spin triplets. However, specifying the
complete symmetry of the superconducting state requires more than just the
angular–momentum channel and the spin state. The possible internal motion
of the electrons (or holes) forming a Cooper pair has to be specified with re-
spect to their center–of–mass coordinate, which must be in accordance with
the underlying point group symmetry of the crystal. Note that the highly
two-dimensional character of Sr2RuO4 (and its tetragonal symmetry) sug-
gests pairing states that are mainly intraplanar rather than interplanar. This
will be discussed later in detail.

Finally, we would like to mention the main experimental evidence for spin-
triplet pairing in Sr2RuO4. The main proof comes from NMR experiments
which measure the small change of the resonance line frequency caused by
weak spin polarization of the electrons in an external applied field. In contrast
to cuprates, where Cooper pairs are not polarized at all (because they are in
a singlet state) and thus the Knight shift vanishes at low temperatures, in
Sr2RuO4 no change (within the ab plane) has been observed [87]. This is ex-
pected for a triplet superconductor with parallel spins, where the application
of a magnetic field changes only the relative numbers of spins parallel and
antiparallel to the field. Thus the Knight shift is unchanged from its value in
the normal state. Of course, these conclusions are only true for small spin–
orbit coupling, i.e. L · S coupling, which seems to be the case for Sr2RuO4.
More evidence for triplet pairing comes from the fact that the phase diagram
of the Ruddlesen–Popper series (Fig. 1.9) suggests that Sr2RuO4 is indeed
in the vicinity of a ferromagnetic transition. This, in analogy to 3He, should
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Fig. 1.9. Schematic phase diagram T (n) of the Ruddlesen–Popper series
Srn+1RunO3n+1 (after Sigrist et al. [86]). The number of layers is the parame-
ter that determines the transition from a superconducting (SC) to a ferromagnetic
(FM) state.

lead to a triplet state due to parallel spins already present in the normal
state, and to p–wave pairing [45]. However, by fitting the specific heat and
the ultrasound attenuation, Dahm et al. found reason to doubt the presence
of p–wave superconductivity [88] and have proposed an f–wave symmetry of
the superconducting order parameter. A similar conclusion has been drawn in
[89]. Recently it has been reported that thermal–conductivity measurements
are also most consistent with f–wave symmetry or with p–wave pairing within
the planes and with nodes between the planes [90]. We shall therefore discuss
later why the simple picture of p–wave pairing has to be modified strongly.

To summarize, the main questions in connection with Cooper pairing in
Sr2RuO4 are:

– How can we explain the elementary excitations in the normal state, in
particular the strong magnetic anisotropy observed in NMR experiments?
What is the role of spin–orbit coupling and hybridization between the
bands?

– How can we formulate an electronic theory for Cooper pairing in triplet
superconductors, taking into account an interplay between ferromagnetic
and strong antiferromagnetic spin fluctuations (resulting from nesting
properties)?

– What symmetry of the superconducting order parameter is present in
Sr2RuO4, if Cooper pairing due to spin excitations occurs mainly in–plane
or mainly between RuO2 planes?
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1.4 From the Crystal Structure to Electronic Properties

After we have discussed the structure and the phase diagram of high-Tc

cuprates and the main facts about triplet pairing in Sr2RuO4, the next step
is to write down a Hamiltonian and to describe the elementary excitations
with an electronic theory. Owing to the complexity of their structure, this is
difficult. Instead, we need some reasonable simplifying approximations, for
example we may construct a Hamiltonian for only a CuO2 plane or RuO2

plane. The very strong and important Cu-O–bonds in the conducting planes
of cuprates and Ru-O–bonds in ruthenates justify this approximation.

1.4.1 Comparison of Cuprates and Sr2RuO4: Three–Band
Approach

Many researchers believe that the general phase diagram for hole–doped
cuprates presented in Fig. 1.4 (and also the phase diagram for electron–
doped cuprates) can be explained within an approximation that focuses only
on one CuO2 plane. Why this is the case? As already mentioned, in the
absence of doping the cuprates can be described well by mainly localized
spin-1/2 states, which give these materials their antiferromagnetic character.
The corresponding Cu and O orbitals are schematically shown in Fig. 1.10.
The simplest microscopic model which can account for the calculated LDA
band structure consists of two filled oxygen px,y orbitals and one half–filled
dx2−y2 copper orbital. The bond lengths in the x and y directions are assumed
to be identical. The corresponding tight–binding Hamiltonian reads

H3−band
0 = εd

∑
i,σ

d†iσdiσ + εp

∑
i,σ

p†iσpiσ

+
∑
〈i,j〉σ

tijpd

(
d
†)
iσpjσ + h.c.

)
+

∑
〈i,j〉σ

tijpp

(
p†iσpjσ + h.c.

)
. (1.2)

Here, tijpd and tijpp are the corresponding hopping integrals between the orbitals
shown in Fig. 1.10, and the sums are performed over copper and oxygen lattice
positions labeled by i, where 〈i, j〉 denotes nearest–neighbor pairs, and σ is
the spin index. Note that in the hole representation, the so–called charge–
transfer gap ∆ = εp − εd is positive.

However, the key ingredient missing in (1.2) is the strong Coulomb inter-
action in the Cu 3d wave functions. Thus, double occupancy is less energet-
ically favored. A resultant Mott–Hubbard insulator was suggested early by
Emery and coworkers [91, 92], which may be treated by a three-band version
of the Hubbard Hamiltonian

H3−band = H3−band
0 +Ud

∑
i

nd
i↓n

d
i↑+Up

∑
i

np
i↓n

p
i↑+Upd

∑
<i,j>

np
i n

d
j , (1.3)
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Fig. 1.10. Cu d- and oxygen p-orbitals within a CuO2-plane. In the case of hole dop-
ing one has Zhang-Rice-like quasiparticles distributed on four oxygen sites around
an Cu-atom. In electron-doped cuprates the doped electrons are more localized
directly at the copper sites. Thus, in the electron-doped case, one finds a dilute
antiferromagnet rather than frustrated spins.

where nd
iσ = d†iσdiσ and np

iσ = p†iσpiσ are the Cu 3d and O 2p hole densities
for site i and spin σ, and np,d

i =
∑

σ np,d
iσ . Ud and Up denote the effective on–

site copper and oxygen Hubbard repulsions, and Upd refers to copper–oxygen
interactions. H3−band

0 is defined in (1.2). Owing to the relatively small extent
of the Cu 3d shell, Ud is the dominant correlation in (1.3). It can be derived
from (1.2) that, in the case of ∆ = εp − εd > 0, the first hole added to
the system will energetically prefer to occupy the d orbital of copper, while
the next hole added will mainly occupy oxygen orbitals if Ud > ∆. This is
in agreement with electron energy loss spectroscopy (EELS) experiments by
Nücker et al. [93]. Note that the values of the parameters in the Hamiltonian
(1.3) can be estimated and are found to be in reasonable agreement with
experiment [94, 95].

We would also like to mention that this three–band Hubbard Hamiltonian
describing a single Cu–hole per unit cell in the regime tpp, tdp 	 ∆ 	 Ud

(charge–transfer insulator, CTI), can be mapped onto a 2D Heisenberg model,

H = J
∑
〈i,j〉

Si · Sj − 1
4
nd

i n
d
j , (1.4)

where Si refers to the copper spin, 〈i, j〉 again runs over pairs of nearest-
neighbor copper sites, and J denotes the exchange coupling constant. J is
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Fig. 1.11. Electronic structure of Sr2RuO4. The Ru ion is in the oxidation state
Ru4+, which corresponds to a 4d4 level. In addition, the 4d level is split in the
RuO6 crystal field into the eg and t2g subshells. The latter subshell, which consists
of dxy, dxz, and dyz, crosses the Fermi level. In addition, the spin–orbit coupling
seems to play an important role and provides the mixing of the spin and orbital
degrees of freedom.

of the order of 150 meV and can be determined by two–magnon Raman
scattering, for example [13].

In the case of Sr2RuO4, it is also necessary to employ a three–band Hub-
bard Hamiltonian because three bands cross the Fermi level; see the electronic
structure of Sr2RuO4 in Fig. 1.11. Thus we start from

H = Ht + HU =
∑
k,σ

∑
l

tkla
+
k,lσak,lσ +

∑
i,l

Ulnil↑nil↓ , (1.5)

where ak,lσ is the Fourier-transformed annihilation operator for the dl or-
bital electrons (l = xy, yz, zx) and Ul is the corresponding on–site Coulomb
repulsion. tkl denotes the energy dispersions of the tight–binding bands, cal-
culated as follows: tkl = −ε0 − 2tx cos kx − 2ty cos ky + 4t′ cos kx cos ky. For
our calculations, we chose the values for the parameter set (ε0, tx, ty, t′) as
(0.5, 0.42, 0.44, 0.14), (0.23, 0.31, 0.055, 0.01), and (0.24, 0.045, 0.31, 0.01)
eV for the dxy, dzx, and dyz orbitals, respectively, in accordance with band
structure calculations [78]. The electronic properties of this model applied to
Sr2RuO4 were studied recently and were we found to be able to explain some
features of the spin excitation spectrum of Sr2RuO4 [81, 96, 97]. However,
this model fails to explain the observed magnetic anisotropy at low tempera-
tures [85] and the possible line nodes in the superconducting order parameter
below Tc. In contrast to cuprates, it is known that the spin–orbit coupling
plays an important role in the superconducting state of Sr2RuO4 [96]. This
is further confirmed by the recent observation of a large spin–orbit coupling
in the insulator Ca2RuO4 [98]. Therefore, we shall include in our theory the
spin–orbit coupling

Hso = λ
∑

i

LiSi , (1.6)
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where the angular momentum Li operates on the three t2g orbitals on the
site i. Similarly to an earlier approach [96], we shall restrict ourselves to these
three orbitals, ignoring e2g orbitals, and choose the coupling constant λ such
that the t2g states behave like an l = 1 angular–momentum representation.

To summarize, a three–band Hubbard Hamiltonian provides a reasonable
description of a CuO2 plane in cuprates and of an RuO2 plane in Sr2RuO4. In
both cases the local Coulomb correlations play an important role in describing
the electronic properties. This is because both classes of materials are in the
vicinity of a magnetic transition (as described earlier). It turns out that for
Sr2RuO4 no effective one–band approach can be applied, because all three
bands cross the Fermi level and show signs of hybridization and strong spin–
orbit coupling. On the other hand, for cuprate superconductors, an effective
one-band theory is possible.

1.4.2 Effective Theory for Cuprates: One–Band Approach

Because a three-band Hamiltonian is difficult to solve, it is desirable to reduce
it to a simpler model. It is generally believed that this is indeed possible for
cuprate superconductors. Zhang and Rice [99] analyzed hole-doped cuprates
and made progress in this direction by combining a Cu hole with an added
hole (nearly on oxygen sites) to form a new spin singlet state and have shown
that it is possible to work within this singlet subspace without changing the
physics of the problem. In their description, the hole originally located at the
oxygen has been replaced by a new (spin singlet) state at the copper. Thus,
in this analysis, oxygen atoms are no longer present in an effective theory.
Note this is not equivalent to simply removing one Cu spin–1/2 state, because
frustration of spins is also induced owing to doping of holes on oxygen sites.
A removal of one Cu spin–1/2 state takes place only in the case of electron–
doped cuprates, where the additional electron goes directly on the copper
site, yielding a dilute antiferromagnet.

The analysis of Zhang and Rice leads to the so–called t–J model (origi-
nally introduced by Anderson [100]),

H = J
∑
〈i,j〉

[
Si · Sj − 1

4
nd

i n
d
j

]

− t
∑
〈i,j〉σ

[
c†iσ (1 − ni−σ) (1 − nj−σ) cjσ + h.c.

]
, (1.7)

or to an effective one–band Hubbard model,

H = −t
nn∑

〈i,j〉σ

(
c†iσcjσ + h.c.

)
− t′

nnn∑
〈i,j〉σ

(cjσ + h.c.) + U
∑

i

ni↑ni↓ , (1.8)

which is the main model that we shall use for cuprates in this book. Here, as
usual, c†iσ is a fermionic operator that creates an electron or hole at site i with



1.4 From the Crystal Structure to Electronic Properties 23

spin σ on a square lattice, and U denotes the effective Coulomb repulsion.
niσ = c†iσciσ is the density for spin σ. In addition to the usual hopping in-
tegral t describing nearest neighbors, we add also a second–nearest–neighbor
hopping integral t′. The sums 〈i, j〉 are performed taking second–nearest–
neighbors into account in this way.

Simply speaking, the one–band Hubbard model tries to mimic the pres-
ence of the charge-transfer gap ∆ by means of an effective value of the
Coulomb repulsion U . Thus, in the case of hole doping, the oxygen band
becomes the lower band of the model. Note that in the strong–coupling limit
it can be shown that the Hubbard model reduces to the t–J model. However,
during this procedure, additional terms such as −(1/4)nd

i n
d
j appear spon-

taneously, which have not received much attention, and their importance is
unclear. Usually, they are excluded from numerical studies.

In short, we believe that the one–band Hubbard model is more than just
an appropriate starting point for building up an electronic theory of Cooper
pairing within a CuO2 plane. The main ingredients are present in this model:
kinetic energy vs. potential energy, a strong repulsive (mainly on-site) inter-
action describing the physics in the vicinity of a Mott–Hubbard transition,
and also itinerant carriers, which are experimentally observed in the CuO2

planes and which can easily condense into Cooper pairs below Tc.
In order to obtain a unified theory for both hole–doped and electron–

doped cuprates, it is tempting to use the same Hubbard Hamiltonian, taking
into account, of course the different dispersions for the carriers [101]. As
mentioned above, in the case of electron doping the electrons occupy cop-
per d–like states of the upper Hubbard band, while the holes are related to
oxygen–like p states, yielding different energy dispersions, which we shall use
in our calculations. Then, assuming similar itinerancy of the electrons and
holes, the mapping onto an effective one–band model seems to be justified.
We consider U as an effective Coulomb interaction. Throughout this article
we shall work within the grand canonical limit, with a chemical potential µ
describing the band filling. The parameters t and t′ will be employed to de-
scribe the normal–state energy dispersion measured in ARPES experiments,
and a rigid–band approximation for all doping concentrations is assumed.
This will be discussed in Chap. 2.

1.4.3 Spin Fluctuation Mechanism for Superconductivity

Before we illustrate how singlet pairing in high-Tc cuprates and triplet pair-
ing in Sr2RuO4 are possible, let us remind the reader of some generalities. In
connection with the general phase diagram for hole–doped cuprates, Fig. 1.4,
we have discussed the occurrence of (mainly antiferromagnetic) spin fluctua-
tions in the paramagnetic metallic state above Tc. These excitations can be
measured in INS experiments, for example [43]. However, they do not appear
as an additional excitation in the Hubbard Hamiltonian. Instead, these spin
excitations are generated by itinerant carriers in the system and are mainly



24 1 Introduction

of two–dimensional character, and thus are more robust than the long-range
3D Néel state. To study fluctuations in the paramagnetic state beyond the
mean-field level it is convenient to employ the random–phase approximation
(RPA). In particular, the spin-wave-like excitations can be obtained from the
retarded transverse spin susceptibility

χ+−(q,q′, t) = iΘ(t)
〈[

S+
q (t), S−

q′(0)
]〉

. (1.9)

A similar expression holds for the longitudinal spin susceptibility χzz . The
RPA result for the transverse spin susceptibility then reads [102]

χ+−
RPA(q,q′, z) =

∑
q′′

χ0(q,q′′, z) [1 − Uχ0(q′′,q′, z)] , (1.10)

where χ0 refers to the Lindhard function and has to be calculated from the
single-particle Green’s function G (and thus from the elementary excitations)
of the system using the Hubbard Hamiltonian. z denotes a complex frequency.
Note that G can also be simply related to the sublattice magnetization. Thus,
we shall assume in the following that an effective perturbation series for the
description of spin fluctuations is valid, and we shall sum the corresponding
ladder and bubble diagrams up to infinite order at the RPA level. This pro-
cedure, for both singlet and triplet Cooper pairing, will be discussed in detail
in the next chapter.

Next, we want to define the term “unconventional” and to investigate how
a transition temperature Tc of the order of 100 K for hole–doped cuprates
might occur as a result of a purely electronic (i.e. repulsive) mechanism. For
this purpose, let us consider the simplified weak–coupling gap equation for
singlet pairing (T = 0),

∆(k) = −
∑
k′

V eff
s (k − k′)

2E(k′)
∆(k′) , (1.11)

which is a self–consistency equation for the superconducting order param-
eter ∆(k) in momentum space, where k is defined in the first Brillouin
zone. V eff

s (k − k′) represents the effective two–particle pairing interaction
in the singlet channel and is, to a good approximation, proportional to
χRPA if Cooper pairing due to spin fluctuations is present. The energy
E(k) =

√
∆2(k) + ε2(k) corresponds to the dispersion relation of the Bogoli-

ubov quasiparticles (i.e. the Cooper pairs), where ε(k) denotes the dispersion
of the electrons in the normal state. In the BCS theory, V eff

s < 0 is taken as
a constant and therefore one obtains a solution for ∆(k) of (1.11) which is
structureless in momentum space.2

2 Of course, owing to retardation effects, the summation in (1.11) runs over an
energy shell of order ωD; however, the arguments given above remain valid if one
integrates over the whole Brillouin zone.
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Fig. 1.12. Fermi surface of the one-band Hubbard model close to half-filling, for a
square Brillouin zone. The nesting vector Q connects different parts of the Fermi
surface where the dx2−y2 -wave order parameter has opposite sign. Thus the gap
equation can be solved for a repulsive pairing potential. Along the diagonal lines,
the corresponding gap has nodes (i.e. ∆(k) vanishes).

Let us now investigate the case of singlet pairing and how it is possi-
ble to solve (1.11) with a repulsive pairing potential. Owing to the fact that
V eff

s > 0, one might naively think that there exists no solution; however,
this is wrong. If one takes into account that V eff

s (k − k′) might have a
strong momentum dependence, it is easily seen that indeed the gap equation
has a solution. This can be recognized from Fig. 1.12, where we show the
first Brillouin zone and a Fermi surface which corresponds to the half–filled
case of the two-dimensional one–band Hubbard model. This Fermi surface
in fact resembles the measured Fermi surface for the high–Tc superconductor
La2−xSrxCuO4. For simplicity, we assume also an underlying tetragonal sym-
metry of the crystal. In order to illustrate the following argument, a possible
superconducting order parameter (dx2−y2–wave symmetry, with positive and
negative signs) is also displayed. If one now assumes that the effective pairing
interaction has a strong momentum dependence, for example a large peak at
the antiferromagnetic wave vector qAF = Q = (π, π), V eff

s (k− k′) connects
different parts of the Fermi surface where the order parameter has opposite
signs! Thus, one indeed finds a solution of equation (1.11). The simplest solu-
tion is the dx2−y2–wave gap (∆(k) = ∆0 [cos kx − cos ky] /2), which has nodes
along the diagonals. Note, however, that for an effective pairing interaction
which was structureless in momentum space, such a solution of the gap equa-
tion for a d–wave order parameter would not be possible. In fact, an order
parameter which belonged to an anisotropic s–wave representation (possi-
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bly with nodes) would not satisfy the pairing condition mentioned above
either. In order to solve (1.11) for a pairing interaction which is peaked at
(π, π), one definitely needs an order parameter that changes sign. Therefore,
we see that the superconducting gap has less symmetry than the underly-
ing Fermi surface. In such a situation where, in addition to a broken gauge
(U(1)) invariance due to the occurrence of superconductivity, a further sym-
metry is broken (in our case invariance under a rotation of 90 degrees), we
define the situation as “unconventional”. Notice that this definition implies
neither an electronic pairing mechanism nor a correspondingly large value
of Tc. Finally, let us briefly mention that the arguments, given above are
weak-coupling arguments which may be reformulated in the strong–coupling
limit of the pairing process. However, it will turn out that, although lifetime
effects of the electrons will lead to a renormalization of the quasiparticles,
the weak-coupling arguments given above remain valid.

In the case of triplet pairing, one has to solve the corresponding gap
equation

∆(k) = −
∑
k′

V eff
t (k − k′)

2E(k′)
∆(k′) , (1.12)

where V eff
t (k − k′) denotes the effective two–particle pairing interaction in

the triplet channel. Most importantly, Pauli’s principle requires that V eff
t <

0, i.e. an attractive pairing interaction in momentum space. This is in analogy
to phonons, where the minus sign in front of the right-hand side of (1.12) is
also canceled, which makes a solution of the gap equation relatively easy. In
particular, if the transferred momentum q = k − k′ is small, one obtains a
p–wave symmetry of the superconducting order parameter, for example

∆p(k) = ∆0(sin kx + i sinky) . (1.13)

Note that the condition q ≈ 0 is indeed fulfilled in the case of superfluid 3He,
which it is close to a ferromagnetic transition. Simply speaking, a similar
situation is present in the case of Sr2RuO4 (see its phase diagram in Fig. 1.9),
which makes p–wave symmetry the most probable candidate for the order
parameter.

In order to investigate triplet pairing in Sr2RuO4 in more detail, we show
in Fig. 1.13 its corresponding Fermi surface topology, obtained using the
three–band Hubbard Hamiltonian discussed earlier in this chapter. However,
for simplicity, we discuss here only the γ–band (which has a high density of
states). Of course, the other bands (α and β) and their consequences will be
analyzed in detail later. For the moment and for simplicity, let us discuss only
the γ-band in order to discriminate between Sr2RuO4 and cuprates. A closer
inspection of (1.13) shows that |∆p|2 has no nodes; however, Re ∆p (and
also Im ∆p) has a nodal line also displayed in Fig. 1.13. This has important
consequences if nesting is present: the summation over k′ in the first BZ
is dominated by the contributions due to Qpair and those due to a smaller
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Fig. 1.13. Calculated Fermi surface (FS) topology for Sr2RuO4 and symmetry
analysis of the superconducting order parameter ∆. The real part of the p–wave
order parameter has a node along kx = 0. The plus and minus signs and the dashed
lines refer to the sign of the momentum dependence of ∆. α, β, and γ denote the
FS of the corresponding (hybridized) bands.

wave vector qpair . Thus, we obtain approximately the following for the γ–
band contribution (l = f or p):

∆l(k) ≈
∑

i

V eff
t (Qi)
2εγ

k+Qi

∆l(k + Qi) +
∑

i

V eff
t (qi)
2εγ

k+qi

∆l(k + qi) , (1.14)

where the sum is over all contributions due to Qi and qpair . The wave vectors
Qpair bridge portions of the FS where Re ∆p has opposite signs. Because the
smaller wave vector qpair bridges areas on the Fermi surface with both the
same sign and opposite signs, its total contribution is almost zero, i.e.

∑
i

V eff
t (qi)
2εγ

k+qi

∆l(k + qi) ≈ 0 . (1.15)

Thus, we find a gap equation where ∆l is expected to change its sign for
an attractive interaction. This is not possible! In other words, if the corre-
sponding pairing interaction were to have nesting properties similar to those
of cuprates, i.e. a peak of χRPA at q ≈ Qpair, Cooper pairing and a solution
of (1.13) would not be possible, because V eff

t < 0. In this case, the nesting
properties would suppress a p–wave and favor an f–wave, i.e.

∆f (k) = ∆0(cos kx − cos ky)(sin kx + i sinky) . (1.16)

Like the dx2−y2–wave order parameter in cuprates, the f–wave symmetry
also has nodes along the diagonals.

To summarize this subsection, we have demonstrated on general grounds
that, if Cooper pairing via spin fluctuations is present, the underlying Fermi
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surface topology plays an important role. In particular, for singlet pairing
one expects a dx2−y2-wave order parameter if nesting properties are present.
Without nesting, one expects no solution for a repulsive pairing interaction.
In the case of (attractive) triplet pairing, no nesting properties are needed and
p–wave symmetry of the superconducting order parameter occurs naturally if
the pairing is dominated by nearly ferromagnetic spin fluctuations. However,
if strong nesting is present, p–wave symmetry is suppressed and an order
parameter with f–wave symmetry is possible. We shall see later in this book
that the symmetry of the superconducting order parameter calculated from
a microscopic electronic theory indeed follows these general arguments.
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2 Theory of Cooper Pairing

Due to Exchange of Spin Fluctuations

2.1 Generalized Eliashberg Equations for Cuprates
and Strontium Ruthenate

It is of general interest whether singlet high-Tc superconductivity in the
hole- and electron-doped cuprates and triplet pairing in strontium ruthen-
ate (Sr2RuO4) can be explained by use of generalized Eliashberg equations
describing the exchange of magnetic degrees of freedom as the relevant pair-
ing mechanism. As pointed out in the preceding chapter, for the description
of superconductivity in cuprates, the two-dimensional (one-band) Hubbard
model should be an appropriate starting point because superconductivity oc-
curs in the vicinity of an antiferromagnetic phase transition. The Hubbard
model reads, on a tetragonal lattice and in second quantization,

H = −
∑
〈ij〉σ

tij

(
c†iσcjσ + c†jσciσ

)
+ U

∑
i

ni↑ni↓ − µt
∑
iσ

niσ. (2.1)

Here, c†iσ and ciσ create and annihilate an electron or hole on site i with spin
σ, tij denotes the hopping matrix element, and the sum 〈ij〉 is performed
over nearest neighbors. In this case, tij is equal to t. U corresponds to the
intra-orbital (i.e. on-site) effective Coulomb repulsion, niσ = c†iσciσ, and µ
denotes the chemical potential. Thus the model can be characterized by two
dimensionless parameters, U/t and µ.

Using Bloch wave functions, one arrives at

H =
∑
kσ

εkc
†
kσckσ +

U

2N

∑
kk′qσ

c†kσc
†
k′,−σck′+q,−σck−q,σ, (2.2)

where the one-band electron (or hole) energy is

εk = −2t
[
cos(kx) + cos(ky) +

µ

2

]
(2.3)

or
εk = −2t

[
cos(kx) + cos(ky) − 2t′ cos(kx) cos(ky) +

µ

2

]
, (2.4)

for nearest-neighbor or next-nearest-neighbor hopping (described by tt′), re-
spectively. N denotes the number of lattice points. Here and in the follow-
ing, we set the lattice constant to unity. In order to obtain a unified theory

c© Springer-Verlag Berlin Heidelberg 2004
D. Manske: Theory of Unconventional Superconductors, STMP 202, 33–97 (2004)
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Fig. 2.1. Results for the energy dispersion εk of optimally hole-doped
La1.85Sr0.15CuO4 (LSCO, dashed curve) and of optimally electron-doped
Nd1.85Ce0.15CuO4 (NCCO). The dashed curve corresponds to using t = 250 meV
and t′ = 0, and is typical of hole-doped cuprates. The solid curve refers to our
tight-binding calculation, choosing t = 138 meV and t′ = 0.3. Data (open circles)
are taken from [5].

for both hole-doped and electron-doped cuprates, we use the same Hubbard
Hamiltonian, taking into account the different dispersions of the carriers.
Experiments have shown that in the case of electron doping the electrons
occupy the copper d-like states of the upper Hubbard band, while the holes
are related to oxygen-like p states, yielding different energy dispersions. For
an improved view, one should employ a three-band p–d model [1, 2] and use
a generalized tight-binding method for determining the hopping parameters
[3]. However, it turns out, for a wide range of doping that it is sufficient to
use effective parameters for the band dispersion [4].

As an example, we show in Fig. 2.1 the energy dispersions for optimally
hole-doped La2−xSrxCuO4 (LSCO) and electron-doped Nd1.85Ce0.15CuO4

(NCCO). Using t = 250 meV, (2.3) describes the Fermi surface of LSCO,
whereas t = 138 meV and t′ = 0.3 in (2.4) correspond to NCCO. One im-
mediately sees the important difference: in the case of NCCO, the flat part
of the quasiparticle band is approximately 300 meV below the Fermi level,
whereas for the hole-doped case the flat band lies very close to the Fermi
level. Thus, as will be discussed later, by using the resulting εk in a theory of
spin-fluctuation-induced pairing, we obtain a smaller Tc for electron-doped
cuprates than for the hole-doped ones.

With the help of the Heisenberg picture, i.e.

ckσ(τ) ≡ eτH ckσ e
−τH (2.5)

and
c̄kσ(τ) ≡ eτH c†kσ e

−τH , (2.6)
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where τ corresponds to an imaginary time, we define the one-particle Green’s
functions as

Gαβ(k, τ) = −〈Tτ ckα(τ)c†kβ〉
Ḡαβ(k, τ) = −〈Tτ c̄−kα(τ)c−kβ〉
Fαβ(k, τ) = −〈Tτ ckα(τ)c−kβ〉
F̄αβ(k, τ) = −〈Tτ c̄−kα(τ)c†kβ〉 . (2.7)

Here, Tτ is the time-ordering operator:

Tτ ψ(τ1)φ(τ2) = ψ(τ1)φ(τ2) for τ1 > τ2 ,

Tτ ψ(τ1)φ(τ2) = ±φ(τ2)φ(ψ1) for τ1 < τ2 , (2.8)

and

〈A〉 =
Tr
[
e−βHA

]
Tr [e−βH ]

. (2.9)

The plus and minus signs apply for boson and fermion operators, respectively,
Tr denotes the trace, and β = (kBT )−1 is the inverse temperature.

Throughout this book we use mainly the FLuctuatuation EXchange
(FLEX) [6, 7, 8, 9, 10, 11, 12, 13] or T -matrix [14] approximation for the
dressed one-particle Green’s functions which will solve the generalized Eliash-
berg equations. The physical idea is that these dressed Green’s functions are
used to calculate the charge and spin susceptibilities in the paramagnetic
(metallic) regime, where superconductivity occurs in the cuprates. These sus-
ceptibilities are used to construct a Berk Schrieffer-like [15] pairing interac-
tion describing the exchange of charge and spin fluctuations. In particular,
within this approach, the itinerant character of the quasiparticles is taken
into account. Perturbation theory graphs for the exchange of longitudinal
and transverse spin fluctuations are shown in Fig. 2.2. This gives rise to an
effective electron electron interaction [15]

Γ1 = V eff =
U2χ0(q′ + q)

1 − Uχ0(q′ + q)
+

U3χ2
0(q

′ − q)
1 − U2χ2

0(q′ − q)
. (2.10)

Note that a self-consistent treatment of the quasiparticles and the pairing
interaction is essential and is required because the electrons or holes not only
condense into Cooper pairs but also provide the pairing interaction. This is
in contrast to a phonon-mediated pairing interaction within standard BCS
and Eliashberg theory, where the feedback of the pairing interaction on the
spectral function of the electrons is, according to Migdal’s theorem [16, 17],
very small. Details of the numerical procedure can be found in Appendix A.

In the case of high-Tc cuprates, the corresponding self-energy reads

ΣG(k, iωn) =
1
βN

∑
k′iω′

n

[
1
2
U2 χc0(q, iνm)

1 + Uχc0(q, iνm)
+

3
2
U2 χs0(q, iνm)

1 − Uχs0(q, iνm)

+ U2χG(q, iνm)
]
G(k′, iω′

n) (2.11)
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Fig. 2.2. Particle particle channel of the Bethe Salpeter equation for supercon-
ductivity, containing RPA diagrams for the effective pairing interaction V eff for
singlet pairing in cuprates consisting of the exchange of longitudinal and transverse
spin fluctuations. The solid lines refer to G and the dashed lines denote the ef-
fective Coulomb interaction U . Vertex corrections that would yield a renormalized
coupling strength Ueff are neglected. The summation of the corresponding bubble
and ladder diagrams is performed up to infinity. While in principle it is possible to
treat Veff{χ} and G(k, ω) on different levels, we assume that both quantities are
generated by the same itinerant quasiparticles.

and

ΣF (k, iωn) = − 1
βN

∑
k′iω′

n

[
1
2
U2 χc0(q, iνm)

1 + Uχc0(q, iνm)
− 3

2
U2 χs0(q, iνm)

1 − Uχs0(q, iνm)

− U2χF (q, iνm)
]
G(k′, iω′

n) (2.12)

where iνm = iωn − iω′
n. The term U2χG,F on the right-hand side compen-

sates double counting that occurs in the second order. ΣG and ΣF denote
the normal and superconducting parts, respectively, of the self-energy [14].
χc0 and χs0 correspond to the irreducible charge and spin susceptibilities,
respectively, and are given by

χc0(q, iνm) = − 1
βN

∑
kiωn

[G(k + q, iωn + iνm)G(k, iωn)

− F (k + q, iωn + iνm)F †(−k, iωn)
]

≡ χG(q, iνm) − χF (q, iνm) (2.13)

and
χs0(q, iνm) ≡ χG(q, iνm) + χF (q, iνm) . (2.14)

In the Nambu notation [18], the one-particle Green’s function is a 2×2-matrix

Ĝ(k, iωn) =
∫ β

0

dτ eiωnτ Ĝ(k, τ) , (2.15)

where
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Ĝ(k, τ) = −〈Tτ ψk(τ)ψ†
k(0)〉 (2.16)

and

ψk(τ) =
(
ck↑(τ)
c†−k↓(τ)

)
. (2.17)

In order to obtain the renormalized single-particle Green’s function, we solve
the Dyson equation

Ĝ−1 = Ĝ−1
0 − Σ̂ , (2.18)

which relates the matrix representing the bare propagator Ĝ0 and its renor-
malization due to the sum of all irreducible self-energy diagrams Σ̂ to the
dressed propagator Ĝ. The Dyson equation reads in Nambu space

Ĝ−1 =
(
G−1

0 −ΣG −ΣF

−Σ̄F Ḡ−1
0 − Σ̄G

)
, (2.19)

where the inverse bare propagator is given by Ĝ−1
0 = iωn − εk. Because ReΣ

is symmetric and ImΣ is antisymmetric with respect to iωn, it is possible to
make the following ansatz:

ΣG(k, iωn) = iωn [1 − Z(k, iωn)] + ξ(k, iωn) (2.20)

ΣF (k, iωn) = φ(k, iωn) , (2.21)

where Z and ξ are real and also symmetric with respect to iωn. Z describes
the renormalization of the quasiparticle mass and ξ corresponds to the renor-
malization of the bare band energy εk. This will be discussed later in detail.
φ(k, iωn) = Z(k, iωn)∆(k, iωn) denotes the strong-coupling superconducting
gap function. Note that if one chooses the phase α between the anomalous
Green’s functions in

F (k, iωn) = e2iαF ∗(k,−iωn) (2.22)

to be equal to zero, no equation for φ̄(k, iωn) occurs. With the help of (2.20)
and (2.21), we are now able to write down the diagonal and off-diagonal parts
of the one-particle Green’s function [19]:

G(k, iωn) =
iωnZ(k, iωn) + εk + ξ(k, iωn)

(iωnZ(k, iωn))2 − (εk + ξ(k, iωn))2 − φ2(k, iωn)
(2.23)

and

F (k, iωn) =
φ(k, iωn)

(iωnZ(k, iωn))2 − (εk + ξ(k, iωn))2 − φ2(k, iωn)
. (2.24)

Because we want to solve the generalized Eliashberg equations on the real
ω axis rather than on the Matsubara points on the imaginary axis, we use
now the spectral representation of the one-particle Green’s function
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G(k, iωn) =
∫ ∞

−∞
dω

N(k, ω)
iωn − ω

(2.25)

and

F (k, iωn) =
∫ ∞

−∞
dω

A1(k, ω)
iωn − ω

. (2.26)

Inserting (2.25) and (2.26) into (2.13) and (2.14), and performing the sum
over the Matsubara frequencies [20], we arrive at

Imχs0,c0(q, ω) =
π

N

∫ ∞

−∞
dω′ [f(ω′) − f(ω′ + ω)]

×
∑
k

[N(k + q, ω′ + ω)N(k, ω′) ±A1(k + q, ω′ + ω)A1(k, ω′)] , (2.27)

where f denotes the Fermi distribution function. Thus we arrive at the follow-
ing set of equations for the quasiparticle self-energy components Xν (ν = 0,
3, 1) with respect to the Pauli matrices τν in the Nambu representation,
which are usually called generalized Eliashberg equations, which one has to
solve self-consistently:

Xν(k, ω) =
∑
k′

∫ ∞

0

dΩ [Ps(k − k′, Ω) + (δν0 + δν3 − δν1)Pc(k − k′, Ω)]

×
∫ ∞

−∞
dω′ I(ω,Ω, ω′)Aν(k′, ω′) , (2.28)

where X0 = ω(1 − Z) (renormalization), X3 = ξ (energy shift), and X1 = φ
(gap parameter). The kernel I and the spectral functions Aν are given by

I(ω,Ω, ω′) =
f(−ω′) + b(Ω)
ω + iδ −Ω − ω′ +

f(ω′) + b(Ω)
ω + iδ +Ω − ω′ , (2.29)

Aν(k, ω) = −π−1 Im [aν(k, ω)/D(k, ω)] ,

and
D = [ωZ]2 − [ε(k) + ξ]2 − φ2 ,

a0 = ωZ, a3 = ε(k) + ξ, a1 = φ . (2.30)

Here, b denotes the Bose distribution function. The band filling n =
∑

k nk

is determined with the help of the k-dependent occupation number nk =
2
∫∞
−∞ dωf(ω)A(k, ω), which is calculated self-consistently. n = 1 corre-

sponds to half filling. The spin and charge fluctuation interactions are given
by

Ps = (2π)−1
U2 Im (3χs − χs0) , χs = χs0 (1 − Uχs0)

−1 (2.31)

and
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Fig. 2.3. Calculated dynamical spin susceptibility Imχ(Q, ω) at a temperature
T = 2Tc for different doping concentrations: x = 0.12 (underdoped), x = 0.15
(optimal doping), x = 0.18, and x = 0.22 (overdoped).

Pc = (2π)−1 U2 Im (3χc − χc0) , , χs = χc0 (1 + Uχc0)
−1 . (2.32)

Here, we use N(k, ω) = A(k, ω) = A0(k, ω) + A3(k, ω). For an illustration,
we show in Fig. 2.3 the calculated dynamical spin susceptibility for various
doping concentrations. The real parts were calculated with the help of the
Kramers–Kronig relation. Note that the subtracted terms in (2.31) and (2.32)
remove a double counting that occurs in the second order. The method of
solution of (2.28)–(2.32) is described in Appendix A.

Before we extend our theory to include effects of Cooper pairs and am-
plitude fluctuations, let us briefly discuss the solutions of the generalized
Eliashberg equations (2.28)–(2.32) derived so far. For this purpose it is in-
structive to calculate all characteristic temperature scales (i.e. Tc(x), T ∗(x),
and T ∗

c (x)) for hole-doped cuprates as a function of the doping concentra-
tion x.

In Fig. 2.4, we present our results for the mean-field (i.e. without Cooper
pair phase and amplitude fluctuations) phase diagram T (x) obtained by solv-
ing (2.28)–(2.32) self-consistently on the real frequency axis. A bandwidth
of W = 8t = 2 eV was assumed. Below a characteristic temperature T ∗,
the so-called weak pseudogap temperature, we find a reduction of spectral
weight in the density of states N(ω = 0), which is shown in the inset for
x = 0.15. Such a behavior is seen experimentally in various superconductor–
insulator–superconductor (SIS) and superdonductor–insulator–normal metal
(SIN) tunneling data, in reflectivity measurements and in the two-magnon
response in Raman scattering [22, 23]. Physically speaking, below T ∗ the
electrons at the Fermi level scatter inelastically from antiferromagnetic spin
fluctuations. However, the calculated size of the pseudogap is too small in
comparison with experiment. Furthermore, there exists no pseudogap in the
calculated k-dependent spectral function N(k, ω). In order to solve this prob-
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Fig. 2.4. Results for the 2D one-band Hubbard model for hole-doped cuprates
without Cooper pair phase and amplitude fluctuations, for various hole doping con-
centrations x = 1 − n and with an on-site Coulomb repulsion U = 4t, where t is
the nearest neighbor hopping integral. Below the weak pseudogap temperature T ∗

(dashed line) one finds a reduction of spectral weight in the density of states at
ω = 0 (see inset). T ∗

c (solid line) denotes the superconducting transition temper-
ature, neglecting Cooper pair phase fluctuations. The dotted line corresponds to a
phenomenological fit to experimental data [21]. Inset: density of states N(ω) in units
of 1/t for doping x = 0.15 at temperatures T = 4.5T ∗

c (solid line), T = 2.3T ∗
c ≡ T ∗

(dashed line), and T = 1.01T ∗
c (dotted line).

lem one has to extend the FLEX approximation by the inclusion of a d-wave
pseudogap, which is observed experimentally. The resulting equations will be
presented in the next section. However, the origin of the pseudogap is still
unknown.

At T ∗
c the largest eigenvalue of the linearized gap equation reaches unity;

in other words, we find an off-diagonal self-energy contribution due to the
formation of Cooper pairs. A similar behavior of this instability was found
in [8, 11]. Below T ∗

c , we find a dx2−y2-wave order parameter. Note that in
an isotropic system, the 2D long-range order would be destroyed owing to
phase fluctuations [24, 25]. Therefore, this temperature T ∗

c is a mean-field
transition temperature in the sense that Cooper pair phase fluctuations have
been neglected. However, the antiferromagnetic fluctuations are treated well
beyond the mean-field level. Owing to our self-consistent treatment of the
self-energy described in Appendix A, we never reach the antiferromagnetic
phase transition in our calculations, where perturbation theory would no
longer be valid.

In Fig. 2.4, we also compare our results for T ∗
c with the generalized ex-

perimental phase diagram T exp
c (x) that describes many hole-doped high-Tc

superconductors, as pointed out by Tallon [21] and discussed in the previous
chapter. One can clearly see that T ∗

c agrees with experiment in the overdoped
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Fig. 2.5. Results for the energies εi
k of the hybridized bands (i = α, β, γ) in

Sr2RuO4.

region, whereas in the underdoped region T ∗
c and T exp

c obviously disagree. We
shall see in the next subsection that this discrepancy can be resolved if phase
fluctuations of the Cooper pairs are taken into account. Finally, we would
like to mention that T ∗ and T ∗

c coincide at x = x∗ = 0.19. This suggests that
for x > x∗, magnetic degrees of freedom do not play a dominant role in the
one-particle spectral function, yielding Fermi-liquid-like properties although
spin fluctuations still mediate the pairing interaction.

Let us now turn to the case of triplet Cooper pairing in Sr2RuO4. As
mentioned in the Introduction, Sr2RuO4 is a layered system and there are
three Ru4+ t2g bands that cross the Fermi level, with approximately two-
thirds filling of every band. Thus, in contrast to the situation for cuprates,
this makes it difficult to employ an effective one-band Hamiltonian. Therefore
we start from the two-dimensional three-band Hubbard Hamiltonian

H =
∑
k,σ

∑
α

tkαa
+
k,ασak,ασ +

∑
i,α

Uα niα↑niα↓ , (2.33)

where ak,ασ is the Fourier transform of the annihilation operator for the dα

orbital electrons (α = xy, yz, zx) and Uα is an effective on-site Coulomb
repulsion. tkα denotes the energy dispersions of the tight-binding bands,

tkα = −ε0 − 2tx cos kx − 2ty cos ky + 4t′ cos kx cos ky . (2.34)

In accordance with experimental measurements of the Fermi surface and en-
ergy dispersions, we have choosen the values for the parameter set (ε0, tx, ty, t′)
as (0.5, 0.42, 0.44, 0.14), (0.23, 0.31, 0.055, 0.01), and (0.24, 0.045, 0.31, 0.01)
eV for dxy, dzx, and dyz orbitals [26]. An analysis of de Haas–van Alphen ex-
periments [27] shows a substantial hybridization (or spin–orbit coupling) be-
tween xz- and yz- orbitals of about t⊥ = 0.1 eV, but not with the xy-orbital
[28]. However, the observation of a single Tc implies a coupling between all
three bands. Therefore, we have choosen a weak hybridization thyb = 0.01 eV
(hybridization between xy orbitals and xz, yz) � t⊥. Note that even such
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a weak hybridization transfers the nesting properties to the xy orbital. This
will be discussed later in detail.

For a comparison with cuprates, we show in Fig. 2.5 the resultant energy
dispersions of the hole-like α-band and electron-like β- and γ-bands obtained
after hybridization. Owing to the small value of the hybridization between
the xy orbitals and the yz and xz orbitals, the dispersion curves and resulting
Fermi surface look quite similar to the nonhybridized ones [29]. However, the
hybridization between these orbitals is important for the spin susceptibility
χ(q, ω). This susceptibility is given by

χij
0 (q, ω) =

1
N

∑
k

f(εik,γ) − f(εjk+q,γ)

εik+q,γ − εjk,γ + ω + i0+
, (2.35)

where f(ε) is the Fermi function and εik is the energy dispersion of the α, β,
and γ band.1

In order to obtain an effective spin response of Sr2RuO4, we employ the
random-phase approximation and diagonalize the matrix [χij

0 ], which leads
to

χ(q, ω) =
χ0(q, ω)

1 − U(q)χ0(q, ω)
, (2.36)

where now
χ0(q, ω) =

∑
i′
χi′

0 (q, ω) . (2.37)

Here, χi′
0 (q, ω) (i′ = α′, β′, γ′) are the diagonal elements of the diagonal-

ized matrix [χij
0 ] and U(q) is an effective Coulomb interaction. The effec-

tive susceptibility χ(q, ω) obtained characterizes the normal–state magnetic
properties of Sr2RuO4. As we shall discuss later, the spin fluctuations of
this material have peaks at wave vectors Qi and qi, which are important for
determining the symmetry of the superconducting order parameter.

The electronic properties of this model applied to Sr2RuO4 were studied
recently and can explain some features of the spin excitation spectrum in
Sr2RuO4 [30, 31, 28]. However, this model fails to explain the observed mag-
netic anisotropy at low temperatures measured in NMR experiments [32].
On the other hand, it is known that the spin–orbit coupling plays an im-
portant role in the superconducting state of Sr2RuO4 [31]. This is further
confirmed by the recent observation of a large spin–orbit coupling in the
insulator Ca2RuO4 [33]. Therefore, we include in our theory spin–orbit cou-
pling:

Hso = λ
∑

i

Li · Si , (2.38)

1 We include also the matrix element for the spin susceptibility χij
0 , taken to be 1

between two states which have the same maximal character and 0 otherwise, in
accordance with [30].



2.1 Generalized Eliashberg Equations for Cuprates and Strontium Ruthenate 43

where the angular momentum Li operates on the three t2g orbitals on the
site i. Similarly to an earlier approach [31], we restrict ourselves to these
three orbitals, ignoring e2g orbitals, and choose the coupling constant λ such
that the t2g states behave like an l = 1 angular–momentum representation.
Moreover, it is known that the quasi-two-dimensional xy band is separated
from the quasi-one-dimensional xz and yz bands. In this case, one expects
that the effect of spin–orbit coupling will be small and it be excluded for
simplicity. Therefore, we consider the effect of the spin–orbit coupling on xz
and yz bands only. The kinetic part of the Hamiltonian Ht + Hso can then
be diagonalized, and the new energy dispersions are

εσk,yz = (tk,yz + tk,xz +Ak)/2 ,

εσk,xz = (tk,yz + tk,xz −Ak)/2 , (2.39)

where Ak =
√

(tk,yz − tk,xz)2 + λ2, and σ refers to spin projection. One
can clearly see that the spin–orbit coupling does not remove the Kramers
degeneracy of the spins. Therefore, the resultant Fermi surface consists of
three sheets, as observed in the experiments. Most importantly, spin–orbit
coupling together with (2.33) leads to a new quasiparticle, which we label
by pseudo-spin and pseudo-orbital indices. The unitary transformation Ũk

connecting theold and new quasiparticles is defined for each wave vector and
leads to the following relations:

c+k,yz+ = u1ka
+
k,yz+ − iv1ka

+
k,xz+ ,

c+k,xz+ = u2ka
+
k,yz+ − iv2ka

+
k,xz+ ,

c+k,yz− = u1ka
+
k,yz− + iv1ka

+
k,xz− ,

c+k,xz− = u2ka
+
k,yz− + iv2ka

+
k,xz− , (2.40)

where
umk =

λ√
(tk,yz − tk,xz ∓Ak)2 + λ2

(2.41)

and
vmk =

tk,yz − tk,xz ∓Ak√
(tk,yz − tk,xz ∓Ak)2 + λ2

. (2.42)

The minus and plus signs refer to m = 1 and m = 2, respectively.
In Fig. 2.6 we show the resultant Fermi surfaces for thyb = 0 for each

band obtained, where we have chosen λ = 100 meV in agreement with earlier
estimations [31, 33]. One can immediately see that xz and yz bands split
around the nested parts, in good agreement with experiment [26]. Thus, spin–
orbit coupling acts like a hybridization between these bands. However, in
contrast to a simple hybridization as described above, spin–orbit coupling
also introduces an anisotropy for the states with pseudo-spins ↑ and ↓. This
will be reflected in the magnetic susceptibility. Since the spin and orbital
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Fig. 2.6. Calculated Fermi surface for an RuO2 plane in Sr2RuO4 for thyb = 0
taking into account spin–orbit coupling.
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Fig. 2.7. Diagrammatic representation of the transverse and longitudinal compo-
nents of the magnetic susceptibility. The full lines represent the electron Green’s
function, with pseudospin indices σ and pseudo-orbital indexes l; g+ and gz denote
the vertices as described in the text.

degrees of freedom are now mixed, resulting in a ”spin–orbital” liquid, the
magnetic susceptibility involves also the orbital magnetism, which is very
anisotropic.

For the calculation of the transverse and longitudinal components, χ+−
l

and χzz
l , respectively, of the spin susceptibility of each band l, we use the

diagrammatic representation shown in Fig. 2.7. Since the Kramers degeneracy
is not removed by the spin–orbit coupling, the main anisotropy arises from
the calculations of the anisotropic vertices gz = l̃z + 2sz and g+ = l̃+ + 2s+
calculated on the basis of the new quasiparticle states. In addition, owing to
the hybridization between the xz and yz bands, we have also calculate the
transverse and longitudinal components of the the interband susceptibility
χll′ . For example,

χ+−
0,xz(q, ω) = − 4

N

∑
k

(u2ku2k+q − v2kv2k+q)2
f(ε+kxz) − f(ε−k+qxz)

ε+kxz − ε−k+qxz + ω + iO+

(2.43)
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and

χzz
0,xz(q, ω) = χ↑

xz(q, ω) + χ↓
xz(q, ω)

= − 2
N

∑
k

[
u2ku2k+q + v2kv2k+q +

√
2(u2kv2k+q + v2ku2k+q)

]2

× f(ε+kxz) − f(ε+k+qxz)

ε+kxz − ε+k+qxz + ω + iO+
, (2.44)

where f(x) is again the Fermi function and u2
k and v2

k are the corresponding
coherence factors, which we have calculated through the corresponding ver-
tices using (2.40). For all other orbitals, the calculations are straightforward.
Note that the magnetic response of the xy band remains isotropic.

One can clearly see the difference between the longitudinal and transverse
components which results from the calculated matrix elements. Moreover, the
longitudinal component contains an extra term due to l̃z, while the transverse
component does not contain contributions from l̃+ or l̃−. The latter occurs
because xz and yz states are a combination of the real orbital states |2,+1〉
and |2,−1〉. Thus a transition between these two states is not possible with l̃+
or l̃− operators. Therefore, each component of the longitudinal susceptibility
has an extra term in the matrix element that significantly enhances their
absolute values.

Assuming Uij = δijU , one obtains the following expression for the trans-
verse susceptibility within the RPA:

χ+−
RPA,l(q, ω) =

χ+−
0,l (q, ω)

1 − Uχ+−
0,l (q, ω)

. (2.45)

For the longitudinal susceptibility, one obtains

χzz
RPA,l(q, ω) =

χ↑
0,l(q, ω) + χ↓

0,l(q, ω) + 2Uχ↑
0,l(q, ω)χ↓

0,l(q, ω)

1 − U2χ↓
0,l(q, ω)χ↑

0,l(q, ω)
. (2.46)

For the construction of a pairing theory, we follow the analysis by An-
derson and Brinkmann for 3He [34] and use the calculated Fermi surface and
spin susceptibility for Sr2RuO4 including spin–orbit coupling. In order to
discriminate between cuprates and Sr2RuO4, we remind the reader that the
effective Berk–Schrieffer–like interaction reads as follows for singlet pairing
in the weak-coupling limit (i.e. ω, ω′ → 0), neglecting double counting in the
second order:

V eff
0 (k,k′) =

U2χ0(k − k′, 0)
1 − Uχ0(k − k′, 0)

+
U3χ2

0(k − k′, 0)
1 − U2χ2

0(k − k′, 0)
. (2.47)

Remember that the first term arises from the contributions from the ladder
diagrams, whereas the second term corresponds to infinite series of bubble di-
agrams of the Bethe–Salpeter equation. We abbreviate the effective Coulomb
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interaction to U ≡ U(Qi). In (2.47) we have also assumed that no self-
consistent calculation of χ(q = k−k′, ω = 0) is required. Thus we work with
χ0, which enters (2.36). Of course, for a description of cuprates this would
not be enough. On the other hand, for triplet pairing in Sr2RuO4, it turns out
that a nonself-consistent treatment and the weak-coupling limit of the gen-
eralized Eliashberg equations seem to provide a reasonable approximation.
For triplet pairing, the effective pairing interaction due to spin fluctuations
is given by

V eff
1 (k,k′) = − U2χ0(k − k′, 0)

1 − U2χ2
0(k − k′, 0)

= −U
2

2

(
χ0(k − k′, 0)

1 − Uχ0(k − k′, 0)
+

χ0(k − k′, 0)
1 + Uχ0(k − k′, 0)

)
. (2.48)

Note that the sign of the bubble contribution has changed with respect to
singlet pairing and that there exists no contribution from the ladder diagrams.
The spin susceptibility χ0 includes spin–orbit coupling, of course.

For a given pairing interaction, we solve now the weak-coupling gap equa-
tion, which reads in matrix form (owing to the three important bands)

∆i
k = −

∑
k′,j

[V eff
σ (k,k′)]ij

∆j
k′

2Ej
k′

tanh
( Ej

k′

2kBT

)
, (2.49)

where Ei
k =

√
εik

2 +∆2
k are the energy dispersions of the bands, and the

pairing potential V eff
σ (k,k′) is different for singlet (σ = 0) and triplet (σ = 1)

Cooper pairing. In general, an eigenvalue analysis of (2.49) will yield the
symmetry with lowest energy. Since the γ-band contains a high density of
states, it is tempting to solve the gap equation only for the γ-band (i.e. Ej

k′ →
Eγ

k′), but still taking into account the full pairing potential obtained from
diagonalizing the [χij ] matrix. To a good approximation we can also linearize
(2.49) in ∆l, i.e. Eγ′

k′ → εγk′ , because the main contribution to the pairing
comes from the Fermi level. Note that the minus sign in (2.49) is canceled
for triplet pairing (see (2.48)). We would like to remark that for EF 
 ∆l

the gap function can be expanded into spherical harmonics corresponding to
the angular momenta l = 1, 2, 3, . . . and that no mixture of ∆l belonging to
different symmetry representations can be present if a single Tc is observed.
Therefore, we can immediately exclude a (p + d)-wave superconducting state,
for example.

2.2 Theory for Underdoped Cuprates

As mentioned in the Introduction, in the underdoped regime for hole-doped
high-Tc cuprates, a ”pseudogap” behavior for temperatures T < T ∗ in both
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the spin and the charge degrees of freedom has been widely observed in ex-
periments such as nuclear magnetic resonance (NMR), Knight shift, and spe-
cific heat measurements [35]; angular-resolved photoemission spectroscopy
(ARPES) [36, 37, 38]; scanning tunneling (STS) spectroscopy, and optical
measuremenst ab plane and c axis conductivity [39, 22]. Many theoretical
proposals about the origin of this pseudogap in the normal state have been
invoked; however, no consensus has been reached yet. For example, Williams
et al. [35] have shown that a phenomenological model for the pseudogap
having d-wave symmetry can account well for thermodynamic quantities of
underdoped cuprates. We shall follow their idea in the next subsection and
combine this phenomenological model with the self-consistent FLEX approx-
imation for the exchange of spin fluctuations.

Recently, Chakravarty et al. [40] and Varma [41] have proposed that a
”hidden order” is present in the pseudogap state, which will be present only
below the temperature T ∗ and should even coexist with superconductivity
below Tc. To do this, they extended earlier ideas of Zhang [42] and Marston
and Affleck [43]. As a consequence, T ∗ is no longer a crossover temperature;
it becomes a true phase transition. So far, there seems to be experimental
evidences (a) from neutron scattering data on YBCO, which show a magnetic
moment below T ∗ [44], (b) from muon spin relaxation measurements, again
on YBCO, that are consistent with a small spontaneous (static) magnetic
field [45], and (c) from the observed dichroism in ARPES experiments on
BISSCO for T < T ∗ [46], that such a pseudogap state might indeed exist.
The corresponding order parameter of d-wave type that breaks time-reversal
symmetry is called the d-density wave (DDW) state [40]. At present, the
calculated consequences of a DDW order parameter for Raman scattering
[47], and the electrical and thermal transport [48] and their dependence on a
magnetic field [49] are consistent with experiment; however, the doping de-
pendence of the superfluid density ns(x) seems to disagree with the available
experimental data [50]. In addition, the state proposed by Chakravarty et al.
breaks also translational symmetry which is not observed. Further investiga-
tions are necessary. Although we shall formulate the theory in this section
for the competition of a charge-density-wave (CDW) state, not a DDW state,
with superconductivity, the resulting equations are much more general, de-
scribing two competing order parameters. For example, it turns out that the
gap equation for the superconducting order parameter and the new quasipar-
ticle spectrum, in the pseudogap phase and below Tc are identical to those
which would have been obtained if we had considered a DDW state. This is
due to the symmetry of the corresponding order parameter.

In the following subsection, we turn to the analysis of the ”strong” pseu-
dogap regime, i.e. the behavior of hole-doped cuprates for temperatures
Tc < T < T ∗

c . In this connection we study two interesting possible expla-
nations for the pseudogap behavior which involve a discussion of precursors
of the possible Cooper pair formation above Tc. Among these kinds of the-
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ories, several different scenarios have been investigated: precursors based on
“preformed pairs” (i.e. local Cooper pairs without long-range phase coher-
ence) which are related to a fluctuating phase [51, 52, 53], and precursors
based on fluctuations of the amplitude of the superconducting order param-
eter [54, 55, 56, 57, 58]. In Sect. 2.2.2 we shall formulate the corresponding
theoretical background.

2.2.1 Extensions for the Inclusion of a d-Wave Pseudogap

In this subsection we develop the strong-coupling theory of a coexisting d-
wave pseudogap and superconductivity within the framework of the gener-
alized Eliashberg equations using the FLEX (fluctuation exchange) approxi-
mation for the two-dimensional Hubbard model. We follow here the idea of
competing charge-density-wave and superconductivity gaps which are caused
by the same interaction [59]. However, the equations which will be presented
are more general; for example, the gap equation for the resulting supercon-
ducting order parameter and the corresponding spectrum will be the same
as for the DDW state [40]. These equations are also valid for other mecha-
nisms causing a d-wave pseudogap in underdoped cuprates. We shall show
that that at distinct points of the 2D Fermi line for YBCO where the nest-
ing condition is satisfied (the “hot spots”), these equations reduce to the
previous FLEX equations for superconductivity. However, the squared su-
perconductivity gap φ2

s occurring in the denominator of the Green’s function
is replaced by (φ2

s + φ2
c), where φc is the CDW gap. The difference with

respect to the earlier phenomenological approaches of [60] and [61] is that
we calculate self-consistently the momentum and frequency dependence of
the dynamical spin susceptibility χs(q, ω), the quasiparticle spectral func-
tion N(k, ω), and the superconducting gap φs(k, ω). In our calculation we
take into account the renormalization by the normal self-energy, in particu-
lar the quasiparticle damping, due to interaction with antiferromagnetic spin
fluctuations.

We start with the definition of the 4 × 4 matrix Green’s function:

G(k, τ) = −〈Tαk(τ)α†
k(0)〉 , where α†

k = (c†kσ, c
†
k+Q,σ, c−k,−σ, c−k−Q,−σ) ,

(2.50)
and ckσ and c†kσ are the annihilation and creation operators, respectively, for
electrons or holes and Q = (π, π). In the generalized Eliashberg equations for
the two-dimensional Hubbard Hamiltonian with on-site Coulomb repulsion
U , the self-energy components Σij are determined by the equations

Σij(k) =
∑
k′
Ps(k − k′)Gij(k′) , (k ≡ (k, iωn)) , (2.51)

where Ps is the spin fluctuation interaction (for simplicity, we omit the charge
fluctuation interaction) and Gij are the components of the dressed 4 × 4
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matrix Green’s function. The normal self-energy components are defined as
follows:

Σ11 = (ω − ω1) + ξ1 , Σ22 = (ω − ω2) + ξ2 ,

Σ33 = (ω − ω1) − ξ1 , Σ44 = (ω − ω2) − ξ2 ,

ω ≡ iωn , ω1 ≡ iωnZ(k, iωn) , ω2 ≡ iωnZ(k + Q, iωn) ,

ξ1 ≡ ξ(k, iωn) , ξ2 ≡ ξ(k + Q, iωn) . (2.52)

Here again, Z is the effective–mass function and ξ is the shift of the energy
band ε(k). The anomalous self-energy components for the charge density wave
and superconducting order parameter φc and φs are defined by

Σ12 = Σ21 = φc(k, iωn) ∝ 〈c†k+Q,σckσ〉 , (2.53)
Σ13 = Σ31 = φs(k, iωn) ∝ 〈c−k−σckσ〉 . (2.54)

With the help of the equations of motion of ckσ(τ) for the 2D Hubbard
Hamiltonian and the Dyson equationG−1 = G−1

0 −Σ, we obtain the following
components of the 4 × 4 matrix Green’s function:

G11 =
[(
ω2

2 − ε22
)
(ω1 + ε1) − φ2

c (ω2 − ε2) − φ2
s (ω1 + ε1)

]
D−1 , (2.55)

G22 =
[(
ω2

1 − ε21
)
(ω2 + ε2) − φ2

c (ω1 − ε1) − φ2
s (ω2 + ε2)

]
D−1 , (2.56)

G12 = G21 = φc

[
(ω1 + ε1) (ω2 + ε2) − φ2

c − φ2
s

]
D−1 , (2.57)

G13 = G31 = φs

[(
ω2

2 − ε22
)− φ2

c − φ2
s

]
D−1 , (2.58)

with the denominator

D =
(
ω2

1 − ε21
) (
ω2

2 − ε22
)− φ2

c [(ω1 − ε1) (ω2 − ε2) + (ω1 + ε1) (ω2 + ε2)]

−φ2
s

[(
ω2

1 − ε21
)

+
(
ω2

2 − ε22
)]

+
[
φ2

c + φ2
s

]2
, (2.59)

ε1 ≡ ε(k) + ξ1 , ε2 ≡ ε(k + Q) + ξ2 . (2.60)

Here, ε(k) is the dispersion relation of the quasiparticles discussed earlier.
Note that the off-diagonal components G14 = G41 and G23 = G32 are pro-
portional to φcφs.

With the Green’s functions defined above, the effective spin and charge
fluctuation interactions are given by the RPA expressions

3
2
U2 χs0

1 − Uχs0
and

1
2
U2 χc0

1 + Uχc0
, (2.61)

where the bubble spin susceptibility χs0 is calculated self-consistently from
the expression
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Imχs0(q, ω) = π

∫ ∞

−∞
dω′ [f(ω′) − f(ω′ + ω)]

∑
k

[N(k + q, ω′ + ω)N(k, ω′)

+A1(k + q, ω′ + ω)A1(k, ω′) +Ag(k + q, ω′ + ω)Ag(k, ω′)] (2.62)

and thus depends on the pseudogap via the spectral functions. Note that the
charge susceptibility χc0 has the opposite sign in front of the anomalous terms
in (2.62). The components of the Hubbard model interaction with respect to
the particle–hole and spin space have been obtained by an expansion in terms
of the 2×2 unit matrix and the Pauli matrices.N denotes the normal spectral
function, and A1 and Ag are the anomalous spectral functions with respect
to the superconducting gap and the pseudogap, respectively. These spectral
functions have been obtained from a self-consistent solution of the generalized
Eliashberg equations in the presence of the pseudogap and are given by

N(k, ω) = − 1
π

Im
ωZ + εk + ξ

(ωZ)2 − (εk + ξ)2 − E2
g − φ2

, (2.63)

A1(k, ω) = − 1
π

Im
φ

(ωZ)2 − (εk + ξ)2 − E2
g − φ2

, (2.64)

Ag(k, ω) = − 1
π

Im
Eg

(ωZ)2 − (εk + ξ)2 − E2
g − φ2

, (2.65)

where
φ2 = φ2

s + φ2
c . (2.66)

We want to emphasize that it is necessary to include the bubble contribu-
tion due to Ag in the conductivities and susceptibilities. Neglecting this term
leads to severe disagreement with experimental data. Following [61], for the
pseudogap we assume the simple form

Eg (k, T, x) = Eg(T, x) [cos kx − cos ky] , (2.67)

where Eg is temperature–dependent and increases with decreasing doping
level below the optimal doping level. Here, the consideration of an imaginary
order parameter as in the case of a DDW state [40] is also possible. The gener-
alized Eliashberg equations are then solved self-consistently in the presence of
this pseudogap (as described in Appendix A) and yield the quasiparticle self-
energy components Z(k, ω) and ξ(k, ω) and the superconducting gap φ(k, ω).
For simplicity, we have neglected in (2.51) the interaction Pc due to exchange
of charge fluctuations. The interaction Pc is proportional to χc which is ob-
tained from χs by changing the signs of U and of the anomalous terms due
to φc and φs in the irreducible susceptibility χ0. We want to emphasize that
the charge-fluctuation interaction in the underdoped regime is much smaller
than the spin-fluctuation interaction Ps. The set of coupled equations (2.51)–
(2.67) has to be solved self-consistently. Obviously, for φc ≡ 0 these equations
reduce to the FLEX equations for Z, ξ, and the superconducting gap φs. In
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Fig. 2.8. Fermi lines ε(k) = 0 (solid line) and ε(k + Q) = 0 (dashed line) in the
first quadrant of the Brillouin zone for hole-doped YBCO and Bi 2212. The crossing
points are the “hot spots”.

the weak-coupling limit (i.e. Z ≡ 1, ξ ≡ 0), these equations reduce to the
gap equations for the CDW gap φc(k) and the superconducting gap φs(k) of
earlier approaches [59].

In most cases, we consider a tight-binding band ε(k) whose Fermi line
approximates those of the hole-doped YBCO and Bi 2212 compounds. The
“hot spots” where the Fermi lines ε(k)+ξ(k) = 0 and ε(k+Q)+ξ(k+Q) = 0
in the first quadrant of the square Brillouin zone cross each other then lie in
the vicinity of the corners k = (π, 0) and k = (0, π) (see Fig. 2.8). One can
recognize from (2.20)–(2.60) that at the hot spots (ε2 + ξ2 = −ε1 − ξ1 , Z2 =
Z1), the Green’s functions reduce to those for superconductivity apart from
the fact that in the denominators of the Gij , φ2

s is replaced by φ2
s + φ2

c . For
example, within the weak-coupling approximation the gap equation reads
(here ∆s denotes the superconducting gap and ∆c corresponds to the CDW
gap):

∆s(k)

= −
∑
k′

Ps(k − k′)∆s(k′)
1
2

[
1 − 2f(E

′
+)

2E′
+

+
1 − 2f(E

′
−)

2E′
−

+ (ε′1 − ε′2)
[
(ε′1 − ε′2)

2 + 4∆2
c

]−1/2
(

1 − 2f(E
′
+)

2E′
+

− 1 − 2f(E
′
−)

2E′
−

)]
,

(2.68)

where

E2
± =

[
1
2

(ε1 + ε2) ± 1
2

[
(ε1 − ε2)

2 + 4∆2
c

]1/2
]2

+∆2
s (2.69)

and
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ε1 = ε1(k) , ε2 = ε2(k + Q) , ∆s = ∆s(k) , ∆c = ∆c(k + Q) .
(2.70)

Note that (2.68) and (2.69) remain the same for the DDW state proposed by
Chakravarty et al. [40]. It is also interesting to remark that at the hot spots
with ε1 + ε2 = 0, the quasiparticle energy E± in (2.69) takes the BCS form
with a total squared energy equal to ∆2

s(k)+∆2
c(k). Since the repulsive spin

fluctuation interaction Ps(k− k′), as well as the superconducting gap, has a
large peak at k−k′ = Q′ = (−π, π), the effective pseudogap also has dx2−y2-
wave symmetry. The form of E± at the hot spots with ε1 + ε2 = 0 in (2.69)
may also justify the expressions for the quasiparticle energy used earlier by
Loram et al. [60] and Williams et al. [61] in order to describe heat capacity
and Knight shift data in both the normal and the superconducting state for
underdoped cuprates. Of course, in our calculations the full momentum and
frequency dependence of the quasiparticle self-energy is taken into account.

2.2.2 Fluctuation Effects

In this subsection we shall to analyze the region where preformed pairs might
occur, the region of so-called strong pseudogap behavior of the quasiparticles,
close to the superconducting transition, i.e. for temperatures Tc < T < T ∗

c .
In the following we formulate a theoretical description of the effects due to
fluctuations of the phase and amplitude of the Cooper pairs. Let us start with
a microscopic theory in real space on a square lattice in order to investigate
the role of Cooper pair phase fluctuations. If one considers the Fourier trans-
form of the spectral density of the pairing interaction Ps, it turns out that
the effective pairing potential Veff is attractive on nearest–neighbor sites in
real space [8]. Following the work by Schäfer et al., we employ a Hamiltonian
(Veff < 0) [62]

H = −t
∑
〈ij〉σ

c†iσcjσ + Veff

∑
〈ij〉

c†i↑ci↑c
†
j↓cj↓ (2.71)

in analogy to (2.1). In order to evaluate the free energy and correlation func-
tions of the system one has to evaluate the partition function

Z =
∫

D(Φ,Φ∗) e−Seff [Φ∗,Φ] , (2.72)

where Φ, Φ∗ = are Grassmann variables and the effective action is given by

Seff [Φ∗, Φ] =
∫ β

0

dτ

{∑
iσ

Φ∗
iσ(∂τ − µ)Φiσ − t

∑
〈ij〉σ

Φ∗
iσΦjσ (2.73)

+ Veff

∑
〈ij〉

Φ∗
i↑Φ

∗
j↓Φj↓Φi↑

}
, (2.74)
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or, after performing a Hubbard–Stratonovich transformation,

Z =
∫

D(Φ,Φ∗) D(∆,∆∗) e−Seff [Φ∗,Φ;∆∗,∆] , (2.75)

where

Seff [Φ∗, Φ;∆∗, ∆] =
∫ β

0

dτ

{∑
iσ

Φ∗
iσ(∂τ − µ)Φiσ + t

∑
〈ij〉σ

Φ∗
iσΦjσ

+
∑
〈ij〉

[
∆ij Φ

∗
i↑ Φ

∗
j↓ +∆∗

ij Φj↓ Φi↑ +
|∆ij |2
|Veff |

]}
. (2.76)

For simplicity, we first neglect fluctuations of the amplitude of the supercon-
ducting order parameter and derive, with the help of

∆ij = ∆0
ij e+ i

2 [ϕi(τ)+ϕj(τ)] , (2.77)

ψiσ = Φiσ e−
i
2ϕi(τ) (2.78)

(as used in [62, 63]), the following effective action:

Seff [ψ∗, ψ;ϕ] =
∫ β

0

dτ

{∑
iσ

ψ∗
iσ

[
∂τ +

i

2
∂τϕi(τ) − µ

]
ψiσ

+ t
∑
〈ij〉σ

ψ∗
iσψjσ e−

i
2 [ϕi(τ)−ϕj(τ)]

+
∑
〈ij〉

[
∆0

ij

(
ψ∗

i↑ψ
∗
j↓ + ψj↓ψi↑

)
+

(∆0
ij)

2

|Veff |
]}

. (2.79)

After a straightforward calculation, Seff reads, Nambu space using Matsub-
ara frequencies,

Seff [ψ∗, ψ;ϕ] = S∆0 [ψ∗, ψ] + Sϕ[ψ∗, ψ;ϕ] , (2.80)

where

S∆0 [ψ∗, ψ] = − 1
β

∑
kk′
nn′

Ψ †(k, iωn) Ĝ−1
0 (k, iωn; k′, iωn′) Ψ(k′, iωn′)

+ βN
|∆0|2
|Veff | , (2.81)

Sϕ[ψ∗, ψ;ϕ] = − 1
β

∑
k,k′
n,n′

Ψ †(k, iωn)
1

β
√
N

× Γ̂ 1
0 (k, iωn; k′, iωn′)ϕ(k − k′, iωn − iωn′) Ψ(k′, iωn′)
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− 1
β

∑
k,k′
n,n′

Ψ †(k, iωn)
{

1
β2N

∑
k′′,n′′

Γ̂ 2
0 (k; k′; k′′) ϕ(k′′, iνn′′)

× ϕ(k − k′ − k′′, iωn − iωn′ − iνn′′)
}
Ψ(k′, iωn′) , (2.82)

and

Ψ(k, iωn) =
(
Ψk↑(iωn)

Ψ †
−k↓(−iωn)

)
. (2.83)

Here, the Green’s function (in the weak-coupling limit), and the vertices
which couple the quasiparticles (holes) and the phases are given by

Ĝ0(k, iωn, k
′, iωn′) =

(
iωn − εk + µ −∆0

k

−∆0
k iωn + εk − µ

)−1

δk,k′δn,n′ , (2.84)

Γ̂ 1
0 (k, k′) =

i

2
[
(ik0 − ik′0)τ̂3 − (εk − εk′)τ̂0

]
= � , (2.85)

Γ̂ 2
0 (k, k′, k′′) =

1
8
[
εk − εk−k′′ − εk′′+k′ + εk′

]
τ̂3 = � ; (2.86)

τ̂i are the corresponding Pauli matrices.
In analogy to the previous subsection, we shall now derive the propagator

of Cooper pair phase fluctuations and thus their corresponding self-energy
equations. For this purpose we have to integrate out the electronic degrees of
freedom. This leads to

Seff [ϕ] = SBCS
eff (∆0) +

1
β

∑
qn

ϕ(q, iνn)
[Dϕ(q, iνn)

]−1
ϕ(−q,−iνn) (2.87)

or, diagrammatically,

Seff [ϕ] =� +

�
. (2.88)

Here, the BCS part is given by

SBCS
eff (∆0) = −Tr ln

[− Ĝ−1
0

]
+ βN

|∆0|2
|Veff | . (2.89)

Dϕ(q, iνn) = 〈〈ϕ(q, iνn) ϕ(−q,−iνn)〉〉 denotes the propagator of the corre-
sponding phase of a Cooper pair and reads [62]
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Dϕ(q, iνn) = 8
[
− χρρ(q, iνn) (iνn)2 − (iνn)

∑
α

[
Παρ(q, iνn)

+Πρα(q, iνn)
]

2 sin
qα
2

+
∑
αβ

ραβ(q, iνn)
(
2 sin

qα
2

) (
2 sin

qβ
2

) ]−1

, (2.90)

where the phase stiffness is ραβ(q, iνn) = Tαβ + Παβ . Here Π and T are
the current–current correlation function and the mass operator, respectively
[20], i.e.

χρρ(q, τ) =
1
βN

∑
kn′

vα
k+ q

2
Tr
[Ĝ0(k + q, iωn′ + iνn) τ̂3 Ĝ0(k, iωn′) τ̂3

]
,

(2.91)

Παρ(q, iνn) =
1
βN

∑
kn′

vα
k− q

2
Tr
[Ĝ0(k, iωn′) τ̂3 Ĝ0(k − q, iωn′ − iνn)

]
(2.92)

= Πρα(−q,−iνn) , (2.93)

ραβ(q, iνn) =
1
βN

∑
kn′

vα
k− q

2
vβ

k− q
2

× Tr
[Ĝ0(k, iωn′) Ĝ0(k − q, iωn′ − iνn)

]
, (2.94)

Tαβ =
1
N

∑
k

tαβ
k (nk↑ + nk↓) . (2.95)

In analogy to the treatment by Kadanoff and Baym [64, 65], we are now
able to calculate the dressed Green’s functions and their corresponding self-
energies. In general, one has to start with the generating function

S[ψ∗, ψ; η] = S[ψ∗, ψ] + Ssource[ψ∗, ψ; η] , (2.96)

with a source term

Ssource[ψ∗, ψ; η] = − 1
β

∑
kn

k′n′

Ψ †(k, iωn) η̂(k, iωn; k′, iω′) Ψ(k′, iωn′) , (2.97)

where

η̂(k, iωn; k′, iω′) =
(
η(k, iωn) η̄∗(k, iωn)
η̄(k, iωn) η̃(k, iωn)

)
. (2.98)

The corresponding Green’s functions are given by

G(k, iωn) = − δ lnZ[η]
δη(k, iωn)

∣∣∣∣
η=0

, G̃(k, iωn) = − δ lnZ[η]
δη̃(k, iωn)

∣∣∣∣
η=0

, (2.99)

F(k, iωn) = − δ lnZ[η]
δη̄(k, iωn)

∣∣∣∣
η=0

, F̄(k, iωn) = − δ lnZ[η]
δη̄∗(k, iωn)

∣∣∣∣
η=0

. (2.100)
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Thus, if we consider Cooper pair phase fluctuations and treat them up to
second order, we arrive at [62]

Ĝ(k, iωn) = Ĝ0(k, iωn)

− Ĝ0(k, iωn)
[

1
βN

∑
q,n′

Γ̂ 2
0 (k, k, q) Πϕϕ(q, iνn)

]
Ĝ0(k, iωn)

+ Ĝ0(k, iωn)
[

1
βN

∑
q,n′

Γ̂ 1
0 (k, iωn; k − q, iωn − iνn′) Ĝ0(k − q, iωn − iνn′)

× Γ̂ 1
0 (k − q, iωn − iνn′ ; k, iωn) Πϕϕ(q, iνn)

]
Ĝ0(k, iωn) (2.101)

= Ĝ0(k, iωn) − Ĝ0(k, iωn) Σ̂
ϕϕ

(k, iωn) Ĝ0(k, iωn) (2.102)

or, diagrammatically,

�
=

�
+

�
+

�
. (2.103)

Thus, the normal and anomalous parts of the self-energy due to Cooper pair
phase fluctuations are given by

ΣG(k, iωn) =
1

4βN

∑
q,n′

[(iνn′)2 − 2iνn′(εk − εk−q) + (εk − εk−q)2]

× G0(k − q, iωn − iνn′) Πϕϕ(q, iνn) , (2.104)

ΣF(k, iωn) =
1

4βN

∑
q,n′

[(iνn′)2 + (εk − εk−q)2]

× F0(k − q, iωn − iνn′) Πϕϕ(q, iνn) . (2.105)

These self-energy corrections are the main result of this subsection and must
be added to their counterparts ΣG and ΣF given by the exchange of spin
fluctuations alone in (2.19). One can then perform an analytical continuation
to the real ω axis and solve the corresponding equations as described in
Appendix A. Of course, the current–current correlation function Π has to
be calculated self-consistently using (2.90), which describes the propagation
of Cooper pair phase fluctuations.

As done in the previous subsection, we close our analysis with a dis-
cussion of a few limiting cases of our theory. First, the BCS gap equation
can be recovered if one neglects all fluctuations of the order parameter, i.e.
∆ij(x, τ) = ∆0

ij . Then the partition function reads (|Veff | = |V |)

Z =
∫

D(Φ∗, Φ) e−S[Φ∗,Φ] , (2.106)
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where

S[Ψ †, Ψ ] = − 1
β

∑
kk′
nn′

Ψ †(k, iωn) Ĝ−1
0 (k, iωn; k′, iωn′) Ψ(k′, iωn′)

+ βN
|∆0|2
|V | , (2.107)

and we use the standard definitions [19]

Ψ(k, iωn) =
(
Φk↑(iωn)

Φ∗
−k↓(−iωn)

)
, (2.108)

Ĝ0(k, iωn; k′, iωn′) =
(
iωn − εk + µ −∆0

k
∗

−∆0
k iωn + ε−k − µ

)−1

δk,k′δn,n′ . (2.109)

Hence,

Z = e−βN
|∆0|2
|V |

[
det(−Ĝ0)

]−1

= e−βN |∆0|2
|V | +

∑
kn

[
ln(iωn−Ek+µ)+ln(iωn+Ek−µ)

]
, (2.110)

where the Cooper pair dispersion is Ek =
√
ε2k +∆2

k. Thus, the free energy
reads

F = −β−1 lnZ

= N
|∆0|2
|V | − β−1

∑
kn

[
ln(iωn − Ek + µ) + ln(iωn + Ek − µ)

]
,

(2.111)

which leads, with ∂F
∂∆0 = 0, to the BCS gap equation:

1 =
∑

k

|V |
2Ek

(
1 − 2f(Ek)

)
. (2.112)

The second limiting case that we want to consider here is the connection
with Ginzburg–Landau theory. If we evaluate all correlation functions in the
limit q → 0 and iνm → 0 and change from our lattice representation to the
continuum, the approximate propagator reads

Dϕ(q, iνn) =
8

−χ(iνn)2 + ρq2
, (2.113)

which describes a Goldstone mode with velocity vs =
√
ρ/χ and disper-

sion ω = vs|q|. The phase stiffness ρ is given by the ratio of the superfluid
velocity to the effective mass, ns/m

∗. Thus, in the case of cuprate high-
Tc superconductors, the coherence length of Cooper pair phase fluctuations,



58 2 Theory of Cooper Pairing Due to Exchange of Spin Fluctuations

ξs = π/(∆vs), can be estimated to be of the order of 30 lattice constants.
Moreover, with the above approximations, the effective action can be rewrit-
ten as

Seff [ϕ] =
Na2

32π2β

∫
d2q

∑
n

{
− χ(iνn)2 + ρq2

}
ϕ(q, iνn) ϕ(−q,−iνn)

or, after Fourier transformations,

Seff [ϕ] =
Na2

32π2

∫
dr

∫ β

0

dτ

{
χ (∂τϕ(r, τ))2 + ρ (∇rϕ(r, τ))2

}
. (2.114)

This corresponds to a quantum Ginzburg–Landau theory for the phase of a
superconductor [25]. In this case the partition function reads

Zϕ =
∫

D(ϕ) e−Seff.[ϕ] =
1
2

∏
q>0

n

8
−χ(iνn)2 + ρq2

, (2.115)

and thus

Fϕ = − 1
β

lnZϕ =
1
β

∑
q>0

n

ln
(−χ(iνn)2 + ρq2

4

)
= ζ(3)

Na2

2π
χ
ρβ3

. (2.116)

As already pointed out by Rice, Cooper pair phase fluctuations do not con-
tribute to the free energy at T = 0 and scale in proportion to T 3 at finite
temperatures [25]. Furthermore, we see from (2.116) that these fluctuations
diverge if the superfluid velocity vanishes.

Next we consider the extension of the generalized Eliashberg equations
to take account of amplitude fluctuations of the superconducting order pa-
rameter within the FLEX approximation. To do this, one has to solve the
Bethe–Salpeter equation for the particle–particle scattering matrix T ′, which
reads in the strong-coupling limit [55]

T ′(k1, k3; q = k1 + k4)

= Ps(k1 − k3) − T
∑
k
′
1

Ps(k1 − k
′
1)G(k

′
1)G(q − k

′
1)T

′(k
′
1, k3; q) . (2.117)

A diagrammatic representation of (2.117) is shown in Fig. 2.9. The main
reason for employing the conventional pair fluctuation theory is that the
pair fluctuation propagator T ′ = [|(T − Tc)/Tc| + ξ20q

2 − iωτ ]−1 is relatively
large for the high-Tc superconductors, because the pair coherence length ξ0 ≈
vF /πTc (where vF denotes the Fermi velocity) and the pair lifetime τ ≈ π/8Tc

are rather small due to the high superconducting transition temperature Tc.
Another reason is that the propagator T ′ might account for the observed
momentum dependence of the strong pseudogap in photoemission (ARPES)
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Fig. 2.9. Bethe–Salpeter equation for the particle–particle scattering matrix T ′ in
the ladder approximation with the full pairing interaction Ps and the self-energy
contributions Σ′ arising from T ′. The solid lines denote the dressed particle prop-
agators.

experiments, because T ′ is proportional to (cos kx − cosky)2 if the preformed
pairs above Tc have d-wave symmetry [55]. It has been shown in [54] that this
theory leads to a suppression of Tc with increasing pair fluctuation strength
and to a maximum of 1/T1T (where 1/T1 is the NMR spin–lattice relaxation
rate) with decreasing temperature T , in agreement with experiments.

For further calculations, we have generalized the wave function of the
preformed state in the pair fluctuation propagator T ′, i.e. ψd(k) = [cos kx −
cos ky], to the superconducting order parameter above Tc, φd(k, ω), and shall
later approximate ln(T/Tc) by (1 − λd) in (2.120), where λd is the corre-
sponding eigenvalue for dx2−y2 -wave superconductivity in the normal state.
Thus, the self-energy contribution Σ′(k) due to the particle–particle scatter-
ing matrix T ′ (also shown in Fig. 2.9) is simply given by

Σ′(k, iωn) = T
∑
ω′

n

∑
k′

T ′(k,q = k + k′, iνm = iωn + iω
′
n)G(k′, iω

′
n) .

(2.118)
We continue to a real-frequency formulation in the usual way described ear-
lier. The odd-ω part of the quasiparticle self-energy due to exchange of spin
and pairing fluctuations is obtained as [54, 55]

ω [1 − Z(k, ω)] =
∑
k′

∫ ∞

0

dΩ
[|ψd(k, ω)|2K(k− k′, Ω) + Ps(k − k′, Ω)

]

×
∫ ∞

−∞
dω′ I(ω,Ω, ω′)A0(k′, ω′) , (2.119)

where the pair fluctuation propagator is

K(q, ω) =
g

πN̄

ωτ[
ln (T/Tc) + ξ20q

2 + b (ω/4T )2
]2

+ [ωτ ]2
(2.120)
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and the abbreviations

ωτ = (π/2) tanh(ω/4T ) , b = 7ξ(3)/π2 , ξ20 = (7ξ(3)/48)(vF/πT )2

(2.121)

have been used. Equations (2.119)–(2.121) now enter the equation for the
quasiparticle self-energy, i.e. (2.28), and are solved self-consistently. The equa-
tion for the even-ω part ξ(k, ω) of the self-energy is obtained from (2.119)
by changing the sign in front of the term |ψd|2K and replacing the spec-
tral function A0 of the Green’s function proportional to τ0 by the spectral
function A3 that refers to the τ3 component. The spin fluctuation interaction
Ps = (3/2)U2Imχ0(1 − Uχ0)−1, the spectral functions A0 and A3, and the
kernel I are defined in (2.29) and are calculated self-consistently as described
in Appendix A. It should be pointed out that our pair propagator K is re-
lated to the T -matrix Γ calculated earlier by Hotta et al. [58] by the equation
πK = −ImΓ0 = Imφ0[(V −1 − Reφ0)2 + (Im φ0)2]−1, where Γ0 and φ0 are
the undressed particle-particle T -matrix and susceptibility, respectively, and
V is the BCS pairing constant for a d-wave. It has been pointed out in [58]
that the equation 1 = V Reφ0(0, Ω) agrees with that for the binding energy
Ω of a Cooper pair. In calculating K from the expression given above we
have subtracted 1/V from Reφ0 utilizing the gap equation and expanding
the rest in terms of ξ20q2 and τω (see (9) and (10) in [54] for ξ20 and τ). Thus,
our contribution from K to the self-energy in (2.119) and the corresponding
contribution for ξ agrees with those obtained in [58] if the dressed particle–
particle T -matrix Γ is replaced by the undressed one. Of course, we have
solved (2.119) for the self-energy component ω [1 − Z(k, ω)] and the corre-
sponding equation for ξ(k, ω) self-consistently by employing a tight-binding
energy ε(k) with nearest and next-nearest neighbor hopping, whose 2D Fermi
line has been adjusted to that of underdoped hole-doped cuprates. For exam-
ple, in (2.4) the chemical potential has been taken to be µ = −1.1, yielding
a doping concentration x = 0.08. For the effective Coulomb repulsion we em-
ployed U(q) introduced in [54], with a maximum value U(Q) = U = 3.2t. In
that case, in accordance with our calculated phase diagram for hole-doped
cuprates (see Fig. 2.4), the value of Tc in the absence of order parameter
fluctuations, i.e. K = 0, becomes about 0.03t.

2.3 Derivation of Important Formulae and Quantities

2.3.1 Elementary Excitations

For understanding the high-Tc cuprates, their elementary excitations are of
central significance. Their theoretical analysis is based on the Green’s func-
tions for the elementary excitations, which are given in Nambu space [18, 19].
After continuation to the real ω axis, the corresponding spectral density for
a fixed temperature is given by
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A(k, ω) = − 1
π

Σ′′(k, ω)
[ω − εk −Σ′(k, ω)]2 + [Σ′′(k, ω)]2

. (2.122)

Here, εk is the tight-binding energy dispersion on a square lattice introduced
in (2.4) and Σ′(k, ω) and Σ′′(k, ω) are the real and imaginary parts, respec-
tively, of the self-energy described earlier in this chapter. We have performed
our calculations for the elementary excitations

ω(k, T ) = ε(k) +Σ(k, ω(k, T ), T ) (2.123)

for various doping concentrations x, where Σ was calculated self-consistently
using the 2D one-band Hubbard Hamiltonian for a CuO2 plane and the FLEX
approximation. Below Tc the superconducting gap function φ(k, ω) has also
been calculated self-consistently. As described earlier the full momentum and
frequency dependence of the quantities has been kept and no further param-
eter has been introduced.

These equations are standard; however, it is important to realize that,
owing to the combined effects of Fermi surface topology and χ(q = Q, ω) at
the antiferromagnetic wave vector QAF = (π, π), the k and ω dependences
of Σ(k, ω) become very pronounced and change the dispersion ω(k). It is
known that the strong scattering of quasiparticles by antiferromagnetic spin
fluctuations results in a non-Fermi liquid behavior of the quasiparticle self-
energy for low-lying energy excitations; in particular, in ImΣ ∼ ω [66, 67].
Clearly, it follows from (2.123) that the expected doping and momentum
dependence resulting from the crossover from Σ ∝ ω2 to Σ ∝ ω, i.e. to a
non-Fermi liquid behavior, can be reflected in ω(k) and A(k, ω). Physically
speaking, the change in the ω dependence of the self-energy Σ(k, ω) changes
the velocity of the elementary excitations. Thus, as mentioned in the Intro-
duction and as will be discussed later, for a given k-vector, the momentum
distribution curve in ARPES experiments shows a “kink” at some charac-
teristic frequency controlled by the spin fluctuation energy ωsf . Regarding
the superconducting state, the k and ω dependence of the order parameter
∆(k, ω) is important and yields the feedback of the superconducting state on
the elementary excitations.

From the elementary excitations of the quasiparticles mentioned above, we
have calculated the spin excitations of the cuprates mainly via the expression

Im χs0,c0(q, ω) =
π

N

∫ ∞

−∞
dω′ [f(ω′) − f(ω′ + ω)]

×
∑
k

[A(k + q, ω′ + ω)A(k, ω′) ±A1(k + q, ω′ + ω)A1(k, ω′)] , (2.124)

where f denotes the Fermi distribution function and A1 is the spectral func-
tion of the anomalous Green’s function defined in (2.26). The corresponding
procedure is described in Appendix A. In order to compare the results with
inelastic neutron scattering experiments, we have calculated the imaginary
part of the renormalized (RPA) susceptibility, i.e.
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Imχs(Q, ω) =
Imχs0(Q, ω)

(1 − U Reχs0(Q, ω))2 + U2 (Imχs0(Q, ω))2
. (2.125)

Here, U denotes an effective Coulomb interaction using the Hubbard Hamilto-
nian ( (2.1)). We have choosen t′ = 0.2 in order to describe the Fermi surface
topology of both YBCO and LSCO. In general, one finds that the structure
of Imχ is determined by Imχ0 if (UReχ0) �= 1 and by (URe χ0) = 1 if this
latter condition can be fulfilled. This will be discussed later in connection
with the resonance peak.

2.3.2 Superfluid Density and Transition Temperature
for Underdoped Cuprates

In order to calculate the generic phase diagram for hole-doped cuprates (see
Fig. 1.4), we have assumed that a rigid-band approximation is valid and have
varied only the chemical potential µ in (2.1) in order to change the carrier
concentration. The band filling n = 1/N

∑
k nk was determined with the help

of the k-dependent occupation number nk = 2
∫∞
−∞ dωf(ω)A(k, ω) which

was calculated self-consistently. The spectral function A(k, ω) = N(k, ω)
corresponds to the local density of states and has been defined in sect. 2.1.
f denotes the Fermi distribution function. n = 1 corresponds to half filling.
In order to simplify the discussion, we have also fixed the effective Coulomb
interaction U as U = 4t ≈ 1 eV in accordance with the tight-binding energy
dispersion εk measured in ARPES [68]. No further parameter is introduced.

The bulk transition temperature Tc at which phase coherence of the
Cooper pairs occurs was determined by the Ginzburg–Landau free–energy
functional ∆F{ns, ∆}, where the superfluid density ns(x, T )/m was calcu-
lated self-consistently from the current–current correlation function and from

ns

m
=

2t
h̄2 (SN − SS) , (2.126)

where we have introduced for convenience the oscillator strength

SN =
h̄2c

2πe2t

∫ ∞

0+
σ1(ω) dω ; (2.127)

SS is the value of (2.127) in the superconducting state. Here, we utilize the
f-sum rule for the real part of the conductivity σ1(ω), i.e.

∫∞
0
σ1(ω) dω =

πe2n/2m, where n is the 3D electron density and m denotes the effective
band mass for the tight-binding band considered. σ(ω) was calculated in the
normal and superconducting states using the Kubo formula [20, 69]

σ(ω) =
2e2

h̄c

π

ω

∫ ∞

−∞
dω′ [f(ω′) − f(ω′ + ω)]

∑
k

[
v2

k,x + v2
k,y

]
× [A(k, ω′ + ω)A(k, ω′)A1(k, ω′ + ω)A1(k, ω′)] , (2.128)
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where vk,i = ∂εk/∂ki are the calculated band velocities within the CuO2

plane and c is the c-axis lattice constant. The spectral function A1 was defined
in (2.26). Vertex corrections have been neglected. Physically speaking, we
are looking for a loss of spectral weight of the Drude peak at ω = 0 that
corresponds to excited quasiparticles above the superconducting condensate
for temperatures T < T ∗

c . The penetration depth λ(x, T ) was calculated
within the London theory through λ−2 ∝ ns [70] and will be discussed later.

Most importantly, using our results for ns(x, T ), we have calculated the
doping dependence of the Ginzburg–Landau-like free-energy change ∆F ≡
FS − FN , [10, 11],

∆F = ∆Fcond +∆Fphase , (2.129)

where ∆Fcond � α{ns/m}∆0(x) is the condensation energy due to Cooper
pairing and∆Fphase � h̄2ns/2m is the loss in energy due to phase incoherence
of the Cooper pairs. α describes the available phase space for Cooper pairs
(normalized per unit volume) and can be estimated in the strongly overdoped
regime. In the BCS limit one finds α � 1/400. ∆0 is the superconducting
order parameter at T = 0. Within standard (time-dependent) Ginzburg–
Landau theory2, the superfluid density ns can be calculated via n0

s/ns =
〈∇φ(r, t)∇φ(0)〉, where ∇φ(r, t) reflects the changes of the spatial and time
dependence of the Cooper pair wave function. n0

s is the static mean-field
value of the superfluid density for a given temperature, calculated with our
extended FLEX approximation for the generalized Eliashberg equations.

Owing to the layered structure of the cuprates, in the underdoped case
they should behave in accordance with the 2D XY model except in a narrow
critical range around Tc where the 3D XY model is more appropriate [71,
72]. The standard theory for the 2D XY model, the Berezinskii–Kosterlitz–
Thouless (BKT) renormalization group theory, should thus be a reasonable
starting point [73, 74, 75, 76]. The superconducting transition predicted by
the BKT theory is due to unbinding of fluctuating vortex–antivortex pairs
in the superconducting order parameter. Gaussian phase fluctuations are not
important, since they do not shift Tc.3 Furthermore, if one takes the coupling
of the phase to the electromagnetic field into account, they become gapped
at the plasma frequency (of the order of 1 eV) owing to the Higgs mechanism
[77].

2 In analogy to a ferromagnet, we expect n0
s/ns = 〈∇Φ(r, t)∇Φ(0)〉. Note that

it is straightforward to map our electronic theory onto a lattice (Wannier–type
representation) and then to derive from the product of the anomalous Green’s
functions, {F · F∗}, a contribution to the free energy of the form ns cos Θij as
used by Chakraverty et al. [51]. Here, Θij is the angle between the phases of
neighboring Cooper-pairs. Approximately, one has ns = n0

sΘ̄ij , with Θ̄ij = 1 for
T < Tc and Θ̄ij = 0 for T > Tc.

3 This is true in three dimensions. Of course, in the 2D case Gaussian fluctuations
destroy the long-range order, yielding Tc = 0, but the mean-field transition is
still unchanged.
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Let us now turn to a second possibility for the determination of Tc, namely
with the help of the BKT theory. It turns out that the relevant parameters
for the unbinding of thermally created vortex–antivortex pairs are the dimen-
sionless stiffness K and the vortex core energy Ecore. The stiffness is related
to ns by

K(T ) = βh̄2 ns(T )
m

d

4
, (2.130)

where β again denotes the inverse temperature and m the effective mass. d
is the average spacing between CuO2 layers. In our calculations we set d to
half the height of the unit cell of YBa2Cu3O6+x. One then has to solve the
Kosterlitz recursion relations

dy

dl
= (2 − πK) y (2.131)

dK

dl
= −4π3y2K2 . (2.132)

Here y = e−βEc denotes the vortex fugacity. For the vortex core energy, we
have used the approximate result of Blatter et al., i.e.

Ecore = πkBTK lnκ , (2.133)

where κ is the Ginzburg parameter, and l = (r/r0) is a logarithmic length
scale which relates K to the strength of the vortex–antivortex interaction.
For T > Tc, K tends to zero for l → ∞, so that the interaction at large
distances is screened and the largest vortex–antivortex pairs unbind. This
destroys the Meissner effect and leads to dissipation. On the other hand,
bound Cooper pairs reduce K and thus ns, but do not destroy superconduc-
tivity. After (2.131) and (2.133) have been solved, it turns out that that the
renormalization of K is very small [78]. Thus, to a good approximation, one
can obtain Tc(x) from the simple criterion [62, 78, 79, 80]4

K(Tc) =
2
π

or
ns(Tc, x)

m
=

2
π

4kBTc

h̄2d
. (2.134)

In order to investigate the dynamical phase stiffness, one has to calcu-
late ns(ω). A dynamical generalization of the BKT theory was developed by
Ambegeokar et al. [81, 75]. It turns out that the critical size for a vortex–
antivortex pair is given by

rω =

√
Dν

2πω
, (2.135)

4 In our FLEX theory, the fluctuations of the ordered antiferromagnetic state
in the paramagnetic metallic regime are treated beyond the mean-field level,
however, the fluctuations of the superconducting condensate were neglected in
earlier treatments. A detailed comparison between ns(ω) in the XY model and
in the FLEX approximation is given in [78, 80].
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where Dν denotes the corresponding diffusion constant. Only pairs with size
r ≤ rω contribute to the screening. Unfortunately, Dν is not easy to calculate.
In the absence of pinning, the theory of Bardeen and Stephen yields [82]

D0
ν =

2πc2ξ2abρnT

φ2
0d̃

, (2.136)

where c is the speed of light, ξab ∼ r0/2 corresponds to the coherence length,
ρn denotes the normal-state resistivity, φ0 = hc/2e is the elementary super-
conducting flux quantum, and d̃ corresponds to an effective layer thickness.
However, in cuprate superconductors, pinning becomes important. Thus we
have assumed a simple Arrhenius law

Dν = D0
ν exp

(−Ep

T

)
, (2.137)

where Ep denotes the corresponding pinning energy barrier. We insert (2.137)
and (2.136) into (2.135), yielding a new length scale l in (2.131) and (2.132),
namely a new upper limit l = ln(rω/r0). Then, with the help of (2.135)–
(2.137) and (2.131) and (2.132), we calculate the dynamical conductivity
σ(ω) via [20]

ns(ω)
m

=
1
e2
ω Im σ(ω) , (2.138)

where e is the elementary charge, and Imσ(ω) has been obtained from the
current–current correlation function and the Kubo formula using the FLEX
approximation (see (2.128)).

2.3.3 Raman Scattering Intensity Including Vertex Corrections

In general, the differential cross section in a Raman scattering experiment
is proportional to the imaginary part of the Raman response function χΓγ ,
which is given by the analytic continuation of

χΓγ(q, iνm)

= −T
∑
k,iωn

Tr
[
Ĝ(k + q, iωn + iνm)Γ̂ (k,k + q, iνm)Ĝ(k, iωn)τ̂3

]
γ(k) ,

(2.139)

where Ĝ is the Green’s function in Nambu space and τ̂i are the Pauli matri-
ces. Since the momentum transfer from the scattered photon to the electronic
system q is much smaller than the extension of the Brillouin zone, we put
q = 0. γk is the bare vertex that describes the coupling of light to effective
density fluctuations, and Γ denotes the dressed vertex, which includes renor-
malization effects due to the pairing interaction and elastic electron–electron
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scattering [83]. γ(k) can be parameterized by the so-called effective–mass
approximation, i.e.

γ(k) = m
∑
α,β

êS
α

∂2εk
∂kα ∂kβ

êI
β . (2.140)

Here, êI and êS are the polarization vectors of the incoming and scattered
light, respectively, and εk is the normal-state dispersion for which a two-
dimensional tight-binding band structure

εk = −2t [cos(kx) + cos(ky) − 2B cos(kx) cos(ky) + µ/2]

introduced earlier in (2.4), is assumed. This approach is often used and is
believed to be valid in the nonresonant limit (i.e. neglecting interband transi-
tions). Analytic continuation from imaginary to real frequencies leads to the
following expression for the Raman response function:

ImχΓγ(q = 0, ω) = π

∫ ∞

−∞
dω′ [f(ω′) − f(ω′ + ω)]

∑
k

Γ (k, ω′, ω)

× [N(k, ω′ + ω)N(k, ω′) +A1(k, ω′ + ω)A1(k, ω′)] γ(k) . (2.141)

Here, N(k, ω) = A0(k, ω) +A3(k, ω) and A1(k, ω) are the spectral densities
of the Green’s functions G and F . The bare Raman vertices for the different
polarization symmetries B1g, B2g, and A1g are the following [83]:

γB1g = t [cos(kx) − cos(ky)] ,

γB2g = 4tB sin(kx) sin(ky) ,

γA1g = t [cos(kx) + cos(ky) − 4B cos(kx) cos(ky)] . (2.142)

Here, t is the nearest–neighbor hopping energy and t′ = −Bt (with B = 0.45)
is the next–nearest–neighbor hopping energy in the tight-binding band [84].
It should be pointed out that we have subtracted from the vertex for Ax′x′

symmetry given in [83] the vertex for B2g symmetry in order to obtain an
A1g component which is fully symmetric with respect to the D4h point group.

In order to derive the vertex corrections and thus the equation Γ (γ), let
us first show that Ward’s identity for the electromagnetic kernel holds also
for the FLEX approximation. The general expression for the current–charge
correlation function in the 2 × 2 Nambu matrix formalism is given by [19]
(µ, ν = 1, 2, 3, 0)

Pµν = −e2
∑

k

1
2
Tr [γµ(k, k + q)G(k + q)Γν(k + q, k)G(k)] , (2.143)

where
q ≡ q, iνm , k ≡ k, iωn ,

∑
k

= T
∑
iωn

∑
k

.
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Again, here Γν is the dressed vertex function, and γµ is the bare current–
charge vertex (µ = 1, 2, 3):

γµ(k, k + q) = vµ(k + q/2)τ0 ,

γ0 = τ3 . (2.144)

Note that P00(q) = e2χc0(q), where χc0 is the irreducible charge susceptibility.
The Dyson equation yields the dressed 2 × 2 matrix Green’s function G in
terms of the bare Green’s function G0 and the self-energy Σ:

G−1(k) = G−1
0 (k) −Σ(k)iωnZ(k)τ0 − [ε(k) + ξ(k)] τ3 − φ(k)τ1 . (2.145)

As discussed earlier in this chapter, the self-energyΣ in the FLEX approxima-
tion for the Hubbard Hamiltonian is determined by the following generalized
Eliashberg equations:

Σ(k) =
∑
k′

[Ps(k − k′)τ0G(k′)τ0 + Pc(k − k′)τ3G(k′)τ3] ,

where Ps(q) and Pc(q) are defined in (2.31) and (2.32), respectively. The
ladder approximation to the vertex function Γµ corresponding to the FLEX
approximation to Σ then yields the following linear equation:

Γµ(k + q, k) = γµ(k + q, k)

+
∑
k′

[τ0G(k′ + q)Γµ(k′ + q, k′)G(k′)τ0Ps(k − k′)

+ τ3G(k′ + q)Γµ(k′ + q, k′)G(k′)τ3Pc(k − k′)] . (2.146)

Gauge invariance of the electromagnetic kernel requires that Γµ satisfy
Ward’s identity [19]:∑

µ

qµΓµ(k + q, k) = τ3G
−1(k) −G−1(k + q)τ3 . (2.147)

One can derive Ward’s identity (2.147) from (2.146) by inserting (2.147) on
the right–hand side in (2.145) and then making use of the self-energy equa-
tions. For q = 0, the important relationship P00(q = 0, iνm) = e2χc0(q =
0, iνm) = 0 follows from (2.147). Furthermore, we obtain from Ward’s identity
in (2.147) for q = 0 the following expression for the vertex Γ0:

Γ0(k, ω + ν, ω) = Z(k, ω + ν)τ3 + ω [Z(k, ω + ν) − Z(k, ω)] ν−1τ3

− [ξ(k, ω + ν) − ξ(k, ω)] ν−1τ0

+ [φ(k, ω + ν) + φ(k, ω)] ν−1τ3τ1 . (2.148)

The last term, proportional to τ3τ1 = iτ2, in (2.148) diverges for ν → 0 and
corresponds to the collective gauge mode [19, 85]. This is renormalized by
the Coulomb interaction to the 2D plasmon.
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We turn now to the Raman response function χγ for the polarization
symmetry γ. This is derived from P00(q) in (2.143) by replacing γ0 and Γ0

by the bare and full Raman vertices γτ3 and Γτ3:

χγ(Q) = −
∑

k

1
2
Tr [Γ (k +Q, k)τ3G(k +Q)γ(k)τ3G(k)] . (2.149)

The full Raman vertex Γ satisfies the following integral equation:

Γ (k +Q, k) = γ(k) +
∑

q

[Ps(q) + Pc(q)]
1
2
Tr [τ3G(k + q +Q)τ3G(k + q)]

× Γ (k + q +Q, k + q) . (2.150)

After analytic continuation, we obtain approximately the following integral
equation for the vertex function Γ (k, ω′, ω) occurring in (2.141):

Γ (k, ω′, ω) = γ(k) + π2
∑
q

∫ ∞

−∞
dν Ps(q, ν) [f(ν − ω′ − ω) + b(ν)]

× [N(k + q, ω′ − ν + ω)N(k + q, ω′ − ν)
−A1(k + q, ω′ − ν + ω)A1(k + q, ω′ − ν)] Γ (k + q, ω′ − ν, ω) . (2.151)

Here, Ps(q, ν) = (3/2)U2Imχs(q, ν) is the pairing interaction due to ex-
change of spin fluctuations (we have left out the interaction due to charge
fluctuations because this is much smaller). We now approximate this vertex
equation in the following way: first, we consider only the lowest–order term by
inserting on the right–hand side the bare vertex γ(k+q); secondly, we replace
γ(k+q) by γ(k+Q) with Q = (π, π) because Ps(q, ν) is strongly peaked at
Q and the equivalent vectors (±π,±π). In this way we obtain approximately
the following vertex corrections for the three different symmetries of interest:

ΓB1g (k, ω′, ω) = t [cos(kx) − cos(ky)] [1 − J(k, ω′, ω)] , (2.152)

ΓB2g (k, ω′, ω) = 4tB sin(kx) sin(ky) [1 + J(k, ω′, ω)] , (2.153)

and

ΓA1g (k, ω′, ω) = t [cos(kx) + cos(ky)] [1 − J(k, ω′, ω)]
− 4tB cos(kx) cos(ky) [1 + J(k, ω′, ω)] , (2.154)

where

J(k, ω′, ω) = π2

∫ ∞

−∞
dν [f(ν − ω′ − ω) + b(ν)]

∑
q

Ps(q, ν)

× [N(k + q, ω′ + ω − ν)N(k + q, ω′ − ν)
− A1(k + q, ω′ + ω − ν)A1(k + q, ω′ − ν)] . (2.155)
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The functions f and b in (2.151) and (2.155) are again the Fermi and Bose
functions.

In the weak-coupling limit, where the gap function ∆(k) is independent
of ω, Manske et al. have shown that the Raman response functions for the
three relevant polarization geometries including vertex corrections, are ap-
proximately given by the following (assuming particle–hole symmetry and
T = 0) [83]:

χA1g (ω) = 2
[
〈γ2

A1g
∆2

k〉 −
〈γA1g∆

2
k〉2

〈∆2
k〉

]
, (2.156)

χB1g (ω) = 2

[
〈γ2

B1g
∆2

k〉 +
〈γB1g∆

3
k〉2(

ω
2

)2 〈∆2
k〉 − (〈ε2k∆2

k〉 + 2〈∆4
k〉)

]
, (2.157)

and
χB2g (ω) = 2〈γ2

B2g
∆2

k〉 . (2.158)

Here, the averages 〈f(k)〉 are defined in terms of the Tsuneto function (see
(10) in [83]). Let us emphasize that the second term in (2.157) is present only
for a d-wave gap, and vanishes for an s-wave symmetry of ∆.

We come now to the theoretical description of order parameter collective
modes in Raman scattering experiments. These modes can be calculated anal-
ogously to those in p-wave–pairing superconductors [86]. In general, it can be
said that the dx2−y2-wave pairing component in weak-coupling theory gives
rise to a phase fluctuation mode which is renormalized into a 2D plasmon
[87], and to an amplitude fluctuation mode of the d-wave gap. For each addi-
tional (weaker) pairing component, such as an extended s-wave component,
one obtains an amplitude (real) and a phase (imaginary) fluctuation mode.
Let us consider first the amplitude fluctuation mode of the dx2−y2-wave gap.
We have calculated the mode frequency ω0 from the weak-coupling expression
in [88] for q = 0 and find

Re

[∑
k

(ω2 − 4∆2
k) [cos(kx) − cos(ky)]2

[
4E2

k − (ω + iΓ )2
]−1 tanh(Ek/2T )

Ek

]

= 0 . (2.159)

The effect of quasiparticle damping is taken into account by carrying out an
analytical continuation of this result from iωm to ω + iΓ . For a gap ∆(k) =
(∆0/2)(coskx − cos ky) and a band ε(k) with t′ = 0 and chemical potential
µ, the summation over k in the square Brillouin zone has been carried out
numerically for the following expression for T = 0:

χs0(Q, ω) =
∑

k

EkEk+Q − εkεk+Q −∆k∆k+Q

(Ek + Ek+Q)2 − (ω + iΓ )2
Ek + Ek+Q

2EkEk+Q
. (2.160)

Here, E2
k = ε2(k)+∆2(k). We obtain a peak in the function of ω, Reχs0(Q, ω)

at the kinematical gap ω = 2|µ| [89], whose height decreases with increasing
Γ . The approximate analytic result for T = 0 is given by
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χs0(Q, ω) = V −1
0 −NF (z/1 + z)1/2 log

[
4 (1 + z)1/2

]
, (2.161)

where NF is the density of states at the Fermi energy,

z =
[
4µ2 − (ω + iΓ )2

]
/ (2∆0)

2 and , V −1
0 = NF log (2W/∆0) .

(2.162)
Here, W = 4t is the half bandwidth. The function Reχs0(Q, ω) in (2.162)
first rises with ω2 and then exhibits a peak at the kinematical gap 2|µ|, whose
height is about V −1

0 − (π/2)NF (Γ/2∆0). A low-frequency mode, i.e. a zero
of the equation Reχs0(Q, ω) = 1/U , is obtained only for a finite range of
U values which decreases with increasing Γ . For t′ = −0.45t, a kinematical
gap no longer exists and the effective |µ| is nearly zero. The approximate
analytical result for the expression in (2.161) becomes then equal to

χs0(Q, ω) = V −1
0 +

1
2
NF i

ω̄2

(ω̄ + iγ)
K(ω̄ + iγ) , (2.163)

where
ω̄ = ω/2∆0 and γ = Γ/2∆0 .

Here, K is the first elliptic integral. By summing numerically over k in the
square Brillouin zone, we obtain, for t′ = 0 in ε(k) and T = 0, two solutions
of (2.159) with frequencies ω0 � √

3∆0 provided that the damping Γ is
sufficiently large, namely, ω0 < 3.5Γ . For t′ = −0.45t and T = 0, we obtain
two solutions whose frequencies are somewhat larger, ω0 � 2∆0, where again
the condition ω0 < 3.5Γ has to be satisfied. For a mode frequency ω0 = 2∆0 �
0.2t at T/Tc = 0.77, we find a damping Γ (ω0) � 0.1t at the anti-node ka

which means that the condition ω0 < 3.5Γ is satisfied. In [87], Wu and Griffin
have obtained a frequency ω0 =

√
3∆0 for the amplitude collective mode;

however, the coupling of this mode to the charge fluctuations was neglected.
We find that the coupling of this fluctuation in the particle–particle channel
to the charge fluctuation in the particle-hole channel yields approximately
the following contribution χfl to the charge susceptibility χc0 at T = 0 (see
[88] and [86]):

χfl(q = 0, ω) = 2
(
N ′

F

NF

1
V0

)2

∆2
0

1
g(ω)

, (2.164)

where

g(ω) = NF

[
2
3
ω̄2 +

4
3
γ2 − 1 − 8

3
iω̄γ

+ γ
(
4ω̄2 − 2γ2 + 6iω̄γ

)
log
(

4
[
1 − (ω̄ + iγ)2

]−1/2
)]

. (2.165)

Here, NF and N ′
F = dNF /dω are the density of states and its derivative at

the Fermi energy ω = 0. One notices from (2.165) that in the limit γ → 0 one
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obtains no valid solution of the equation Re g(ω0) = 0 because the solution
ω̄0 =

√
3/2 violates the condition that ω̄0 ≤ 1. However, for suffiently large

values of Γ (γ ≥ ω̄/2), one obtains a solution of the equation Re g(ω0) = 0
which satisfies the condition ω̄0 ≤ 1.

We have also calculated the resonance frequency of the exciton-like s-wave
mode of the order parameter which is caused by an additional s-wave pairing
component |g0| smaller than the main d-wave pairing component |ḡ2| (see
[87]). The method of Refs. [88] and [86] yields the following contribution χexc

from this order parameter fluctuation mode to the charge susceptibility χc0

at T = 0:
χexc(q = 0, ω) = − (NFω)2 [gexc(ω)]−1

, (2.166)

where

gexc(ω) =
(

1 − ḡ2
g0

)∑
k

1
2Ek

+
1
2
ω2
∑

k

tanh(Ek/2T )

Ek

[
4E2

k − (ω + iΓ )2
] . (2.167)

From (2.167) we obtain the following approximate result:

gexc(ω) =
(

1 − ḡ2
g0

)
1
V0

+NF i
ω̄2

(ω̄ + iγ)
K(ω̄ + iγ) , (2.168)

where V −1
0 is given by (2.162) and ω̄ and γ by (2.163). We have carried out

the summation over k in (2.167) numerically and find in agreement with Ref.
[87], that a solution of the equation Re gexc(ω0) = 0 for given ∆0 and Γ exists
only for very small values of the parameter (ḡ2/g0) − 1 (≤ 0.1). This means
that the s-wave pairing coupling has to be almost as strong as the d-wave
pairing component, which is quite unrealistic. However, with increasing Γ the
resonance frequency ω0 decreases and becomes much smaller than the pair-
breaking threshold 2∆0 for reasonably large scattering rates (Γ/2∆0 ∼ 1/2).
This means that the contribution Imχexc(ω) of the exciton-like mode to the
Raman scattering intensity with the B1g polarization shows up as a small
peak below the pair-breaking threshold. Since the damping Γ in the direction
of the momentum of the antinode of the order parameter rises rapidly with
ω, it may be that this peak becomes observable for smaller values of the ratio
g0/ḡ2 of the s-wave and d-wave pairing couplings than those obtained from
weak-coupling theory [87]. This will be discussed in the next chapter.

2.3.4 Optical Conductivity

Similarly to the Raman response, the optical conductivity σ(ω) is calcu-
lated here with the help of the current–current correlation function using the
spectral densities which solve the generalized Eliashberg equations. For un-
derdoped cuprates, in the presence of a pseudogap, the in-plane conductivity
σab(ω), neglecting vertex corrections, is given by
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σab (ω) =
2e2

h̄c0

π

ω

∫ ∞

−∞
dω′ [f(ω′) − f(ω′ + ω)]

×
∑
k

[
v2

k,x + v2
k,y

]
[N(k, ω′ + ω)N(k, ω′)

+ A1(k, ω′ + ω)A1(k, ω′) +Ag(k, ω′ + ω)Ag(k, ω′)] , (2.169)

where vk,i = ∂εk/∂ki are the band velocities within the ab plane and are
calculated for the corresponding tight-binding energy dispersion of the quasi-
particles. Again, N is the normal spectral function, and A1 and Ag are the
anomalous spectral functions with respect to the superconducting gap and
the pseudogap, respectively. These spectral functions have been taken from a
self-consistent solution of the generalized Eliashberg equations in the presence
of the pseudogap, as already descibed in (2.63)–(2.65):

N(k, ω) = − 1
π

Im
ωZ + εk + ξ

(ωZ)2 − (εk + ξ)2 − E2
g − φ2

,

A1(k, ω) = − 1
π

Im
φ

(ωZ)2 − (εk + ξ)2 − E2
g − φ2

,

Ag(k, ω) = − 1
π

Im
Eg

(ωZ)2 − (εk + ξ)2 − E2
g − φ2

.

We again want to emphasize that it is necessary to include the bubble contri-
bution due to Ag in the conductivities and susceptibilities. Although Ward’s
identities are satisfied, neglect of this term leads to disagreement with exper-
imental data. In the optimally and overdoped cases where no pseudogap is
present, we take Ag ≡ 0.

It is interesting to remark that for high-Tc cuprates the transport prop-
erties perpendicular to the CuO2 planes are also of significant interest. For
example, measurements of the c-axis conductivity suggest that the conduc-
tance in c direction is coherent in the overdoped regime [90] and successively
becomes incoherent in the underdoped regime [91, 92]. In this work we shall
therefore study the two limits of coherent and incoherent c-axis conductivity.
The coherent conductivity along the interplane c direction is given, to lowest
order in the interlayer hopping parameter t⊥ [93], by

σc(ω) =
e2t2⊥c0
h̄a2

0

π

ω

∫ ∞

−∞
dω′ [f(ω′) − f(ω′ + ω)]

∑
k

[N(k, ω′ + ω)N(k, ω′)

+ A1(k, ω′ + ω)A1(k, ω′) +Ag(k, ω′ + ω)Ag(k, ω′)] , (2.170)

where c0 and a0 are the c-axis and ab-plane lattice constants taken from ex-
periment. On the other hand, incoherent conductivity corresponds to diffuse
c-axis transmission and amounts to taking the averages of the spectral func-
tions N(k, ω), A1(k, ω), and Ag(k, ω) over all momenta (see the discussion
in [94]). This means that N(k, ω) is replaced by the density of states
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N(ω) =
∑

k

N(k, ω) , (2.171)

while the averages of A1 and Ag vanish owing to the d-wave symmetry of the
superconducting gap and pseudogap [94]. We find

σincoh
c (ω) =

e2t2⊥c0
h̄a2

0

π

ω

∫ ∞

−∞
dω′ [f(ω′) − f(ω′ + ω)]N(ω′ + ω)N(ω′) .

(2.172)
In the next chapter we shall discuss our results within these different approxi-
mations. In all cases the corresponding resistivity is given by ρ = σ−1(ω → 0).
The frequency-dependent scattering rate τ−1(ω), which is a two-particle
property, is obtained with the help of Drude’s theory. As will be discussed
later, determining τ−1(ω) from the Raman response yields approximately the
same results.

2.4 Comparison with Similar Approaches for Cuprates

In this subsection we compare our electronic theory for Cooper pairing in
high-Tc cuprates with similar approaches that also use the exchange of spin
fluctuations as the relevant pairing mechanism. Let us emphasize that, obvi-
ously, the mechanism of Cooper pairing cannot be measured directly; there-
fore it is important to search for fingerprints of the pairing interaction in the
superconducting gap function ∆(k, ω) in various experiments. In this con-
nection, ARPES experiments that measure the spectral density directly and
inelastic neutron scattering experiments that study the interplay between
the quasiparticles and the spin excitations (“resonance peak”), are two key
experiments in which fingerprints of the Cooper pairing can be seen directly.

In view of the well-known strong-coupling theory for phonons of Scalapino,
Schrieffer, and Wilkins [95], it is therefore important to calculate ∆(k, ω)
self-consistently. As mentioned earlier, the method for doing this is the FLEX
approximation proposed by Bickers, Scalapino, and White [6]. In the past, the
solution of the corresponding FLEX equations was done on the imaginary axis
(or slightly above the real axis [11]), while in our theory, similarly to Dahm
and Tewordt [10], we solve the generalized Eliashberg equations directly on
the real frequency axis.

Thus, in short, we would like to stress that we do not want to focus on
limiting solutions of the FLEX approach for T → 0, doping x→ 0, and very
large U (as was done by Serene, Hess, and others [96, 97, 98]). In our approach,
for the cuprates and ruthenates we use a Berk–Schrieffer-type theory for the
behavior of the quasiparticles in relation to spin excitations,

G = G{χ} , χ = χ{G} , (2.173)

and determine χ from an electronic theory within the RPA. Obviously, the
calculation demands a high degree of self-consistency in determining G, the
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resultant elementary excitations, the spin susceptibility, and the supercon-
ducting properties. Although we are not fully reviewing the most closely re-
lated theories, we shall point out the main differences of those theories from
our approach.

2.4.1 The Spin Bag Mechanism

In an early theory of Schrieffer and coworkers it was argued that the local sup-
pression of the electronic gap in the antiferromagnetic phase can lead to an
attractive interaction between quasiparticles [99]. Schrieffer et al. performed
detailed calculations of the pairing potential mediated by the collective modes
of the spin-density-wave (SDW) background. Thus, the main difference from
the idea of conventional paramagnon theory that we use in our approach is
that the spin bag theory takes into account explicitly the effect of the lo-
cal antiferromagnetic order on the self-energy of the quasiparticles. On the
other hand, however, simple model susceptibilities were used and, most im-
portantly, the topology of the Fermi surface was neglected yielding nodeless
p- or d-wave pairing in disagreement with experiment.

What is a simple physical picture for the spin bag mechanism? If the
effective Coulomb interaction U is less than W (where W is the bandwidth),
a hole injected into an SDW system depresses the staggered magnetization
M surrounding a hole, in a region whose size L and shape depend on the
nature of the Fermi surface and on the mean SDW amplitude [100]. The
region of depressed M provides a bag, inside of which the hole is trapped
self-consistently. As a result, the bag containing the hole moves as an entity
and acts as a quasiparticle of spin 1/2 and charge e. In a detailed analysis,
Schrieffer and coworkers showed that two holes attract each other by sharing
a common bag [99]. In the opposite limit, i.e. U > W , it was shown by
several authors that a similar result occurs if finite-range antiferromagnetic
order exists. In essence, an added hole always leads to a reduction of the local
staggered order parameter by disordering the spins in the vicinity of the hole.

What is the main difference between the spin bag mechanism and our
self-consistent theory? Although the effective pairing potential arising from
the one-spin fluctuation exchange processes in the singlet channel is the well-
known antiparamagnon result, i.e.

VAPM = U +
U3χ2

0(k
′ − k)

1 − U2χ2
0(k′ − k)

+
U2χ0(k′ − k)

1 − Uχ0(k′ − k)
, (2.174)

the existence of the electronic gap provides a new mechanism for an attractive
spin bag pairing potential. It arises from Pauli’s exclusion principle because
a fermionic line inside a bubble diagram is equal to the momentum of the
injected particle. This leads to a compensation by its exchange counterpart or
corresponding crossing diagrams. As a result, the corresponding self-energy
due to the above spin fluctuations is positive near the SDW instability and
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leads to a pseudogap. A second particle added to the system suppresses these
fluctuations through Pauli’s principle, reducing the phase space for electron–
hole excitations and hence reducing χ. This leads to an effective interaction

V SB
kk′ (w, ω′) = i

∑
q

∫
dν
2π

G0(ω − ν,k − q)G0(−ω′ − ν,−k′ − q)

× U2χ(q, ν)U2χ(q + k′ − k, ν + ω′ − ω) (2.175)

(for an illustration see, for example, Fig. 10 in [101]), where χ refers to an
RPA series containing χ0 that is calculated using a model susceptibility. In
general, if the frequency scale associated with the fluctuations of the an-
tiferromagnetically ordered domain is small compared with the (Hubbard)
energy gap and if the length scale of the local antiferromagnetic order is
large compared with the SDW coherence length ξSDW ≡ h̄vF /∆, where vF

is the Fermi velocity in the absence of the SDW, the above starting point
is qualitatively correct. To some extent this is similar to our approach, in
which a hole generates a local spin density wave that interacts with a second
hole, finally yielding a Cooper pair. However, our corresponding interaction
is purely repulsive in momentum space. It is interesting to remark that the
attractive part of the spin bag pairing potential is indeed helpful for dx2−y2-
wave pairing, as pointed out by Scharnberg and coworkers [102]. This can be
easily seen from the general arguments made in connection with Fig. 1.12.
In contrast to the spin bag mechanism, in our self-consistent theory a stabi-
lization of the dx2−y2-wave order parameter occurs in frequency space owing
to the feedback effect of ∆(k, ω) on χ, yielding a resonance peak at ωres as
described above.

Finally, Kampf and Schrieffer extended the spin bag approach in order to
study the spectral density in antiferromagnetically correlated metals [103].
They showed that in the spectral function, weight is shifted from the single–
quasiparticle peak to the incoherent background, which evolves into upper
and lower Hubbard bands of the antiferromagnetic insulator. Kampf and
Schrieffer argued that precursors of these split bands should show up as
shadow bands in ARPES measurements, which have indeed been observed
[104]. For sufficiently strong antiferromagnetic correlations a coupling of
states k and k′ under the condition

|k− k′ − Q| < ξ−1 , (2.176)

where again Q = (π, π) and ξ is the antiferromagnetic correlation length,
leads to distinct states in ARPES experiments. This happens because the
energy eigenstates |Φks〉 no longer have a sharp momentum; that is,

|Φks〉 = uk |k〉 + svk |k + Q〉 , (2.177)

where
u2
k + v2

k = 1 , (2.178)
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owing to Bragg scattering. Therefore, if one creates a hole with energy E(k)
in a lower band by photoemission, one will observe the corresponding emitted
electron with momentum k with a probability u2

k, but a momentum k+Q also
occurs with probability 1 − u2

k. Thus, quite generally, Bragg scattering with
strong antiferromagnetic correlations leads to shadow states. This picture
was supported by early FLEX and QMC calculations [11, 105] and is also
contained in our approach, of course.

2.4.2 The Theory of a Nearly Antiferromagnetic
Fermi Liquid (NAFL)

In 1992, Monthoux and Pines pointed out that for the theoretical description
of spin-fluctuation-induced superconductivity in cuprates it is extremely im-
portant to take full account of the momentum and frequency dependence of
the pairing interaction [106, 107]. Similarly to our theory described in Chap.
2, Monthoux and Pines used a Hamiltonian H for the in-plane quasiparticles
that reads

H = H0 +Hint , (2.179)

where
H0 =

∑
p,σ

εp ψ
†
p,σψp,σ (2.180)

and εp describes the bare quasiparticles with a simple tight-binding dispersion
relation. The interaction part Hint models an effective interaction between
the quasiparticles and the spin fluctuations and is given by

Hint =
∑
q

g(q) s(q) · S(−q) , (2.181)

where
s(q) =

1
2

∑
α,β,k

ψ†
k+q,α σαβ ψk,β (2.182)

and S is the spin-fluctuation propagator. Its properties are determined by the
spin–spin correlation function χij(q, ω) = δijχ(q, ω). Later, the momentum
dependence of g is neglected. An important step was taken by Millis, Monien,
and Pines [108], who proposed for χ(q, ω) the form

χ(q, ω) = χMMP (q, ω) =
χQ

1 + ξ2(q − Q) − iω/ωsf
, (2.183)

where the parameter χQ denotes the static spin susceptibility at the wave vec-
tor Q = (π, π), ξ is a temperature-dependent antiferromagnetic correlation
length, and ωsf reflects the characteristic spin-fluctuation (i.e. paramagnon)
mode energy of the system considered. All these parameters have been de-
termined by fitting NMR data.
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Physically speaking, since the dynamical spin susceptibility χ(q, ω) peaks
at wave vectors close to (π, π), two different kinds of quasiparticle emerge: (a)
“hot” quasiparticles that are located not far from those momentum points on
the Fermi surface that can be connected by Q (see Fig. 2.8, the “hot spots”)
and (b) “cold” (or nodal) quasiparticles that are located not far from the
diagonals and feel a “normal” interaction. Pines and coworkers argued, by a
detailed analysis, that the cold quasiparticles may be characterized by Lan-
dau’s Fermi liquid theory, whereas the hot quasiparticles have many highly
anomalous properties.

Using the above assumptions, Monthoux and Pines performed strong-
coupling calculations using the Eliashberg formalism and concluded that the
normal state of hole-doped cuprates might be described by “nearly antifer-
romagnetic Fermi liquid” (NAFL) model [107]. Monthoux and Pines found,
depending on the parameters, a high Tc and also dx2−y2 pairing. This can
be easily understood in view of the general remarks made in sect. 1.4.3. The
main difference from our work arises from the fact that the pairing interaction
in the NAFL model is

V NAFL
eff (q, ω) = g2χMMP (q, ω) (2.184)

and thus is a parameterization mainly in terms of measured NMR data. In
our theory, the effective pairing interaction is determined the Feynman dia-
grams shown in Fig. 2.2 and is calculated self-consistently, taking into account
the scattering processes of the in-plane quasiparticles from spin fluctuations
that are also generated by the quasiparticles. This was first done by Bickers,
Scalapino, and White [6]. Thus, the antiferromagnetic correlation length ξ
and the characteristic frequency of the spin fluctuations, ωsf , are results of
a microscopic calculation and no longer parameters. This is particularly im-
portant if doping-dependent quantities are considered. Furthermore, below
Tc the feedback effect of the elementary excitations on the dynamical spin
susceptibility is very strong, yielding a resonant-like peak in agreement with
observations in INS experiments. This strong interdependence also supports
our self-consistent procedure.

2.4.3 The Spin–Fermion Model

Because the NAFL approach is formulated in a phenomenological way and
only applicable to the normal state. i.e. for temperatures T ≥ Tc, one might
ask how one can generalize this approach below Tc and find a microscopic
basis for the NAFL picture. This has been done by Chubukov, Schmalian, and
Pines in the so–called spin–fermion model [109]. They derive an effective low-
energy model from a microscopic Hubbard–type Hamiltonian with a four–
fermion interaction

H =
∑
k,α

εkψ
†
k,αψk,α +

∑
ki,αi

Uα1,α2,α3,α4
k1,k2,k3,k4

ψ†
k1,α1

ψ†
k2,α2

ψk3,α3ψk4,α4 (2.185)
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for fermions with spin α and momentum k; εk is again the band structure
dispersion. Similarly to our approach, one then uses the one–band Hubbard
model with local Coulomb interaction,

Uα1,α2,α3,α4
k1,k2,k3,k4

= Uδk1+k2−k3−k4 × (δα1α4δα2α3 − δα1α3δα2α4) . (2.186)

The next step contains the assumption that Mott physics does not play a
major role and therefore a separation of energy scales is possible. To project
out the low-energy physics, one uses a strategy from field theory: introduce
a characteristic energy cutoff Λ, and generate an effective low–energy model
by eliminating all degrees of freedom above Λ in the hope that some of the
system properties will be universally determined by the low-energy behavior
and as such will not depend sensitively on the actual choice of Λ. The most
straightforward way to obtain the corresponding low-energy action is to in-
troduce a spin 1 bose field S and decouple the four–fermion interaction using
the Hubbard–Stratonovich procedure. This yields [110]

H =
∑
k,α

εkψ
†
k,αψk,α +

∑
q

U(q)Sq · S−q

+
∑

k,q,α,β

U(q)ψ†
k+q,ασαβψk,β · S−q , (2.187)

where one assumes that the four–fermion interaction makes a contribution
only in the spin channel with momentum transfer q. Integrating formally
over energies larger than Λ, one obtains an effective action in the form

S = −
∫ Λ

k

G−1
0 (k)ψ†

k,αψk,α +
1
2

∫ Λ

q

χ−1
0 (q) Sq · S−q

+ g

∫ Λ

k,q

ψ†
k+q,ασαβψk,β · S−q . (2.188)

The integration over k and q is over 2 + 1 dimensional vectors q = (q, iωm)
with aMatsubara frequency ωm. It reads∫ Λ

q

... =
∫
|q−Q|<Λ

ddq

(2π)d
T
∑
m

... (2.189)

in the boson case, and∫ Λ

k

... =
∫
|k−kF |<Λ

ddk

(2π)d
T
∑
m

... (2.190)

in the fermion case. In (2.188), g is the effective coupling constant, G0 (k)
denotes the bare low–energy fermion propagator, and χ0 (q) is the bare low–
energy collective spin boson propagator. If one further assumes that G0(k)
and χ0(q) should have a Fermi-liquid and Ornstein–Zernicke form, i.e.
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G0(k) =
z0

iωm − εk
, (2.191)

χ0(q) =
α

ξ−2
0 + (q − Q)2 + ω2

m/c
2
, (2.192)

one is able to formulate Gorkov equations for the superconducting state.
In (2.192), ξ0 is the bare value of the spin correlation length. The actual ξ
generally differs from the bare value because the low–energy fermions that
damp the spin fluctuation modes might change their static properties as
well. ξ acquires an additional temperature dependence owing to spin–spin
interactions and is a parameter of the theory.

The corresponding Gor’kov expressions then read [109]

Gk(iω) =
iω +Σk(iω) + εk

[iω +Σk(iω)]2 − Φ2
k(iω) − ε2k

, (2.193)

Fk(iω) = − Φk(iω)
[iω +Σk(iω)]2 − Φ2

k(iω) − ε2k
, (2.194)

χq (iω) =
αξ2

1 + ξ2 (q − Q)2 −ΠQ (iω)
. (2.195)

Here, Σk(iω) and ΠQ(iω) are fermionic and bosonic self–energies (k refers
to the component along the Fermi surface), and Fk(iω) and Φk(iω) are the
anomalous Green’s function and the anomalous self-energy, respectively. In
the above equations, the relation to the NAFL approach becomes quite clear.
However, it is interesting to remark that the spin–fermion model could also
have been motivated by assuming that the influence of the other fermionic
quasiparticles on a given quasiparticle can be described in terms of a set
of molecular fields. In the present case the dominant molecular field is an
exchange field produced by the Coulomb interaction U(q). However, one has
to consider this field as dynamic, not static. The corresponding part of the
action reads

S = −
∫ Λ

k

G−1
0 (k)ψ†

k,αψk,α +
1
2

∫ Λ

q

Hint
q · s−q , (2.196)

with a fermionic spin density s−q =
∫ Λ

k
ψ†

k+q,ασαβψk,β . One assumes further
that the molecular field Hint

q is given by the linear response function, i.e.

Hint
q = g2χ0(q)s−q . (2.197)

This expression is valid as long as one is not in a region so close to a magnetic
instability that nonlinear magnetic effects play an important role. Formally,
this expression can be obtained from (2.188) by integrating out the collective
degrees of freedom. A relation between this purely fermionic approach and
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the bosonic spin susceptibility χ(q) of (2.195) can be seen by evaluating
the reducible four–point vertex in the spin channel in the lowest order of
perturbation theory. One finds

Γαβ,γδ(k, k′, q) = −Veff(q)σαβσγδ , (2.198)

where the effective quasiparticle interaction is proportional to the renormal-
ized spin propagator of (2.195):

Veff(q) = g2χ(q) =
g2αξ2

1 + ξ2(q − Q)2 −ΠQ(ω)
. (2.199)

Thus, to summarize, what are the main differences from our self–consistent
theory? From the above equations, we see that the input parameters in (2.188)
are an effective coupling energy ḡ = g2z2

0α, the typical quasiparticle energy
vF ξ

−1 (one assumes that the low-energy dispersion can be linearized), and
the upper cutoff Λ. Note also that an additional parameter in the spin–
fermion model is the angle φ0 between the Fermi velocities at the two hot
spots separated by Q, but this angle does not enter the theory in any signif-
icant manner as long as it is different from 0 or π. This is the case when the
hot spots are located near the (0, π) and (π, 0) points as in optimally doped
cuprates. In short, although the spin–fermion model has several advantages
with respect to the simple NAFL approach (it contains important feedback
effects from the superconducting gap function on χ and Veff , for example),
it still needs the magnetic correlation length as an input parameter and is
not calculated self–consistently. This is particularly important for the calcu-
lation of the dispersion of the resonance peak and its doping dependence, for
example.

2.4.4 BCS–Like Model Calculations

Finally, we discuss BCS-like calculations based on standard many-body the-
ory. They have the advantage that they can model experimental data without
assuming a specific Hamiltonian, for example, but the disadvantage is that
no microscopic insight into physical properties can be provided. An impor-
tant example was the “preformed pair” model of Levin and coworkers [111],
who investigated the role of Coulomb correlations [111, 112], resonant pair
scattering [113], and residual pairing correlations below Tc [57] in the pseudo-
gap and its consequences in underdoped hole–doped cuprates. The approach
of Levin and coworkers is based on a conserving diagrammatic BCS Bose–
Einstein crossover (the so-called “pairing approximation” of Kadanoff and
Martin [114]) that is a generalization of the theory Legett [115]. How is this
done? Levin and coworkers derived a complete set of equations that is typical
for such an approach (here K = (k, iωn)):

Σ(K) = G−1
0 (K) −G−1(K) =

∑
Q

t(Q)G0(Q−K)ϕ2
k−q/2 , (2.200)
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g = [1 + gχ(Q)] t(Q) , (2.201)

χ(Q) =
∑
K

G(K)G0(Q−K)ϕ2
k−q/2 , (2.202)

which, together with the particle conservation condition n = 2
∑

K G(K) and
the pairing interaction Vkk′ = −|g|ϕkϕk′ , determines self-consistently both
the Green’s function G and the T –matrix t(Q). Again, Σ(K) is the self–
energy and χ(Q) denotes the pair susceptibility. Within this improved BCS–
like approach, one can obtain the important result that pairing fluctuations
necessarily persist below Tc down to the lowest temperatures. Only at T =
0 do these fluctuations vanish. Also, further predictions for other response
functions are possible.

The difference from our approach for the pseudogap presented in sect. 2.2
is quite clear. In our self-consistent theory, fluctuations of the Cooper pair
amplitude and phase are coupled and compete with each other. As we shall
demonstrate in the next chapter, Cooper pair phase fluctuations drastically
reduce Tc, and amplitude fluctuations can lead to a gap in various experi-
ments measuring the spin and charge channel. Only if phase fluctuations are
neglected, the amplitude fluctuations are assumed to be static, and the hot
spots dominate the scattering processes (see, for example, (2.68)), is our the-
ory similar to the one proposed by Levin and coworkers. We believe, however,
that experiments show that Cooper pair phase fluctuations and their dynam-
ics, including lifetime effects, are indeed important in underdoped hole–doped
cuprates [116].

Although a large number of papers by various authors exist in the litera-
ture about BCS-like model calculations, here we shall focus on contributions
concerned with the elementary excitations, i.e. work related to ARPES data
and the resonance peak seen in INS experiments. Let us start with the de-
scription of the neutron data. An important initial step was taken by Radtke,
Ullah, Levin, and Norman [117], who proposed a model susceptibility for
modeling directly the neutron scattering data from YBa2Cu3O6.9 (YBCO),

χ(q, ω) = χRUNL(q, ω)

= C

[
1

1 + J0 [cos(qxa) + cos(qya)]

]2

× 3(T + 5)ω
1.05ω2 − 60|ω|+ 900 + 3(T + 5)2

Θ(Ωc − |ω|) ,

where T and ω are measured in meV, and the parameters are Ωc = 100 meV
(frequency cutoff), J0 = 0.3, and C = 0.19 eV−1. Similarly to the NAFL
approach described above, the spin–fluctuation–mediated pairing potential
is obtained by multiplying χ(q, ω) by a coupling constant g2,

V RUNL
eff (q, ω) = g2χRUNL(q, ω) = g2

∫ ∞

−∞

dω′

π

Imχ(q, ω′ + i0+)
ω′ − ω

(2.203)
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for an electron and for a momentum transfer (q, ω). However, a dx2−y2–
wave Tc of only 10 K was found. A critical comparison of the NAFL and
RUNL approaches has been performed in [118], where Schüttler and Norman
concluded that the big difference in the calculated Tc between the two models
arises from the difference in the spectral weight distribution of the two model
susceptibilities.

In order to overcome this problem, Levin and coworkers improved their
theory and proposed [119] a dynamical susceptibility

χ(q, ω) =
χ0(q, ω)

1 − J(q)χ0(q, ω)
(2.204)

within the random phase approximation, in which the enhancement factor
contains an additional tight–binding structure (where a = b = lattice con-
stant)

J(q) = −J0 [cos(qxa) + cos(qya)] . (2.205)

Here χ0 denotes the usual Lindhard function. Taking bilayer effects into ac-
count, one can rewrite (2.204) as

χ(q, ω) =
χ0 + 2(χ0

22χ
0
11 − χ0

12χ
0
21)(−J⊥0 cos qzl − J)

1 − J(χ0
11 + χ0

22) − (J⊥21χ0
12 + J⊥χ0

21) + (χ0
11χ

0
22 − χ0

21χ
0
12)(J2 − J2

⊥0)
.

(2.206)

Here, χ0
ij (i, j = 1, 2) is again the Lindhard function, using the layer indices

of the bilayer system, and

J⊥12(q) = J⊥0 e
iqz l = J∗

⊥21 (2.207)

denotes the antiferromagnetic interlayer coupling that is included in the usual
RPA procedure. l is the distance between the closest CuO2 layers in YBCO.
The corresponding hopping matrix element between the planes, t⊥, is em-
bedded in the band structure that enters χ0:

χ0 = χ0
11 + χ0

12 + χ0
21 + χ0

22

=
1 + cos qzl

2
(χ0

++ + χ0
−−) +

1 − cos qzl
2

(χ0
+− + χ0

−+) , (2.208)

where χ0
αβ (α, β = +,−) are the Lindhard functions for the bonding and the

antibonding band, respectively. Assuming a constant superconducting gap
of ∆0 = 23 meV, Levin and coworkers were able to find a description of
the resonance peak at 41 meV in optimally doped YBCO. To some extent
this approach is similar to our theory (see (2.125), for example), and to
the theory proposed by Lee and coworkers [120]; however, we calculate the
superconducting gap function ∆(q, ω) self–consistently, we do not need a q–
dependent coupling J(q), and also bilayer coupling is not needed for obtaining
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a resonance peak. Note that the resonance peak has recently also been found
in a single–layer cuprate superconductor by Keimer and coworkers [121].

Inspired by the above RPA calculations and by a careful analysis by Shen
and Schrieffer [122], Norman and coworkers took an important step towards a
unified description of the elementary excitations in cuprates using a BCS–like
model calculation: they described the sharp peak in INS experiments below
Tc by a simple model of holes interacting with a collective mode, and were
also able to explain the dramatic change of photoemission spectra for BIS-
CCO below Tc within the same model [123]. ARPES data reveal a very broad
normal–state spectrum that evolves quite rapidly below Tc into a resolution–
limited quasiparticle peak, followed at higher binding energies by a dip and
then a hump, after which the spectrum is equivalent to that for the normal
state [68, 124, 125]. Norman et al. concluded that electron–electron scatter-
ing plays a dominant role in hole–doped cuprates, supporting an electronic
mechanism for Cooper pairing in these systems. As we shall discuss in the
next chapter, similar effects have also been seen in tunneling spectra, where
it was found that all of these spectral features, i.e. the (coherence) peak, dip,
and hump, scale with the superconducting gap [126, 127]. Of course, this im-
plies that the electron self–energy reveals dramatic changes below Tc, which
also might be described by a BCS–like model [128] using the Kramers–Kronig
relation, as well as implying that

ImΣ =
ImG

(ReG)2 + (ImG)2
, (2.209)

and
ReΣ = ω − εk − ReG

(ReG)2 + (ImG)2
. (2.210)

Recently, Norman and coworkers were able to model ARPES data further,
including the kink feature simultaneously with SIN and SIS tunneling data
[129]. They were also able to study the dispersion of the collective mode
considered here below Tc, i.e. ωres(q), and to extend the model calculations
by including a spin fluctuation continuum describing the normal state of
high–Tc cuprates [130].

Thus, we believe, the main advantage of the BCS-like model calculations
discussed above is the fact that they are simple and provide some physical
insight without fixing a specific Hamiltonian. Furthermore, using response
theory, a simultaneous description of different experiments is easily possible,
allowing one to obtain a simple physical picture of the processes occurring
in a CuO2 plane. However, we prefer a microscopic but quite general pic-
ture starting from a specific Hamiltonian, yielding generalized Eliashberg
equations. From these equations, we calculate and predict various physical
properties for the cuprate and ruthenate family taking lifetime and renormal-
ization effects into account self–consistently. One important example is the
superconducting gap function ∆(k, ω), which also yields a peak–dip–hump
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structure in our theory and, in addition, contains fingerprints of the pairing
interaction.

2.5 Other Scenarios for Cuprates:
Doping a Mott Insulator

Although our generalized Eliashberg theory is quite successful in describing
the elementary excitations and their interdependence with spin excitations
in hole- and electron-doped cuprates, it has a few weak points. The main
problem of our approach is the fact that for x → 0 (where x is the doping)
one does not obtain a Mott insulator. Physically speaking, our theory profits
from the vicinity to an antiferromagnetic phase (because paramagnons are
present), but ignores the fact that cuprates are doped Mott insulators. There-
fore, in this subsection, we shall sketch other theoretical scenarios based on
doping a Mott insulator and contrast them with our theory. Note that the
above criticism does not hold for Sr2RuO4 because it is a good Fermi liquid,
i.e. a more weakly correlated material, and, as discussed in connection with
Fig. 1.9, it is in the vicinity of a ferromagnetic metallic phase (except when
Sr is replaced by Ca; Ca2SrO4 is a Mott–Hubbard insulator).

2.5.1 Local vs. Nonlocal Correlations

In 1989, Metzner and Vollhardt [131] showed in a pioneering work that the
Hubbard model used in our theory undergoes significant simplifications in
the limit of infinite dimensions, i.e. d = ∞. In this limit, provided that the
kinetic energy is scaled as 1/

√
d, the self-energy and vertex functions may

be taken to be purely local in space, although they retain a nontrivial fre-
quency dependence. This means that the Hubbard model can be mapped
onto a self–consistently embedded Anderson impurity problem, which can
then be solved by various many–body techniques [132, 133]. The resulting
dynamical mean–field theory (DMFT) is exact in an infinite number of di-
mensions. Recently, Wölfle and coworkers extended the DMFT of the t–J
model discussed below and also generalized the noncrossing approximation
(NCA) [134, 135]. These authors have calculated the single–particle spec-
tral density and other response functions and find good agreement with the
properties of underdoped cuprates. Also back in 1989, Müller-Hartmann [136]
proved the locality of many–body Green’s function perturbation theory and
used it in order to derive self-consistent equations for the self-energy in terms
of the Luttinger–Ward functional, which he evaluated to various orders in
weak-coupling perturbation theory. A similar self-consistent single site the-
ory was developed by Jarrell and coworkers [137] who assumed a purely local
self–energy and vertex function even in a finite number of dimensions. The
resulting mean–field theory for correlated lattice systems is usually called the
dynamical mean–field approximation (DMFA).
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How can we approximate a complicated problem with correlated elec-
trons on a lattice to a single–site effective problem with fewer degrees of
freedom? Similarly to the well–known case of the Weiss mean–field theory
for magnetism, in which the resultant mean–field equations become exact
in the limit where the coordination number of the lattice becomes large, the
mean–field description of the Hubbard model (see (2.1)) involves a generalized
Weiss function which is a function of time instead of being a single number.
Thus we are required to take local quantum fluctuations into account. The
corresponding mean-field description involves

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†0σ(τ)G−1
0 (τ − τ ′) c0σ

+ U

∫ β

0

dτ n0↑(τ)n0↓(τ) . (2.211)

Here, the subscript 0 refers to the mean–field and G−1
0 (τ − τ ′) plays the role

of the generalized Weiss effective field. Its physical content is an effective
amplitude for a fermion to be created on an isolated site at time τ (coming
from an “external bath”) and to be destroyed at time τ ′ (going back to the
bath). As shown by Kotliar and coworkers [133], a closed set of mean-field
equations can be obtained from (2.211) and from expressions relating G0 to
local quantities computable from Seff itself. One obtains

G−1
0 (iωn) = iωn + µ+G(iωn)−1 −R[G(iωn)] , (2.212)

where G(iωn) is the on-site interacting Green’s function and R(G) denotes
the reciprocal function of the Hilbert transform of the corresponding den-
sity of states. Hence, the DMFA approach provides a good possibility for
a controlled treatment of the Mott–Hubbard transition. However, as shown
by Hettler et al. [138], the DMFA is not a conserving approximation, with
violations of the Ward identity associated with current conservation in the
equation of continuity for any number of dimensions, including the limit
d = ∞. Furthermore, the DMFA does not incorporate the important nonlo-
cal correlations, and hence it is not possible to study dx2−y2–wave Cooper
pairing with it.

To overcome these problems, Jarrell and coworkers developed the so-called
dynamical cluster approximation (DCA), which incorporates the nonlocal
corrections to the DMFA by mapping the lattice problem onto an embedded
cluster of size Nc, rather than onto an impurity problem [138]. These authors
have shown further that the DCA is a fully causal approach and that it
becomes exact in the limit of largeNc, while it reduces to the DMFA for Nc =
1. Thus Nc determines the order of the approximation in a simple way and
provides also a systematic expansion parameter, 1/Nc. Similarly to DMFA,
the DCA solution remains in the thermodynamic limit, but the dynamical
correlation length is restricted to the size of the embedded cluster, of course.
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Within this approach, Maier et al. calculated the mean-field dx2−y2–wave Tc

for Nc = 4 by using the NCA to solve the cluster problem [139]. For U = 12t,
they found that Tc has its maximum value of approximately 0.05t � 150
K for a doping concentration x = 0.2. It was also found that Tc increases
for positive values of the next–nearest–neighbor hopping parameter t′, and
decreases for negative values of t′. Note that this is in agreement with density–
matrix–renormalization–group (DMRG) calculations on the t–J model by
White and Scalapino who find dx2−y2–wave pairing for t′ > 0 [140]. Recently,
Jarrell and coworkers used the DCA approach with the Hubbard model in
order to analyze ARPES spectra [141], the occurrence of a pseudogap [142],
and the role of impurities in dx2−y2-wave superconductors [141], and extended
the DCA in such a way that the FLEX approximation rather than the NCA
was employed for the cluster problem [143].

Thus, in short, the current DCA approach is an interesting method that
incorporates causal nonlocal corrections to the DMFA in a transparent way.
Importantly, at half-filling the DCA yields a T = 0 phase transition and a
charge pseudogap accompanied by a non-Fermi-liquid behavior in the ther-
modynamic limit. For finite Nc, the DCA retains some mean-field character,
which emulates the finite coupling of the two-dimensional model to the third
dimension and hence emulates the Mermin–Wagner theorem [144, 145]. This
is similar to our theory based on the two–dimensional generalized Eliashberg
equations (see Appendix A), in which the self-consistent treatment prevents
the system from becoming antiferromagnetic as required by the Mermin–
Wagner theorem. On the other hand, in our theory fluctuations of the super-
conducting state are considered in a controlled way (see sect. 2.2.2) yielding
a Kosterlitz–Thouless–like transition for Tc. Another advantage of the DCA
with respect to our theory is the fact that its mean-field character can grad-
ually be reduced as Nc tends to infinity. On the other hand, within the DCA
the very small cluster size of Nc = 4 (which is the minimum for determining
dx2−y2–wave Cooper pairing) is the largest cluster that can be treated so
far. Finally, we would like to stress that the DCA yields a crossover from a
Fermi surface centered around the (0, 0) point in the Brillouin zone for large
doping to a Fermi surface centered around (π, π) for small doping which is in
disagreement with ARPES experiments [141]. Thus, we can safely conclude
that it would be difficult to find a consistent description of the elementary
excitations (i.e. for the kink feature) and their interdependence with spin
excitations below Tc (the resonance peak) using the DCA approach. This is
one of the main advantages of our theory.

2.5.2 The Large-U Limit

As discussed in connection with Fig. 1.10, the electronic states of the cuprates
can be described by a three-band version of the Hubbard model, where in each
unit cell one has a Cu dx2−y2 orbital and two oxygen p orbitals (see (1.3)).
However, the largest energies in the problem are the correlation energies for
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doubly occupying the copper or oxygen orbitals. In the hole picture, the Cu
d9 configuration is reflected by an energy level Ed occupied by a single hole
with S = 1/2 and the oxygen p orbital is empty of holes and has an energy
of Ep. The energy cost for doubly occupying Ed, yielding a d8 configuration,
is Ud, which is very large and often considered to be infinity. Thus, following
this picture, the lowest–energy excitation is the charge transfer excitation
where a hole hops from d to p with amplitude −tpd. If the energy difference
Ep − Ed is sufficiently large compared with tpd, the hole will form a local
moment on Cu [146]. Essentially, Ep − Ed plays the role of the Hubbard U
in a one-band model of a Mott insulator.

In a one-band Mott–Hubbard insulator, in which virtual hopping to
doubly occupied states leads to an exchange interaction JS1 · S2 (with
J = 4t2/U), the local moments on nearest–neighbor Cu sites prefer to align
antiferromagnetically because spins can virtually hop to an orbital with en-
ergy Ed. If one ignores the Up for doubly occupying the p orbital with holes,
the exchange integral is given by

J =
t4pd

(Ep − Ed)3
. (2.213)

Early Raman scattering experiments on two–magnon excitations by Klein
and coworkers found an exchange energy of J � 0.13 eV ([147] and references
therein), and this value has been confirmed by INS experiments, described
with a spin wave theory in which additional exchange terms are found [148,
149].

As described in Chap. 1, by focusing on the low-lying singlet excitations,
we can make the doped three–band Hubbard model simplifly into an effective
one–band model, using an effective hopping integral t and an effective on–
site Coulomb repulsion U , which is –within the above picture– of the order of
Ep − Ed. In the large–U limit, the Hubbard model that we use in this work
(see (2.1)) maps onto the t–J model,

H =
∑
〈ij〉σ

tP(c†iσcjσ + h.c.)P + J(Si · Sj − 1
4
ninj) , (2.214)

where n = c†iσciσ, Si = 1/2c†iασαβciβ (σαβ is a vector of Pauli matrices),
and P is a projection operator that restricts the Hilbert space by projecting
out double occupation. Within the t–J model, the basic physics is seen to
be the competition between the energy gain ∼ xt (where x denotes the dop-
ing concentration) due to mobile holes, and the cost of the exchange energy
∼ J resulting from the disruption of the antiferromagnetic order. If J was
small, the cost of the exchange energy could be overcome by delocalization,
yielding a conventional Fermi liquid. This seems to be the case for the doped
Mott insulator La1−xSrxTiO3. However, in the case of cuprates J is large
and one can expect different physics. One important idea is the following:
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spins on nearby sites form into “resonating” singlet pairs to retain some ex-
change energy and have a sufficiently liquid–like character that the “holes”
can propagate through them coherently, and, finally, superconduct at low
temperatures. This is the main idea of a paper by Anderson et al. published
early in 1987 on the resonating–valence–bond (RVB) theory of high–Tc su-
perconductivity [150]. The antiferromagnetic order of the parent compound
does not invalidate the essence of the argument; it is important that in the
doped case mobile holes frustrate the tendency for the spins to order and sta-
bilize the singlet liquid phase. One important consequence of the RVB theory
is the so–called spin–charge separation. Note that this scenario points to a
strong deviation from standard metallic behavior because the usual Fermi liq-
uid is hard to reconcile with quasiparticles propagating with both spin and
charge. On the other hand, in our theory the system remains a Fermi liq-
uid for T → 0; deviations from the Fermi liquid in the normal state above Tc

(similar to the marginal–Fermi liquid (MFL) mentioned earlier) are the result
of an anomalous behavior of the quasiparticle scattering rate τ−1 calculated
self-consistently. This will be discussed in connection with Fig. 3.22.

2.5.3 Projected Trial Wave Functions and the RVB Picture

In [150] Anderson et al. proposed a trial wave function as a description of the
RVB state mentioned above:

Ψ = PG|ψ0〉 , (2.215)

where PG =
∏

i(1 − ni↑ni↓) is the Gutzwiller projection operator. This op-
erator has the effect of suppressing all amplitudes in |ψ0〉 with double oc-
cupation of the sites i, thereby enforcing the constraint of the t–J model
exactly. The unprojected wave function contains variational parameters and
its choice is guided by mean–field theory. We discuss here mainly the pro-
jected wave function because the underlying concepts are quite simple. The
projection operator is a relatively complicated object to treat analytically,
but the properties of the trial wave function may be handled using Monte
Carlo techniques.

Historically, the notation of a linear superposition of spin singlet pairs,
called an RVB, was introduced by Anderson as a possible ground state for
the S = 1/2 antiferromagnetic Heisenberg model on a triangular lattice [151].
This type of lattice is of special interest because an Ising–like ordering of the
spins is frustrated. An important concept associated with the RVB picture is
the notion of spinons and holons, and spin–charge separation: it was postu-
lated that the spin excitations in an RVB state are S = 1/2 fermions which
Anderson called spinons. Note that this is in contrast to the Néel state, in
which excitations are S = 1 magnons or S = 0 singlet excitations. On the
other hand, the concept of spinons is related to one–dimensional spin chains,
where spinons act as domain walls and are well understood. In two dimen-
sions, the concept is not well established, but if the singlet bonds are “liquid”,
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two S = 1/2 spins formed by breaking a single bond can drift, with the liquid
of singlet bonds filling in the space between them. Thus they behave as free
particles and are called spinons.

What happens in the half–filled case, in which the problem reduces to the
Heisenberg model? It was soon found that the d–wave BCS state is a good
candidate for a trial wave function ([152] and references therein) by using the
Variational Monte Carlo method for Gutzwiller states [153]:

Hd−wave =
∑
〈ij〉σ

(−tij − µ) f †
iσfiσ + c.c. +∆ij

(
f †

i↑f
†
j↓ − f †

i↓f
†
j↑
)

+ c.c. ,

(2.216)
where tij = t for nearest neighbors, and ∆ij = ∆0 for j = i+ x̂ and −∆0 for
j = i+ ŷ. The corresponding spectrum consists of the well-known BCS result

Ek =
√

(εk − µ)2 +∆2
k , (2.217)

where εk = −2t(cos kx +cos ky) and ∆k = ∆0(cos kx − cos ky). At half filling
(µ = 0), |ψ0〉 is the usual BCS wave function

|ψ0〉 = |φ0〉 =
(
uk + vkf

†
k↑f

†
−k↓
)
|0〉 . (2.218)

Since then, many mean–field wave functions have been discovered which yield
an identical energy and dispersion. This can be explained as being to a certain
local SU(2) symmetry [154]. Among these wave functions is the important
staggered–flux phase, in which the hopping parameter tij is complex, tij =
t0 exp(i(−1)ix+iyΦ0), and the phase is arranged in such a way that it describes
free fermion hopping with a flux ±4Φ0 [43]. One can show that if tanΦ0 =
∆0/t0, the eigenvalues are identical to those in (2.217). Note that the case
Φ0 = π/4, the so–called π flux phase, is special in such a way that it does
not break the lattice translational symmetry.

What are the properties of the projected wave function? First, the su-
perfluid density vanishes linearly with the doping x. This is expected, since
the projection operator is designed to yield an insulator at half–filling. Sec-
ond, the momentum distribution has a jump near the noninteracting Fermi
surface. This is interpreted as the quasiparticle weight z according to Fermi
liquid theory. It vanishes smoothly as x → 0. Third, using a sum rule and
assuming Fermi liquid behavior for the nodal quasiparticles, one can estimate
the corresponding Fermi velocity, which is found to be in reasonable agree-
ment with experiment. Recently Lee and coworkers analyzed the question of
whether there are signs of the orbital currents and the SU(2) symmetry men-
tioned above in the projected d–wave superconductor. Since this state does
not break time-reversal and translational symmetry, there is no static cur-
rent, of course. However, Lee and coworkers found fluctuations of the orbital
current that are entirely a consequence of the projection [155]. Physically
speaking, this result is similar to a hole moving around a Cu–O plaquette
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that experiences a Berry phase owing to the noncollinearity of the spin quan-
tization axes of the (instantaneous) spin configurations. Thus the flux Φ0 of
the staggered–flux phase has its origin in the coupling between the kinetic
energy of a hole and the corresponding spin chirality.

How can we realize mathematically the RVB picture? In the slave boson
method, one can decompose the electron operator into a neutral spin–1/2
fermion operator and a charge-e spinless boson operator (c†iσ = f †

iσbi), and
enforce the non-double-occupancy constraint by a Lagrange multiplier. In
other words, a “slave” boson operator that keeps track of a moving hole has
been introduced. The t–J Hamiltonian then becomes

H = −t
∑
〈ij〉σ

(f †
iσbib

†
jfjσ) +

J

4

∑
〈ij〉

f †
iαταβfiβ · f †

jαταβfiβ

+
∑

i

λi (f †
iσfiσ + b†ibi − 1) . (2.219)

Here λi is the Lagrange multiplier. Note that a crucial simplification is that
the constraint enforces on average λi → λ = const ∀i. At this point the
situation seems to be more complicated, but now a mean-field analysis can
be applied. Fukuyama and coworkers [156] and Kotliar and Liu [157] have
obtained a phase diagram consisting of a superconducting phase with a d–
wave order parameter (〈b〉 �= 0, ∆i,i+x = −∆i,i+y), a “spin-gap” phase (〈b〉 =
0, ∆ij �= 0), the so–called uniform RVB (uRVB) phase (〈b〉 = 0, ∆ij = 0),
and a Fermi liquid–like phase (〈b〉 �= 0, ∆ij = 0). In the superconducting
phase, the bosons are condensed and the fermions are paired. The spin–gap
phase is a metallic phase, since the bosons have not yet condensed, but the
fermions are paired, yielding a gap for magnetic excitations. Remarkably, this
approach captures some rough qualitative features of the hole-doped cuprates
(see Fig. 1.4). Note that the key feature of the mean–field theory is that the
spin carrying fermions (spinons) and the charge–carrying bosons (holons) are
decoupled. In other words, one has a full spin–charge separation of the kind
mentioned above.

2.5.4 Current Research and Discussion

In order to compare the above approach with our theory, let us point out some
problems of the RVB picture. (a) The mean–field theory does not capture
all energy scales accurately. In particular, the Bose–Einstein temperature at
which holons acquire macroscopic coherence, i.e. 〈b〉 �= 0, comes out too high.
Thus the superconducting transition temperature Tc is too high. (b) There are
fictitious phase transitions between certain mean field phases which should be
just crossovers; for example, between the spin gap phase and the uniform RVB
phase. (c) The mean–field theory can hardly explain why the normal state is
a poor metal. (d) The mean–field theory loses most of the antiferromagnetic
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correlations. These problems are related to current research in which the key
is to include fluctuations around the RVB mean fields.

The gauge fields reflect the fact that the t–J model is invariant under the
local transformation fi → eiΘifi, bi → eiΘibi, since ciσ = b†ifiσ is obviously
a gauge singlet. With the inclusion of gauge fields, the RVB approach takes
the following schematic form in the continuum limit:

Z =
∫

DaDa0Df
∗Df Db∗Dbe−

∫
d2

xdτL , (2.220)

where

L = LF + LB − ia · (jf + jb) − ia0 · (nf + nb − 1) . (2.221)

Here LF and LB are mean field spinon and holon Lagrangians, a0 refers to λi

in (2.219), and a denotes the spatial part of the local gauge transformation.
Note that the main difference between this Lagrangian and the corresponding
QED Lagrangians is that the “kinetic term” for the gauge fields, F 2

µν , is
absent. Thus the apparent coupling is infinitely strong. This enforces the no–
double–occupancy constraint and the constraint that the boson current is
canceled by fermion backflow [158].

The gauge field acquires dynamics from the fermions and bosons. Inte-
grating out the matter fields, one finds that the gauge propagator in the
Coulomb gauge is given by

〈ai(q)aj(q)〉 = (δij − qiqj/q2)(Π⊥
F +Π⊥

B ) ,

〈a0(q)a0(q)〉 = (Π00
F +Π00

F )−1 , (2.222)

where Π⊥
F,B and Π00

F,B are transverse and longitudinal polarization functions
of fermions and bosons, respectively. Therefore, the dynamics of the gauge
field depend on the mean–field ground states and excitations of spinons and
holons, and, vice versa, the gauge field affects the dynamics of the matter
fields. Moreover, because of the gauge field, the fermions and bosons are no
longer decoupled, yielding only a “quasi” spin–charge separation. Within this
picture, one can argue that the magnetic properties of cuprates are related to
spinons interacting with a gauge field, while the transport properties should
be calculated mainly in terms of holons interacting with a gauge field.

One important problem is related to the type of the dominant fluctuations.
Lee and coworkers find that the staggered–flux fluctuations may yield new
collective modes [159], a prediction that has to be tested experimentally. An-
other question is related to the degree and control of the “quasi”–spin–charge
separation mentioned above. In this connection, Herbut et al. have argued
that there should exist no gapless spinons, for example [160]. Finally, as long
as gauge fluctuations are treated as Gaussian, the Ioffe–Larkin law holds
which predicts that the superfluid density ns behaves as ns � ax − bx2T .
The quadratic term, however, which arises from the Gaussian fluctuations
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(∼ xvF ), is in disagreement with experiment [161]. Thus, in short, the RVB
picture allows us to connect d–wave superconductivity and some basic fea-
tures of the cuprate phase diagram to the insulating Mott state in a smooth
way and the corresponding mean field theory yields reasonable results. On
the other hand, the RVB theory is difficult to handle owing to constraints,
and the mean–field theory is difficult to control. Finally, we stress that in
contrast to our perturbative paramagnon–like theory, there are only a few
reliable results for excitations and dynamical properties using the RVB pic-
ture [162], because projected wave functions can only treat statics so far. We
believe, in view of the detailed comparison with experiments in the next chap-
ter for the elementary excitations (ARPES) and their interdependence with
spin excitations (INS experiments), that this is probably the main advantage
of our theory.
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3 Results for High–Tc Cuprates Obtained from

a Generalized Eliashberg Theory:
Doping Dependence

3.1 The Phase Diagram for High–Tc Superconductors

One of the most interesting problems in the field of high–Tc superconductivity
is the calculation of the generic phase diagram for both hole– and electron–
doped cuprates, as was discussed in the Introduction. Even after more than
ten years of research, no general consensus on this question has been achieved.
This problem is related to the microscopic origin of the mechanism of high–
Tc superconductivity because it would be highly desirable to explain the
whole phase diagram for both hole– and electron–doped superconductors
within a unified theory. In particular, many non–Fermi–liquid properties in
the normal state in the underdoped region have to be understood. In this
section we shall show that our microscopic electronic theory, which assumes
the exchange of antiferromagnetic spin fluctuations as the relevant pairing
mechanism, can account for the main features in the phase diagram of both
hole– and electron–doped cuprate superconductors.

3.1.1 Hole–Doped Cuprates

In this subsection we focus on the hole-doped side of the phase diagram of
high-Tc superconductors. Of particular interest is the underdoped regime, in
which the doping in the CuO2 planes is lower than that required for the
maximum superconducting transition temperature Tmax

c . This region can be
experimentally characterized by a Tc which decreases with decreasing hole
density x, and by a superfluid density ns ∝ Tc, i.e. the so–called Uemura
scaling [1].1 It was recognized early that a small ns leads to a reduced stiff-
ness against fluctuations of the phase of the superconducting order parameter
[2, 3, 4]. Furthermore, cuprate superconductors consist of weakly-coupled 2D
CuO2 planes so that Cooper pair phase fluctuations are also enhanced by the
reduced dimensionality, as discussed in Sect. 2.2.2. In conventional super-
conductors this mechanism is not relevant, since the large superfluid density
leads to a typical energy scale of Cooper pair phase fluctuations much larger
than the superconducting energy gap ∆, which governs the thermal breaking
1 Note that Tc ∝ ns has consequences for other thermodynamic quantities, such

as the critical magnetic field [180].

c© Springer-Verlag Berlin Heidelberg 2004
D. Manske: Theory of Unconventional Superconductors, STMP 202, 99–176 (2004)
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of a Cooper pair. Thus, in conventional superconductors, Tc is proportional
to ∆(T = 0) [5]. In contrast to this, the observation Tc ∝ ns in underdoped
(hole–doped) cuprates indicates that Cooper pair phase fluctuations drive the
superconducting instability. The Cooper pairs break up only at a crossover
temperature T ∗

c > Tc, and between Tc and T ∗
c local Cooper pairs exist, but

without long–range phase coherence [2, 3, 4, 6, 7].
To remind the reader, there exists a third, even higher temperature scale

T ∗, below which a pseudogap starts to form, as seen in NMR, tunneling
spectroscopy, electronic transport, and Hall effect measurements (to name
just a few) [8, 9, 10, 11, 12, 13, 14]. The regions Tc < T < T ∗

c and T ∗
c < T <

T ∗ are often called the strong and weak pseudogap regimes, respectively.
We shall demonstrate that our electronic theory that assumes the ex-

change of antiferromagnetic spin fluctuations as the relevant pairing mecha-
nism for singlet pairing in cuprates can account for the main features in the
phase diagram of hole–doped cuprates. In particular, we determine the dop-
ing dependence of the relevant temperatures of the phase diagram, namely
T ∗

c (x), Tc(x), and also T ∗, at which a gap appears in the spectral density.
Below T ∗

c we indeed find incoherent Cooper pairs (“preformed pairs”), which
become phase–coherent only below the critical temperature Tc of the bulk
material. We show that phase fluctuations, contributing ∆Fphase to the free
energy, lead to a decreasing critical temperature in the underdoped regime
and thus to the appearance of an optimal doping xopt. It is shown that this
result is due to the small superfluid density ns(T ) in the system. Most im-
portantly, we calculate that ∆Fcond > ∆Fphase (where ∆Fcond denotes the
contribution to the free energy due to Cooper pair formation, where ∆Fphase

denotes the contribution due to phase fluctuations of the Cooper pairs), for
a doping x < xopt, and ∆Fcond < ∆Fphase for x > xopt. We compare our
results with the Berezinskii–Kosterlitz–Thouless (BKT) theory and with the
XY model and find similar results for the resulting phase diagram. Finally,
we also discuss the relaxation dynamics in pump–probe spectroscopy and
find reasonable agreement with experiment. Of course, a detailed quantita-
tive comparison for all classes of cuprate superconductors within the simple
two–dimensional one–band Hubbard model is beyond the scope of this book.
Nevertheless, we shall show that the key facts can be explained within our
approach.

In Fig. 3.1, results are shown for ∆F (x). We find that ∆Fcond mainly fol-
lows the doping dependence of the mean–field transition temperature T ∗

c . On
the other hand, as discussed in the previous chapter, the doping dependence
of ns(0)/m determines the doping dependence of ∆Fphase. Thus the energy
cost due to phase fluctuations has the opposite behavior to the energy gain
due to Cooper pair condensation with respect to the doping concentration x.
It is remarkable that we obtain from our electronic theory a crossing of the
two energy contributions ∆Fcond and ∆Fphase at x � 0.15, where the largest
Tc is observed. The consequence of this is that we find theoretically Tc ∝ ns
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Fig. 3.1. Calculated crossover of the phase–stiffness energy. We find ∆Fphase ∝
ns/m∗, whereas the condensation energy ∆Fcond � α{ns/m}∆0(x). Here, we esti-
mate α � 1/400. Note that ∆Fphase < ∆Fcond implies two characteristic temper-
atures: T ∗

c , where Cooper pairs are formed at Tc ∼ ∆0, and Tc ≈ ∆Fphase ∝ ns,
where Cooper pairs become phase–coherent.

for underdoped cuprates (and thus the Uemura scaling), and a nonmonotonic
doping dependence of Tc(x) with an optimal doping at x � 0.15. Physically
speaking, in the overdoped regime we find a large ∆Fphase which means that
Cooper pair phase fluctuations are associated with a large amount of energy.
Thus the system will undergo a mean–field transition because of the small
condensation energy ∆Fcond. In the underdoped regime of cuprate supercon-
ductors, the situation is the opposite: the energy gain due to the formation
of Cooper pairs is not large enough to reach the Meissner state of the bulk
material. This is only possible at a smaller temperature, where the Cooper
pairs become phase–coherent; this temperature is determined by∆Fphase and
∆Fphase < ∆Fcond.

Thus we can safely conclude that in the overdoped regime, T ∗
c is identical

to the bulk transition temperature Tc below which a Meissner effect is found
experimentally. Further evidence for a mean-field superconducting transition
comes from the fact that T ∗

c ∝ ∆(T → 0), which we have calculated within
our electronic theory. In contrast to this, in the underdoped regime the sys-
tem behaves more two-dimensionally and thus, owing to the short coherence
length of a Cooper pair in cuprates, another energy scale, namely the small
superfluid density ns, becomes important and leads to the fact that Tc < T ∗

c .
The temperature range Tc < T < T ∗

c may be viewed as the region where lo-
cal Cooper pairs without long–range phase coherence (“preformed pairs”) can
exist. The occurrence of preformed pairs was postulated by Chakraverty and
coworkers [3] and later by Emery and Kivelson [4]. Our calculations provide
a microscopic justification for this scenario. However, no clear experimental
proof of the existence of preformed pairs has been obtained so far.
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Fig. 3.2. Phase diagram for high–Tc superconductors resulting from considering
a spin–fluctuation–induced Cooper pairing, including phase fluctuations. The cal-
culated values for ns(0)/m are in good agreement with muon spin rotation experi-
ments [15]. T ∗

c denotes the temperature below which Cooper pairs are formed. The
dashed curve gives the observed Uemura scaling Tc ∝ ns(T = 0, x) [1]. Below T ∗ we
obtain a gap structure in the spectral density, as observed in tunneling spectroscopy
[16, 17]. The solid curve T exp

c , which describes many hole–doped superconductors,
is taken from [18, 19].

In order to summarize our calculations, we now show our results for the
resulting phase diagram for hole–doped cuprates in Fig. 3.2. Note that for il-
lustration we have added the experimental Tc(x) curve, which describes many
hole-doped superconductors as pointed out by Tallon and coworkers [18, 19].
As mentioned earlier, the superconducting (mean–field) transition tempera-
ture T ∗

c , below which one finds a finite gap function, has been determined
from the linearized version of the gap equation (see (A.18)).

In order to illustrate the important behavior of ns in more detail, we
show in Fig. 3.3 the temperature dependence of ns(ω = 0)/n (n denotes
the normal–state band filling) below T ∗

c for various doping concentrations.
For this purpose we have calculated the current–current correlation function
using standard many–body theory [20] and taken the corresponding Green’s
functions within the FLEX approximation. This has been described in the
previous chapter. Note that according to London’s theory [21], which states
that λL ∝ ns, the ratio ns/n can be related to measurements of the (in–plane)
penetration depth, for example in microwave experiments.

As can also be seen from Fig. 3.3, qualitative agreement with the data of
Bonn, Hardy and coworkers on λ2(T = 0)/λ2(T ) concerning the slope of the
curves in the vicinity of T ∗

c and the linear behavior for T → 0 is found [22].
In particular, the FLEX approximation to the generalized Eliashberg equa-
tions yields, close to T ∗

c , a relation λ3(T = 0)/λ3(T ) ∝ (T ∗
c − T ). The same

power law has been found by Kamal et al. and has been attributed to critical
fluctuations starting about 10 K below Tc, since the slope coincides with the
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Fig. 3.3. Temperature dependence of the superfluid density ns(x, T ) calculated
with the help of (2.28) and (2.126)–(2.128) for various hole doping concentrations
x. We have extrapolated the results to T → 0. The dashed curve in the top part
illustrates the effect of Cooper pair phase fluctuations according to the (static)
Kosterlitz–Thouless theory. In Ginzburg–Landau theory the superfluid density can
be described by n0

s/ns = 〈∇φ(r)∇φ(0)〉. Here, φ(r) denotes the spatial depen-
dence of the Cooper pair wave function and n0

s the static mean-field value of the
superfluid density for a given temperature calculated within our extended FLEX
approximation. At Tc < T < T ∗

c , where Cooper pairs become phase–incoherent,
n0

s → 0 (see Fig. 3.2). Our results are in fair agreement with measurements of the
in-plane penetration depth by Bonn, Hardy and coworkers [22].
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critical exponent for the 3D XY model [22]. Here, we obtain this power law
from the generalized Eliashberg equations using the FLEX approximation,
which is purely 2D and does not contain critical fluctuations. Instead, the
rapid increase of ns below T ∗

c is due to the self-consistent treatment of the
superconducting gap function ∆(ω). Thus, we conclude that while 3D criti-
cal fluctuations are expected in a very narrow temperature range close to Tc,
they are not the origin of the observed power law on the scale of 10 K.

Note that our calculations also show that roughly one–third of the holes
become superconducting, even for T → 0. This is typical of a strongly inter-
acting system and is further support for the suggestion that preformed pairs
might exist in the underdoped regime.

Comparison with BKT theory

Shortly after the discovery of cuprate high–Tc superconductors, many ex-
periments were interpreted in term of the BKT theory for bulk samples
[23, 24, 25, 26, 27, 28]. Recently, an important experiment has been per-
formed by Xu et al. who have found signs of vortices at temperatures much
higher than Tc in underdoped La1−xSrxCuO4 in measurements of the Nernst
effect [29]. The most recent reanalysis of their data gives an onset tempera-
ture for vortex effects of 40 K for an extremely underdoped sample with a
doping x = 0.05, and even 90 K for x = 0.07 [30].

As an example, we show in Fig. 3.3 the superconducting bulk transition
temperature Tc for an underdoped cuprate (dashed line). ns(x, T )/m has
been taken from the solutions of the generalized Eliashberg equations. Thus,
in the underdoped regime one indeed finds a difference between Tc and T ∗

c .
As already mentioned above, a finite value of ns(Tc < T < T ∗

c ) can be
interpreted in terms of local Cooper pairs with a strongly fluctuating phase.
In the case of YBa2Cu3O6+x (YBCO), this has been recently confirmed by
experiment [33].

In Fig. 3.4a results are given for ns(T, x)/m, where m is the effective
mass. We again find that Cooper pair phase fluctuations are unimportant in
the overdoped regime. Note that ns(T, x) → 0 for T → T ∗

c , since Cooper
pairs disappear at T ∗

c . However, the phase coherence temperature Tc has to
be determined by spatially averaging over the Cooper pair phase fluctuations.
In a Ginzburg–Landau (GL) treatment, the phase information is given by the
GL wave function ψ(r), where ns = |ψ(r)|2. In the presence of spatial phase
fluctuations of ψ(r), the average superfluid density n̄s = |ψ̄(r)|2 will vanish at
Tc so that no Meissner effect occurs above Tc. The transition temperature Tc

has to be determined by taking Cooper pair phase fluctuations into account.
The BKT theory, as well as the 2D [32] and 3D XY models [31], predicts
that Tc is proportional to ns(Tc)/m. As discussed above, in BKT theory the
phase stiffness, which is proportional to ns/m as shown in (2.134), assumes
the value a = 2/π at T = Tc. Above Tc the renormalized phase stiffness drops
to zero owing to the appearance of free vortices. The free vortices also destroy
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Fig. 3.4. (a) Results for the superfluid density divided by m in units of

10−2m−1
e Å

−2
as a function of temperature T for various doping concentrations:

x = 0.221 (open circles), x = 0.201 (filled circles), x = 0.188 (triangles), x =
0.155 (squares), x = 0.122 (diamonds), x = 0.091 (open circles). ns vanishes at
T = T ∗

c . Tc is obtained from the intersection of ns(x, T ) with aT as indicated,
where 1/a = 2.202 (3D XY) [31], 1/a = π/2 (BKT theory), and 1/a = 0.9 (2D XY)
[32]. The results obtained for Tc are shown in (b). For comparison, the mean–field
result T ∗

c is also displayed.

the Meissner effect, since the energy needed to create an additional vortex at
the edge of the system vanishes. Nevertheless, the local superfluid density ns

remains nonzero up to T ∗
c . For the 2D XY model, the corresponding value is

a ≈ 1/0.9 [32] and in the 3D XY model it is a ≈ 1/2.202 [31]. These three Tc

criteria correspond to the intersections of the three straight lines in Fig. 3.4a
with the curves of ns(T )/m. The resulting values for Tc(x) are shown in
Fig. 3.4b. Note that Tc as obtained within the 3D XY model is larger than
the 2D values, since fluctuations are less important in three dimensions.
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Analysis of the Timescales

Concerning the dynamics of excited superconductors in general, the phase
diagram shown in Fig. 3.2 with characteristic temperatures T ∗ and Tc should
imply various relaxation channels for electronic excitations in high–Tc super-
conductors due to photon absorption [34, 35]. This is illustrated in Fig. 3.5.
We estimate on general grounds that

τ1 ∝ ∆−1 ∝ T−1
c , (3.1)

since the energy change involved in the excitation is of the order of 〈∆eiφ〉.
Note that above Tc one has 〈eiφ〉 = 0 owing to phase–incoherent Cooper
pairs. Hence, τ1 describes the dynamics only below Tc. Using data for Tc(x)
we estimate τ1 to be of the order of picoseconds, which is in agreement with
experiment [34]. Furthermore, the energy involved because of the gapstruc-
ture in the spectral function A(k, ω), which occurs at T ∗ and thus in the
corresponding optically induced excitation, is approximately Eaf ∼ T ∗. One
may estimate a corresponding relaxation time from

τ3 ∼ E−1
af ∼ (T ∗)−1 ∼

(
Tc

T ∗

)
τ1 . (3.2)

Thus, τ3(x) can be estimated to be of the order of a few hundred femtosec-
onds. Recently, such relaxations with timescales of the order of a few picosec-
onds and 700 fs have been observed by Kaindl et al. [34] by pump–probe
spectroscopy.

It would be interesting to check the above analysis by further experiments,
using different light frequencies and polarizations, and in particular to study

Fig. 3.5. Illustration of the relaxation dynamics expected for excited electrons in
cuprate superconductors. The time τ1 refers to relaxation of excited electrons and
the time τ3 to relaxation involving antiferromagnetic correlations, characterized by
T ∗. If τ1 refers to relaxation towards phase–coherent Cooper pairs it is observed
only below Tc, since 〈∆eiφ〉 → 0 for T > Tc. The relaxation time τ2 may refer to
dynamics of phase incoherent Cooper pairs.
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Fig. 3.6. Calculated dynamical phase stiffness ns(ω)/m for a doping concentration
x = 0.12 at temperatures T/t = 0.012, 0.015, 0.016, 0.017, 0.018, 0.019, 0.0195,
0.02, 0.0205, 0.021, 0.0215, 0.022, and 0.023 (from top to bottom at ω = 0). Below
T ∗

c ≈ 0.023t ≈ 67 K, Cooper pairs start to form.

the relaxation τ3 ∼ (T ∗)−1. Note that different dynamics are expected when
x � 0.15, where T ∗(x) → Tc and also for the overdoped cuprates, where
again T ∗ > Tc , and T ∗ > Tc. Circularly polarized light might also couple to
magnetic excitations in the cuprates, but then spin–orbit coupling is involved
and one obtains much longer relaxation times.

Let us now turn to the important relaxation time τ2. Recently, Corson et
al. have measured the complex conductivity of underdoped Bi2Sr2CaCu2O8+δ

and extracted the frequency–dependent phase stiffness ns(ω)/m from their
data [36]. They have found that ns(ω)/m becomes nearly independent of the
frequency at a temperature given by the BKT theory. In a simple approxi-
mation this frequency should be proportional to 1/τ2 which corresponds to
the typical timescale of Cooper pair phase fluctuations. Corson et al. inter-
pret their data in terms of dynamical vortex pair fluctuations [37, 38] and
conclude that vortices, and thus local Cooper pairs, should be present up to
T = 100 K.

In order to investigate the timescale τ2 in more detail, we show in Fig. 3.6
our results for the dynamical phase stiffness ns(ω)/m for a doping x = 0.12
(underdoped) at various temperatures [39]. As derived in the previous chap-
ter, the dynamical phase stiffness is related to the dynamical conductivity
σ(ω) via [20]

ns(ω)
m

=
1
e2
ω Im σ(ω) ,

where e is the elementary charge, Imσ(ω) has been obtained from the
current–current correlation function and the Kubo formula using the FLEX
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Fig. 3.7. Dynamical phase stiffness ns(ω)/m for the same parameters as used in
Fig. 3.6, but renormalized by vortex fluctuations using (2.131) and (2.132). The
dashed lines correspond to the unrenormalized stiffness. The vertical dotted line
indicates the highest frequency used by Corson et al. [36].

approximation (see (2.128)) to the Green’s functions as an input. Even
slightly below T ∗

c , ns(ω)/m has a finite value, leading to the Meissner ef-
fect, followed by a redistribution of spectral weight from above twice the
low-temperature maximum gap, 2∆0, to frequencies below 2∆0. This redis-
tribution increases with decreasing T . Furthermore, we find a finite phase
stiffness for ω > 0 even in the absence of Cooper pairs, i.e. for T > T ∗

c .2

In Fig. 3.7, we show our results for the renormalized dynamical phase
stiffness obtained using (2.131) and (2.132) and Dν/r

2
0 = 1017s−1 [39]. We

can clearly see that a strong renormalization of the stiffness due to Cooper
pair phase fluctuations sets in at a certain frequency. The Meissner effect is
thus destroyed for all temperatures Tc < T < T ∗

c by (slow) vortex diffusion.
With increasing temperature the onset of the renormalization shifts to higher
frequencies. At frequencies above this onset, the vortices cannot follow the
field and thus do not affect the response. However, the onset frequencies are
always smaller than 2∆0. The structure around 2∆0 is due to Cooper pair
formation and is unaffected by the renormalization of the stiffness. Thus, as
seen in various experiments, the strong pseudogap around ω ∼ 2∆0 evolves
continuously into the superconducting gap for temperatures T < Tc.

To summarize this subsection, we have solved the generalized Eliash-
berg equations self–consistently and extended them by including Cooper
2 As has been discussed in Sect. 2.2, for T > T ∗

c the effective action of the phase
vanishes. Moreover, the order parameter itself vanishes, so that its phase has no
physical meaning. Thus, for T > T ∗

c , ns(ω) is related to the normal-state skin
effect.
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pair phase fluctuations to calculate some basic properties of the hole–doped
cuprate superconductors. In particular, we have shown results for the weak–
pseudogap temperature T ∗, where a small reduction in the spectral density
at the Fermi level appears, for the strong–pseudogap temperature T ∗

c , where
local incoherent Cooper pairs start to form, and for the superconducting
transition temperature Tc, where the phases become coherent. We combined
our results with standard many-body theory and used this as an input to
the Ginzburg–Landau energy functional ∆F{ns, ∆}, and found a phase di-
agram for hole-doped cuprates with two different regions: on the overdoped
side we obtain a mean–field–like transition and Tc ∝ ∆(T = 0), whereas in
the underdoped regime we find Tc ∝ ns(T = 0).

Finally, we have compared our results with the BKT theory using FLEX
data as an input and obtained similar results. We have calculated the dy-
namical stiffness against fluctuations, ns(ω)/m, as a function of doping and
temperature, taking into account renormalization by Cooper pair phase fluc-
tuations. We have compared our results with dynamical (time–resolved) mea-
surements and found fair agreement. We have also reproduced the observed
linear temperature dependence of 1/λ3 close to Tc, where λ ∝ n

−1/2
s is the

in-plane penetration depth.

3.1.2 Electron–Doped Cuprates

It is of general interest to see whether the behavior of hole-doped cuprates
described above and that of electron–doped cuprates can be explained within
a unified physical picture, using again the exchange of antiferromagnetic spin
fluctuations as the relevant pairing mechanism. While hole-doped supercon-
ductors have been studied intensively [40], the analysis of electron-doped
cuprates has remained largely unclear. As discussed in the Introduction, one
expects on general physical grounds, if Cooper pairing is controlled by anti-
ferromagnetic spin fluctuations, that pairing with d–wave symmetry should
also occur for electron–doped cuprates [41].3 Previous experiments in the
last decade did not clearly support this expectation and reported mainly s–
wave pairing [42, 43, 44]. Maybe as a result of this, electron–doped cuprates
have received much less attention than hole–doped cuprates so far. However,
phase–sensitive experiments [45] and measurements of the magnetic pene-
tration depth [46, 47] performed recently indeed indicate d–wave symmetry
Cooper pairing.

In order to obtain a unified theory for both hole–doped and electron–
doped cuprates, it is tempting to use the same Hubbard Hamiltonian, taking
3 If the dominant repulsive pairing contribution in high-Tc superconductors can

be described mainly by their spin susceptibility, then the underlying order pa-
rameter must change its sign. From group theory we know [25] that for a nested
Fermi surface described by Q = (π, π), i.e. εk+Q = −εk, a dx2−y2 -symmetry
order parameter is the simplest possibility.
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Fig. 3.8. Phase diagram T (x) for electron–doped cuprates. The AF transition curve
is taken from [48]. The solid curve corresponds to our calculated Tc values obtained
from φ(k, ω) = 0. The inset shows Tc(x) for the doping region 0.18 < x < 0.12 and
experimental data (squares from [49], circles from [50], and triangle from [51]). The
dotted curve refers to Ts ∝ ns.

the different dispersions of the carriers into account of course [52]. This has
aleady been discussed in relation to Fig. 2.1. For optimally doped NCCO,
the Fermi surface indicated by ARPES measurements [52] and the dispersion
(see (2.4))

εk = −2t [cos kx + cos ky − 2t′ cos kx cos ky + µ/2]

have been assumed. The chemical potential µ describes the band filling. We
have chosen the parameters t = 138 meV and t′ = 0.3. As discussed in
Chap. 2, in the case of NCCO the flat band around (π, 0) is approximately
300 meV below the Fermi level, whereas for hole-doped superconductors the
flat band lies very close to the Fermi level. Thus, using the resulting εk in
a theory of spin–fluctuation–induced pairing in the framework of the gen-
eralized Eliashberg equations using the FLEX approximation, we expect a
smaller Tc for electron–doped cuprates than for hole–doped ones. Note that
in the case of electron doping the electrons occupy copper d–like states of
the upper Hubbard band, while the holes are related to oxygen–like p–states,
yielding different energy dispersions as used in our calculations. Assuming
similar itinerancy of the electrons and holes, the mapping onto the effective
one-band Hubbard model (see (2.1)) seems to be justified.

In Fig. 3.8, we present our results for the phase diagram Tc(x). We find,
in comparison with hole–doped superconductors, smaller Tc values and su-
perconductivity occurring in a narrower doping range, as also observed in
experiments [53]. The poorer nesting properties of the Fermi surface and the
flat band around (π, 0), which lies well below the Fermi level, are respon-
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Fig. 3.9. Momentum dependence of the real part of the spin susceptibility along
the path through the Brillouin zone (0, 0) → (π, 0) → (π, π) → (0, 0) at T = 100 K
for ω = 0 (solid curve) and ω = ωsf ≈ 0.47t (dashed curve). The main contributions
to the corresponding pairing interaction come from qpair (along the antinodes) and
Qpair (along the “hot spots”) as illustrated in Fig. 3.10b.

sible for this. It turns out that the corresponding van Hove singularity lies
approximately 300 meV below the Fermi level, yielding smaller Tc values
than for hole–doped cuprates. Below Tc we find a dx2−y2–wave order param-
eter, which will be discussed later. The narrow doping range for Tc is due
to antiferromagnetism up to x = 0.13 and rapidly decreasing nesting prop-
erties for increasing x. In the inset we show a blowup of the doping region
0.19 < x < 0.12 and some several experimental data are also displayed. One
can clearly see that the overall agreement between our calculated Tc(x) curve
and experiment is quite remarkable. However, in the strongly underdoped
regime the experiments contradict each other. Thus it is not clear whether
Tc(x) should decrease. If this were be the case, one would expect Uemura
scaling, i.e. Tc ∝ ns, as for hole-doped cuprates (see dotted curve).

In order to understand the behavior of Tc(x) in underdoped electron–
doped cuprates, we have calculated the Cooper pair coherence length ξ0, i.e.
the size of a Cooper pair, and find similar and also larger values for electron-
doped than for hole-doped superconductors (from 6 Å to 9 Å). If owing to
strong–coupling lifetime effects, the superfluid density ns becomes small, the
distance d between Cooper pairs increases. If for 0.15 > x > 0.13 the Cooper
pairs do not overlap significantly, i.e. d/ξ0 > 1, then Cooper pair phase
fluctuations become important [3, 4, 35]. Thus we expect, as for hole–doped
superconductors, that Tc ∝ ns. Assuming that ns increases approximately
linearly from x � 0.13 to x � 0.15, we estimate a Tc which is smaller than
thr value calculated from φ(k, ω) = 0, see the dashed curve in Fig. 3.8. Thus
more experiments determining Tc for x ≤ 0.15 should be performed to check
the Uemura scaling Tc ∝ ns.



112 3 Results for High–Tc Cuprates: Doping Dependence

d–Wave Order Parameter

In order to investigate first the underlying pairing interaction, we show in
Fig. 3.9 results for the real part of the spin susceptibility at 100 K with U = 4t
in the weak-coupling limit for ω = 0 (solid curve) and for ω = ωsf ≈ 0.47t
(dashed curve). As discussed earlier, ωsf denotes the spin fluctuation (para-
magnon) energy, where a peak in Imχ(Q, ω) occurs. The commensurate peak
of Reχ(q, ω = 0) at Q=(π, π) is in accordance with recent calculations in
[54], where it was pointed out that the exchange of spin fluctuations yields a
good description of the normal–state Hall coefficient RH for both hole– and
electron–doped cuprates. Furthermore, we also find a linear temperature de-
pendence of the in–plane resistivity ρab(T ), if we do not take into account any
additional electron–phonon coupling. This will be discussed later. Concern-
ing the superconducting properties, note that the lower tiny peak would favor
dxy pairing symmetry, but the dominant larger peak leads to dx2−y2 symme-
try and is also pair–breaking for dxy symmetry. Evidently, the electron–doped
cuprates are not close to dxy pairing symmetry as stated previously [55]. This
explains why the resultant superconducting order parameter φ(k, ω) exhibits
almost pure dx2−y2 symmetry.

In Fig. 3.10, we present our results for the superconducting order parame-
ter φ(k, ω) calculated from the generalized Eliashberg equations for electron-
doped cuprates using the FLEX approximation. We show φ(k, ω = 0) for an
electron doping x = 0.15 at T/Tc = 0.8, where the gap has just opened. The
gap function clearly has dx2−y2–wave symmetry. This is in agreement with
the reported linear and quadratic temperature dependences of the in–plane
magnetic penetration depth at low temperatures in the clean and dirty limits,
respectively [46, 47], and with phase–sensitive measurements [45]. From our
result of a pure dx2−y2-wave superconducting order parameter, we expect a
zero–bias conductance peak (ZBCP) [56] as recently observed in optimally
doped NCCO [57] and also in hole–doped superconductors [43]. Note that its
absence in some other experiments may be attributed to small changes in the
surface quality and roughness [58] or to disorder [59]. The incommensurate
structure in the order parameter close to (π, 0) results from the double–peak
structure in Reχ at ω ≈ ωsf = 0.47t shown in Fig. 3.9. This means physically
that the Cooper pairing interaction occurs mostly not for a spin–fluctuation
wave vector Q = (π, π), but mostly for ω = ωsf and Q∗ = (π − δ, π + δ).
Furthermore, from Figs. 3.9 and 3.10b we conclude that no dxy-symmetry
component is present in the superconducting order parameter, since the dom-
inant dx2−y2–type pairing suppresses dxy pairing. ARPES studies might test
this.

On general grounds we expect a weakening of the dx2−y2 pairing symmetry
if we include the electron–phonon interaction and if this interaction plays a
significant role. The absence of an isotope effect (α0 = d lnTc/d lnM ≈ 0.05)
for a doping x = 0.15 (see [60]) suggests the presence of a pure dx2−y2 sym-
metry. As discussed in Sect. 1.4.3, we know from Fig. 3.9 that phonons con-
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Fig. 3.10. (a) Calculated dx2−y2–wave symmetry of the superconducting order
parameter at T/Tc = 0.8 for x = 0.15 in the first square of the BZ. (b) Calculated
Fermi surface for (optimally doped) NCCO. The plus and minus signs and the
dashed lines refer to the sign of the calculated momentum dependence of the dx2−y2

gap function φ(k, ω = 0) and its nodes, respectively.

necting parts of the the Fermi surface with wave vector Qpair = (π, π) will
add destructively to the spin fluctuation pairing [61]. If, owing to exchange
of spin fluctuations, a dx2−y2-symmetry instability is the dominant contribu-
tion to the pairing interaction, an additional electron–phonon coupling with
wave vector qpair = (0.5π, 0) will be pair–building. We generally expect that,
owing to the poorer nesting, the pairing instabilities due to electron–phonon
and spin fluctuation interactions will become more comparable. In this case
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the electron–phonon coupling would definitely favor s–wave symmetry of the
underlying superconducting order parameter. This can be analyzed in detail
by adding a term α2F (q, ω) to the pairing interaction [61].

To continue the discussion of why the symmetry of the order parameter
depends more sensitively on the electron-phonon interaction for electron–
doped cuprates, we show in Fig. 3.10b the calculated Fermi surface for
optimally doped NCCO. Note that the topology of the Fermi surface for
the electron-doped cuprates is very similar to that of optimally hole-doped
Bi2Sr2CaCu2O8+δ (BI2212), as was also pointed out recently in [62]. We esti-
mate that practically no phonons are present along the edges (−0.25π, π) →
(0.25π, π) bridging BZ areas where the superconducting order parameter
φ(k, ω) is always positive (this condition is denoted by +/+). Attrac-
tive electron–phonon coupling bridging +/− areas, i.e. (−0.5π,−0.5π) →
(0.5π, 0.5π), is destructive for dx2−y2–symmetry Cooper pairing. However,
owing to poorer nesting conditions, pairing transitions of the type +/+ con-
tribute somewhat and then a mixed symmetry {dx2−y2 + αs} may occur 4.

Further experimental study of the doping dependence of the oxygen iso-
tope effect is necessary for a better understanding of the role played by
the electron–phonon interaction. For example, if, owing to structural distor-
tion and oxygen deficiency in the CuO2 plane, the phonon spectrum F (q, ω)
changes significantly, then this affects the isotope coefficient α0 and reduces
Tc. Possibly the reported large isotope effect of α0 = 0.15 for a slightly
changed oxygen content, i.e. Nd1.85Ce0.15CuO3.8, could be related to this ef-
fect [63, 64]. As an example, one might think of the oxygen out-of-plane B2u

mode, which becomes active if O4 is replaced by O3.8 [65]. A further signal of
a significant electron–phonon coupling might be the quadratic temperature
dependence of the resistivity [66].

To summarize this subsection, our unified model for cuprate superconduc-
tivity yields for electron–doped cuprates, as for hole-doped ones, pure dx2−y2

symmetry pairing, in good agreement with recent experiments [45, 46, 47].
Our results seem physically clear in view of the discussion presented in con-
nection with Figs. 3.9 and 3.10b in particular. Moreover, the important input
to the calculation, namely the dispersion εk , was taken in agreement with
ARPES measurements. The canonical value used for the strength of the effec-
tive Coulomb interaction U is in accordance with this dispersion. In contrast
to hole–doped superconductors, we find for electron–doped cuprates smaller
Tc values owing to a flat dispersion εk around (π, 0) well below the Fermi
level. Furthermore, superconductivity occurs only for a narrow doping range
0.18 > x > 0.13, because of the onset of antiferromagnetism and, on the
other side, poorer nesting conditions. We obtain 2∆/kBTc = 5.3 for x = 0.15
in reasonable agreement with experiment [42]. We argue that if the electron–

4 Owing to our tetragonal ansatz, one component of the resulting order parameter
must be imaginary, e.g. {dx2−y2+iαs}. However, a slight orthorhombic distortion
would allow our proposed {dx2−y2 + αs} symmetry.
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phonon coupling becomes important, for example owing to oxygen deficiency,
then the s–wave pairing instability competes with dx2−y2-wave symmetry.
This might explain the possible s–wave symmetry order parameter reported
in earlier measurements.

3.2 Elementary Excitations in the Normal
and Superconducting States: Magnetic Coherence,
Resonance Peak, and the Kink Feature

In this section we assume the exchange of antiferromagnetic spin fluctua-
tions to be the relevant Cooper pairing mechanism and calculate the ele-
mentary excitations of the spin and charge degrees of freedom in high–Tc

superconductors. In most cases it is also possible to describe the temperature
dependence and doping dependence. Moreover, we shall study the conse-
quences of the important feedback of superconductivity on the elementary
excitations mentioned in Chap. 2 and the relationship between different ex-
perimental techniques. Thus, in short, we shall present many fingerprints of
spin–fluctuation–mediated pairing that can be seen in the experiments.

3.2.1 Interplay Between Spins and Charges:
a Consistent Picture of Inelastic Neutron Scattering Together
with Tunneling and Optical–Conductivity Data

If antiferromagnetic spin fluctuations are the main pairing mechanism in
high–Tc superconductors, it is important to understand the spin–excitation
spectrum as observed by inelastic neutron scattering [67, 68]. This means, in
particular that the doping and temperature dependences of the spin sus-
ceptibility Imχ(q, ω) and their relationship to the superconducting tran-
sition temperature Tc are important. INS experiments show the appear-
ance of a resonance peak at ωres only below Tc [67] and find a constant
ratio of ωres/Tc � 5.4 for underdoped YBa2Cu3O7−δ (YBCO) and over-
doped Bi2Sr2CaCu2O8+δ (BSCCO) [68, 69, 70]5. Furthermore, recent INS
data on La2−xSrxCuO4 (LSCO) reveal strong momentum– and frequency–
dependent changes of Imχ(q, ω) in the superconducting state [71, 72], which
the authors called magnetic coherence effect. In particular, Imχ(Qi) for
Qi = (1 ± δ, 1 ± δ)π is strongly suppressed compared with its normal–state
value below ω < 8 meV, while it increases above this frequency. Moreover, the
incommensurate peaks become sharper in the superconducting state [71, 72].

Our aim in this section is to use an electronic theory for the spin sus-
ceptibility and for Cooper pairing via exchange of antiferromagnetic spin
5 A closer inspection for the normal-state data of underdoped YBa2Cu3O6+x [69]

shows that this peak is qualitatively different from the resonance peak [70].
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fluctuations to analyze the consequences of the feedback of superconductiv-
ity for magnetic coherence and the resonance peak, and on the relationship
between INS, tunneling, and optical conductivity. Using the RPA and self–
consistent FLEX [73] calculations of the generalized Eliashberg equations for
Imχ(q, ω), we present results for the kinematic gap (or spin gap) ω0, and for
ωres, ωres/Tc, and the gap function ∆(ω) in reasonable agreement with ex-
periments. Thus, most importantly, we find that our electronic theory in the
framework of the generalized Eliashberg equations can explain consistently
the INS, optical–conductivity, and SIN tunneling data. Moreover, the same
physical picture gives results for both underdoped and overdoped cuprates
[74, 75, 76]. We find that the resonance peak in the magnetic susceptibility
Imχ(q, ω) appears only in the superconducting state, that it scales with Tc,
and that magnetic coherence is a result of a d–wave order parameter.

BCS–Like Analysis of the Spin Susceptibility:
Resonance Peak and Magnetic Coherence

In order to analyze the kinematic gap and the position of the resonance peak,
it is instructive to start with the bare BCS susceptibility [77]

χ0(q, ω) =
∑
k

{
1
2

[
1 +

εkεk+q +∆k∆k+q

EkEk+q

]
f(Ek+q) − f(Ek)

ω − (Ek+q − Ek) + iδ

+
1
4

[
1 − εkεk+q +∆k∆k+q

EkEk+q

]
1 − f(Ek+q) − f(Ek)
ω + (Ek+q − Ek) + iδ

+
1
4

[
1 − εkεk+q +∆k∆k+q

EkEk+q

]
f(Ek+q) + f(Ek − 1)
ω − (Ek+q − Ek) + iδ

}
, (3.3)

where its imaginary part reads at q = Q = (π, π)

Imχ0(Q, ω)

=
1
2

∑
k

{[1 − 2f(Ek)] δ(ω + 2Ek) + [2f(Ek) − 1] δ(ω − 2Ek)} . (3.4)

Here again, f(Ek) denotes the Fermi function, and Ek =
√
ε2k +∆2

k is the
dispersion of the Cooper pairs in the superconducting state. In the following
we use a gap function with d–wave symmetry, ∆k = ∆0(cos kx − cos ky)/2,
which can be calculated self-consistently within our FLEX-approach. For the
normal–state dispersion, we employ the tight–binding band introduced in
(2.4),

εk = −2t [cos kx + cos ky − 2t′ cos kx cos ky − µ/2] .

Here, t is the nearest–neighbor hopping energy, t′ denotes the ratio of the
next–nearest–neighbor to the nearest– neighbor hopping energy, and µ is the
chemical potential. We use t′ as a fitting parameter in order to describe the
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Fermi surface topology of the two materials YBCO and LSCO. In evaluating
(3.4) we have taken t′ = 0 and, for simplicity, have not considered a bilayer
coupling via a hopping integral t⊥ [78]6.

As can already be seen within a BCS-like approach, the susceptibil-
ity Imχ0(Q, ω) involves two characteristic frequencies. The first, ωDOS ,
arises from the density of states of the Bogoliubov quasiparticles (i.e. the
Cooper pairs), which have a gap in their spectrum due to superconductivity,
ωDOS � 2∆(x, T ). Here and in the following, x is the doping concentration.
The second frequency, ω0, at which Imχ0(Q, ω) starts to increase represents
the existence of a d–wave superconducting order parameter and is the so-
called kinematic gap [77, 78]. Note that using the full FLEX approach, we
find that the kinematic gap is washed out for t′ > 0.3.

In order to discuss both the resonance peak and magnetic coherence, we
show in Fig. 3.11a results for the spin susceptibility Imχ(Q, ω) defined in
(2.125). We again obtain the two characteristic frequencies ω0 and ωres �
ωDOS at which Imχ is peaked. Furthermore, one can clearly see that with
increasing U the peak in Imχ shifts to lower energies and, most importantly,
becomes resonant when U = Ucr which satisfies the condition

1
Ucr

= Reχ0(q = Q, ω = ωres) ; (3.5)

this signals the occurrence of a spin–density–wave collective mode. The real
part is given (at T = 0) by

Reχ0(Q, ωres) =
∑
k

EkEk+Q − εkεk+Q −∆k∆k+Q

(Ek + Ek+Q)2 − ω2

Ek + Ek+Q

2EkEk+Q
. (3.6)

Reχ0(Q, ωres) has been investigated in detail in [79], where it was found that
the spin–density–wave collective mode, which satisfies (3.5), can explain the
dip and hump feature observed in the photoemission spectra of BSCCO [80].
In particular, it was shown that the broad humps are at the same position
for both the normal and the superconducting state.

We find from (2.125) that, in the normal state where no resonance ap-
pears, the spin wave spectrum is mainly determined by the spin fluctuation
frequency ωsf (roughly the peak position) and, for q = Q by the Ornstein–
Zernicke form

Imχ(Q, ω) ∝ ω ωsf

ω2 + ω2
sf

. (3.7)

On the other hand, in the superconducting state one finds that Imχ peaks
resonantly at ωres, where ωres � 2∆, as can already be seen from (3.4). More
precisely we find for optimal doping, where (3.5) determines the structure of
Imχ the important relation ωres(T ) ≈ 2∆0(T ) − ωsf (T ). Physically speak-
ing, the resonance peak peak that appears in INS only below Tc is mainly
6 Bilayer coupling leads to better nesting of the bonding and antibonding bands

[89]. Thus a resonance peak might appear for a complicated band structure also.
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Fig. 3.11. Numerical results for the resonance peak and magnetic coherence in the
weak-coupling limit. (a) Imaginary part of the RPA spin susceptibility (in units of
states/eV) versus ω in the superconducting state at wave vector q = Q = (π, π)
for U/t = 1, 2, 3, and 4 (from bottom to top). As in [67], we find ωres = 41 meV.
Below the kinematic gap ω0, Imχ(Q, ω) is zero. (b) Calculated magnetic coherence:
the solid curves correspond to the superconducting state and the dotted curve to
the normal state. The four peaks observed occur at Qi = (1 ± δ, 1 ± δ)π, and in
the figure we show only the peaks at Qi = (1, 1 ± δ)π. In our calculations we find
δ ≈ 0.18. These results are in fair agreement with experiments, see [71, 72].

determined by the maximum of the superconducting gap, but is renormalized
by normal–state spin excitations. This provides a simple explanation for the
observed 41 meV resonance peak in optimally doped YBCO [67], because
Raman data suggest 2∆ = 58 meV [81], and ωsf � 17 meV (at 100 K) as
extracted from NMR experiments [82].

We show in Fig. 3.11b results for the q dependence of Imχ(q, ω) obtained
using the same BCS–like analysis. We performed our calculations for U = 2t
and a superconducting gap of 2∆ = 10 meV, as measured by Raman scat-
tering in optimally doped La1.85Sr0.15CuO4 [83]. For ω = 10 meV, we obtain
two peaks at q = Qi. In the superconducting state, we find a sharpening of
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the peaks due to the occurrence of a gap. This simply means that the life-
time of the quasiparticles is enhanced owing to a reduced scattering rate. At
4 meV these peaks are strongly suppressed, as seen in experiments [71, 72].
Moreover, we find no signal for ω < 4 meV. This is due to the kinematic gap
seen in Fig. 3.11a which is independent of q. Note that the situation were to
be totally different if LSCO were to have an isotropic gap where all states
for 0 < ω < 2∆0 � 20 meV were forbidden. In this case no kinematic gap (or
spin gap) would be observed.

We conclude from the above analysis and from Fig. 3.11 that, even in
the weak–coupling limit where no lifetime of the Cooper pairs (i.e. ∆ is
independent of ω) is considered, we are able to explain the resonance peak
and the magnetic coherence effect within a unified picture using a dx2−y2–
wave order parameter. However, on this level no microscopic justification for
a d–wave order parameter can be given. In particular, its ω dependence will
also be important.

Feedback Effect of Superconductivity on the Spin Susceptibility:
Resonance Peak

In order to consider the important feedback effect of ∆ on the spin excitation
spectrum, we now discuss our results obtained in the strong-coupling limit
(i.e.∆ is ω–dependent) by solving self–consistently the generalized Eliashberg
equations within the FLEX approximation [73, 84]. Note that only U/t and
the tight–binding dispersion relation ε(k) (with its band filling µ) enter the
theory as free parameters. We further assume a rigid–band approximation.

In Fig. 3.12a we present results for Imχ(Q, ω) calculated for U = 4t and
an optimum doping concentration x = 0.15 which corresponds to µ = 1.65 in
(2.4). In the normal state (short–dashed curve) we find roughly the spin
fluctuation energy ωsf = 0.1t, whereas for T < Tc the resonance peak
(solid curve) appears at ωres = 0.15t. The long–dashed curve corresponds
to T = 0.9Tc, where the superconducting gap starts to open. Thus, the peak
position reveals information about the temperature dependence of the super-
conducting gap. For temperatures T < 0.75Tc the resonance peak remains
at ωres = 0.15t and only the peak height increases further. We find that
the height of the peak is of the order of the quasiparticle lifetime 1/Γ (ωres),
where Γ (k, ω) = ω ImZ(k, ω)/ReZ(k, ω); Z denotes the mass renormaliza-
tion within the Eliashberg theory. Thus we can conclude that the resonance
peak becomes observable because the scattering rate decreases drastically
below Tc [79].

In order to relate ωres to ∆, we show in Fig. 3.12b the corresponding
calculated density of states N(ω). Below T < 0.75Tc we find that the value of
2∆ determined from the peak–to–peak distance stays approximately constant
and is very close to the value ωres seen in INS, i.e. 41 meV, as shown in
Fig. 3.12a. This is in good agreement with measured STM SIN tunneling data
in [85]. However, in SIN tunneling a renormalized value of 2∆ is observed.
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Fig. 3.12. Consistent picture of INS and tunneling data. (a) Imaginary part of
the RPA spin susceptibility at q = Q = (π, π) calculated within the FLEX ap-
proximation for optimum doping x = 0.15. For the normal state (short–dotted line)
we obtain ωsf = 0.1t and for the superconducting state we obtain ωres = 0.15t.
Assuming t = 250 meV we find that 0.16t = 40 meV. Inset: imaginary part of the
gap function at T = 0.7Tc for wave vector q � (π, 0). (b) Calculated density of
states for the same parameters and temperatures as in (a).

Note that a direct measurement of ∆(ω) (e.g. by SIS tunneling) would lead to
higher values. For example, we show in the inset of Fig. 3.12a the imaginary
part of the gap function at the wave vector q � (π, 0), where the gap has its
maximum. It is peaked at ω = 0.25t.

On the other hand, we show in Fig. 3.13 our results for the feedback of
superconductivity for the (optimally doped) electron–doped superconductor
Nd2−xCexCuO4 (NCCO), obtained using the tight–binding energy disper-
sion shown in Fig. 2.1 as an input. Clearly, a rearrangement of the spectral
weight occurs for small frequencies, but no resonance peak is present. The
rearrangement is again due to the structure in ∆(ω), which, however, occurs
at smaller frequencies because the gap is smaller than in hole-doped super-
conductors. We obtain no resonance peak for NCCO because the resonance
condition (3.5) cannot be fulfilled. Thus we conclude that the occurrence
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Fig. 3.13. Calculated imaginary part of the spin susceptibility for the electron–
doped superconductor NCCO above and below Tc at q = Q = (π, π) obtained using
the FLEX approach. The calculations were performed for U = 4t and an optimum
doping concentration x = 0.15. The band structure was taken from experiment (see
Fig. 2.1).

of a resonance peak is not proof of spin–fluctuation–induced pairing in the
cuprates; the absence of a resonance peak can also be explained within our
theory! Instead, the resonance peak should be viewed as an important finger-
print of spin fluctuations. On the other hand we find that a rearrangement
of the spectral weight is always present, reflecting the structure in ∆(ω) and
thus the character of the spin excitations themselves itself (for example, their
energy ωsf ). Note that in our electronic theory, there is no need for a second
CuO2 plane in order to describe the resonance peak. In our view, a second
plane provides another possible way to satisfy (3.5), but is not needed in
general. Thus we also expect a resonance peak in the single–layer thallium
compound. This indeed has been observed recently [86].

Let us come back to the hole–doped cuprates, where a resonance peak is
clearly present. In order to discuss the consequences of our analysis for the
optical conductivity and, in particular, the consequences of the feedback of
superconductivity on Imχ for various superconducting properties we have
derived the following result (see Appendix B)7

Im Σ(ω) = −U
2

4

∫ ∞

−∞
dω′

[
coth

(
ω′

2T

)
− tanh

(
ω′ − ω

2T

)]

× Im χ(Q, ω′)
∑
k

δ(|ω − ω′| − Ek) , (3.8)

7 We have calculated the self-energy of an electron due to spin fluctuations in
the lowest order. We have assumed further that the main contribution to the
momentum sum comes from the nesting vector Q.



122 3 Results for High–Tc Cuprates: Doping Dependence

Fig. 3.14. Calculated scattering rate in the normal state for T = 1.5Tc (dashed
curve) obtained using (3.8) and in the superconducting state at 0.75Tc (solid curve)
obtained using the Kubo formula [20, 87], yielding a threshold (2∆ + ωres). The
results are in fair agreement with [88].

where N(ω) =
∑

k δ(|ω|−Ek) is the density of states. Equation (3.8) is valid
in both the normal and the superconducting state. It permits discussion of
how much Σ(ω) reflects ωsf and ωres, for example. We see that the feedback
of superconductivity on Imχ causes, approximately, a shift of the elementary
excitations ω → ω+∆0 for the superconducting state in the spectral density
U2 Imχ(Q, ω)/4. Using (3.7) in (3.8) would not take into account the im-
portant feedback of superconductivity on Imχ. Equation (3.8) can be used
to demonstrate the relationship between INS and optical conductivity mea-
surements for the normal state, but note that for the superconducting state
we calculate σ from (GG + FF ) [20]. Using Drude theory, we find that the
scattering rate τ−1(ω) (which is a two–particle quantity) agrees qualitatively
with −2 ImΣ(ω) for the normal state. However, in order to obtain quantita-
tive agreement with experimental data one has to use τ−1(ω) = Γ (Q, ω) or
the Drude formula. This is shown in Fig. 3.14, and the results are in good
agreement with [88]. From this analysis we can conclude that the optical–
conductivity data, the lifetime of the quasiparticles, the resonance peak, and
the SIN tunneling data can be understood within our electronic theory.

Doping Dependence of the Resonance Peak

As mentioned above, the doping dependence of the resonance peak is of sig-
nificant interest for understanding the spin excitations in high–Tc cuprates.
In Fig. 3.15, we show results for ωres as a function of the doping concentra-
tion. We find that, for a fixed U , (3.5) cannot be fulfilled in the overdoped
case8. Thus we find that in this regime, the resonance peak is determined
8 Note that away from optimal doping, by determining formally the minimum of

1 − U Re χ0 one obtains ωmin = 2∆0 − ωsf . However, the physically relevant
condition 1 = URe χ0 yields ωres.



3.2 Elementary excitations: resonance peak and kink 123

Fig. 3.15. Calculated results for the resonance frequency ωres versus doping, ob-
tained using the FLEX approximation. In the overdoped regime, where Tc ∝ ∆0

[76], we find a constant ratio ωres/Tc � 8.

mainly by Imχ0(Q, ω) and thus by 2∆0. On general grounds one expects
Tc ∝ ∆0 in the overdoped regime, where the system behaves in accordance
with mean–field (BCS) theory. This has been discussed in the previous sec-
tion and in [76]. Thus we conclude that ωres/Tc should be a constant ratio.
We find ωres/Tc � 8, which is larger than the observed value in BSCCO [68].
This is due to an underestimation of Tc within the FLEX approximation and
to phonons, which are neglected in our work.

In contrast to the overdoped case, we find in the underdoped regime,
where Tc ∝ ns (ns denotes the superfluid density) [76], that the resonance
condition (3.5) yields ωres ∝ ωsf , which decreases. Note that the supercon-
ducting gap guarantees that (3.5) is fulfilled. Thus we find a decreasing reso-
nance frequency for decreasing doping, in agreement with earlier calculations
[89, 90]. To summarize our discussion, we have the following result:

ωres ≈
⎧⎨
⎩
ωsf , underdoped
2∆0 − ωsf , optimal doping
2∆0 , overdoped

(3.9)

where the optimally doped case corresponds to xopt = 0.15 holes per copper
site. This predicted doping dependence of the resonance peak position should
be tested further experimentally.

In short, we are able to explain consistently all characteristic facts about
the spin excitation spectrum of high–Tc cuprates seen in INS and its dop-
ing dependence within an electronic theory using the generalized Eliashberg
equations. In particular, we find that the resonance peak is a rearrangement
of the spectral weight of the normal state which happens only below Tc. Thus
it is rather difficult to reconcile the resonance peak with the stripe picture,
for example. Furthermore, we have shown that magnetic coherence is con-
nected with the resonance peak and can be explained by a kinematic gap
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Fig. 3.16. Self–consistent scheme used by Carbotte et al. in order to describe the
coupling of quasiparticles to spin fluctuations using conductivity scattering rates
and Eliashberg equations within the semiclassical approximation. This procedure
has been successfully applied for many hole–doped cuprates [75].

and d–wave symmetry of the superconducting order parameter. By taking
into account the feedback of superconductivity on Imχ(q, ω) we argue that
the ARPES results, the tunneling data, and the measurements of the optical
conductivity are consistent.

Comparison with Other Approaches

Carbotte and Schachinger made also look an important step towards a unified
description of the optical conductivity of hole–doped cuprates and their spin
spectrum seen in INS [75, 91]. They extended some work by Marsiglio et al.
[92], in which the pairing potential W (ω) is related to the optical scattering
rate τ−1(ω) by

W (ω) =
1
2π

d2

dω2

[
ω

τ(ω)

]
. (3.10)

The procedure used is shown in Fig. 3.16. Using the extracted pairing po-
tential (shifted by ∆0) as an input to the Eliashberg equations within the
semi–classical approximation (i.e. restricted to the Fermi surface) Carbotte
et al. calculate Tc and a new scattering rate τ−1(ω). This leads to a new
pairing potential, which has to be compared with the original potential ex-
tracted from experimental data. After changing parameters in the Eliashberg
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equations, this procedure is repeated until one reaches convergence. However,
despite the fact that material–dependent predictions can be made (knowing
only one quantity, σ(ω) or Imχ(ω)), this procedure cannot provide a mi-
croscopic explanation of both types of experimental data. This is the main
advantage of our theory where the spin excitations follow from an electronic
theory. The parameters used are only those of the original Hubbard Hamil-
tonian.

Another possible explanation for the resonance peak has been provided
by Demler and coworkers [93], who claim, within the t–J model, that the
resonance peak follows from a π–resonance in the particle–particle channel
that couples to the dynamical spin correlation function within the framework
of the SO(5) theory [94] only below Tc. However, Chubukov and coworkers
[95] have argued against that explanation. They have demonstrated that the
π–resonance always exceeds 2∆, twice the maximum of the d–wave gap, and
might be observed only around 100 meV. Instead, a bound state of a particle
and a hole, a spin exciton, seems to yield good agreement with experimental
data. In our approach, we also consider a particle–hole excitation, via the spin
susceptibility χ(q, ω), where in addition the superconducting gap is calculated
self–consistently and doping–dependently. In other words, ∆(q, ω) does not
enter as a parameter into our theory. We obtain also the correct spin spectrum
for electron–doped cuprates, whereas this is not considered in the theories
mentioned above (and also not in some earlier approaches [96, 97, 98]).

Finally, we would like to mention that Brinckmann and Lee [89, 99] and
Li and coworkers [90, 100] studied the doping dependence of the resonance
peak in hole–doped cuprates within a slave–boson approach with the t–J
model, and Norman and coworkers [101] have connected their result to avail-
able ARPES data and find a consistent picture. But again, neither a connec-
tion to optical–conductivity data nor an electronic theory for electron–doped
cuprates has been presented. In the future, we believe that a good test for
those theories might be the sensitivity of the resonance peak to impurities
of nonmagnetic or magnetic kind [102, 103, 104, 105]. Note that in the clean
limit our theory is able to account for the most important properties, such
as the peak position and the doping dependence of ωres/Tc.

3.2.2 The Spectral Density Observed by ARPES:
Explanation of the Kink Feature

For understanding the high-Tc cuprates, their elementary excitations are
of central significance. In particular, angular–resolved photoemission spec-
troscopy is a powerful tool for studying the observed elementary excitations
A(k, ω) in high–Tc superconductors because the spectral density contains all
information about self-energy effects.

In general, in a photoemission experiment, incident photons excite elec-
trons (or holes) above the vacuum level, where they can be collected and
analyzed. A simplified spectrum of a single-band material would consist of
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only a single peak in the intensity and some background. If the momentum
of the corresponding quasiparticle is assumed to be

|k| =
(

2meEkin

h̄2

)1/2

, (3.11)

where me denotes the (band mass) of the quasiparticle and Ekin its kinetic
energy, one can obtain a relation between the binding energy of an electron
Ebin and the energy of an incident photon Ephoton via Ebin = Ephoton−Ekin.
Furthermore, if the angle Θ of the emitted electron or hole with respect to
the Fermi surface is varied (ARPES), it is possible to analyze the dependence
of Ebin on the momentum k‖, where

k‖ = |k| cos(Θ) . (3.12)

It has turned out that for the layered cuprates, Ebin versus k‖ is sufficient
to determine the band structure and the elementary excitations in the whole
Brillouin zone.

In a simple approximation, the peak obtained in the intensity for ener-
gies below the Fermi level is proportional to the local density of states, i.e.
∝ A(k, ω) [106]. Recently, owing to an improved angular resolution (which
allows one to obtain the momentum distribution curve and energy distribu-
tion curve), data have become available which provide new insight into the
momentum and frequency dependence of the self-energy Σ(k, ω). These data
reveal a “kink” feature at h̄ω ∼ 50 ± 15 meV, which has been observed
in hole–doped cuprates such as Bi2Sr2CaCu2O8, Pb–doped Bi2Sr2CuO6,
YBa2Cu3O7, and La2−xSrxCuO4 [107, 108, 109, 110, 111]. Furthermore, it
is interesting that the experiments also observe a change in the dispersion of
the elementary excitations on going from the normal to the superconduct-
ing state [107, 108, 109]. In contrast, the electron–doped counterparts (e.g.
Nd2−xCexCuO4) do not show a “kink” [112]. In hole–doped superconduc-
tors, experiments by Shen and coworkers [110, 111] have observed the kink
feature in the nodal and (0, 0) → (π, 0) directions of the first Brillouin zone
and the “kink” exists in both the normal and the superconducting state.
On the other hand, Kaminski et al. [109] discussed only the break along the
(0, 0) → (π, π) direction that occurs when one goes from the normal to the
superconducting state. Therefore, they did not analyze the feature observed
by the group mentioned previously [110, 111]. However, it is quite interesting
that a closer inspection of the data of Kaminski et al. [109] for the normal
state reveals the same changes of the Fermi velocity vF as noted by Shen
and coworkers [110, 111]. Thus, there seems to exist a “new” energy scale in
hole–doped cuprates. Shortly after its discovery, interpretations where given
in terms of the presence of a strong electron–phonon interaction [111, 112],
stripe formation [113], or coupling to a resonating mode [80, 109].

In this subsection we show that the kink in the spectral density can be nat-
urally explained as arising from the interaction of the quasiparticles (holes)
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with spin fluctuations. We present results for the spectral density A(k, ω)
corresponding to the crossover from ImΣ(k, ω) ∝ ω to ImΣ(k, ω) ∝ ω2, for
the feedback of superconductivity on the excitations, and for the supercon-
ducting order parameter ∆(k, ω). In agreement with recent experiments, we
demonstrate that the kink feature in the nodal direction is present in both
the normal and the superconducting state [108, 110, 111, 112]. Thus, we are
able to explain recent ARPES experiments which study in detail the spectral
density and, in particular, the energy dispersion ω(k) = ε(k) +Σ(k, ω). It is
significant that the self–energy Σ(k, ω) resulting from the scattering of the
quasiparticles by spin fluctuations can explain the main features observed.
These results relate also to the inelastic neutron scattering and tunneling
experiments discussed in the previous section, and shed important light on
the essential ingredients that a theory of the elementary excitations in the
cuprates must contain. We also analyze the feedback effects due to supercon-
ductivity on the elementary excitations and find fair agreement with [109].

Results for the Spectral Density

In Fig. 3.17, we present results for the frequency and momentum dependence
of the spectral density given by (2.122) in the normal state along the (0, 0) →
(π, 0) direction, calculated using the canonical parameters U = 4t, and t =
250 meV.9 The changes in the k dependence of the peak in A(k, ω) reflect
the characteristic features in the self–energy Σ(k, ω) or in the velocity vk of
the quasiparticles. The kink occurs at energies of about h̄ω ≈ 65 ± 15 meV
for optimal doping (x = 0.15), and Tc ≈ 65 K. We also find that the kink
feature is present in nearly all directions in the BZ (ω ≈ ωsf + vF (φ) · k, k
= k(k, φ)) and, in particular, along the diagonal (0, 0) → (π, π) direction as
shown in the inset of Fig. 3.17. We find that the kink is more pronounced in
the (0, 0) → (π, 0) direction. This is in agreement with ARPES experiments,
see for example Fig. 1.6. Moreover, we see from our calculations that this
feature has only a weak temperature dependence over a wide temperature
range. It changes only at very small temperatures, as we shall describe later.

Next, we come to the discussion of the effective dispersion relation (see
(2.123)) of the quasiparticles due to strong correlation effects. In Fig. 3.18,
we show the positions of the peaks along (0, 0) → (π, 0) shown in Fig. 3.17
as a function of (k − kF ) for different temperatures. We obtain only small
changes due to superconductivity which almost coincide with the position
of the kink. Remarkably, the deviation at k − kF ≈ 0.05 Å−1 is due to
the frequency dependence of the self–energy and reflects the transition from
Fermi liquid to non–Fermi liquid behavior along the path (0, 0) → (π, 0) in

9 Our calculations were performed in the “clean-limit” and thus do not consider
the additional scattering of the carriers by impurities. Also, the intrinsic width of
the spectral function due to scattering by the antiferromagnetic spin fluctuations
provides a small uncertainty.
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Fig. 3.17. Calculated self–energy effects in the spectral density (see (2.122)) of
the quasiparticles in hole-doped superconductors in the normal state at T = 100 K
along the (0, 0) → (π, 0) direction. The dashed line at ω = 0 denotes the unrenormal-
ized chemical potential. In the inset, the spectral density along the (0, 0) → (π, π)
direction is shown. In both cases a kink occurs at energies of about h̄ω ≈ 65 ± 15
meV, since the velocity of the quasiparticles changes.The results are in good agree-
ment with experiments (see, for example Fig. 3 in [110] or Fig. 4b in [111]). Note
that the width of the spectral density peak for (0, 0) → (π, 0) is twice the width for
(0, 0) → (π, π).

the BZ for both the normal and the superconducting state. In the inset, we
show results for the difference between the peak positions for the normal
and the superconducting state along the (0, 0) → (π, 0) direction in order to
see the feedback of superconductivity. Note that this difference disappears at
k−kF ≈ 0.05, corresponding to approximately 65 meV. We obtain changes of
about 10 meV, while Kaminski et al., [109] observe along the (0, 0) → (π, π)
direction a larger difference of about 20 meV. This might be due to the
antibonding bands of Bi2212. This can be expected from an inspection of (3.8)
since the feedback effect of superconductivity on χ is larger for Q ≈ (π, π). In
order to understand the feedback of superconductivity and the crossover from
non–Fermi liquid to Fermi liquid behavior, we shall analyze the frequency and
temperature dependence of the self–energy more in detail.

How can one understand the kink feature in a simple way? At first glance
the occurrence of a kink in the nodal direction seems to be surprising, since
the main interaction of the carriers with spin fluctuations occurs at the hot
spots. Note that the kink feature is present along the diagonal of the BZ
close to the cold spots. However, slightly away from the Fermi level but still
close to it (along (0, 0) → (π, π)), the quasiparticles couple strongly to spin
fluctuations. Most importantly, as can be seen from Fig. 3.19, the largest
scattering will occur at values of k − kF = Q and ω = ωsf . In Appendix B
we show that
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Fig. 3.18. Positions of the peaks in the spectral density A(k, ω) versus k - kF

(energy dispersion, see (2.123)) along the (0, 0) → (π, 0) direction of the BZ cal-
culated within the FLEX approximation. These results should be compared with
the positions of the peaks derived from the momentum distribution curve for a
hole–doped superconductor measured experimentally. The curves show a kink at
energies of about h̄ω ≈ 65 ± 15 meV. The dashed line is a guide to the eye. We
find small changes due to superconductivity which almost coincide with the kink
position. Inset: change in the peak position in A(k, ω) in the superconducting state
(T = 0.5Tc). The results are in fair agreement with ARPES data [109].

Σ(k, iωn) = −T 2
∑

ωm,νm

∑
k′,q

τ̃0G(k − k′, iωn − iνm)τ̃0U2

× 1
2
Tr [τ̃0G(k + q, iωm + iνm)τ̃0G(q, iωm)] . (3.13)

Approximating the Green’s function,

G(k, iωn) ≈ G0(k, iωm) =
iωnτ̃0 + εkτ̃3 − φkτ̃1

(iωn)2 − E2
k

, (3.14)

one obtains the following, after some algebra using the fact that E2
k = ε2k+φ2

k,
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∫ ∞
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×
[
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(
ω′

2T

)
− tanh

(
ω′ − ω

2T

)]
. (3.15)

The imaginary part of the spin susceptibility is approximately given by the
Ornstein–Zernicke expression, which has a peak structure at the wave vec-
tor q and the frequency ω = ωsf . Furthermore, the self–energy is mainly
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Fig. 3.19. Illustration of the anisotropy of the elementary excitations using the
calculated Fermi surface for hole–doped cuprates in the first Brillouin zone for a
single CuO2 layer. The anisotropy can be characterized by three different points on
the Fermi surface. Point number 1 (called the nodal point or cold spot) is related
to the diagonal part of the BZ and point number 3 (called the antinodal point) is
close to (0, π). The dashed line denotes the magnetic BZ, which crosses the elec-
tronic Fermi surface exactly at the “hot spots” (labeled 2). The antiferromagnetic
wave vector Q connects the two pieces of the Fermi surface via scattering by spin
fluctuations mainly at the hot spots. At the (0, π) points and along the diagonals
the wave vector Q connects quasiparticle states below the Fermi level only. Note
that the characteristic anisotropic behavior of the elementary excitations may help
one to distinguish the resultant kink structure from any structure that might be
caused by electron–phonon coupling (see Appendix C).

frequency-dependent, while the bare dispersion of the carriers is not. Even in
the normal state, the self–energy Σ(k, ω) has a maximum, reflecting a corre-
sponding maximum of Imχ at q ≈ Q and ω′ ≈ ωsf . The position of the kink
follows from the pole of the denominator of (3.15). This leads to the “kink
condition”

ωkink ≈ Ek−Q + ωsf (x) . (3.16)

Note that this gives an estimate of the position of the kink and explains the
behavior of the spectral density A(k, ω) in the nodal direction.

Next, we focus on an important antinodal direction that has been mea-
sured by Dessau and coworkers [114]. Interestingly, these researchers find a
kink only below Tc. In Fig. 3.20a, we show our results for the spectral density
A(k, ω) along the path (π, 0) → (π, π), i.e. the antinodal direction of the first
BZ, in the normal state. Note that the spectral density at the (0, π) point is
broader than at the antinodal point owing to stronger coupling to spin exci-
tations peaked at q = Q = (π, π), as discussed in the caption of Fig. 3.19.
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Fig. 3.20. Calculated spectral density A(k, ω) along the antinodal (π, 0) → (π, π)
direction in the first BZ as a function of frequency in the normal (a) and the super-
conducting (b) state. Owing to the flat band close to the Fermi level, the spectral
density shows no kink structure in the normal state. Below Tc, the superconduct-
ing gap φ(ω) opens, yielding a kink structure in the spectral density that occurs at
energies ωkink ≈ 50 ± 10 meV for optimal doping.

Clearly, no kink is present. The absence of a kink structure can be explained
by the flat structure of the CuO2 plane around the M point (see Fig. 2.1).
Simply speaking, for a flat band the frequency dependence of Σ in (2.123)
does not play a significant role, and therefore no change in the velocity and
no kink structure are present.

What happens in the superconducting state? Below Tc, the superconduct-
ing gap φ(k, ω) opens rapidly with decreasing temperature T and becomes
maximal in momentum space around the M point, reflecting the momentum
dependence of the effective pairing interaction (see (2.28)). In addition, owing
to the frequency dependence of the gap, the flat band around M disappears.
In Fig. 3.20b we show results for A(k, ω) at a temperature T = 0.5Tc where
the superconducting gap has opened. A kink structure around ωkink ≈ 50±10
meV is present, reflecting the magnitude of φ. Hence, in the (π, 0) → (π, π)
direction, this kink feature is present only below Tc and is connected to the
feedback effect of φ on the elementary excitations. This is similar to the
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Fig. 3.21. (a) Calculated frequency dependence of the self-energy ReΣ(ka, ω) at
the antinodal point ka of the first BZ in the normal state (solid curve) and supercon-
ducting state (dashed curve). Owing to the feedback effect of the superconducting
gap φ(ω), a peak and a dip occur for ω > 0 (ω < 0), respectively, which roughly
define the position of the kink structure. (b) The corresponding imaginary part at
the antinodal point Im Σ(k = ka, ω). Again, owing to the feedback effect of φ(ω),
a maximum occurs below Tc. Note that ReΣ is not fully antisymmetric and Im Σ
is not fully symmetric with respect to ω at the optimum doping x = 0.15.

feedback effect that yields the resonance peak seen in INS. Note that the
superconducting gap φ(k, ω) is calculated self–consistently in our theory and
reflects the underlying spin fluctuations which dominate the pairing poten-
tial Veff . Therefore, the occurrence of a kink structure only below Tc in the
antinodal direction is a direct fingerprint of the spin excitation spectrum.
Furthermore, as we have discussed above, Imχ(Q, ω) in (3.15) is peaked at
the resonance frequency ωres (roughly ωsf +∆). Therefore, the kink condition
is given by

ωkink ≈ Ek−Q + ωres(x) . (3.17)

In Fig. 3.21a, the frequency dependence of ReΣ(ka, ω) in the normal and
superconducting states at the antinodal point k = ka is shown. Owing to the
occurrence of the resonance feature in Imχ(Q, ω) and the related feedback
of the superconducting gap φ(ω), ReΣ shows a pronounced structure below
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Tc at energies of about ωres + ∆0. Also the corresponding imaginary part
ImΣ(k = ka, ω) shows a peak below Tc (see Fig. 3.21b). This pronounced
behavior is responsible for the formation of a kink along the (π, 0) → (π, π)
direction in the BZ.

Therefore, while kink features are present along the (0, 0) → (π, π)
and (π, 0) → (π, π) directions in the superconducting state of hole-doped
cuprates, their nature is qualitatively different. Along the nodal direction the
superconducting gap is zero (for ω = 0) and thus the feedback effect of super-
conductivity on the elementary and spin excitations is small. Therefore, ωsf

is the main factor that determines the kink feature. On the other hand, along
the antinodal direction, the gap is maximal and leads to a strong feedback
of superconductivity on χ. Thus, in the superconducting state, ωres and ∆0

yield a kink structure along the (π, 0) → (π, π) direction that is not present
in the normal state.

The different reasons for the kink structures in hole-doped cuprates along
different directions in the first BZ will also be reflected in their doping de-
pendence. The results that we have shown so far were for the optimal doping
concentration x = 0.15. This corresponds to a band filling of n = 0.85. Note
that the superconducting transition temperature Tc behaves differently in the
overdoped (OD) and underdoped (UD) regimes:

Tc ∝ ∆(T → 0) , OD-regime ,

Tc ∝ ns(T → 0) , UD-regime ,

where ns is the superfluid density calculated self-consistently from the gen-
eralized Eliashberg equations.

In the antinodal (0, π) → (π, π) direction, the kink is present only below
Tc owing to the feedback of φ(ω). In the OD case the gap φ(ω) decreases,
reflecting a mean–field–like behavior. Thus, the energy where the kink occurs
must decrease with overdoping:

ωkink(x) ∝ ∆0(x) . (3.18)

This behavior is indeed observed by Dessau and coworkers [114]. Note that
the above argument remains true in the strongly OD case, where no resonance
peak in Imχ(Q, ω) occurs, because the feedback effect of φ(ω) should always
be present.

Regarding the kink along the nodal (0, 0) → (π, π) direction, we note the
following: ωsf increases with increasing doping from underdoped to overdoped
cuprates. Since ωsf determines the kink position along the (0, 0) → (π, π)
direction, we expect that

ωkink(x) ∝ ωsf (x) . (3.19)

This is in qualitative agreement with experimental data [129] (for the un-
derdoped regime and for optimally doped superconductors). On the other
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Fig. 3.22. Calculated frequency dependence of the quasiparticle self–energy at
the node Σ(kn, ω), kn = (0.4, 0.4)π. The solid curves correspond to the normal
state at T = 2Tc, whereas the dashed curves refer to the superconducting state at
T = 0.5Tc. At k = kn, where the superconducting gap vanishes, one clearly sees
approximately at h̄ω = 65 meV a crossover from Fermi liquid behavior (Σ ∝ ω2)
to a non–Fermi liquid behavior (Σ ∝ ω) for low–energy frequencies as a function
of temperature. We show in the inset the behavior of Σ(kn, ω) calculated at very
low temperature T = 0.003t � 0.9K (dashed line).

hand, the spectral weight of Imχ(Q, ω) decreases drastically with overdop-
ing. Therefore, the coupling of the quasiparticles to spin fluctuations becomes
much weaker in the OD case. These two competing effects seem to be respon-
sible for the nonmonotonic weak doping dependence of the kink position in
the nodal direction [114].

It is remarkable that for electron–doped superconductors with a different
dispersion εk [115], in particular with a flat band lying 300 meV below εF at
(π, 0), we obtain no kink feature up to frequencies of about 100 meV. This
is also in agreement with experiment [112]. The reason behind this is that
Imχ(q, ω) has a peak at larger frequencies which is much less pronounced
than for hole–doped cuprates [116].

Results for the One–Particle Self–Energy: Fermi Liquid Versus
Non–Fermi liquid behavior

There is a broad discussion about whether or not layered cuprate super-
conductors behave like conventional Fermi liquids. Early experiments (for a
review, see [88]) revealed non–Fermi liquid properties, in particular a lin-
ear resistivity ρ(T ) for optimal doping, poorly defined quasiparticle peaks
above the superconducting transition temperature Tc seen in ARPES [117],
and a strong temperature dependence of the uniform spin susceptibility ob-
served by NMR [118]. The phenomenological concepts of a marginal–Fermi
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liquid (MFL) and a nested–Fermi liquid (NFL) have been introduced in or-
der to explain the deviations in the normal state from Fermi liquid theory
[119, 120]. Our results shed more light on this question. In agreement with
the picture of Ruvalds and coworkers, we obtain the ω and T dependence
of the self–energy, which is mainly due to scattering of the quasiparticles
by spin fluctuations, this is strongest for a nested Fermi topology. This also
provides a microscopic justification for the MFL approach10. Thus, for op-
timal doping (x = 0.15), the microscopic FLEX approximation includes the
phenomenological concepts of both the NFL and the MFL [35].

In order to investigate the effect of the self–energy Σ(k, ω) on the dis-
persion ω(k, T ), we show in Fig. 3.22 the results of our calculations of
ImΣ(kn, ω) for a wave vector along the node line of the superconduct-
ing order parameter in the first BZ. The transition from Σ(k, ω) ∝ ω2 to
Σ(k, ω) ∝ ω for low–lying frequencies is shown for various temperatures.
Note that the deviation from Landau’s theory (see solid curve in Fig. 3.22),
ImΣ ∼ ω, results from the strong scattering of the quasiparticles by the spin
fluctuations in our picture and is expected to disappear at temperatures T →
0, see inset of Fig. 3.22. In particular, the changes in the velocity of the quasi-
particles with frequency are determined in energy distribution curves (EDC)
by v∗F = vF /(1 + dΣ

′
k(ω)/dω). At frequencies around 65 meV, ReΣk(ω)

shows a flattening, as can be seen via a Kramers–Kronig analysis of ImΣ.
Therefore, at this frequency, the effect of the scattering by spin fluctuations
almost disappears. Thus, we find Fermi liquid behavior. In our microscopic
theory we also recover Fermi liquid behavior for T ∼ ω 	 ωsf . Here, ωsf is
the characteristic spin fluctuation energy measured in INS (roughly the peak
position of Imχ(Q, ω) [116]) and is typically around 25 meV for hole–doped
superconductors [121]. We have shown previously that our ωsf gives a good
description of INS data [76]. On the other hand, for T < Tc, the scattering
is also strongly reduced, owing not only to ω < ωsf but also to a feedback
effect of superconductivity.

In Fig. 3.23, we demonstrate the feedback of superconductivity onΣ(k, ω).
We expect that it is strongest for k ≈ (π, 0.1π), where the gap ∆(ω) is maxi-
mal. One can see that the superconducting properties demonstrated, ∆(k, ω)
and in particular in Im∆(k, ω), are the main factor that induces changes in
the self–energy. For a comparison with experiment, we also present our results
for the superconducting gap. Note that this behavior of Σ(k, ω) and ∆(k, ω)
is also related to INS and optical–conductivity experiments. In particular,
the peak position of ImΣ(ka, ω) is approximately at 3∆0 − ωsf ≈ ωres +∆0

(ωres denotes the resonant frequency observed in INS), according to our pre-
vious analysis [76]. This is in a good agreement with results obtained within

10 Note that although the results of our microscopic calculations agree with MFL
theory, we have not proved the existence of a quantum critical point suggested
there.
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Fig. 3.23. Calculated frequency dependence of the quasiparticle self–energy
Σ(ka, ω) at the wave vector k = ka ≈ (1, 0.1)π (antinode). The solid curves cor-
respond to the normal state at T = 2Tc, whereas the dashed curves refers to the
superconducting state at T = 0.5Tc. This shows ka the feedback effect of super-
conductivity on the self–energy at the wave vector ka. Inset: superconducting gap
function ∆(ω) at wave vector k = ka versus frequency. Since the behavior of ∆
and Σ is controlled by Imχ(q, ω), we are able to connect these results also to the
resonance peak observed by INS in cuprates [76].

the framework of the spin–fermion model [122]. It is an important result that
∆(ω) also agrees well with tunneling experiments [76].

To summarize this subsection, we have calculated the pronounced mo-
mentum and frequency dependence of the quasiparticle self–energy Σ in
hole-doped high-Tc cuprates and find that this results in a kink structure
in the dispersion ω(k), which agrees well with recent ARPES experiments.
An important result for describing the physics in the cuprates is that the ori-
gin of this is the coupling of the quasiparticles to the spin fluctuations. The
reason for the kink structure is the strong coupling and inelastic scattering
of holes to and by spin fluctuations. At the Fermi level, this is reflected in
a change of the ω dependence of the self–energy Σ from non–Fermi liquid
to Fermi liquid behavior. Owing to a different spectrum Imχ(q, ω) of the
spin fluctuations in electron–doped cuprates, we do not find a kink in the
corresponding spectral density. Furthermore, the feedback effects due to su-
perconductivity on the elementary excitations clearly reflect the symmetry
of the superconducting order parameter, and the calculated density of states
N(ω) ≡ A(ω) =

∑
kA(kω) compares well with SIN tunneling data. However,

owing to spatial averaging such experiments do not exhibit a kink structure.
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3.3 Electronic Raman Scattering in Hole–Doped
Cuprates

The use of optical techniques to investigate low–energy excitations in high–Tc

superconductors has traditionally been of great importance, not only allow-
ing the study of the superconducting gap directly, but also providing detailed
information on the unusual normal and superconducting states in these com-
pounds. One optical probe is polarization–dependent inelastic light (Raman)
scattering. Using Raman spectroscopy, not only electronic or magnetic, but
also phononic excitations can be investigated. In this regard, the renormal-
ization of phonons due to interaction with the pair–breaking peak is of par-
ticular interest. A well–known example is the B1g Raman–active phonon at
≈ 340 cm−1 in RBa2Cu3O7−δ, where R denotes a rare-earth atom such as
yttrium [123, 124]. This phonon corresponds to an out–of–plane vibration of
the planar oxygen (e.g. [125]). Owing to the coupling of this mode to the low–
energy electronic excitations, it has a Fano–type lineshape. The change of the
lineshape at low temperatures was identified from the superconducting redis-
tribution of the electronic spectrum and was investigated in detail in [126].
However, in this section, we shall focus on the electronic part of the Raman
intensity after all phonons have been subtracted. The remaining signal due
purely to electronic Raman scattering (and its polarization dependence) pro-
vides important information about the quasiparticle scattering rate τ−1(ω)
in the normal state and the anisotropy of the gap function ∆(k, ω) in the
superconducting state.

Polarization–dependent Raman scattering data below Tc from optimally
doped Bi2Sr2CaCu2O8+δ (Bi2212) for the polarization channels of A1g, B1g,
and B2g symmetry have been analyzed by weak–coupling BCS theory and
found to be in agreement with a dx2−y2 pairing symmetry [127]. In the weak–
coupling limit, it has been shown that good agreement with the Ax′x′

and B1g

Raman data from YBa2Cu3O7 (YBCO) can be obtained if vertex corrections
due to the pairing interaction and short–range Hubbard–type interactions be-
tween the electrons are taken into account [128]. The relationship between
the normal-state anomalous Raman spectrum and the optical conductivity of
high-Tc superconductors has been discussed in the context of marginal Fermi
liquid theory, where it has been noted that a linear variation of the quasipar-
ticle damping with frequency is responsible for these phenomena [119]. This is
consistent with the results of the nested–Fermi liquid model, which describes
the qualitative features of the optical conductivity and Raman response in the
normal state correctly and can be generalized in a simple way to the super-
conducting state [129]. Strong–coupling calculations with anisotropic Eliash-
berg equations have been carried out by using a phenomenological anisotropic
spin fluctuation interaction in a nearly–antiferromagnetic Fermi liquid theory
[130]. These theories are capable of explaining many features of the observed
Raman spectra in La2−xSrxCuO4 [131], Bi2212 [132], and YBCO [133]. In
the last of these works, it is shown that the Raman response is extremely
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sensitive to the details of the band structure and the anisotropy of the spin
fluctuation interaction. Comparison of the low–frequency B1g and B2g re-
sponses in the normal state could provide an indication of the strength and
anisotropy of the interaction. The pair–breaking peak in the B1g response
carries information about quasiparticle scattering. However, no microscopic
theory exists which is able to describe simultaneously

– the different peak positions in the relevant scattering geometries,
– the particular lineshape of the pair-breaking spectrum,
– the power laws for small Raman shifts, and
– the relative scattering intensities.

In this section, we present results for electronic Raman scattering from
hole–doped cuprates and the quasiparticle scattering rate for optimally doped
and overdoped cuprates, based on the FLEX approximation for the spin and
quasiparticle excitations which solve the generalized Eliashberg equations for
the two–dimensional one–band Hubbard model. We find for T > Tc and inter-
mediate coupling strengths a flat background in the Raman intensity; this can
be understood in terms of the quasiparticle scattering rate, which turns out to
be strongly anisotropic in momentum space but less temperature dependent
for large ω. For ω > 4T , a linear behavior of the quasiparticle damping (as
suggested within a nested–Fermi liquid picture) is obtained. Below Tc, the
feedback effect of the one-particle properties on the spin fluctuation spec-
trum is taken into account self–consistently and has important consequences
in the superconducting state. For example, the quasiparticle damping which
varies linearly with frequency in the normal state in accordance with the MFL
[119] and NFL [129] theories, is strongly suppressed at lower frequencies in
the superconducting state. These properties of the quasiparticle damping de-
termine to a large extent the Raman spectra and also the results of INS,
ARPES, tunneling, and optical–conductivity experiments in the normal and
superconducting states, as discussed earlier. Thus, below Tc, we find a large
pair–breaking peak in the Raman intensity and a gap developing in the B1g

spectrum, while the effect of superconductivity on the B2g spectrum is found
to be much smaller.

3.3.1 Raman Response and its Relation to the Anisotropy
and Temperature Dependence of the Scattering Rate

First we present our results for the Raman response function given in (2.141)
in the absence of vertex corrections to the bare Raman vertices in (2.142)
(J = 0 in (2.154)). For this purpose, we have solved the generalized Eliash-
berg equations within the FLEX approximation for the 2D tight–binding
band mentioned above with B = 0.45 and µ = −1.1. This describes approxi-
mately the Fermi surfaces of the Bi2212 and YBCO compounds. Furthermore,
we have taken an effective Coulomb repulsion U(q) which has a maximum
value U = 3.6 at q = Q and decreases monotonically with decreasing q to a
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Fig. 3.24. Raman spectra Im χγ(q = 0, ω) for B1g polarization in the normal state
at T = 0.1t and 0.023t (solid lines with increasing slopes), and in the supercon-
ducting state (Tc = 0.022t) at T = 0.021t and 0.017t, or T/Tc = 0.77 (dashed lines
with increasing peaks).

value U(0) = 0.62 at q = 0. This functional form provides good agreement
with INS data and also approximates the calculated vertex corrections to the
spin susceptibility χs0. With these parameters, we obtain a superconducting
transition at Tc = 0.022t. We remark that the vertex corrections for the irre-
ducible spin susceptibility χs0(q, ω) are similar to those in (2.155) apart from
an opposite sign and the dependence on q. It turns out that the frequency
and temperature dependences are rather weak and that the dispersion with
respect to q around Q can be well approximated by the phenomenological
spin–spin coupling which has been used to describe the NMR data for YBCO
compounds [130].

One can see from Figs. 3.24 and 3.25, for B1g and B2g symmetry, respec-
tively, that in the normal state (solid curves) both spectra start linearly in
the frequency ω and become flat at high frequencies. The slope at ω = 0
increases with decreasing temperature T , while the spectrum at high fre-
quencies decreases with decreasing T . In the B2g spectrum, a low–frequency
peak develops with decreasing T . These results are similar to normal–state
results obtained from the theory of nearly antiferromagnetic Fermi liquids in
the z = 1 pseudo-scaling and z = 2 mean–field–scaling regimes [132]. The ex-
perimental data available at present do not show a peak in the normal–state
B2g response. It has been pointed out that observation of this structure in
the B2g response and its absence in the B1g response would lend support to
the current models of the Fermi topology and of the strength and anisotropy
of the interaction [133].

In Fig. 3.24, for the B1g response, we recognize that a gap at lower ω and
a pair-breaking peak at a threshold energy of ω = 0.15t � (3/2)∆0 develop
as T decreases below Tc (dashed curves). Here, ∆0 is the amplitude of the
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Fig. 3.25. Raman response function for the B2g channel for the same temperatures
as in Fig. 3.24. In the superconducting state, the slope at ω = 0 decreases with
decreasing T .

dx2−y2–wave gap, which can be estimated from the binding energy at the mid-
point of the leading edge in the calculated photoemission spectrum near the
antinode of the gap [134]. This gap amplitude ∆0 rises much more rapidly be-
low Tc than does the BCS d–wave gap and reaches a value of about ∆0 = 0.1t
at our lowest temperature T = 0.017t (T/Tc = 0.77). Comparison with the
weak-coupling theory shows that the singularity at the pair–breaking thresh-
old [127] is removed here by strong quasiparticle damping, while according
to the weak–coupling theory of [76] this singularity is removed by a screening
term arising from vertex corrections due to the pairing interaction. Electron–
electron scattering due to short–range Coulomb interaction can describe the
observed broadening above the pair–breaking peak in the B1g Raman spec-
trum of YBCO [76]. Our results for the B1g response in the superconducting
state (see Fig. 3.24) agree qualitatively with the results of non–self–consistent
calculations which include the effect of inelastic scattering [133].

The Raman response function for B2g symmetry shown in Fig. 3.25 does
not exhibit such dramatic effects below Tc as those for B1g symmetry shown
in Fig. 3.24. One notices that the spectrum is linear in ω for small ω, and
that the slope at ω = 0 decreases and the normal–state peak broadens and
shifts to somewhat higher frequency as T decreases below Tc (dashed curves
in Fig. 3.25). The spectrum above this peak is somewhat enhanced up to fre-
quencies near the pair-breaking threshold. In contrast to our results shown in
Fig. 3.25, the non–self–consistent calculation yields a distinct pair–breaking
peak below Tc in the B2g response which occurs much closer to the B1g pair–
breaking peak [133]. We do not show the calculated Raman spectrum for A1g

symmetry because it is quite similar to that for the B1g symmetry. In order
to obtain the measured Ax′x′

spectrum, we have to add the B2g spectrum to
the A1g spectrum. The resulting Ax′x′

response starts linearly in ω because,
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Fig. 3.26. Results for optimum doping concentration (x = 0.15): Raman scattering
intensity I ∝ Im χγ(q = 0, ω) for γ = t[cos kx − cos ky ] (B1g polarization) as a
function of the transferred energy ω/t. The solid curve corresponds to T ≈ 2Tc

and the dashed curve corresponds to T ≈ 1.05Tc. For comparison, the result for
the superconducting state (T ≈ 0.75Tc, dash–dotted curve) is also displayed. Inset:
effective–mass ratio Re Z(k, ω) for k = ka = (0.15, 1)π as a function of ω/t.

at low frequencies, it is dominated by the B2g spectrum up to a shoulder
corresponding to the small peak in the B2g spectrum. At higher frequencies,
the Ax′x′

spectrum is dominated by the A1g component, which exhibits a the
large pair–breaking peak.

We come now to the discussion of the effect of vertex corrections on the
Raman response functions derived in Sect. 2.3.3. From (2.154), one sees that
the general trend of the vertex correction J is to suppress the response in the
B1g channel and to enhance the response in the B2g channel, while we have a
mixed effect on the A1g channel because the component of γA1g proportional
to t is suppressed and the component proportional to t′ = −Bt is enhanced.

In Figs. 3.26 and 3.27a, we use the canonical parameters U = 4t and t′ = 0
and focus on optimum doping (x = 0.15). Below Tc, a pair–breaking peak
in the Raman scattering intensity develops. For T ≤ 0.75Tc, the threshold
position 2∆0 is approximately the peak–to–peak value calculated for the
superconducting density of states, which has been discussed in Sect. 3.2.1.
For temperatures T > Tc, we find a structureless (incoherent) background
for large Raman shifts and only a small temperature dependence, which is
in good agreement with experiment. Such a behavior is also expected in
nested–Fermi liquid theory [120], where Imχ ∝ tanh(ω/4T ). We indeed find
the linear behavior of Γ for ω > 4T predicted in NFL theory. However, to
calculate the scattering rate τ−1, one has to take into account ReZ also (see
inset). For example, we can clearly see that m∗/m = ReZ(ω = 0) depends
strongly on temperature.

In Fig. 3.27b, we show our results for Γ and ReZ for the overdoped case
x = 0.22. Again, the quasiparticle damping Γ is anisotropic. Furthermore,
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Fig. 3.27. Comparison of the quasiparticle damping Γ = ω Im Z(k, ω) for (a)
optimum doping (x = 0.15) and (b) the overdoped case (x = 0.22): we use the same
notation as in Fig. 3.26. The upper curves correspond again to k = ka = (0.15, 1)π,
whereas the lower curves correspond to k = kb = 0.41π(1, 1) on the Fermi line.
Inset: effective–mass ratio ReZ(k, ω) for x = 0.22.

we find that the effective–mass ratio and Γ have decreased. Such a behav-
ior is expected far away from the antiferromagnetic phase; this behavior is
responsible for the pairing and for the lifetime effects via spin fluctuations.
Note that for small ω we do not even find an anisotropy for different k vec-
tors at the same temperature. From these pictures we can conclude that the
scattering rate in optimally and overdoped cuprates is strongly anisotropic.
Furthermore, for large frequencies we find a linear behavior in ω, in agreement
with NFL theory. This provides a possible explanation for the structureless
background in the Raman scattering intensity of high–Tc superconductors in
the normal state. Below Tc, a gap opens in the quasiparticle scattering at
approximately ω = 3∆− ωsf , where ωsf denotes the spin fluctuation energy
(the position of the peak in the Ornstein–Zernicke–type spin susceptibility),
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as discussed in Sect. 3.2.1. This leads to the observed pair–breaking Raman
peak and thus reflects mainly the density of states in the superconducting
state.

Finally, in order to discuss the influence of vertex corrections in the A1g

channel (which are more complicated), it is intructive to go back to the
weak-coupling limit and (2.156). In Fig. 3.28, we present our results for an
expansion of the bare Raman vertex in Fermi surface harmonics (FSH), i.e.

γ(k) =
∑
L,µ

γµ
LΦ

µ
L(k) , (3.20)

and for the integration over the Fermi circle. The unscreened response (i.e. the
first term on the right-hand side) in the A1g and B1g scattering geometries
diverges logarithmically at the threshold ω = 2∆0, whereas the B2g scat-
tering intensity is small. The screening term in the B1g channel cancels the
divergence without changing its position. A similar situation is realized for
the A1g polarization, where a cusp remains at the threshold energy ω = 2∆0.
However, existence of the same threshold energy for the A1g and B1g scatter-
ing geometries is in clear contradiction to experiment. Therefore, one might
introduce higher harmonics in the expansion,

γ
A1g

k = γ0 + γA1g [cos(4φ) + α cos(8φ)] . (3.21)

This leads to the results presented in the inset of Fig. 3.28, where only the
A1g response is shown (γ0 = 0). Although the low–frequency Raman response
remains less affected, one can clearly see that the peak position is extremely
sensitive to the admixture of higher harmonics. Because neither the expansion
coefficients nor the convergence behavior of such an expansion is known, we
may safely conclude that this approach is an unsatisfactory way to obtain
a detailed description of the Raman response in the A1g polarization. The
problem concerning the position of theA1g pair–breaking peak also remains in
the effective–mass approximation, which has the advantage that no additional
parameters are introduced. It has been shown in [35] that the effective mass
approximation depends strongly on the details of the tight–binding band
structure used in the calculation. Recently, several groups have shown that
if magnon states at higher energies are taken into account, the peak position
in the A1g polarization becomes more stable and resonable agreement with
experiment can be achieved.

To briefly summarize this section, we have calculated the electronic Ra-
man response function within the framework of the generalized Eliashberg
equations using the 2D Hubbard model. The FLEX approximation is ca-
pable of describing the most important properties of the high–Tc cuprates,
namely, their unusual normal–state behavior arising from strong electronic
correlations, and the unconventional superconducting state, which is widely
believed to have dx2−y2 wave pairing. These properties are reflected in the
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Fig. 3.28. Raman scattering intensity versus Raman shift for a clean supercon-
ductor with a d–wave gap ∆(φ) = ∆0cos(2φ) calculated using an expansion in
FSHs. The unscreened A1g (solid line) and B1g (medium–dashed line) responses di-
verge logarithmically at the threshold energy ω = 2∆0. The screened B1g intensity
(short–dashed line) and the B2g channel (long–dashed line) have approximately the
same (small) scattering intensity; for A1g a cusp at the threshold energy remains.
Inset: unscreened (solid lines) and screened (dashed lines) A1g Raman response due
to the admixture of higher harmonics α = 0, −0.15, −0.30, and −0.45 (peak po-
sitions of the screened response from right to left in this sequence). For α ≥ 0, no
screening occurs.

calculated Raman response functions for the A1g or Ax′x′
, B1g, and B2g po-

larizations. In the normal state these spectra start linearly in the frequency
ω with a slope that increases with decreasing temperature T , and at high
frequencies these spectra become almost constant. The latter property is a
consequence of the linear frequency variation of the quasiparticle damping.
In the superconducting state one obtains a gap and a pair–breaking peak in
the B1g channel because this polarization probes the region in momentum
space around the antinode of the gap. The effect of superconductivity on
the B2g spectrum is much smaller, which is not surprising, because the B2g

channel probes the region around the node of the gap. Thus our results for
the Raman spectra agree qualitatively with experiments on optimally doped
cuprates.

3.4 Collective Modes in Hole–Doped Cuprates

In general, the internal structure of a Cooper pair can be investigated through
its dynamics, i.e. the ω (and k) dependence of the condensate. In particular,
in unconventional superconductors, where at least one an additional symme-
try is broken, many low–frequency collective modes are present. For example,
a wide variety of collective modes has been observed in the three phases of
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superfluid 3He [135]. These fluctuations of the spin–triplet p–wave gap have
been calculated from coupled Bethe–Salpeter equations for the T –matrices
in the particle–particle and particle-hole channels [136, 137]. This method
has also been used to investigate the collective modes in hypothetical p–wave
pairing superconductors such as heavy fermion superconductors [138]. A de-
tailed study of the collective modes in 3D d–wave superconductors, including
different order parameter symmetries, has been made in [139]. Recently, pair
fluctuations and the associated Raman scattering intensity have been calcu-
lated for a two–dimensional d–wave weak–coupling superconductor [140].

In this section, the role of collective modes in various experiments on hole–
doped cuprates is investigated. We again show results for neutron scattering,
photoemission (ARPES), and Raman scattering intensities below Tc obtained
from the generalized Eliashberg equations using the two–dimensional Hub-
bard model and describe them in a unified picture. Previous work on collective
modes in high–Tc superconductors [140, 141, 142, 143, 144] has been restricted
to weak–coupling and mean–field calculations. As described in Chap. 2, the
FLEX approach what we have used here is a self–consistent and conserving
approximation scheme, which goes well beyond the mean–field approxima-
tion. As discussed in connection with the resonance peak (Sect. 3.2.1), the
feedback effect of the one-particle properties on the collective modes in the
superconducting state is included self–consistently and thus the importance
of the quasiparticle damping becomes clear. To be more precise, we shall
show that the large peak in the dynamical spin susceptibility (i.e. the res-
onance peak) can also be interpreted as being due to the occurrence of a
weakly damped spin–density–wave collective mode. This gives rise to a dip
between the sharp low–energy peak and the higher–binding–energy hump in
the ARPES spectrum. Furthermore, we demonstrate that the collective mode
of the amplitude fluctuations of the d–wave gap yields a broad peak above
the pair–breaking threshold in the B1g Raman spectrum.

3.4.1 A Reinvestigation of Inelastic Neutron Scattering

In order to discuss the occurrence of a spin–density–wave collective mode
in inelastic neutron scattering experiments, we have investigated first the
imaginary part of the dynamical spin susceptibility. Below Tc, large peaks
evolve in the spectral density Imχs(q, ω), i.e. four distinct peaks at wave
vectors q near Q = (π, π) for next-nearest neighbor hopping t′ = 0 [145], and
a broad peak centered at Q for t′ = −0.45t (t is the nearest–neighbor hopping
energy) [146]. As discussed earlier, these results are in qualitative agreement
with neutron scattering experiments on La2−xSrxCuO4 and YBa2Cu3O7−δ

[147]. Similar results have been obtained within the t–J model [148].
In Fig. 3.29, we again show the resonating behavior of Imχs(Q, ω) for

U = 3.6t and t′ = −0.45t this time in the underdoped regime (x = 0.10).
One can see that a large peak evolves at about ω0 = 0.08t as T de-
creases below Tc = 0.022t. The amplitude ∆0 of the dx2−y2-wave gap rises
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Fig. 3.29. Spectral density of the spin susceptibility in the underdoped regime
at wave vector Q = (π, π), Im χs(Q, ω), for temperatures T = 0.023t, 0.020t, and
0.017t (Tc = 0.022t). Here, U = 3.6t is the on-site Coulomb repulsion, t the near–
neighbor hopping energy, t′ = −0.45t the next-nearest neighbor hopping, and n =
0.90 the renormalized band filling. The resonance peak for optimum doping is shown
in Fig. 3.12.

much more rapidly below Tc than does the BCS d–wave gap and reaches,
at our lowest temperature T = 0.017t (T/Tc = 0.77), a value of about
∆0 = 0.1t. We find that the resonance peak seen in INS which is calcu-
lated in Fig. 3.29 might be interpreted as being due to a slightly damped
collective mode because the susceptibilty has a pole at ω0, more exactly, it
fulfills the resonance condition Reχs0(Q, ω0) − U−1 = 0 (see (3.5)), and the
height of the peak is of the order of the quasiparticle lifetime 1/Γ (ω0). Here,
Γ (k, ω) = ω ImZ(k, ω)/ReZ(k, ω) is the quasiparticle scattering rate. Since
this is decisive for the observability of the collective modes in the cuprates,
we show in Fig. 3.30 the quasiparticle scattering ω ImZ(k, ω) and the mass
renormalization ReZ(k, ω) at the antinode ka and at the node kb of the
gap on the Fermi line for the same parameters as in Fig. 3.29. One can see
from Fig. 3.30 that for T below Tc, the scattering rate decreases strongly for
frequencies ω below the pair–breaking threshold 3∆0 − ωsf � 0.2t. This has
also been discussed in Sect. 3.2.1.

In order to understand somewhat better the origin of this spin–density–
wave collective mode, we have calculated χs0(Q, ω) in the weak–coupling
limit. The sums over Matsubara frequencies were carried out with the help
of methods developed for superfluid 3He [137]. The results have already been
given in (3.6) and (2.161)–(2.168). In this weak–coupling approach, the peak
of Reχs0 as a function of ω occurs approximately at ω � 2∆0. This result
has been checked by carrying out numerically the sum over k in (2.160)
for t′ = −0.45t and for different amplitudes ∆0 and chemical potentials µ. In
fact, we find that the function Reχs0(Q, ω) exhibits a peak at about ω � 2∆0

whose height decreases as µ increases, for example from −1.3 (unrenomalized
band filling n0 = 0.84) to −0.8 (n0 = 1.03). A solution ω0 < 2∆0 of the
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Fig. 3.30. Quasiparticle scattering rate Γ (k, ω) = ω ImZ(k, ω)/ReZ(k, ω) at the
antinode ka and node kb of the d–wave gap, in the normal state at T = 0.023t
(solid lines), and in the superconducting state at T = 0.017t (T/Tc = 0.77) (dashed
lines). (a) ω Im Z(k, ω); (b) mass enhancement Re Z(k, ω).

equation Reχs0(Q, ω0) = 1/U exists only for a small range of U values near
U � 3t–4t. The strong–coupling FLEX calculation yields a smaller resonance
energy. Another difference in comparison with the weak–coupling result is
the fact that the self-consistent strong-coupling calculations yield a collective
mode for much higher values of U , for example U = 6.8t in [146]. This
shows how important it is to take into account the feedback effect of the self–
energy on the dynamical spin susceptibility χs. These strong renormalization
effects might also be responsible for the observed broadening and decrease of
the resonance frequency ωres of the neutron scattering peak in underdoped
YBa2Cu3O6+x, which has been observed to be proportional to the decrease
of Tc or to the doping level [67]. In fact, in our calculation for decreasing
doping x = n− 1 or increasing chemical potential µ, the position and height
of the function Reχs0(Q, ω) decrease, which means that the position of the
peak of Imχs is decreased and its width is increased.
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3.4.2 Explanation of the “Dip–Hump” Feature in ARPES

We show now that the spin–density–wave collective mode has a large effect
on the angle–resolved photoemission intensity below Tc. In Fig. 3.31a, we
have plotted our results for N(k, ω)f(ω) (where N(k, ω) is the quasiparticle
spectral function and f(ω) is the Fermi function) for several k–vectors ranging
from k = (π, 0), (7π/8, 0), (13π/16, 0), . . . , down to (0, 0). The parameter
values are the same as in Figs. 3.29 and 3.30. For k–vectors near (π, 0), we
have a sharp low–energy peak followed by a dip and then a hump at higher
energy. As k moves from (π, 0) to (0, 0), the sharp peak at first remains
at about the same position, while the broad hump moves to higher binding
energy. In Fig. 3.31b, we show the corresponding normal state spectra at T =
0.023t. One notices that the broad hump at higher binding energy remains at
the same position when the normal state is entered, while the sharp peak and
the dip feature disappear. In the superconducting state, we do not find the
dip feature along the nodal direction of the d–wave order parameter. These
results are in qualitative agreement with the photoemission spectra from
Bi2Sr2CaCu3O8+δ (Bi 2212) of [149]. In that paper it was argued that the
dip in the spectrum stems from a step–like edge in the quasiparticle scattering
rate, which arises from interaction with a collective mode. This scenario is
confirmed by our results for the collective mode shown in Fig. 3.29 and by
the scattering rate shown in Fig. 3.30. We estimate, from the edge of the
peak in Fig. 3.31, a gap amplitude ∆0 � 0.1t at T/Tc = 0.77 and a spectral
dip at a binding energy of about 2.3∆0 corresponding to a mode frequency
ω0 � 1.3∆0 according to the estimates of [149]. However, here we have a
discrepancy with regard to the latter estimates because our mode frequency
shown in Fig. 3.29 is much lower, i.e. ω0 � 0.8∆0. We note that we obtain
also a dip in the density of states N(ω) below the gap peak at negative ω
values, which agrees qualitatively with STM measurements on Bi 2212 [10].

It should be mentioned that higher–order peaks in the photoemission
spectra due to the collective mode, as have been observed for example in
solid hydrogen [150], are not visible here. This is due to the fact that in
our case the spin–density–wave collective mode is a damped mode and the
high quasi-particle damping rate washes out higher– order peaks. In addi-
tion, the self-energy contains an average over momentum, further reducing
this effect. This is documented by the fact that the normal–state spectrum
in Fig. 3.31b, where there is no collective mode present, is not much differ-
ent from the spectrum in the superconducting state in Fig. 3.31a at higher
binding energies.

In short, we can say that the idea of the occurrence of a spin–density–wave
collective mode below Tc gives rise to large effects in the magnetic–neutron–
scattering and photoemission intensities and the tunneling density of states
which are in agreement with experiment. In order to explain the physical
basis of our strong–coupling results, we have presented analytical expressions
derived from weak–coupling theory in Sect. 2.3.3 (2.161)–(2.168). This also



3.4 Collective Modes in Hole–Doped Cuprates 149

Fig. 3.31. Photoemission intensity N(k, ω)f(ω) (here N is the quasiparticle spec-
tral function and f the Fermi function) for k = (kπ, 0), where k = 1, 7/8, 13/16,
3/4, 5/8, 1/2, 3/8, 1/4, 1/8, and 0. (a) in the superconducting state at T/Tc = 0.77.
The narrow peaks at low binding energy decrease and vanish, and the binding en-
ergies of the broad humps increase in the sequence of k values. (b) In the normal
state at T = 0.023t. Note that the broad humps are at the same positions as in the
superconducting state.

shows that the gap in the scattering rate and the strong mass enhancement
of the quasiparticles below Tc are decisive for the observability of this mode.

3.4.3 Collective Modes in Electronic Raman Scattering?

One can see from Fig. 3.30 that the resonance condition is approximately
satisfied for ω0 = 2∆0 � 0.2t because then one enters the pair–breaking con-
tinuum, where Γ ∼ ω/2 near the antinode ka. Thus the mode frequency is
about ω0 = 2∆0 for a damping Γ = ∆0, in agreement with the numerical
results. In the weak–coupling limit, it has been shown that vertex corrections
due to the d–wave pairing interaction together with electron–electron scat-
tering lead to good agreement with the B1g Raman data on YBCO [151]. In
Fig. 3.32, we show our strong-coupling results for the Raman response func-
tions Imχγ(q = 0, ω), where γ is the vertex γ = t[cos(kx) − cos(ky)] and the
vertex γ = −4t′ sin(kx) sin(ky) for B1g and B2g symmetry, respectively. One
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Fig. 3.32. Raman spectra Im χγ(q = 0, ω) for B1g symmetry at T = 0.023t (solid
line) and T/Tc = 0.77 (dashed line), and Raman spectrum for B2g symmetry at
T/Tc = 0.77 (dotted line). Tc = 0.022t.

can see that for B1g symmetry a gap and a pair–breaking threshold develop
below Tc, with a threshold at about 0.15t � (3/2)∆0 at T/Tc = 0.77 (see
Fig. 3.31). Unfortunately, this means that the peak of the order parameter
collective mode at ω0 � 2∆0 with a width ∆0 lies in the pair-breaking con-
tinuum. The question arises of whether or not the contribution of Imχfl to
the B1g Raman spectrum is sizable, because the coupling strength propor-
tional to N ′

F /NF in (2.164) arising from particle–hole asymmetry is rather
small. However, in the strong–coupling calculation, the coupling strength of
this mode to the charge density, given by T

∑
k

∑
nG(k, iωn+m)F (k, iωn), is

much larger. The reason is that besides the term proportional to ε(k) yielding
N ′

F /NF , one obtains additional terms proportional to the self-energy com-
ponents Re ξ(k, ω) and Im ξ(k, ω) which give relatively large contributions.
In addition, one obtains a contribution from the imaginary part of the gap
function, i.e. Imφ(k, ω).

Thus, the amplitude fluctuation mode of the d–wave gap derived in
Sect. 2.3.3 couples only weakly to the charge fluctuations and yields a broad
peak above the pair–breaking threshold in the B1g Raman spectrum. This
peak may be, at least partially, responsible for the observed broadening above
the pair–breaking peak because the coupling strength due to particle–hole
asymmetry is enhanced by strong–coupling self-energy effects. As already
mentioned above previous work on collective modes in high–Tc superconduc-
tors has been restricted to weak-coupling and mean–field calculations. The
FLEX approach that we have used here, is a self-consistent and conserving ap-
proximation scheme, which goes well beyond the mean–field approximation.
The feedback effect of the one-particle properties on the collective modes in
the superconducting state is included self–consistently and the importance
of the quasiparticle damping becomes clear. It is therefore a highly nontriv-
ial and satisfactory result that the resonance in the spin susceptibility, the
step–like edge in the quasiparticle scattering rate, and the dip features in the
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ARPES and tunneling spectra can all be understood within one theory in
a self-consistent fashion. The self-consistent calculation also yields a larger
coupling strength of the d–wave amplitude mode to the charge density and
a lower resonance frequency of the s–wave exciton–like mode of the order
parameter, which makes it more likely that these modes might be observable
in the B1g Raman scattering channel.

3.5 Consequences of a dx2−y2–Wave Pseudogap
in Hole–Doped Cuprates

A few years ago, a normal–state pseudogap was inferred from inelastic neu-
tron scattering (see [152] for a review), nuclear magnetic resonance [118],
heat capacity [153], and resistivity [27] data on underdoped YBa2Cu3O7−δ

and YBa2Cu4O8. Furthermore, angular–resolved photoemission spectroscopy
measurements also indicated the presence of a dx2−y2–wave gap well above
Tc in the underdoped regime for many hole–doped cuprates [154]. Now, nu-
merous experiments have established the fact that the underdoped cuprate
superconductors exhibit a “pseudogap” behavior in both the spin and the
charge degrees of freedom below a characteristic temperature T ∗, which can
be well above the superconducting transition temperature Tc. This has been
discussed also in the Introduction. Furthermore, we have already demon-
strated in Fig. 2.4 that the FLEX approach with the generalized Eliashberg
equations yields the correct doping dependence T ∗(x). However, the magni-
tude of the pseudogap shown in the inset of Fig. 2.4 is too small compared
with experiment. Thus, we have extended our theory as described in detail
in Sect. 2.2.

Many interpretations of the pseudogap have been advanced (see, for ex-
ample the discussion in [155]); however, no consensus has been reached so
far as to which of the various microscopic theories is the correct one. It has
been shown by Williams et al. [155] that the specific–heat, susceptibility, and
NMR data of many underdoped cuprates can be successfully modeled using
a phenomenological normal–state pseudogap that has d–wave symmetry and
an amplitude which is temperature–independent but increases upon lowering
the doping level into the underdoped regime. The strong anisotropy of the
pseudogap is also in accordance with ARPES experiments on underdoped
Bi2Sr2CaCu2O8−δ (Bi2212) [154, 156]. This model yields a smooth evolu-
tion of the normal–state pseudogap into the superconducting gap, as has
been found in STM experiments [10]. Also, measurements of the resistivity,
Hall coefficient, and thermoelectric power can be reconciled with this model
[27],[157]. In this section we follow this idea using the magnitude of the pseu-
dogap Eg (see (2.67)) as an input into the generalized Eliashberg equations.
The corresponding theory is described in Sect. 2.2. In the following we shall
demonstrate the consequences of such a dx2−y2 -wave pseudogap for various
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Fig. 3.33. (a) Results for the quasiparticle spectral function A(k, ω) versus ω for
different k-vectors near the gap antinode: k = (0.14, 1), (0.16, 1), (0.17, 1), (0.19, 1),
and (0.20, 1) (in units of π). The Fermi wave vector is ka = (0.18, 1)π. (b) Doping
dependence of T ∗

c and Tc obtained using a dispersion relation ε̃(k) in accordance
with ARPES data. T ∗

c is reduced from T ∗
c0 (without pseudogap) to smaller values.

For clarity, T exp
c (x) and ns(0)/m are also displayed. T ∗

c0 refers to a mean–field
transition not taking the pseudogap in the tight–binding energy dispersion into
account.

physical quantities, calculated self–consistently, of course. However, the origin
of the pseudogap is still unknown.

3.5.1 Elementary Excitations and the Phase Diagram

As mentioned in Chap. 2, we obtain the right doping dependence of the
(weak–) pseudogap temperature T ∗; however, the calculated magnitude of
the pseudogap is too small in comparison with experiment. In general, the
magnitude of this pseudogap should also influence the mean–field transition
temperature T ∗

c and thus the temperature range where preformed Cooper
pairs are formed, because fewer holes (or electrons) can pair if fewer states at
the Fermi level are present. In order to investigate this question in detail, we
have performed calculations with an appropriate energy dispersion ε̃(k) which
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exhibits, in accordance with recent photoemission data, d–wave symmetry.
Furthermore, we have chosen ε̃(k) to be doping–dependent in accordance
with [16, 17, 155, 158, 159].

In Fig. 3.33a, we present results for the spectral density A(k, ω) calculated
within our FLEX theory in the underdoped regime from the Green’s function
G(k, ω) [35]. We have used the Fermi surface observed by Marshall et al.
[159] and a dispersion ε̃(k) =

√
ε2(k) +∆2(k), including for k � (π, 0) the

pseudogap structure [35], as an input. The results show the interplay of the
pseudogap and superconducting gap and the different features for underdoped
and overdoped superconductors, and should be compared with SIN tunneling
experiments and with ARPES data [159]. Of course, ARPES can measure
only occupied states, i.e. the spectral density for ω < 0. As an example, we
show in Fig. 3.33a our calculated spectral function for a doping concentration
of x = 0.12 at T = 100 K, where the magnitude of the pseudogap is 0.1t = 25
meV. One can see that the spectral function does not cross the Fermi level
(ω = 0). This has consequences for the Cooper pairing.

In Fig. 3.33b, we present the corresponding results for the phase diagram
and for T ∗

c (x) and Tc(x), obtained by using as an input dispersions ε̃(k) which
are, for underdoped cuprates, in accordance with recent angular–dependent
photoemission results. As expected, if for k � (π, 0), where pairing is most
favorable, we take proper account of the observed pseudogaps [159], we obtain
smaller values for T ∗

c and Tc and for (T ∗
c −Tc) as well (T ∗

c0 is equivalent to T ∗
c

without a pseudogap in Fig. 2.4). The latter result signals that the pseudogap
decreases the reduction of T ∗

c → Tc due to Cooper pair phase fluctuations
[160]. Thus we conclude that even if the reason for the pseudogap forming
below T ∗ is unrelated to superconductivity, it will indeed influence T ∗

c and
Tc. Both temperatures are renormalized to smaller values owing to a reduced
density of states at the Fermi level available for Cooperpairing. Also, the
region where preformed pairs occur, Tc < T < T ∗

c , is reduced.
Now we present results for the dynamical spin susceptibility, the NMR

spin–lattice relaxation rate 1/T1T , and the Knight shift, obtained by solv-
ing the generalized Eliashberg equations with inclusion of the pseudogap
using the extended FLEX approximation. We have again assumed that
the pseudogap φc(k) has the simple form of a BCS–like d–wave gap, i.e.
φc(k) ≡ ∆c(k) = Eg (cos kx − cos ky), derived in Sect. 2.2.1. Furthermore,
we have employed a tight–binding band ε(k) with first– and second–nearest–
neighbor hopping (t′ = −0.45t), an effective on–site repulsion U(q) having
a maximum U = 3.6t at q = Q (t denotes the nearest–neighbor hopping
energy), and a doping concentration x = 0.09.

Instead of solving the full set of equations (2.51)–(2.67), we have approx-
imated these equations here by the simpler form which they acquire at the
hot spots where the nesting condition ε2 = −ε1 is satisfied. This seems to be
a reasonable approximation because these distinct points on the Fermi line
yield the dominant contribution to the right–hand side of (2.51): first, the
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Fig. 3.34. Spectral density of spin susceptibility, Im χs(Q, ω) (where Q = (π, π)),
versus ω in the underdoped regime. (a) The amplitude of the pseudogap taken as
Eg = 0.1t and calculated for temperatures T = 0.1, 0.04, 0.025, and 0.02t (rising
peaks in this sequence). (b) Comparison with results for Eg = 0.05t and T =
0.1, 0.025t, 0.021, 0.020, and 0.019t, the latter three temperatures corrseponding to
the superconducting state (rising peaks in this sequence).

denominator of Gij(k′) becomes small, and second, the interaction Ps(k−k′)
for scattering of quasiparticles from one hot spot to the other becomes large
because k−k′ is of the order of Q′ = (−π, π) (see Fig. 2.8). This treatment of
the d–wave pseudogap is somewhat similar to that of the CDW state in the
work of Rice and Scott [161], although in our case the hot spots do not exactly
coincide with the saddle points at (0, π) and (π, 0) (see Fig. 2.8). Hlubina and
Rice [162] have shown that in the case of the resistivity, it is important not to
restrict consideration to the hot spots, since a proper average over the whole
Fermi surface can lead to different results. However, we would like to point
out that we have performed our integrations over the whole Brillouin zone.
For the pseudogap channel, we have approximated the Green’s functions us-
ing the form that they obey at the hot spots. This approximation is different
in spirit from considering only the hot spots. All scattering processes due to
spin fluctuations at all momentum points are taken into account. In addition,
we have made this approximation only in the calculation of the self–energies
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Fig. 3.35. The spin–lattice relaxation rate divided by T , 1/T1T , versus T , for
amplitudes of the pseudogap Eg = 0 (dashed line) and Eg = 0.05, 0.075 and 0.1t
(solid lines from top to bottom). The parameters are J(Q) = U = 3.6t (t is the
next–nearest–neighbor hopping energy), and band filling n = 0.91 for an YBCO–
like band, i.e. a doping concentration of x = 0.09. The superconducting transition
temperatures are Tc = 0.023, 0.022, 0.021, and 0.0155t (from top to bottom).

and used these results for the calculation of the resistivity, which includes a
full momentum average.

First, we consider the NMR and neutron scattering intensity in the under-
doped regime, which we calculated from the spectral density of the dynamical
spin susceptibility, Imχs(q, ω). This function has a broad peak as a function
of q which is centered at Q = (π, π), and it exhibits a peak as a function
of ω at the antiparamagnon energy ωsf . The slope of this function at ω = 0
first increases with decreasing T down to a crossover temperature, i.e. the
pseudogap temperature T ∗, and then it decreases with further decrease of
T (see Fig. 3.34). At the same time, the peak at ωs ∼ Eg narrows and in-
creases with decreasing T . The suppression of spectral weight is accompanied
by a peak at higher energies, which resembles the resonance peak below Tc.
Indeed, Dai et al. have observed a resonance-like peak in the underdoped
regime of YBCO in the normal state [69]. However, this peak in Imχ(Q, ω)
is not the resonance peak, since it has properties different from those seen in
experiment (see footnote 5 in Sect. 3.2.1). This peak also does not follow from
an ω–dependent gap and fulfills no resonance condition. The true resonance
peak is a result of the feedback effect of superconductivity, while the peak in
the normal state is due to the pseudogap.

In Fig. 3.35, we have plotted the corresponding nuclear spin–lattice re-
laxation rate divided by T , 1/T1T , versus T . One can recognize that this
quantity first increases with decreasing T , acquires a maximum at about the
crossover temperature T ∗, and then decreases rapidly as T tends to Tc. This
behavior is plausible in view of the behavior of Imχs(Q, ω), because 1/T1T
is essentially given by the slope of this function at ω = 0. The occurrence of
a maximum of 1/T1T is in agreement with the NMR data in the underdoped
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Fig. 3.36. The static, uniform spin susceptibility χs(q = 0, ω = 0), which is
proportional to the Knight shift, versus T for pseudogap amplitudes Eg = 0, 0.05,
0.075, and 0.1t (curves in this sequence from top to bottom). The parameters are
the same as in Fig. 3.35.

regime (see [163] for a review, and also [164]). In the overdoped regime of the
cuprates, 1/T1T increases monotonically with decreasing T (again, see [163]
for a review, and also [164]).

The temperature behavior of Imχs(Q, ω) is also in agreement with the
temperature dependence of the neutron scattering intensity at a fixed small
energy ω. This neutron scattering intensity first increases with decreasing T
up to a maximum at about T ∗ and then decreases [152]. This behavior has
been interpreted as a signature of the opening of a spin pseudogap in the spin
excitation spectrum [152].

In Fig. 3.35, we also show 1/T1T for three different values of the ampli-
tude Eg of the pseudogap in (2.67): Eg = 0.1t, 0.075t, and 0.05t. One can
recognize that for this sequence of Eg values the position of the maximum at
T ∗ decreases from about T ∗ = 0.06t to 0.045t and then to 0.035t, and that
Tc (where the curve drops downwards) increases from about Tc = 0.0155 to
0.0206 and then to 0.0223. For Eg = 0, 1/T1T increases monotonically with
decreasing T down to Tc0 � 0.023t. The decrease of Tc and the increase of
T ∗ with increasing gap amplitude Eg are in qualitative agreement with the
phase diagram of the Knight shift, magnetic susceptibility, and resistivity
data in the underdoped regime [12, 165]. Here we assume implicitly that Eg

increases as the doping away from half-filling, x = 1 − n, decreases.
The static, uniform spin susceptibility is proportional to χs(q = 0, ω =

0) = [1 − J(q = 0)χ0]−1χ0(q = 0, ω = 0). In Fig. 3.36, we have plotted our
results for χs(0, 0) versus T for Eg = 0.1, 0.075 and 0.05t, and Eg = 0. One
can see that χs decreases with decreasing T , and that the overall reduction
down to Tc increases with increasing gap amplitude Eg in qualitative agree-
ment with the fits of the NMR Knight shift data [165]. Here it should be
pointed out that in our strong–coupling calculation, the pseudogap in (2.67)
is reduced by ReZ and is smeared out by the quasiparticle damping ωImZ.
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Fig. 3.37. Density of states N(ω) in the underdoped regime versus ω for U(Q) =
U = 3.6t, band filling n = 0.91, size of the pseudogap Eg = 0.1t, and temperatures
T = 0.1, 0.09, . . . , 0.02t (curves in this sequence from top to bottom). Only below
Tc does the coherence peak develop.

The decrease of χs(0, 0), or χ0(0, 0), for decreasing T is plausible because
χ0(0, 0) is approximately given by the BCS expression

χ0 =
∫ ∞

−∞
dω N(ω) [−∂f(ω)/∂ω] , (3.22)

where the density of states N(ω) is shown in Fig. 3.37 for Eg = 0.1t. One can
see that N(ω) exhibits a typical d–wave gap, where N(ω) is linear in ω for
ω < Eg. For decreasing T , N(0) decreases rapidly and therefore χ0 decreases
with T .

Let us now come back to the spin–lattice relaxation rate. We have con-
tinued our calculation into the superconducting state somewhat below Tc.
One can see from Fig. 3.35 that with decreasing T , the curve for 1/T1T ex-
hibits a sharp downturn at Tc for Eg = 0, while the decrease of 1/T1T at Tc

becomes slower and more continuous for increasing Eg. Similar results are ob-
tained for χs, as shown in Fig. 3.36: the drop below Tc is abrupt for Eg = 0,
while the decrease with T at Tc becomes slower and more continuous for
increasing Eg. These results agree qualitatively with the spin–lattice relax-
ation rate and Knight shift data in the overdoped (corresponding to Eg = 0)
and underdoped (corresponding to Eg > 0) regimes [164, 165]. For example,
the experimental curves for 1/T1T in YBa2Cu3O7 and YBa2Cu3O6.52 [164]
have a shape qualitatively similar to our curves for Eg = 0 and Eg > 0,
respectively, in Figs. 3.35 and 3.36. The data in YBa2Cu4O8 etc. [165] are
qualitatively similar to our results for Eg > 0 in Fig. 3.36.

To briefly summarize, the extension of the generalized Eliashberg equa-
tions by the inclusion of a dx2−y2–wave pseudogap yields fair agreement with
the spectral density, spin susceptibility, NMR spin–lattice relaxation rates,
and Knight shift data. In particular, a peak in Imχ(Q, ω) develops (which
resembles the resonance peak below Tc) as has been observed experimentally.
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Furthermore, when the phase diagram for hole–doped cuprates calculated
one finds even better agreement with experiment in the underdoped regime.
Interestingly, both of the temperatures T ∗

c and Tc are renormalized to smaller
values, and the region where preformed pairs are expected is also reduced.

3.5.2 Optical Conductivity and Electronic Raman Response

We come now to the discussion of the consequences of a dx2−y2–wave
pseudogap for the optical conductivity. While the c-axis conductivity in
YBa2Cu3O7−δ shows a pseudogap with a size of approximately 300–400 cm−1

[166, 167], the size of the pseudogap extracted from the ab–plane conductiv-
ity is of the order of 600–700 cm−1 [168, 169]. This difference cannot be
attributed to the charge reservoir layers between the CuO2 planes, since re-
cently it has been convincingly shown that the pseudogap seen in the c–axis
conductivity indeed has its origin in the CuO2 planes [170]. In the follow-
ing we shall demonstrate that the self–consistency of our calculation of the
spin fluctuation interaction with the single–particle properties, especially the
pseudogap itself, provided by the FLEX approximation leads to a natural
understanding of the difference in the size of the pseudogap seen in the ab–
plane and c–axis conductivities. Also, the semiconducting behavior of the
c–axis resistivity can be understood qualitatively [166, 167, 171].

We have calculated the c–axis and ab–plane conductivities in the presence
of a temperature–independent but doping–dependent pseudogap as suggested
by the work of Williams et al. [155], using ARPES data as an input. To do so,
it is necessary also to take into account some scattering mechanism within the
CuO2 planes. In particular, the self–consistently calculated interaction due
to exchange of spin and charge fluctuations yields a quasiparticle scattering
rate which varies linearly with frequency in the normal–state, and exhibits a
gap-like suppression at lower frequencies in the superconducting state. At the
same time, the effective–mass ratio is increased at lower frequencies in the
superconducting state. Thus, we can safely conclude that the FLEX approx-
imation accounts for the damping and mass enhancement needed to extend
the theory for thermodynamic quantities of Williams et al. [155] to dynamical
quantities.

First, we discuss our normal–state results for the optical in–plane conduc-
tivity σab ≡ σ1(ω) in the presence of a d–wave pseudogap Eg(k). We have
assumed for the pseudogap the simple but doping dependent form (intro-
duced in (2.67))

Eg (k) = Eg [cos kx − cos ky] ,

where Eg is temperature–independent and increases with decreasing doping
level below the optimal doping level. The extended version of the generalized
equations derived in Sect. 2.2.1 was solved self–consistently in the presence of
this pseudogap, and yields the quasiparticle self–energy components Z(k, ω)
and ξ(k, ω), as well as the superconducting gap φ(k, ω).
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Fig. 3.38. (a) Optical conductivity σ1 ≡ σab(ω) for an amplitude Eg = 0.15t of
the pseudogap, at temperatures T = 0.1, 0.050, and 0.030t. Inset: Re Z(ka, ω) for
the same temperatures (increasing peaks at ω = 0 in this sequence). Dashed line,
for Eg = 0 and T = 0.030t. (b) Quasiparticle damping, ω ImZ(ka, ω), at antinode
ka, for an amplitude Eg = 0.15t of the pseudogap, at temperatures T = 0.1, 0.050,
and 0.030t (decreasing values at ω = 0 in this sequence of temperatures).

Our results for σab(ω) are displayed in Fig. 3.38a, where one can see that
the in–plane conductivity is coherent in character and shows a Drude peak at
low frequencies even in the underdoped compounds [168, 172]. However, the
size of the pseudogap structure seen in the ab–plane conductivity for under-
doped YBCO has been measured to be 600–700 cm−1 [168, 169], while the
gap extracted from the c–axis conductivity in the same compounds is of the
order of 300–400 cm−1 [166, 167]. The corresponding quasiparticle damping,
Γ (k, ω) = ω ImZ(k, ω), is highly anisotropic and exhibits, for k along the
direction of the antinode of the gap and decreasing T , a gap of the order
of Eg (see Fig. 3.38b, for Eg = 0.15t). At the same time, the effective–mass
ratio m∗/m = ReZ(k, ω) is enhanced at about ω � 2Eg above its value at
ω = 0, where ReZ ≈ 2 (see inset in Fig. 3.38a). In the absence of the pseudo-
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Fig. 3.39. The coherent dynamical c–axis conductivity (2.170) for three temper-
atures T = 0.1t (solid lines), 0.05t (dashed lines), and 0.03t (dotted lines), (a) for
a pseudogap amplitude Eg = 0, and (b) for Eg = 0.15t. The dashed–dotted line in
(a) applies to the superconducting state for Eg = 0 (Tc = 0.023t) at T = 0.017t.

gap the scattering rate Γ varies linearly with frequency ω, as can be seen in
Fig. 3.38b for higher temperatures. These results are in qualitative agreement
with optical–conductivity data and the frequency–dependent scattering rate
and effective–mass spectra obtained from the complex optical conductivity
for underdoped Bi 2212, YBCO, and LSCO compounds [173]. For example,
for underdoped Bi 2212 with Tc = 67 K, the scattering rate 1/τ(ω) is linear
in ω at T > T ∗ � 200 K, and for T < T ∗ the low-frequency scattering rate
is suppressed for ω < 500–700 cm−1 (62–87meV) [173]. This is in qualitative
agreement with our results shown in Fig. 3.38b from which we estimate a
crossover temperature T ∗ � 0.1t � 250 K and a threshold energy for the
steep rise of about 0.3t � 75 meV. It should be stressed that we have cal-
culated the frequency-dependent scattering rate and mass enhancement with
the help of the extended Eliashberg equations, while these quantities were
obtained in [173] from theoretical expressions involving the complex conduc-
tivity.
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Fig. 3.40. The incoherent dynamical c–axis conductivity (2.172) for three tem-
peratures T = 0.1t (solid line), 0.05t (dashed line), and 0.03t (dotted line) and two
values of Eg = 0 (upper three curves) and 0.15t (lower three curves).

Let us now turn to the c-axis conductivity. We shall see that, in our model,
incoherent conductance gives a good description of the underdoped regime,
while coherent conductance is more appropriate for the overdoped regime,
confirming previous interpretations of the c–axis conductivity. In Fig. 3.39a,
we show our results for the coherent c–axis conductivity σc(ω) calculated
from (2.170) for different temperatures. Here we have taken Eg = 0. For de-
creasing temperature T , a coherent Drude peak develops at low frequencies.
Such a development of a coherent Drude peak has been observed in over-
doped cuprates [166, 170], where the pseudogap is absent or small. Thus,
our coherent–conductance results account well for this observation in the
overdoped compounds. In the superconducting state, a suppression of σc(ω)
at intermediate frequencies sets in, as shown by the dashed–dotted line in
Fig. 3.39a for T = 0.017t. Here, Tc = 0.023t. At the same time, the Drude
peak continues to sharpen.

Figure 3.39b shows the normal–state coherent conductivity σc(ω) in the
presence of a pseudogap with amplitude Eg = 0.15t. While the pseudogap
leads to a suppression of σc(ω) at intermediate frequencies, the coherent
Drude peak at low frequencies still remains and even sharpens, similarly to
the superconducting state in Fig. 3.39a. These results are completely different
from the experimental results for the normal state of underdoped cuprates,
which show, instead of a coherent Drude peak, a gap–like suppression at
low frequencies. Thus, it is not sufficient to simply introduce a pseudogap in
order to account for the c–axis conductivity in underdoped compounds! As
has been noted earlier [167, 174], the c–axis conductance becomes incoherent
in the underdoped regime the same time, and therefore it is necessary to
calculate the incoherent conductivity in the presence of a pseudogap.

Figure 3.40 shows the incoherent conductivity σincoh
c (ω) for Eg = 0 and

Eg = 0.15t at three different temperatures T = 0.1, 0.05, and 0.03t. For
Eg = 0.15t, a gap develops below a threshold frequency of about ω ∼ 2Ẽg
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Fig. 3.41. The incoherent c–axis resistivity ρc as a function of temperature for Eg

= 0 (solid line), 0.1t (dashed line), 0.15t (dotted line), and 0.2t (dashed–dotted line).

upon lowering the temperature, while the conductivity stays almost constant
for frequencies above this threshold energy. Here, Ẽg = 2Eg/ReZ(Eg) is the
renormalized amplitude of the d–wave pseudogap, and ReZ(ω) is the average
mass renormalization at the Fermi surface, which is of the order of 2 for the
parameters considered here. For Eg = 0, σincoh

c is almost independent of fre-
quency and temperature. These results are indeed in qualitative agreement
with the measured interplane conductivity in underdoped YBCO compounds
[166]. The gap in the c-axis conductivity σincoh

c (ω) for frequencies ω below
2Ẽg develops below a characteristic temperature T ∗ ∼ Ẽg/2. We want to
stress that the temperature evolution of all physical quantities arises exclu-
sively from the Fermi and Bose functions occurring in the FLEX equations
in our real–frequency formulation [145] and in the expressions for the suscep-
tibilities, since we have assumed that the pseudogap Eg(k) defined in (2.67)
is temperature–independent. Physically, this means that above T ∗ the effect
of the pseudogap is smeared out such that the normal–state behavior (corre-
sponding to the FLEX equations for Eg = 0) is recovered, while the effect of
the pseudogap on the quasiparticle and spin excitation spectra increases as
T decreases below T ∗ towards Tc.

From our incoherent conductivity, we can extract the c-axis resistivity
ρc = [σincoh

c (ω = 0)]−1 in the presence of the pseudogap. The temperature
dependence of ρc is shown in Fig. 3.41 for different values of the pseudogap
amplitude Eg = 0, 0.1, 0.15, and 0.2t, corresponding to different doping levels.
For Eg = 0, ρc is almost constant. For finite Eg, it starts to increase above
the curve for Eg = 0 at lower temperatures. This “semiconducting” behavior
of ρc is directly related to the depth of the pseudogap at zero frequency in
σincoh

c (ω = 0), which increases with increasing Eg and decreasing temperature
(see Fig. 3.40). The results in Fig. 3.41 are consistent with the estimate
of the characteristic temperature given above, i.e. T ∗ ∼ Ẽg/2 = Eg/ReZ,
because the steep rise of ρc for a given Eg appears approximately below
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Fig. 3.42. The incoherent dynamical c-axis conductivity (2.172) for T = 0.03t
and Eg = 0 (solid line), 0.1t (dashed line), 0.15t (dotted line), and 0.2t (dashed–
dotted line). For comparison we also show the result in the superconducting state
for Eg = 0 (Tc = 0.023t) at T = 0.017t (lower solid line).

T ∗. Our results are in qualitative agreement with c–axis resistivity data for
underdoped YBCO [166, 167]. Note that the definition of the characteristic
temperature T ∗ ∼ Ẽg/2 corresponds to the scaling procedure in [155], where
it was shown that the NMR Knight shift for a wide range of doping values
follows closely a universal scaling curve if the data are plotted against a
scaling parameter z = 2T/Ẽg. The downturn of 89Kn(T ) for decreasing z

occurs at about z = 1, which corresponds to T ∗ ∼ Ẽg/2.
In Fig. 3.42, we show σincoh

c (ω) at a fixed temperature T = 0.03t and dif-
ferent values of Eg. From Fig. 3.42, we can see that the renormalized size 2Ẽg

of the gap in σincoh
c follows Eg. If one assumes that Eg changes strongly with

doping level, as has been proposed in [155], the results shown in Fig. 3.42
cannot provide an explanation for the doping independence of the pseudogap
seen in the c–axis conductivity of underdoped cuprates. This is an apparent
inconsistency of the model of Williams et al., which can describe thermody-
namic quantities well, but does not give a satisfactory account of the doping
dependence of the ab–plane and c–axis conductivities, which are dynamical
quantities. On the other hand, our results rather indicate that there are two
independent energy scales involved in the pseudogap problem: first, the width
of the pseudogap (here 2Ẽg) as seen in the ω dependence of the c–axis and
ab–plane conductivities, which are largely doping–independent, and second,
the depth of the pseudogap as seen in the ω = 0 value of the incoherent c–
axis conductivity, corresponding to the characteristic temperature T ∗ for the
c–axis resistivity and the thermodynamic quantities, which increases upon
lowering the doping level. Two such energy scales could be introduced into
the problem by considering more complicated forms for the pseudogap than
(2.67). For example, the pseudogap could have a frequency dependence or a
momentum dependence which changes with temperature, as suggested by a
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Fig. 3.43. Density of states N(ω) (solid line), incoherent c–axis conductivity
σincoh

c (ω) (dashed line), quasiparticle damping rate ω ImZ(ka, ω) (dotted line),
and ab–plane conductivity σab(ω) (dashed–dotted) as a function of frequency for
Eg = 0.15t and T = 0.03t (arbitrary units). All four quantities show gap-like sup-
pressions at low frequencies. The sizes of these gaps have a ratio of roughly 1:2:3:4.
The ab–plane conductivity σab(ω) shows a strong Drude peak at low frequencies
within the gap.

recent analysis of ARPES data [155, 156]. However, this is beyond the scope
of this book.

In addition, the lower solid line in Fig. 3.42 shows the result for the inco-
herent c–axis conductivity in the superconducting state for T = 0.017t and
Eg = 0 (Tc = 0.023t). This compares well with the experimental results for
optimally doped YBCO [166], which show a suppression at low frequencies,
similar to the suppression due to the normal-state pseudogap. In addition,
a weak enhancement at the gap edge develops. Again, this behavior is com-
pletely different from the corresponding behavior of the coherent c–axis con-
ductivity (see the dashed–dotted line in Fig. 3.39a). It is instructive to com-
pare all of the results obtained for the optical conductivity described above
with the corresponding density of states. In Fig. 3.43, we show our results for
σab(ω) and σincoh

c (ω) for Eg = 0.15t and T = 0.03t, along with the density
of states N(ω) (2.171) and the quasiparticle damping rate ω ImZ(ka, ω) at
the antinodal momentum ka at the Fermi surface (in arbitrary units). Here
we see that the sizes of the pseudogap appearing in these four quantities
are quite different. In fact, the gaps have an approximate ratio of 1:2:3:4 for
the density of states, incoherent c–axis conductivity, quasiparticle damping
rate, and ab–plane conductivity, respectively. In particular, we find that the
gap structure for σab(ω) is about twice as big as that for σincoh

c (ω), being
about 4Ẽg for σab(ω) while only 2Ẽg for σincoh

c (ω), with Ẽg ≈ 0.12t, in rough
agreement with experiment. We believe that this relation among the gaps
is a direct consequence of the electronic origin of the spin fluctuation scat-
tering process and the self–consistency of the FLEX equations: the opening
of the pseudogap leads to a suppression of the spin fluctuation interaction
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Fig. 3.44. Density of states N(ω) for a d–wave pseudogap with amplitude Eg =
0.05t, in the normal state at T = 0.1t and 0.023t (solid lines), and in the super-
conducting state at T = 0.021t and 0.018t (T/Tc = 0.78 (dashed lines). The values
N(0) decrease for this sequence of temperatures.

via (2.62) and (2.61) at frequencies below ∼ 2Ẽg. This in turn results in a
reduction of the self–energy below ∼ 3Ẽg and a corresponding structure at
∼ 4Ẽg in σab(ω). However, in the incoherent c–axis conductivity, a gap of
only ∼ 2Ẽg in size appears because of the momentum average of the spectral
functions, resulting in a frequency convolution of the density of states with
itself. The appearance of a gap of 4∆0 in the ab–plane conductivity in the
superconducting state for an electronic pairing mechanism has been noted
earlier in connection with marginal–Fermi liquid theory [175, 176, 177]. Here
we suggest that a corresponding effect may take place in the pseudogap state
of underdoped high–Tc compounds.

The pseudogap structures in the curves in Fig. 3.43 appear to be washed
out somewhat and show more complex behavior than a simple suppression at
the effective pseudogap. This is due to the fact that the pseudogap (2.67) is
renormalized owing to self–energy effects. The structures seen in the conduc-
tivity, density of states, and quasiparticle damping rate do not display a pure
d–wave gap, but a renormalized one, similar to that in the superconducting
state.

To summarize the results for the optical conductivity, we have investi-
gated the influence of a normal–state d–wave pseudogap on the c–axis and
ab–plane conductivities for spin fluctuation exchange scattering using an ex-
tension of the generalized Eliashberg equations and the self–consistent FLEX
approximation as described in Sect. 2.2.1. We find that coherent conduction
can describe the c–axis conductivity in the overdoped compounds, while it is
necessary to consider incoherent c–axis conduction in the underdoped regime.
Only incoherent conduction can account well for the dynamical c–axis conduc-
tivity and the c–axis resistivity in the underdoped compounds, which show
“semiconducting” behavior. However, it is difficult to reconcile the doping
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dependence of the amplitude of the pseudogap obtained from a microscopic
theory with the doping–independent size of the pseudogap seen in the dynam-
ical c–axis and ab–plane conductivities. This suggests that the pseudogap has
a nontrivial momentum or frequency dependence, which changes with tem-
perature. We find that the difference between the sizes of the pseudogaps for
ab–plane conductivity and c–axis conductivity finds a natural explanation
in the electronic origin of spin fluctuation scattering and its self–consistency
with the single-particle properties. This leads to a gap structure of size ∼ 4Ẽg

in the ab–plane conductivity, while the gap seen in the incoherent c–axis con-
ductivity has a size of only ∼ 2Ẽg.

In order to investigate the influence of a d–wave pseudogap on the Raman
response, it is instructive to start with the density of states, which is the main
factor that determines the pair–breaking peak in all scattering geometries.
In Fig. 3.44, we show our results for the density of states

N(ω) =
1
N

∑
k

N(k, ω) = − 1
π

Im
ωZ + εk + ξ

(ωZ)2 − (εk + ξ)2 − E2
g − φ2

, (3.23)

for a pseudogap amplitude Eg = 0.05t which is assumed to be temperature–
independent. One can see that with decreasing T , a typical d–wave gap de-
velops in the normal state and that this spectrum merges continuously into
the superconducting spectrum as T decreases through Tc = 0.022t. One can
see that below Tc, a dip develops at negative ω below the quasiparticle peak
and that the spectrum is quite asymmetric with respect to the Fermi energy
at ω = 0. These results are quite similar to the measured tunneling spectra
for underdoped Bi2212.

The results discussed in the previous sections encourage us to calculate
the Raman response functions above and below Tc in the presence of this
d–wave pseudogap Eg(k). The Raman response function, including vertex
corrections, then reads

Imχγ(q = 0, ω)

= π

∫ ∞

−∞
dω′ [f(ω′) − f(ω′ + ω)]

∑
k

Γ (k, ω′, ω) [N(k, ω′ + ω)N(k, ω′)

−A1(k, ω′ + ω)A1(k, ω′) −Ag(k, ω′ + ω)Ag(k, ω′)] γ(k) . (3.24)

In Fig. 3.45a, we show our results for the B1g symmetry, again for a gap
amplitude Eg = 0.05t as in Fig. 3.44. Comparison with the results for Eg = 0
in Fig. 3.24 shows that the most prominent effect of the pseudogap is to
produce a broad peak at about a frequency ω � 0.075t � (3/2)Eg as T
approaches Tc from above. This frequency is nearly the same as the frequency
difference between the quasiparticle peaks in the density of states in Fig. 3.44.
We have also carried out calculations for larger values of the gap amplitude
Eg corresponding to lower doping levels [10, 165], i.e. Eg = 0.075t and 0.1t
[146]. There we find analogous results, namely, that with decreasing T in the



3.5 Consequences of a dx2−y2–Wave Pseudogap in Hole–Doped Cuprates 167

normal state a peak evolves in the B1g Raman spectrum at a frequency of
about (3/2)Eg, which corresponds to the frequency difference between the
peaks in the density of states. The continuous evolution of the B1g Raman
peak with decreasing T as shown in Fig. 3.44b for Eg = 0.15t is similar to
the observed evolution of the peak in slightly underdoped Bi2212 [178]. We
note that the position of the peak at about ω � 0.25t � 62 meV for t = 250
meV is of the order of magnitude of the observed resonance at 75 meV [178].
The increase of the normal–state peak with decreasing T is accompanied by a
suppression of the low–frequency spectral weight, as is seen in the experiments
(see Fig. 3.45b) [178].

Next we discuss the interesting question of whether the pseudogap can
also explain the normal–state data for B2g Raman spectra of YBCO and
Bi2212 in the underdoped regime, where a reduction of spectral weight with
decreasing temperature is observed [179]. We find indeed that spectral weight
is lost at higher Raman shifts, while the slope at ω = 0 is increased with
decreasing temperature T (see Fig. 3.45c for Eg = 0.15t). The broad peak
arising below the pair-breaking threshold 2Eg is much less pronounced than
the sharp peak occurring in the B1g Raman spectrum (see Fig. 3.45b). In
the superconducting state, the slope at ω = 0 decreases with decreasing T
in agreement with the experimental data for the B2g channel; however, our
pair–breaking maximum (see Fig. 3.25) is much less pronounced than the
experimental one [179]. This deserves further investigation. In particular, a
frequency–dependent pseudogap would be required.

3.5.3 Brief Summary of the Consequences of the Pseudogap

In this section, we have investigated the influence of a d–wave pseudogap on
many physical quantities in the underdoped regime of hole–doped supercon-
ductors. The general equations were derived in Sect. 2.2.1. The resulting neu-
tron scattering intensity, spin–lattice relaxation rate 1/T1, Knight shift, resis-
tivity, and photoemission intensity are in qualitative agreement with the data
on underdoped high-Tc cuprates. The value of Tc for superconductivity and
also that of T ∗

c decrease and the crossover temperature T ∗ for 1/T1T increases
with increasing pseudogap amplitude of φc, which is in qualitative agreement
with the phase diagram for underdoped cuprates. We consider this as an im-
portant step towards an understanding of the whole phase diagram within
one microscopic theory. Furthermore, we find that the pseudogap leads, with
decreasing temperature, to the development of a d–wave gap structure in the
density of states, which merges continuously into the superconducting spec-
trum. A corresponding pair-breaking peak evolves continuously in the B1g

Raman spectrum as T decreases in the normal state and below Tc. We have
also calculated the c-axis infrared conductivity σc(ω) in underdoped cuprate
superconductors and find, below a temperature T ∗ ∼ Eg/2, that a gap devel-
ops in σc(ω) for ω < 2Eg in the incoherent (diffuse) transmission limit. The
corresponding resistivity shows “semiconducting” behavior, i.e. it increases



168 3 Results for High–Tc Cuprates: Doping Dependence

Fig. 3.45. (a) Raman intensity for B1g polarization with d–wave pseudogap am-
plitude Eg = 0.05t in the normal state at T = 0.1t and 0.023t (solid lines with
increasing slopes), and in the superconducting state at T = 0.021t and 0.018t
(T/Tc = 0.78 (dashed lines with increasing peaks). (b) The same for Eg = 0.15t
and T = 0.1, 0.050, and 0.030t in the normal state (increasing peaks in this se-
quence). (c) B2g Raman response for Eg = 0.15t and the same values of T as in
(b) (increasing peaks in this sequence).

at low temperatures above the constant behavior for Eg = 0. We find that the
pseudogap structure in the in–plane optical conductivity is about twice as big
as that in the interplane conductivity σc(ω), in qualitative agreement with
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experiment. This is a consequence of the fact that the exchange of antiferro-
magnetic spin fluctuations is suppressed at low frequencies as a result of the
opening of the pseudogap. While the c-axis conductivity in the underdoped
regime is described best by incoherent transmission, in the overdoped regime
coherent conductance gives a better description. Thus, we can safely con-
clude that the extension of the generalized Eliashberg equations to include
a dx2−y2–wave pseudogap (as derived in Sect. 2.2.1) yields fair agreement
with experimental data for the underdoped regime of hole–doped cuprates.
However, the microscopic origin of the pseudogap is still unknown. A possible
candidate is a charge density wave, which is discussed in Sect. 2.2.1, rather
than the fluctuation effects analyzed in Sect. 2.2.2. Those latter effects will
be more relevant close to Tc.
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4 Results for Sr2RuO4

In this chapter, we focus on our results for the elementary excitations and
Cooper pairing in strontium ruthenate (Sr2RuO4). The novel spin-triplet su-
perconductivity with Tc = 1.5 K observed recently in layered Sr2RuO4 is
a new example of unconventional superconductivity [1]. Clearly, it is im-
portant and of general interest to analyze in more detail the origin of the
superconductivity, and to calculate the transition temperature Tc and also
the symmetry of the order parameter on the basis of an electronic theory.
This is difficult, since there are three Ru4+ t2g bands that cross the Fermi
level, with approximately two–thirds filling of every band in Sr2RuO4. The
coupling between all three bands seems to cause a single Tc. Furthermore,
the presence of incommensurate antiferromagnetic (IAF) and ferromagnetic
spin fluctuations, confirmed recently by inelastic neutron scattering [2] and
the NMR 17O Knight shift [3], respectively, suggests a pairing mechanism for
Cooper pairs due to spin fluctuations. Also, a non–s–wave symmetry of the
order parameter has been observed. This makes the theoretical investigation
of ruthenates very interesting.

To be more precise, recent studies by means of INS [2] and NMR [4] of
the spin dynamics in Sr2RuO4 reveal the presence of strong incommensu-
rate fluctuations in the RuO2 planes at the antiferromagnetic wave vector
Qi = (2π/3, 2π/3). As was found in band structure calculations [5], these
fluctuations result from the nesting properties of the quasi–one–dimensional
dxz and dyz bands. The two–dimensional dxy band contains only weak ferro-
magnetic fluctuations. The very recent observation of the possibility of line
nodes between the RuO2 planes [6, 7] suggests strong spin fluctuations be-
tween the RuO2 planes in the z direction also [8, 9]. However, INS [10] shows
that the magnetic fluctuations are purely two–dimensional and originate from
the RuO2 planes. Both behaviors could be a consequence of the magnetic
anisotropy within the RuO2 planes, as indeed was observed in recent NMR
experiments by Ishida et al. [11]. In particular, by analyzing the temperature
dependence of the nuclear spin–lattice relaxation rate for 17O in the RuO2

planes at low temperatures (but still in the normal state), Ishida et al. have
demonstrated that the out-of-plane component of the spin susceptibility can
become almost up to three times larger than the in–plane component. This

c© Springer-Verlag Berlin Heidelberg 2004
D. Manske: Theory of Unconventional Superconductors, STMP 202, 177–199 (2004)
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strong and unexpected anisotropy disappears with increasing temperature
[11].

Below Tc, NMR [12, 13] and polarized neutron scattering [14] measure-
ments indicate spin-triplet state Cooper pairing. From the analogy to 3He,
this led Rice, Sigrist, and coworkers [15, 16], as well as Tewordt [17, 18] and
others [19, 20, 21], to conclude that p–wave superconductivity is present. How-
ever, by fitting the specific heat and the ultrasound attenuation, Maki and
coworkers [22], as well as others [23, 24, 25], found reason to doubt the pres-
ence of p–wave superconductivity and have proposed an f–wave symmetry
of the superconducting order parameter. A similar conclusion was drawn in
[26]. Recently it has been reported that thermal–conductivity measurements
are also most consistent with f–wave symmetry [7]. In view of these facts,
we shall reexamine the previous theoretical analysis of the gap symmetries
and the competition between p– and d–wave superconductivity [5, 25, 27].
We shall also investigate superconductivity within an electronic theory and
derive the symmetry of the order parameter from general arguments.

This chapter is organized as follows: In the next section, we shall analyze
the normal–state spin dynamics of Sr2RuO4 using the two–dimensional three-
band Hubbard Hamiltonian for the three bands crossing the Fermi level. In
the first subsection, we calculate the dynamical spin susceptibility χ(q, ω)
within the random–phase approximation and show that the observed mag-
netic anisotropy in the RuO2 planes arises mainly from the spin–orbit cou-
pling. Its further enhancement with decreasing temperature is due to the
vicinity of a magnetic instability. Thus we demonstrate that, as in the super-
conducting state [28], the spin–orbit coupling also plays an important role in
the normal–state spin dynamics of Sr2RuO4. Then, in Sect. 4.1.2, we present
an electronic theory which takes into account only hybridization between the
three bands. This is enough to demonstrate how triplet pairing due mainly
to AF spin excitations is possible. For this purpose, we calculate the Fermi
surface (FS), the energy dispersion, and the spin susceptibility χ including
all cross-susceptibilities. In the last subsection we compare our results with
experiment. By analyzing experimental results for the 17O Knight shift and
INS data as well as the FS observed by ARPES [29], we can obtain values for
the hopping integrals and the effective Coulomb repulsion U . Taking this as
an input to the pairing interaction, we analyze the p–, d– and f–wave super-
conducting gap symmetries in Sect. 4.2 and demonstrate how triplet pairing
is possible. This will be compared with the result obtained from the inclu-
sion of spin–orbit coupling alone (i.e. without hybridization). In this case the
parameters of the Hamiltonian are taken from band structure calculations.
The delicate competition between weak ferromagnetic spin fluctuations and
relatively strong incommensurate antiferromagnetic spin fluctuations due to
nesting of the FS causes triplet Cooper pairing if spin–orbit coupling is taken
into account. We shall also demonstrate that singlet dx2−y2–wave symmetry
(which is present in cuprates) is energetically less favorable. We summarize
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our results, compare them with cuprate high–temperature superconductors,
and give an opinion of the outlook in Sect. 4.3.

4.1 Elementary Spin Excitations in the Normal State
of Sr2RuO4

4.1.1 Importance of Spin–Orbit Coupling

First, we show in Fig. 4.1 the results for the Lindhard response functions
for the different bands, calculated using their tight–binding dispersions with-
out taking into account the spin–orbit coupling using (2.34) and (2.35). As
expected, owing to the pronounced nesting of the xz and yz bands, the sus-
ceptibilities of those bands display peaks at Qi = (2π/3, 2π/3), while the xy
band does not show any significant feature. On the other hand, the response
of the xy band is enhanced owing to the presence of the van Hove singularity
close to the Fermi level. It becomes clear that the features observed by INS
relate mainly to the magnetic response of the xz and yz bands. However, the
present results cannot account for the observed magnetic anisotropy, since
both the longitudinal and the transverse components of the total spin sus-
ceptibility are the same if the term which transfers the anisotropy from the
orbital subspace into the spin subspace is not taken into account. In order to
do this, we include a spin–orbit coupling as we discussed in Chap. 2. Using
in addition the random–phase approximation for each band (see Chap. 2 for

Fig. 4.1. Calculated real part of the Lindhard spin susceptibility χl
0(ω = 0) in the

normal state of Sr2RuO4 along the path (0, 0) → (π, 0) → (π, π) → (0, 0) in the
first two–dimensional square BZ for the kz = 0 dispersion of the three different
orbitals (xz, yz, and xy) crossing the Fermi level. Owing to the nesting of the xz
and yz bands, their susceptibilities show an enhancement at the incommensurate
antiferromagnetic wave vector Qi = (2π/3, 2π/3). Note that the response of the xy
band is more isotropic but significantly larger than that in the normal metal owing
to the nearness of the van Hove singularity.
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Fig. 4.2. Results for the real part of the out–of–plane (i.e. longitudinal, solid
curve) and in–plane (i.e. transverse, dashed curve) magnetic response of an RuO2

plane to Hz and Hxy, respectively. Reχ(q, ω = 0) was calculated within the RPA
including spin–orbit coupling, using U = 0.505 eV and thyb = 0, along the path
(0, 0) → (π, 0) → (π, π) → (0, 0) within the first Brillouin zone at a temperature T
= 100 K using (2.45) and (2.46). (Note that χzz and χ+− refer to the response of
the projection of the orbitals dxy, dxz, and dyz on the xy plane).

details) we have calculated the longitudinal and transverse components of
the total susceptibility in the RuO2 planes.

In Fig. 4.2, we show the results for the static limit of the real part of the
transverse and longitudinal total susceptibilities χ+−,zz

RPA =
∑

i χ+−,zz
RPA,i along

the path (0, 0) → (π, 0) → (π, π) → (0, 0) in the first Brillouin zone for
U = 0.505 eV obtained using (2.45) and (2.46). Note the important differ-
ence between the two components. Most importantly, the IAF fluctuations
at Qi = (2π/3, 2π/3) are present in the case of xz and yz bands only in
the longitudinal components of the spin susceptibility, and not in the trans-
verse components. This is connected to the fact that matrix elements of type
uk and vk are important because they suppress transition between “+” and
“−” bands for the transverse susceptibilities. The transverse susceptibility is
larger than the longitudinal one at small values of q, indicating ferromagnetic
fluctuations. These point mainly in the RuO2 plane. On the other hand, the
longitudinal component shows a structure at the IAF wave vector indicating
a direction of the IAF fluctuations perpendicular to the RuO2 plane.

We also want to emphasize that our results are in accordance with ear-
lier estimates made by Ng and Sigrist [30], with one important difference.
In addition to what was done in that work, we have included, in accordance
with the mixing of the spin and orbital degrees of freedom, the orbital con-
tribution to the magnetic susceptibility χ (i.e. we have used the g-factor for
the vertex function). For example, owing to lz and l+ and (l−) vertices at
Qi = (2π/3, 2π/3), χzz is affected by a factor of 2 from spin–orbit coupling.
Moreover, in [30], it was found that the IAF fluctuations are slightly enhanced
in the longitudinal components of the xz and yz bands in comparison with
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Fig. 4.3. Temperature dependence of the imaginary part of the spin susceptibility
including spin–orbit coupling (but no hybridization), divided by the spin fluctuation
energy ωsf and summed over q. Note, as in Fig. 4.2, that the notation zz and +−
refers to the out–of–plane (solid curve) and in–plane (dashed curve) components
of the RPA spin susceptibility calculated for a single RuO2 plane. In the inset we
show the corresponding frequency dependence of ImχRPA(Qi, ω) at the IAF wave
vector Qi = (2π/3, 2π/3). The results for the out-plane component (solid curve)
are in quantitative agreement with INS experiments [2].

the transverse component. In our case there are roughly no IAF fluctuations
in the transverse component of the spin susceptibility. Furthermore, by tak-
ing into account the correlation effects within the RPA, we have shown that
the IAF fluctuations will be further enhanced in the z direction.

This is illustrated further in the inset of Fig. 4.3, where we present the
results for the frequency dependence of the imaginary parts of the total sus-
ceptibilities at Qi = (2π/3, 2π/3) and a temperature T = 20 K. The longitu-
dinal component has a peak at approximately ωsf = 6 meV, in quantitative
agreement with experimental data from INS [2]. On the other hand, the trans-
verse component is featureless, showing the absence of IAF spin fluctuations.
This also indicates that the IAF fluctuations are aligned perpendicular to the
RuO2 plane.

In order to see the temperature dependence of the magnetic anisotropy
induced by the spin–orbit coupling we display in Fig. 4.3 the temperature de-
pendence of the quantity

∑
q(Im χRPA(q, ωsf )/ωsf ) for both components. At

room temperature, the longitudinal and transverse susceptibilities are almost
identical, since thermal effects wash out the influence of the spin–orbit inter-
action. With decreasing temperature, the magnetic anisotropy arises and, at
low temperatures, we find the important result that the out-of-plane compo-
nent χzz is about two times larger than the in-plane one (χzz > χ+−/2).
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4.1.2 The Role of Hybridization

In order to contrast the influence of spin–orbit coupling with the effect of hy-
bridization between all bands, we show in this subsection results for thyb �= 0,
but without spin-orbit coupling. We shall see that we obtain similar results
(except for the spin anisotropy) in both cases, but with one important differ-
ence: hybridization transfers much more nested spectral weight from the dxz

and dyz orbitals into the dxy orbital. Thus the γ band will have much stronger
nesting properties than in the case of spin–orbit coupling. For the moment,
the neglect of spin–orbit coupling should be justified because the generalized
Eliashberg equations are much easier to solve for the case of hybridization if
one wishes to demonstrate how triplet pairing arises.

As an example, we show in Fig. 4.4 the momentum dependence of the
real part of χγγ

0 . While hybridization between bands has little effect on the
energy dispersion, it changes significantly the susceptibility of the γ band.
In particular, the nesting properties of the xz and yz orbitals, reflected by
the peak again at Qi = (2π/3, 2π/3) in χγγ

0 , are caused by the hybridization
between the xz, yz and xy bands. Note that without taking the hybridization
into account one would not obtain the peak at Qi in the γ band, but only
a broad hump, as discussed earlier in [21] and which can be seen roughly
from the χ+− component in Fig. 4.2. The small peak at qi ≈ (0.2π, 0) is
due to the original tendency towards ferromagnetism of the xy band and is
not affected by the hybridization. Our results for χ(q, ω) will have important
consequences for the pairing theory.

Fig. 4.4. Calculated susceptibility Reχγγ
0 (q, ω = 0) obtained from electronic cal-

culations without spin–orbit coupling using the hybridized bands. The wave vectors
Qi = (2π/3, 2π/3) and qi ≈ (0.2π, 0) reflect nesting transferred from the α and β
bands and the original tendency of the γ band towards ferromagnetism, respectively.
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In the next step, the susceptibility matrix [χij ] was calculated, where i,
j refer to the hybridized bands. Our results for χαα and χββ are shown in
Fig. 4.5a. For comparison, χγγ is also displayed again. In Fig. 4.5b, our re-
sults for the cross–susceptibilities (i.e. the non diagonal elements of [χij

0 ]) are
shown. As already mentioned, we find the important result that all elements
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Fig. 4.5. (a) Calculated momentum dependence of Re χαα
0 (dashed curve) and

Re χββ
0 (dotted curve) obtained using (2.35) and hybridized bands. For comparison,

Re χγγ (solid curve) is also displayed. (b) Calculated momentum dependence of the
corresponding cross–susceptibilities.



184 4 Results for Sr2RuO4

Fig. 4.6. Results for the static susceptibility at T = 50 K without spin–orbit cou-
pling using hybridized bands obtained using (2.36) and (2.37). The solid curve refers
to the total susceptibility within the RPA resulting from the partial susceptibilities
Reχi′

0 (i = α′, β′, γ′), shown by the dashed curves. The χi′
0 refer to the diagonal ele-

ments of the diagonalized matrix [χij
0 ]. Note that the pairing wave vectors (Qi, qi)

are nearly the same as in Fig. 4.4. Note also the smallness of χα′
0 and χβ′

0 compared

with χγ′
0 .

of [χij
0 ] are of the same order. In particular, the nondiagonalized susceptibil-

ities are not small and thus cannot be neglected.
In Fig. 4.6, we present the results for the susceptibilities χi′

0 (q, ω) obtained
after diagonalization of [χij

0 (q, ω)] and the results for χ(q, ω), obtained from
(2.36) and (2.37). Here, we have approximated U(q) by U = 0.345 eV which
gives agreement with INS1. This will be discussed later. Remarkably, the
peak in Reχ at Qi remains nearly the same as for χγγ

0 . The peak at qi is also
present, but shifted slightly to a larger value. Clearly, χγ′

0 is much larger than
χα′

0 and χβ′
0 . This clearly demonstrates again that the cross–susceptibilities

χij
0 (i �= j) cannot be neglected.

To conclude this subsection, we mention that the effective spin response of
Sr2RuO4 after hybridization but without spin–orbit coupling consists mainly
of antiferromagnetic spin fluctuations (see the peaks at wave vectors Qi)
whereas the ferromagnetic fluctuations (i.e. q → 0) are much smaller. How-
ever, the antiferromagnetic fluctuations are incommensurate, yielding to a
relatively long wavelength λaf . Therefore, if the coherence length of a Cooper
pair is smaller than λaf , the effective pairing potential has locally a ferro-
magnetic character which favors triplet pairing. This will be discussed later.
1 While the exact q dependence of U is unknown, it is reasonable to assume that

U(q) increases with q. Thus, to fit the peak at q = Qi to the INS data one may
need U(Qi) > U(0), where U(0) refers to χ(0, 0).
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4.1.3 Comparison with Experiment

In order to compare our results with experimental data, we have calculated
the nuclear spin–lattice relaxation rate for an 17O ion in an RuO2 plane for
different external magnetic field orientations (i = a, b, and c),

[
1

T1T

]
i

=
2kBγ2

n

(γeh̄)2
∑
q

|Ap
q|2

χ′′
p(q, ωsf )

ωsf
, (4.1)

where Ap
q is the q–dependent hyperfine coupling constant and χ′′

p is the imag-
inary part of the corresponding spin susceptibility, perpendicular to the direc-
tion i. Similary to the experiment [11], we have used an isotropic hyperfine
coupling constant (17Aq ∼ 22 kOe/µB).

First, we discuss the spin anisotropy due to inclusion of spin–orbit cou-
pling. In Fig. 4.7 we show the calculated temperature dependence of the
spin–lattice relaxation for an external magnetic field parallel and perpendic-
ular to the RuO2 plane, together with experimental data. At T = 250 K,
the spin–lattice relaxation rate is almost isotropic. Owing to the anisotropy
in the spin susceptibilities arising from spin–orbit coupling, the relaxation
rates become different with decreasing temperature. The largest anisotropy
occurs close to the superconducting transition temperature, in good agree-
ment with experimental data [11]. Thus, our results clearly demonstrate the
essential significance of spin–orbit coupling for the spin–dynamics even in the
normal state of the triplet superconductor Sr2RuO4. We find that the mag-
netic response becomes strongly anisotropic even within an RuO2 plane: while
the in–plane response is mainly ferromagnetic, the out–of–plane response is
mainly antiferromagnetic–like.

In order to discuss both the long–wavelength and the short–wavelength
limit of χ(q, ω) we compare in Fig. 4.8a our calculation of the temperature
dependence of the uniform spin susceptibility χ(0, 0) with experiment, where
this quantity is measured by the 17O Knight shift [3]. For the calculation of
χ(0, 0), we have approximated U(q) by U(0) = 0.177 eV [31] which gives
agreement with Knight shift measurements and was also used in previous
calculations. In agreement with experiment, we obtain a tendency towards
ferromagnetism2. Note that we also take into account the fact that there are
four electrons for three t2g bands, which gives every χi′

0 an additional weight
of 4/3. The maximum in χRPA(0, 0) at about 25 K results from thermally
activated changes in the populations of the bands near EF . Because the
agreement with experiment is remarkably good (although the results were
obtained without consideration of spin–orbit coupling), these comparisons
shed light on the validity of our results for χ(q, ω).

In Fig. 4.8b, we compare our results for Imχ(Qi, ω), again without spin–
orbit coupling, with INS data [2]. In this case we must take UQi = 0.345 eV
2 In the original paper [3], the effect of cross-susceptibilities was not considered.

Therefore, we compare our results with the total susceptibility χxy + χyz + χxz.
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Fig. 4.7. Calculated normal–state temperature dependence of the nuclear spin–
lattice relaxation rate T−1

1 of 17O in an RuO2 plane for an external magnetic field
applied parallel to the c axis (dashed curve) and to the ab plane (solid curve). The
corresponding susceptibilities include spin–orbit coupling. The triangles pointing up
and down are experimental points taken from [11] for the corresponding magnetic–
field directions.

in order to fit χ(q, ω) to the position and height of the peak at ω = 6 meV
observed in INS. While an uncertainty in the INS data (shown in Fig. 4.8b)
is present, our results for χ(q, ω) should be a useful basis for further cal-
culations. In general, the normal-state properties of χ(q, ω) control also the
symmetry of the superconducting order parameter. Physically speaking, the
antiferromagnetic spin excitations result in incommensurate antiferromag-
netic alignment Ru spin at distances larger than the nearest–neighbor spac-
ing. Hence, if Cooper pairing involves nearest neighbor Ru spins, incommen-
surate antiferromagnetic fluctuations will also cause triplet pairing because
neighboring Ru spins see a partly ferromagnetic environment.

In order to briefly summarize the comparison with experimental data,
we can say the following: using hybridized bands and taking into account all
cross–susceptibilities, we are able to explain successfully the 17O Knight shift
and INS data from our calculated dynamical spin susceptibility χ(q, ω) based
on the Fermi surface topology. However, in order to explain the anisotropy of
the spin–lattice relaxation rate of 17O in the RuO2 planes with respect to the
crystallographic direction of the external applied field, one needs to include
spin–orbit coupling. As a result of this, the anisotropy of the orbital subspace
is reflected in the spin response of the system. Note that the γ band is ap-
proximately a circle, whereas the α and β bands are quasi–one–dimensional
and have strong nesting properties. Using λ = 100 meV as a parameter for
the strength of the spin–orbit coupling and taking into account the large
Stoner enhancement factor of the spin susceptibility (within the RPA), we
are able to explain the unexpected by large anisotropy of the spin response
of Sr2RuO4, namely that the in-plane response is mainly ferromagnetic–like
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Fig. 4.8. (a) Calculated temperature dependence of the uniform spin susceptibility
with U0 = 0.177 eV, compared with 17O Knight shift measurements. The peak is
due to thermal activation involving the γ, α and β bands. (b) Calculated frequency
dependence of Imχ(Qi, ω) using UQi = 0.345 eV, compared with INS data. Note
that in order to obtain good agreement with both quantities (Knight shift and INS
data), only hybridized bands, and no spin–orbit coupling, are needed.

and that the out–of–plane response is mainly antiferromagnetic-like. The im-
plications of these findings for triplet Cooper pairing, following the equations
derived in Chap. 2, will be discussed in the following section.

4.2 Symmetry Analysis
of the Superconducting Order Parameter

For the analysis of superconductivity in Sr2RuO4, we take into account the
fact that experiment indicates non–s–wave symmetry of the order parameter,
which strongly suggests spin–fluctuation–mediated Cooper pairing. Then, as-
suming spin–fluctuation–induced pairing as derived in Chap. 2, it is possible
to analyze in general the symmetry of the superconducting state on the basis
of the gap equation and our calculated results for the spin excitation spec-
trum χ(q, ω), which consists of pronounced peaks at wave vectors Qi and
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qi. Thus we demonstrate how triplet pairing arising from ferromagnetic and
strong antiferromagnetic excitations is possible.

4.2.1 Triplet Pairing Arising from Spin Excitations

Let us first discuss our results without spin–orbit coupling. Using appropriate
symmetry representations [26], we discuss the solutions of the self–consistency
equation for the superconducting order parameter (i.e. the gap equation,
(2.49)) for the p–, d–, and f–wave symmetries of the order parameter:

∆p(k) = ∆0ẑ(sin kx + i sin ky) , (4.2)
∆d(k) = ∆0(cos kx − cos ky) , (4.3)
∆f (k) = ∆0ẑ(cos kx − cos ky)(sin kx + i sinky) . (4.4)

The largest eigenvalue λl of (2.49) will yield the superconducting symmetry of
∆l in Sr2RuO4. When we solve (2.49) for the γ band numerically in the first
Brillouin zone down to 5 K, we find f–wave symmetry to be slightly favored.
As expected, p– and f–wave symmetry Cooper pairing are close in energy
(λf = 0.76 > λp = 0.51). However, these calculations were restricted to a
single RuO2 plane. A more complete analysis taking into account the coupling
between RuO2 planes and an interband U might yield a more definite answer.
For example, if the energy difference between p– and f–wave symmetry in the
RuO2 planes is larger than the energy gain for superconductivity resulting
from interplane coupling, one may determine the pairing symmetry from the
in–plane electronic structure. Note that to obtain a combined energy gain
from the antiferromagnetism and Cooper pairing, one would require an order
parameter with nodes in the RuO2 plane and possibly also with respect to
the c direction. However, this question cannot be answered if 2.49 is solved
for the two–dimensional case.

Let us now come back to the question of why triplet pairing is possible
as a result of antiferromagnetic spin excitations. To be more precise, the
solutions of (2.49) can be characterized by Fig. 4.9, where we present our
results for the Fermi surface, the wave vectors Qi and qi defined in Fig. 4.6,
and symmetry of the order parameter in Sr2RuO4. The areas with ∆f > 0
and ∆f < 0 are denoted by + and −, respectively. The summation over k′ in
the first BZ is dominated by the contributions due to Qi and a contribution
due to the background and qi. Thus, we obtain approximately the following
for the γ–band contribution (l = f or p)

∆l(k) ≈
∑

i

V eff
1 (Qi)
2εγ

k+Qi

∆l(k + Qi) +
∑

i

V eff
1 (qi)
2εγ

k+qi

∆l(k + qi) , (4.5)

where the sum is over all contributions due to Qi and qi. As can be seen
from Fig. 4.9, in the case of f–wave symmetry the wave vector qi in (1.14)
bridges the same number of portions of the FS with opposite and equal signs.
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Fig. 4.9. Illustration of possible triplet pairing due to antiferromagnetic spin exci-
tations in the first BZ. α, β, and γ denote the Fermi surfaces of the corresponding
hybridized bands. For simplicity, no spin–orbit coupling has been taken into ac-
count. The wave vectors Qi and qi are the wave vectors of the pronounced features
in the susceptibility shown in Fig. 4.6. In a weak–coupling approach, these wave
vectors of the γ band dominate the pairing potential entering the gap equation
(2.49) yielding to (4.5). Thus these wave vectors would then determine the symme-
try of the order parameter in a simple way. Also, for f–wave symmetry, the nodes
of the real part of the order parameter are shown (dashed lines), together with the
regions where the f–wave superconducting gap is positive and negative (+ and −,
respectively). Note that for the real part of the p–wave order parameter the node
occurs along kx = 0. It is clear from Fig. 4.6 that increasing nesting favors triplet
f -wave symmetry. Our illustration shows also that singlet d–wave Cooper pairing
is not possible.

Therefore, the second term in (1.14) is approximately zero for triplet pairing.
We see from Fig. 4.9 that Qi bridges portions of the FS with equal signs of
the superconducting order parameter. Thus, a solution of (1.14) for ∆f is
indeed possible.

In the case of p–wave pairing, the real part of the order parameter has
a node only along kx = 0 in the kx, ky plane. Then, the wave vectors Qi

bridge portions of the FS where Re∆p has either the same or the opposite
sign. Regarding the qi contributions, the situation is similar to that in the
case of f–wave symmetry. Hence, we expect λp ≤ λf for the eigenvalues,
as in the result of the algebraic solution of (2.49). Note that for increasing
nesting, Fig. 4.9 also suggests that f–wave symmetry is favored more than
p–wave. An eigenvalue analysis of the possible solutions ∆f and ∆p + i∆f

should increasingly rule out the latter for stronger nesting.
Also, using similar arguments, we can rule out singlet pairing on the basis

of (2.47). In particular, assuming dx2−y2 symmetry for Sr2RuO4, we obtain a
change of sign of the order parameter upon crossing the diagonals of the BZ.
According to (2.49), wave vectors around Qi connecting areas marked + and
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− contribute constructively to the pairing. Contributions due to qi and the
background connecting areas with the same sign subtract from the pairing
(see Fig. 4.9, with nodes at the diagonals, for an illustration). Therefore, we
find that the four contributions due to qi and the background cancel the pair-
building contribution due to Qi. As a consequence, we obtain no dx2−y2-wave
symmetry.

Thus, without spin–orbit coupling, as a result only of the topology of the
FS and the spin susceptibility, we obtain the strongest pairing for p and f
waves and can definitely exclude d–wave pairing. This is in agreement with
the numerical solution of (2.49). We have used general arguments which be-
come exact for a given frequency (e.g. ω = 0) if the main pairing occurs at
the Fermi level. However, strong feedback effects of the self–energy on the
one–particle spectrum, and mode–mode coupling effects have been neglected.
Nevertheless, our general arguments seem still to be valid in our approxima-
tion. Within this approximation, we also find that f–wave symmetry pairing
is slightly favored over p–wave symmetry in Sr2RuO4 owing to strong nesting
of the bands.

Consideration of Spin–Orbit Coupling

What, now, is the role of spin–orbit coupling in determining the symmetry
of the superconducting order parameter? First, the spin–orbit coupling af-
fects the spin dynamics and, as we have shown, induces an anisotropy in
the spin subspace. In particular, the two–dimensional IAF fluctuations at
Qi = (2π/3, 2π/3) are polarized along the z direction. This simply means
that the antiferromagnetic moments associated with these fluctuations are
aligned parallel to the z direction, and roughly no nested spectral weight
is transferred to the γ band. At the same time, the ferromagnetic fluctua-
tions are in the ab plane. This is in striking contrast to the case discussed
above, where when we neglect spin–orbit coupling but include the hybridiza-
tion between the xy, xz and yz bands, both the ferromagnetic and the IAF
fluctuations are located within the ab plane. This would lead to nodes within
an RuO2 plane. However, owing to the magnetic anisotropy induced by spin–
orbit coupling, a nodeless p–wave pairing is possible in an RuO2 plane, as
experimentally observed, and a node would lie between the RuO2 planes. The
corresponding situation is illustrated in Figs. 4.10 and 4.11. The important
IAF wave vector Qi now connects the nested portions of the β band, while
the small qi bridges the γ band. Therefore, since the interaction in the RuO2

planes (kz = 0) is mainly ferromagnetic, nodeless p–wave pairing is indeed
possible, and the superconducting order parameters in all three bands will
not have nodes. On the other hand, the situation between the RuO2 planes
will be determined mainly by the IAF excitations, which are mainly located
in the β band and polarized along the z direction. This implies that the mag-
netic interaction between the planes has to be antiferromagnetic rather than
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Fig. 4.10. Symmetry analysis of the superconducting order parameter for triplet
pairing due mainly to qi in the first BZ for kz = 0 (solid curves) and kz = π/2c
(dotted curves), after inclusion of spin-orbit coupling. α, β, and γ denote the cor-
responding Fermi surfaces and the wave vectors Qi and qi are the corresponding
spin excitations shown in Fig. 4.2. For clarity, again the nodes of the real part of an
order parameter with fx2−y2–wave symmetry are shown, and also the regions + and
− where the gap has positive and negative sign, respectively. Note that although a
p–wave order parameter has no nodes, for the symmetry analysis we consider the
real part of it, which has a node for kx = 0. The γ band plays the dominant role in
Cooper pairing (Nγ(0) > Nα,β(0)).

ferromagnetic. In the superconducting state, this antiferromagnetic interac-
tion would disturb triplet Cooper pairing and induce a line of nodes between
neighboring RuO2 planes. This was shown by two groups in a phenomeno-
logical approach [8, 9].

The second result of the spin–orbit coupling is the orientation of the or-
bital moment of the Cooper pair. As is known from experimental data, the
superconducting state is characterized by violation of time–reversal symme-
try [32] and equal spin pairing within the basal plane of the tetragonal crystal
lattice [33]. The single symmetry representation consistent with these exper-
iments is d(k) = z̃(sin kx ± i sinky) in an RuO2 plane in the standard vector
notation. The important consequence of this order parameter is the orbital
angular momentum of the Cooper pair (the “chiral” state). Taking into ac-
count the fact that there are other symmetry representations that possess
p–wave symmetry, the important question is why the “chiral” state has a
lower energy than the other representations. A theoretical study of this ques-
tion, assuming magnetically mediated Cooper pairing, was done by Ng and
Sigrist [30] and partly by Kuwabara and Ogata [27]. As we indicated previ-



192 4 Results for Sr2RuO4

2

k
z

RuO

RuO
2

Fig. 4.11. Schematic representation of the kz dependence of the superconducting
order parameter. Here, the amplitude of the order parameter along kz has been
drawn in cylindrical coordinates between RuO2 planes. Owing to inclusion of spin–
orbit coupling, one expects nodes between these planes.

ously, spin–orbit coupling results in mixing of the spin and orbital degrees of
freedom. The new quasiparticles are labeled with pseudo–spin and pseudo–
orbital quantum numbers. Furthermore, the spin–orbit coupling introduces a
magnetic anisotropy along the z direction and, as a result, a superconducting
state with a preferred direction of the orbital moment is realized. As has been
shown in [30], the “chiral” state is indeed lower in energy in an RuO2 plane
for a realistic set of parameters, suggesting that the dxy orbital is the orbital
mostly involved in superconductivity.

4.3 Summary, Comparison with Cuprates, and Outlook

In summary, using a two-dimensional Hubbard Hamiltonian for the three
electronic bands crossing the Fermi level in Sr2RuO4, we have employed a
tight–binding description of the band structure and calculated the spin sus-
ceptibility χ(q, ω) and have found the results to be in quantitative agree-
ment with nuclear magnetic resonance and inelastic neutron scattering ex-
periments. The susceptibility has two peaks at Qi = (2π/3, 2π/3) due to the
nesting properties of the Fermi surface and a peak at qi = (0.6π, 0) due to
the tendency towards ferromagnetism.

First, we have considered hybridization between all three bands and shown
that this is important because it transfers the nesting properties of the xz
and yz orbitals to the γ band in Sr2RuO4. Taking into account all cross-
susceptibilities, we can successfully explain the 17O Knight shift and INS
data. Most importantly, by applying spin–fluctuation exchange theory, have
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shown, on the basis of only the Fermi surface topology and the calculated
spin susceptibility χ(q, ω), that triplet pairing is present in Sr2RuO4. We
can exclude s and d wave symmetry for the superconducting order param-
eter. These calculations we done without spin–orbit coupling and we found
that f–wave symmetry pairing is slightly favored over p–wave symmetry.
To decide whether p– or f–wave symmetry pairing or nodes between the
RuO2 planes are present in Sr2RuO4, one needs to perform more complete
calculations, including coupling between RuO2 planes for example. If the in-
terplane coupling also involves nesting, then corresponding nodes reflecting
the incommensurability of the excitations are expected. In view of Fig. 4.9,
we also remark that while Re∆f exhibits three line nodes that can be seen
by phase–sensitive experiments, |∆f |2 shows nodes only along the diagonals,
as recently found in measurements of ultrasound attenuation below Tc [34].
However, in view of the low eigenvalues for the p– and f–wave symmetries
and the different approximations used, we cannot definitely conclude that
f–wave symmetry is favored over p–wave.

Secondly, we have considered the inclusion of spin–orbit coupling and
have found that this is important because it couples the orbital and spin
degrees of freedom. Thus the orbital anisotropy (the nested α and β bands
are quasi–one–dimensional and the γ band is almost a circle) is then re-
flected in the spin response of the system, which can be measured by the
NMR spin–lattice relaxation rate 1/T1T vs. T , for example. In the normal
state we find the important result that χzz > χ+− for small temperatures
T , in good agreement with experiment. Simply speaking, the in–plane re-
sponse is mainly ferromagnetic-like and the out–of–plane response is mainly
antiferromagnetic–like and dominated by the wave vectors Qi. We also have
investigated the symmetry of the order parameter when spin–orbit coupling
is included. We find that triplet p–wave pairing within the RuO2 planes is fa-
vored owing to the importance of the small wave vectors qi and the fact that
the γ band is not nested. The nesting properties are now present mainly in
the quasi–one–dimensional β band and the corresponding antiferromagnetic
spin excitations point along the z direction. Thus, in an electronic theory, if
coupling between the RuO2 planes is taken into account, we expect nodes be-
tween the RuO2 planes and nodeless p–wave pairing within the RuO2 planes.

In comparison with high–Tc cuprate superconductors, we can say the fol-
lowing. In both hole–doped and electron-doped cuprates, a one–band tight–
binding description is appropriate for explaining the electronic properties,
whereas in Sr2RuO4 a three–band picture with hybridization between the
bands and the inclusion of spin–orbit coupling is necessary. For Sr2RuO4 as
well as for the cuprates, one finds that spin fluctuations are present and are
mainly of antiferromagnetic character. However, owing to the tendency to-
wards ferromagnetism and the presence of incommensurate spin fluctuations
in Sr2RuO4, this material is close to a spin-triplet superconducting phase
transition. Physically speaking, if the spins of the quasiparticles are already
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Fig. 4.12. Illustration of a possible kink structure in Sr2RuO4. The nesting prop-
erties of the β band lead to the formation of two–dimensional incommensurate spin
fluctuations at Qi = (2π/3, 2π/3) and ωsf ≈ 6 meV. Therefore, the quasiparticles in
the β band should be strongly renormalized owing to coupling to spin fluctuations.

(almost) aligned in the normal state (at least within the RuO2 planes), the
superconducting state will be of triplet type because the energy gain in a sim-
ple Ginzburg–Landau description, ∆F = FS −FN (as discussed in Chap. 3),
is large. In addition the antiferromagnetic spin excitations in the cuprates act
within a CuO2 plane, yielding singlet d–wave pairing, whereas in Sr2RuO4

the antiferromagnetic spin excitations point along the z direction. The re-
maining ferromagnetic spin excitations within the RuO2 planes yield (also
because of a high density of states) triplet p–wave pairing.

In order to compare the pairing mechanisms in more detail, we would like
to point out that the main difference between Fig. 3.10b for the electron–
doped cuprate superconductor Nd2−xCexCuO4 (NCCO) and Fig. 4.9 is the
sign change of the order parameter along the diagonal directions in the first
Brillouin zone. This is consistent with the fact that the pairing potentials for
singlet and triplet pairing (see (2.47) and (2.48)) also yield different signs ow-
ing to Pauli’s principle. Simply speaking, singlet pairing in cuprates consists
of a repulsive interaction in k–space3, whereas the exchange of spin fluc-
tuations yielding triplet pairing is attractive in momentum space and thus
similar to phonons. Therefore, singlet Cooper pairing in cuprates naturally
leads to d-wave symmetry of the superconducting order parameter ∆, be-
cause nodes and sign changes in ∆ are required to solve the corresponding
3 Of course, in real space on a lattice, after Fourier transformation, quasiparticles

on nearest-neighbor sites interact with an attractive pairing potential. The terms
“repulsive” and “attractive” that we use here refer to momentum space in the
spirit of the BCS theory.
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gap equation. On the other hand, an attractive pairing in k–space, which is
present in Sr2RuO4, does not favor the existence of nodes in general. Thus,
to a first approximation, one would expect a p–wave symmetry of ∆. How-
ever, if spin fluctuations are mainly antiferromagnetic and the nesting of the
corresponding bands is strong, it is also possible to find f–wave pairing and
thus nodes in Sr2RuO4. Finally, we have included spin–orbit coupling and
find that these nodes should occur between the RuO2 planes. Phase-sensitive
measurements (as in cuprates) should be performed in order to clarify this
issue.

Finally, we want to emphasize that the important formation of the kink
feature due to spin fluctuations is not expected to be restricted to cuprates.
As discussed above, Sr2RuO4 reveals pronounced incommensurate antiferro-
magnetic spin fluctuations at a wave vector Qi = (2π/3, 2π/3) and frequency
ωsf ≈ 6 meV that originate from the nesting properties of the quasi–one–
dimensional α and β bands. Thus, on general grounds, one would expect a
kink structure in the renormalized energy dispersion of the quasiparticles (see
Fig. 4.12 for an illustration). Although the correlation effects are weaker in
Sr2RuO4 (U is smaller and it is a Fermi liquid), and Qi is an incommensurate
wave vector, similar conditions to those in cuprates are present. Note that
the kink feature should occur at smaller energies than in cuprates owing to
the lower value of ωsf in the ruthenates. Recent ARPES data support this
picture [35].

What are the next steps for a theory of strontium ruthenate? Interest-
ingly, in Ca2−xSrxRuO4 various phase transitions occur, and a transition
from triplet superconductivity in Sr2RuO4 to an antiferromagnetic Mott–
Hubbard insulator in Ca2RuO4 has been found [36]. For example, for x < 0.2,
Ca2−xSrxRuO4 is an insulator, and for the doping range 0.2 < x < 0.5 this
material is a metal with short-range antiferromagnetic order. At x � 0.5
there is a crossover which is accompanied by a sharp enhancement of the
ferromagnetic fluctuations in the uniform spin susceptibility. Only for x → 2
the system does become superconducting with triplet Cooper pairing.

Recently, an attempt to explain the magnetic phase diagram of the ma-
terial Sr2−xCaxRuO4 has been made on the basis of ab initio band structure
calculations [37]. It has been shown that the rotations of the RuO6 octahedra
around the c axis stabilize the ferromagnetic state, since they are sufficient
to reduce the pd–π hybridization between the xy orbitals and the oxygen 2p
states. Consequently the xy band becomes narrower and the van Hove singu-
larity shifts towards the Fermi level. At the same time, the xz and yz bands
are only slightly affected. On the other hand, the rotation around axes within
the ab plane changes all three bands completely and increases the nesting of
the xz and yz bands, and may stabilize the antiferromagnetic phase [37].

In such a picture, it is easy to understand why the ferromagnetic fluctua-
tion are strongly enhanced around the so–called critical doping x � 0.5. Using
the LDA parameters for the tight–binding energy dispersion, we have calcu-
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Fig. 4.13. The calculated real part of the Lindhard response function χγ0(q, 0)
along the symmetry points in the BZ, for the γ band in Ca0.5Sr1.5RuO4 and
Sr2RuO4. Owing to the closeness of the van Hove singularity, the response of the
γ band is strongly enhanced and ferromagnetic (around q = 0). This is in fair
agreement with experiment [38].

lated the Lindhard response function of the xy band for Ca0.5Sr1.5RuO4 and
Sr2RuO4, as shown in Fig. 4.13. One can clearly see that the ferromagnetic
response of the xy(γ) band is strongly enhanced at q = 0 owing the closeness
of the van Hove singularity. Furthermore, since the α and β bands are almost
unchanged, the ferromagnetic response becomes much stronger than the an-
tiferromagnetic response, indicating the dominance of the ferromagnetic fluc-
tuations around this critical point x � 0.5. This is in good agreement with
experiment [38]. However, this model cannot explain the Mott–Hubbard tran-
sition in Ca2RuO4 at finite temperatures, of course, since Ca2RuO4 remains
an insulator even above TN . Therefore, strong electronic correlations have
to be taken into account, as proposed recently by Ovchinnikov [39]. He sug-
gested that while the xz and yz bands are split into lower and upper Hubbard
bands, the xy band does not split although it is close to the Mott–Hubbard
transition.

Finally, although our calculations we performed in the clean limit, one
might ask what happens if impurities are added to Sr2RuO4. It is well known
that unconventional superconductors show peculiar behavior if one adds mag-
netic or nonmagnetic impurities. In contrast to conventional (s–wave) super-
conductors, both nonmagnetic and magnetic impurities act as strong pair
breakers and suppress the transition temperature Tc. This reflects the sensi-
tivity to translational symmetry breaking and is characteristic of anisotropic
Cooper pairing. The effects induced by magnetic and nonmagnetic impurities
in cuprates are not well understood. For example, when these materials are
doped with nonmagnetic Zn, local magnetic moments within the CuO2 planes
are induced around these impurities, which show a Kondo–like behavior [40].
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Recently, the first study of the effects induced by the substitution of the
magnetic impurity (Ir4+) and the nonmagnetic impurity (Ti4+) in the RuO2

planes has been performed [41]. Here, the observed effects are also quite pecu-
liar. Similarly to cuprates, the substitution of the nonmagnetic impurity Ti4+

(3d0) in Sr2RuO4 induces a local magnetic moment with an effective moment
∼ 0.5µB/Ti [42]. The induced moment has Ising anisotropy with an easy axis
along the c direction. Furthermore, magnetic ordering with glassy behavior
appears for x(Ti) > 0.025 in Sr2Ru1−xTixO4, while the metallic conduction
in the in–plane direction is retained. When x is increased further to 0.09,
elastic neutron scattering measurements detect an incommensurate Bragg
peak whose wave vector Qic ∼ (2π/3, 2π/3) is close to the position of the
inelastic neutron scattering peak in pure Sr2RuO4 [43]. Most interestingly, in
the vicinity of a magnetic ordering, a deviation from the pure Fermi liquid
behavior seen in Sr2RuO4 is observed by means of resistivity and transport
measurements, which show linear and logarithmic temperature dependence,
respectively [44]. These results indicate that the two–dimensional incommen-
surate antiferromagnetic spin fluctuations arising from the nesting of xz and
yz bands become a static spin density wave state when Ti is substituted.
On the other hand, the system Sr2Ru1−xIrxO4 in which the substitutional
impurity is the magnetic Ir4+ (5d5 in the low spin configuration), shows a
weak ferromagnetism for x(Ir) > 0.3 [45]. Thus, substitution of magnetic and
nonmagnetic impurities in Sr2RuO4 leads to different ground states. In short,
despite these differences, both magnetic and nonmagnetic impurities act sim-
ilarly because both reduce Tc. Thus, one might conclude that magnetic and
nonmagnetic impurities act mainly as potential scatterers and that magnetic
scattering does not play a particular role. To some extent, this observation is
consistent with the existence of a spin triplet state because magnetic impu-
rities break up singlet Cooper pairs, mainly as a result of exchange splitting,
while an equally paired spin state would not be affected.
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5 Summary, Conclusions, and Critical remarks

In the work presented in this book, we have developed an electronic theory
for singlet Cooper pairing in the high-Tc cuprates and for triplet Cooper
pairing in Sr2RuO4 due to spin excitations. In particular, we have studied the
corresponding phase diagrams, the symmetry of the superconducting order
parameter, and the elementary excitations of these materials in both the
normal and the superconducting state. In this chapter, we summarize and
discuss our main results and arguments and illustrate them in a few figures.
We also discuss what would be the additional role of phonons in our theory.
Finally, we point out a few weak points of our theory.

Using as a model the Hubbard Hamiltonian and solving the generalized
Eliashberg equations, we have determined the phase diagram for both hole-
doped and electron-doped cuprate superconductors for a spin-fluctuation-
induced pairing mechanism (Fig. 5.1). In both cases we find a dx2−y2-wave
order parameter below the superconducting transition temperature Tc. While
hole-doped superconductors have been studied intensively, the analysis of
electron-doped cuprates has remained largely unclear. Older experiments re-
ported mainly s-wave pairing [1, 2, 3]. However, recent phase-sensitive ex-
periments [4], magnetic-penetration-depth measurements [5, 6], and ARPES
data [7, 8] have shown d-wave symmetry Cooper pairing.

To investigate the phase diagram of hole-doped cuprates in more detail,
we have used the generalized self-consistent Eliashberg theory, extended by
including Cooper pair phase fluctuations and solved using the FLEX approx-
imation, and have calculated some basic properties of hole-doped cuprate
superconductors. Results have been presented for the characteristic tem-
perature T ∗ at which a gap appears in the spectral density; for T ∗

c , at
which Cooper pairs are formed; for Tc, at which Cooper pairs become phase-
coherent; and for the superfluid density ns. Furthermore, we have combined
our FLEX calculations with standard many-body theory and used this as in
input for the Ginzburg–Landau energy functional ∆F{ns, ∆}. In particular,
we have calculated the superfluid density ns/n, ns/m (where m is the effec-
tive mass of the quasiparticles), and the critical temperature Tc as a function
of the doping concentration.

We find a phase diagram for hole-doped cuprates with two different re-
gions: on the overdoped side we obtain a mean-field-like transition and

c© Springer-Verlag Berlin Heidelberg 2004
D. Manske: Theory of Unconventional Superconductors, STMP 202, 201–209 (2004)
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Fig. 5.1. Phase diagram T (x) for hole- and electron-doped high-Tc superconduc-
tors resulting from spin-fluctuation-induced Cooper pairing. Note that the phase
diagram does not show electron–hole symmetry owing to the doping of different
bands and the different normal-state dispersions εk used as an input. The antifer-
romagnetic (AF) phase and the curve for T exp

c (in the hole-doped case) are also
displayed for clarity. Below T ∗, we find a pseudogap in the density of states, and T ∗

c

denotes the temperature below which Cooper pairs are formed. The dashed curves
correspond to Tc ∝ ns(0). In agreement with experiment, we find that supercon-
ductivity occurs in a narrower doping range for electron-doped cuprates and obtain
smaller values for Tc owing to poorer nesting conditions.

Tc ∝ ∆(T = 0) ,

whereas in the underdoped regime we find

Tc ∝ ns(T = 0) .

This results from the fact that, with increasing doping, for x > 0.15, the
phase coherence energy become larger than the Cooper pair condensation
energy. For temperatures Tc < T < T ∗

c , we find a finite dynamical superfluid
density but no Meissner effect. This region may be attributed to preformed
Cooper pairs without long-range phase coherence. The overall agreement with
experiments is remarkably good and suggests spin-fluctuation exchange as
the dominant pairing mechanism for superconductivity. In this connection,
we have also investigated the timescale of Cooper pair phase fluctuations and
find fair agreement with experiment.

We have also compared our results with the BKT theory, taking ns(ω, T )/
m from our electronic theory and find similar results. In both cases we find
an optimum doping concentration at around xopt = 0.15. For x < xopt,
T ∗

c ∝ ∆(T → 0) saturates as x → 0, whereas Tc decreases, and for x larger
than xopt, the mean-field temperature T ∗

c and the critical temperature Tc
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differ only slightly. The inclusion of coupling between phase and amplitude
fluctuations, which was neglected here, may lead to a single transition for x >
xopt, where local pairs are created and immediately become phase-coherent,
as in the BCS theory.

For electron-doped cuprates, we find a narrow range of superconductiv-
ity, and the superconducting transition temperatures Tc(x) are calculated to
be much smaller than for hole-doped cuprates owing to the different energy
dispersion and a flat band well below the Fermi level. Furthermore, lattice dis-
order may also sensitively distort the symmetry dx2−y2 via electron–phonon
interaction. We have also calculated the Cooper-pair coherence length ξ0 and
find similar and also larger values for electron-doped than for hole-doped su-
perconductors (from 6 Å to 9 Å). If, due to strong-coupling lifetime effects,
the superfluid density ns becomes small, the distance d between Cooper pairs
increases. We obtain the result that, for 0.15 > x > 0.13 , the Cooper-pairs
do not overlap significantly, i.e. d/ξ0 > 1, and thus Cooper pair phase fluctu-
ations become important. Thus we expect, as for hole-doped superconductors
that Tc ∝ ns in the underdoped region and Tc ∝ ∆ for the overdoped case.
This is a subject of further investigation.

What do our studies teach us about the pairing mechanism? Because the
pairing interaction itself cannot be measured directly, one needs to analyze
key experiments which reveal fingerprints of it. We believe that the two key
experiments are (1) ARPES experiments that measure the one-particle spec-
tral density (and thus the elementary excitations) directly, and (2) inelastic
neutron scattering experiments, in which the interdependence of the elemen-
tary excitations with spin excitations can be studied. In both cases our theory
is in good agreement with the available experimental data.

In particular, we show again in Fig. 5.2 the calculated spectral density
N(k, ω), i.e. the local density of states, as a function of frequency and the
momentum k−kF . The peak positions correspond to the renormalized energy
dispersion. Due to coupling of holes to antiferromagnetic spin fluctuations,
the quasiparticle dispersion changes its slope and shows a pronounced kink
feature at an energy ωkink ≈ 75 ± 15 meV. From a simple calculation, we
have obtained a kink condition

ωkink ≈ Ek−Q + ωsf (x)

in the nodal direction and

ωkink ≈ Ek−Q + ωres(x)

in the antinodal direction (see Fig. 3.20), where the spin excitations be-
come resonant below Tc. Thus, the two kink features are strongly related
as shown in Fig. 5.3. While in the normal state of hole-doped cuprates
ωsf is of the order of 25 meV, in the electron-doped cuprates its value is
much larger (ωsf ≈ 70 meV) and Im χ is much less pronounced. Therefore,
antiferromagnetic spin fluctuations are much weaker in the electron-doped
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Fig. 5.2. Calculated spectral density N(k, ω) in the normal state along the nodal
(0, 0) → (π, π) direction (from left to right) as a function of frequency in the first
Brillouin zone. The peak positions (connected by the solid line to guide the eye) refer
to the renormalized energy dispersion ωk, which was calculated self-consistently.
One can clearly see the kink structure at an energy of approximately ωkink = 75±15
meV; this results from coupling of the quasiparticles to spin fluctuations.

cuprates due to weaker nesting of the Fermi surface and smaller density of
states due to the flat band well below the Fermi level. In the superconduct-
ing state we find ∆0 ∼ ωsf , leading to a resonance peak at ω = ωres (see
Fig. 5.3b), because a resonance condition

1
Ucr

= Re χ0(q = Q, ω = ωres) ,

which signals the occurrence of a spin-density-wave collective mode, is ful-
filled. In electron-doped cuprates, the spin excitations do not obey the res-
onance condition and thus only a rearrangement of spectral weight occurs
below Tc, but no resonance peak. Therefore, the kink feature is intimately
connected with the resonance peak. As we see from Fig. 5.3a there is only a
small feedback of superconductivity below Tc on Im χ in the electron-doped
cuprates because ωsf � ∆0. Thus, we also find no kink feature in the super-
conducting state of electron-doped cuprates in the antinodal direction.

What is the role of phonons in the pairing mechanism? One of the inter-
pretations of the kink structure in hole-doped cuprates has been an electron–
phonon interaction suggested by Lanzara et al. [9]. Indeed, it is clear that
phonons would also cause a kink structure in the energy dispersion if one
assumes the Eliashberg function α2F (q, ω) has the same features as χ(q, ω),
namely that it is peaked at the wave vector Q and at the Debye frequency
ωD, i.e. ω = ωD ≈ ωsf . If we analyze Fig. 3.19 it is clear that both spin
fluctuations and electron–phonon coupling can cause a kink structure. How-
ever, in general, one would expect that the position and doping dependence
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Fig. 5.3. Calculated feedback of superconductivity on the spin susceptibility
Im χ(q, ω) for electron-doped (a) and hole-doped (b) cuprates at optimal dop-
ing (x = 0.15). The solid curves refer to the normal state (T = 1.5Tc), while the
dashed curves denote the renormalized spin susceptibility in the superconducting
state at T = 0.7Tc. Due to large ωsf = 0.3t and the small superconducting gap,
the feedback of superconductivity is small in electron-doped cuprates. On the other
hand, due to a small ωsf = 0.09t and the large gap ∆(ω) in hole-doped cuprates,
the feedback of superconductivity fulfills a resonance condition for Imχ yielding
a strong renormalization of the spin excitation spectrum and the formation of a
resonance peak. Note that the hopping integral t is different for hole- and electron-
doped cuprates, as discussed in the Introduction.

of the kink structure would be different in the two cases. For example, only
in the case of dominant spin fluctuation coupling the kink structure can be
related to the results of INS experiments, i.e. Im χ(Q, ω), and, furthermore,
the kink position is given by ωkink ≈ Ek−Q + ωsf (x). As discussed ear-
lier, the kink feature along the antinodal (0, π) → (π, π) direction results
from the structure in ∆(ω). Thus, additional structure in ∆(ω) due to the
electron–phonon interaction may also contribute. Therefore, the question re-
mains: How do we distinguish between spin fluctuations and phonons as the
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reason for the formation of the kink? To answer this question one has to
understand how consistent the two scenarios are with available experimen-
tal data. For example, as was shown Zeyher and Greco [10], the value of the
electron–phonon coupling extracted from an analysis of the kink yields values
of the electron–phonon coupling λ and of Tc that are too low to account for
high-Tc superconductivity in the cuprates. Furthermore, assuming that the
kink structure arises only from the electron–phonon interaction, it is difficult
to understand the dx2−y2 symmetry of the superconducting order parameter
and the related observed anisotropy of the kink structure (see Appendix C).
Only the spin fluctuation scenario yields Tc ≈ 70 K, a dx2−y2-wave order pa-
rameter, and a kink feature in qualitative agreement with experiment. Also,
the doping dependence of the kink is difficult to explain within the phonon
scenario. In contrast to (3.16) one would expect ωkink ≈ Ek−Q + ωD(x) in
the case of electron–phonon coupling.

Thus, in short, in the case of hole-doped cuprates we have shown that:

– A dx2−y2-wave order parameter results from the exchange of antiferro-
magnetic spin fluctuations.

– Their phase diagram, in particular the occurrence of three characteris-
tic temperature scales, i.e. the pseudogap temperature T ∗(x), the mean-
field crossover T ∗

c (x), and the superconducting temperature Tc(x), can
be naturally explained by Cooper pairing due to antiferromagnetic spin
fluctuations.

– The pseudogap could be due to a charge density wave (or d-density wave)
or to inelastic scattering of holes by spin excitations and Tc(x) has a
maximum at nearly optimum doping due to the interplay of the Cooper
pair condensation energy ∝ ∆(x) and the energy costs resulting from
Cooper pair phase fluctuations ∝ ns(x).

– The kink feature in the spectral density of holes observed in ARPES
experiments can be explained as being due to their coupling to spin fluc-
tuations. In particular, in the nodal direction (0, 0) → (π, π) the kink is
present both above and below Tc, but it occurs in the antinodal direction
(0, π) → (π, π) only below Tc. The latter observation signals the open-
ing of the superconducting gap ∆(k, ω) and is a direct fingerprint of the
pairing interaction.

– The occurrence of a resonance peak at ωres ≈ 41 meV in INS experi-
ments on optimally doped YBCO only below Tc reflects ∆(k, ω) and the
dx2−y2-wave symmetry of the superconducting order parameter and the
closeness to a spin-density-wave collective mode. The theory predicts a
doping dependence ωres(x) and the presence of a similar effect in single-
layer cuprates, both of which have been observed now.

– Various other physical quantities, such as the electronic Raman response,
the magnetic coherence observed in INS experiments, the role of collective
modes in ARPES experiments, and the optical conductivity in the ab and
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in c directions have been calculated in this work and good agreement with
experiment is found.

In the case of electron-doped cuprates, we have pointed out the similarities
to the hole-doped cuprates in their phase diagram, in particular that:

– Superconductivity occurs only in a narrow doping region because of the
strong antiferromagnetism at small doping concentrations and the weaker
nesting properties of the Fermi surface in the overdoped case.

– Tc(x) is smaller than for hole-doped cuprates due to fewer density of states
around (π, 0) where the van Hove singularity lies about 300 meV below
the Fermi level.

– A dx2−y2-wave order parameter is expected if the pairing potential is
generated mainly by the exchange of antiferromagnetic spin fluctuations.
The magnitude of ∆ is calculated to be about 5 meV.

– No kink feature and no resonance peak is found in electron-doped cuprates,
which is also in agreement with experiment. This is the case because ∆ is
too small to fulfill the resonance condition. Thus, only a rearrangement
of spectral weight occurs.

– Also, the main difference in the interplay between magnetism and super-
conductivity with respect to hole-doped cuprates is the fact that in the
hole-doped case Zhang–Rice-like quasiparticles are doped into the oxygen
states, whereas for electron-doped cuprates the Cu d states are the most
important. Thus, in the latter case, one has a dilute antiferromagnet with
no frustrated spins or spin glass state.

In the case of the analysis of triplet pairing in Sr2RuO4 we find that
a three-band Hubbard Hamiltonian including spin–orbit coupling (or hy-
bridization) can explain the main interesting normal and superconducting
properties:

– Spin–orbit coupling plays an important role in both the superconduct-
ing and the normal state. In particular, it explains the unexpected and
important normal-state spin anisotropy and the occurrence of an orbital
moment below Tc (i.e. the chiral p-wave state).

– The strong anisotropy of the t2g orbitals is reflected in the anisotropic
spin response, χzz > χ+−, if spin–orbit coupling is taken into account.

– The nesting of the α and β bands plays a major role in Sr2RuO4 (the γ
band alone would lead to pure p-wave pairing, as expected earlier).

– The calculated magnetic response is in good agreement with INS and
NMR experiments. In the superconducting state, we find that in two
dimensions the strong antiferromagnetic spin excitations would lead to a
suppression of the p-wave state and would then lead to f -wave pairing if
no (or weak) spin–orbit coupling were present or if pressure were applied
in order to increase the nesting of the γ band, for example.

– In three dimensions, if interplanar pairing is assumed, one finds a su-
perconducting order parameter with p-wave symmetry, but with nodes
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between the RuO2 planes. The exact position of the nodes reflects the
incommensurability of the pairing interaction. This has to be confirmed
by an electronic, self-consistent calculation.

What are the weak points of our theory? As we have discussed in Sect. 2.5,
the main problem of our approach is the fact that when the doping x tends
to zero no Mott transition is obtained. Therefore, as soon as the nearness
of a Mott transition becomes important, i.e. in the (strongly) underdoped
regime, our theory has problems. For optimal doping and the overdoped case,
however, we believe that our results demonstrate that the physics related to
a Mott–Hubbard insulator plays no dominant role, and hence can safely be
neglected. In particular, our approximation is better for Sr2RuO4, which is a
material with weaker correlations than in cuprates and is also a good Fermi
liquid.

Further weak points are the following: for cuprates we have used only
an effective one-band Hubbard model that neglects the difference between
oxygen p states and Cu d states. In addition, we have employed a simple
perturbation theory (effectively second order) and the RPA, and thus con-
sider only a special selection of Feynman diagrams. The corresponding vertex
corrections can often be treated only within certain approximations. In de-
fence of our work, however, we believe we have followed an intuitive method
and formulated a theory similar to the well-known Eliashberg equations for
phonons given by Scalapino, Schrieffer, and Wilkins [11], yielding fair agree-
ment with experiment.

To conclude, we have studied the interplay between magnetism and super-
conductivity, in particular the connection between antiferromagnetism and
singlet d-wave superconductivity in high-Tc cuprates, and between ferromag-
netism and triplet pairing in Sr2RuO4. We have developed an electronic the-
ory of Cooper pairing due to spin fluctuations and understood the main
physics in these materials. However, in connection with cuprates many ques-
tions still have to be answered. For example, what is the role of spatial [12]
or electronic [13] inhomogeneities, do surface properties differ strongly from
their bulk counterparts ([14] and references therein), and how should one in-
terpret the recent c-axis tunneling data [15]? We believe that further material-
dependent studies are necessary to clarify these questions [16]. Nevertheless,
many fingerprints of the corresponding pairing potential due to spin excita-
tions are found in various normal and superconducting properties. Because
the doping dependence of the key physical quantities and the elementary ex-
citations are correctly described, we conclude that spin fluctuations play the
most important role in Cooper pairing in these materials.
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A Solution Method

for the Generalized Eliashberg Equations for
Cuprates

While earlier attempts were restricted to solving the set of equations (2.28)–
(2.32) on the imaginary axis [1, 2, 3, 4] or slightly above the real axis [5, 6, 7],
we solve the generalized Eliashberg equations directly on the real ω axis. Thus
we avoid continuation methods such as the Padé approximation after solving
the set of equations for the self-energy. The generalized Eliashberg equations
in the two-dimensional (effective) one-band Hubbard model read

Im χG(q, ω) =
π

N

∑
k

∫ ∞

−∞
dω [f(ω) − f(ω + Ω)] N(k, ω)N(k + q, ω + Ω) ,

(A.1)

Im χF (q, ω) =
π

N

∑
k

∫ ∞

−∞
dω [f(ω) − f(ω + Ω)] A1(k, ω)A1(k + q, ω + Ω) ,

(A.2)

Re χG,F (q, ω) =
1
π

P

∫ ∞

−∞
dω

Im χG,F (q, ω)
ω − Ω

, (A.3)

χc0 = χG − χF , (A.4)

χs0 = χG + χF , (A.5)

Ps ≡ 1
π

Im
[
3
2

U2χs0

1 − Uχs0

]
, (A.6)

Pc ≡ 1
π

Im
[
3
2

U2χc0

1 + Uχc0

]
, (A.7)

PG ≡ Ps + Pc − 1
π

Im
[
1
2
U2 (χs0 + χc0)

]
, (A.8)

PF ≡ −Ps + Pc +
1
π

Im
[
1
2
U2 (χs0 − χc0)

]
, (A.9)

Im φ(k, ω) =
π

N

∑
q

∫ ∞

−∞
dΩ [b(Ω) + f(Ω − ω)] PF (q, ω)A1(k − q, ω − Ω) ,

(A.10)

c© Springer-Verlag Berlin Heidelberg 2004
D. Manske: Theory of Unconventional Superconductors, STMP 202, 211–228 (2004)
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Im Σ(k, ω)

= − π

N

∑
q

∫ ∞

−∞
dΩ [b(Ω) + f(Ω − ω)] PG(q, ω)N(k − q, ω − Ω) , (A.11)

Re φ(k, ω) =
1
π

P
∫ ∞

−∞
dω′ Im φ(k, ω′)

ω′ − ω
, (A.12)

Re ΣG(k, ω) =
1
π

P
∫ ∞

−∞
dω′ Im ΣG(k, ω′)

ω′ − ω
, (A.13)

ξ ≡ 1
2

[
ΣG(k, ω) + ΣG∗(k,−ω)

]
, (A.14)

ωZ ≡ ω − 1
2

[
ΣG(k, ω) − ΣG∗(k,−ω)

]
, (A.15)

N(k, ω) = − 1
π

Im

[
ωZ + εk + ξ

(ωZ)2 − (εk + ξ)2 − φ2

]
= A0(k, ω) + A3(k, ω) ,

(A.16)

A1(k, ω) = − 1
π

Im

[
φ

(ωZ)2 − (εk + ξ)2 − φ2

]
. (A.17)

Our numerical calculations were performed on a square lattice with 256×256
points in the Brillouin zone and with 200 points on the real ω axis up to 16t
with an almost logarithmic mesh. The full momentum and frequency depen-
dence of the quantities was kept. The convolutions in k-space were carried
out with fast Fourier transforms [8]. The real parts of the susceptibilities,
gap, and self-energy were calculated with the help of the Kramers–Kronig
relations (P denotes the corresponding principal value of the integral). The
spectral functions A1, PG,F , Im φ, Im ξ, and ImχG,F are antisymmetric and
the corresponding real parts are symmetric with respect to ω. Thus the spec-
tral function for the interacting electrons (or holes) N(k, ω) is separated into
a symmetric part A0 and an antisymmetric part A3 (see (A.16)). The cor-
responding equations for the normal state can be recovered by setting the
off-diagonal terms of the self-energy, φ, A1, and χF , identically to zero.

For an illustration, we show in Fig. A.1 how we solve (2.28)–(2.32). We
start with a dynamical spin susceptibility χ(q, ω) and constructs the effective
pairing interaction using (A.8). Then, the strong-coupling gap equation for
the superconducting order parameter φ(k, ω) and the corresponding Dyson
equation G−1(k, ω) = G−1

0 (k, ω) − Σ(k, ω) have to be solved. Having solved
these two equations, we have new appropriate starting input values for an
electron propagator G, which is again used to calculate χ. This procedure is
repeated until all equations are solved.

In order to determine the superconducting transition temperature Tc we
solve the linearized gap equation, i.e. the linearized version of (A.12),
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electron propagator

dynamical spin susceptibility

pairing interaction

gap equation self energy

Fig. A.1. Illustration of the procedure used to solve (2.28)–(2.32). The full mo-
mentum and frequency dependence of the quantities is kept. Thus, our calculations
include pair-breaking effects for the Cooper pairs resulting from lifetime effects of
the elementary excitations.

λ Im φ(k, ω) = − 1
N

∑
k

∫ ∞

−∞
dω′ [b(Ω) + f(Ω − ω)] PF (q, ω)

× Im

[
φ(k′, ω′)

(ωZ)2 − (εk′ + ξ)2

]
, (A.18)

where χF in PF is set identically to zero. With decreasing temperature T ,
the eigenvalue λ(T ) increases and passes through unity at T = Tc. The spec-
tral functions calculated during the solution of (A.18) are then appropriate
starting values for the solution of the equations below Tc. After solving the
generalized Eliashberg equations for cuprates, we find that below Tc the su-
perconducting gap function has dx2−y2-wave symmetry for both hole- and
electron-doped superconductors. Vertex corrections for the two-particle cor-
relation function are not included.

As mentioned earlier, there exists an important feedback effect of the self-
energy on the spectral functions of the corresponding quasiparticles (dressed
holes or electrons). This is the case, in particular if these quasiparticles be-
come superconducting. Below Tc a gap appears in the spectral density of the
quasiparticles which not only condense into Cooper pairs but also provide the
effective pairing interaction V eff (q, ω). This gap corresponds to the super-
conducting gap function φ(k, ω) = Z(k, ω)∆(k, ω), which is nonzero below Tc
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and can be calculated self-consistently, including all scattering and damping
effects of the quasiparticles by the procedure described above. This strong
feedback effect has important consequences: for example, the dynamical spin
susceptibility Im χs(Q, ω) (for simplicity we restrict our discussion to the an-
tiferromagnetic nesting vector q = Q = (π, π)) shows a rearrangement of its
spectral weight for small frequencies ω < 2φ(Q, ω), followed by a peak at
approximately ω = 2φ. As discussed in the Introduction, this behavior pro-
vides a possible explanation for the observed ”resonance peak” in inelastic
neutron scattering for many cuprate superconductors. Therefore, the strong
feedback effect of superconductivity on the elementary excitations and thus
on Im χs(Q, ω) can be viewed as a general phenomenon of a strongly interact-
ing system and, in particular, as an important fingerprint of spin-fluctuation-
mediated pairing in cuprate high-Tc superconductors. To demonstrate this,
the self-consistent procedure shown in Fig. A.1 is required.

References

1. N. E. Bickers, D. J. Scalapino, and S. R. White, Phys. Rev. Lett. 62, 961 (1989);
N. E. Bickers and D. J. Scalapino, Ann. Phys. (N.Y.) 193, 206 (1989). 211

2. C.-H. Pao and N. E. Bickers, Phys. Rev. Lett. 72, 1870 (1994); Phys. Rev. B
51, 16310 (1995). 211

3. D. J. Scalapino, Phys. Rep. 250, 329 (1995). 211
4. P. Monthoux and D. J. Scalapino, Phys. Rev. Lett. 72, 1874 (1994). 211
5. M. Langer, J. Schmalian, S. Grabowski, and K. H. Bennemann, Phys. Rev.

Lett. 75, 4508 (1995). 211
6. J. Schmalian, S. Grabowski, and K. H. Bennemann, Phys. Rev. B 56, R509

(1997). 211
7. J. Schmalian, M. Langer, S. Grabowski, and K. H. Bennemann, Comput. Phys.

Comunn. 93, 141 (1996). 211
8. J. W. Serene and D. W. Hess, Phys. Rev. B 44, 3391 (1991). 212



B Derivation of the Self-Energy

(Weak-Coupling Case)

The self-energy in the one-loop approximation is given by

Σ(k, ω) = −T 2
∑

ωn,νm

∑
p,q

τ̂i G(k − p, iωn − iνm) τ̂i U2(p)

× 1
2
Tr [τ̂i G(p + q, iωn + iνm) τ̂i G(k, iωn)] . (B.1)

For spin fluctuations, we have τ̂i = τ̂0. The Coulomb interaction U(p) is
taken to be a constant and the full Green’s function is approximated by its
noninteracting counterpart

G(k, iωn) � G0(k, iωn) =
iωnτ̂0 + εk τ̂3 − ∆k τ̂1

(iωn)2 − ε2k − ∆2
k

. (B.2)

Using (B.2), the trace in (B.1) can be rewritten as

1
2

Tr [G(p + q, iωn + iνm)G(k, iωn)]

=
1[

(iωn + iνm)2 − ε2p+q − ∆2
p+q

] [
(iωn)2 − ε2q − ∆2

q

]
× [(iωn + iνm) iωn + εp+qεq + ∆p+q∆p]

=
1
4

[
c+(p + q,q)

(iωn + iνm − Ep+q)(iωn − Eq)
+

c−(p + q,q)
(iωn + iνm − Ep+q)(iωn + Eq)

+
c−(p + q,q)

(iωn + iνm + Ep+q)(iωn − Eq)
+

c+(p + q,q)
(iωn + iνm + Ep+q)(iωn + Eq)

]
,

(B.3)

where we have introduced the quasiparticle energy dispersion

E2
p = ε2p + ∆2

p (B.4)

and the coherence factors
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c±(p + q,q) = 1 ± εp+qεq + ∆p+q∆q

Ep+qEq
. (B.5)

Now, summation of (B.3) over ωn can easily be performed. Noting that

T
∑
ωn

1
(iωn + iνm − y)(iωn − x)

=
f(x) − f(y)
iνm + x − y

, (B.6)

we obtain

T
∑
ωn

1
2

Tr [G(p + q, iωn + iνm)G(q, iωn)]

=
1
4

[[
f(Eq) − f(Ep+q)
iνm + Eq − Ep+q

+
f(−Eq) − f(−Ep+q)

iνm − Eq + Ep+q

]
c+(p + q,q)

+
[
f(−Eq) − f(Ep+q)
iνm − Eq − Ep+q

+
f(Eq) − f(−Ep+q)
iνm + Eq + Ep+q

]
c−(p + q,q)

]
. (B.7)

Equation (B.7) has to be multiplied by

iωn − iνm

(iωn − iνm)2 − E2
k−p

=
1
2

[
1

iωn − iνm − Ek−p
+

1
iωn − iνm + Ek+p

]

= −1
2

[
1

iνm − iωn + Ek−p
+

1
iνm − iωn − Ek−q

]
(B.8)

for the τ̂0 component and

1
(iωn − iνm)2 − E2

k−p

=
1

2Ek−p

[
1

iωn − iνm − Ek−p
− 1

iωn − iνm + Ek−p

]

= − 1
2Ek−p

[
1

iνm − iωn + Ek−p
− 1

iνm − iωn − Ek−p

]
(B.9)

for the τ̂3 and τ̂1 components, and summed over νm. Using (where n is the
Bose function)

n(−x) = −(1 + n(x)) and f(−x) = 1 − f(x)

and

− T
∑
νm

1
(iνm − x)(iνm − y)

=
n(x) − n(y)

x − y
(B.10)

in the form
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− T
∑
νm

1
(iνm − iωn − x)(iνm − y)

=
n(iωn + x) − n(y)

iωn + x − y

= −f(x) + n(y)
iωn + x − y

, (B.11)

we obtain

− T
∑
νm

1
(iνm − iωn + Ek−p)

± 1
(iνm − iωn − Ek−p)

×
[[

f(Eq) − f(Ep+q)
iνm + Eq − Ep+q

+
f(−Eq) − f(−Ep+q)

iνm − Eq + Ep+q

]
c+(p + q,q)

+
[
f(−Eq) − f(Ep+q)
iνm − Eq − Ep+q

+
f(Eq) − f(−Ep+q)
iνm + Eq + Ep+q

]
c−(p + q,q)

]

= −
[
c+(p + q,q)

[
[f(Eq) − f(Ep+q)]

×
[
−f(Ek−p) + n(Eq − Ep+q)

iωn − Ek−p + Eq − Ep+q
± f(Ep+q) − n(Eq − Ep+q) − 1

iωn + Ek−p + Eq − Ep+q

]

+ [−f(Eq) + f(Ep+q)]

×
[
1 − f(Ek−p) + n(Eq − Ep+q)

iωn − Ek−p − Eq + Ep+q
± f(Ek−p) + n(Eq − Ep+q)

iωn + Ek−p − Eq + Ep+q

]]

+ c−(p + q,q)
[

[1 − f(Ek−q) − f(Ep+q)]

×
[
1 − f(Ek−p) + n(Eq + Ep+q)

iωn − Ek−p − Eq − Ep+q
± f(Ek−p) + n(Eq + Ep+q)

iωn + Ek−p − Eq − Ep+q

]

+ [f(Eq) + f(Ep+q) − 1]

×
[
−f(Ek−p) + n(Eq + Ep+q)

iωn − Ek−p + Eq + Ep+q
± f(Ek−p) − n(Eq + Ep+q) − 1

iωn + Ek−p + Eq + Ep+q

]] ]

= c+(p + q,q) [f(Eq) − f(Ep+q)]
[

[f(Ek−p) + n(Eq − Ep+q)]

×
[

1
iωn − Ek−p + Eq − Ep+q

± 1
iωn + Ek−p − Eq + Ep+q

]
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+ [1 − f(Ek−p) + n(Eq − Ep+q)]

×
[
± 1

iωn + Ek−p + Eq − Ep+q
+

1
iωn − Ek−p − Eq + Ep+q

]]

+ c−(p + q,q) [f(Eq) + f(Ep+q) − 1]

×
[

[f(Ek−p) + n(Eq + Ep+q)]

×
[
± 1

iωn + Ek−p − Eq − Ep+q
+

1
iωn − Ek−p + Eq + Ep+q

]

+ [1 − f(Ek−p) + n(Eq + Ep+q)]

×
[

1
iωn − Ek−p − Eq − Ep+q

± 1
iωn + Ek−p + Eq + Ep+q

]]
. (B.12)

Now the analytic continuation iωn → ω + iη can be performed and the
components of the self-energy can be obtained. The imaginary part of the
self-energy which corresponds to the τ̂0 component then reads

Im Σ0(k, ω) =
πU2

8

[∑
p

[f(Ek−p) + n(Ep+q + ω)]

×
∑
q

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

× [δ(ω + Ek−p − Eq + Ep+q) − δ(ω + Ek−p + Eq − Ep+q)]

+ c−(p + q,q) [1 − f(Eq) − f(Ep+q)]

× [δ(ω + Ek−p + Eq + Ep+q) − δ(ω + Ek−p − Eq − Ep+q)]

]

+
∑
p

[f(Ek−p) + n(Ek−p − ω)]
∑
q

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

× [δ(ω − Ek−p + Eq − Ep+q) − δ(ω − Ek−p − Eq + Ep+q)]

+ c−(p + q,q) [1 − f(Eq) − f(Ep+q)]
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× [δ(ω − Ek−p − Eq − Ep+q) − δ(ω − Ek−p + Eq + Ep+q)]

] ]
. (B.13)

For the τ̂3 component, we find

Σ3(k, ω) =
U2

8

∑
p,q

εk−p

Ek−p

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

×
[

[f(Ek−p) + n(Eq − Ep+q)]

×
[

1
ω + iη − Ek−p + Eq − Ep+q

− 1
ω + iη + Ek−p − Eq + Ep+q

]

+ [1 − f(Ek−p) − n(Eq + Ep+q)]

×
[
− 1

ω + iη + Ek−p + Eq − Ep+q
− 1

ω + iη − Ek−p − Eq + Ep+q

]]

+ c−(p + q,q) [f(Eq) + f(Ep+q) − 1]

×
[

[f(Ek−p) + n(Eq − Ep+q)]

×
[
− 1

ω + iη + Ek−p − Eq − Ep+q
+

1
ω + iη − Ek−p + Eq + Ep+q

]

+ [1 − f(Ek−p) + n(Eq − Ep+q)]

×
[

1
ω + iη − Ek−p − Eq − Ep+q

− 1
ω + iη + Ek−p + Eq + Ep+q

] ]]

(B.14)

and thus, for the corresponding imaginary part,

Im Σ3(k, ω) =
πU2

8

[∑
p

εk−p

Ek−p
[f(Ek−p) + n(Ep−q + ω)]

×
∑
q

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

× [δ(ω + Ek−p + Eq − Ep+q) − δ(ω + Ek−p − Eq + Ep+q)]
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+ c−(p + q,q) [1 − f(Eq) − f(Ep+q)]

× [δ(ω + Ek−p − Eq − Ep+q) − δ(ω + Ek−p + Eq + Ep+q)]

]

+
∑
p

εk−p

Ek−p
[f(Ek−p) + n(Ek−p − ω)]

×
∑
q

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

× [δ(ω − Ek−p + Eq − Ep+q) − δ(ω − Ek−p − Eq + Ep+q)]

+ c−(p + q,q) [1 − f(Eq) − f(Ep+q)]

× [δ(ω − Ek−p − Eq − Ep+q) − δ(ω − Ek−p + Eq + Ep+q)]

]]
.

(B.15)

The self-energy which corresponds to the τ̂1 component can be evaluated as

Σ1(k, ω)

=
πU2

8

∑
p,q

∆k−p

Ek−p

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

×
[

[f(Ek−p) + n(Eq − Ep+q)]

×
[

1
ω + iη − Ek−p + Eq − Ep+q

− 1
ω + iη + Ek−p − Eq + Ep+q

]

+ [1 − f(Ek−p) + n(Eq − Ep+q)]

×
[
− 1

ω + iη + Ek−p + Eq − Ep+q
− 1

ω + iη − Ek−p − Eq + Ep+q

]]

+ c−(p + q,q) [f(Eq) + f(Ep+q) − 1]

× [f(Ek−p) + n(Eq + Ep+q)]

×
[
− 1

ω + iη + Ek−p − Eq − Ep+q
+

1
ω + iη − Ek−p + Eq + Ep+q

]



B Derivation of the Self-Energy (Weak-Coupling Case) 221

+ [1 − f(Ek−p) + n(Eq + Ep+q)]

×
[

1
ω + iη − Ek−p − Eq − Ep+q

− 1
ω + iη + Ek−p + Eq + Ep+q

] ]
.

(B.16)

Thus, for the corresponding imaginary part, we find

Im Σ3(k, ω) =
πU2

8

[∑
p

∆k−p

Ek−p
[f(Ek−p) + n(Ep+q + ω)]

×
∑
q

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

× [δ(ω + Ek−p + Eq − Ep+q) − δ(ω + Ek−p − Eq + Ep+q)]

+ c−(p + q,q) [1 − f(Eq) − f(Ep+q)]

× [δ(ω + Ek−p − Eq − Ep+q) − δ(ω + Ek−p + Eq + Ep+q)]

]

+
∑
p

∆k−p

Ek−p
[f(Ek−p) + n(Ek−p − ω)]

×
∑
q

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

× [δ(ω − Ek−p + Eq − Ep+q) − δ(ω − Ek−p − Eq + Ep+q)]

+ c−(p + q,q) [1 − f(Eq) − f(Ep+q)]

× [δ(ω − Ek−p − Eq − Ep+q) − δ(ω − Ek−p + Eq + Ep+q)]

]]
.

(B.17)

Now, introducing the susceptibility in the superconducting state,

χ(p, iνm) = −T
∑
ωn

∑
q

1
2

Tr [G(p + q, iωn + iνm)G(q, iωn)]
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= −1
4

∑
q

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

×
[

1
iνm + Eq − Ep+q

− 1
iνm − Eq + Ep+q

]

+ c−(p + q,q) [1 − f(Eq) − f(Ep+q)]

×
[

1
iνm − Eq − Ep+q

− 1
iνm + Eq + Ep+q

] ]
,

(B.18)

and its imaginary part

Im χ(p, iνm) =
π

4

∑
q

[
c+(p + q,q) [f(Eq) − f(Ep+q)]

× [δ(ν + Eq − Ep+q) − δ(ν − Eq + Ep+q)]

+ c−(p + q,q) [1 − f(Eq) − f(Ep+q)]

× [δ(ν − Eq − Ep+q) − δ(ν + Eq + Ep+q)]

]
, (B.19)

we can write

Im Σ0(k, ω) =
U2

2

∑
p

[− [f(Ek−p) + n(Ek−p + ω)] Im χ(p, ω + Ek−p)

× [f(Ek−p) + n(Ek−p − ω)] Im χ(p, ω − Ek−p)] . (B.20)

With the help of

f(x) + n(y) =
1
2

[
1 − tanh

( x

2T

)]
+

1
2

[
coth

( y

2T

)
− 1

]
=

1
2

[
coth

( y

2T

)
− tanh

( x

2T

)]
, (B.21)

we find

Im Σ0(k, ω) =
U2

2

∑
p

[ ∫ ∞

0

dε δ(ε − Ep)
[
coth

(
ε − ω

2T

)
− tanh

( ε

2T

)]

× Im χ(k − p, ω − ε)
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−
∫ 0

−∞
dε δ(−ε − Ep)

[
coth

(−ε + ω

2T

)
− tanh

(−ε

2T

)]

× Im χ(k − p, ω − ε)
]

= −U2

4

∑
p

∫ ∞

−∞
dω′

[
coth

(
ω′

2T

)
− tanh

(
ω′ − ω

2T

)]

× Im χ(k − p, ω′) δ(|ω − ω′| − Ep) . (B.22)

In the other cases of the τ̂1 and τ̂3 components we obtain similar results,
which can be written in a unified way using the nesting approximation. In
this approximation one assumes that the main contribution to the momentum
sum comes from Im χ at the (transferred) nesting vector Q = (π, π). In this
case, the self-energy no longer depends on k and one can write (ν = 0, 1, 3)

Im Σν(ω) = −U2

4

∫ ∞

−∞
dω′

[
coth

(
ω′

2T

)
− tanh

(
ω′ − ω

2T

)]

× Im χ(Q, ω)Nν(|ω − ω′|) , (B.23)

where
N0(x) =

∑
p

δ(|x| − Ep) , (B.24)

N1(x) = −signx
∑
p

∆p

Ep
δ(|x| − Ep) , (B.25)

and
N3(x) = signx

∑
p

εp

Ep
δ(|x| − Ep) . (B.26)

This completes the derivation of (3.8).



C dx2−y2-Wave Superconductivity

Due to Phonons?

In this appendix we analyze how the magnetic mode which is usually peaked
at q = Q = (π, π) leads to a kink in the ARPES results and to a dx2−y2-wave
order parameter that is maximal around (π, 0). In particular, we consider to
what extend phonons contribute to this result. This is an extension of the
general remarks made in sect. 1.4.3.

In general, the generalized Eliashberg equations read, after the inclusion
of attractive phonons (branch i) via their spectral function α2Fi(q, Ω),

Σ(i)
ν (k, ω)

= N−1
∑
k′

∫ ∞

0

dΩ Veff(k − k′, Ω) − α2Fi(k − k′, Ω)

×
∫ +∞

−∞
dω′ I(ω, Ω, ω′)Aν(k′, ω′) . (C.1)

For α2Fi(q, Ω), we employ a Lorentzian in the frequency Ω around Ω0 ≈ ωD

(Debye frequency), and a normalized form factor Fi(q) peaked at q = qpair

as indicated in Fig. C.1. The spin fluctuations that dominate Veff(q, ωsf ) are
peaked at q = Qpair.

It is instructive to write down the weak-coupling limit of the τ̂1 component
of (C.1), which reads (at T = 0)

∆(k) = −
∑
k′

[
Veff(q) − α2Fi(q)

]
2Ek

∆(k) , (C.2)

where again Ek =
√

∆2(k) + ε2k is the dispersion of the quasiparticles in the
superconducting state. Note that the contribution to the pairing potential is
repulsive for spin fluctuations and attractive for phonons. In the case where no
phonons contribute to the Cooper pairing (α2Fi(q) = 0), Veff(q) bridges parts
of the Fermi surface where the superconducting order parameter has opposite
signs. This momentum dependence of the pairing interaction is required for
solving (C.1) and is typical of unconventional superconductivity. Note that for
a repulsive and momentum-independent pairing potential, Veff(q) = const,
no solution of (C.1) can be obtained (see sect. 1.4.3).
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Fig. C.1. Illustration of dx2−y2 -wave Cooper pairing for a fixed frequency Ω =
Ω0 ≈ ωsf ≈ ωD due to spin fluctuations peaked at momentum k − k′ = q = Qpair

and phonons peaked at q = qpair. The solid lines denote the Fermi surface and the
dashed lines the nodes of the dx2−y2 -wave order parameter. The corresponding sign
of the order parameter is also displayed.

How is the kink related to the pairing mechanism? Physically speaking,
the interdependence of the elementary excitations that dominate Veff(q) leads
to dx2−y2-wave Cooper pairing, as well as to the kink structure observed by
ARPES experiments. In other words, the quasiparticles around the hot spots
couple strongly to spin fluctuations. This coupling leads to (a) a dx2−y2-wave
order parameter, and (b) a kink in the nodal direction that occurs close to
the Fermi level where Qpair = (π, π), as indicated in Fig. 3.19.

It follows also from (C.1) that attractive phonons with a corresponding
spectral function α2F (q) peaked at q = qpair contribute constructively to
dx2−y2-wave pairing, as long as the main pairing interaction is provided by
spin fluctuations. However, the kink close to the antinodal points occurs only
below Tc and is a result of the fact that ∆(ω) is maximal around (0, π).
Therefore, the kink structure in the antinodal direction is connected mainly
to spin excitations peaked at Qpair = (π, π) and not to the phonon branch
peaked at qpair.

Note that in the case where no spin fluctuations were present, i.e. Veff(q) =
0, the attractive phonon contribution would cancel the minus sign on the
right-hand-side of (C.1), yielding an order parameter with s-wave symmetry.
Thus we can safely conclude that dx2−y2-wave Cooper pairing due to phonons
and the anisotropy of the kink feature in the elementary excitations are hard
to reconcile within the same physical picture.
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