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The one-dimensional case of free electrons interacting with lattice displacements is solved by
a self-consistent method. It is found that for a certain range of the interaction parameter
a single sinusoidal lattice displacement is strongly excited in the lowest level of the system.
Its wave-length is such as to create an energy gap in the single-electron energy spectrum with
all states below it filled, and all above it empty. This periodic lattice displacement plays the
role of an ‘inner field’ and leads to periodic fluctuation in the electronic density in such a way
that the two stabilize each other. In an infinite medium described by a periodic boundary
condition they are not fixed absolutely in space, but only relative to each other. Excitation
of electrons across the gap leads to a decrease in both the electronic density fluctuations
and the width of the gap.

The whole system, electrons plus lattice displacements, can move through the lattice with-
out being disturbed provided the velocity v is sufficiently small. The inertia of this system is
equal to that of all electrons augmented by a term due to the lattice displacements. Elastic
scattering of individual electrons which normally leads to the residual resistance is impossible
if v is sufficiently small. The linear specific heat of normal electrons is eliminated and replaced
by an exponential term.

1. INTRODUCTION AND DISCUSSION

The conjecture that the interaction between electrons coupled through the field
of lattice displacements is responsible for superconductivity (Frohlich 1950) has
been strongly supported by the discovery of the isotope effect (Maxwell 1950;
Reynolds, Serin, Wright & Nesbitt 1950; Bir, Mendelssohn, Olsen, Allen & Dawton
1950; Lock, Pippard, Shoenberg, Allen & Dawton 1950). Subsequent discussion has
shown, however, that the theoretical methods usually employed in field theory are
unsatisfactory in the present case (Bardeen 1951; Frohlich 1952, 1953). Owing to
these difficulties it has not been possible so far to deal theoretically with the main
properties of superconductors such as specific heat and electromagnetic behaviour.
Pending the development of new methods it seemed desirable, therefore, to show
in a simple way and on a simple model how some of the properties of super-
conduectors can arise from just such an interaction, even though this may involve,
in the first place, the use of a somewhat unrealistic model.

It is the purpose of the present paper to show that in the one-dimensional free-
electron model the interaction with lattice displacements can be treated in a fairly
satisfactory way, and that such a model has properties as might be expected from
a superconductor if extrapolated to one dimension. Such a model is, of course,
rather unrealistic because magnetic fields cannot exist in one dimension. Even so,
one should expect the electrons to behave as a superfluid. The elastic scattering of
electrons by impurities which normally leads to the residual resistance should thus
be absent at the absolute zero of temperature 7. Moreover, the electronic specific
heat which is linear in 7" in the absence of interaction should be replaced by a term
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proportional to exp (— const./T") as 7'~ 0. It is just these two properties which will
be derived here.

The solutions leading to these properties can be described in terms of simple
physical concepts. Remember, first, that an external sinusoidal potential of given
amplitude leads to an energy gap in the one-dimensional single-electron energy
spectrum. It also leads to a decrease of the total energy of the electrons. In the
ground state the magnitude of this decrease is largest if the number of electrons (in
each spin direction) equals the number of levels below the gap. This requires the
period of the potential to correspond to a wave number 2k, where %, is the largest
wave number of occupied free-electron levels in a Fermi distribution at 7' = 0.
Through the influence of the interaction, the electron density is periodic with the
same period as the potential. It will be seen that in our case for a fair range of the
interaction constant (cf. (2-54)) the lattice displacement of wave number 2k, is
very highly excited in the lowest level of the whole system (electrons and lattice
displacements); and an equilibrium is reached in which the ensuing periodic fluctua-
tion of the electron density is such as to maintain the periodic displacement of the
lattice and vice versa. At first sight it might seem, therefore, that the interaction
transforms the metal into an insulator as 77— 0. In fact, however, in an infinite lattice
described by a periodic boundary condition (circle) the periodic density fluctuations
of electrons and lattice are fixed only relative to each other, but not within the
lattice. It will be seen that states exist where both move with a certain velocity »
through the lattice provided » is small enough. These states are of such a nature
that the N, electrons are moved bodily through the lattice and thus carry an
electric current. The movement of the lattice displacement, however, leads to a
fluctuation of each ion around its average position (as in an elastic wave) and thus
does not contribute to the current. The inertia of this moving system is then equal
to the inertia of all the electrons augmented by the inertia due to the motion of the
lattice displacement. Thus the electrons are hinged on the periodic positions of the
ions in an insulator, but on their periodic displacements in the present case.

The quantitative development of these ideas will be carried out with the use of
a self-consistent method using the magnitude of the amplitude of the lattice dis-
placement with wave number 2k, as a parameter—denoted by £ in appropriate
units. Ifz;is the spatial co-ordinate of the jth electron and b,, a co-ordinate describing
the lattice displacement of wave number w, then the wave function V' of the whole
system in one of the states described above can be written as (cf. §2)

W = expli(mo/fi) T} O(... %5...5... by, f(07), (1-1)

where v is quantized according to (2-18). Furthermore, if v? is sufficiently small
(cf. (2:52))
B?) = fo+Br07]s%, (1-2)

where f§, and £, are of equal order of magnitude, and s is the velocity of sound. This
wave function represents a state carrying an electric current

J = eNyv. (1-3)
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Its total momentum is given by
P = Ny(m+my)v, (1-4)

and its energy is (again if »? is sufficiently small)

B = Noy (56 — $Fvim, s* + §(m +m,) 07). (1-5)
hi2k}
Here {= T’ (1-6)

i.e. &N, is the energy of the ground state in the absence of interaction. The mass
m, is defined in terms of an interaction parameter F'v by equation (2-52). It is
connected with the above-mentioned gap of width W (cf. (2-53)) in the single-
electron energy spectrum by

W? = £Fvim, s (1-7)
ifvo=0.

From (1-1) and (1-5) it follows that the function ®(... z;...; ... b, ...; f,) describes
the system in the ground state (v = 0) as discussed above; i.e. it represents a periodic
lattice displacement (wave number 2k,) giving rise to an energy gap in the single-
electron spectrum with all levels below the gap occupied, and all above it empty.
Clearly, apart from thestatesv & 0 there are other low-lying levels of the whole system
whereby single electrons are lifted across the gap although v = 0, so that the lattice
displacement and the bulk of electrons do not move through the lattice. If, however,
the total momentum of the two states are required to be equal then it follows that
the energy of the states described in (1-1) to (1-5) (above the ground state) is
vanishingly small compared with the other type of states. For to lift an electron
across the gap requires an energy of at least W, while the gain of momentum is at
best of the order 27k, A state of type (1-1) having the same momentum must,
according to (1-4), have a velocity v = 2fk,/ Ny (m +m,), and an energy above the
ground state which according to (1-5) is 3N (m +my) v? = 2/2k}/ Ny, (m +m,) which
vanishes as Ny — o0 and thus is certainly smaller than W.

The existence of the energy gap W in the single-electron spectrum eliminates the
possibility of elastic scattering of single electrons provided v is sufficiently small.
Since collective motion is possible, however, it follows that at 7' = 0 an electric
current can exist showing no residual resistance.t Also in view of the energy gap the
electronic specific heat varies as exp (— W/2kT') as 7' 0.

With rising temperature, electrons are excited across the gap. Their wave
functions lead to electronic densities which reduce the periodic fluctuations in total
electronic density. This in turn must reduce the periodic lattice displacement and
hence also reduce the width of the gap. A situation thus arises which formally
resembles that in systems showing second-order transitions.

It is not intended here to treat the case 7'+ 0 in a quantitative way mainly
because of the unrealistic features of the one-dimensional model. In fact, the main
feature of this model, namely, the interaction of all electrons through a single
‘internal field’ (i.e. a single sinusoidal type of lattice displacement) cannot in

1 The energy of such a state, showing a frictionless current, is by J%(m+m,)/e2N ). above
the ground state (cf. (1:5) and (1-3)).



Theory of superconductivity 299

a simple way be generalized to three dimensions where no doubt an appropriate
superposition of a very great number of simple sinusoidallattice displacements will be
required to produce an energy gap in the one-electron spectrum. In fact, this feature,
preventing too simple a generalization of the one-dimensional case, is desirable
because the one-dimensional case does not show the isotope effect (since m,oc1/s?,
cf. (2-52)). This is not unduly disconcerting, and it may be expected that the
interplay between various types of lattice displacements and other differences
between the one- and the three-dimensional case should lead back to this effect as
already indicated in the treatment by perturbation theory.

It appears then that two aspects of the interaction between electrons and lattice
displacements have been investigated : perturbation theory points to the importance
of the dynamic part of the interaction and indicates the isotope effect; it neglects,
however, the interaction between the electrons arising from an ‘internal field’ (also
due to lattice displacements) which in the one-dimensional case, at least, leads to
the expected co-operative behaviour. This suggests that a combination of the two
aspects might lead to the derivation of all the main properties of superconductors.

2. CALCULATIONS

Consider a one-dimensional system of N electrons interacting with lattice
displacements. Then (factor 2 for spin)
ko
Ny =23, (2:1)
Te=—ks
where k is the wave number attributed to free-electron states. The Hamiltonian of
the system is essentially the same as used previously (Frohlich 1952, equation (2-1)),
restricted to one dimension. In the present paper, however, electrons will be
described by their co-ordinates z; in configurational space. Thus if ¥ is the wave
function of the whole system depending on z; and on the co-ordinates describing
the lattice displacements, b,,,

H= f V¥ (2:2)
f‘I“‘P‘ =1, (2-3)
. Nel. p2
with H =3 o=+ X hws(by by, +b0L,b_,,) + Hing, (2:4)
i=12m o
a‘nd '}%nt. = i 2 D’w{(bw + bi—w) Z eiwwj_ (b':-ul_ + b—w) Z e_iwxj}’ (2.5)
w>0 j J

where w > 0 is the wave number of a lattice displacement, p; = —i%0/0z;, and the

b,,’s satisfy
by, — 0,6, = (b, 0,) = 0;  (b,,,b:F) = 8,y (b,,,0_,) = 0, ete. (2-6)

All spatial functions el*® and e!“® gatisfy a periodic boundary condition with unit
length as period, so that e.g., k = 27n/L with integer n and L =1 cm. The
integration in (2-2) and (2-3) extends over all x;’s (unit length) and over all
co-ordinates describing the lattice oscillators. They are understood in a sufficiently

Vol. 223. A. 20
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general way, i.e. if the b,’s are represented by matrices then the appropriate
sums are to be taken. The interaction constants D, can be written as previously
(Frohlich 1952, equation (2-13))

4 Fv

= E’;mgﬁw& (2'7)

DE = %%{;ﬁws
where v = N, [N is the number of free electrons per atom and the velocity of sound
s of the ionic system was previously denoted by s’.

If the interaction parameter F' (previously denoted by F’) is sufficiently small
then one might think that 5#,,; can be treated as a small perturbation. This is not
true, however, as can easily be seen by calculating the self-energy —#%wAs of a
vibrational quantum of wave number w. Thus if in zero order the electrons are
described by plane waves, with all states up to wave number + &, filled, and if the
oscillator w is in the first excited state then its interaction with the electrons leads
to a self-energy (assuming w < 2k,)

whs =2 S Di, 9 v D,
__ B (2ky+w)2 — (2ms|F)?
= — ?ﬁkosln (2]{,‘0—&))2—(27)7/8/%)2’ (2 8)
where €, = 2k2/2m. (2:9)

Now if w< 2k,, using k,>ms/#fi, development of the logarithm in (2-8) shows that
As< s as long as 3Fv<l. (2:10)

This condition is essentially equal to one derived by Wentzel (1951) and ensures
stability of the lattice. If, however, w~ 2k,, then perturbation theory cannot be
applied, however small F, because (2-8) diverges (e.g. when } w = k,—ms/#). Thus
perturbation theory can only be applied if the largest value w,, of w is sufficiently
smaller than 2k, In the following it will be assumed, however, that w,, > 2k,
though (2-10) should hold. The interaction of the electrons with the lattice dis-
placement of wave number 2k, will then be treated by a self-consistent field method,
omitting interaction with lattice displacements of all other wave numbers in the
hope that these can later be treated by perturbation. This leads to the establishment
of a gap W in the single-electron spectrum. Applying then perturbation theory for
the remaining interaction clearly the energy denominators in the expression for
the second-order perturbation energy can no longer vanish whatever the value of
w (<w,,) (contrary to (2-8)) provided

W >fw,,s. (2-11)
This inequality is hence a condition for the convergence of the present approxima-
tion. It will be seen to lead to a lower limit for F compatible with the upper limit

given by (2-10).
Consider thus the Hamiltonian density 5 to be split into

H = ‘%’;)-'_%ilnt.’ (2-12)
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where i is given by (2-5), omitting in the summation, however, the term
w = wy = 2k, which is included in 5. Let ¥, be a wave function of the system
described by ##,. Then equations (2-2) and (2-3) hold if &# and ¥ are replaced by
H#, and ¥, respectively. The wave equation for ¥, can thus be derived by a

variational method, i.e.
o [ir oty - ¥y = 0, (2:13)

where 4 is a Lagrangian parameter. However, the operator of the momentum of
the whole system (i.e. # times the total wave number)

-Pop. = 2p9+ E ﬁw(b{l’z—bw_biwb»w) (2'14)
j w>0
commutes with 5%, (and with 5#),
Fop. o= P¥, or J‘IFJPop.lFo =P, (2-15)

where P is a constant of motion. Hence equation (2-13) is equivalent to
8 [ (o= =Py ¥y = , (216)
where v is another parameter, and (D,, = D; c.c. denotes a conjugate term)

2
%"/‘“vﬂyp =3 s —op; |+ X {kw(s_v) b;;bw'l‘ﬁ'w(s"f"v) bi—wb—w}
T \2m ) w5
+1D{(b,,, +b7,,) L eloi—c.c.} —p.  (2-17)
i
Equation (2-16) can be considered as solving (2-13) with (2-15) as a further
condition. The variational equation will be useful in this form for selecting solutions

with given momentum P.
Introducing now a new wave function @ byf

Y, = elmWIzi @, with mofh = 2mn/L, (2-18)

equation (2-16) is found to be equivalent to
BJ(D‘LG(I) =0, (2-19)

2
with G=3 é% + X fuols =) b by +hofs +0) b2, b}
7 w
+1D{(by, +b7,,) X eoki—c.c.} — pp— f Ny mo?. (2-20)
J

It will be noticed that, in terms of @, energy and momentum are given by
2
E= fl}f,;r;f;,‘lf’o = jdﬁ{Z (;%JWP;') + 3 Ney m®
j

+ X fiws(byb,, + b1,,b_,) +1D[(b,, +b1,,) 3 1o — c.c.]} D, (2:21)

w>0 j
and P = J“I"(,* P Wo = | O {Zp;+ Ny mo + Zoﬁw(b;; by—br,0_,)} P, (2:22)
3 w> .
respectively.
1T Equation (2-18) can, of course, also be considered as introducing a canonical trans-
formation.

20-2
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It will now be assumed that ® can be written in the form

O = P(xy, .02, ...) X (2-23)

where 3 depends on the electronic co-ordinates only, and y on the oscillator co-
ordinates. y can be written as a product,

X = HXwX—w7 (2-24)

where all y_,’s represent free oscillator wave functions, except when w = w,. The
electron wave function can (for each spin system) be written in determinantal form,
built up of one-electron wave functions ;(x;). Introduction of (2-23) into (2-19)
yields immediately

2
P14 28 (petves— p etwom), iy (w)) = (@), (2:25)
(8= 0) bl by + 1Nt Dby 07— b, 6 T%), X = A, Ny (226)

g8 +0) b gy by 1y DBy 0707 — by 6T907), Xy = A Xypes  (227)

where B = (b, —|—bwa) 2’2 (2-28)
is a dimensionless c-number,
5,;0 = fx,;jo bysy Xy €FC. (2-29)
and N o0 = 3. [a) o (o) do. (2:30)
%

Here Y, goes over all occupied electron levels (counted twice if occupied by two
k

electrons with opposite spin), and 7, A, and A_ are the eigenvalues of equations
(2:25) to (2-27) respectively. Since (2:26) and (2-27) represent wave equations of
displaced oscillators it follows immediately that

— iDNy

_ iDN,
%o Fwg(s —v)

e-weT  p  — . elwex .

e i b_,,. kwo(s—l—v)e 0% ete. (2-31)
Equation (2-25) describes an electron in a sinusoidal field. Its solution is simplified
if B#* < 1is assumed. According to Peierls (1930) if 2k ~wy, i.e. k ~ k,, it is solved by

Vor+ (%) = a4 %@ 4 a,, elb—woz (k> 0), (2-32)
with Tore = 253y2 —y+ 1 £ V(BF* + (y—1)?)}, (2-38)
y = klky> 0. (2-34)
Also
- i _ ly=13V{Bp*+ - 1)%
B N/ ) S R T Ml R /7 s 1
(2-35)

These solutions can be extended beyond the region near k~k, and discussed in
terms of zero-order solutions (4 = 0) represented by plane waves with wave number
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say q (92 0) and energy ¢, (cf. (2-9)). Then outside the region in which (y —1)% < S8*
(i.e. k~k,) one of the factors a, or a, is always predominant, leading to a zero-order
solution except for terms of order | £ |2. For #_ the ranges 0 <g<kyand —ky,<g<0
correspond to 0 <y <1 and 1<y < 2 respectively. For 7, the same y regions corre-
spond to —2ky<q< —k, and k,<q < 2k, respectively. The energy gap occurs at
y = 1, and is of width 2| /| {; deviations from zero-order solution remain linear in
| #|, approximately, when (y — 1)2 < #4*. The total number of electrons equals the
number of levels below the gap. Assuming all these levels to be occupied, a fraction
| B of all states show linear energy terms in | 4| making a contribution of order
| £]? to the total energy. This requires that for the majority of states, for which
(y—1)2> pp*, the energy be accurate up to the order f4*. Perturbation theory will
give good results in this region, and development of #, or 1, in powers of # leads in
fact to terms occurring in perturbation theory. For 5_ they correspond to the
transitions ¢ =q¢—w,, and ¢=¢+w, in the two regions O0<y<1 and l<y<2
(i.e. 0<g<kyand —k,< g < 0) respectively. These terms must be supplemented by
others corresponding to transitions ¢ = ¢+w, and ¢ = ¢—w, in the two regions
respectively. Thus when (y — 1)2> 86* the solutions which are correct up to second
order in | £ | are

Tiox = Mok T Apss Vs = Vors +A¥pa, (2-36)
. gﬂﬂ* — i 0/1 ﬂ i(k+wex 3 .
where Ay = g1 Ay = — 2!“1]9"‘ eiktwor  if <y <1, (2-37)
* %
and Amy_ = — thp La f elk—2woz  jif 1 <y <2, (2-38)

3y A= 2[a,[3—y

These solutions can also be used in the region where (y—1)2< f4* containing a
fraction | £ | of electrons. For since the Ay’s are of the order 4* (the denominators
never vanish) they yield a negligible contribution of order | £ |? to the total energy.
Thus the solutions (2-36) are of sufficient accuracy in the region 0 <y <2 corre-
sponding to — 2k, < ¢ < 2k, in zero order.

Now using (2-32) to (2-38),

ip* ( 1 1/(y+1)) . O<y<l,
x)elvo®yr, (x)da = Ty T if 2-39
f‘ﬁ’“ (&)%) BB*+(y—1)% " 1/(3—) 1<y<z, )
and hence from (2-30) and (2-31) a condition for the determination of # (2:28) can
be derived which depends on the occupation of electronic levels. In the lowest state
all levels below the gap (7_) are filled, and all above it are empty. In this case the

sum in (2-30) can be written as

2
sz N (P g, (2-40)
2 2 Jo

and hence from (2-39) and (2:30),
R ﬁ*lU dy 1 dy fz dy}
el® = + +
o VBB +(y—1)% Joy+1 3—y

_ip* (N +pE*)+1 ip*
(I 4(1+ﬁ,8*)—1+21n2) L -In

T (Z41)
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using f4* <1 in the last step. Equations (2-31), (2-41) and (2-28), and their con-
jugates using (2-7), thus yield
4

=0 or FV = 1 2:42

ﬂ 2/ 2 Iﬂl ( )

It will be seen (2-50) that # = 0 leads to a higher energy than the other solution so
that 3

* 2 122 .
ppe IGexp[ FV(I v2[s )]. (2-43)
The total energy # is now obtained from (2-21)’usihg (2-23) to (2-27),

E= Eﬂk"‘”ng 1Z\Tel mv2+2ﬁws(bfbw+bi‘wbw)' (244)
— % 2 I

Here P; = I +%?/f’ b_ll;wbiw = Xiuvbiwbtw}(iw' (2'45)

J

Clearly, using (2-26) and (2-27),

biwobiwo = biwobiwo—}'n:i:wo’ s blwbiu =My (w#wo); (2'4’6)

where the n,, are positive integers or zero. In the lowest state of the system n ,, = 0

for all w. Furthermore, if all the states below the gap are filled, ZE— = 0. Thus from
(2-44), using (2-36) to (2-38), (2-40), (2-33) and (2-28),

2
B=Ny¢ f gty L= VBB (= 1 dy + L et

1 dy dy g
N ([ [ ) s (B by + T (247)
From (2-31) and its conjugates,

bt, =b

Ty = b (8 —)[(s+), ete. (2-48)
and hence with (2-28) after carrying out the integrations,

B = N fg— 1+ pp0 - baprn SO

— BB 2+ e (1 0%s®) B + AN et (2:49)

2Fv
Using again gf* <1,
BN b= B Na b3+ = g (14 080) + Moo, (250)
In a similar way (2-22) leads to
vP = Nel.(mvz+,6’/)’* ﬁ%) (2-51)

In neither (2:50) nor (2-51) has use been made of the e‘quilibrium value (2-42) for
Bp*. In fact this value can be derived again from §(Z — Pv) = 0 which follows from
(2-19), using SF* as available parameter.
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Inserting now Sg* from (2-42), and developing into powers of v%/s* using terms
up to v?/s? only, leads to expressions (1-4) and (1-5) for P and Z, if m, is given by

LFvm,s? = 16{e~3MF, (2-52)
1}3? < 1. Also, equation (1-7) follows since the gap width at v = 0 is
W=2|p|¢=8Le 3T, (2-53)

It will be noticed that replacement of w, by another value of w increases the total
energy because then N, is no longer equal to the number of states below the gap.

As pointed out previously the consideration of the terms s#,; by perturbation
theory is now possible if (2-10) and (2-11) are satisfied. Together with gf* <1,
(2-11) requires, using (2-53) and (2-43), that

1> 4e-328 > fap, s/2. (2-54)

It will be noticed that in this case (2-10) is also fulfilled. (2:54) gives a fair range for
Frviffiw,,s/2f <1 (in the three-dimensional case the ratio is of the order 10-2 or 10-2).
In this case ¥, is a good approximation to the wave function ¥, i.e. (1-1) holds,}
and (1-5) is a good approximation to the energy.

It should finally be observed that the change in electronic density due to the inter-
action with the lattice displacements leads also to a change (increase) in the Coulomb
energy. This could also be treated within the scope of the self-consistent method
and would essentially result in a change of the value for m,, and in condition (2-54).
It would not alter the main result of the present investigation, namely, (i) that
electrons with energy of order { (per electron) may be contained within a certain
energy region by an interaction which is very weak, i.e. which leads only to a small
change of total energy, and (ii) that the whole configuration may move through the
lattice, exhibiting a single degree of freedom only.

. V2
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