

Specifications for the CMI 2409 Magnetocardiograph

Revision date April 14, 2006

The CMI-2409 system consists of a holder (A), a patient bed (B) and a workstation (not shown in the picture below). The workstation consists of a computer, monitor, keyboard, printer and SQUID system electronics power supply. Nine MCG sensors are housed in a cryostat (see "Cryostat" below) and the cryostat is supported in the holder. The patient lies directly below the cryostat.

Location Requirements

- The system should be located as far as possible (at least 20 meters) from working elevators and parking lots.
- The system should be located as far away as possible from various sources of RF interference, e.g. ultrasound and MRI machines, microwave ovens, etc.
- To avoid interference with a patient measurement the minimum distance by which various items (from any direction: above, below, etc.) must be separated from the MCG Sensors is summarized in the following table.

Distance	Item
1.5 meters	Fluorescent lights
3 meters	Computer, printer, LCD monitor, MCG power supply, PDA, pager, mobile phone, small immobile metallic objects
4 meters	Small fans and motors, treadmills, furnishings with movable metallic parts
8 meters	Lab Centrifuges Oscillating ventilators, etc.
20 meters	MRI, elevators, moving vehicles, heaters and air conditioners

- The recommended floor space is approximately 5 m x 4 m (see drawing below: note that an LCD monitor is recommended; CRT monitors could generate electromagnetic interference; the chair shown should not contain metallic parts.)
- The height of the holder is approximately 2.1 m; during liquid helium refill (see "Cryostat" below) a recess in the ceiling (60 cm x 60 cm x 60 cm) somewhere in the MCG room is needed to facilitate insertion of a rigid tube into the liquid helium storage tank..
- For floor loading considerations the weights of the main components are:
 - Holder (with cryostat and electronics) 160 kg
 - Patient bed 115 kg
 - The patient bed is designed to accommodate a maximum weight of 160 kg

Room Layout

System Power Requirements

 The complete system power consumption, including the computer and monitor, is 250 - 260 W (@ 100,120, 230, or 240V/50-60Hz).

System Communication Requirements

• A 512 kbps or faster LAN connection is recommended to receive software updates and to access a secure location on the CardioMag server for remote service.

Magnetic Field Sensors

- System uses nine axial second-order gradiometers, each connected to its own SQUID (superconducting quantum interference device). The gradiometers are arranged in a uniform 3 x 3 grid providing 80 mm x 80 mm coverage.
- An MCG scan using the CMI 2409 involves four adjacent measurements to produce a 6 x 6 output with a corresponding 200 mm x 200 mm coverage area.
- An electronic noise suppression system (ENSS) which utilizes output from three additional SQUIDS (not linked to a gradiometer) enhances the quality of the magnetic field measurements.

Top View of Cryostat

Electronics

- The SQUID electronics module operates with 24-bit resolution and communicates with:
 - o A liquid helium level meter in the cryostat
 - An ECG module mounted inside the holder via fiber-optic interface (FOI)
 - Bed-positioning sensors
 - o Computer workstation for data acquisition and system control via FOI
 - o MCG power supply

<u>Cryostat</u>

- The cryostat is a specially constructed non-magnetic cylindrical vessel in which the MCG sensors are housed. It is designed to safely contain liquid helium (a fluid at a temperature of -269 C) which is necessary for sensor operation.
- The cryostat holds 12 liters of liquid helium (55 cm fill depth).
- The level of liquid helium should not fall below a depth of 15 cm; otherwise MCG sensor performance may deteriorate. Consequently, it is recommended that the user add liquid helium to the cryostat twice a week, but no longer than every five days, to ensure optimum system performance.
- Experience shows that the annual consumption of liquid helium is 800 liters (including losses due to transfer during refilling the cryostat).
- Losses from an external liquid helium storage container supplied by a cryogen supplier are additional and will vary depending on the cryogen supplier and the details of the contractual supply arrangement.
- The equipment used/furnished by the liquid helium supplier must be compatible with the fittings supplied by CMI for the liquid helium transfer tubes.

Software

 The MCG software is specially designed for Windows XP and performs system operation, sensor adjustment and control, data acquisition at a default of 1,000 Hz, database management, data analysis and output. The details of the software capabilities are amply illustrated in a separate document.

Highlighted features include

- Comprehensive database for patient registration and exam tracking
- Automatic instrument adjustment (SQUID channel adjustment)
- Real-time data acquisition for 13 CMI-2409 hardware channels (9 SQUID measurement, 3 SQUID reference, and 1 ECG time reference)
- Automatic processing of raw MCG data including temporal analysis, spectral analysis, and digital filtering
- Automatic time-averaging of MCG data with integrated heartbeat recognition, heartbeat template assignment, and Heartbeat comparison
- Two and Three-Dimensional Magnetic Field Map (MFM) Animation
- Magnetic Field Map Analysis Tools
- Inverse solver to determine Effective Magnetic Vector (EMV) source location and orientation
- Dynamic analysis of EMV behavior for detection of cardiac ischemia
- 3-D visualization of MCG Data, torso model, and heart model
- Analysis report printing
- Batch mode express processing of raw data files
- Batch mode EMV analysis of processed data files
- Conversion of MCG data to ASCII files

