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1. Introduction 
Liquid helium exhibits quantum mechanical properties on a large 

scale in a manner somewhat differently than do other substances. No 
other substance remains liquid to a temperature low enough to ex- 
hibit the effects. These effects have long been a puzzle. It is supposed 
that they can all be ultimately understood in terms of the properties 
of Schrddinger’s equation. We cannot expect a rigorous exposition 
of how these prgperties arise. That could only come from complete 
solutions of the Schr6dinger equation for the los8 atoms in a sample 
of liquid. For helium, as for any other substance today we must be 
satisfied with some approximate understanding of how, in principle, 
that equation could lead to solutions which indicate behavior similar 
to that observed. 

Since the discovery of liquid helium considerable progress has been 
made in understanding its behavior from first principles. Some of the 
properties are more easily understood than others. The most difficult 
of these concern the resistance to flow above critical velocity. If we 
permit some conjectures of Onsager l, however, perhaps a start has 
been made in understanding even these. The aim of this article is to 
describe those physical ideas which have been suggested to explain 
the behavior of helium which can most easily be related to properties 
of the Schriidinger equation. 

We shall omit references to the phenomena involved in the Rollin 
Temperature Physics 2 
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film. It appears that the film can be understood as being maintained 
by van der Waals attraction to the wall. The flow properties of the 
film are interpreted as a special case of flow properties of helium in 
leaks in general. 

The article falls naturally into two main sections. First, there are 
phenomena in which the superfluid velocity is irrotational. Here we 
can give a fairly complete picture. The second part concerns the case 
in which vorticity of the superfluid exists. Our position here is less 
satisfactory and more uncertain. It is described here in considerable 
detail because of the interesting problems it presents. 

2. Summary of the TheoreticaI Viewpoint 
The first striking way that helium differs from other substances is 

that it is liquid even down to absolute zero. Classically at absolute 
zero all motion stops, but quantum mechanically this is not so. In 
fact the most mobile substance known is one at absolute zero, where 
on the older concepts we should expect hard crystals. Helium stays 
liquid, as London2 has shown, because the inter-atomic forces are 
very weak and the quantum zero point motion is large enough, since 
the atomic mass is small, to keep it fluid even at absolute zero. In 
the other inert gases the mass is so much higher that the zero-point 
motion is insufficient to oppose the crystalizing effect of the attractive 
forces. In  hydrogen the intermolecular forces are very much stronger, 
so it, too, is solid. In liquid 4He there is a further transition at 2.2"KJ 
the A-transition, between two liquid states of different properties. A 
transition is expected (at 3.2"K) for such atoms if the interatomic 
forces are neglected, as Einstein noticed. London has argued that 
the A-transition corresponds to the transition which occurs even in 
the ideal Einstein-Bose gas. The inter-atomic forces alter the tempe- 
rature and, in a way as yet only imperfectly understood 516 the order 
of the transition, but qualitatively the reason for the transition is 
understood. We will concern ourselves here, only with the liquid He 
11, below the A-point, and shall try to elucidate the qualitative reasons 
for some of its strange behavior. Also we explicitly limit our conside- 
rations to a liquid made purely of 4He atoms so that the wave function 
must be symmetric for interchange of the atoms. We do not mean 
to imply anything about liquid helium 3He, nor about superconduc- 
tors, either by analogy nor by contrast. That is, we shall use the fact 
that the wave function is symmetric in many arguments without 
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stopping to inquire whether the symmetry is necessary part of the argu- 
ment. 

The central feature which dominates the properties of helium I1 
is the scarcity of available low energy excited states in the Bose li- 
quid ’* 8. There do exist excited states of compression (i.e.: phonons) 
but states involving stirring or other internal motions which do not 
change the density cannot be excited without expenditure of an appre- 
ciable excitation energy. This is because, for quantum energies to be 
low, long wave lengths or long distances are necessary. But the wave 
function cannot depend on large scale modifications of the liquid’s 
configuration. For a large scale motion, or stirring, which does not 
alter the density, only moves some atoms away to replace them by 
others *. It is essentially equivalent to a permutation of one atom for 
another ,and the wave function must remain unchanged by a permu- 
tation of atoms, because 4He obeys the symmetrical statistics. The only 
wave functions available are those which change when atoms move 
in a way which is not reproducible by permutation, and therefore 
either, (1) movements accompanied by change in density (phonons), 
(2) movements over distances less than an atomic spacing, therefore 
of short wave length and high energy (rotons and more complex states), 
or (3) movements resulting in a change in the position of the con- 
taining walls (flow). We shall discuss these states in detail presently. 

The scarcity of low energy excited states is the seat of many of the 
phenomena in the liquid. This has been known since the work of Lan- 
dau who developed a theory of the liquid on the assumption of such 
scarcity. The specific heat is very low at low temperature and only 
rises rapidly above about 1°K when enough thermal energy is available 
to excite an appreciable number of the higher energy states (rotons). 
There are so few states excited that the excitations may be localized 
in the fluid like wave packets. These move about, collide with each 
other and the walls, and imitate the appearance that in the perfect 
background fluid there is another fluid or gas. This “gas” of excitations 
carries all the entropy of the liquid, may carry waves of number den- 

* In the ideal gas the low excitations are those in which one or two atoms 
are excited to low states. These involve density changes and are more analagous 
to phonon states (but are even lower in energy than in the liquid because the 
ideal gas has infinite compressiblity, and therefore vanishing sound velocity). 
The interatomic forces in the liquid make it more imperative that if atoms 
are moved away from one point others move in to take their place, if high re- 
pulsive energies between nearby atoms are to be avoided. 
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sity (second sound, analagous to sound in an ordinary gas), finds it 
difficult to diffuse through long thin channels, tries to even up uneven 
velocity distributions among its roton “molecules” (viscosity), and 
acts in many ways as a normal fluid. Meanwhile the background in 
which the rotons travel, that is, the total body of fluid itself, can flow. 
It flows, at low velocity, without resistance through small cracks. 
The reason is that to have resistance, flow energy and momentum must 
go into heat, that is internal excitations (eg. rotons). The energy re- 
quired to form a roton is not available (at the necessary momentum 
change) unless the fluid velocity is very high. 

Actually it appears likely that helium in flow doesn’t form rotons 
directly at all. Resistance sets in at a relatively low velocity (critical 
velocity) because apparently a kind of turbulence begins in the per- 
fect fluid *. This cannot occur at lower velocities because energy is 
needed to create vorticity. And, if we accept Onsager’s suggestion, 
the vorticity is quantized, the line integral of the momentum per 
atom (mass of atom times fluid velocity) around a closed circuit must 
be a multiple of k. Below the critical velocity not enough kinetic ener- 
gy is available in the fluid to produce the minimum vortex lines. 

We shall discuss first the way that the scarcity of states accounts 
for many of the properties of the liquid. Here we are summarizing 
work of many others, particularly Landau. It is thought best to reem- 
phasize this viewpoint, since it is the one which is directly supported 
by quantum mechanics. Furthermore, in this way we are starting over 
the more familiar ground. Next we discuss the quantum mechanical 
view of the reason for the scarcity of states. Finally in the second part 
of the paper we discuss the quantized vortex lines proposed by Onsager. 

3. Landau’s Interpretation of the Two Fluid Model 
One of the most fruitful ideas in interpreting the behavior of the 

liquid is the two fluid model. It was developed by Tisza 9 from ana- 
logy to the structure of an ideal Bose gas. It is often spoken of as 
a vague association of two penetrating fluids. Landau 10 has inter- 
preted it in a definite manner. We review his interpretation here, al- 
though an excellent review by Dingle l1 already exists. He has strongly 
emphasized the fact that one might picture the helium as a background 
fluid in which excitations move. At absolute zero one has a perfect 

flow resistance “cannot very well be a kind of turbulence”, to be in error. 
* The author now considers his statement (reference 7) that the reason for 
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ideal fluid which may flow frictionlessly with potential flow. If heated, 
the heat energy excites the liquid. This it does by creating here and 
there within it excitations of some sort. These excitations can make 
their way from one place to another, collide with the walls and with 
each other, and give to helium some properties associated with the 
so-called normal fluid component, such as viscosity. Landau as a re- 
sult of his study of quantum hydrodynamicas was lead to suppose 
the excitations to be of two kinds. Of lowest energy are the phonons, 
or quantized sound waves, whose energy E equals p c  where p is the 
momentum and c the speed of sound. Above these separated by an 
energy gap d are those of another kind, called rotons. At first he sup- 
posed the energy of these to be given by d + p*/2p if they have mo- 
mentum p ,  where p is an effective mass. Later he found that this did 
not agree with the experiments of Peskhov on second sound, and he 
proposed instead the formula 

Erot = + (P  - PrJ)z/2p (1) 

where Po is some constant. He went further and suggested that all 
these excitations really are of the same class and differ only in momen- 

t 
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Fig. 1. The energy of excitations as a function of their momentum. Solid line 
as envisaged by Landau with parameters set to fit specific heat data; dotted line, 
an approximate curve derived from quantum mechanics. 
Excitations in linear section for low momentum correspond to  phonons. Those 
near the minimum of the curve are called rotons. 
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tum. The energy E(p)  of those of momentum #, depends only on the 
magnitude of #, rising at  first linearly as pc, but later falling to a mini- 
muin at  #, and rising again, as in Fig. 1, solid curve. The curve in 
the vicinity of the minimum is given by (1). At the low temperatures 
encountered in He 11 only the states near p = 0, and those close to 
the minimum are excited. Therefore we do not have to know the rest 
of the curve accurately. Furthermore, the only important excitations 
are one of the two classes, phonons and rotons. 

Supposing the excitations to obey Bose statistics the number, at 
temperature T, of momentum in the range d3p is, according to statisti- 
cal mechanics, 

np = (exp tl3E - I ) - l  d 9 ( 2 ~ f i ) ~  (2) 

with = (kT)- l  and E = E(#).  From this the average energy E(#)  
and the specific heat can be calculated. In agreement with experiment 
it begins at low temperature as T+9 as expected, according to Debye, 
since only phonons are excited. At higher temperatures the higher 
energy roton excitations become excited, and the specific heat rises 
much more rapidly. The thermodynamic properties are in excellent 
agreement with the theory if l2 

c = 240 meterslsec 
Alk = 9.6"K 
p o p  =: 2.0 A-1 

y = 0.77 m 

where m is the atomic mass of helium. 
The hydrodynamic equations of the two fluid model arise as follows. 

Suppose the fluid at  absolute zero has density eo and velocity v8. 
In the first part of this paper we shall take v8 to be irrotational 

x v, = 0. Later we discuss the problem of local circulation. The 
mass current density is eovd and the kinetic energy is +eov:. Suppose 
that as a result of a rise in temperature a limited number of excitations 
are formed in the fluid. Landau has shown that the energy to form 
excitations in a moving fluid is not Efp) but is 

E = E(P) f P  -21, (3) 

This results from simple considerations of the relations in moving and 
still frames of reference.The mass current density equals the momentum 
density of the fluid since all of the atoms have the same mass. It now is 
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j = eov, + <P> (4) 
where <p > is the mean momentum of the excitations per unit volume. 
Now the mean <p> depends on how the excitations drift. If they 
are in equilibrium with the fixed walls of the vessel the meanp is 
not zero. The energy is E($) +p . v,. It is lower than E(P) for those 
excitations, whose momentum is directed oppositely to v8. Therefore 
in equilibrium more excitations align oppositely to v, than parallel 
to it. For this reason the meanp is directed oppositely to v, and for 
small v, is proportional to it, let us say cp > = - e p , .  This defines 
en. If e, is defined as eo - en we have a total current e,v, in a situation 
in which the excitations are in equilibrium with fixed walls. The equi- 
librium is established by collisions of the excitations with the walls 
and with each other. 

The number of excitations of momentum p is again determined by 
(2) but now with E given by (3) so that the averagep is 

or expanding to first order in v8, find cp> = - env, where 
<p > = jp(exp B(E(p) +p . v,) - 1)-l dsp(2n&)-3 

The density en determined from experiments in second sound is in 
reasonable agreement with this expression (evaluated with the con- 
stants given above it fits above 1 OK, but below 1°K the values +,$ = 
2.3 A-l and ,u = 0.40 m fit better, and do not alter the good fit to the 
thermodynamic data). This explicitly shows that en is a derived con- 
cept, and does not represent the density of anything which has micros- 
copic meaning. 

The excitations can drift also. The distribution for equilibrium in 
a drifting gas is, according to statistical mechanics, 

where u is a parameter. In  this case the mean momentum is 

If we write u = v, we have for the current 

This can be interpreted macroscopically as saying that the current is 
like that in a mixture of two fluids, one of density es moving at velo- 
city v,, the other of density en and velocity v,. 

n(E)  = (exp j3(E -p . u) - 1)-l 

<p  > = - en(v, - u). 

(6) 

i = eov, - en(@, -4 = e8v8 + enen (7) 
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Actually (6) is not an equilibrium distribution unless the walls move 
at velocity u, and furthermore u is constant throughout the liquid. 
It is generally taken as a good approximation in the case that u, that 
is, v,, is not constant. The lack of equilibrium in this case produces 
irreversible effects, such as viscosity, which can be associated with the 
“normal fluid component”. The distribution is in equilibrium even if 
v, is not constant. 

The entropy of the system is that of the excitations. It is easily 
verified that the mean group velocity of the excitations (the mean 
of 8 ( E @ )  + p  .v,)/&p) is just v,. The entropy can therefore be con- 
sidered as flowing with the “normal fluid”. 

It is also possible to work out the expected value of the energy of 
the system. If one calculates the internal energy and subtracts the 
internal energy the system would have at the same entropy but with 
va = v, = 0 the excess expanded to the second order in the velocities 
can be written )ep2 + &envn8. This is just what the two fluid 
model would expect. 

Therefore Landau shows that a liquid system with excitations as 
described will behave in many ways like a mixture of two fluids. 

Furthermore, considerable progress has been made by Landau and 
Khalatnikov in the interpretation of many irreversible phenomena, 
such as viscosity, attenuation of second sound, etc. from the kinetic 
theory implied by such excitations. It is not possible as yet to find the 
crosssection for collision, say between two rotons, from first principles. 
But if a few such quantities are considered as unknown parameters, 
a great deal can be said. The number of rotons varies very rapidly with 
temperature, in the manner given by (2). For this reason the mean 
free path for collision and the resultant viscosity resulting from roton- 
roton collisions has a known temperature dependence. In a similar 
way the contribution of collisions between rotons and phonons or 
between phonons can be worked out. There are also collisions in which 
the number of excitations change. The results are often in excellent 
agreement with experiment. 

There is, therefore, little doubt that in liquid helium there are such 
excitations, with the energy spectrum that Landau suggests, and that 
this picture supplies the complete interpretation of the two fluid model 
for helium 11. 
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4. The Reason for the Scarcity of Low Energy States 
The next question that concerns us is to try to see from first prin- 

ciples why the excitations of the helium fluid have these characteristics. 
Landau has, in fact, tried to obtain some justification for the spec- 

trum from a study of quantum hydrodynamics. This is not a complete- 
ly detailed atomic approach. One attempts to describe the liquid by 
a few quantities such as density and current, or velocity. Then one 
makes these. quantities operators with reasonable commutation re- 
lations, and tries to find the excitation energies of the fluid. The pro- 
blem has not been analyzed in sufficient detail to establish the energy 
spectrum (1). 'Such an approach cannot give us an ultimate detailed 
understanding for two reasons. First, the numerical values of A ,  Po, p 
show these quantities to be characteristic of the atomic structure of 
the liquid. A theory which describes the fluid simply by average varia- 
bles and which therefore cannot represent the fact that the liquid 
does in fact have atomic structure cannot lead to definite values for 
excitation energy. A more serious problem is this. It is necessary to 
show not only that the excitations E@)  exist, but that there are not 
a host of other possible excitations lying lower. If we describe the 
liquid with average variables we have no assurance that there are no 
excitations at a level below the coarsness of our averages. Possibly 
excitations exist which represent no gross density variation and no 
mean current. If many other lower excitations exist they dominate 
the specific heat curve and the properties of the fluid. (Perhaps in 
SHe we have an example of a system capable of excitations at an atomic 
level which are not describable by the variables used in quantum 
hydrodynamics). 

However it is possible from first principles to see why there are 
no other excitations but those supposed by Landau and why the 
energy spectrum of these excitations has, qualitatively, the form 
which he supposed. 71 8 

In order to do so, we should, rigorously, have to solve the Schro- 
dinger equation for the system. 

6% 

2m Hw=-- G VrZ Y + Gj F.'(R,,)Y = EY 

where m is the atomic mass, V(R,,) is the mutual potential of two 
atoms separated by the distance Rij = R, - R,, and vr2 represents 
the Laplacian with respect to the coordinates Ri of the ith atom. 
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The sums must be taken over all of the N atoms in the liquid. We 
cannot solve this equation directly but we can make surprising head- 
way in guessing the characteiistics of the wave functions y which 
satisfy it. 

We shall have to picture the wave function y. I t  differs from one 
state to another. But we will consider its value for only one state at 
a time. Then it is a definite but complicated function y(R1, &... ItN) 
of the 3N variables R,. To picture it we must have a scheme by which 
we clearly represent it in our minds. Now such a function is a number 
associated with every set RN of values R,, or, as we shall say, with 
every configuration of the atoms. We can represent a configuration 
RN by imagining each of the N atoms in the vessel containing the 
liquid to be located with its center at  one of the R,. That is, each con- 
figuration is represented, as classically, as a particular definite location 
for each of the atoms. Then y(RN) is a number associated with each 
such arrangement of the atoms. We can call it  the amplitude of the 
configuration. For a given state, this amplitude for some atomic ar- 
rangements is large - these arrangements then have large probability - 
for others small and the configuration is unlikely. When we wish to 
speak of how the amplitude changes as the values of R, change, we 
shall use the more vivid language of asking how the amplitude changes 
as the atoms are "moved" about. Such motions are not directly related 
to any real classical motions, of course. In  fact we cannot describe 
classical motions directly. All such classical ideas must be interpreted 
in terms of the mathematical behavior of y, if we are to be consistent 
with quantum mechanical principles. Most of our task, therefore, is 
trying to describe the y functions which correspond to the various 
kinds of states of energy, or motion, of which the liquid is capable. 

Start by considering the ground state wave function which we shall 
call Q, .We use the intuition which we have acquired from knowing 
the solutions of the Schrodinger equations for simpler systems. For 
stationary states, y can be taken to be a real number. The lowest state 
always has no nodes (except for the exclusion principle, which does 
not operate here). Therefore CD is everywhere positive. It is symme- 
trical, that is, @ depends only on where atoms are, not on which is 
which. The energy V(R) of interaction of two helium atoms, as wor- 
ked out by Slater and Kirkwood,14 for example, consists of a very weak 
attraction at large distances, but a powerful repulsion inside of 2.7 A 
(see Fig. 2). The atoms in liquid helium at the normal density have 
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a volume of 45 cubic Angstroms each so they are not tightly squeezed 
together. If one wishes a rough approximation, consider the atoms 
as impenetrable spheres of 2.7 A diameter, and forget the attraction, 
whose effect is, after all, mainly just to hold the liquid together at 
the normal density even if the external pressure falls to zero. Then 
configurations of atoms in which some overlap each other, that is, 
are closer than about 2.7 A, are of very small amplitude. In the most 
likely configurations the atoms are well spaced. As for a particle in 
a box whose wave function bows highest in the center and falls gra- 
dually to zero at the walls, we may imagine the amplitude highest 
for good separation and falling toward zero if a pair of atoms approach 

Fig. 2. The potential of interaction of two helium atoms as function of their 
separation as worked out from quantum mechanics by Slater and Kirkwood. 

too closely. Our structure is a liquid, as a consequence of the zero- 
point energy, so that no particular lattice arrangement is strongly 
preferred. All configurations for which the spacing is ample have high 
probability. We can get from one arrangement to another without 
ever crossing a forbidden configuration of overlapping atoms because 
of the large spacing (cube root of atomic volume is 3.6 A). Although 
not crystalline, there is a little local order induced by the tendency of 
atoms to stay apart, so that X-ray or neutron scattering experiments 
show a structure very similar to that of other simple liquids like liquid 
argon. 

For the configurations of high amplitude the density is fairly uni- 
form, at least until we look over such small volumes that we can see 
the fine grain atomic structure. If the density in a region is raised the 
atoms come closer together so that the "bow" on the wave function 
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which occurs as one atom is moved from contact with a neighbour on 
one side to one of the other side, is confined to a smaller space. The 
increased curvature represents increased kinetic ene rb  and it is not 
as likely to find a configuration in which such an energy barrier is 
penetrated. As a matter of fact, this feature is easily analyzed quanti- 
tatively. Long range density fluctuations are sound waves. The rise 
of energy on compression is described by the compressibility coeffi- 
cient, or equivalently by the speed of sound. Classically, standing 
density waves oscillating as a normal mode behave as an harmonic 
oscillator. Likewise, in quantum mechanics these are quantum os- 
cillators and have zero point motions, although the most likely con- 
figuration is that of uniform constant density. The wave function for 
the zero-point motion of an oscillator is a gaussian so that the ampli- 
tude @ for a given kind of density fluctuation falls off exponentially 
with the square of the fluctuation. To summarize, the ground state 
function is large for any configuration in which the atoms are well 
spaced from one another at nearly constant average density. If falls 
off if these conditions are violated. 

Next we turn to the excited states. Right away one obvious exci- 
tation is that of the standing sound wave. If the classical frequency 
is o the quantum excitation energy of such a mode is h. Usually 
one prefers by linear combinations to make states of running waves, 
or phonons. If the wave number is R, the energy is ARC if c is the 
sound velocity. 

We may readily obtain the wave function for such a phonon exci- 
tation. If the density is e(R) the classical normal coordinate going 
with such a mode is 

qb = Je(R) exp (ik . R) d8R (8) 

Quantum mechanically for an oscillator the wave function for the 
ground state is a gaussian, and the first excited state is just the coor- 
dinate times this gaussian (the first hermite polynomial HI(%) is just 
x ) .  Hence the wave function is 

if @ is the ground state wave function of the system, which we have 
described in the preceding paragraphs. We have not bothered to nor- 
malize our function. The liquid consists of many atoms so if Ri is 
the position of the P’, the density in any configuration is 
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e(W = W W - B R , )  (10) 
the sum extending over all the atoms. Putting this in (8) and then (9) 
we find 

yphonon = ( ZR, exp. ik . RR,) @ (11) 

This is valid if the wave length (2nlk) is much larger than the atomic 
spacing, for then our description by compressional waves is adequate, 
The state energy is fikc. Since fik is the momentump of the state, this 
means E = pc. Since the wave length can be very iong this energy 
can be exceedingly low. 

The central problem is to see why no states other than these pho- 
nons can have such low energies. We try to construct the wave func- 
tion y of an excitation which should be as low in energy as possible 
and yet not represent a phonon. We must associate a number which 
may now be positive or negative with each configuration. In fact, 
since y must be orthogonal to the ground state @ which is everywhere 
plus, y must be plus for half the configurations and minus for the 
other half. Furthermore, cy must be orthogonal to all the phonon states. 
This simply means that y must vary from plus to minus for changes 
in the configurations which do not appreciably alter the large scale 
density. Configurations can alter without variation of mean density 
by simply stirring the atoms about. Of course, since y must represent 
as low an energy as possible we must give low amplitude to configu- 
rations in which atoms seriously overlap, just as in the ground state Qi. 

The function y takes on its maximum positive value for some con- 
figuration of the atoms. Let us call this configuration A ,  and the parti- 
cular locations of the atoms a-positions. We said that the a-positions 
must be well spaced so that the atoms do not overlap, and further 
that they are, on a large scale, at roughly uniform density. Equally, 
call configuration B, with atomic positions 8, that for which y has 
its largest negative value. Now we want B to be as different as pos- 
sible from A .  We want it to require as much readjustment over as 
long distances as possible to change A to B. Otherwise y changes 
too rapidly and easily from plus to minus, our wave function has a 
high gradient, and the energy of the state is not as low as possible. 

Try to arrange things so that A repires a large displacement to 
be turned into 3. At first you might suppose it is easy. For example 
(see Fig. 3) in A take same atom in the left side of the box containing 
the liquid and move it way over to the other side of the vessel, and 
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call the resulting configuration B. One objection to this is that an atom 
is moved from one side to another, so a hole remains at the left and an 
extra atom is at the right. This represents a density variation. To avoid 
this we may imagine that another atom has been moved at the same 
time from right to left, and the various holes and tight squeezes have 

Fig. 3. Two configurations (solid 
and dotted) that result from large 
displacements (long arrows) of the 
atoms, can actually be accom- 
plished by much smaller adjust- 
ments (short arrows) because of 

the identity of the atoms 

been ironed out by some minor 
adjustments of several of the neigh- 
bouring atoms. This movement of 
two atoms each a distance of the 
size of the vessel, one from left to 
right and the other from right to 
left, is certainly a long displacement, 
so B and A are very different. But 
they are not. 

The atoms must be considered as 
identical, the amplitude must not 
depend on which atom is which. One 
cannot allow y to change if one 
simply permutes atoms. The long 
displacements can be accomplished 
in two steps. In the first step per- 

mute the atoms you wish to move to those a-positions closest to 
the ultimate position they are to occupy in the final configuration 
B. This step does not change y because all the atoms are still 
in the same configuration of a-positions. Then the change to 
the B configuration is made by small readjustments, no atom mo- 
ving more than half the atomic separation. In this minor motion y 
must change quickly from plus to  minus and the energy cannot be 
low. For the reavon that the wave function is unchanged by permu- 
tation of the atoms it is imposible to get a B configuration very far 
from the A configuration. No very low energy excitations can appear 
(other than phonons) at all. 

In the phonon case we consider configurations in which, as y changes 
sign, the density distribution changes. A change in density cannot be 
accomplished by permuting atoms. That is why the Bose statistics 
does not affect phonon states. But it leaves them isolated as the lowest 
states of the system, so the specific heat approaches zero as T appro- 
aches zero according to Debyes T3 law. This is the key argument for 
the understanding of the properties of liquid helium. It is given in 
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somewhat more detail in reference 7. Since it is a negative argument, 
attempting to prove that a low energy state does not exist, it is difficult 
to convey conviction in a few words. The reader should try to invent 
wave functions of low energy for himself. After a few attempts he will 
see much more clearly what we have tried to explain here. 

5. Rotons 
The qualitative argument is complete in itself. Nevertheless it is 

gratifying that it may be pushed even further to produce a quantita- 
tive estimate of the energy of these other excited states, We give only 
a summary of the considerations here (see reference 8 for details). 
We try to clarify our picture of the wave function y, until we can 
write a mathematical expression for it. This expression put into the 
energy integral Jy*HydNV/Jy*ydNV will give us an estimate for the 
energy. 

As we said, in order to get the energy as low as possible we wish 
the gradients of y to be small. Therefore the configuration B (where 
y is maximum negative) must be as 
far as possible from configuration A .  
Yet we noted that no @-site is more 
than half the atomic spacing from 

- 

an a-site. The two configurations are 
generally nearly the same. They are 
furthest from each other if as many 
atoms as possible must be moved. 
That is accomdished when. as illus- 

I t  

1 

on @-sites. The lowest energy results if the transition from plus to 
minus (hence A to B)  is as gradual as possible. First for configurations 
in which each of the atoms is either on an a or on a @-position, this 
is most naturally accomplished if y is proportional to the number 
on a-sites minus the number on @-sites. This difference passes smoothly 
from plus to minus, It can be expressed mathematically this way: 
Consider a function, /(It), of position, which is + 1 if R is at an or- 

That is accomplished when, as illus- 
trated in Fig. 4, all the sites are Fig. 4. The excited state wave 

function must be positive for one 
between -Sites, so every atom must configuration, solid circles (a-posi- 
move. To completely specify of tion4 and negative for another. 

They are separated as far as possi- 
course, we must give its value for all ble if the negative configuration 
configurations, not only for A and B leaves no atom unmoved, dotted 

circles ( positions) 
when all atoms are on -sites, or all 
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site and - 1 if Bis at a /?-site. Then Z6f(Bt) summed on all the atoms 
is just the desired number on a-sites minus number on /?-sites. For 
intermediate positions y will vary as smoothly as possible if f(R) 
is taken to vary in some smooth way between its extreme values of 
+ 1 and - 1 ,  which it takes on at a and p-sites. This suggests that 
we take y to be of the form 

Y = Z;f(BJ. 

But this is incomplete for we tacitly assumed that in all the confi- 
gurations the atoms did not overlap, the mean density did not vary 
very much and so on, just as in the ground state. This feature can be 
taken into account if we take instead 

Yroton = Ztf(R0 Q, (12) 
where Q, is the ground state function. l6 Then y will fall rapidly if the 
atoms overlap, etc. We actually do not know what the function f(R) 
is but we expect it to vary rapidly, so that if expanded in a fourier 
integral the dominant wave lengths would be the atomic spacing. 

According to the variational principle the best wave function is 
that which minimizes the energy integral. In this way, by variation 
of f(R) it is readily found (see reference 8)  that the minimum results 
if the function is 

and that the corresponding energy is 

f(R) = exp (ik . R) (13) 

E(k)  = fi*k3/2mS(k) (14) 
where m is the atomic mass. The function S(k)  is the form factor for 
the scattering of neutrons from the liquid. That is, it is the Fourier 
transform of the function $(R) which gives the probability per unit 
volume of finding an atom at a distance R from a given atom in the 
liquid in the ground state. 

The local partial order of the liquid in the ground state shows up 
as in other liquids as a ring in the diffraction pattern (of neutrons, 
or X-rays). That is to say, there is a maximum in the function S ( k ) ,  
which occurs when K represents a wavelength near the nearest neigh- 
bour spacing. The maximum in S(k) represents a minimum in E(k)  
here. This confirms the expectation that the low excitation would 
have wave numbers in this vicinity. 

The state (12) and (13) has the momentump = fik. Ordinarily not 
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every value of a parameter in a wave function has significance in the 
variational method. But states of different momenta are orthogonal, 
and the energies (14) are significant not only for K near the minimum, 
but also in the neighbourhood of this value. The range of values for 
which (14) is useful is limited only by the range for which (12) can be 
expected to be a good wave function. For small k ,  (12) is identical 
to the wave function (1 1) representing phonon excitation, and (14) 
can be shown to give tikc in that region. Therefore the expression 
should be reasonable not only for k near the reciprocal atomic spacing, 
but for low k as well. It predicts a spectrum at first linear in p (= lik) 
then falling to a minimum, just as anticipated by Landau, and in 
agreement with experiment. 

The curve S(k)  taken from neutron data of Henshaw and Hurst 18, 
or from the X-ray scattering data of Reekie l7 agree. The E ( k )  which 
results is shown in Fig. 1 by the dashed line. The general behavior 
and minimum are clearly shown. 

The actual value of the energy at the minimum is twice too high 
to agree with the experimental value (solid line) for A .  The theoretical 
value lies above the true value, as it should according to the variation- 
al principle. 

The inaccuracy of the wave function (1 2) prevents us  from giving 
a complete description of what the roton wave function must look 
like. The function (12) does not satisfy the conservation of current. 
It appears as though a more accurate function would represent a 
current distribution large and unidirectional in one region, with a 
fieId of return currents surrounding it, somewhat in the nature of 
a smoke ring. These and other arguments suggest a trial function of 
the type 

y = Zd exp ik . Ri . exp iZ,g(R, -Ri) rP (15) 

with the g, representing the back flow, to be determined. It is very hard 
to perform the integrals required in the variation problem with (15), 
so it has not been verified whether (15) represents a substantial im- 
provement. 

One way to understand the low energy for k near the reciprocal 
atomic spacing is this. One might consider these as sound waves of 
very short wave length. To obtain a density variation of long wave 
length is hard. To make the compression work must be done against 
opposing forces. For wave lengths closer to  atomic spacing, however, 

Temperature Physics 3 
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such density variations are easier to arrange. In fact, one can create 
variations of wave length equal to the atomic spacing simply by ar- 
ranging the atoms, doing no appreciable work against repulsions, the 
energy being purely kinetic @%a/2nz. Actually the energy is even lower 
(S(k) at maximum is 1.3) for there is a positive tendency in the liquid 
to have such variations; if some atoms are correctly arranged the 
others are more likely to be also satisfactory because of the local 
order. Therefore the energy does not continue to rise as fikc but falls 
lower for wave lengths near the atomic separation. 

It is easy to verify that these excitations behave in just the way 
that has been assumed in developing the statistical mechanics and the 
two fluid model. To represent a state with two excitations, say with 
momenta k, and k2 one has the approximate wave function 

y~ = (& exp ikl . R,) (Z; exp (ik, . R,)) @ 

and so on. Since the order of the factors is irrelevant this is the same 
state if Ic, and lc, are reversed.The excitations obey the Bose statistics. 
In moving fluid the energy of the excitations can be shown to be (3). 

6. Irrotational Superfluid Flow 
So far we have only described the wave function for states repre- 

senting internal excitation. We turn next to a description of the wave 
function which represents the state of the fluid when macroscopically 
we say it is flowing. We will assume that the flow velocity does not 
vary appreciably over distances of the order of an atomic spacing. 

It is not dEcult to represent by wave functions states which re- 
present the motion of the superfluid. Suppose the system is at absolute 
zero so there are no excitations. If the entire system moves forward 
as a body, since the center of gravity coordinate can be separated 
out from Schr6dinger’s equation, the wave function is 

y = (exp ilc . (ZJt,)) Q, 

where N&k is the momentum of the system, if there are N atoms. In 
case the velocity is not uniform we can construct a wave function 
somewhat as follows: If the velocity varies only slowly from place 
to place, those atoms temporarily in a macroscopic region where the 
velocity is, say, v must surely have a wave function very much 
the same as though the liquid in the region were isolated and moving 
at a uniform velocity. This suggests that the phase contains a term 
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8 - 1 1 ~ ~ ~  . Z&, the sum being taken only over those atoms in the region. 
Other regions where v differs make similar contributions to the phase 
so the total phase is mZiv(Ri)  .R, where v(R) is the velocity at R. 
This suggests a wave function of the form 

where s(R) is a function which varies only very little over distances as 
small as the atomic spacing. We have suggested that it is fi-lmv(R) . R, 
but as is usual for waves whose wave length varies with position, 
the momentum is the gradient of the phase, not the coefficient of R. 
Thus (1 6) does represent the helium flowing, but the velocity is given by 

v = Hm-q7s. 

It is readily verified that the current density is e,v, and the energy 
(from the variational integral) is i ~ , v ~ ,  as expected classically. There 
is no change in density, as in (16) we have not allowed these small 
effects to be represented. 

If excitations exist in the moving fluid the wave function is (16) 
multiplied by the factor Ztf(Ri) in (12). The excitation energy turns 
out to be (3) as expected, interpreting w as the superfluid velocity 
vv 

Equation (17) implies that the motion is irrotational, that is, 
p x w, = 0. In a simply connected region this has only one solution 
for given motion of the boundaries. For fixed boundaries it is v, = 0. 
In a multiply connected region the situation is different. Since x 
w, = 0, the circulation about any closed cume which can be shrunk 
to a point is zero. On the other hand, in the case of a toroidal region, 
if the curve encloses the hole the circulation need not vanish. Although 
the wave function must be single valued, s may be of the nature of 
the azimuthal angle, increasing by 2x, or a multiple thereof if one goes 
around the hole. That is, for a circuit enclosing a hole (into which 
liquid may not freely flow) the circulation must be an integral multiple 
n of a quantized unit 2xH/m, 

v, . ds = 2xfim-1 . n = 2nn . 1.5 x lo-* cm2/sec (18) 9 
These states do not influence the previous statistical mechanical ar- 
gument. There are too few of them. The velocity may be considered 
as a macroscopic variable, such as density. For a macroscopic torus 
even the lowest of the states given by (18) is very much higher than 
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a roton energy d. Thus if the torus area is A ,  radius R, the mass 
moving is M A  . (2nR)/dS where d3 is the atomic volume. It moves 
at velocity given by v, . 2nR = 2nfirn-l, from (18), so 'the kinetic 
energy is (tia/2rnda) . (2nA/Rd). The factor Aa/2mda is an energy of the 
order of a roton, but the second factor is very large, being the torus 
dimension over the atomic spacing. Incidentally the total angular 
momentum is A per atom. 

If the fluid must flow irrotationally, at first sight, it cannot lose 
energy, unless it is moving very rapidly. This has been pointed out 
by Landau. If a body of fluid is moving at velocity v ,  and loses a small 
energy d E ,  it must do so (to keep the flow irrotational) by the entire 
fluid changing its velocity. Let the change in v be 6v. If M is the effec- 
tive fluid mass the momentum change 6p is M6v and dE=Mv&=v6p. 
Now this energy loss must go into heat; that is, into internal exci- 
tations of rotons. But if the momentum transferred to excitations is 
6p the energy cannot be small. It must be at least about (Sp/P,)A 
where A and $,, are the energy and momentum of an individual roton. 
That is, 6E must be at least (d/$,)Bp and energy cannot be lost unless 
v exceeds A/$,, about 70 meters per second. (More accurately v must 
be high enough that a line drawn from the origin at slope v can cut 
the E(#) vs p curve). This suggests the reason for the frictionless flow 
of superfluid. But we have proved too much, for in actuality the 
resistance sets in at velocities a few hundred times smaller. 

The only way that gross slowing down can occur for lower velocities 
is for small parts of the fluid to stop or slow down without the entire 
fluid having to slow down at once. That is, energy loss must be accom- 
panied by flow which is not irrotational; that is, flow which involves 
local circulation. To understand such effects we must add a new element 
to our picture of phonons, rotons and potential flow. These are the 
quantized vortex lines suggested by Onsager. 1 We proceed to des- 
cribe them. 

7. Rotation of the Superfluid 
The problem which now faces us is to extend (16) so that we can 

also represent states for which x v does not vanish, or at least 
where there is circulation in the superfluid. We analyze the situation 
at absolute zero for simplicity. We must present ourselves a problem 
in which such circulation is necessary and try to find the lowest energy 
state. The situation first considered by the author was the slip-stream 



APPLICATION OF QUANTUM MECHANICS TO LIQUID HELIUM 37 

between two regions of fluid moving at different velocity, but it is 
easier to amve at  the result by considering the problem of helium with 
high angular momentum in a cylindrical vessel. Suppose, for example, 
the helium at absolute zero is initially under such pressure that it is 
solid and is set into rotation, then the pressure is released so that it 
liquifies. What is the final state of the helium? We ask then for the 
lowest state of a quantity of helium which has a definite, macroscopic- 
ally high, total angular momentum. 

For a system of given angular momentum the kinetic energy is 
least if the angular velocity w is a constant throughout the liquid. 
This motion is not rotation free for p x v = 2w. But it is very difficult 
for helium to manage a state of local circulation. In fact, without 
high excitation energy, local circulation is impossible. At first one 
might find it hard to see why the liquid cannot simply rotate as a 
rigid body. The energy is then low. But a liquid is not a rigid body. 
A part of it can turn independently of the whole. In a rough way of 
speaking the liquid may be thought of as made up of many quasi- 
independent units of nearly atomic dimensions. Any motion of the 
body can be compounded of motions of the tiny parts. But to set any 
small part into a rotational state requires a high energy because the 
moment of inertia is so small. If only a limited energy is available 
nearly all the “parts” must be frozen out in their ground states.That 
is, nearly everywhere the local angular momentum is zero, i.e., 
p x v, = 0. It takes energy to create circulation and, furthermore, 
we can expect this circulation not to be distributed uniformly through- 
out the fluid. The rigid body type of rotation where p x v, f 0 
everywhere is not possible, or if at all, only with an enormous expen- 
diture of energy, an expenditure far higher than that gained by the 
uniform distribution of angular velocity. 

Another possibility that suggests itself is that the liquid, if the an- 
gular momentum is high, is not free of excitations like rotons and 
phonons even though the temperature is at  absolute zero. These ex- 
citations could carry the angular momentum. That is, in the language 
of the two fluid model, perhaps there is at T = 0 a mixture of superfluid 
and normal fluid, with the superfluid component not rotating, and 
with the normal fluid carrying all of the angular momentum. The 
energy to maintain the normal fluid being sustained by the fact that 
if less normal fluid were present, for given angular momentum the 
kinetic energy would have to be larger. This turns out, for vessels of 
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centimeter dimensions turning at about one radian per second, to 
be a state of nearly lo4 times the energy of a rigid body rotating at 
the same angular velocity. Surely nature can find some lower state 
for the helium. 

We know (see 18) that if there is a hole in the liquid, circulation 
can exist. Therefore another solution suggests itself. The liquid cir- 
culates around a hole with constant circulation as in a free vortex 
(familiar from rotation of water around an emptying drain). The velo- 
city varies inversely as the radius, rising to such heights near the cen- 
ter as to be able to maintain the hole free of liquid by centrifugal force. 
Such a solution would be easy to verify in a striking manner by looking 
at the surface of the liquid. Instead of the usual parabola it would be 
the curve of the surface of a free vortex. The energy is still quite a bit 
higher than the rigid body case, because the velocity instead of being 
distributed proportionally to the radius, actually falls as the radius 
increases. Nevertheless it is orders of magnitude below the mixture 
of normal fluid suggested above. 

However, this is still not the lowest possible energy state, and the 
striking experiment will not succeed. To show this we construct a 
lower state. Suppose that the liquid has not only one vortex at the 
center, but several vortices. For example, suppose beside the central 
one there were a number distributed about the circle of radius R/2, 
half that of the vessel R, and all turning the same way. Viewed grossly 
this is like a vortex sheet so the tangential velocity can jump as we 
pass from inside R/2 to outside. Then the velocity can be arranged a 
little more like the linear curve by two sections, each of which is a 
l/r curve. The gain in energy resulting from this improved distribution 
may more than compensate the energy needed to make the additional 
holes (and, further, the central vortex need not now be so large and 
energetic). 

Continuing in this way with ever more vortices it soon becomes ap- 
parent that the energy can always be reduced if more vortices form. 
However there is a limit. Due to the quantization (18) of the vortex 
strength the smallest vortex has circulation 2nfiim-l. The lowest 
energy results if a large number of minimum strength vortex lines 
(which we shall call unit lines) form throughout the fluid at nearly 
uniform density. The lines are all parallel to the axis of rotation. Since 
the curl of the velocity is the circulation per unit area, and the curl 
is 2w, there will be 
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2m0/27& = 2.1 x 10%0 lines per cm2 (19) 
with u in radians per second. For w = 1 rad per second the lines are 
about 0.2 mm apart so that the velocity distribution is practically 
uniform. 

Such weak lines wil l  not form actual macroscopic holes. In fact, 
if one neglects atomic structure and assumes a classical continuous 
liquid with surface tension, a unit line makes a hole opposed by sur- 
face tension which figures out to be only 0.4 A in radians. That means 
that there is no real hole in the liquid. Around such a unit line, for 
example a straight one along the z-axis, the wave function off the axis 
is roughly 

where qr is the angle about the z-axis. This does not hold close to the 
axis. On the axis exp ig, is meaningless, and close to it has enormous 
gradients. A particle on the axis cannot have angular momentum, yet 
(20) implies that each atom has angular momentum f i ,  nor can there 
be exceptions because the Bose statistics implies that they are equi- 
valent. Therefore a more accurate expression than (20) would be this 
expression multiplied by a factor which is unity except if any one of 
the atoms comes very close to the axis, in which case it falls rapidly 
to zero. The density of fluid falls to zero on the axis. This is the rem- 
nant of the classical hole. Actually quantum mechanically the line 
will not remain perfectly straight in one spot but will have some zero 
point motion of wandering and waving to and fro. 

I t  is not hard to get a reasonable estimate of the energy contained 
in these lines. First consider an isolated unit line along the axis of a 
cylinder of length L,  radius b. The velocity at  radius Y is R/mr and if 
e, is the fluid density in atoms per cc (e, = 1/45 As) the kinetic energy 
is the integral 

K. E. = *je,m(li/mr)a . 2nr d~ . L. 

The upper limit of the integral is b. It diverges at the lower limit, but 
within about the atom spacing the velocity formula is meaningless. 
Furthermore, inside this radius some of the energy is potential, re- 
quired to keep to density down near the axis (that is, to make the par- 
tial “hole”). Therefore the energy needed to form such a line, per unit 
length, is 

w = (exp i&pi) @ (20) 

Line energy per unit length = e,nfi%-lZn(b/a) 
= IO-sZn(b/a) ergs/cm. (21) 
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Here a is a length of order of the atomic spacing. Its exact determi- 
nation would require solving the difficult quantum mechanical problem. 
In almost all applications the ratio b/a will be very large, and the 
logarithm large enough to be insensitive to the exact value of a. 
For this reason we will not attempt a detailed evaluation, but simply 
choose a to be close to  the atomic spacing. We arbitrarily take a = 
4.0 A. In  more complicated geometrical situations the lower limit 
will be the same, but the upper limit b will be some other characteristic 
dimension of the apparatus, or more usually the spacing between 
vortex lines, etc. It can be found by integrating the velocity distri- 
bution as determined for the given distriubution of singular vortex 
lines. 

For a cylinder of liquid rotating at angular velocity o = 1 radlsec 
the vortices are about 0.02 cm apart. This is 0.5 x 108 times a if 
a = 4 A, so we can take the k(b /a )  in this case to be about b(0.5 x lo6) 
or 14. Neglecting the variation of this logarithm with a, we find for the 
energy of all of the lines: 

where we have estimated Z%(bfa) as 14. The ratio of this to the kinetic 
energy for a rigid body is 4fim-1R-4o-1h(bfa) if the cylinder radius is R. 
For R = 1 cm, w = 1 rad/sec this ratio is 10-2. For macroscopic labo- 
ratory dimensions the excess energy to form the lines i s  small. They 
would form if rotating solid helium is melted by releasing the pres- 
sure, the angular velocity distribution would differ imperceptibly from 
uniformity, and the surface should appear parabolic. 

It is not self-evident that there is no state of appreciably lower 
energy, and that the energy of the rotating liquid is correctly estimated. 
This subject has not yet been analyzed any more deeply than is re- 
ported here. Therefore this part of the paper is not on as firm a foun- 
dation as the rest. We must therefore still consider it conjectural 
whether the considerations on rotational flow reported here are ac- 
tually correct. It is interesting that all the conclusions were arrived 
at  independently by the author without knowledge of Onsager’s pre- 
vious work (with which they are in exact concordance). 

Total line energy per unit volume = eowfi. Zn(b/a) 

8. Properties of Vortex Lines 
In a situation more general than uniform rotation, in which the curl 

of the velocity is not constant, we can imagine a similar situation. We 
have a situation instantaneously with many vortex lines. Some are 
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closed on themselves in rings, and others terminate with their ends 
on the fluid boundaries. Viewed from a continuum approximation 
in which atomic structure is neglected, a velocity v, can be defined 
at every point. The curl of this is zero everywhere, except at one of 
the vortex lines where it is infinite. These lines are real quantized 
vortex lines. The circulation around a small circuit surrounding only 
one line is 2nfiw-l. The lines have a sense depending on the direction 
of rotation. The circulation about any curve whatosever is given by 

us .  ds = 2nfim-% 

where 1z is always an integer, being the net number of lines linked by 
the circuit, account being taken to the sign of each. 

x v, is averaged over a large enough region that many lines 
are included, the number of lines per cma must be at least <V x v, > 
m/ht i  and the energy of these lines per unit volume is at least 

+ 
If 

4 I <  v x v,>l eofi.Wb14 (22) 

where b is the spacing between lines, l lb2 = <v x v8 > mJ2nfi. This 
shows that in our liquid it takes energy to create circulation. Actually 
in real, complex situations the energy might exceed greatly the value 
in (22). There may be great complex activity with many lines twisting 
and turning so that several lines of opposite senses are close together. 
In  this case, the case of developed turbulence, the number of lines 
present may be bigger than the average j7 x v, would indicate. (Pro- 
bably in such a case it would be hard to define the average x v, 
because the result may depend on the size of the region over which 
the average is taken). 

The discussion of the rotating cylinder of liquid with which we in- 
troduced the lines is rather special. We shall try to give a more com- 
plete and general description of the state of the superfluid with cir- 
culation. We continue to study the case at absoIute zero. Let us try 
to characterize the state of a fluid in which we desire two things (which, 
it wiU turn out, are mutually incompatable). We want (a) the liquid 
to be flowing with a velocity v, which is a smooth function of position 
without singularities (on a scale of distances large compared to atomic 
dimensions) and (b) we want 

Suppose the liquid in an element of volume 4 V (large compared to 
the atomic volume) is moving at velocity v. Then as we have seen the 
wave function should depend on the position of the atoms; if they are 

x v, not to vanish. 
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within d V as exp (;mu . C&) Qt. That is, if a number of atoms in the 
region are displaced, each by dR, from one allowed (by @) configu- 
ration to another allowed one, the main effect is that the wave function 
must change phase by 

Zi(M?J.  ARJfi-1 (23) 

This can also be seen in another way. If a region of fluid can be con- 
sidered to  have a velocity v it has a momentum density .porn*. It is 
characteristic of momentum in quantum mechanics, that if the center 
of mass is changed the wave function changes phase by an amount 
proportional to the momentum and to the displacement of the center 
of mass. Now if the atoms are displaced by AR, the center of mass 
moves so the phase change (23) results. This is true at least if the dis- 
placement makes no other important change in the wave function. 
We will suppose that both before and after the displacement the atoms 

Fig. 6. The wave function must 
not change as a result of a permu- 
tation. If all the atoms are displa- 
ced around a ring, as shown, the 
phase change must be a multiple 

of 2r 

are well spaced and there are no 
gross density fluctuations, etc. such 
that in case the liquid were not in 
motion both configurations would 
have essentially the same amplitude. 

The same argument goes for atoms 
in other regions, etc. so the phase 
shifts accumulate to a sum in (23) 
over displacements of atoms all over 
the liquid, if u is now considered as 
a function of Ri. The displacements 
AR must be small compared to the 
distances over which v varies. We 
shall apply the formula in a case in 
which AR is the separation between 
atoms. 

Select, in a given configuration, a very long closed chain of atoms 
each of which is a nearest neighbor of the next in line (see Fig. 5) .  
The last should have the first as nearest neighbor. The chain may 
consist of very large numbers of atoms and may even be so long that 
it passes through regions of varying velocity. Consider a displacement 
of each atom to its nearest neighbor next in line. The wave function 
cannot change, for it is simply a special permutation of the atoms. 
Further we will suppose that if all the displacements are made together 
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a little at a time, each intermediate configuration is allowed. This 
sliding of the chain along itself is not prevented by potential barriers, 
especially if we allow small temporary displacement of other atoms 
adjacent to the ring to permit passage in tight places. In the final 
configuration all atoms have returned to their original positions, ex- 
cept those of the ring which have moved one over. We suppose, be- 
cause of the ease in which the displacement can be made that we can 
assume the wave function does not vanish for any intermediate po- 
sition during the displacement. Then its phase shift is given by (23), 
but this must represent no change in the wave function. It is therefore 
necessarily an integral multiple of 2n. We conclude that 

f v s .  ds = 2nfim-k (24) 

where n is an integer and the integral is taken over any path which 
goes from one atom to the next neighbor, etc. If va is now assumed con- 
tinuous at  an atomic scale, the path can be smoothed out to any con- 
tinuous curve. Of course, it is impossible that (24) holds for all con- 
tinuous paths if n is an integer (depending on the path) if v, is free 
of singularities and continuous unless rt = 0 (in a simply connected 
region). Because any path can be deformed continuously into an in- 
finitesimal path, the left side changing continuously to zero. The 
right side cannot change continuously so it must be zero for all paths. 
Likewise for a toroidal region n must be the same for all paths which 
surround the hole. 

We see therefore that v, cannot be continuous if we are to have 
circulation. There must be places where v, is discontinuous, and places 
in the fluid where a displacement of an atom to its neighbor may not 
be possible without passing through a node in wave function. In  
the neighborhood of such a node the probability of finding an atom 
is reduced. This decrease in density requires energy to  maintain it. 
We shall therefore try to arrange conditions so that such places are 
as infrequent as possible. Under those conditions, for nearly every 
conceivable ring of atoms the atoms can be moved over to  the next 
adjacent atom without the wave function vanishing. Its phase change 
must be a multiple of 2n. If two adjacent rings have a phase change 
which is different, differing by 2n say, then between them somewhere 
must lie a very small ring of three or four atoms for which the circu- 
lation is 27cA/m. For example, suppose for a certain ring A the phase 
is zero, but for a nearby ring B it is 2n. Then shift ring B by a few 
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atoms at a time until it gets as close to ring A as possible, but still 
has phase shift 2x. Likewise shift A until it is as close to B as possible 
but so that it has still shift 0. Then A and B will contain many atoms 
in common and only differ by a few, as illustrated in Fig. 6. Then 

Fig. 6. A displacement along ring B followed by a reverse displacement along 
an adjacent ring A with many atoms in common is equivalent to a displacement 
around the ring C, indicated by black circles (except for an inconsequential 

permutation 6-b). 

consider a permutation consisting of shifting B forward, then shifting 
A backward. It is readily verified that this change is the same as a 
shift of atoms around the very small ring C consisting of those parts 
of A and B which are not common, plus one of the common atoms. 
But the change in phase is 2n when B shifts and 0 when A shifts back, 
so that it must be 2n for the very small ring C. * This represents a 
highly concentrated angular momentum. Somewhere in the middle 
of ring C is a nodal point. It is readily appreciated geometrically that 
these nodal points must essentially form lines through the fluid. They 
are quantized vortex lines. It must be admitted that this argument is 
far from complete. We should consider states in which the location 
of the vortex line is uncertain, that is, a superposition of states with 
various locations for the line. Such a state would have a lower energy. 
Possibly we make a serious error in imagining that the velocity can 
be defined right up to atomic distance from the axes, if this axis itself 
does not have a definite location. Onsager has remarked, in private 
communication, on the possibility that these quantum effects might 
lower the energy to such an extent that the logarithm in (24) should 

* The change in phase cannot be determined only from the initial and final 
configuration, but requires a description of the amplitude for intermediate con- 
figurations as well. Therefore this argument is not complete unless it is also 
assumed that partial rotations of C consisting of displacements.of less than one 
atom spacing can also be roughly imitated by partial displacements of B and A. 
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be absent. At any rate, although our energy estimates may be incorrect, 
quantized vortex lines probably exist. We continue our discussion 
of the consequences of this assumption. 

On a large scale according to the theorem of Helmholtz, vorticity 
moves with the fluid in such a way that the strength of a vortex fila- 
ment remains constant. This means that if the fluid drifts the lines 
drift with it, maintaining their quantized strength. This is true, at 
least, if no forces act directly on the vortex line. In general the force 
per unit length on a vortex line equals the density, epz, times the 
vector cross product of the circulation, 2nfiim-1, and the velocity of 
fluid where the vortex is. 

9. Critical Velocity and Flow Resistance 

to flow found at sufficiently high velocities. 

wise being in perfect flow. Let us consider i// - 

We have suggested that this resistance 
cannot be understood in terms of a direct 
creation of rotons, the superfluid other- 

what would happen if liquid is flowing out 
of an orifice, or tube, into a reservoir of 
fluid at rest. In Fig. 7 is illustrated the 
distribution of flow for irrotational motion. 
A very high velocity develops near the 
comers and large accelerations develop 

Fig. ,, Ideal potential floi* 
there. An ordinary fluid, such as water, from an orfice 
flows in a complicated manner such as 
illustrated in Fig. 8 (a few moments after flow starts). The water 
shoots out straight into the nearly still fluid in the reservoir, forming 
a vortex sheet, which is unstable and curls around, eventually in an 
extremely complex manner. Let us see how helium might try to imi- 
tate some of the features of the type of flow illustrated in Fig. 8. 
Just for rough orientation and estimate suppose the fluid tries to go 
out in a jet, let us say at first of the same width and velocity as in 
the tube. Take the case that the tube is a long slot perpendicular to 
the paper, and the flow is roughly two dimensional. 

Then circulation is implied for the velocity is v in the jet and 0 
outside. This requires the formation of vortex lines, perhaps as illu- 
strated in Fig. 9. The spacing is x and if this is small compared to d, 

We next turn to the role such vortex lines may play in the resistance 

3- 
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the slot width, the velocity distribution is roughly uniform inside the 
the jet, Taking a line integral along the jet for unit distance, and re- 
turning outside the jet, the circulation is v so the number of lines per 
centimeter is 

1 
- = v/2nHm-l. 
X 

It takes energy to form these lines. If 

-+ 

Fig. 8. Real flow from an or- 
fice for ordinary liquids, pro- 
ducing an unstable vortex 

sheet 

there is not enough kinetic energy in the 
fluid to supply the energy to make the 
lines, no resistance will appear. Once the 
lines can be formed they are, in a manner 
we shall soon discuss, ultimately dissipa- 
ted as heat and a resistance appears. Let 
us see what order of critical velocity we 
would estimate in this way. The lines move 
out at the velocity of the fluid at their 
own location, which is v/2. Another way 
to see the necessity for this is to realize 
that as the fluid passes from inside to out- 

side the pipe vorticity is created, so new lines must continually come 
rolling out of the ends of the orifice. In our case v / x  lines are created 
per second. The energy needed to create these is (per unit length of slot) 

where the argument in the loga- 2 3 3 3 
rithm is only approximate. The 9 -  
total kinetic energy available per $ V- 

+ 
+ 

cc of fluid is e, so that per 
2 I 

meova I I I 

is availab1e* If 

we define VO as that velocity for 
Fig. 9. Idealization of supposed vor- 
tex rings formed when superfluid heli- 
um issues at high speed from an orfice. 

second vd - 
2 

- -  
which the energy available is just 
large enough to create the vortices we find 

vod = Hm-lZn(d/a). 

For example, for a slit of width d = 10-6 cm, (which is about three 
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times the width of a Rollin film at a height of 1 cm) this gives v, = 
100 cm/sec, if Zrz(d/u) is taken as 6. This is somewhat higher than the 
critical velocities observed. The calculation is only meant as an esti- 
mate because the actual situation must be complicated. For one thing, 
near the critical condition x comes out about 3d so our picture of a 
uniform jet is poor. Further, the velocity in the jet must of course 
be reduced as a result of the energy needed to form the vortex line. 
Actually probably the situation near the critical point must be very 
complicated and irregular. The flow for short momentary periods may 
be much like Fig. 7 but irregularly vortex lines peel off of the edges 
of the slit, probably starting a t  one point along the slit and progressing 
to other places, or perhaps if the hole is circular, one or two vortex 
lines is fed out continuously in a form roughly like a helix. It is pre- 
dicted that very close to the critical velocity when loss just begins, 
the resistance will be irregular and show fluctuations. These fluctua- 
tions are very small however and would be hard to detect. Possibly 
some sound may be generated by the flow irregularities. It is difficult 
to estimate its intensity. When helium is driven, just above critical 
velocity, through an emery powder superleak, some noise should be 
generated as the various vortex lines suddenly form and pass into the 
stream. The irregularities are a result of the unpredictable quantum 
transitions between states of no vortex line and one with a section 
of line. 

Another possible source of vortex lines is the contact between 
flowing liquid and the walls. It is not necessary that all the loss occurs 
at the exit end of the tube. The walls of the pipe are irregular. Vortex 
lines may be created inside the pipe also. 

It is difficult to go beyond this order of magnitude calculation in 
describing the conditions controlling the production of vortex lines. 
For example, if one studies the example given there are serious diffi- 
culties. As a particular vortex line leaves the end of the tube there are 
very great forces trying to puv it back resulting from its image in the 
tube wall. Let us imagine a line a distance b above the wall in a tube 
in which the velocity of flow is v,. It is readily shown that the 
forces acting on the line are these. First a force pulling away from the 
surface of strength 2 ~ ? i e , ~ ~ ~ .  Second, from the image, an attraction to 
the wall of strength n?Pe,/mb. A vortex line responds to forces by 
moving through the liquid to reduce the net force to zero. In  this case 
it would drift upstream if the attraction is highest. But a vortex line 
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will interact with the wall, especially at its ends which go into the wall 
surface. Suppose this results in a frictional force which keeps the line 
from moving upstream. Then the response is to move closer to the 
wall. The vortex only moves away from the wall if 2nfip,v exceeds 
dii2,0,/mb. Even if v is 100 cm/sec this requires b tb exceed cm 
or 20 atomic spacings. We might expect a vortex line to fluctuate 
away from the surface by a few atomic diameters. But how can we 
expect to penetrate the enormous potential barrier, to create a line 
so far away from the surface that the flow velocity can pull it further 
out and create eventual vorticity and energy loss? 

More likely a line gets started somehow and has its ends tied on the 
wall. Then the forces of the fluid on the rest of the line cause it to 
wander about in such a way that more and more vortex line is fed 
out. It is not necessary to create bodily at one instant a complete 
section of line. For example, for the case of liquid issuing from a tube 
perhaps the vortex lines are helices with contact points at  the edge 
of the hole which turn round and round while the helix moves out- 
ward. Similar things could happen inside tubes. If the tubes are very 
narrow the line will hit the other surface easily and be attracted by 
the walls. It can never get very far from a wall. Even if started some- 
how it will fall back into the tube walls unless the velocity v, suf- 
fices to keep it in the stream. Therefore the smallest tubes have 
the highest critical velocities. 

10. Turbulence 
The patterns of vortex lines which we have studied are well known 

to be unstable. In the case of the rotating cylinder this is not true if 
the cylindrical vessel containing the helium rotates also. But if the 
container is stopped the situation is altered. There are forces between 
the wall and vortex lines. (This is because the fluid density is altered 
near the line axis, so the interaction with the wall is not the same as 
the average for the rest of the helium). The lines at the outside drag 
past the stationary wall and as a result get distorted from their ori- 
ginal vertical line position. This twists others, etc. Lines fall into the 
wall and others twist about each other in a complex way. It would 
be interesting to study this experimentally, to see how fast, and in 
what manner, the liquid eventually slows down. 

In ordinary fluids flowing rapidly and with very low viscosity the 
phenomena of turbulence sets in. A motion involving vorticity is 
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unstable. The vortex lines twist about in an ever more complex fash- 
ion, increasing their length at the expense of the kinetic energy of 
the main stream. That is, if a liquid is flowing at a uniform velocity 
and a vortex line is started somewhere upstream, this line is twisted 
into a long complex tangle further down stream. To the uniform velo- 
city is added a complex irregular velocity field. The energy for this 
is supplied by pressure head. 

We may imagine that similar things happen in the helium. Except 
for distances of a few gngstroms from the core of the vortex, the 
laws obeyed are those of classical hydrodynamics. A single line playing 
out from points in the wall upstream (both ends of the line terminate 
on the wall, of course) can soon fill the tube with a tangle of line. The 
energy needed to form the extra length of line is supplied by a pressure 
head. (The force that the pressure head exerts on the lines acts even- 
tually on the walls through the interaction of the lines with the walls). 
The resistance to flow somewhat above critical velocity must be the 
analogue in superfluid helium of turbulence, and a close analogue at 
that. 

There are some ways, however, in which the two cases differ. In 
a classical fluid there is a thin boundary layer near the wall of the pipe 
in which viscosity controls the situation. In  this boundary layer there 
is a large vorticity, but it escapes into the stream to be amplified, only 
from the edge of the layer. Inside it is damped by viscosity. As the 
stream velocity falls the boundary layer thickens, for the amplification 
is less and the damping overpowers it ever further from the wall. 
Below a critical velocity the turbulence ceases altogether and the 
flow is laminar, but with vorticity, the viscosity keeping the vorticity 
from amplifying itself. That is, viscosity is the mechanism which deter- 
mines whether vorticity will be amplified or not, and therefore whether 
turbulence is produced. If the viscosity goes to zero as a limit (and no 
other physical phenomena are added) a classical ideal liquid would 
exhibit turbulence at  any velocity, no matter how small. 

Superfluid helium is an ideal fluid of zero viscosity. It does not ex- 
hibit turbulence at low velocity because of another, quantum mechani- 
cal, effect. The vorticity is quantized and cannot begin at  as low amount 
as desired. One must supply energy enough to get the first one or two 
vortex lines started before the amplification process of turbulence can 
take over. There will not be a boundary layer with a structure ana- 
logous to that in classical flow (although near the walls the flow will 
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be somewhat different because of the dragging forces between the 
moving vortex lines and the wall). 

In a classical fluid ,if the turbulent stream empties into a reservoir, 
the turbulent motion continues for a while, but as a result of the vis- 
cosity, it gradually slows up and dies out, the energy appearing even- 
tually as heat. 

What happens to a turbulent mass of superfluid left to itself? If 
there is normal fluid present the rotons and phonons will collide with 
the vortex lines and take energy from them, gradually turning this 
energy gain into more rotons and phonons (as a result of collisions among 
rotons the number of these may change). But an interesting question 
arises if the experiment is imagined at absolute zero. What can even- 
tually become of the kinetic energy of the vortex lines? 

Fig. 10. A vortex ring (a) can break up into smaller rings if the transition be- 
tween states (b) and (c) is allowed when the separation of vortex lines becomes 
of atomic dimensions. The eventual small rings (d) may be identical to rotons. 

One possibility that suggests itself is this. Consider a large distorted 
ring vortex (Fig. 10a). If, in a place, two oppositely directed sections 
of line approach closely, the situation is unstable, and the lines twist 
about each other in a complicated fashion, eventually coming very 
close; in places, nearly within an atomic spacing. Consider two such 
lines (Fig. lob). With a small rearrangement, the lines (which are under 
tension) may snap together and join connections a new way to form 
two loops (Fig. 10c). Energy released this way goes into further twis- 
ting and winding of the new loops. This continues until the single loop 
has become chopped into a very large number of small loops (Fig. 1 Od) . 
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The smallest ring vortex that can exist must have a radius about half 
the atomic spacing. Let us guess that this is in fact a roton. Then all 
the energy of the vortex will eventually end by forming large numbers 
of rotons, that is, heat. Perhaps eventually it will be easier to under- 
stand the details of the complete transformation of organized flow 
energy into disorganized heat energy for liquid helium than for other 
substances. 

11. Rotons as Ring Vortices 
It is not unreasonable to guess that these smallest vortices are ro- 

tons. The velocity distribution around a roton, which is found by ma- 
lytic means (ref. 8) is similar to that around a vortex ring. It is quite 
reasonable that a vortex ring can be only so small. To increase the 
curvature of a vortex line beyond that of radius roughly a may take 
energy. Let us imagine a roton to be the circular quantized vortex 
of lowest energy. A large circular vortex has (from (21)) energy 

n@ 
E = 2nR. - e0Zn RIG. It carries momentum fi  = nR2.  2iz?ip,,. This 

m 
momentum is that of a roton, Po, if R = 2.2 A. The energy is the 
right order (it corresponds to replacing In by 1.6). 

One might object that such a vortex drifts through the fluid, at  
velocity v = (?i/2mR)Ztz Ria, so one would expect rotons not to have 
a zero group velocity. Actually this drift, of a large vortex, has its 
seat in the force tending to shrink the vortex to decrease the energy 
of the line. The response to the radially directed force is a perpendicular 
motion. It is analagous to the ornery response of a gyroscope. In fact, 
if a vortex line were a thin flexible mechanical tube with inertia, and 
were started with zero forward motion, it would first fall in a bit and 
then move forward in a halting fashion, like the nutation of a gyros- 
copic, or the motion of an electron in crossed magnetic and electric 
fields. In a roton we imagine that the forces tending to contract the 
ring are already opposed by a kind of stiffness of the ring. It is already 
as small as possible. No drift motion results. In fact forward drift 
would expand it and raise the energy, while reverse drift would try 
to compress it to smaller size, again raising the energy. The lowest 
energy is at zero drift velocity. We may notice in passing that they 
can only drift in a direction perpendicular to their plane, that is, 
along, or opposite, the direction of the momentum. This agrees with 
a property derived for rotons from their energy-momentum relation 
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( l ) ,  that the group velocity dE($)/& is in the direction of the momen- 
tum, (or opposite). 

Having travelled so far making one unverified conjecture upon 
another we may have strayed very far from the truth. However im- 
prudent it may be, there is one further observation we would like to 
make. A detailed picture is not available which describes physically 
just what goes on as the transition is approached from below. The free 
energy expression arising from (6) does not of itself describe the tran- 
sition. The transition occurs when the number of rotons is very large. 
Some sort of interaction may occur between them, or there may be 
some limitation to the degrees of freedom. l8 There is no doubt that 
it is the analogue of the transition in the ideal gas, but it would be 
nice if we could get a less mathematical and formal description of 
the events. Of the following I am not sure, but it does seem to be an 
interesting possibility. 

If rotons are the smallest ring vortices, and those of lowest energy, 
A ,  then there are states of higher energy corresponding to larger rings. 
For example, a ring of twice the diameter may have twice the energy 
more or less. The relative number of these will be expected to be very 
low, however. Since A is 9.6"K, at the transition exp (- A / k T )  is 

so very few larger vortices will be expected in equilibrium. Cer- 
tainly none whose length is 102 or lo3 atoms! This neglects an impor- 
tant feature, however. For a long line there are an enormous number 
of shapes and orientations available. Such a line is not infinitely flexi- 
ble, of course, for the curvature cannot well exceed a-1. It may be 
likened to a chain of a finite number of links. Adding one link requires 
an energy E ,  say of order A ,  but increases the number of orientations 
by some factor, asymptotically, say s. In equilibrium then, the number 
of chains of n + 1 links is a factor s exp (- E/RT) times the number 
with n links. For low temperatures this is less than unity. No long 
chains are important. The excitations consist of rotons and a few other 
rings of slightly larger size. As the temperature rises, however, there 
comes a time when the factor s exp (- e/kT) exceeds unity. Then 
suddenly the rings of very largest length are of importance. The state 
with one vortex line (or a very few) which winds and winds throughout 
the liquid like a near approximation to a Jordon curve, is no longer 
of negligible weight. The superfluid is pierced through and through 
with vortex line. We are describing the disorder of Helium I. At 
first the curve doesn't make full use of all of its orientations and higher 
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entropy. But as the temperature rises a little more it squeezes into 
the last corners and pockets of superfluid until it has no more degrees 
of flexibility available. The specific heat curve drops off from the 
transition to a smooth curve and the memory of the possiblity the 
helium can exhibit quantum properties in a unique way is lost in the 
perfusion of states and in disorder, as it is for more usual liquids. 
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