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Introduction

In the last few years an increasing attention has been addressed to the nature and inten-
sity of the forces arising from the electromagnetic vacuum fluctuations (Casimir and van
der Waals or dispersion forces) [1, 2]. The interest in this subject comes from some basic
developments: (i) the increased experimental effort, that has led to accurate measurements
of the force intensity for specific configurations [3, 4, 5, 6, 7, 8, 9, 10], (ii) the understanding
of the relationship between the force and the elementary excitations of the interacting bod-
ies, that has allowed to generalization to real materials of results originally obtained using
idealized boundary conditions [11, 12, 13, 14, 15, 16, 17, 18], (iii) the role played by these
forces in nano- and microdevices [19, 20, 21, 22, 23], (iv) the possibility of exploiting different
geometrical configurations to achieve the desired properties of the forces [24, 25].

The purpose of the present thesis is to study the role that electromagnetic vacuum fluctu-
ation forces may play in a number of issues that are relevant at the nano- microscopic scale.
The study is devoted to the following problems:

i) Stability of deposited metal films: investigation of the importance of vacuum
fluctuation force in determining the critical thickness of metal overlayer with respect to the
transition between a uniform two-dimensional phase and a corrugated one [26, 27, 28]. The
attention is focused first on the force acting on the film boundaries in the case of a free
standing film and then on the modifications of this force when the film is deposited on a
metal substrate. It is shown that, while the force does not contribute to the surface stability
in the case of an isolated film, being too weak in comparison with the surface stress, it can
be crucially important in the case of deposition, where vacuum electromagnetic energy may
be of the same order of magnitude of the difference between the elastic energy caused by the
lattice mismatch, which favours the surface corrugation to release the excess elastic energy,
and the surface energy, which tends to favour the planar configuration. The study provide the
conditions under which the force on the film can sustain the stability of the planar configu-
ration, given in terms of the parameters entering into the expression of the dielectric function.

ii) Size effects in the Casimir interaction between ultrathin films: study of the ef-
fects of the quantization of the energy levels caused by quantum confinement on the intensity
of the force between metal films. The use of bulk dielectric functions in the force calculation
within the framework of the Lifshitz theory, while appropriate for thick enough films [29], is
expected to give unrealistic results when the film thickness is of the order of few nanometers.
The study has been carried out by determining the dielectric function of a confined system
of free electrons using the RPA approximation to calculate the dielectric function [30]. This
turns out to have a tensorial character, consistent with the strong anisotropy of the electron
distribution, and to depend upon the film thickness through the electron energies and the
dipole matrix elements. In view of the importance of the confinement potential different
models have been considered: the particle in a box model [31] and models where the later-
ally averaged one electron potential is represented by a finite well. The modifications with
respect to calculations with the bulk dielectric function have been analyzed as a function of
the potential depth and of the electron density.
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iii) First principles calculation of the force between ultrathin silicon films: a
study aiming at understanding how modifications in the dielectric function induced by the
reduced film size and by the occurrence of surface states may cause changes in the vacuum
fluctuation force between silicon slabs. Density functional theory has been used to determine
the film dielectric tensor starting from the one electron energies and wavefunctions calcu-
lated self-consistently for the film, using both simple RPA [30] and the RPA corrected by
local field effects to determine the macroscopic dielectric tensor at vanishing wavevector from
the inverse dielectric matrix [32, 33]. The force calculated using the film dielectric tensor is
compared with the calculation starting from the bulk dielectric function obtained with the
same theory. Evidence is provided that the presence of surface states can affect the force over
a large range of film separation distances. The macroscopic dielectric tensor turns out to be
very sensitive to local field effects. As a consequence the force can be significantly modified
by their inclusion.

iv) Influence of metal insulator transition in device actuated by the electro-
magnetic vacuum force: the proposal of a device that exploits the phase transition to
extend the distance and energy ranges over which it can be operated. The basic device com-
ponents are films of GeTe [34, 35, 36] (or other compounds with similar behaviour [37, 38, 39])
, a material that undergoes a rapid transitions between polycristalline phases, which show a
metallic behaviour with a p-type conductivity due to vacant Ge sites, and amorphous phases
with typical semiconductor properties [40]. Starting from empirically derived dielectric func-
tion one can obtain device potential profile and bifurcation diagrams illustrating how the
device proprties can be tuned optically.

The plan of the thesis is the following. The first two chapters are devoted to the pre-
sentation of the basic theory. In particular the first one summarize basic concepts of elec-
trodynamics of linear media and presents a discussion of model dielectric functions to be
used in the applications. The second chapter is a presentation of the Lifshitz theory of the
electromagnetic vacuum fluctuation forces and shortly review recent developments. Each of
the following chapters is devoted to one of the above outlined issues and presents a detailed
discussion of the subject under consideration, a complete illustration of the results and the
appropriate conclusions.
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1
Electrodynamics of continuous media
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Appendix C: Dispersion relations, causality and stability . . . . . . . . . 57

Appendix D: Difficulties in the dielectric function measurement . . . . . . 62

This first chapter contains an overview of the classical and quantum theories of the in-
teraction between electromagnetic fields and matter. Starting from the classical theory, the
concept of response function will be introduced, its physical meaning will be discussed to-
gether with its general properties. Quantum models for dielectric functions, both within the
independent particle and the many body frameworks, will be analyzed and compared to the
classical ones. A deep and detailed discussion about the topics of this chapter is given in
references [1] and [2].

1.1 Maxwell’s equations

Any electromagnetic phenomenon can be completely described by the Maxwell’s equations.
They relates the electric field E and the magnetic induction B with their sources, the charge
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density ρ and the current density J. Using the CGS Gauss unit system, Maxwell’s equations
are 





∇ · E = 4πρ

∇× B− 1
c

∂E
∂t

=
4π
c

J

∇× E +
1
c

∂B
∂t

= 0

∇ · B = 0

(1.1)

These equations contain implicitly the continuity equation:

∂ρ

∂t
+ ∇ · J = 0 (1.2)

that can be derived combining the fist equation with the divergence of the second one.
Maxwell’s equations are invariant under Lorentz transform so they are intrinsicy relativistic.
If a probe charge q is placed into the region containing fields and sources, it is subject to the
force:

F = q
(
E +

v
c
× B
)

(1.3)

This expression shows that the concept of field replaces, throughout the charge, the concept
of force. The use of fields makes the probe charge q independent from the field sources ρ e J:
two different density of charge and current can give rise to the same field in the same region,
since the probe charge feels the same force in both cases. The force field or the field itself
does not univocally determine the charge and current distributions generating them.
Maxwell’s equations in reciprocal space look like:






iq · E = 4πρ

iq× B + i
ω

c
E =

4π
c

J

q × E− ω

c
B = 0

q ·B = 0

(1.4)

and they can also be written in terms of the potentials, using the Helmholtz theorem:





∇2φ+
1
c

∂

∂t
∇ · A = −4πρ

!A −∇
(
∇ ·A +

1
c

∂φ

∂t

)
= −4π

c
J

E = −∇φ+
1
c

∂A
∂t

= −iqφ− iω

c
A

B = ∇× A = iq × A
(1.5)

where φ is the scalar potential, A the vector potential and ! = ∇2− 1
c2

∂2

∂t2 is the D’Alembert’s
operator. Notice that equations (1.4) must of course satisfy the continuity equation:

−ωρ+ q · J = 0 (1.6)

The above scalar and vector potentials are not univocally defined, it is always possible to
define an arbitrary scalar function Λ(x, t) such that:

φ′(x, t) = φ(x, t) − 1
c

∂Λ(x, t)
∂t

A′(x, t) = A(x, t) −∇Λ(x, t) (1.7)

even if φ and A are different from the new potentials φ′ and A′, they provide the same fields.
This means that one can describe the same physical system with different choices of the
potentials, i.e. within different gauge representations. For a deeper discussion see reference
[3].
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Figure 1.1: A medium placed in a capacitor. Applying a potential a field appear, between
the capacitor plates, as an external perturbation D for the medium. As a response, the
medium polarizes giving raise to an induced field P. The direction of P is taken following
the standard definition, the total field E is defined as the difference between the two fields,
see equation (1.13).

1.2 Maxwell’s equations in a medium

A medium is nothing but a collection of rest or moving charges, and once its charge and
current distributions are given, it is in principle possible to describe its physics uniquely by
the solution of Maxwell’s equations and dynamic equations (Hamilton’s equations). Suppose
to have a medium composed by n charges and m currents, a definition for the total charge
and current densities can be given as follow:

ρmed =
n∑

i=1

ρi Jmed =
m∑

i=1

ji (1.8)

First of all one needs to proceed from a microscopic description to a macroscopic one through
some sort of averages on fields and sources:

Emed(q) = 〈emed(q)〉 =
1
V

∫
emed(q′)f(q′,q)dq′

ηmed(q) = 〈ρmed(q)〉 =
1
V

∫
ρmed(q′)f(q′,q)dq′

(1.9)

here capital letters indicate macroscopic fields whereas the others indicate microscopic ones,
f(q′,q) is a generic convolution function and V is the volume occupied by the medium.
The same averages hold for the magnetic induction and the current density. In the absence
of external perturbations the average macroscopic electric field of a medium is zero, some
ferromagnetic materials may have a non vanishing macroscopic magnetic field. If an external
perturbation is switched on (see figure 1.1), the microscopic constituents of the medium are
no more at equilibrium: they feel a new field and, interacting among them, they try to reach
the new equilibrium configuration. This behaviour determines a no more vanishing value
for the microscopic averages (1.9), the whole medium is able to raise a response against the
external perturbation, the value of Emed takes the name of polarization P and the value
Bmed is named magnetization M. These macroscopic averaged fields are related to the
corresponding induced charge and current by the Maxwell’s equations:

ηmed = −∇ · P Jmed =
∂P
∂t

+ c∇× M (1.10)

The first term in the RHS of the current equation is the current due to the polarization of
the medium, whereas the second is the current contribution due to the magnetization of the
medium. Generally speaking one can distinguish between three different fields and sources:
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Field and Source Name Symbol
Eext and ηext electric displacement, external field D
Emed and ηmed polarization, induced field P
Etot and ηtot electric field, total field E
Bext and Jext magnetic displacement, external field H
Bmed and Jmed magnetization, induced field M
Btot and Jtot magnetic induction, total field B

Even in this macroscopic formulation, the medium maintains the self-interaction, this is be-
cause microscopically, each charge feels both the external perturbation field and the induced
field played on it by the rest of the medium, it reacts on its part, modifying the induced and
the total field. Now the self-consistency is simply hidden inside P and H. Using definitions
(1.10) and:

ηtot = ηmed + ηext Jtot = Jmed + Jext (1.11)

one can write macroscopic Maxwell’s equations for the total fields:





∇ · Etot = 4π(ηext + ηmed)

∇× Btot −
1
c

∂Etot

∂t
=

4π
c

(Jext + Jmed)

∇× Etot +
1
c

∂Btot

∂t
= 0

∇ · Btot = 0






∇ · (E + 4πP) = 4πηext

∇× (B − 4πM) − 1
c

∂(E + 4πP)
∂t

=
4π
c

Jext

∇× E +
1
c

∂B
∂t

= 0

∇ · B = 0





∇ · D = 4πηext

∇× H− 1
c

∂D
∂t

=
4π
c

Jext

∇× E +
1
c

∂B
∂t

= 0

∇ · B = 0

(1.12)

where the trivial definitions:

E = D − 4πP H = B − 4πM (1.13)

have been introduced.
While a time dependent electric field can exist even without a magnetic field (it just can not
be an electromagnetic wave), a time dependent magnetic field is always coupled with a time
dependent electric field. This asymmetry in the behaviour of the two fields, allows to redefine
(1.10): the response of the medium to the external magnetic field H can be expressed in term
of a current induced by the electric field Q associated to the magnetization M. In this way
the magnetization disappear, H is always equal to B but the total induced current must be
redefined:

Jmed =
∂P
∂t

+
∂Q
∂t

→ ∂P
∂t

(1.14)
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this implicitly gives a new definition for D. Now equations (1.12) turn out to be:





∇ ·D = 4πηext

∇× H− 1
c

∂D
∂t

=
4π
c

Jext

∇× E +
1
c

∂H
∂t

= 0

∇ ·H = 0

(1.15)

where the total magnetic field and the magnetization disappeared. Systems (1.12) and (1.15)
can be written in terms of P and D or P and E.
By means of the linear response theory (described in appendix A), the response P of the
medium can be related to the external perturbations D or E gaining a system of four equa-
tions and four incognita. To this aim, notation (1.15) is more convenient than (1.12): the
former needs just one response function to relate the electric perturbation to the electric
response whereas the latter needs also a relation between the magnetic perturbation and the
magnetic response. The hamiltonian of a system with total density η(q, t)tot and current
density Jtot perturbed by an external field is given by:

H = H0 +
∫

dx η(x, t)totφ(x, t)ext −
1
c

∫
dx J(x, t)tot ·A(x, t)ext (1.16)

where φext is the scalar potential associated to D and Aext is the vector potential associated
to H. H0 contains the many body interaction between the electrons through the microscopic
Coulomb’s potential and the Coulomb interaction with the ions of the periodic lattice of a
crystal. If the perturbation is a static field or a time dependent electric field, only the scalar
or vector potential must be used. If the perturbation is a time dependent magnetic field or
an electromagnetic wave, both potentials must be included in the hamiltonian.
Choosing the induced current as the response observable, in the linear response theory for-
mula (1.170) of appendix A B(x, t) = Jmed(x, t), under the assumption that in the unper-
turbed system Jmed(x, t) = 0, one gets:

Jmed(x, t) =
1
c

∫
dx′

t∫

−∞

dt′Aext(x′, t′) · φJJ(x,x′, t − t′)−

−
∫

dx′
t∫

−∞

dt′ φext(x′, t′)φJρ(x,x′, t − t′)

φJJ(x,x′, t − t′) = 〈
{
Jtot(x, t′),Jmed(x, t − t′)

}
〉

φJρ(x,x′, t − t′) = 〈
{
ηtot(x, t′),Jmed(x, t − t′)

}
〉

(1.17)

Here the response functions are the current-current correlation function and the charge-
current correlation function, the first is a tensor, the latter is a vector, exactly as in definitions
(1.175).
Using the gauge invariance it is possible to find a relation between φJJ and φρJ in order
to rewrite the induced charge in term of the current-current response function only. One
can define the new potentials A′

ext and φ′ext by means of equations (1.7), however the new
fields must give an induced current densities J′

med equal to Jmed of equation (1.17), from this
equality the following condition results:

−
∫

dx′
t∫

−∞

dt′∇Λ(x′, t′)·φJJ(x,x′, t−t′)+
∫

dx′
t∫

−∞

dt′
∂Λ(x′, t′)

∂t′
φJρ(x,x′, t−t′) = 0 (1.18)
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Now one has to integrate by parts in the t′ variable the second integral in the LHS, using
also the properties (1.171). While for the first integral one must use the relation:

∇ · (φextφJρ) = φJρ ·∇φext + φext∇ · φJρ (1.19)

together with the divergence theorem:
∫

dx∇ · (φextφJρ) =
∫
φextφJρ · ndΣ = 0 (1.20)

where for the last step the properties (1.171) have been used again. Now equation (1.18)
looks like:

∫
dx′

t∫

−∞

dt′
(
∇ · φJJ(x,x′, t − t′) − ∂φJρ(x,x′, t − t′)

∂t′

)
Λ(x′, t′) = 0 (1.21)

that must be valid for any arbitrary Λ function, this leads to:

∇ · φJJ(x,x′, t − t′) =
∂φJρ(x,x′, t − t′)

∂t′

∇ · φJJ(x,x′,ω) = −iωφJρ(x,x′,ω)
(1.22)

Thanks to the t − t′ time dependency, due to the causality principle, Fourier’s transform of
equation (1.17) is suitable for the usage of condition (1.22):

Jmed(x,ω) =
1
c

∫
dx′Aext(x′,ω) · φJJ(x,x′,ω) −

∫
dx′ φext(x′,ω)φJρ(x,x′,ω) =

=
1
c

∫
dx′Aext(x′,ω) · φJJ(x,x′,ω) +

∫
dx′ φext(x′,ω)

∇ · φJJ(x,x′,ω)
iω

(1.23)

now one has to use again equations (1.19) and (1.20) to eliminate the divergence of the
response function:

Jmed(x,ω) =
1
c

∫
dx′Aext(x′,ω) · φJJ(x,x′,ω)+

+
1
iω

∫
dx′ ∇φext(x′,ω) · φJJ(x,x′,ω) =

=
1
iω

∫
dx′φJJ(x,x′,ω) ·

(
iω

c
Aext(x′,ω) + ∇φext(x′,ω)

)
=

= − 1
iω

∫
dx′φJJ(x,x′,ω) ·D(x′,ω)

(1.24)

In the last step the general definition of electric field (1.5) has been used. The response
function σ, relating the induced current and the external field, is named conductivity tensor,
and is defined has:

Jmed(x,ω) =
∫

dx′σ(x,x′,ω) ·D(x′,ω) (1.25)

Now also the induced current can be expressed in terms of the field, one has to use the
generalized definition (1.14):

−iωP(x,ω) =
i

ω

∫
dx′φJJ(x,x′,ω) · D(x′,ω)

P(x,ω) = − 1
ω2

∫
dx′φJJ(x,x′,ω) · D(x′,ω)

P(x,ω) =
∫

dx′χ(x,x′,ω) ·D(x′,ω)

(1.26)



1.2 Maxwell’s equations in a medium 23

where the response function χ relates the induced and the external fields, its name is electric
susceptivity tensor. Both σ and χ are tensors, the latter is dimensionless because it relates
two quantities with the same dimensions, from their definitions:

χ(x,x′,ω) =
i

ω
σ(x,x′,ω) (1.27)

Another possibility is to link the total and the external fields, one has just to combine the
two general definitions (1.13) and (1.14):

4πJmed =
∂D
∂t

− ∂E
∂t

(1.28)

and to use this new relation into equation (1.25):

−iω

(
D(x,ω) − E(x,ω)

)
=4π
∫

dx′σ(x,x′,ω) ·D(x′,ω)

E(x,ω) = D(x,ω) +
4π
iω

∫
dx′σ(x,x′,ω) ·D(x′,ω)

E(x,ω) =
∫

dx′
(
1δ(x − x′) +

4π
iω
σ(x,x′,ω)

)
· D(x′,ω)

E(x,ω) =
∫

dx′ε−1(x,x′,ω) ·D(x′,ω)

(1.29)

Where the new inverse dielectric tensor has been introduced:

ε−1(x,x′,ω) = 1δ(x − x′) − i4π
ω
σ(x,x′,ω) = 1δ(x − x′) − 4πχ(x,x′,ω) (1.30)

the 1 symbol denotes the identity matrix. Each one of the above response functions can
be measured with a different kind of experiment, probing each time the desired response
observable and tuning the perturbation observable.
With respect to equation (1.170), it is possible to choose B(x, t) = η(x, t)med, the unperturbed
condition is ηmed(x, t) = 0, this means that 〈∆B(x, t)〉 = ηmed(x, t), the response functions
are the charge-charge correlation function and the current-charge correlation function:

ηmed(x, t) =
1
c

∫
dx′

t∫

−∞

dt′Aext(x′, t′) · φJρ(x,x′, t − t′)−

−
∫

dx′
t∫

−∞

dt′ φext(x′, t′)φρρ(x,x′, t − t′)

φρρ(x,x′, t − t′) = 〈
{
ηtot(x,t′), ηmed(x, t − t′)

}
〉

φρJ(x,x′, t − t′) = 〈
{
Jtot(x, t′), ηmed(x, t − t′)

}
〉

(1.31)

Now the charge-charge correlation function is a scalar whereas the charge-current correlation
function is a vector. Using the gauge invariance it is possible to find a relation like (1.22)
between φρρ and φρJ:

∇ · φρJ(x,x′, t − t′) =
∂φρρ(x,x′, t − t′)

∂t′
(1.32)

now the charge-current correlation function, one needs to replace, appears in the first integral
of equation (1.31) in a scalar product together with the vector potential, one can no longer use
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relation (1.19). The substitution of equation (1.32) into (1.31), in order to express everything
in terms of φρρ only, is not reliable. The only possibility is to put Aext = 0 limiting the
problem to oscillating electric fields only, i.e. excluding electromagnetic waves in favor of
longitudinal perturbations only (see appendix B). Within this assumption the first integral
in the RHS of equation (1.31) vanishes giving:

ηmed(x, t) = −
∫

dx′
t∫

−∞

dt′ φext(x′, t′)φρρ(x,x′, t − t′) (1.33)

Notice that, thanks to definition (1.5), one can state that

D(q′,ω) = −iq′φext(q′,ω) φext(q′,ω) =
i

q′
D · q̂′ (1.34)

and using also the Fourier’s transform of (1.14) one gets:

−iqq̂ · P(q,ω) =
∫

dq′ χρρ(q,q′,ω)
−iq̂′ · D(q′,ω)

q′

q̂ · P(q,ω) =
∫

dq′ χρρ(q,q′,ω)
q q′

q̂′ ·D(q′,ω)
(1.35)

As expected, the response function relates only the projections of perturbation and response
on their momentum directions, i.e. the longitudinal components of the response and the
perturbation. Notice that, the response function relates now two identical quantities, because
of this it must be dimensionless, the division by q and q′ satisfies this need. With a more
compact notation:

PL(q,ω) =
∫

dq′ χLL(q,q′,ω)DL(q′,ω) (1.36)

χLL takes the name of longitudinal electric susceptibility and it is just a component of the
previously defined dielectric tensor (see appendix B). It is important to stress that the deriva-
tion of equations (1.36), (1.26) and (1.25) contains only the very general assumption of gauge
invariance and it is valid under any gauge condition.
All the properties of a linear medium are hidden inside its response functions and a classifi-
cation of different media can be done on the basis of response functions general properties:

static the medium is homogeneous
φ χ response and it behaves in the same

way at all frequencies
dynamic the medium gives different

φ(t − t′) χ(ω) response response at different
frequencies

φ(x − x′, t − t′, ) χ(q − q′,ω) translational the medium response is non
invariance local but again homogeneous

φ(x,x′, t − t′) χ(q,q′,ω) local the medium response is non
effects local and inhomogeneous

1.3 On the tensorial nature of the response functions

The tensorial character of a medium comes from its microscopic atomistic structure. In
a crystalline solid, the symmetry properties of the atomic lattice determine a different be-
haviour along different directions of the response to external perturbations. In the previous
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section a classification of the media in terms of the spatial and frequency dependences of the
response function has been given. Another classification is possible, on the basis of the ten-
sorial properties of the response functions. In the most general case, the tensor relating the
perturbation to the response, is a complex tensor with symmetric real and imaginary parts.
The symmetry assure the diagonalizability of the two parts of the tensor, but the principal
axes1 of the real part can be different from the ones of the imaginary part, the whole tensor
is not diagonalizable. For an anisotropic medium in which the reference system is taken in
such a way that the perturbation wave vector q lies along the x-axis, the conductivity tensor
appears as:

σ =




σLL σLT1 σLT2

σLT1 σT1T1 σT1T2

σLT2 σT1T2 σT2T2



 (1.37)

Diagonal components relate longitudinal perturbations to longitudinal responses, or trans-
verse perturbations to transverse responses, two different transverse response exist because
of the two independent polarizations of light. In an anisotropic medium a longitudinal per-
turbation can also induce a transverse response, and vice versa, this behaviour is accounted
by the off-diagonal components. This can be formally shown applying the dyadic notation
introduced in appendix B, multiplying for the longitudinal dyad the general definition (1.25):

1L · Jmed(x,ω) = 1L ·
∫

dx′σ(x,x′,ω) ·D(x′,ω) =

=
∫

dx′1L · σ(x,x′,ω) ·
[
1L · D(x′,ω) + 1T · D(x′,ω)

]
=

=
∫

dx′[1L · σ(x,x′,ω) · 1L · D(x′,ω)+

+ 1L · σ(x,x′,ω) · 1T ·D(x′,ω)
]

(1.38)

so even a transverse field can contribute to the longitudinal induced current. The same
holds for the transverse induced current and the longitudinal perturbation, it is sufficient to
multiply definition (1.25) by the transverse dyad.
Another interesting anisotropic medium is the one described by the conductivity tensor:

σ =




σLL 0 0
0 σT1T1 σT1T2

0 σT1T2 σT2T2



 (1.39)

Now transverse and longitudinal components are decoupled, a transverse perturbation can
induce only a transverse response, but the medium is still able to mix the two components of
the transverse field. This is the typical behaviour of the so called active media, media able
to change the polarization of the light passing through them.
For cubic media a set of principal axes always exist that diagonalizes both the real and
imaginary parts, the conductivity tensor becomes:

σ =




σLL 0 0
0 σT1T1 0
0 0 σT2T2



 (1.40)

chyral media, for instance, are properly described by a tensor like this. They have the
property of giving a different response depending on the polarization of the impinging light.
If σT1T1 = σT2T2 the medium is uniaxial, in this case only two different kind of response

1Basis set describing a vector space in which the tensor is diagonal.
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Figure 1.2: Pictorial representation of transverse and longitudinal modes of a medium.

exist. The simplest case is that of an isotropic medium:

σ =




σ 0 0
0 σ 0
0 0 σ



 (1.41)

that shows the same behaviour for any kind of perturbation. Although the isotropic medium
model seems an over simplification of the reality, in fact to small wave vector perturbations of
any kind, each cubic medium appears homogeneous. In the long wavelength limit, also called
optical limit, of q → 0 it is impossible to distinguish between transverse and longitudinal
perturbations or responses, because of this, σT1T1 = σT2T2 = σT1T1 = σLL. This is the
typical situation of optical spectroscopy in which, if infrared, visible of ultravielot light is
used, the momentum of the impinging photons and the momentum transferred to the medium
are negligible. In the case of cubic media, the optical response, that is a transverse one, is
identical to the longitudinal response for q → 0.

1.4 Reducible and irreducible response

If in the hamiltonian (1.16) the external potentials φext and Aext are employed, the micro-
scopic Coulomb interaction among medium charges is hidden inside H0. If the total fields
are employed, the many-particle interaction energy is taken out from H0 and hidden inside
the total potentials φtot and Atot that must be used in the perturbation terms instead of
φext and Aext. This is just a different way to describe the same physics of the medium-fields
interaction, the total perturbation energy must be the same in both cases as well as the
induced and total charge and current densities. The only difference it that, if the unper-
turbed hamiltonian H0 changes its form, the ensemble distribution function ρ(t) changes.
ρ(t) enters the definition of statistical average of equation (1.167) determining a different
definition for the correlation function i.e. for the response function. Definitions (1.17) and
(1.31) for the response functions already hold, but now the statistical average is made on a
different configuration space. Using this new approach involving total potentials and choos-
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ing again the induced current density as the response observable, one can follow exactly the
same procedure described in section 1.2 to get the analogous of equation (1.24):

Jmed(x,ω) = − 1
iω

∫
dx′φ̄JJ(x,x′,ω) · E(x′,ω)

Jmed(x,ω) =
∫

dx′σ̄(x,x′,ω) · E(x′,ω)
(1.42)

where φ̄JJ denotes a response function defined in the same way as in (1.17) but with a different
ensemble average. A relation can be found between σ and σ̄. The total field contains the
induced field, because of this, it is an averaged microscopic field, in equation (1.42) it accounts
implicitly for the self-consistency in the response of the medium. Equation (1.25) contains
the external field, that is a macroscopic field, in this case is the response function that must
account for the microscopic self-interaction. χ, also called reducible susceptivity, does not
contains the self-interaction contribution, χ̄, the irreducible susceptibility, contains the self-
interaction properties of the medium. To relate the two response functions one must start
equating the two definitions of the induced current density (1.25) and (1.42):

∫
dx′σ(x,x′,ω) · D(x′,ω) =

∫
dx′σ̄(x,x′,ω) · E(x′,ω) (1.43)

the total field E can be written using equation

∇×∇× E(x,ω) − ω2

c2
E(x,ω) = iω

4π
c2

Jtot(x,ω) (1.44)

derived from the combination of the second and third Maxwell’s equations (first system of
1.12). In fact, using the Green approach, one can write the solution of differential equation
(1.44) as:

E(x,ω) = iω
4π
c2

∫
G(x,x′,ω) · Jtot(x′,ω) dx′ (1.45)

where G is the Green’s operator solution of the homogeneous equation:

∇×∇× G(x,x′,ω) − ω2

c2
G(x,x′ω) = δ(x − x′) (1.46)

Using (1.45) into (1.43) one gets:
∫

dx′σ(x,x′,ω) ·D(x′,ω) = iω
4π
c2

∫∫
dx′σ̄(x,x′,ω) · G(x′,x1,ω)·

· Jtot(x1,ω) dx1 =

= iω
4π
c2

∫∫ [
σ̄(x,x′,ω) ·G(x′,x1,ω) · Jext(x1,ω)+

+
∫
σ̄(x,x′,ω) ·G(x′,x1,ω) · σ(x1,x2,ω)D(x2,ω) dx2

]
dx′ dx1

(1.47)

in the last step decomposition (1.11) together with definition (1.42) has been used to eliminate
the total current density. Now the first term in square brackets is the definition of external
field D through the Green’s operator:

∇×∇× D(x,ω) − ω2

c2
D(x,ω) = iω

4π
c2

Jext(x,ω)

D(x,ω) = iω
4π
c2

∫
G(x,x′,ω) · Jext(x′,ω) dx′

(1.48)
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In in the second integral of (1.47) x′, x1 and x2 are merely integration variable and one can
make the exchange x2 ↔ x′ to gain a symmetric and intuitive notation. Now it is possible
to factorize the expression as follow

∫
dx′
{
σ(x,x′,ω) − σ̄(x,x′,ω) − iω

4π
c2

∫∫
σ̄(x,x2,ω)·

·G(x2,x1,ω) · σ(x1,x′,ω) dx1 dx2

}
·D(x′,ω) = 0

(1.49)

that must be true for any arbitrary external field D (= 0. This leads to:

σ(x,x′,ω) = σ̄(x,x′,ω) + iω
4π
c2

∫∫
σ̄(x,x′,ω) · G(x′,x1,ω) · σ(x1,x2,ω) dx1 dx2 (1.50)

The two response functions are related by a Dyson’s like equation that can be solved self-
consistently. Proceeding in this way the irreducible conductivity σ̄ is modified, at every
iteration, including a part of the self-interaction properties of the electrons of the medium.
The iterative procedure converges to the reducible conductivity σ that is defined in such a
way that it contains implicitly the self-interaction of the electrons of the medium. With a
simple substitution of their general definitions into (1.50), one can relates χ and χ̄:

χ(x,x′,ω) = χ̄(x,x′,ω) +
4πω2

c2

∫∫
χ̄(x,x′,ω) · G(x′,x1,ω) · χ(x1,x2,ω) dx1 dx2 (1.51)

This last equation can be directly derived by a many body perturbation theory, the result is
exactly the same but G becomes the retarded Green’s function (see section 1.10).
Equation (1.51) takes a more familiar form if one restrict his interest to the longitudinal
response. In this situation one deals with scalar equations only and, in reciprocal space, all
the equations becomes scalar. If one starts from equation (1.33) and its equivalent in terms
of the irreducible response

ηmed(q,ω) = −
∫

dq′ φext(q′,ω)φρρ(q,q′,ω)

ηmed(q,ω) = −
∫

dq′ φtot(q′,ω)φ̄ρρ(q,q′,ω)
(1.52)

and follows the same procedure used for the case of (1.42) one gets:

φρρ(q,q′,ω) = φ̄ρρ(q,q′,ω) −
∫

dq1 φ̄ρρ(q,q1,ω)
4π
q2

1

φρρ(q1,q
′,ω) (1.53)

where the trivial definition
φtot = φext + φmed (1.54)

has been used, together with the Poisson’s equation.

φmed(q,ω) =
4π
q2
ηmed(q,ω) (1.55)

Here the Green’s operator is nothing but the bare Coulomb’s potential. Figure 1.3 represent
equation (1.53) in the Feynman diagrammatic representation.

1.5 Macroscopic and microscopic response

Using again the approach based on total potentials exposed in the preceding section, one can
derive new susceptivity and dielectric tensors. As in section 1.2:

P(x,ω) =
∫

dx′χ̄(x,x′,ω) ·E(x′,ω) (1.56)
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Figure 1.3: Feynman diagram for Dyson’s like equation of electric susceptibility. The re-
ducible susceptibility is expressed in terms of the irreducible one and the Coulomb potential,
in a self-consistent equation.

Combining equations (1.42) and (1.28) one can define the dielectric tensor :

D(x,ω) =
∫

dx′ε̄(x,x′,ω) ·E(x′,ω)

ε̄(x,x′,ω) = 1δ(x − x′) +
i4π
ω
σ̄(x,x′,ω) = 1δ(x − x′) + 4πχ̄(x,x′,ω)

(1.57)

It must be stressed that formally speaking this quantity is the inverse of the response function
defined in (1.29), even if the two response functions are defined by means of a different average
procedure. Replacing (1.29) in (1.57) and factorizing the external field, one gets:

∫
dx′′
[
1δ(x − x′′) −

∫
dx′ ε−1(x,x′,ω) · ε̄(x′,x′′,ω)

]
· D(x′′,ω) = 0 (1.58)

that must be true for any arbitrary D, this means:
∫

dx′ ε−1(x,x′,ω) · ε̄(x′,x′′,ω) = 1δ(x − x′′) (1.59)

that is simply the definition of inverse operator. In principle measuring one of the two
response functions it is always possible calculate the other one. One may think to measure
the function ε−1(q,q′,ω) and, inverting it, to get ε̄(q,q′,ω). Practically ε̄(q,q′,ω) and
ε−1(q,q′,ω) are microscopic, non observable quantities. One can only measure some sort
of macroscopic average response functions, they will be defined in the following and their
relation will be discussed.
In the specific case of crystals, thanks to the spatial periodicity one can say that q = K +G
and q′ = K + G′ where K belong to the first Brillouin’s zone whereas G and G′ are vector
of the reciprocal lattice.

ε−1(q,q′,ω) −→ ε−1(K + G,K + G′,ω)
ε̄(q,q′,ω) −→ ε̄(K + G,K + G′,ω)

(1.60)

With this choice, definition (1.29) becomes:

E(K + G,ω) =
∑

G′

ε−1(K + G,K + G′,ω) · D(K + G′,ω) (1.61)
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tipically G ) K, or in real space, λG * λK, this means that the K Fourier’s components
account for length scales larger that the lattice one, whereas K + G Fourier’s components
describe small oscillations of the same wavelength of the lattice parameter. Macroscopic
quantities can not be measured with such a resolution, they can not depend upon lattice
parameter scale oscillations. Because of this they will depend only upon K, i.e. macroscopic
fields are E(K) and D(K). Also external charge and current densities must be macroscopic,
so one has Jext(K + G) = ηext(K + G) = 0 for each G (= 0. By now the ω dependence
will be omitted to keep the notation simple. Combining the second and the third Maxwell’s
equations of system (1.15), and using the analogous of identity (1.46) for the electric field E,
one gets:

O(K + G) ·E(K + G) − ω2

c2
D(K + G) =

iω4π
c2

Jext(K + G) (1.62)

where the O operator is given by:

O(K + G) =
[
(K + G)(K + G) − (K + G)21

]
(1.63)

Now using (1.61) one can write

∑

G′

[
O(K+G) · ε−1(K+G,K+G′)− ω2

c2
1δG,G′

]
·D(K+G′) =

iω4π
c2

Jext(K+G) (1.64)

writing explicitly the G = G′ term of the sum and taking G = 0 one gets:

∑

G′ $=0

[
O(K)·ε−1(K,K+G′)

]
·D(K+G′)+

[
O(K)·ε−1(K,K)

]
·D(K) =

iω4π
c2

Jext(K) (1.65)

In this expression the external perturbation Jext is macroscopic, in the sense that it does
not depend upon the crystal microscopic structure described by the G vectors. Despite of
this, the external field D felt locally by the charges of the medium, involves all the Fourier’s
components K + G, i.e. it is microscopic. This phenomenon is known as local field effect,
the external or total field felt inside the medium are different from those caused outside it
by the perturbing current or charge density. In other words the electrons of the crystal feel
the external macroscopic field modified by the presence of the lattice and the rest of the
medium, implicitly contained into ε−1. Starting again from equation (1.64) and setting the
term G′ = 0, one gets

∑

G′ $=0

[
O(K + G) · ε−1(K + G,K + G′) − ω2

c2
δG,G

]
·D(K + G′)+

+
[
O(K + G) · ε−1(K + G,K)

]
·D(K) = 0

(1.66)

here the current disappeared because it is an external current and it can not contain the
K + G component, i.e. it has not a microscopic resolution and one can set Jext(K + G) = 0
for each G (= 0. Equation (1.66) relates the macroscopic external field to the microscopic
one. Inverting the preceding expression by means of the inverse operator:

T(G,G′) =
∑

G′ $=0

[
O(K + G) · ε−1(K + G,K + G′) − ω2

c2
δG,G

]
(1.67)

one gets

D(K + G′′) = −
∑

G$=0

T−1(G′′,G) · O(K + G) · ε−1(K + G,K) · D(K) (1.68)
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obtained multiplying both members for the inverse operator T−1(G′′,G) to the left, and using∑
G $=0 T−1(G′′,G) ·T(G,G′) = δG′′,G′ . Combining now (1.65) and (1.68), one obtains:

O(K) ·
{
ε−1(K,K) −

∑

G′,G$=0

ε−1
K,K+G′ · T−1(G′,G) · O(K + G)·

· ε−1
K+G,K

}
· D(K) − ω2

c2
D(K) =

iω4π
c2

Jext(K)

(1.69)

and if one defines a macroscopic response function in order to reach an equation with the
same form of (1.64)

[
O(K) · ε−1(K) − ω2

c2

]
· D(K) =

iω4π
c2

Jext(K) (1.70)

from the comparison with (1.69) one obtains the definition of the macroscopic response
functions in terms of the microscopic one:

ε−1(K) = ε−1(K,K)−
∑

G′,G$=0

ε−1(K,K+G′)·T−1(G′,G)·O(K+G)·ε−1(K+G,K) (1.71)

If one restrict its interest only to the longitudinal part of the response function, things become
easier. In this case one can simply play with the first Maxwell’s equation of system (1.15)
and the definition (1.57):

(K + G) ·
∑

G

ε̄(K + G,K + G′) · D(K + G′) = ηext(K + G) (1.72)

Proceeding exactly as in the general case, one reaches the analogous of equation (1.69) and
defining again a macroscopic equation like equation (1.70) one finally comes to:

ε̄(K) = ε̄(K,K) −
∑

G′,G$=0

ε̄(K,K + G′) · ε−1(K + G′,K + G) · ε̄(K + G,K) (1.73)

This expression is identical to the definition of the inverse of the first element M−1
00 of the

inverse matrix M−1 of a generic matrix M:

M =
(

M00 M0G′

MG0 MGG′

)
1

M−1
00

= M00 −
∑

G′,G

M0G′ · M−1
G′G · MG0 (1.74)

This means that microscopic response functions, in reciprocal space, must be regarded has
matrixes in the indexes G and G’ and that the macroscopic response functions are nothing
but:

ε̄(K,ω) = lim
G,G′→0

1
ε−1(K + G,K + G′,ω)

ε−1(K,ω) = lim
G,G′→0

1
ε̄(K + G,K + G′,ω)

(1.75)

i.e. the inverse of the first element of the inverse microscopic response function.
By definition of Fourier’s expansion coefficients, the term with zero momentum, is a spatial
average of the function. In this view, the first elements of both the tensors ε−1(K+0,K+0,ω)
and ε̄(K + 0,K + 0,ω) are a sort of macroscopic averages. To understand which is the
difference between the direct average of the first element and the average (1.75) involving
the first element of the inverse matrix, it is sufficient to look at equations (1.75) and (1.71):
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neglecting the second addendum of the RHS, the inverse average becomes identical to the
direct one, i.e. the macroscopic functions are simply given by the first term (G = G′ = 0) of
their matrixes because all the elements G,G′ (= 0 are zero. However to neglect the second
addendum means to neglect local field effect at all. This is clearly visible from equation (1.65)
in which, if all the G,G′ (= 0 elements are taken to be equal to zero, the first addendum of
the LHS vanishes. Applying an external perturbation Jext(K) only the D(K) component
exists, the electrons feel the same external field that is present outside the medium, no
microscopic oscillations on the lattice length scale exist. This microscopic oscillations enter
the macroscopic average during the elements mixing due to the matrix inversion procedure
described by (1.75) and (1.71) when the second addendum is taken into account.

1.6 Dielectric tensor and magnetic permittivity

In the preceding sections the possibility to relate together different perturbation and response
fields has been shown. Making use of (1.57) it is possible to rewrite Maxwell’s equations (1.15)
in a soluble and definitive form:






∇ ·
∫

dx′ε̄(x,x′,ω) · E(x′,ω) = 4πηext

∇× H +
iω

c

∫
dx′ε̄(x,x′,ω) ·E(x′,ω) =

4π
c

Jext

∇× E− iω

c
H = 0

∇ ·H = 0

(1.76)

with four equations and four incognita. Other possible forms of the system (1.76), involving
the other fields D and P, require the usage of the other response functions above defined. If
one prefers to use the system in the (1.12) form, a new response function must be introduced
in order to relate the total and external magnetic fields, the inverse magnetic permittivity
tensor µ−1. This means that the information contained inside the unique response function ε̄
appearing in (1.76) must be partitioned into a new dielectric tensor ε̃ and µ−1. The partition
is almost arbitrary and the definition of µ−1 depends on how much information one wants
to leave into ε̃. To show how ε̄, ε̃ and µ−1 are related, one must restart from equation (1.42)
using the original definition (1.10):

ic q × M(q,ω) − iωP(q,ω) =
∫

dq′σ̄(q,q′,ω) ·E(q′,ω) (1.77)

multiplying both sides for iq× one gets:

q2M(q,ω) +
ω

c
q × P(q,ω) =

i

c

∫
dq′ q× σ̄(q,q′,ω) · E(q′,ω) (1.78)

where the following vector identity has been used:

∇×∇× M = ∇(∇ · M) −∇2M = −∇2M (1.79)

together with the property of divergenceless magnetic fields ∇ · M = 0. The total electric
field appearing in the RHS can be decomposed in its transverse and longitudinal parts (see
appendix B)

E = ET + EL = − ω

cq2
q × B + q̂q̂ · E (1.80)
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the ET definition comes from the multiplication of the third Maxwell’s equation of (1.191)
by iq× and the application of (1.79). Reorganizing the terms:

M(q,ω) = − ω

q2 c
q× P(q,ω) − iω

c2

∫
dq′q̂× σ̄(q,q′,ω)

q q′
× q̂′ · B(q′,ω)+

+
i

c

∫
dq′q̂ × σ̄(q,q′,ω)

q q′
· q̂′q′ · E(q′,ω)

(1.81)

the trivial vector identity
σ̄ · q̂′ × B = σ̄ × q̂′ · B (1.82)

has been used. Now one can use definitions (1.13) and the following one for ε̃:

D(q,ω) =
∫

dq′ε̃(q,q′,ω) · E(q′,ω) (1.83)

to get:

H(q,ω) =
∫

dq′

[
ω

q2 c
q ×
(
ε̃(q,q′,ω) − 1δ(q − q′)

)
· E(q′,ω)+

+
(
1δ(q − q′) +

iω4π
c2

q̂ × σ̄(q,q′,ω)
q q′

× q̂′
)
· B(q′,ω)+

+
i

c

∫
dq′q̂ × σ̄(q,q′,ω)

q q′
· q̂′q′ · E(q′,ω)

]

H(q,ω) =
∫

dq′

[
− ω2

q′qc2
q̂ ×
(
ε̃(q,q′,ω) − 1δ(q − q′)

)
× q̂′+

+
(
1δ(q − q′) +

iω4π
c2

q̂ × σ̄(q,q′,ω)
q q′

× q̂′
)]

·B(q′,ω)

(1.84)

in the second step the longitudinal electric field terms cancel out, this makes visible that the
relation between H and B depends on the choice for the response function linking D and E,
i.e. that µ−1 depends on the choice of ε̃.

µ−1(q,q′,ω) = − ω2

q′qc2
q̂ ×
(
ε̃(q,q′,ω) − 1δ(q − q′)

)
× q̂′+

+
(
1δ(q − q′) +

iω4π
c2

q̂ × σ̄(q,q′,ω)
q q′

× q̂′
)

=

= − ω2

q′qc2

(
ε̃TT − 1δ(q − q′)

)
+

+
(
1δ(q − q′) +

iω4π
q′qc2

σ̄TT

)

(1.85)

In particular, µ−1 contains only transverse components and depends on the choice made for
the transverse part of ε̃, whereas the longitudinal parts of ε̃ do not enter µ−1 expression.
Notice that, if one chooses ε̃ to be equal to ε̄ of equation (1.57), the difference in the previous
equation cancels out and one obtains H = B, that is the assumption made in the definition
(1.14) one starts from to derive ε̄. In equation (1.14) all the transverse contribution from
the magnetization has been hidden inside the susceptivity, one can also decide to do the
opposite, putting all the transverse part of the susceptivity inside the magnetization vector.
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This means that equation (1.10) must be used where P is completely longitudinal, ET = DT,
i.e. the transverse component of ε̃ is just:

ε̃TT = 1δ(q − q′) ε̃LL = ε̄LL (1.86)

and (1.85) becomes:

µ−1 = 1δ(q − q′) +
iω4π
q′qc2

σ̄TT (1.87)

ε̃ takes care of all the longitudinal parts of the dielectric tensor ε̄ whereas µ−1 contains all
the transverse parts of ε̄. Another possibility is to choose ε̃ in such a way that it treats
longitudinal and transverse components of the electric field in the same way:

ε̃LL = ε̃TT = ε̄LL (1.88)

now (1.85) becomes:

µ−1 = 1δ(q − q′) +
iω4π
q′qc2

(
σ̄TT − σ̄LL

)
= 1δ(q − q′) +

ω2

q′qc2

(
ε̄TT − ε̄LL

)
(1.89)

The advantage of this new definition is that, in the limit q → 0, when ε̄TT → ε̄TT = ε,
µ−1 → 0 and ε̃ = ε giving the same limit of the (1.14) choice. On the other hand, using
definition 1.87, in the limit q → 0, µ−1 is non vanishing and ε̃ is an anisotropic tensor with
ε̃LL = ε and ε̃TT = 1. Independently of the above choice, the system (1.12) becomes:






∇ ·
∫

dx′ε̄(x,x′,ω) ·E(x′,ω) = 4πηext

∇×
∫

dx′µ−1(x,x′,ω) ·B(x′,ω)+

+
iω

c

∫
dx′ε̄(x,x′,ω) · E(x′,ω) =

4π
c

Jext

∇× E − iω

c
B = 0

∇ · B = 0

(1.90)

now soluble in the variables E, B and the field sources.

1.7 Medium excitations and dissipation

In appendix C the role of causality in determining the response functions properties is briefly
discussed. Causality forces the response functions to be analytic in the upper half-plane of
complex frequencies. In the lower half-plane there can be poles and they have a well defined
physical meaning: they represent, together with the zeroes, the intrinsic excitation modes of
a medium. The dielectric function represents a special case of response function because also
its inverse is a response function, this means that poles of the inverse dielectric functions and
zeroes of the direct one are related. In the specific case of the dielectric function, causality
ask not only for the absence of poles in the upper half-plane but also for the absence of zeroes,
because the latter can become poles for the inverse function. Looking at the real counterpart
of equation (1.57):

D(x, t) =
∫

dx′
∫

dt′ε̄(x,x′, t − t′) ·E(x′, t′) (1.91)

one can see that if the external perturbing field is not yet switched on, D = 0, the total
field E can be different from zero if and only of it is the dielectric function that vanish.
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An electric field can exist before the perturbation is switched on, if and only if some of its
intrinsic modes are excited. The Fourier’s transform of the imaginary part vanish because of
parity conditions (1.194):

ε̄(x,x′, t − t′) =
∫

dω ε̄(x,x′,ω)e−iω(t−t′) =
∫

dω ε̄1(x,x′,ω)e−iω(t−t′) (1.92)

so the zeroes of the real part of the response function describe the medium intrinsic modes.
As it will be shown in the next section for some specific cases, the zeros of the real part of the
dielectric function correspond to the zeroes and the poles in the lower half-plane of complex
frequencies. Again, with reference to the real counterpart of equation (1.29):

E(x, t) =
∫

dx′
∫

dt′ε−1(x,x′, t − t′) · D(x′, t′) (1.93)

when the perturbing external field is not yet switched on, the total field E can be different
from zero only if the inverse dielectric function diverges. Looking at the Fourier’s transform
of the dielectric function:

1
ε(x,x′, t − t′)

=
∫

dω

(
ε̄1

ε̄21 + ε̄22
+ i

ε̄2
ε̄21 + ε̄22

)
e−iω(t−t′) (1.94)

it is not possible to distinguish between an even and an odd part of the integrand, nevertheless
the imaginary part must vanish, i.e. ε̄2 must go to zero. With this assumption the real part
becomes 1/ε̄1, again the zeroes of the real part of the dielectric function allow the response
function to diverge, accounting for the intrinsic excitations of the medium. Some specific
examples of medium excitations will be given in the next section where an outline of the
different models for response functions will be treated.
Response functions rules the dispersion of the medium, i.e. the functions linking q to ω for the
different possible medium excitations. The simplest example is given by an electromagnetic
wave propagating inside a medium:

E(x, t) = E0(x)eiq·x−iωt (1.95)

from the Maxwell’s equations (1.76), one gets the well known D’Alembert’s equation:

∇2E(x, t) =
1
c2

∫
dx ε̄(x,x′,ω)

∂2E(x, t)
∂t2

(1.96)

replacing (1.95) and moving to reciprocal space, under the assumption of spatial invariance:

q2E(q,ω) =
ω2

c2
ε̄(q,ω)E(q,ω)

q2 =
ω2

c2
ε̄

(1.97)

here the dielectric tensor is a real quantity mixing q and ω of the medium excitation modes.
Separating real and imaginary parts of the response function one can see that, if one vanish,
the other one can diverge giving rise to unphysical behaviours: both of them must always
exist to prevent divergecies. The imaginary part of the dielectric tensor is related to the
dissipation capability of the medium. To show this, imagine to have an electromagnetic wave
traveling into the vacuum and entering, at a certain point, into a medium. If the medium
is dissipative it must take away some energy from the electromagnetic field reducing its
strength, one can suppose that the decay of the wave strength is exponential:

E(x, t) = E0(x)e−m·xeiq·x−iωt = E0(x)ei(q+im)·x−iωt (1.98)
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The dissipation assumption brings to a complex wave vector p = q + im. A refractive index
n and an extinction coefficient k can be defined has:

p =
ω

c
(n + ik) (1.99)

Now the dispersion relation becomes:

p2 =
ω2

c2
ε̄ −→ n + ik =

√
ε̄1 + iε̄2 (1.100)

a complex dielectric function can be defined in order to recover expression (1.97):

ε̄1 = n2 + k2 ε̄2 = 2kn (1.101)

Definition (1.57) states that the real part of the dielectric tensor is related to the imaginary
part of the conductivity and vice versa, on the other hand, the power dissipated by a current
is given by:

∂W

∂t
= j(x, t) ·E(x, t) = σ(x, t)E2(x, t) (1.102)

So, if ε̄ is real, like in (1.97), only the imaginary part of the conductivity σ̄2 exists, by virtue
of relations (1.194) it has to be an odd function so its Fourier’s transform vanish:

σ(t) =
+∞∫

−∞

dω
[
σ1(ω) + iσ2(ω)

]
e−iωt =

+∞∫

−∞

dω σ1(ω)e−iωt (1.103)

On the other hand, if ε̄ is complex like in (1.100), also σ̄1 exists and the Fourier’s transform
(1.103) is non vanishing leading to a dissipative current. The existence of an imaginary part
of the dielectric tensor is responsible for the rise of a current, by means of which the medium
dissipates the energy subtracted at the traveling wave2.

1.8 Dielectric function: outline of the different models

In this section a detailed discussion of the different models for the dielectric function will be
given. First of all the classical models will be introduced, than the quantum models will be
discussed showing in which conditions they reach the classical limit.

Plasma model This is the simplest classical model, it describes the dielectric function of
an homogeneous, non-interacting, free electron gas. Despite of its simplicity it will be shown
that all the dielectric function models, both classical and quantum, behave as the plasma
model in the limit of very high frequencies. Imagine to perturb the electron gas with a total
field E(t) = E0eiωt, the equation of motion for each free non- interacting electron becomes:

mẍ(t) = −E0e
iωte (1.104)

where m is the electron mass, e the electron charge, and x the electron position. With the
initial conditions x(0) = 0 and ẋ(0) = 0 the solution of the differential equation is:

x(t) =
E0e

mω2
eiωt (1.105)

2One may think that, in order to know a response function in real space φ(t), only the real component
φ1(ω) of the Fourier’s transform is needed whereas the imaginary part is always useless. This is wrong
because, depending on whether an imaginary part is present or not, the real part changes. This is visible
also from definition (1.101) where the addition of dissipation creates both an imaginary part and a new
contribution to the real one. So imaginary part does not give a direct contribution in the calculation of the
dielectric function in real space, but it is implicitly present into the real part.
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Figure 1.4: (a) Some response functions describing the plasma model. The plasma frequency
is Ωp = 16eV a typical value for metallic media. (b) Pictorial representation of a plasmon:
yellow shadow represents the electrons cloud while spheres represent the ionic lattice.

from the Fourier transform of equation (1.56), neglecting the local field correction and the
interaction between dipoles, one can derive an expression for the permittivity:

P = Np = χ̄E

χ̄ = −Ne2

m

1
ω2

(1.106)

where the definition p = −ex(t) has been used. Finally, using definition (1.57) one gets:

ε̄(ω) = 1 − 4πe2N

m

1
ω2

= 1 −
Ω2

p

ω2
(1.107)

here Ωp is the plasma frequency and depends on the free electron gas density. Other response
functions, immediately derivable from the previous equation, are plotted in figure 1.4 (a).
The dielectric function does not have in imaginary part, nevertheless imposing ε̄ = ε̄1 = 0
one gets the only solution ω = Ωp. There exist only one intrinsic mode of the medium,
a longitudinal collective excitation called plasmon that depends upon the medium electron
density. At large frequencies the response function goes to 1, i.e. the medium behave as
the vacuum. For large frequencies, the oscillations wave length of the total field is so small
(localized in space) that the electrons can not feel it, they feel only an average electric field
that, because of the periodicity, is zero, i.e. the medium is not able to polarize itself. At
small frequencies the response function diverges, this is an unphysical behaviour because it
leads to a divergent real response function.
The plasmon is a collective mode and can not be understood in terms of single oscillators
like (1.104), a collective picture must be used. The medium itself can be regarded as an
harmonic oscillator: figure 1.4 (b) shows a medium as the overlap of a positive fixed charge
due to the ionic lattice and a mobile negative charge due to the electrons cloud. When the
electron cloud is displaced from its equilibrium position the medium is no more neutral and a
restoring electric field E take place. The behaviour of an infinitesimal volume of the electron
cloud is described by the equation:

Nm
d2u
dt2

= −NeE = −4πN2e2u −→ d2u
dt2

= −Ω2
pu (1.108)

where u is the displacement from the volume equilibrium position and E = 4πneu is the
restoring field due to the charge induced by the displacement. The proper frequency of the
harmonic oscillator (1.108) is the plasma frequency Ωp = 4πe2N

m of the medium. If an external
perturbing field is applied with ω = Ωp, it can resonate with the proper frequency of the
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medium, switching off the perturbation the electron cloud continue to oscillate, the medium
being in its intrinsic excitation mode. Any other perturbing field with ω (= Ωp is unable to
excite the plasmon mode.

Drude model To eliminate the unphysical behaviour of the plasma model one must add
a dissipative term into differential equation (1.104):

ẍ(t) + γẋ(t) = −E0e

m
eiωt (1.109)

γ is the dissipation constant divided by the mass m, now the equation is no longer time
reversible. The solution becomes:

x(t) =
E0e/m

ω2 + iγω
eiωt (1.110)

and the dielectric function:

ε̄(ω) = 1 −
Ω2

p

ω2 + iγω
(1.111)

where γ has the dimensions of a frequency, its inverse, τ , is the relaxation time of the system.
In the Drude transport theory, τ is the average free time between electrons collisions, its
value depends on the microscopic structure of the medium. As it can be seen from figure 1.5,
now the real part of the dielectric function is limited while the imaginary one diverges, this
is not a problem because the latter quantity does not enters the Fourier’s transform for the
real dielectric function calculation. The divergence in the imaginary part is due to the fact
that the electrons are free and they can absorb energy of almost every frequency dissipating
it through a conduction current. Notice that, now that the real part of the dielectric function
is limited, ε̄1(0) = ε̄(i0).

Imposing now the condition ε̄1 = 0 one gets again the plasmon excitation at frequency
ω = −γ2/2 +

√
(γ4 + 4Ω2

p)/4 , Ωp for γ small. In the complex plane the previous solution

corresponds to ω =
√
Ω2

p − γ2/4 − iγ/2, this solution lies in the lower half-plane of the
complex frequency, as prescribed by the causality principle. The Drude model describes
quite well the response of alkali metals, where only the s orbitals are filled and the electrons
behaviour is very close to the ideal free gas one. An improvement of the Drude model consists
in replacing the mass m, appearing into the plasma frequency, with an effective mass m% that
accounts for the real band dispersion of the medium.

Lorentz model The Lorentz model is useful to describe the response of semiconductors
and insulators for which the absorption spectrum always present a gap at low frequencies.
In this model electrons are no more free, they are confined at certain positions and they can
only oscillate around them. Imagine, for instance, an electron in the Bohr atomic model,
while it is moving along a certain circular orbit with frequency ω0, an external field feels it
as an harmonic oscillator with proper frequency ω0. In this view, the differential equation
(1.109) must contain a restore elastic term:

ẍ(t) + γẋ(t) + ω2
0x(t) = −E0e

m
eiωt (1.112)

here ω0 is the restore elastic constant divided by the electron mass. Following the same
procedure described above, one get:

ε̄(ω) = 1 +
Ω2

p

ω2
0 − ω2 − iγω

(1.113)
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Figure 1.5: Some response functions describing the Drude model. The plasma frequency is
Ωp = 16eV whereas γ = 5eV .

Figure 1.6: Some response functions describing the Lorentz model. The plasma frequency is
Ωp = 16eV , γ = 5eV and the transverse frequency is ω0 = 6eV .
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Figure 1.7: Complex frequency plane for the direct and inverse dielectric function in the
Lorentz model. The upper half-plane can not contain zeroes and poles because of the causality
principle, crosses indicate poles while circles indicate zeroes.

where the imaginary part is a Lorentzian curve centered at ω = ω0 with an half height
amplitude related to γ. This absorption peak, plotted in figure 1.6, represent the resonance
between the perturbation field and the proper frequency of the electrons, far from ω0 the
absorption of the medium is almost negligible. ω0 depends on the nature of the chemical
bonds of the materials, many different restore terms can be included into the differential
equation (1.112) corresponding to different proper frequencies ωn of the medium, this issue
will be discussed later on.
Imposing ε̄1 = 0 one gets a new mode at ω , ω0 for γ small, together with the old plasmon
excitation ω =

√
Ω2

p + ω2
0, the plasmon is shifted to higher frequencies by the presence of ω0.

The new excitation is a transverse one, it can be related to the absorption of light. In this
case the two solutions correspond to a pole and a zero in the complex plane at frequencies
ω =
√
γ2/4 + ω2

0 − iγ/2 and ω =
√
γ2/4 + Ω2

p + ω2
0 − iγ/2 respectively, they are sketched in

figure 1.7 for ε̄ and 1/ε.

Generalized Lorentz model All semiconductors and insulators usually present more than
a single transverse absorption frequency ω0, see figure 1.8 (b), even if it is always possible to
determine the strongest one, an accurate description requires more than a single transverse
frequency. In all the transition metals, in which d and f orbitals are partially occupied, a
number of localized electrons exist together with the free electron gas, the Drude model must
be integrated with the Lorentz one in order to account for the strong transverse absorption
occurring at certain specific frequencies, see figure 1.8 (a). A generalization of the dielectric
function

ε̄(ω) = 1 +
∑

i

f2
i Ω2

p

ω2
i − ω2 − iγiω

(1.114)

can be built introducing the oscillator strength fi, it gives a different weight to the different
optical transitions occurring at frequency ωi. To recover the Drude metallicity it is sufficient
to put one of the ωi equal to zero. As it will be shown in the next section, the oscillators
strength must satisfy the constrain ∑

i

f2
i = 1 (1.115)

in order to preserve the total electron density of the material. The generalized Lorentz
model behaves exactly as the previous ones: some zeroes and poles, describing longitudinal
and transverse medium excitations, can be found solving the equation ε1 = 0.
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Figure 1.8: Experimental measurement of the imaginary part of the dielectric function for
(a) copper and (b) silicon. (c) and (d) represent two rough attempts to use the generalized
Lorentz model to fit the experimental data (circles). In the case of copper a Drude term
has been used together with three different Lorentz terms, for silicon only two Lorentz terms
have been used.
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In all the classical models treated above, the q dependence has been neglected, simple models
to include the spatial dispersion can be found in references [4] and [5].

1.9 Sum rules

In all the previously introduced dielectric function models, one finds that for large frequencies
i.e. ω ) ωi for any i, the real part of the dielectric function follows the Plasma model. On
the other hand, for large ω, the imaginary part of the response function goes rapidly to zero,
becoming negligible. One can use this result together with the second Kramers-Kronig’s
relation (1.206) to find certain constrains that the dielectric function must satisfy. At high
frequency ω ) ωi so one can use the Plasma model into the LHS of the Kramers-Kronig’s
relation

1 +
Ω2

p

ω2
= 1 +

2
π
℘

∞∫

0

ε̄2(ω′)ω′

ω′2 − ω2
dω′ (1.116)

but for large frequency ω ) ω′ and one can neglect ω′ in the denominator reaching the rule:

∞∫

0

ε̄2(ω′)ω′dω′ =
π

2
Ω2

p (1.117)

this rule is a very powerful tool to check experimental spectroscopy measurements and the-
oretical models. A similar procedure applied to the second Kramers-Kronig’s relation in
(1.204) the leads to:

∞∫

0

ε−1
2 (ω′)ω′dω′ =

π

2
Ω2

p (1.118)

So the two functions obtained multiplying ε̄2 and ε−1
2 by ω must subtend the same area.

Another rule, valid only for semiconductors and insulator can be found combining definition
(1.57) and the conductivity Kramers-Kronig’s relation:

σ̄1(ω) = − 2
π
℘

∞∫

0

σ̄2(ω′)ω′

ω′2 − ω2
dω′

σ̄1(ω) = − 1
2π2

℘

∞∫

0

[
ε̄1(ω′) − 1

]
ω′2

ω′2 − ω2
dω′

(1.119)

but in a semiconductor or in a insulator the static conductivity is zero3, i.e. σ̄1(ω → 0) → 0,
this means:

∞∫

0

[
ε̄1(ω′) − 1

]
dω′ = 0 (1.120)

the area subtended by the real part of the dielectric function of an insulator or a semiconduc-
tor, subtracted by 1, must be zero. Finally, integrating both sides of the London’s transform
definition (1.207):

∞∫

0

[
ε̄(iω) − 1

]
dω =

2
π

∞∫

0

dω

∞∫

0

dz
ε̄2(z)z
z2 + ω2

(1.121)

3This can be obtained, for example, starting from the Lorentz model. The conductivity trend for the
Lorentz model is plotted in figure 1.6.
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Figure 1.9: Different approximations for the imaginary part of the silicon dielectric function.
Circles represent the experimental values, dot-dashed line represents the DFT calculation,
dotted line represents the GW calculation and continuous line represents the BSE calculation.
The GW correction enlarges the optical gap, whereas the inclusion of excitonic effects changes
the distribution of spectral weight magnifying the lower energy peak. Figure adapted from
reference [6].

and using the definite integral:
∞∫

0

dω

z2 + ω2
=

π

2z
(1.122)

one finally gets
∞∫

0

ε̄2(z)dz =
∞∫

0

[
ε̄(iω) − 1

]
dω (1.123)

The absorption spectrum and its London’s transform must subtend the same area. This is a
useful achievement because a simulated or an experimental absorption spectrum can contain
very sharp spikes, background noise an many other features that make it very hard to be
integrated, whereas the London’s transform is a very smooth function.
The sum rule (1.118) must be satisfied by all the classical models shown in section 1.8,
in particular it must be satisfied by the Drude and the Lorentz models. The generalized
Lorentz model is nothing but a linear combination of Drude and Lorentz terms weighted by
the oscillator strengths fi. So, by linearity, one gets for the generalized Lorentz model:

∞∫

0

ε−1
2 (ω′)ω′dω′ =

π

2
Ω2

p

∑

i

f2
i (1.124)

and it becomes clear that fi must be subjected to the constrain
∑

i f2
i = 1 in order to let the

generalized Lorentz model satisfy rule (1.118) too.

1.10 Response functions and many body interaction

Within the quantum mechanics theory, the simpler possibility to treat a free non-interacting
electron gas is to describe each electron by means of a plane wave, this problem has been
solved analytically by Lindhard [7] and generalized by Mermin [8]. The subsequent step is
to add a periodic potential term in the hamiltonian to account for the presence of a crystal
lattice. In this case the solutions of the hamiltonian are represented by Bloch’s functions and



44 Electrodynamics of continuous media

the energy dispersion of the system gives rise to an energy band structure.
In a genuine many-body approach, the independent particle wavefunctions must be replaced
by linear combinations of Slater’s determinants, or, in the second quantization formalism, one
has to move to the Fock’s space of occupation numbers sets. In this framework, the Kubo’s
fluctuation-dissipation theorem can be reformulated to show that the response function of
a perturbed system is a contraction of the two particle Green’s function called polarization
propagator, i.e. the many-body counterpart of the electric susceptivity χ [9]. The most
general many body treatment of the medium response as been proposed by Hedin [10] and
is based on the self-consistent solution of a five equation system, many other many body
techniques are nothing but a simplification of the Hedin’s approach.
One can always map a many-body problem into an independent particle problem by means of
an effective independent particle hamiltonian, the many-body interaction hidden within. The
system can be described again by a set of independent particle eigenfunctions {ψj} and the
corresponding eigenvalues Ej solutions of the new effective hamiltonian . This is the spirit of
techniques such as the Hartry-Fock (HF) self-consistent approach or the Density Functional
Theory (DFT). Unfortunately HF calculations require a huge computational effort and can
not be applied to large molecules or complicated bulk materials. On the other hand, DFT
theory guarantee correct results only for the ground state of many-body systems. This fact,
together with the approximation made for the unknown functionals, leaves the DFT unable to
predict the right shape of empty bands, the correct band gap of semiconductors, the correct
bond length and bond angles of certain molecules and the right dispersion interaction (i.e.
van der Waals and Casimir-Polder forces) [11]. Despite of this limitation DFT is currently
employed in the determination of dielectric properties of many systems with satisfactory
results.
In the following, some approximate quantum model for the many-body dielectric function
will be presented. These approximations are based on the solution of an hamiltonian whose
eigenfunctions are linear combination of single particle wavefunctions (atomic orbitals, Bloch
states ecc.) like in the Hartree case or in the Kohn and Sham scheme for the DFT. Such
models are unable to account for the correlation phenomena, to this aim an antisimmetrized
Slayter’s determinant must be used, like in the HF theory.

Random Phase Approximation (RPA) This is a very general quantum model that
requires only the capability to solve the single particle hamiltonian H0 describing the un-
perturbed medium in order to get its eigenvalues Ei and eigenfunctions ψi. Than apply-
ing the perturbation theory on the density matrix equation (1.158), with the hamiltonian
H = H0 + Hext(t), one is able to write the dielectric function of the medium in terms of
Ei and ψi. The perturbation Hext(t) can be transverse [5], longitudinal [12, 2] or both of
them [13, 14], as in equation (1.16). The dielectric function enters the problem thanks to
the Maxwell’s equations (1.76) that links charges and currents densities to the perturbation
potentials or fields, where the charge and current densities, η̂ and Ĵ, are carried out starting
from the density matrix ρ̂:

ρ̂ =
∑

i,j

ρ̂i,j =
∑

i,j

|ψj〉〈ψi| ρ(x,x′) = 〈x′|ρ̂|x〉

η̂ = Tr{ρ̂} =
∑

i

ρi,i Ĵ = Tr{ρ̂Ĵ} =
∑

i

∑

j

ρi,jJj,i

η(x) =
∑

i

〈x|ψi〉〈ψi|x〉 =
∑

i

fi|ψi(x)|2

(1.125)

here fi are the occupation numbers of the electrons for different eigenstates of the medium,
i.e. the eigenvalues of the density operator. If one uses only the longitudinal perturbation
the charge equation is enough, if one is interested in applying also a transverse perturbation,
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Figure 1.10: Band structure of a medium and its electron transitions. Black lines represent
allowed transitions, red lines represents transitions forbidden by occupation numbers. Con-
tinuous lines represent vertical interband transitions, dot dashed lines represent non vertical
interband transitions and dotted lines represent intraband transitions. Gray dashed line
represent the Fermi level.

then the current equation must be used. This is because the charge equation rules only
the longitudinal electric field whereas the current equation contains both transverse and
longitudinal fields (see appendix B). Of course, if the medium is a cubic one, the longitudinal
and transverse responses become identical in the limit of q → 0, as discussed in section 1.3.
For the seek of clearness the transverse and longitudinal dielectric functions will be presented
separately: with the scalar potential

φ(x,t) =
∑

q

φ(q,ω)eiq·xe−iωt+γt (1.126)

adiabatically turned on, one gets the longitudinal dielectric function:

ε̄(q,ω) = 1 − 4πe2

q2V

∑

K,n,n′

〈K + q, n′|K, n〉〈K, n|K + q, n′〉
EK+q,n′ − EK,n − !ω − iγ! (fK+q,n′ − fK,n) (1.127)

here the generic wavefunctions ψi have been replaced with Bloch’s functions |ψi〉 = |K, n〉eiK·x

and the i index has been split into a band index n and a momentum index K. γ comes from
the adiabaticity of the perturbation and it is responsible for the presence of an imaginary
part in the dielectric response. V is the volume of the lattice unit cell. As in the classical
models zeroes and poles of this dielectric functions represent the collective or single particle
excitations of the medium. A plasmon excitation exist when the second term of the RHS
equals 1. Transverse (optical) excitations exist for !ω = EK+q,n′ − EK,n with an imaginary
part that shifts the poles down in the lower half-plane of complex frequencies in order to fulfill
the causality principle. This excitations correspond to absorption or emission of photons by
the electrons of the medium that jump from an occupied to an empty Bloch’s state labeled
by the quantum numbers K + q, n′ and K, n. The occupation of the states is expressed by
the difference fK+q,n′ − fK,n. Certain electron transitions are forbidden by the symmetry of
the system, in that case, even if fK+q,n′ −fK,n (= 0 the corresponding term of the sum vanish
because 〈K + q, n′|K, n〉 = 0. The three possible kinds of optical transitions are sketched
in figure 1.10, intraband transitions occur when n = n′, interband transitions occur when
n = n′ and they can be vertical if q = 0 or non-vertical if the photon momentum q that
is transferred to the electron is not negligible (q (= 0). Intraband transitions occur only in
metals, where the Fermi level cross the valence band and, within the same band, some states
are occupied and some other are empty. In semiconductors and insulators, where the Fermi
level lie inside the band gap, the valence band is completely filled and the conduction band
is completely empty, only interband transitions occur. From the infrared to the ultraviolet
region of the electromagnetic waves spectrum, the photon momentum is negligible, q , 0,
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and only vertical transition are allowed. In the small q limit this model can be reconduced to
a generalized Lorentz model where the intraband term is responsible for the Drude behaviour
while the interband terms give rise to Lorentzian peaks. The first step is to use the K · p
approximation to expand the matrix element in series for q → 0, it is convenient to treat
separately the n = n′ term of intraband transitions:

ε̄(q,ω) = 1 +
4πe2

q2V

∑

K,n

(fK+q,n − fK,n)
!ω + iγ! −

−4πe2!2

m2V

∑

K,n$=n′

|〈K, n′|q̂ · p̂|K, n〉|2

EK,n′ − EK,n − !ω − iγ!
fK,n′ − fK,n

(EK,n′ − EK,n)2

(1.128)

where q̂ is the versor of the perturbation momentum while p̂ represent the momentum
operator associated to the electrons participating to the response, i.e. involved in the medium
excitation. For the interband term it has been sufficient to put q = 0 whereas in the intraband
case this causes a divergence. To overcome this problem one must play some algebraic trick
but in the end

ε̄(q,ω) = 1 +
4πe2!2

m2V

∑

K,n

δ
(
EFermi − EK,n

) |〈K, n|q̂ · p̂|K, n〉|2

!2ω2 + iγ!2ω
−

−8πe2!2

m2V

∑

K,n$=n′

|〈K, n′|q̂ · p̂|K, n〉|2
(EK,n′ − EK,n)2 − !2ω2 − iγ!2ω

fK,n

(EK,n′ − EK,n)

(1.129)

a trick as been played also to the denominator of the interband term. Now using the plasma
frequency definition, placing !ωK,n,n′ = EK,n′ − EK,n and defining the oscillators strength
as:

fK,n,n′ = 2fK,n
|〈K, n′|q̂ · p̂|K, n〉|2

mN!ωK,n,n′

fK,n,n = δ
(
EFermi − EK,n

) |〈K, n|q̂ · p̂|K, n〉|2

mN

(1.130)

one obtain the classical generalized Lorentz model4

ε(ω) = 1 +
∑

K,n

Ω2
p

ω2 + iγω
fK,n,n −

∑

K,n$=n′

Ω2
p

ω2
K,n,n′ − ω2 − iγω

fK,n,n′ (1.131)

N being the number of electron in the unit cell, it guarantees the respect of the rule (1.115).
Notice that, in the case of a semiconductor, the Fermi level lies inside the gap and the
Dirac’s delta function δ

(
EFermi − EK,n

)
appearing in (1.130) is always zero: no intraband

contribution exist for semiconductors and insulators.
A more complicated but analogous treatment can be performed in the case of a transverse
perturbation

A(x,t) =
∑

q

eA(q,ω)eiq·xe−iωt+γt (1.132)

this leads to an expression analogous to the longitudinal dielectric function (1.129), but now
the matrix element is:

〈K, n|ê · p̂|K, n〉 (1.133)
4One may notice that, in the classical models, the transverse frequencies ωi represent the orbital frequencies

with which the electrons move of uniform circular motion around the nucleus, whereas, in the quantum model
ωK,n,n′ represent the energy difference between two quantized levels. The Bohr correspondence principle
states that, for large quantum numbers, quantum physics meets the classical one. In the case of an isolated
atom, for large quantum numbers, the frequency of each quantum orbit is almost equal to the frequency
difference between two consecutive orbits, i.e. ωK,n,n′ → ωi
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Figure 1.11: Comparison between imaginary parts of the dielectric function with (continuous
line) and without (dashed line) local field effect for (a) a beryllium atom and (b) an isotropic
copper bulk. Figure adapted from referece [15].

where ê is the polarization versor, perpendicular to q̂ by definition of electromagnetic wave.
With the proper choice of the reference system, the perturbation vector q̂ can entirely lie
on the x-axe, in that case the longitudinal response function (1.129) coincides with the xx
component of the tensor, and, by analogy with the convention used in (1.37), it is labeled as
εLL. Now q̂ · ê = 0 and the transverse dielectric function enters the matrix elements εT1T1

and εT2T2 and in the mixing off diagonal term εT1T2 = εT2T1 . If one is interested in the
exploitation of the other off diagonal terms, mixing the transverse and longitudinal response,
one must take into account both the transverse and the longitudinal perturbations at once,
following the Adler way [13].

This quantum model comes from a single particle picture and can be found as the non
interacting limit of a many-body treatment, as Ehrenreich and Cohen shown [12].
When this model is applied to a free non interacting electron gas, whoese wavefunctions are
described by plane waves, the model takes the name of Lindhard model [7].

Adler and Wiser approximation This model is the simple extension of the previous
one with the inclusion of the local field effect described in section 1.5, in the case of the
longitudinal response, the perturbing potential is:

φ(K,t) =
∑

K,G

φ(K,G,ω)ei(K+G)·xe−iωt+γt (1.134)

and, in the limit of small K, the terms of the expression (1.73) becomes:

ε̄(K + G,K) → 4πe2

mV !
∑

K,n$=n′

〈K, n|eiG·x|K, n′〉〈K, n′|q̂ · p̂|K, n〉
ωK,n,n′(ωK,n,n′ − ω − iγω)

(fK,n′ − fK,n)

ε̄(K + G′,K + G) → δG′,G − 4πe2

V !
1

|G|2
∑

K,n$=n′

×

× 〈K, n|eiG·x|K, n′〉〈K, n′|e−iG′·x|K, n〉
ωK,n,n′(ωK,n,n′ − ω − iγω)

(fK,n′ − fK,n)

ε̄(K,K + G′) → 4πe2

mV !
1

|G′|2
∑

K,n$=n′

〈K, n|q̂ · p̂|K, n′〉〈K, n′|e−iG′·x|K, n〉
ωK,n,n′(ωK,n,n′ − ω − iγω)

×

× (fK,n′ − fK,n)

(1.135)

while the term ε̄(K,K) for K → 0 is nothing but the expression (1.129) derived by Ehren-
reich and Cohen, so that the other terms can be seen as a correction to the previous model.
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Wiser shown that such a corrections involves, at least for small K, only the interband con-
tribution to the dielectric function, the intraband term corrections cancel out [16]. The local
field effect is extremely important for strongly anisotropic and inhomogeneous media or for
low dimensional systems such as polymer crystal, surfaces, nanowires, molecules, or isolated
atoms. Figure 1.11 shows the very different contribution of the local field corrections for a
single beryllium atom and an homogeneous copper bulk, in the latter case the corrections
are almost negligible.

It has been shown, in the preceding sections, that the optical properties of linear media
depends upon occupied and empty states, the failure in treating empty states, makes the DFT
results only a rough starting point in the optical properties calculation. The absorption and
emission processes involve the promotion of a valence electron onto a conduction band and
the corresponding creation of an hole, as the consequence or the starting point for the photon
absorption or emission. Even if they are non-local, the approximate DFT functionals are not
able to account properly neither for the relaxation of the electronic structure due to the
presence of the hole, nor to account for the screening played by the medium in the electron-
hole interaction. The GW and BSE techniques allow one to improve the energy dispersion
structure and wavefunctions of the system, including a part of the many body interaction of
the hole with the excited electrons of the system. Figure 1.9 shows a comparison between
the silicon experimental absorption spectrum and the ones obtained with different theoretical
techniques. The DFT absorption spectrum is the lowest level calculation, obtained directly
via the DFT eigenvalues and eigenfunctions, the gap is underestimated with respect to the
experimental one. GW correction reopen the gap right shifting the spectrum, in the case of
bulk silicon this is the only visible effect of GW correction, for some other materials the shift
can be non-rigid leading to a deformation of the spectrum and to a change of the spectral
weights. Increasing the degree of accuracy, one can use a BSE approach to account for the
interaction of the hole with the corresponding excited electron, the so called exciton. The
BSE correction move spectral weight from the right to the left, to lower energy. The concepts
of ab-initio optics and all the techniques that go beyond the DFT are reviewed in reference
[6].

1.11 The Wood and Ashcroft model

Starting from the previous quantum model, D.M. Wood and N.W. Ashcroft derived a di-
electric tensor that describes the response of a medium whose non interacting electrons are
strongly confined in one or more dimensions [14]. As in the ordinary Lindhard model [7],
the non interacting electrons are described by plane waves, but now these plane waves must
satisfy certain boundary conditions. If the boundary conditions are applied only along one
direction the model describes an ultra-thin metallic film (quantum well), if the boundary
conditions are applied along all the three directions the model describes the response of a
quantum dot (and it is some times named the particle in a box model). The electrons con-
fined in the thin film of figure 1.12 (a) are described by the eigenfunctions of an infinitely
deep square quantum well:

ψk‖,n(x) =
√

2
V

eik‖·x‖sin(k⊥z) =
√

2
V

eik‖·x‖sin

(
nπ

d
z

)
(1.136)

with eigenvalues:

Ek‖,n = E‖ + E⊥ =
!2

2m
(k2

‖ + k2
⊥) =

!2

2m

(
k2
‖ +

n2π2

d2

)
(1.137)

k‖ and x‖ are entirely contained in the xy plane, imposing the quantization conditions along
z one gets k⊥ = nπ/d with n positive integer.
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Figure 1.12: (a) Sketch of the infinitely deep quantum well used by the Wood and Ashrcoft.
(b) Ratio n(d)/n0 as a function of dkF /π for kF = 8.5 × 1091/m, the same plot can be
obtained keeping d fixed for different kF values.

The confinement effects in a homogeneous electron gas enter the dielectric response in many
ways, first of all they affect the electron density that becomes a function of the film thickness
d. The electron density can be calculated starting from the density of states:

n(E) =
∑

n

A

4π2

∫
dkδ(E − Ek‖,n) =

=
∑

n

Am

2π!2

∫
dE‖δ(E − E‖ − E⊥) =

Am

2π!2

∑

n

θ

(
E − !2π2n2

2md2

) (1.138)

where A is the film surface, the integral definition of the step function θ has been used. Now
the electron density can be obtained integrating the density of states over the energy, up to
the Fermi’s energy EF :

n =
2

Ad
·

EF∫

0

n(E)dE =
m

π!2d

∑

n

EF∫

0

θ(E − n2E0)dE (1.139)

where the factor 2 appears to account for the fermionic nature of the electrons, Ad is the
thin film volume and E0 = !2π2n2/2md2. Using the step function properties the sum over
n can be made explicit as:

n(d) =
m

π!2d

[ EF∫

E0

dE +
EF∫

4E0

dE + ... +
EF∫

m2
0E0

dE

]
=

m

π!2d

(EF − E0 + EF − 4E0 + ...) =
m

π!2d

[
m0EF − E0

m0∑

n=1

n2

] (1.140)

where m0 represents the integer part of mF = kF d/π ≥ m0. The corresponding density for
a free electron gas n0 is given by:

n0 =
k3

F

3π2
=

(2mEF )3

3π2!6
(1.141)

The ratio n(d)/n0:
n(d)
n0

=
3m0

2mF

(
1 − 1

m0m2
F

m0∑

n=1

n2

)
(1.142)
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Figure 1.13: Sketch of the quantization of electrons wavefunctions for a thin film of thickness
D, the electron charge can spill-out of the material of a quantity ∆. The parabolic band
structure and the sliced Fermi surface of the system are also shown.

is plotted in figure 1.12 (b), cusps are present each time that a new discrete level fall below the
Fermi’s energy. Notice that, for large d values or large Fermi’s energy, m0 and mF ) m0−mF

or in other words m0 , mF and the ratio n(d)/n0 goes to one. When the well is large or
when a huge number of discreet energy levels is filled, the quantization effects are small and
one gets again the free electron gas behaviour.
A first problem arise: the d dependent electron density does not preserve the total charge.
Imagine to have a free electron gas of density n0, within the jellium model of metals, a positive
charge equal to n0 must exist to balance the negative charge keeping the medium neutral.
This positive charge is naturally due to the presence of the ionic lattice. Now imagine to slice
away the ionic lattice until a thin film of thickness d is reached: the positive charge density is
again n0 but, due to the confinement, the electron density is now given by (1.140). Positive
and negative charges are no more balanced:

n(d)Ad (= n0Ad (1.143)

i.e. the total negative charge is different from the total positive charge of the thin film. To
avoid this problem the electrons should be left free to spill-out of the film. This should be
done describing the film with a finite potential well, but in this way the boundary conditions
becomes too complicated and the model can not be solved analytically. Another possibility
is to use again an infinitely deep squared well, but with a thickness d different from the ionic
one. Naming D the ionic film thickness, d can be calculated using the relation (1.143):

nAd = n0AD −→ d =
n(d)
n0

D (1.144)

and the electron spill-out can be defined as ∆ = (d − D)/2. This new thin film model is
sketched in figure 1.13 together with its electronic band structure and the Fermi’s surface.
The spill-out ∆ depends upon the Fermi’s energy EF and the ionic thickness D, for large
ionic thicknesses (m0 , mF ) it reaches a constant value ∆ = 3π/8kF that is a bulk property
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Figure 1.14: (a) Spill-out ∆ as a function of the ionic thickness D, continuous line kF =
8.5 × 1091/m, dashed line kF = 6 × 1091/m, gray lines represent the limiting bulk values.
(b) Static value of the zz component of the dielectric tensor as a function of dkF /π for
kF = 8.5 × 1091/m.

of each material. Figure 1.14 (a) shows a plot of ∆ as a function of D for thin films of
different densities.

To calculate the dielectric response one has to use the RPA, described in the previous
section. In particular it can be shown that, with some algebraic tricks, the definition (1.129)
can be rewritten as:

ε(ω) = 1 + −
Ω2

p

ω2
− 8πe2

m2Adω2

∑

k‖,n,n′

(Ek‖,n′ − Ek‖,n)|〈ψk‖,n|q̂ · p̂|ψk‖,n〉|2

(Ek‖,n′ − Ek‖,n)2 − !2ω2
fk‖,n (1.145)

notice that this is not a simple separation of the Drude intraband term: the sum over the
initial and final states accounts again for all the transitions between states of the same
band. The imaginary part has been suppressed for the seek of simplicity, this form of the
dielectric function holds even for a non zero γ value. The quantization along the z direction
introduces an anisotropy in the dielectric response, in fact all the off-diagonal components
of the dielectric tensor vanish, and one get εxx = εyy (= εzz. This anisotropy is due to the
dipole matrix elements appearing in the previous ε expression, for the x and y components
one has:

〈ψk‖,n|px|ψk‖,n〉 = 〈ψk‖,n|py|ψk‖,n〉 = −i!k‖δn,n′ (1.146)

whereas in the z case one has:

〈ψk‖,n|pz|ψk‖,n〉 = −i!2
d

n′n

n2 − n′2

(
1 − (−1)n′+n

)
(1.147)

Notice that px and py are non vanishing only for n = n′ whereas, in this condition, the
pz vanish: a product of two different p components is always zero, i.e. all the off-diagonal
components of the dielectric tensor vanish. So expression (1.145) takes the form:

εij(ω) = 0 ∀ i (= j

εxx(ω) = εyy(ω) = 1 −
Ω2

p

ω2

εzz(ω) = 1 −
Ω2

p

ω2
− 128e2

Admπω2

∑

k‖,n,n′

fk‖,n
n′2n2

n2 − n′2
1 − (−1)n+n′

(n2 − n′2)2 − x2

(1.148)

where the plasma frequency Ωp contains the density of the confined gas n(d) and x =
2mωd2/π2!. The εzz(ω) component can be adjusted further: with the assumption that
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the thin film is infinitely extended along the xy plane, the sum over k‖ can be replaced by a
bidimensional integral and:

∑

k‖

fk‖,n =
A

4π2

∫
dk‖fk‖,n =

A

2π

∫
kdkf

(
EF − !2π2n2

2md2
−

!2k2
‖

2m

)
=

=
Am

!2π

EF −!2π2n2/2md2∫

0

dE‖ =
Am

!2π

(
EF − !2π2n2

2md2

)
θ

(
EF − !2π2n2

2md2

) (1.149)

where θ is the Heaviside step function. Concluding:

εzz(ω) = 1 −
Ω2

p

ω2
− 64e2

d3mω2

∞∑

n′=1

m0∑

n=1

(m2
F − n2)

n′2n2

n2 − n′2
1 − (−1)n+n′

(n2 − n′2)2 − x2
(1.150)

the step function disappeared but now the sum over n goes from 1 to m0 only. While the
quantized electron gas behaves as an usual Drude metal along the x and y directions, it has a
semiconducting character along the z direction. The n and n′ sums describe all the possible
transitions between the semi-occupied bands, the Drude term cancels out with the n = n′

term giving rise to a finite static value of the dielectric function. In fact, at low frequency
one can expand the sum over n′ to get:

∞∑

n′=1

n′2

n2 − n′2
1 − (−1)n+n′

(n2 − n′2)2 − x2
, − π2

32n2
− x2π2

1536n4

(
15
n2

− π2

)
(1.151)

retaining only the first order term one ends up with:

εzz(ω → 0) , 1 −
Ω2

p

ω2
+

2π2e2

mω2d3

m0∑

n=1

(m2
F − n2) =

= 1 − 4πe2

mω2n(d)
+

2π2e2

mω2d3
(m0m

2
F −

m0∑

n=1

n2) = 1

(1.152)

to reach the cancellation result, (1.140) has been used. Including the second order term of
the expansion (1.151) the static value becomes:

εzz(0) = 1 +
dme2

π2!2

1
6
[
15(S4m

2
F − S2) + π2(m0 − S2m

2
F )
]

Sq =
m0∑

n=1

1
nq

(1.153)

This expression diverges only for big d values, when the confinement is negligible, recovering
the ordinary bulk metal behaviour.
Following the Wood and Ashcroft work [14], it is possible to calculate the sum of n′ series:

εzz(ω) = 1 −
Ω2

p

ω2
− 64e2

d3mω2

m0∑

n=1

(m2
F − n2)

n2

2x2
Ξ(n, x) (1.154)

with:

Ξ(n, x) =






π

2

√
n2 − x tg

(π
2

√
n2 − x
)

+
π

2

√
n2 + x tg

(π
2

√
n2 + x
)

n even
π

2

√
n2 + x cotg

(π
2

√
n2 + x
)

+
π

2

√
n2 − x cotg

(π
2

√
n2 − x
)

n odd
(1.155)
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Finally, the extension of this model to dissipative media (non zero γ value) is not so straight
forward, a solution has been proposed by N. D. Mermin [8].

Appendix A: Linear response theory

This general theory it is useful in the study of the interaction of external perturbation with
a medium. It provides a relation between some physically observable quantity and another
observable used as a perturbation. Consider a system governed by the hamiltonian H0, if
an external force K(t) is applied to the system from the infinite past (t = −∞) when the
system was in thermal equilibrium, the hamiltonian becomes:

H = H0 + Hext(t) = H0 − A(t)K(t) (1.156)

where A(t) is the conjugate quantity of the applied perturbation K(t). Using classical sta-
tistical mechanics the system evolves in time driven by the Liouville’s equation:

−∂ρ(t)
∂t

=
{
H, ρ(t)

}
= −iLρ(t) (1.157)

the brackets in the RHS of the equation represent the Poisson’s operator, ρ(t) is the distri-
bution function representing a certain statistical ensemble, L is called Liouville’s differential
operator. In the framework of quantum mechanics, the system evolves according to the
Schroedinger equation for the density matrix ρ̂(t):

−∂ρ̂(t)
∂t

=
i

!
[
Ĥ, ρ̂(t)

]
= −iL̂ ˆρ(t) (1.158)

now the brackets on RHS indicate a commutation operator. Thanks to the linearity of the
Poisson’s brackets (as well as of the commutator), equations (1.157) and (1.158) become

−∂ρ(t)
∂t

=
{
H0, ρ(t)

}
+
{
Hext, ρ(t)

}
= −iL0ρ(t) − iLextρ(t) (1.159)

If the applied perturbation is small a perturbative expansion can be performed as follow:

ρ(t) = ρ0 + ∆ρ(t) + O[ρ(t)2] (1.160)

ρ0 is the equilibrium density, defined as:

ρ0 = ρ(−∞) = Ce−βH0 (1.161)

Using (1.160) into (1.157) and (1.158) and neglecting second order terms, one obtains a non
homogeneous, first order, ordinarily differential equation in ∆ρ(t), whose solution is:

∆ρ(t) = i

t∫

−∞

dt′ ei(t−t′)L0Lext(t′)ρ0 (1.162)

Both in the classical and quantum statistical mechanics, the expectation value for an ob-
servable operator is given by the trace of the product between the operator matrix and the
density matrix, or equivalently, the integration of the operator function over all the phase
space weighted by the distribution function. Also the variation of an observable can be
expressed in the same way using the variation of the density due to the perturbation:

〈∆̂B(t)〉 = Tr

{
∆̂ρ(t) B̂

}
〈∆B(q, p, t)〉 =

∫
dx
∫

dp∆ρ(t) B(x,p) (1.163)
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and using now the solution (1.162) one comes to:

〈∆̂B(t)〉 = Tr

{
i

t∫

−∞

dt′ ei(t−t′)L0Lext(t′)ρ0 B

}
=

= i

t∫

−∞

dt′ Tr

{
ei(t−t′)L0 Lext(t′) ρ0 B

}
=

= −i

t∫

−∞

dt′ Tr

{
ρ0 Lext(t′) ei(t−t′)L0 B

}
=

(1.164)

the permutations needed to change the order of the operators, in the last step of previous
equation, are in odd number, this change the sign of the trace. In classical statistical me-
chanics the application of the operator ei(t−t′)L0 to an observable lead to the time evolution
of the observable as if the system was not perturbed, in other words:

ei(t−t′)L0 B(q, p,−∞) = B(q, p, t − t′) (1.165)

In the quantum treatment this becomes:

ei(t−t′)L0 B̂(−∞) = ei(t−t′)H/!B̂(−∞)e−i(t−t′)H/! (1.166)

that is again the evolution of the operator driven by the unperturbed hamiltonian term only.
Finally, using the previous definition of Liouville’s operator, one reaches the expression:

〈∆B(t)〉 =
t∫

−∞

dt′ K(t′)Tr

{
ρ0

{
A(t′), B(t− t′)

}}
=

t∫

−∞

dt′ K(t′)〈
{
A(t′), B(t− t′)

}
〉 (1.167)

K(t) is just a function and it can come out of the Poisson’s brackets, the average present
in the last step is an ensemble average exactly like (1.163), it takes the name of response
function:

〈∆B(t)〉 =
t∫

−∞

dt′ K(t′)φAB(t − t′) (1.168)

A response function φAB(t − t′) is a correlation function that relates together the pertur-
bation observable A and the response observable variation ∆B throughout a convolution,
the response variation at time t depends on the values assumed by the perturbation during
past time t′ ≤ t. This causality principle gives the response function some interesting prop-
erties that will be analyzed later on. A more general theory allow to include also spatial
non-locality:

H = H0 + Hext(t) = H0 −
1
V

∫
dx A(x, t)K(x, t) (1.169)

Lext becomes an integral operator, and solution (1.162) leads to:

〈∆B(x, t)〉 =
t∫

−∞

dt′ Tr

{
ρ0

{ 1
V

∫
dx′A(x′, t′)K(x′, t′), B(x, t − t′)

}}
=

=
1
V

t∫

−∞

dt′
∫

dx′ K(x′, t′)Tr

{
ρ0

{
A(x′, t′), B(x, t − t′)

}}
=

=
1
V

t∫

−∞

dt′
∫

dx′ K(x′, t′)φAB(x,x′, t − t′)

(1.170)
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now the value of the response in each single point x of the volume V depends on the value
assumed by the perturbation elsewhere.
Two events separated by an infinite distance or by an infinite time interval can not be causally
related, this means that the response function relating them must vanish if |t − t′| → ∞ or
if |x − x′| → ∞:

φAB(x,x′, t − t′) → 0 (1.171)

Thanks to the convolution theorem, in reciprocal space equation (1.170) becomes5:

〈∆B(q,ω)〉 =
1
V

∫
dq′ K(q′,ω)χAB(q,q′,ω) (1.172)

Under the further assumption of spatial translational invariance, i.e. φAB(x,x′, t − t′) =
φAB(x − x′, t − t′), one gets a simple algebraic equation:

〈∆B(q,ω)〉 = χAB(q,ω) K(q,ω) (1.173)

where:

χ(q,ω)AB =
1
V

∫
dx
∫

dt φAB(x, t)eiq·x−iωt (1.174)

is the Fourier transform of the response function. Notice that for the time variable, the
translational invariance is required by the causality principle and every physical response
function can only be a function of t − t′.
The theory can be improved including also higher terms in the expansion (1.160), this will
lead to non linear contributions needed in the case of strong magnitude of the perturbation.
Equation (1.170) is extremely general and the average contained in the response function can
be interpreted in many different ways, it can be regarded as a simple macroscopic average,
as an ensemble average, as a quantum expectation value on a single well defined quantum
state or as a statistic expectation value on an admixture of quantum states.
Since the response function relates together two observables, it must be a real function.
Its Fourier’s transform has therefore both real and imaginary components. The imaginary
part is related to dissipation phenomena, as generally described by the Kubo’s fluctuation-
dissipation theorem. Some specific example will by given in the following sections, for a
detailed analysis of the problem see references [17, 18].
A final remark concerns the scalar or tensorial nature of the response function, if it relates
two scalar quantities it is a scalar function, if it relates a scalar and a vector or two vector,
it can be either a scalar, a vector or a tensor:

〈∆B(x, t)〉 =
1
V

t∫

−∞

dt′
∫

dx′ Kα(x′, t′)φα(x,x′, t − t′)

〈∆B(x, t)〉α =
1
V

t∫

−∞

dt′
∫

dx′ Kα(x′, t′)φ(x,x′, t − t′)

〈∆B(x, t)〉α =
1
V

t∫

−∞

dt′
∫

dx′ φα,β(x,x′, t − t′)Kβ(x′, t′)

(1.175)

5Moving to reciprocal space, by means of Fourier transform, requires further considerations about time
causality, see appendix C.
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where a sum over repeated indexes is subtended and where the response functions are defined
has:

φα(x,x′, t − t′) = Tr

{
ρ0

{
Aα(x′, t′), B(x, t − t′)

}}

φα,β(x,x′, t − t′) = Tr

{
ρ0

{
Aβ(x′, t′), Bα(x, t − t′)

}} (1.176)

Appendix B: Decomposition of a vector field into transverse and
longitudinal parts

Any vector field that describes a real physical quantity can be uniquely decomposed into
two vector fields, one of which is irrotational and the other divergenceless. The uniqueness
of this decomposition is guaranteed by the Helmholtz’s theorem. Consider a vector field F
that satisfies the equation:

∇2W = −F (1.177)

W being a vector potential of F. The general solution of this equation is:

W(x) =
1
4π

∫
dx′ F(x′)

|x − x′| (1.178)

Now using the vector identity:

∇2W = ∇(∇ ·W) −∇× (∇W) (1.179)

and defining a scalar function U and a vector field A as follow:

∇ ·W = −U ∇× W = A (1.180)

one gets:
F = ∇U + ∇× A (1.181)

i.e. the well known Helmholtz’s result, notice that U and A have nothing to do with the scalar
and vector potentials. Defining a longitudinal component FL and a transverse component
FT:

FL = ∇U FT = ∇× A (1.182)

the field F can be written as:
F = FL + FT (1.183)

As a consequence of their definitions, the new transverse and longitudinal fields obey the
following relations:

∇× FL = 0 ∇ · FT = 0 (1.184)

The names transverse and longitudinal become more clear switching to reciprocal space:

q× FL = 0 q ·FT = 0 (1.185)

By definition, an electromagnetic wave is made of transverse fields only and obey the second
relation, a plasmon excitation can be represented with a longitudinal field only obeying the
first relation. Now it is convenient to introduce the dyad concept, suppose to have a generic
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vector, its longitudinal part is nothing but its projection along the q direction, to get it, one
should use the q versor:

FL = F · q̂ (1.186)

the projection is no more a vector, to recover the vectorial nature one must use again the q
versor

FL = FLq̂ = F · q̂q̂ (1.187)

the direct product of the two q versors is the longitudinal dyadic product 1L. The direct
product of two vectors is a nine components matrix. One can also define a transverse dyadic
product as follow:

1T = 1 − 1L (1.188)

here 1 is the unit matrix. So a vector can be decomposed by mean of dyads into two parts

F = F · 1L + F · 1T = FL + FT (1.189)

A tensor can be decomposed in four parts:

TLL = 1L · F · 1L TTT = 1T ·F · 1T

TLT = 1L · F · 1T TTL = 1T ·F · 1L
(1.190)

If one applies the decomposition rules defined above together with (1.185) to the fields ap-
pearing into Maxwell’s equations one gets:






∇ · DL = 4πηext

∇× HT − 1
c

∂D
∂t

=
4π
c

Jext

∇× ET +
1
c

∂B
∂t

= 0

∇ · BL = 0

(1.191)

Notice that, because of its divergencelessy, every magnetic field is always transverse.

Appendix C: Dispersion relations, causality and stability

The causality principle states that the cause always precedes the effect or, equivalently,
the future has no effect on the past. This universal statement, applied to definition (1.170),
allows to relate together real and imaginary parts of the response functions and to infer some
general rules on their behaviour. In practice, if the perturbation A is impulsively switched
on at the time t = t0 the variation of the response function, ∆B, can not be different from
zero for any time t < t0. In this case K(x, t) = K(x)δ(t− t0) and, replacing into (1.170) one
gets:

〈∆B(x, t)〉 =
1
V

t∫

−∞

dt′
∫

dx′ K(x′)δ(t′ − t0)φAB(x,x′, t − t′) =

=
1
V

∫
dx′ K(x′)φAB(x,x′, t − t0)

(1.192)

but ∆B must be zero for t < t0 and this results in φAB(x,x′, t − t0)) = 0 for any t < t0 or,
more generally φAB(x,x′, t − t′)) = 0 for t < t′. It is only under this assumption that the



58 Electrodynamics of continuous media

Figure 1.15: Possible integration contours for equation (1.195). No poles are allowed inside
c, otherwise the RHS of equation (1.195) must contains the residues calculated on each pole.

integral over time in (1.170) can be turned into

〈∆B(x, t)〉 =
1
V

+∞∫

−∞

dt′
∫

dx′ K(x′, t′)φAB(x,x′, t − t′) (1.193)

allowing for the usage of Fourier’s transform.
Response functions are observable and must be real, because of this, the real part φ1 and
imaginary part φ2 of their Fourier’s transform, must satisfy some parity properties following
from the imposition that (1.174) and its complex conjugate must be equal:

φ1(q,ω) = φ1(q,−ω) − φ2(q,ω) = φ2(q,−ω) (1.194)

these properties turns out to be useful in determining the relation between the real and the
imaginary part of the response function, the so called Kramers-Kronig’s relations. They
come directly from the application of the residues theorem:

1
i2π

℘

∮

c

φ(q,ω′)
ω′ − ω

dω′ =
j∑

m=1

Res
[
pj

]
(1.195)

on the integration contours c of figure (1.15) containing m poles pj. If the response function
is limited over the whole integration half plane, the RHS of equation (1.195) vanish and
the integral over the semi circle Γ vanishes too by virtue of Jordan’s lemma: one gains a
real integral. One can infer something about the response function properties in the complex
frequency plane by looking at its Fourier’s transform (1.174) generalized to complex frequency
ω = ω1 + iω2 (dropping the spatial dependence):

φ(ω1 + iω2) =
+∞∫

−∞

φ(t − t′)eiω1(t−t′)e−ω2(t−t′)d(t − t′) (1.196)

independently from the sign of (t−t′), ω1 and ω2, the imaginary exponential is always limited
but the real exponential can be both negative or positive, i.e. limited or unlimited. So the
only way for φAB(q,ω) to be limited is for positive ω2 if t > t′ (upper half plane) or for
negative ω2 if t′ > t (lower half plane). The latter possibility is forbidden by the causality
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Figure 1.16: Different kinds of response as a function of the time. Gray curve represent the
perturbation observable A, red curve represent the response observable B.

principle so the only allowed integration path c for the contour integral to become real is the
upper half plane. The integral over Γ vanish, the one over γ gives half the residue calculated
at ω and finally:

φ(q,ω) =
1
iπ
℘

+∞∫

−∞

φ(q,ω′)
ω′ − ω

dω′ (1.197)

here ℘ stands for the principal value of the integral. Changing the sign convention for the
Fourier’s transforms one must use the opposite half plane but the result (1.197) remains
unchanged. Now the response function can be split into its real and imaginary components
leading to the Kramers-Kronig’s relations:

φ1(q,ω) + iφ2(q,ω) =
1
iπ
℘

+∞∫

−∞

φ1(q,ω′) + iφ2(q,ω′)
ω′ − ω

dω′

φ1(q,ω) =
1
π
℘

+∞∫

−∞

φ2(q,ω′)
ω′ − ω

dω′ φ2(q,ω) = − 1
π
℘

+∞∫

−∞

φ1(q,ω′)
ω′ − ω

dω′

(1.198)

or, multiplying end dividing by ω′ + ω and making use of properties (1.194)

φ1(q,ω) =
2
π
℘

+∞∫

0

φ2(q,ω′)ω′

ω′2 − ω2
dω′ φ2(q,ω) = − 2

π
℘

+∞∫

0

φ1(q,ω′)ω
ω′2 − ω2

dω′ (1.199)

another useful relation is the London’s transform, a rotation of the response function over
the imaginary frequency axe. It comes from the Kramers-Kronig’s relation for the real part
of φ by simply perform the substitution ω → iω:

φ(q, iω) =
2
π

+∞∫

0

φ2(q,ω′)ω′

ω′2 + ω2
dω′ (1.200)

the advantage of this expression is that it is always real and, containing no poles on the real
frequency axe, is a very smooth function easy to integrate. As it will be show in section 1.9
there are many connection between φ(iω) and φ2(ω).
The Kramers-Kronig’s relations are causal but not relativistic, they allow the response to
arise exactly in at the same instant in which the perturbation is switched on. If one takes into
account the finite propagation velocity of the interaction, a delay occur between a change in
the perturbation and the consequent change in the response, see figure 1.16. The Kramers-
Kronig’s relations have been generalized to the relativistic framework by Leontovich [1].
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Figure 1.17: Possible contours for the solution of integral (1.201). The gray one gives a stable
but non causal response, the black one gives a causal but non stable response. To get both
a stable and causal behaviour the singularity at ω = iβ must vanish.

The Kramers-Kronig’s relations does not come by the causality imposition only, there is
another implicit requirement, the stability of the medium. A medium is stable if, given any
limited arbitrary perturbation, the response remains, on its part, limited, i.e. if the response
function does not have poles in the upper half plane. Stability and causality separately, does
not give a physical relation between perturbation and response. To show this, suppose that
φ has a pole in the upper half plane at ω = iβ, one can roughly replace φ(ω) with A/(ω− iβ)
were A is a generic constant, given an arbitrarily small perturbation of frequency ω = β the
real part of φ(ω) diverges. Replacing into the inverse Fourier’s transform

φ(t − t′) =
1
2π

+∞∫

−∞

φ(ω1 + iω2)e(−iω1+ω2)(t−t′)d(ω1 + iω2)

φ(t − t′) =
1
2π

+∞∫

−∞

A

ω1 + iω2 − iβ
e(−iω1+ω2)(t−t′)d(ω1 + iω2)

(1.201)

it easy to see that only two contours exist to avoid the singularity, they are depicted in figure
1.17. Depending on the sign of the difference t− t′, the request for the real exponential to be
limited, makes the two contours alternatively allowed. Using the Heaviside’s step function
integral definition:

lim
τ→0

θ(t − t′)eτ(t−t′) =
1

i2π

∞∫

−∞

eiω(t−t′)

ω − iτ
dω (1.202)

two results are possible for φ(t−t′), integration over cA gives a stable but non causal behaviour
φ(t − t′) ∝ Aθ(t′ − t)eβt−t′ , while integration over cB gives a causal but instable behaviour
φ(t − t′) ∝ −Aθ(t − t′)eβt−t′ . In the latter case the step function is non vanishing for
t′ > t, giving rise to a non causal behaviour, the real exponent is negative and the response
function, together with the response, remains limited. In the first case the step function is
non vanishing for t > t′, now the response function has a causal behaviour, but the real
exponential remains positive, i.e. the response function and the response can diverge. To
conclude Kramers-Kronig’s relations come from the joint imposition of causality and stability.
Now it is useful to write the general definitions (1.199) and (1.200) for some specific response
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functions, starting from the conductivity:

σ1(q,ω) =
2
π
℘

∞∫

0

σ2(q,ω′)ω′

ω′2 − ω2
dω′

σ2(q,ω) = −2ω
π
℘

∞∫

0

σ1(q,ω′)
ω′2 − ω2

dω′

(1.203)

now, using definition (1.30) into (1.198) one can switch to the susceptivity or to the inverse
dielectric tensor6:

ε−1
2 (q,ω) = −2ω

π
℘

∞∫

0

ε−1
1 (q,ω′) − 1
ω′2 − ω2

dω′

ε−1
1 (q,ω) = 1 +

2
π
℘

∞∫

0

ε−1
2 (q,ω′)ω′

ω′2 − ω2
dω′

(1.204)

and to the corresponding London’s transform:

ε−1(q, iω) = 1 +
2
π

∞∫

0

ε−1
2 (q,ω′)ω′

ω′2 + ω2
dω′ (1.205)

One can also write Kramers-Kronig’s relations for the direct dielectric tensor:

ε̄2(q,ω) = −2ω
π
℘

∞∫

0

ε̄1(q,ω′) − 1
ω′2 − ω2

dω′

ε̄1(q,ω) = 1 +
2
π
℘

∞∫

0

ε̄2(q,ω′)ω′

ω′2 − ω2
dω′

(1.206)

with the corresponding London’s transform:

ε̄(q, iω) = 1 +
2
π

∞∫

0

ε̄2(q,ω′)ω′

ω′2 + ω2
dω′ (1.207)

It is easy to show that the average energy dissipated by the perturbed medium is proportional
to ε̄2, analogously the energy lost by fast electrons traveling in a medium is proportional −ε−1

2

[1]. Both these energies are positive defined, it follows immediately that:

ε̄2(q,ω) ≥ 0 ε−1
2 (q,ω) ≤ 0 (1.208)

and replacing into Kramers-Kronig’s relations (1.206) (1.207), in the limit ω → 0 one gets:

ε̄1(q, 0) ≥ 1 ε̄(q, i0) ≥ 1 (1.209)

whereas, from (1.204) and (1.205) one gets:

ε−1
1 (q, 0) ≤ 1 ε−1(q, i0) ≤ 1 (1.210)

6Notice that ε−1
1 stands for Re

ˆ
ε−1

˜
= ε1

ε21+ε22
that is different from the inverse of the real part of the

dielectric tensor (ε1)−1 = 1

Re
ˆ
ε
˜ = 1

ε1
.
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Figure 1.18: Set-up for the measurement of ε−1(q,ω).

or equivalently:
ε̄1(q, 0) ≥ 1 ε̄1(q, 0) < 0

ε−1(q, i0) ≥ 1 ε−1(q, i0) < 0
(1.211)

Not all the previously introduced response functions must obey the Kramers-Kronig’s rela-
tions. While ε−1(q,ω) can be measured experimentally for every q and ω, ε̄(q,ω) can be
measured only for q → 0. This is due to the impossibility to manage the Fourier components
q (= 0 of the total filed E when it is used as a perturbation, a detailed discussion is given
in appendix D. If ε−1(q,ω) can be measured for any q and ω it must be causal for any q
and ω, i.e. it is always constrained to follow Kramers-Kronig’s relations. In the case of
ε̄(q,ω), Kramers-Kronig’s relations must be imposed only for q = 0, thus rules (1.211) must
be retained only for q = 0:

ε̄1(0, 0) ≥ 1 ε̄1(0, 0) < 0
ε̄(0, i0) ≥ 1 ε̄(0, i0) < 0

(1.212)

A deeper study about the allowed sign of the static dielectric function has been performed by
Dolgov et al. discussing both general aspects and specific examples for homogeneous media,
anisotropic crystals and electrons plasma [19].

Appendix D: Difficulties in the dielectric function measurement

The aim of this appendix is to show why the inverse dielectric function is always measurable
whereas the direct dielectric function can be measured only when the perturbing wavevector
q goes to zero. Every perturbation of a given wavevector q can be considered to be constant
in space on a length scale 2* 1/q, in a macroscopic device, where 2 is large, the perturbation
is constant in space only if q → 0. Consider the capacitor in figure 1.18, if a certain charge
is placed on its plates, it gives rise, on its interior, to an external field D. A medium placed
inside the capacitor feels the external field D and polarizes giving rise to the polarization
field P. The total field inside the capacitor changes and, because of this, also the potential
measurable between the capacitor plates changes. Changing the charge placed on the plates
by means of a current generator, i.e. changing the external field, and measuring the potential
between them, i.e. the total field, it is possible to measure the medium response function
ε−1(q,ω) for q , 0. Now, if the potential on the capacitor plates is kept fixed by means of
a battery, when the medium is inserted into the capacitor, the total field changes but new
charge is added on the plates in order to restore its old value. This means that one can
also keep control on the total field E measuring the external field D through the current.
In this way one can measure ε̄(0,ω), see figure 1.19. One can think to extend this method
for any arbitrary q (= 0 by simply reducing the capacitor dimension in order to always fulfill
the 2 * 1/q condition. In doing this the medium dimension becomes rapidly microscopic:
defects, surfaces and microscopic structure come rapidly into play modifying the medium
properties. In order to do not alter the medium properties the measurement device can be
embedded into the medium, as shown in figure 1.20. Placing some charge on the conducting
sphere one is again able to manage every single component q of the Fourier’s series of the
external field D, measuring the potential acting on the conducting sphere surface, one can
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Figure 1.19: Set-up for the measurement of ε(0,ω).

Figure 1.20: Measurement device embedded in the medium.

measure the value of E for any arbitrary q. Thigs are different in the case of the total field.
Keeping fixed the potential acting on the sphere, it is possible to know the total field only on
the sphere surface, moving far away from the sphere the total field changes according to the
medium properties that one needs to measure: there is no control on the Fourier components
of the total field. To regain control on the total field E inside the medium one should keep it
constant inserting in the medium a number of conducting spheres like the one of figure 1.20,
the larger their number the smaller q, this solution is of course useless because the insertion
of an infinite number of conductors in the sample alters its natural properties. A detailed
survey on most common experimental techniques can be found in reference [20].



64 Electrodynamics of continuous media



Bibliography

[1] L.V. Keldysh, D.A. Kirzhnitz, and A.A. Maradudin editors. Modern problems in con-
densed matter sciences. The dielectric function of condensed systems, volume 24. North-
Holland Physics, 1989.

[2] F. Wooten. Optical properties of solids. Academic Press, Davis, California, 1988.

[3] J.D. Jackson. Classical Electrodynamic. John Wiley and Sons, 1975.

[4] S. Lundqvist, N.H. March editors. Physics of solids, and liquids. Theory of the inhomo-
geneous electron gas. Plenum press, London, 1983.

[5] G. Grosso and G. Pastori Parravicini. Solid State Physics. Academic press, London,
2003.

[6] G. Onida, L. Reining, and A. Rubio. Rev.Mod.Phys., 74:601, 2002.

[7] J. Lindhard. Kgl.Danske videnskab selskab mat.-fys.medd., 28:8, 1954.

[8] N.D. Mermin. Phys. Rev. B, 1:1019, 1970.

[9] A.L. Fetter and J.D.Walecka. Quantum theory of many-particle system. Dover, Mineola,
New York, 2003.

[10] L. Hedin. Phys.Rev., 139:A709, 1965.

[11] W. Kohn. Rev.Mod.Phys., 71:1253, 1999.

[12] H. Ehrenreich and M.H. Cohen. Phys.Rev., 115:786, 1959.

[13] S.L. Adler. Phys.Rev., 126:413, 1962.

[14] D.M. Wood and N.W. Ashcroft. Phys.Rev.B, 25:6255, 1982.

[15] F. Sottile Ph.D. thesis. Response functions of semiconductors and insulators: from the
Bethe-Salpeter equation to time-dependent density functional theory. CNRS-CEA/DSM,
Ecole politechnique, Palaiseau, France., 2003.

[16] N. Wiser. Phys.Rev., 129:62, 1963.

[17] R. Kubo. J. Phys. Soc. Japan, 12:570, 1957.

[18] R. Kubo. Rep. Prog. Phys., 29:255, 1966.

[19] O.V. Dolgov, D.A. Kirzhnits, and E.G. Maksimov. Rev.Mod.Phys., 53:81, 1981.

[20] E.D. Palik editor. Handbook of optical constats of solids. Academic press, London, 1985.



66 BIBLIOGRAPHY



2
Macroscopic dispersion forces

Contents
2.1 The force from nothing . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.2 The Casimir’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3 The Lifshitz’s theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3.1 Interface modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3.2 Cavity modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.3.3 Finite temperature formalism . . . . . . . . . . . . . . . . . . . . . . 85

2.3.4 Extension to more than three layers . . . . . . . . . . . . . . . . . . 87

2.3.5 Anisotropic media . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.4 Different approximations . . . . . . . . . . . . . . . . . . . . . . . . . . 89

2.5 Finite temperature issues . . . . . . . . . . . . . . . . . . . . . . . . . 91

2.6 Concluding notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Appendix A: Interface fields conditions . . . . . . . . . . . . . . . . . . 95

Appendix B: Perfectly reflecting 3D cavity . . . . . . . . . . . . . . . . 97

This chapter is the most important among the theoretical ones, it deals with the theory
used through the second part of the thesis. A brief historical overview will be given in the first
part of the chapter, followed by very general considerations on the nature of the dispersion
interactions. Then the earlier Casimir’s model will be discussed as an introduction to the
more complicated and general Lifshitz’s theory, which will be widely illustrated and different
approximations and generalizations will be discussed. The chapter concludes with a brief
overview of the finite temperature problem. Further details and generalizations can be found
in the review works [1, 2, 3, 4] and in the Milonni book [5].

2.1 The force from nothing

The Casimir force is one of the few macroscopic manifestations of the quantum nature of
matter, other examples are the superconductivity, the superfluidity and the quantum Hall
effect. This force acts between neutral polarizable macroscopic objects, it depends on their
shapes, on their distance, on their dielectric properties, on their thermodynamic properties
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Figure 2.1: Reference framework for the Hamaker additivity assumption expressed by equa-
tion (2.4).

and on the effective interaction surface. The latter property makes this force a surface
force, like friction. The surface forces become more relevant on decreasing the length scale
of the interacting systems or reducing their dimensionality. This is the reason why, in the
miniaturization era, such a force, known from the 40’s, has rised a renewed interest in the
condensed matter physics community. For instance, in micro and nano mechanical systems,
the small length scale makes the bulk forces comparable with the surface ones, determining
rather different mechanical behaviours with respect to the macroscopic scale. Phenomena
like friction, adhesion and stiction play a crucial role at miniaturirization scale.
To understand the behaviour of these macroscopic forces it is better to start from their
microscopic origin. The force acting between neutral polarizable atoms or molecules have
been introduced by J.D. van der Waals to account for the thermodynamics of real gases and
liquids. In 1930 these forces have been properly justified within the framework of quantum
mechanics by F. London [6, 7, 8]. He used a time independent perturbation theory to account
for the interaction between two neutral atoms reaching the famous result:

F (d) = −18!
πd7

∞∫

0

α1(ω)α2(ω)dw (2.1)

where d is the interatomic distance, α1(ω) and α2(ω) are the polarizabilities of the two inter-
acting atoms1. Notice that this force is always attractive (negative) and its dependence upon
the atoms properties is entirely contained in the polarizability. It can be regarded as the
average force between the fluctuating spontaneous dipole, that arises in one atom because of
the electron motion, and the dipole induced on the other atom. In 1940s T. Overbeek and
E. Verway, studying the molecular forces in colloid solutions at Philips Research Labs, found
a strange behaviour of the van der Waals force: the strength of the attractive force between
colloidal particles decay more rapidly with respect to the preiction of equation (2.1). As
correctly suspected by Overbeek, the nanometric length scale of colloids, much larger that
the atomic length scale, revealed the need for a relativistic extention of the theory. This
generalization of the van der Waals theory has been provided by H.B.G. Casimir and D.
Polder in 1948 [10], taking into account the finite velocity of the electromagnetic interaction.
This velocity comes into play when the distance among interacting atoms becomes compa-
rable with the characteristic emission wave length of the atoms λ0 = c/ω0, where ω0 is the

1The polarizability α of an atom can be defined as the susceptivity χ of a medium using the analogous of
(1.106) in which the macroscopic response P coincides with the single microscopic atomic dipole p:

P = p ≡ αD

for a deep quantum treatment of the polarizability of atoms and molecules and their dispersion interactions
see reference [9].
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principal emission frequency of an atom or a molecule. In the limiting case of d ) λ0 one
gets:

F (d) = −161!c

4πd8
α1(0)α2(0) (2.2)

whereas for a generic d value the force goes as a linear combination of the two inverse powers
of the distance:

F (d) = −CwdW

d7
− CCP

d8
(2.3)

where CvdW and CCP are the van der Waals and Casimir-Polder coefficients. They are
positive and contain the dielectric response of the atoms. In the opposite limit of d * λ0,
CCP → 0 and one recovers the old London expression (2.1).
Once that the microscopic interaction between two neutral atoms has been understood, one
may think that it is sufficient to sum up over all atom pairs of neutral bodies to obtain the
total force acting between them. In 1936 J. De Boer [11] and H. Hamaker [12], assuming
the simple additivity of the microscopic forces, performed the calculation of the force acting
between macroscopic neutral bodies of different shape. The idea is very simple: with reference
to figure2.1, if the densities ρ1(x1) and ρ2(x2) of the two interacting bodies are known, the
total macroscopic force acting between them is:

F =
∫

V1

∫

V2

F (|x1 − x2|)ρ1(x1)ρ2(x2)dx1x2 (2.4)

here F (|x1 − x2|) is the force (2.3) acting between two atoms, and V1 and V2 are the body
volumes. Hamaker calculations showed a first important point: the macroscopic force de-
pends upon the shape and the geometry of the interacting bodies. He found different distance
power laws of the force for the plane-plane and the sphere-plane configurations. Moreover he
showed that the force strength depends upon the surface of the interacting planes or upon
the radius of the interacting spheres:

where Hnr and Hr are the Hamaker constants obtained summing over the microscopic van
der Waals interaction or over the microscopic Casimir-Polder interaction. Unfortunately the
De Boer and Hamaker results turned out to be useful only for rarefied gases, were the many
body effects can be neglected. For condensed matter bodies the strong role played by many
body effects makes the additivity assumption inadequate. For more than a decade, the lack
of a theory able to treat properly the many body effects, left the things unchanged. Only
in few special cases the force between macroscopic neutral bodies has been correctly worked
out. Lennard-Jones in 1932 and Bardeen in 1940 described the van der Waals interaction of a
neutral atom or molecule with a metal surface using the method of images [13, 14]. Casimir
and Polder generalized this result including the relativistic effects, and Casimir alone, in
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Figure 2.2: From left to right, first raw: van der Waals, London, Overbeek, Casimir; second
raw: Polder, Lennard-Jones, Bardeen, Lifshitz.

1948 proposed a new way to look at the problem [15, 16]: the macroscopic dispersion force
between two perfectly reflecting neutral planes can be seen as the change in the zero point
energy of the quantized electromagnetic field trapped between them and responsible for their
interaction. This problem will be analyzed in section 2.2. Only after the formulation of the
fluctuation dissipation theorem and the modern theory of perturbation and response, E.M.
Lifshitz succeeded in the generalization of the Casimir theory, this will be the object of sec-
tion 2.3. The only way to include many body interaction in condensed matter macroscopic
effects seems to be through the macroscopic response functions, as described in section 1.10,
so it has been natural to continue to treat the media as a continuous distribution of charges
quantizing the electromagnetic fields as originally suggested by Casimir.

In the very first microscopic approach by London the charges were treated quantum-
mechanically whereas the fields among them were considered classical continuous fields, the
same assumption is present in the Lennard-Jones and Bardeen theories. Casimir and Lifshitz
followed a complementary approach in which the bodies were treated as continuous dielectric
materials and the electromagnetic fields, describing their interaction, are quantized. In both
cases an expression of the force can be carried out, that depends on the shape and geometry
of the interacting bodies in which the medium properties enter the problem through the
response functions. Response functions rule the dispersion of media, because of this, all the
van der Waals, Hamaker, Casimir-Polder or Casimir forces, whether they are macroscopic or
not, are usually called dispersion forces. Another frequently used name is fluctuations forces.
In the approach of continuous fields the name refers to the fluctuations of the spontaneously
arising dipoles on neutral atoms of the media, while in the approach of quantized fields the
name refers to the fluctuations of the vacuum energy of the fields, due to a change in the
boundary conditions.
The equivalence of the two approaches has been demonstrated within the modern quan-
tum electrodynamics theory (QED), in which both charges and fields must be quantized
[17, 18, 19]. In the QED theory, the energy normalization problem has been solved by G.C.
Wick that introduced the normal ordering operator : since an infinite vacuum energy exist but
it is not directly observable, starting to measure all the other energies from the vacuum energy
one is always able to get finite values. In presence of boundary conditions the standard Wick’s
theorem becomes useless, an infinite number of different vacuum states exists, corresponding
to different values of the geometric parameters entering the energy due to the boundary con-
ditions. In such a situation it is incorrect to pre-assign the role of reference state to a specific
vacuum state, but the finite difference between two vacuum states become observable giving
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rise to the Casimir effect of which the Casimir force is a macroscopic observable consequence.

2.2 The Casimir’s model

Following the Casimir approach, the macroscopic dispersion force between two parallel per-
fectly reflecting metal plates, can be reconduced to the dependence of the electromagnetic zero
point energy on the distance between the two plates. Changing the plates distance causes a
change in the electromagnetic zero point energy which manifests itself as a macroscopic force
by virtue of the fluctuation-dissipation theorem. To understand how the electromagnetic
zero point energy can depend upon a geometric parameter, imagine to have a massless scalar
field confined into the onedimensional cavity of figure 2.3 (a) by means of certain boundary
conditions, its energy levels result to be quantized and, from the very basic quantum theory,
one gets:

E(2) =
∑

k

!ω(k, 2)
(

1
2

+ nk

)
(2.5)

where 2 is the cavity amplitude. If none of the electromagnetic modes is excited, i.e. there
are no photons in the cavity nk = 0∀ k, only the zero point energy remains:

E(2) =
!
2

∑

k

ω(k, 2) (2.6)

To get the free space zero point energy one must let 2→ ∞. Notice that the energy of each
mode must depend upon the cavity geometry and that the summation over the modes is
divergent. Now, if another reflecting plate is inserted into the cavity, its presence modifies
the boundary conditions that have to be satisfied by the electromagnetic modes, see figure
2.3 (b). As a consequence, the zero point energy is modified. This change in energy can be
calculated as:

∆E(2, a) =
!
2

∑

k

ω(k, 2) −
[

!
2

∑

k

ω(k, 2− a) +
!
2

∑

k

ω(k, a)
]

(2.7)

where ω(k, 2, 0) represents the empty cavity modes whereas ω(k, 2− a) and ω(k, a) represent
the modes of the cavity in presence of the reflecting plate. The previous difference is not
well defined because it is the difference between two divergent quantities, one can introduce
a regularization function R[ω(k),λ] in such a way that the quantity:

lim
λ→0

∑

k

ω(k)R[ω(k),λ] (2.8)

remains finite. In this view equation (2.7) becomes

∆E(a) = lim
+→∞

lim
λ→0

!
2

∑

k

[
ω(k, 2) − ω(k, 2− a) − ω(k, a)

]
R[ω(k),λ] (2.9)

Clearly this regularization must be justified from a physical point of view: looking at the
dielectric response functions it is known that, for very large frequencies, all materials become
transparent (ε(ω) → 1). So one can imagine that a cut-off frequency ωc exist below which
R[ω(k),λ] is finite whereas, for ω(k) ) ωc, R[ω(k),λ] → 0, in other words: for large frequency
modes the cavity and the plate are almost transparent so that large frequency modes do not
contribute to the cavity energy.
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Figure 2.3: Casimir monodimensional cavity. (a) represents a cavity of amplitude 2, the red
mode is not allowed by the boundary conditions. (b) represents the insertion of a perfectly
reflecting plate, the red mode, previously allowed becomes forbidden. (c) and (d) represents
a variation of the plate position, responsible for a change in the Casimir force between the
plate and the cavity walls.

Now one can think that the Casimir energy of the cavity in figure 2.3 (c) can be calculated
as:

E(a) = lim
+→∞

lim
λ→0

!
2

∑

k

{
ω(k, 2− a) + ω(k, a)

}
R[ω(k),λ] =

= lim
+→∞

lim
λ→0

!c

2

∞∑

n=0

(
nπ

2− a
+

nπ

a

)
R[ω(k),λ]

(2.10)

where the quantization of the electromagnetic modes gives the dispersion relation ω(k) =
c|k| = cnπ

a . Choosing the following regularization function for ω(k, a):

R[ω(k),λ] = e−λ
nπ
a (2.11)

one gets:

E(a) = lim
+→∞

lim
λ→0

!c

2

∞∑

n=0

(
nπ

2− a
e−λ

nπ
"−a +

nπ

a
e−λ

nπ
a

)
(2.12)

using the property

∞∑

n=0

nπ

a
e−λ

nπ
a = − ∂

∂λ

(
1

1 − e−λ
π
a

)
=
π

a

1
(
1 − e−λ

π
a

)2 e−λ
π
a (2.13)

in the limit of small λ a Taylor’s expansion as been performed:

π

a

1
(
1 − e−λ

π
a

)2 e−λ
π
a , a

πλ2
− π

12a
(2.14)

replacing into (2.12) the final result is achieved:

E(a) = lim
+→∞

lim
λ→0

(
2

πλ2
− π

12a(2− a)

)
(2.15)
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Figure 2.4: Casimir cavity in three dimensions.

This is a divergent result, the regularization function alone is not enough, also a normalization
is needed. The Casimir energy of the cavity in figure 2.3 (c) can be calculated with respect
to a reference initial configuration configuration, for example the one of figure 2.3 (d):

E(a) = lim
+→∞

lim
λ→0

!
2

∑

k

{
ω(k, 2− a) + ω(k, a) − ω(k, l − b) + ω(k, b)

}
R[ω(k),λ] (2.16)

choosing for instance b = 2/2 one gets:

E(a) = − π

12a
(2.17)

and differentiating with respect to a one can calculate the Casimir force:

F (a) = − π

12a2
(2.18)

It is possible to show that, for the specific configuration of plane cavity, the previous results
are independent of the choice of b and of the regularization function. For other kinds of ge-
ometries the regularization and normalization procedures are not unique, leading to different
results, a correct definition of the Casimir force and energy is not possible [4].
The result presented by Casimir in his original work [15] is nothing but the extension of
the previous case to a three dimensional cavity formed by parallel perfectly reflecting (ideal
metal) plates, see figure 2.4. Now the k vector is in three dimensions:

kx =
π

2
nx ky =

π

2
ny kz =

π

2
nz (2.19)

so the energy expression, equivalent to (2.6), becomes:

E(2) = !c
L2

π2

∞∫

0

∞∫

0

[
1
2

√
k2

x + k2
y +

∞∑

n=1

√
n2
π2

22
+ k2

x + k2
y

]
dkxdky (2.20)

here the cavity dimension L, along x and y directions, is supposed to be large enough to
neglect the quantization along that directions. In this way an integration can be performed
over kx and ky, introducing the L/π factor, and only for kz the discreet sum must be retained.
The n = 0 term has been kept separated from the others while the n (= 0 terms have been
multiplied by a factor 2: this is due to the fact that, in a perfectly reflecting three dimensional
cavity, two equivalent modes exist for each kz (= 0 whereas only one is allowed if kz = 0 (see
appendix B). Using polar coordinates in the kx ky plane:

E(2) = !c
L2

2π

∞′∑

n=1

∞∫

0

kdk

√
n2
π2

22
+ k2 (2.21)
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where the prime over the sum symbol indicates that the n = 0 term must given half weight.
This integral is divergent so it must be multiplied by a regularization function R[k/kc] and
normalized, here kc represent a generic cut-off wavevector. To follow the Casimir derivation
one must start from the definition (2.16) with a = 2 and b = 0:

E(a) = !c
L2

2π

{ ∞′∑

n=1

∞∫

0

kdk

√
n2
π2

a2
+ k2 R

[√
n2
π2

a2
+ k2/kc

]
−

− a

π

∞∫

0

∞∫

0

kdkdkz

√
k2

z + k2 R

[√
k2

z + k2/kc

]} (2.22)

this equation can be simplified through the substitution u = a2k2/π2:

E(a)
L2

= !c
π2

2a3

{ ∞′∑

n=1

∞∫

0

du
√

n2 + u R

[
π

akc

√
n2 + u

]
−

−
∞∫

0

∞∫

0

dudn
√

n2 + u R

[
π

akc

√
n2 + u

]} (2.23)

Now it is possible to use the Euler-Maclaurin’s formula:

∞′∑

n=1

F (n) −
∞∫

0

F (n)dn = − 1
12

F ′(0) +
1

720
F ′′′(0) + ... (2.24)

in this case:

F (n)dn =
∞∫

n2

√
w R
[
wπ/akc

]
dw (2.25)

after the change of variable w = u + n2, thus:

F ′(0) = −2n2R
[
wπ/akc

]
= 0 F ′′′(0) = −4 (2.26)

so the total Casimir energy per unit surface is given by:

E(a)
L2

= − !cπ2

720a3
(2.27)

this formula results to be independent of the regularization function R. The higher terms
of the expansion (2.24) contain powers of π/akc so that the Casimir result holds as long as
akc ) 1. Differentiating with respect to a one get the Casimir Force for unit area:

F (a)
L2

= − !cπ2

240a4
(2.28)

and, to use the Casimir’s words:

One is thus led to the following conclusions. There exist an attractive force be-
tween two metal plates which is independent of the material of the plates as long
as the distance is so large that for wave lengths comparable with that distance
the penetration depth is small compared with the distance. This force may be
interpreted as a zero point pressure of the electromagnetic waves.

References [4] and [2] offer a general discussion about different renormalization techniques
and the different cavity geometries.
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2.3 The Lifshitz’s theory

This section is devoted to the Lifshitz’s generalization of the previously derived Casimir
result. In his original work [20], Lifshitz made use of the Green’s function technique, so
far other simpler derivations have been proposed. In this section the formulation of N.G.
van Kampen will be discussed [21, 22, 23]. Further extensions and generalizations of the
Lifshitz’s theory have been performed by I.E. Dzyaloshinskii and L.P. Pitaevskii [24, 25, 26,
27]. The first section is devoted to the introduction of the surface modes. Thiese concepts
will be employed in the next sections for the derivation of the zero temperature and finite
temperature expressions of the dispersion energy and dispersion force. Finally some useful
generalizations of the theory will be discussed. In any case only the geometry of parallel
interacting plates (slabs) will be discussed, as in the original Lifshitz’s work.

2.3.1 Interface modes

The solutions of the Maxwell’s equation for a field in an infinite homogeneous, isotropic
and linear medium are simple plane waves. In presence of an interface between two media
more solutions become possible: some of them are again delocalized modes, i.e. plane waves
that satisfy properly the interface conditions described in appendix A, some of them are
localized modes, i.e. fields that rapidly vanish moving far away from the interface, they are
some time called interface modes. Imagine to have a flat surface of a body, the surface itself
is the interface between the body medium and the vacuum or a second medium. A good
reference system to work with, is the one whose origin is located at the interface and the z
axis is perpendicular to it, i.e. the interface coincides with the xy plane. One has to look for
solution of the Maxwell’s equation which behaves as:

E(x) = E0(z)eik‖·x‖e−iωt H(x) = H0(z)eik‖·x‖e−iωt (2.29)

x = (x‖, z) is the position vector, k = (k‖, kz) is the wave vector of the plane wave that
propagates parallel to the surface, whereas E0(z) e H0(z) describe the behaviour of the field
in the direction perpendicular to the surface. Without loss of generality, one can choose the
k‖ vector along the x direction only:

E(x) = E0(z)eikx H(x) = H0(z)eikx (2.30)

to find an explicit form for E0(z) and H0(z) one must replace the solution (2.30) into the
Maxwell’s equations (1.76), assuming a neutral, uniform and isotropic medium. With the
previous choice for k, one get eight different equations, some of them are independent and
one can define two different systems:






∂E0z

∂z
+ ikE0x = 0

− ikE0z +
∂E0x

∂z
=

iω

c
H0y

∂H0y

∂z
=

iε(ω)ω
c

E0x

ikH0y = − iε(ω)ω
c

E0z






∂H0z

∂z
+ ikH0x = 0

− ikH0z +
∂H0x

∂z
= − iε(ω)ω

c
E0y

∂E0y

∂z
= − iω

c
H0x

ikE0y =
iω

c
H0z

(2.31)

they can be separately obtained under the assumption of B ⊥ E ⊥ k (transverse modes)
respectively for (H0z = 0) or for (E0z=0). Because of this their solution are called transverse
magnetic (TM, firt system) and transverse electric modes (TE, second system).
Combining the equations of the first of the systems (2.31) one get an equation that rules E0z
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behaviour only: 




∂2E0z

∂z2
− k2E0z +

ω2ε1(ω)
c2

E0z = 0 z > 0

∂2E0z

∂z2
− k2E0z +

ω2ε2(ω)
c2

E0z = 0 z < 0
(2.32)

1 and 2 label the two different media on the two sides of the interface plane. The solution of
the system is given by:

E0z = Eje
−γjz (2.33)

where j is the medium label and

γj =

√
k2 − εj(ω)

ω2

c2
(2.34)

can be either real or complex giving rise to modes localized at the interface or delocalized
modes respectively. Concluding the z component results:

Ez = Eje
−γjz+ikxe−iωt (2.35)

Using now the other equations of (2.31) the remaining field components, Ex and Ey, can be
obtained: 





Ex =
i

k

∂Ez

∂z
= − i

k
γ1E1e

−γ1z+ikxe−iωt z > 0

Ex =
i

k
γ2E2e

γ2z+ikxe−iωt z < 0
(2.36)

and, for the magnetic field:





Hy =
ωε(ω)

ck
Ez = −ωε1(ω)

ck
E1e

−γ1z+ikxe−iωt z > 0

Hy = −ωε2(ω)
ck

E2e
γ2z+ikxe−iωt z < 0

(2.37)

The dispersion relation of the system modes can be found imposing the continuity condition
of the fields as described in appendix A, in particular, equating the fields (2.36) at z = 0 one
gets

γ1E1 = −γ2E2 (2.38)

whereas for the magnetic field (2.37):

ε1(ω)E1 = ε2(ω)E2 (2.39)

From the ratio between (2.38) and (2.39) one finally achieves the result:

k2 =
ω2

c2

(
ε1ε2
ε1 + ε2

)
(2.40)

showing that the dispersion relation of the modes depends upon the dielectric properties of
the media. In the non relativistic regime one has k >> ω/c, γ1 = γ2 and the dispersion
relation is simply given by ε1 = −ε2.
Suppose to have an interface between a medium, whose dielectric properties are described
by the Plasma model (see section 1.8), and the vacuum, equation (2.40) becomes:

k2 =
ω2

c2

(1 − Ω2
p/ω

2

2 − Ω2
p/ω

2

)
(2.41)
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Figure 2.5: (a) represents the ω(k) relation for an isotropic plasma metal surface. (b) repre-
sents γ1(ω) for an isotropic plasma metal surface, both localized (dashed line) and delocalized
(continuous line) modes are shown.

such a function is plotted in figure 2.5 (a). In the frequency region between Ωp and Ωp/
√

2
one has ε1ε2 < 0 and k should be imaginary, this is of course a forbidden frequency region
because solution (2.33) should diverge for large k values. For large k values only one mode
exists with frequency ω = Ωp/

√
2, the so called surface plasmon. Notice also that in the case

of a perfectly reflecting interface (ε1 → ∞ and ε2 = 0), equation (2.40) becomes k = ω/c, that
is the simple plane waves dispersion relation. This justifies the choice made by Casimir to
take into account only transverse modes in his perfectly reflecting cavity described in section
2.2. By Replacing the dispersion relation inside the γj definition (2.34) one can find, for the
allowed k values, the function plotted in figure 2.5 (b): γj can be both real or imaginary, i.e.
the real exponential of (2.33) determines an oscillating behaviour even along the z direction
or a localization on the surface. Naturally, introducing more complicated models for the
dielectric function, the dispersion relation can strongly change.
If the two media are anisotropic, the tensorial nature of the response function comes into

play (see section 1.3), and the previous derivation must be generalized. Inserting the general
solution (2.30) into the Maxwell’s system (1.76) one now get:






εzz
∂E0z

∂z
+ ikεxxE0x = 0

− ikE0z +
∂E0x

∂z
=

iω

c
H0y

∂H0y

∂z
=

iεxxω

c
E0x

ikH0y = − iεzzω

c
E0z






∂H0z

∂z
+ ikH0x = 0

− ikH0z +
∂H0x

∂z
= − iεyyω

c
E0y

∂E0y

∂z
= − iω

c
H0x

ikE0y =
iω

c
H0z

(2.42)

for the TM and TE modes. Notice that it has bee assumed εxx (= εyy (= εzz. Combining the
equations of the TM system one gets the analogous of (2.32):






∂2E0z

∂z2

εzz1

εxx1
− k2E0z +

ω2εzz1

c2
E0z = 0 z > 0

∂2E0z

∂z2

εzz2

εxx2
− k2E0z +

ω2εzz2

c2
E0z = 0 z < 0

(2.43)
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Figure 2.6: Dispersion relation of the surface described by the dielectric tensor (2.48), the TE
modes (gray line) remain unchanged with respect to the isotropic case, whereas TM modes
(black line) are affected by the anisotropy.

that, imposing the same solution (2.33) gives now:

γTM
j =

√(
k2

εzzj
− ω2

c2

)
εxxj (2.44)

whereas, from the TE modes one gets the result:

γTE
j =

√
k2 − εyyj

ω2

c2
(2.45)

The other components of the fields can be derived exactly as before and, by imposing the
boundary conditions at the interface, one obtains the dispersion relations:

k2
TE =

ω2

c2

(
εyy1εyy2

εyy1 + εyy2

)
k2

TM =
ω2

c2

(
(εxx2 − εxx1)εzz1εzz2

εzz2εxx2 − εzz1εxx1

)
(2.46)

the TE and TM modes have now different dispersion relations. In the non relativistic regime
(k >> ω/c) the dispersion relation is simply given by:

εzz2εxx2 = εzz1εxx1 (2.47)

If one of the two media is the vacuum and the other is an uniaxial medium with the Drude
and Lorentz models:

εxx = εyy = 1 −
Ω2

p

ω2
εzz = 1 +

Ω2
p

ω2
0 − ω2

(2.48)

a comparison is possible with the homogeneous surface treated before. It is shown in figure
2.6. The main effect of the anisotropy is to change the surface plasmon frequency shifting
both the localized and delocalized modes.

2.3.2 Cavity modes

In the preceding section it has been discussed the problem of the electromagnetic modes and
their dispersion relation in presence of an interface between two media. The starting point
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to show how the Lifshitz’s theory generalize the Casimir’s original result is to move from the
Casimir’s perfectly reflecting cavity to a real dielectric cavity: the dispersion relation of the
electromagnetic modes between two interfaces (between three mediums) must be studied.
The procedure is exactly the same described in the preceding section but now two boundary
conditions must be satisfied simultaneously.
Consider the cavity of thickness d represented in figure 2.8 (a), it is formed by the two
interfaces between three different media described through their dielectric functions ε1, ε2
and ε3. The field (2.30) will be again the solution for the systems (2.31) but now three
different regions must be considered:

E0(z) =






Aeγ1z z < 0

Be−γ3z + Ceγ3z 0 < z < d

De−γ2z z > d

(2.49)

the four constants will be determined imposing the field conditions (see appendix A) at the
two interfaces.

E(1)
0x (z = 0) = E(3)

0x (z = 0) H(1)
0y (z = 0) = H(3)

0y (z = 0)

E(3)
0x (z = d) = E(2)

0x (z = d) H(3)
0y (z = d) = H(2)

0y (z = d)
(2.50)

where the E0 and H0 components come from the Maxwell’s equations (2.31):

E(1)
0x =

i

k

∂E0z

∂z


1

=
i

k
γ1Aeγ1z

E(3)
0x =

i

k

∂E0z

∂z


3

= − i

k
γ3

(
Be−γ3z + Ceγ3z

)

E(2)
0x =

i

k

∂E0z

∂z


2

= − i

k
γ2De−γ2z

H(1)
0y = −ωε(ω)

c
E0z |1 = −ω

c
ε1Aeγ1z

H(3)
0y = −ωε(ω)

c
E0z |3 = −ω

c
ε3
(
Be−γ3z + Ceγ3z

)

H(2)
0y = −ωε(ω)

c
E0z |2 = −ω

c
ε2De−γ2z

(2.51)

and, through the logarithmic derivatives:

γ1A = −γ3(B − C) ε1A = ε3(B + C)

ε3
(
Be−γ3d + Ceγ3d

)
= ε2De−γ2d ε3

(
Be−γ3d + Ceγ3d

)
= ε2De−γ2d

(2.52)

solving this algebraic system in the variables A, B, C and D one can completely determine
the fields behaviour. To calculate the dispersion relation of the electromagnetic modes one
has to impose that the determinant vanishes:

gTM (ω, d) =



ε2 −ε3 −ε3 0
0 ε3e−γ3d ε3eγ3d ε2e−γ2d

γ1 γ3 −γ3 0
0 γ3e−γ3d γ3eγ3d −γ2e−γ2d


= 0 (2.53)

gTM (ω, d) = ed(γ3−γ2)(ε1γ3 + ε3γ1)(ε3γ2 + ε2γ3) − e−d(γ3+γ2)(ε3γ1 − ε1γ3)(ε2γ3 − ε3γ2) = 0
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Figure 2.7: (a) represents the ω(k) relation for two interacting isotropic plasma metal surfaces
at a distance d. (b) represents γ1(ω) for the same two interacting isotropic plasma metal
surfaces, only localized modes exist (dashed line). Both plots have been obtained in the non
relativistic limit.

The zeroes of the determinant give the dispersion relations ω(k, d) for the frequencies that
satisfy the field conditions at the interfaces.
The ω(k, d) relation for the TM modes of a cavity of dimension d, in the non relativistic
approximation, is plotted in figure 2.7 (a): the plasma model has been used to describe the
media properties. The forbidden region, present in the case of a single interface (see figure 2.5
(a)), vanishes thanks to the interaction between the two interfaces. For this configuration no
modes are present with frequency higher than the bulk plasma frequency. In the case of large
d values, the interaction between the two interfaces becomes negligible and the dispersion
relation should converge to the single surface one of figure 2.5 (a). Figure 2.7 (b) shows the
γ1 values in the case of a cavity, in the non relativistic limit, only surface modes are present:

gTM (ω, d) = (ε1 + ε3)(ε3 + ε2) − e−2dk(ε3 − ε1)(ε2 − ε3) = 0 gTE(ω, d) = 0 (2.54)

A detailed study of the modes of a single film standing alone in the vacuum, can be found
in reference [28].
The same procedure holds also for the TE modes leading to:

gTE = ed(γ3−γ2)(γ3 + γ1)(γ2 + γ3) − e−d(γ3+γ2)(γ1 − γ3)(γ3 − γ2) = 0 (2.55)

If one is able to solve explicitly the two determinants, according to the definition (2.6) the
zero point energy can be calculated as:

E(d) =
!
2

∑

α,k

ωα(k, d) =
!
2

∑

α

L2

4π2

∫
dkωα(k, d) =

∑

α

L2!
4π

∫
kdkωα(k, d) (2.56)

where the α index runs over TE and TM modes whereas L2 is the layers surface. The media
properties enter the energy expression through the dependence of ωα(k, d) from the dielectric
function. Unfortunately the direct solution of the determinants is not possible except for a
small number of limiting cases. Van Kampen proposed to overcome the problem of finding
the zeroes of the determinants with the help of complex contour integrals, in particular using
the logarithmic counter theorem: Let f(z) be a meromorphic2 function in a region D and

2A complex function is said to be meromorphic in a given region of the complex plane D if it is analytic
in the whole D except for a set of isolated poles.
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Figure 2.8: (a) sketch of the three layers cavity used by Lifshitz. (b) contour C in the complex
frequency plane used for the van Kampen integral representation (2.58).

g(z) an analytic function in D. Let C be a closed contour in D on which f(z) is both analytic
and nowhere zero. If f(z) has, within C, w zeroes at z = ai of order ni and p poles at z = bj

of order mj, then:

1
i2π

∮

C

g(z)
f(z)

df(z)
dz

dz =
w∑

i=1

nig(ai) −
p∑

j=1

mjg(bj) (2.57)

Choosing f(z) to be one of the determinants (2.55) or (2.53) and g(z) = ω, and provided
that these determinants have no poles, the previous integral gives all the ω values that make
the determinants vanish, i.e. it gives all the dispersion relations ω(k, d) one was looking for.
In other words:

∑

α

ωα(k, d) =
1

i2π

∮

C

ω

(
1

gTM

∂gTM

∂ω
+

1
gTE

∂gTE

∂ω

)
dω (2.58)

the C contour is reported in figure 2.8 (b). To guarantee the pertinence of (2.58), gTM and
gTE must not vanish on the contour C: on the C semicircle, where |ω| → ∞, the medium
response is negligible, ε(ω) → 1 and gTM = gTE (= 0; on the imaginary axe, for all the physical
response functions described in section 1.8, if Re[ω] = 0 one has gTM,TE (= 0 ∀ Im[ω].
The integral (2.58) over the contour C can be decomposed along the imaginary axe and the
semicircle Γ:

lim
|ω|→∞

[
1

i2π

−i∞∫

i∞

ω
1

gTM

∂gTM

∂ω
dω +

1
i2π

∫

Γ

ω
1

gTM

∂gTM

∂ω
dω+

+
1

i2π

−i∞∫

i∞

ω
1

gTE

∂gTE

∂ω
dω +

1
i2π

∫

Γ

ω
1

gTE

∂gTE

∂ω
dω

] (2.59)

this quantity is divergent, exactly as in section 2.2, the vacuum energy must be renormalized.
The divergence can be made more explicit: when |ω| → ∞ the dielectric functions go to 1
and (2.34) becomes:

γj =

√
k2 − εj(ω)

ω2

c2
,
√
−ω

2

c2
(2.60)

It should be noticed that a local treatment (without the inclusion of local field effects, i.e. a
complicated k dependence in the dielectric functions) is possible only if the modes frequencies
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are such that c
ω >> d. So, while ω diverges, d must tend to zero more rapidly and one get

ed(γ3−γ2) , 1. By this considerations:

gTM (|ω| → ∞) = gTE(|ω| → ∞) = −4ω
2

c2
∂gT M (|ω|→∞)

∂ω = ∂gT E(|ω|→∞)
∂ω = −8 ω

c2

(2.61)

and the integral (2.59) becomes:

lim
|ω|→∞

[
1

i2π

−i∞∫

i∞

ω
1

gTM

∂gTM

∂ω
dω +

1
i2π

−i∞∫

i∞

ω
1

gTE

∂gTE

∂ω
dω − 2i

π

∫

Γ

dω

]
(2.62)

the last integral is clearly divergent. Before proceeding to the renormalization of the vacuum
energy, it is convenient to rewrite the first two integrals of (2.62) in a different way with an
integration by parts:

1
i2π

−i∞∫

i∞

ω
1

gTM

∂gTM

∂ω
dω +

1
i2π

−i∞∫

i∞

ω
1

gTE

∂gTE

∂ω
dω =

=
1

i2π

[
ω ln(gTM )



−i∞

i∞

−
−i∞∫

i∞

ln(gTM )dω + ω ln(gTE)



−i∞

i∞

−

−
−i∞∫

i∞

ln(gTE)dω

]
=

1
i2π

i∞∫

−i∞

ln(gTM )dω +
1

i2π

i∞∫

−i∞

ln(gTE)dω

(2.63)

in the last step two terms disappeared: all the physical dielectric functions described in
section 1.8 have the property:

lim
ω→±∞

ε(ω) = lim
ω→±∞

ε(iω) = 1 (2.64)

so that gTM (i∞) = gTM (−i∞) = gTE(i∞) = gTE(−i∞).
To renormalize the energy one must follow the Casimir’s procedure, subtracting the vacuum
energy of the cavity with d → ∞ to the vacuum energy for the cavity of finite thickness. For
large cavity thicknesses the determinants become:

g(∞)
TM = ed(γ3−γ2)(ε1γ3 + ε3γ1)(ε3γ2 + ε2γ3)

g(∞)
TE = ed(γ3−γ2)(γ3 + γ1)(γ2 + γ3)

(2.65)

and the renormalized dispersion relations can be calculated:
∑

n,α

ωn,α(k)ren. =
∑

n,α

ωn,α(k) − lim
d→∞

∑

n,α

ωn,α(k) =

=
1

i2π

i∞∫

−i∞

ln(gTM )dω +
1

i2π

i∞∫

−i∞

ln(gTE)dω − 2i

π

∫

Γ

dω−

− 1
i2π

i∞∫

−i∞

ln(g(∞)
TM )dω − 1

i2π

i∞∫

−i∞

ln(g(∞)
TE )dω +

2i

π

∫

Γ

dω =

=
1

i2π

i∞∫

−i∞

ln

(
gTM

g(∞)
TM

)
dω +

1
i2π

i∞∫

−i∞

ln

(
gTE

g(∞)
TE

)
dω
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where the divergent parts of the contour integrals cancel out. Notice that in the Casimir
derivation, before renormalizing the energy, a regularization function was used. Here the
regularization function is implicitly contained in the integrand that is not divergent except
for the two terms that cancel out. For interacting objects of different shape the cancellation
of divergencies is not so obvious. Redefining the ratio gα/g(∞)

α as Qα:

QTM = 1 − e−2dγ3
(ε1γ3 − ε3γ1)(ε2γ3 − ε3γ2)
(ε1γ3 + ε3γ1)(ε3γ2 + ε2γ3)

QTE = 1 − e−2dγ3
(γ3 − γ1)(γ3 − γ2)
(γ3 + γ1)(γ2 + γ3)

(2.66)

with the change of variable ξ = −iω the energy becomes

E(d)ren. =
!
2

L2

4π2

∞∫

−∞

∑

α

ωα(k)dk =

= −!
2

L2

4π2

1
2π

( ∞∫

−∞

dk
∞∫

−∞

ln(QTM (iξ))dξ +
∞∫

−∞

ln(QTE(iξ))dξ

) (2.67)

Now the integrand is a real function because ε(iω) is a real function (see section 1.8). Using
polar coordinates:

E(d)ren. = −!L2

4π2

∞∫

0

kdk

∞∫

0

[
ln(QTM (iξ)) + ln(QTE(iξ))

]
dξ (2.68)

The frequency integration domain has been reduced only to positive values because the
integrand is an even function. This integrand property comes directly from the even parity
of the London’s transform of the dielectric function (see appendix C of the previous chapter)
in particular, from the definition (1.207), it is easy to see that under the change of variable
ω → −ω, ε(iω) remains unchanged. Another frequently form to express the same energy is
through the change of variable k2 = ξ2

c2 (p2 − 1):

E(d)ren. = − !L2

4π2c2

∞∫

1

pdp

∞∫

0

ξ2
[
ln(QTM (iξ)) + ln(QTE(iξ))

]
dξ (2.69)

now QTM and QTE have different expressions due to the modification of γi:

γi =
√

k2 − ω2

c2 εi(ω) =
√

k2 + ξ2

c2 εi(iξ) =
√

k2 + k2

p2−1εi(ω) =
= k√

p2−1

√
p2 − 1 + εi(iξ) = ξ

cKi
(2.70)

where the definition Ki =
√

p2 − 1 + εi(iξ) has been adopted

QTM = 1 − e−2d ξ
c K3

(ε1K3 − ε3K1)(ε2K3 − ε3K2)
(ε1K3 + ε3K1)(ε3K2 + ε2K3)

QTE = 1 − e−2d ξ
c K3

(K3 − K1)(K3 − K2)
(K3 + K1)(K2 + K3)

(2.71)

Finally, differentiating with respect to d one get the macroscopic dispersion force per unit
surface:

F (d) = −∂E(d)ren.

∂d

1
L2

(2.72)
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Figure 2.9: (a) Relative percent difference of the force in a plasma cavity and in a Lorentz
cavity as a function of the cavity dimension d for Ωp = 2 · 1016 rad/s and ω0 = 1015 rad/s
(dashed line) or ω0 = 5 · 1015 rad/s (continuous line). (b) Force as a function of the cavity
plasma frequency for a cavity of 10 nm length described by the plasma model (dashed line)
or the Lorentz model (continuous line) with ω0 = 5 · 1015 rad/s.

or, explicitly:

F (d) = − !
2π2

∞∫

0

kdk

∞∫

0

γ3

[
1 − QTM (iξ)

QTM (iξ)
+

1 − QTE(iξ)
QTE(iξ)

]
dξ (2.73)

F (d) = − !
2π2c3

∞∫

1

pdp

∞∫

0

K3ξ
3

[
1 − QTM (iξ)

QTM (iξ)
+

1 − QTE(iξ)
QTE(iξ)

]
dξ (2.74)

Many information about the dispersion forces behaviour can be obtained from this formula:
(i) first of all it is well known [29] that, if ε3 = 1 the force can take only negative values, i.e.
two interacting plates separated by the vacuum can only attract each other. If ε1 ≶ ε3 ≶ ε2
the force can also change sign becoming repulsive. This behaviour can be easily understood
looking at the interface modes only, considering surface plasmons in terms of macroscopic
oscillations of the negative charge (see section 1.8). A positive force has not yet been observed
but the first preliminar step has been accomplished making the first measurement of disper-
sion forces in liquids [30]. (ii) The force between dielectrics is small compared with the one
between metals (see figure 2.9 (a)), dielectrics are more permeable than metals, less modes
energy remains trapped inside the cavity and the resulting macroscopic force is smaller. (iii)
Figure 2.9 (b) shows how sensitive the force can be to a change in the media parameters:
moving the plasma frequency of a plasma or a Lorentz cavity in the range 1013 ÷ 1017 rad/s
the force can change of several orders of magnitude. This is a very important point also when
a comparison between theory and experiments is needed: depending on how the sample is
prepared, the parameters for the model dielectric functions to be used in (2.73) can change
significantly, producing a significant modification in the dispersion force values [31, 32]. No-
tice that, for large d values, both the dielectric function models lead to the Casimir’s force
limit.
In the limiting case of two perfectly reflecting slab separated by the vacuum (ε1 = ε2 → −∞
and ε3 = 1) one gets

QTM = QTE = 1 − e−2dξp/c

F (d) = − !
π2c3

∞∫

1

p2dp

∞∫

0

ξ3
e−2dξp/c

1 − e−2dξp/c
dξ

(2.75)
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using the known integral:
∞∫

0

x3e−ax

1 − e−ax
dx =

π4

15a4
(2.76)

the Casimir result (2.28) is achieved.
The theory as been generalized by B.E. Sernelius to account for non local effects, for those
materials in which the k dependence of the dielectric functions is not negligible [33].

2.3.3 Finite temperature formalism

The finite temperature extension of the dispersion forces theory must be carried out starting
from thermodynamics considerations. From the fields point of view, at finite temperature,
the cavity is no more empty: a gas of photons exists whose number and energy distribution
depends upon T according to the black body radiation laws. From the media point of view
one can say that the media modes are no more in their ground states, the modes spectrum
is differently populated depending on the temperature values. In any case the cavity walls
are again macroscopically neutral and the force acting between them pertains again to the
dispersion forces family. The partition function of an ephemeral bosons gas is given by:

Q =
∑

{nj}

e
−Enj (N,V )

kBT =
∑

{nj}

e−
P

k

(1/2+nj)!ωk
kBT =

∏

k

∞∑

n=0

e−
(1/2+n)!ωk

kB T (2.77)

where the sum over {nj} represents the sum over all the occupation numbers sets (i.e. all the
possible microscopic configurations of the system), Enj is the energy of the j−th occupation
numbers sets and kB the Boltzmann constant. Using the usual definition for the Helmholtz’s
free energy:

A = −kBT lnQ = −kBT
∑

k

ln

[ ∞∑

n=0

e−
(1/2+n)!ωk

kBT

]
(2.78)

Summing the known series and playing with the Eulero’s formula, one obtains:

A = kBT
∑

k

ln

[
2 sinh

(
1
2

!ωk

kBT

)]
(2.79)

Following the zero temperature derivation, the energy of the cavity of amplitude d must be
normalized subtracting the energy of the infinitely large cavity.

A(d)ren. = kBT
∑

k

{
ln

[
2 sinh

(
1
2

!ωk(d)
kBT

)]
− ln

[
2 sinh

(
1
2

!ωk(∞)
kBT

)]}
(2.80)

here ωk(d) and ωk(∞) are all the possible dispersion relations of the cavity obtainable from
the solution of the determinants (2.55) and (2.53) for the three layers configuration. Using
the logarithmic counter theorem (2.57) with f(z) given by the determinants (2.55) and (2.53)
and g(z) given by:

g(z) = kBT ln

[
2 sinh

(
!z

2kBT

)]
(2.81)

the free energy (2.79) becomes:

A =
kBT

2πi

∑

k,α

−∞∫

+∞

dωln

[
2 sinh

(
!ω

2kBT

)]
d

dω
ln
[
gα(ω)
]

=

= −kBT

2πi

∑

k,α

+∞∫

−∞

dξln

[
2 sinh

(
!iω

2kBT

)]
d

dω
ln
[
gα(iω)
]

=

(2.82)
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Figure 2.10: Contour used for the integration (2.84) to avoid the singularities located at the
Matsubara frequencies.

the same assumption on gα of the zero temperature derivation hold even in this case, in the
second step the variable ξ = −iω as been introduced. Integrating by parts one can simplify
the integrand expression:

A = −kBT

2πi

∑

k,α

{
ln

[
2 sinh

(
!iω

2kBT

)]
ln
[
gα(iω)
]∣∣∣∣

∞

−∞
−

− i!
2kBT

∞∫

−∞

dξ
cosh
( !iω

2kBT

)

sinh
( !iω

2kBT

) ln
[
gα(iω)
]}

(2.83)

the first term in the RHS cancels out with the g(∞)
α in the renormalization procedure (2.80)

and will be omitted. The second term in the RHS contains an hyperbolic cotangent and, be-
cause of this, the integrand has poles at frequencies zn = i2πnkBT/!, the so called Matsubara
frequencies. The integral over the frequency ξ can be transformed into a discrete sum over
the Matsubara frequencies by means of the residues theorem, integrating over the contour of
figure 2.10 the free energy becomes:

A = kBT
∑

k,α

∞′∑

n=0

ln
[
gα(iΩn)

]
(2.84)

where Ωn = 2πnkBT/!. Notice that a factor 2 appear because of the parity of ε(iω) that
leads to the property lngα(Ωn) = lngα(Ω−n), only the n = 0 term must be taken once, this
is why a prime symbol appear in the n sum. Finally, coming back to the renormalized energy
expression one ends up with:

A(d)ren. = kBT
∑

k,α

∞′∑

n=0

ln

[
gα(iΩn)

g(∞)
α (iΩn)

]
(2.85)

or in the case of a continuum k space

A(d)ren. =
kBTL2

2π

∑

α

∞′∑

n=0

∫
k dk ln

[
gα(iΩn)

g(∞)
α (iΩn)

]
(2.86)

using the determinants of the three layers system and differentiating with respect to the
cavity amplitude d one gets the force per unit area:

F (d) = −kBT

π

∞′∑

n=0

∞∫

0

k dkγ3

[
1 − QTM (iΩn)

QTM (iΩn)
+

1 − QTE(iΩn)
QTE(iΩn)

]
(2.87)
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Figure 2.11: Black lines represent the dispersion relation ω(k) for two interacting plasma
films of thickness d1 = d2 separated by a distance d. The calculation have been performed
in the non relativistic limit.

This result was originally derived by Lifshitz and presented in its earlier work together with
the zero temperature result, however it is known to suffer from many problems. The finite
temperature extension of the Casimir’s limit can be derived starting from the general formula
(2.86) and, in the small temperature limit, the original Casimir’s result can be obtained.
However this derivation brings to light some known problems of the finite temperature theory
and it is postponed at section 2.5, where the theory pathologies are largely discussed.
The finite temperature formalism accounts only for the force corrections due to the presence
of a photon gas inside the interacting media. Another correction comes from the temperature
modification of the dielectric response functions describing the media, this problem has been
discussed by N. Inui [34], Høye et al. [35] and Yampolskii et al. [36] who introduced the
temperature dependence in a model dielectric function ε(ω, T ). The joined effect of the
temperature dependence and the non locality of the force has been investigated by Bo E.
Sernelius [37].

2.3.4 Extension to more than three layers

A first extension of the three layers theory, described in section 2.3.2, has been provided by F.
Zhou and L. Spruch [38]. Following the same procedure previously adopted, one can evaluate
the energy and the force for the five layer system of figure 2.12 (a). One has simply to add
two new interfaces, four new equations appear for the field conditions and (2.53) and (2.55)
become 8× 8 determinants. Now one deals with three geometrical parameters, d being again
the thickness of the inner layer, d1 and d2 being the thicknesses of the outer finite layers.
The dispersion relation becomes now more complicated, it is plotted in figure 2.11 for the
case of two identical interacting plasma films of thickness d1 = d2 separated by a distance
d. Doubling the number of interfaces two new branches appear. While the film thickness
d1 = d2 increase the dispersion relation should converge to the one of a plasma cavity of
dimension d (see figure 2.7 (a)), i.e. two branches must disappear. The logarithmic counter
theorem can be used to transform the seek of the zeroes of the determinants into an integral
over the complex frequencies plane. To normalize the theory, the energy at the separation
d → ∞ must be subtracted to the energy at a finite d value. Finally one gets:

E(d)ren. =
!L2

4π2

∞∫

0

kdk

∞∫

0

[
ln(1 − Q1

TMQ2
TM ) + ln(1 − Q1

TEQ2
TE)
]
dξ (2.88)



88 Macroscopic dispersion forces

Figure 2.12: (a) sketch of the five layers cavity used by Zhou and Spruch. (b) black lines
indicate the two interfaces between which the force is calculated differentiating the energy
with respect to the different geometric parameters, namely F (d), F (d1) and F (d2).

where:

Q1
α =

ρα13 − ρα14e
−2γ1d1

1 − ρα13ρ
α
14e

−2γ1d1
e−γ3d Q2

α =
ρα23 − ρα25e

−2γ2d2

1 − ρα23ρ
α
25e

−2γ2d2
e−γ3d (2.89)

and:
ρTM

i,j =
εjγi − εiγj

εjγi + εiγj
ρTE

i,j =
γi − γj

γi + γj
(2.90)

Notice that also d1 or d2 can be used as normalization parameters but the final energy result
remains unchanged. To obtain the force one can differentiate the renormalized energy in
the d, d1 or d2 variables. In each case one is deriving different forces, the three possibility
are illustrated in figure 2.12 (b). Here only the force as a function of d is presented, for a
comparison with expression (2.73):

F (d) = − !
2π2

∞∫

0

kdk

∞∫

0

γ3

[
Q1

TMQ2
TM

1 − Q1
TMQ2

TM

+
Q1

TEQ2
TE

1 − Q1
TEQ2

TE

]
dξ (2.91)

In the limiting case of d1, d2 → ∞ one obtains exactly the expression (2.73). If the media
1 and 2 are perfect metals (ε1, ε2 → −∞), the existence of the semi-infinite layers 4 and 5
is irrelevant, all the electromagnetic modes are trapped between the impenetrable layers 1
and 2, i.e. into the medium 3. In the latter conditions, if ε3 = 1 the Casimir result (2.28) is
achieved.
The extension of the three and five layers models to a general multilayer system has been

given by M.S. Tomaš and C. Raabe et al. [39, 40].

2.3.5 Anisotropic media

The same derivation of section 2.3.2 can be performed in the case of uniaxial media, i.e.
media whose dielectric tensor is diagonal with εxx = εyy (= εzz . From the considerations of
section 2.3.1 on the interface field conditions for anisotropic media, it is easy to understand
why the TE modes remain unchanged and only the TM modes are affected by the anisotropic
nature of the media. The uniaxial media generalization of the force (2.73) require the usage
of (2.44) and (2.45):

QTM = 1 − e−2dγTM
3

(εxx1γTM
3 − εxx3γTM

1 )(εxx2γTM
3 − εxx3γTM

2 )
(εxx1γTM

3 + εxx3γTM
1 )(εxx3γTM

2 + εxx2γTM
3 )

QTE = 1 − e−2dγTE
3

(γTE
3 − γTE

1 )(γTE
3 − γTE

2 )
(γTE

3 + γTE
1 )(γTE

2 + γTE
3 )

(2.92)
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and (2.73) becomes:

F (d) = − !
2π2

∞∫

0

kdk

∞∫

0

[
γTM
3

1 − QTM (iξ)
QTM (iξ)

+ γTE
3

1 − QTE(iξ)
QTE(iξ)

]
dξ (2.93)

Naturally, imposing εxx = εyy = εzz one gets back the isotropic result. The same generaliza-
tion applies for the five layer system of section 2.3.4, again only the TM modes are interested
by the anisotropy:

Q1
α =

ρα13 − ρα14e
−2γα

1 d1

1 − ρα13ρ
α
14e

−2γalpha
1 d1

e−γ
α
3 d Q2

α =
ρα23 − ρα25e

−2γα
2 d2

1 − ρα23ρ
α
25e

−2γα
2 d2

e−γ
α
3 d (2.94)

with:

ρTM
i,j =

εxxjγTM
i − εxxiγTM

j

εxxjγTM
i + εxxiγTM

j

ρTE
i,j =

γTE
i − γTE

j

γTE
i + γTE

j

(2.95)

and (2.91) becomes:

F (d) = − !
2π2

∞∫

0

kdk

∞∫

0

[
γTM
3

Q1
TMQ2

TM

1 − Q1
TMQ2

TM

+ γTE
3

Q1
TEQ2

TE

1 − Q1
TEQ2

TE

]
dξ (2.96)

Naturally other generalizations are possible, one can treat non uniaxial diagonal dielectric
tensors or the more general case of non diagonal tensors, the expressions for γαj and Qj

α

become more and more complicated.

2.4 Different approximations

As already stated in the Casimir’s derivation of section 2.2 the dimension of the cavity is
related to the dielectric properties of the cavity walls: the cavity walls can be thought to
be perfectly reflecting mirrors only if the dimension of the cavity is large compared to the
penetration depth of the field inside the walls. So it is expected that, for large d, only
the static values of the dielectric functions contribute to the force. This can be formalized
through the exponent of expression (2.71), if d → ∞ the exponential goes to zero and the
force vanish, except for the case in which also ξ → 0 , in that case the exponent remains
small. In the large d limit the force expression remains the same but the dielectric functions
εi(ω) must be replaced by their static values εi(0). With such an assumption the frequency
dependence of the integrand is extremely simple and the change of variable x = 2dξK3/c can
be made in (2.74) to explicitate the d dependence:

F (d) = − !c

32π2d4

∞∫

1

pdp

∞∫

0

x3

K3

[
1 − QTM (0)

QTM (0)
+

1 − QTE(0)
QTE(0)

]
dx (2.97)

In the large d regime the force goes as 1/d4 as in the Casimir’s limit, in fact if ε1 = ε2 are
plasma or Drude metals and ε3 = 1, the Casimir’s result is recovered thanks to the ε1(0) and
ε2(0) divergence.
In the opposite limit of small d a simpler expression of the force can be derived following
Lifshitz. If d → 0 the exponent of (2.71) can be set equal 1 except for the case in which also
K3 → ∞, in such a situation:

K3 =
√

p2 − 1 + ε1 , p (2.98)
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and the force (2.74) becomes

F (d) = − !
2π2c3

∞∫

1

dp

∞∫

0

p2ξ3(ε1 − ε3)(ε2 − ε3)
(ε1 + ε3)(ε2 + ε3)e2d ξ

c p − (ε1 − ε3)(ε2 − ε3)
dξ (2.99)

where the TE modes disappeared. Now with the substitution x = 2dξp/c:

F (d) = − !
16π2d3

∞∫

2dξc

x2dx

∞∫

0

dξ(
ε1+ε3
ε1−ε3

)(
ε2+ε3
ε2−ε3

)
ex − 1

(2.100)

in the small d limit x = 2dξc , 0 and one can write

1(
ε1+ε3
ε1−ε3

)(
ε2+ε3
ε2−ε3

)
ex − 1

=

(
ε1−ε3
ε1+ε3

)(
ε2−ε3
ε2+ε3

)
e−x

(
ε1−ε3
ε1+ε3

)(
ε2−ε3
ε2+ε3

)
e−x
[(

ε1+ε3
ε1−ε3

)(
ε2+ε3
ε2−ε3

)
ex − 1
] =

=

(
ε1−ε3
ε1+ε3

)(
ε2−ε3
ε2+ε3

)
e−x

1 −
(
ε1−ε3
ε1+ε3

)(
ε2−ε3
ε2+ε3

)
e−x

(2.101)

Considering the geometric series:
∞∑

n=0

[(
ε1 − ε3
ε1 + ε3

)(
ε2 − ε3
ε2 + ε3

)
e−x

]n
=

1
1 −
(
ε1−ε3
ε1+ε3

)(
ε2−ε3
ε2+ε3

)
e−x

(2.102)

of argument less than 1 for each x > 0, the integral becomes

F (d) = − !
16π2d3

∞∫

0

x2dx

∞∫

0

dξ
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ε1 − ε3
ε1 + ε3

)(
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)
e−x

∞∑
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)
×

×
(
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e−x

]n
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16π2d3

∞∑

n=1

∞∫

0

x2e−nxdx

∞∫

0

(
ε1 − ε3
ε1 + ε3

)n(ε2 − ε3
ε2 + ε3

)n
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(2.103)

the integration over x is particularly simple and takes the d dependence out of the integral:
∞∫

0

x2e−nxdx = − 1
n3

[
(n2x2 + 2nx + 2)e−nx

]∞
0

=
2
n3

(2.104)

and finally the force is:

F (d) = − !
8π2d3

∞∑

n=1

1
n3

∞∫

0

(
ε1 − ε3
ε1 + ε3

)n(ε2 − ε3
ε2 + ε3

)n

dξ (2.105)

At short distances the force goes as 1/d3 multiplied by a factor that depends only upon the
dielectric properties of the media. Notice that if ε1 and ε2 are both larger or smaller than ε3
the integrand is always positive and the series too. But if this condition is not satisfied the
series has alternate sign and the convergence of the force is slower. The second term of the
series is 1/8 smaller than the first, retaining only the n = 1 term one has:

F (d) = − !
8π2d3

∞∫

0

(ε1 − ε3)(ε2 − ε3)
(ε1 + ε3)(ε2 + ε3)

dξ (2.106)

Figure 2.13 (a) shows the behaviour of the exact force for a plasma cavity calculated with
(2.73), for large and small d values it approaches the Casimir result (2.28) and the small d
series (2.105) respectively. Figure 2.13 (b) shows the relative percent difference between the
the exact calculation and the approximate results of Casimir and Lifshitz.
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Figure 2.13: (a) Black line represents the exact dispersion force for a plasma cavity (Ωp = 1016

rad/s) as a function of the cavity dimension d, gray lines are the small d series (dashes) and
Casimir’s (dots) approximations. (b) is the relative percent difference between the exact
results and various approximations: Casimir (continuous line), small d series with n = 1
(dot-dashes) n = 10 (dashes) n = 100 (dots)

2.5 Finite temperature issues

If one try to recover the original Casimir’s result from the finite temperature theory in
the limiting case of T → 0, a number of problems and questions arise. The first step of this
derivation is the calculation of the force at finite temperature between two perfectly reflecting
walls, i.e. the Casimir force at finite temperature. The n = 0 term in the force (2.87) can be
calculated by two different preocedures, that lead to different results:

• First the limit ε1 = ε2 → ∞ is performed, than Ω0 is set equal 0. In this case the TE
and TM modes give the same contribution and the n = 0 term becomes:

F 0(d) = −kBT

π

1
2

∞∫

0

2k2

e2dk − 1
dk = −kBT

4π
ξ(3)
d3

(2.107)

where ξ is the Riemann’s zeta function [41].

• First Ω0 is set equal 0, than one let ε1 = ε2 → ∞. In this case the TE modes of the
n = 0 term vanish whereas the TM modes give the term:

F 0(d) = −kBT

π

1
2

∞∫

0

k2

e2dk − 1
dk = −kBT

8π
ξ(3)
d3

(2.108)

that is half of the force obtained with the previous prescription [42, 43, 44].

For all the n > 0 terms of the Matsubara sum, the two approaches give the same result. In
the small temperature limit the Euler-Maclaurin’s formula can be used giving [35]:

F (d) = − !cπ2

240d4

[
1 +

16
3

(
kBTd

!c

)4]
(2.109)

with the first prescription and:

F (d) = − !cπ2

240d4

[
1 +

16
3

(
kBTd

!c

)4]
+

kBT

8π
ξ(3)
d3

(2.110)
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in the case of vanishing TE modes. Both approximations work if Td * 1. In the vanishing
TE case the temperature correction to the Casimir’s force goes linearly with T , whereas in
the first case it goes as T 4. The same applies for the free energy:

A(d) = − !cπ2

720d3

[
1 + 16
(

kBTd

!c

)4]
(2.111)

or:

A(d) = − !cπ2

720d3

[
1 + 16
(

kBTd

!c

)4]
+

kBT

16π
ξ(3)
d2

(2.112)

The entropy S is defined as the temperature derivative of the free energy A:

S = −∂A

∂T
(2.113)

and it goes to zero with the first prescription whereas it remains constant, violating the
third thermodynamics principle, in the vanishing TE assumption. From this consideration it
seems quite natural to discard the vanishing TE case in favour of the first one, in which one
must replace the dielectric functions of the media and subsequently let the frequency go to
zero. This suggestion seems to be supported by the fact that the zero temperature Casimir’s
force can be correctly obtained by the finite temperature Casimir’s force only with the first
prescription. By the exact solution of (2.87), reported in [35], with the first prescription one
gets:

F = − kBT

8πd3

∞∑

k=1

1
k3

[
s2(ηk) + 2s1(ηk) + 2s0(ηk)

]

η =
2πd

!c
kBT s0 = coth(η)

s1 =
η

sinh2(η)
s2 =

2η2cosh(η)
sinh3(η)

(2.114)

letting T → 0, also η goes to zero recovering the original result:

F = − kBT

8πd3

∞∑

k=1

6
k3ηk

= − !cπ2

240d4
(2.115)

whereas, using the vanishing TE prescription one achieves:

F = − kBT

8πd3

∞∑

k=1

1
k3

[
s2(ηk) + 2s1(ηk) + 2s0(ηk) − ξ(3)

]
(2.116)

that is a smaller force due to the lack of the zero frequency TE contribution.
From the exact force between two ideal metals (2.114) one can recover the limit (2.109) when
Td * 1 or the expression:

F = − kBT

4πd3
ξ(3) (2.117)

in the opposite situation of Td ) 1. Letting the TE modes vanish, one gets one half the
last result. Both Td * 1 and Td ) 1 limits, together with the exact calculation (2.114), are
shown in figure 2.14 (b) for a T = 300◦ cavity. Notice that, independently of the temperature,
the force is always larger than the one calculated at zero temperature, the difference becoming
larger on increasing the temperature or the cavity amplitude, see figure 2.14 (a).
Moving to a more realistic description of the dielectric properties of the cavity walls (finite
Ωp), one can introduce the Drude or the Lorentz models. In both cases the n = 0 term
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Figure 2.14: (a) Casimir’s force as a function of the cavity amplitude at zero temperature
(continuous line), at T = 300◦K (dotted line) and at T = 1000◦K (dashed line). (b) Casimir’s
force as a function of the cavity amplitude at T = 300◦K, (gray continuous line) and its small
(dashed line) and large (dash-dotted line) Td approximations.

behaves according to the vanishing TE prescription when the Matsubara frequency Ωn is set
equal zero:
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for the Drude model, and:
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(2.119)

for the Lorentz model. Is this behaviour in contradiction with the third thermodynamics low?
Figure 2.15 (a) shows the Lifshitz force as a function of the temperature for the case of a Drude
cavity. The small T limits expressions, (2.109) and (2.110), are also reported for a comparison:
at small temperatures the Drude force has a flat behaviour as the limit (2.109), fulfilling the
third thermodynamics law. The vanishing TE prescription (2.110) as a linear behaviour as a
function of T and, as previously emphasized, it violates the third thermodynamics law. The
explanation for the Drude correct behaviour is discussed in reference [35]. From the figure
it is also visible that, for realistic materials, the temperature can play both an increasing or
decreasing effect on the force with respect to the zero temperature prediction.
To conclude there is a last issue that must be lighted: independenlty of the model dielectric
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Figure 2.15: (a) Force as a function of the temperature for a Drude cavity having Ωp = 1016

rad/sec and β = 1015 rad/sec (dashed line), the (2.109) approximation (continuou line) and
the (2.110) approximation (dotted line). The cavity amplitude is d = 1µm. (b) Force as a
function of the plasma frequency Ωp for the previous cavity, calculated at T = 300◦K. The
zero temperature Casimir’s result is also protted (dashed line).

function used, the n = 0 term of the Matsubara sum brings to a force contribution that does
not depend upon the dielectric parameters. Figure 2.15 (b) shows the force as a function of
the plasma frequency for a fixed cavity dimension: an unphysical behaviour is evident for
Ωp → 0 where the force is expected to vanish because the medium is almost transparent.
Another problem arise in the opposit limit Ωp → ∞, where, due to the vanishing behaviour
of the zero TE modes, the exact Casimir result can not be achieved. All this problems remain
still unresolved but they vanish in the T → 0 limit.

2.6 Concluding notes

A detailed survey on the different experimental techniques for the dispersion forces measure-
ment is beyond the scope of this thesis, a rather complete review can be found in references
[4] and [1]. There are many possible source of error that can affect an experimental measure-
ment of the dispersion forces preventing the theory to properly reproduce the experimental
data. Among them the surface roughness of the interacting objects seems to play a major
role together with the plate misalignment, possible corrections to the theoretical force ex-
pression are discussed in reference [4], while experimental evidence is provided by the recent
measurements reported in [45].
A simple and unique way to renormalize the zero point energy can be found only for in-
teracting systems of high symmetry, like two interacting planes, a sphere, two cylinders.
Among the other geometries with a lower degree of symmetry, the configuration of a sphere
(lens) above a disk (plane) is of great importance to calculate the force between a tip and
a substrate in atomic force microscopy measurements. Unfortunately for this configuration
an exact analytical solution is not possible, however a number of approximate techniques
are available to calculate the dispersion energy for arbitrary shapes and geometries of the
interacting objects. The proximity force theorem allows to use the result of two interacting
planes of sections 2.3.2 and 2.3.3 to calculate the force between curved surfaces. The idea
is to integrate the interaction between two infinitesimal plane surfaces over a surface with
large curvature radius. The proximity force theorem can be used also to calculate roughness
corrections. Limitations of the proximity force approximation have been shown by Chan et
al. [46]. Another possibility is to calculate the force between two macroscopic objects sum-
ming pairwise over the Casimir-Polder force between single atoms: due to the non additivity
of the force a correction factor must be used and there are several techniques by means of
which it can be calculated. All these methods are reviewed and their limitations discussed
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in reference [4]. More recent techniques are discussed in references [47] and [48].

Appendix A: Interface fields conditions

The conditions that electromagnetic fields must satisfy at an interface between two different
media, can be derived starting from the Maxwell’s equations. Making use of the divergence
and Stokes’ theorems, Maxwell’s equations can be written in an integral form. Integrating
over a certain volume V the divergence equations of the system (1.15) one gets:

∮

V

∇ · Ddx = 4π
∮

V

ηextdx (2.120)

∮

V

∇ ·Hdx = 0 (2.121)

and, by the divergence theorem:
∮

Σ

D · n̂dΣ = 4π
∮

V

ηextdx (2.122)

∮

Σ

H · n̂dΣ = 0 (2.123)

where n̂ is the versor normal to the surface Σ enclosing the volume V . This is nothing but
the Gauss theorem: the flux of the D field through a closed surface Σ is proportional to the
total charge enclosed within the surface. For H one gets the same result, but a magnetic
charge does not exist, so the right hand side of (2.123) vanishes. In other words the flux lines
of a magnetic field are always closed and the flux through any closed surface is always zero.
The two remaining equations of the system (1.15) must be integrated over an open surface
Φ: ∮

Φ

∇× H · t̂dΦ =
∮

Φ

[4π
c

Jext +
1
c

∂D
∂t

]
· t̂dΦ (2.124)

∮

Φ

∇× E · t̂dΦ = −
∮

Φ

1
c

∂H
∂t

· t̂dΦ (2.125)

and, using the Stokes’ theorem:
∮

C

H · t̂dl =
∮

Φ

[4π
c

Jext +
1
c

∂D
∂t

]
· t̂dΦ (2.126)

∮

C

E · t̂dl = −
∮

Φ

1
c

∂H
∂t

· t̂dΦ (2.127)

where C is the contour enclosing the surface Φ and t̂ is the versor normal to Φ. These two
expressions represent the Ampere and Faraday laws respectively.
With reference to figure 2.16 one can choose: the contour C with two infinitesimal sides and
the other two of length ∆l enclosing the surface Φ having normal versor t; the volume V
to be a cylinder of infinitesimal height and basis of surface ∆a. Both C and V lie across
the interface region between two media labeled with numbers 1 and 2, a surface charge σ
and a surface current density K can be present onto the separation surface. The nature of
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Figure 2.16: Volume, surfaces and contours for the divergence and Stokes’ theorems applica-
tion.

this charges and currents must be sought in the microscopic structure of the interface, in
particular in the modification of the electronic structure of the media that occurs close to
the separation surface. Neglecting the vanishing contribution from the infinitesimal lateral
surface of the cylinder, the left hand side of equation (2.122) becomes

∮

Σ

D · n̂dΣ =
(
D2 − D1

)
· n̂∆a (2.128)

while the right hand side is:

4π
∮

V

ηextdx = 4πσ∆a (2.129)

and equation (2.122) gives the condition:
(
D2 − D1

)
· n̂ = 4πσ (2.130)

If a surface charge σ is present at the interface, the component of the electric displacement
D perpendicular to the surface, is not conserved, it changes discontinuously moving from one
medium to the other. Reasoning in the same way for the equation (2.123) one gets:

(
H2 − H1

)
· n̂ = 0 (2.131)

this condition states that, crossing the interface, the component of the magnetic field per-
pendicular to the surface must be the same. The same thing can be done for the other two
equations. Neglecting the contribution from the the two infinitesimal sides of C, the left
hand side of equation (2.127) becomes:

∮

C

E · t̂dl =
(
n̂ × t̂
)
·
(
E2 − E1

)
∆l (2.132)

while the right hand side vanish because the surface Φ is infinitesimal, and so:
(
E2 − E1

)
× n̂ = 0 (2.133)

Crossing the interface, the electric field component parallel to the separation surface must
be the same. And finally, in the case of equation (2.126):

∮

Φ

[4π
c

Jext +
1
c

∂D
∂t

]
· t̂dΦ =

4π
c

K · t̂∆l (2.134)

and one gets the last condition:
(
H2 − H1

)
× n̂ =

4π
c

K (2.135)
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In presence of a surface current, the magnetic displacement component parallel to the sepa-
ration surface, is not expected to remain constant crossing the interface.
For further details concerning optical and electronic properties of surfaces see references [49]
and [50].

Appendix B: Perfectly reflecting 3D cavity

The aim of this appendix is to show that, in a three dimensional cavity with perfectly
reflecting walls perpendicular to the z axe, two transverse modes with the same dispersion
law exist for wave vector k with kz (= 0 but, if k lie in the xy plane, only one mode is allowed.
The transverse modes of an empty cavity are solution of the D’Alembert’s equation, in three
dimensions there exist two linearly independent solutions for each k vector, corresponding to
the two polarizations:

E = E0ê1e
ik‖·x‖eikzz E = E0ê2e

ik‖·x‖eikzz (2.136)

here the scalar product k · x has been split to isolate the z component. ê1 and ê2 are the
polarization vectors defined as:

ê1 =
n̂× k
|k| =

ky

|k| î−
kx

|k| ĵ ê2 =
ê1 × k
|k| =

kxkz

|k|2 î +
kykz

|k|2 ĵ +
k2

x + k2
y

|k|2 k̂ (2.137)

where n̂ is the versor normal to the cavity wall. Now it is convenient to switch between
oscillating exponentials and trigonometric functions, a linear combination of solutions (2.136)
must be used with wave vectors k and k′ defined has:

k′ = kx î + ky ĵ− kzk̂ (2.138)

together with the Euler’s formula. Naturally, changing k the polarization versors change:

ê1
′ = ê1 ê2

′ = −kxkz

|k|2 î − kykz

|k|2 ĵ +
k2

x + k2
y

|k|2 k̂ (2.139)

Now, two linearly indipendent solution must be foud, with the linear combination:

E = E0

(
ê1e

ik‖·x‖eikzz − ê1
′eik‖·x‖eikzz

)
(2.140)

one gets the following electric field:

Ex, Ey, Ez ∝ E0e
ik‖·x‖sin(kzz) (2.141)

or, with the other combination:

E = E0

(
ê2e

ik‖·x‖eikzz + ê2
′eik‖·x‖eikzz

)
(2.142)

the result is:

Ex, Ey ∝ E0e
ik‖·x‖sin(kzz)

Ez ∝ E0e
ik‖·x‖cos(kzz)

(2.143)

By virtue of the interface field conditions described in apendix A, the components Ex and
Ey , parallel to the cavity walls, must be the same on both sides of the cavity walls, if the
cavity walls are perfectly reflecting the field in the outer side is zero so it must be zero even
on the inner one, as a result one can state the following boundary conditions:

Ex(x, y, 0) = Ey(x, y, 0) = 0 Ex(x, y, 2) = Ey(x, y, 2) = 0 (2.144)
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For both the fields (2.141) and (2.143) these requirements gives the quantization condition
kz = nπ/2, and the dispersion relation ω(k) is the same. When n = 0, kz = 0, the wave
vector is entirely contained in the xy plane: in the case of (2.141) this results in an everywhere
vanishing field; for (2.143) the n = 0 condition gives a filed uniquely oriented along the z
direction. To summarize for n (= 0 two modes with the same dispersion relation exist whereas
for n = 0 a unique mode exist.
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In the first part of the chapter, a detailed investigation of the properies of the dispersion
force acting onto films is given. Many configurations will be considered, such as an isolated
film or a film deposited (grown) onto a substrate. The second part of the chapter is devoted
to the description of the role that the dispersion force can have in determinig the stability
and the morphology of thin films. The work described here has been published in two papers,
references [1, 2].
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3.1 Introduction

Electromagnetic fluctuation induced forces have been the subject of several investigations
both in the non retarded small distance limit (van der Waals forces) and in the retarded
large distance case (Casimir forces) [3, 4, 5, 6]. Since the basic work from Lifshitz, described
in section 2.3, studies have been focused mainly on the determination of the forces between
two semi-infinite planar media [7] or between a sphere and a planar medium [8]. Even if
model calculations have been performed for special geometries [5, 6, 9], forces on realistic
systems have been obtained starting from the above mentioned configurations.
For several technological applications, multilayer systems, obtained by depositing thin films
of different species onto a given substrate, are important and theoretical approaches have
been devised to determine van der Waals forces between laminated media [10, 11]. Casimir
forces between moving parts have been considered as possible source of instabilities in micro
and nano-devices, where the components are in close proximity [12, 13, 14]. In many of these
systems the situations of interest correspond to interaction between parallel interfaces of films
and plates with micro or submicro-size and submicro-distances. While some of these studies
have been performed using simplified models for the interaction, like the assumption that
the interaction is correctly represented by the force between ideal metallic plates, it has been
pointed out that a realistic description of adhesion or stiction phenomena has to account for
the dependence of the force upon the shape and optical properties of the components [11, 15].
In spite of this large amount of work, a detailed study of the behaviour of the electromagnetic
fluctuation induced forces in unsupported or deposited conductive films, as a function of their
size and optical parameters has not been published. The interest has been focused mainly
on the interaction between two-dimensional films, for which forces are supposed to show a
peculiar dependence upon the film distance [16, 17, 18]. Less interest has been given to the
study of the forces on the film boundaries due to vacuum fluctuations, which are present even
in an isolated film and depend upon its size and properties.
One can formulate the problem as follows: suppose to have a simple metal, whose dielectric
function can be expressed by the plasma model (1.107) or by the Drude model (1.111). If
one considers an isolated metal film of thickness d, at T = 0◦K it is know that, in the limit
of vanishng plasma frequency, Ωp → 0, the force on the film (the electromagnetic pressure
on the film boundaries or the force between them) vanishes and the same happens in the
limit of infinite plasma frequency (perfect metal case). The vanishing of the force is due to
the peculiar values of film reflectivity in the two limits, it cannot stay identically zero for
physical values of the reflectivity1 . The problem of what sort of behaviour has the force
between these two limits has not been investigated: clearly, for a given film thickness, it must
reach at least one maximum of intensity. The questions to be answered are: (i) what is the
behaviour of the force as a function of Ωp, in particular at which plasma frequencies are force
maxima obtained, (ii) how do such maxima depend upon the film thickness, (iii) how is the
behaviour of the force modified when the film is deposited onto a substrate, (iv) how does the
electromagnetic force on the free standing film compare with the film-substrate interaction,
that may be responsible of adhesion and stiction phenomena.

3.2 Plasma model calculations

The force acting on metallic films can be investigated through the Lifshitz approach described
in chapter 2. In the following the plasma model dielectric functions will be used, infact the
aim here is not to achieve a precise description of the force for specific systems, since an

1This can be easily understood by noticing that in the non-retarded regime the force on the free standing
metal film is the same as the force between two semi-infinite plates of the same metal separated by a distance
equal to the film thickness (see equations (3.3) and (3.4) in the text), which is obviously attractive and
different from zero.
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accurate evaluation with an intrinsic force uncertainty of few per cent requires a precise
determination of the Drude parameters, which are very sensitive to the sample condition
[19, 20]. Rather it is important to illustrate some general trends that can be understood
using a model description of the dielectric properties.
Metallic films of thickness d ranging from 10nm to a few hundred nm will be considered.
For typical metallic densities the electronic distribution deviates significantly from the bulk
behaviour when the size of the film is less than about ten times the Fermi wavelength λF .
Taking λF , 5 Å, the bulk description is expected to become inaccurate when d is of the
order of 50 Å. For such ultrathin film quantum size effects are known to be important
[21, 22, 23, 24, 25] and will be investigated in the chapter 4.
In the following calculations a local description of the electromagnetic properties of the metal
based on a dielectric function ε(ω) will be used, i.e. the wavenumber dependence of the
dielectric response will be neglected (see section 1.5). This local theory is expected to be less
accurate in thin films than for half space or bulk systems. Recent calculations have shown
that non local corrections to electromagnetic induced forces for typical metallic densities are
of the order of a few tenth of a per cent, suggesting that the local theory can be appropriate
in the interpretation of the experimental data [26].

3.2.1 Force on isolated metallic films

The force per unit area F is calculated using expression (2.87) at the absolute temperature
T = 300◦K. In the configuration of a standing alone film ε1(ω) = ε2(ω) = 1, therefore QTM

and QTE are given by:

QTM = 1 − e−2dγ3
(γ3 − ε3(iΩn)

√
k2 + Ω2

n
c2 ε3(iΩn))2

(ε1γ3 + ε3(iΩn)
√

k2 + Ω2
n

c2 ε3(iΩn))2

QTE = 1 − e−2dγ3
(γ3 −
√

k2 + Ω2
n

c2 ε3(iΩn))2

(γ3 +
√

k2 + Ω2
n

c2 ε3(iΩn))

(3.1)

where:
γ2
3 = k2 +

Ω2
n

c2
ε3(iΩn) ε3 = 1 − Ω2

3/ω
2 (3.2)

Relaxation time effects will be neglected. Although they are important in determining the
infrared response of metals and the following calculation can be extended to a complex dielec-
tric function, the focus here is mainly on general trends in the behaviour of electromagnetic
fluctuation induced forces. For realistic calculations on specific materials relaxation time
effects have to be included and in metal films they can affect the force intensity. This effects
will be investigated in section 3.3.
Notice that there is a basic difference between the electromagnetic fluctuation induced forces
between two semi-infinite metals and those on the boundaries of a film. This is clearly seen
if one considers an ideal (perfectly reflecting) metal, corresponding to an infinite plasma fre-
quency: the interaction between two semi-infinite systems is expressed by the Casimir force
(2.28). while for a film of finite thickness, the force on the boundaries vanishes.
Figure 3.1 displays the calculated behaviour of F as a function of the plasma frequency for
films of different thickness ranging from 10 to 100nm. Notice that at finite temperatures
the force vanishes in the large plasma frequency limit, while for Ωp → 0 there is a finite
contribution from transverse magnetic modes. This contribution is due to the m = 0 term of
the sum over Matsubara frequencies and it depends linearly upon T (see section 2.5). It is
seen that the force is attractive (it tends to contract the film) and it shows a maximum and a
tail at high plasma frequency. As expected from the general behavior of the electromagnetic
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Figure 3.1: Force as a function of film plasma frequency: the force increases on decreasing the
film thickness d. The calculation were performed summating the first thousand Matsubara
frequencies. Alkali metals plasma frequencies are shown for comparison.
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Figure 3.2: Maximum value of the force and plasma frequency at which it occurs, as a function
of distance: the fitting functions are −64.05 − 3.98ln(d) (triangles) and 19.83 − 0.98ln(d)
(stars).

induced forces as a function of the distance, the maximum intensity reduces as a function
of d, while its frequency moves to higher values. The dots in the figure correspond to the
free electron plasma frequency for sp-bonded simple metals. This should not be seen as an
accurate prediction of the force value for metals. It indicates only that the force on real metal
films may fall on both sides of the maximum, depending upon the film thickness.
Notice that retardation effects are essential to obtain the maximum in the theoretical curve.
This can be understood by a simple calculation of the force on a free standing metal film
in the van der Waals regime at T = 0◦K (see section 2.4). In this case equation (2.106)
becomes:

F = − !
8π2d3

∞∫

0

(ε3(iξ) − 1)2

(ε3(iξ) + 1)2
dξ (3.3)

which leads to
F = − !Ωs

32πd3
(3.4)

with Ωs = Ω3/
√

2 frequency of the surface plasmon that can be obtained imposing ε3(ω) =
−1, according to what has been found in section 2.3.1. Equation (3.4) does not show any
maximum as a function of Ω3. This is not surprising since the above expression is valid under
the condition that d is much smaller than the plasma wavelength, therefore is appropriate in
the small plasma frequency regime only.
The behaviour of the maximum frequency as a function of d is given in figure 3.2: it is shown
that in the range of thickness here considered, the maximum frequency falls like d−1, while the
intensity maximum falls as d−4, as expected for the interaction in the retarded regime. The
behaviour of the force maximum, that is displaced to larger values for smaller thicknesses, can
be understood by noticing that the attraction arises from the interaction between the surface
plasmons at the two film boundaries [27, 28, 29]. At a given film thickness the interaction
is screened by the electron gas with increasing efficiency as the plasma frequency increases.
For large electron density Ω3 → ∞, the force goes to zero and one surface does not feel
the presence of the other. The maximum in the force results from the balance between the
surface plasmons interaction and the screening effects. In particular for small d a higher
electron density is required to screen the attractive force.
Some interesting comments can be made on these data. The first concerns the unsupported
film stability: the force tends to shrink the film and it has to be equilibrated by some repulsive
interaction, most likely provided by the force built up by the valence electron rearrangement
at the surfaces. Furthermore the force can be tuned significantly by changing the electron
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Figure 3.3: Force as a function of film plasma frequency: a change in sign occurs when the
isolated metallic film is placed on a perfectly reflecting substrate (ideal metal).

density of the metal: this effect could be useful in engineering the film properties for specific
applications.

3.2.2 The film-ideal metal substrate interaction

To show how the previous conclusions are modified when the metal film is interacting with a
substrate, figure 3.3 dysplays the behaviour of the force per unit area on a film of d = 100nm
thickness deposited onto a perfectly reflecting substrate, (corresponding to the configuration
with ε2 = 1 and ε1 equal to infinity), as a function of film plasma frequency. This is a very
simplified description of a bi-metallic interface, based on the assumption of the validity of the
continuum model, that neglects all the details of the interactions between the atoms at the
interface. It is expected to hold when the size of the film is large compared to the interface
region (typically a few angstroms) so that the interface plays a minor role in determining the
electromagnetic force. Notice that the force becomes repulsive and nearly double in intensity,
although it shows the same qualitative behaviour with a maximum and a long asymmetric
tail at large frequency values. It comes from the difference between the electromagnetic force
per unit area on the substrate side and that on the vacuum side the behaviour of the force
can be understood by noticing that at T = 0◦K the exact calculation in the non-retarded
limit gives the simple result:

F (d) =
!Ωp

32πd3

√
2 (3.5)

showing the change of sign and the increased force value. This result is consistent with the
behaviour of the London dispersion forces between dissimilar materials separated by a gap,
that has been reported since many years [3, 30, 31]. In this case the force is known to be
repulsive when ε1 ≷ ε2 ≷ ε3 and attractive when ε1 ≷ ε2 ≶ ε3 within a wide frequency range.
It is interesting to understand how the force between film boundaries in a multilayer system
is modified as a function of the film-substrate distance. For the case of a perfectly reflecting
substrate, one can determine the range of distances over which the sign of the force changes.
To this aim one has to extend equation (2.87) to a configuration with more than tree planar
media. In practice this amounts to replace the functions QTM and QTE by those appropriate
to a multi-layer configuration. For a five layer system the appropriate expressions were
derived by Zhou and Spruch and it is described in section 2.3.4. For the study of substrate-
metal film interaction, in the formula (2.91) one hase to take ε4 equal to infinity, ε1 = ε2 =
ε5 = 1 while ε3 is the metallic film dielectric function (3.2). Since the configuration depends
upon two parameters, the size d of the film and the film-substrate distance d1, one can define
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Figure 3.4: Force on the film boundaries as a function of the film-substrate distance, the film
plasma frequency is Ω3 = 5 · 1015rad/s.

the force F between the film boundaries, given by the derivative of the free energy with
respect to d, and the force F ′, obtained by deriving the free energy with respect to d1, giving
the interaction between the film and the substrate. Figure 3.4 shows the behaviour of the
force F on the film boundaries as a function of the film-substrate distance for a 100nm film.
It is seen that the force remains constant and attractive if the distance d1 is larger than the
film thickness d; at lower distances the force decreases until it becomes repulsive. In other
words, the film starts feeling a difference between the pressure from the metal substrate side
and the external vacuum pressure, when the film-substrate distance is comparable with its
thickness.
Discussions on device stability refer usually to the interaction between film and substrate
(here the word substrate is used to indicate a structure of much larger size than the film, it
could be a plate in a device), which gives rise to an attractive force F ′. To show how this
interaction behaves as a function of the ideal film-substrate distance, F ′ has been calculated
using equations (2.91). It turns out to be attractive for any value of the film plasma frequency
and, at distances smaller than the film size, it is considerably more intense than the force F
on the film. This force is responsible of the change in sign observed in figure 3.3: if the film
is close to the substrate, the difference between the attractive force on the film boundaries
tends to stretch the film, causing a repulsive force between them.

The behaviour of the film-substrate force F ′ in the range of distances d1 below the film
thickness, where the substrate effect is more significant, is illustrated by the results shown
in figure 3.7 for a 100nm film with plasma frequency Ω3 = 5 · 1015rad/s and a perfectly
reflecting substrate.
Notice that in this range of distances the force F ′ increases like d−x

1 with 3 < x < 4, (the
simple d−4

1 behaviour at all distances is characteristic of the interaction between ideal metal
plates only and it is appropriate for real metals only at large distances). At 100nm distance
this force is approximately −4.8N/m2, (the Casimir force between ideal metals at the same
distance is of the order of −10N/m2), while the force on the film boundaries is approximately
−1N/m2. The gray curve in the figure displays the calculated force per unit area for a semi-
infinite metal interacting with a perfectly reflecting semi-infinite substrate. It can be seen
that it does not deviate significantly from the curve for the 100nm film. At higher distances
the attractive force decreases while the force on the film remains approximately constant.
The calculated F ′ for a 10nm film is reported in the same figure: in this case the force
versus distance behaviour is rather different, showing a significantly higher exponent than in
the 100nm case (3.52 rather than 3.29). Clearly this behaviour cannot be understood using
arguments based on results for semi-infinite systems: for a semi infinite metal interacting with
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Figure 3.5: Force on the film boundaries as a function of film plasma frequency calculated for
different substrate frequencies, in the calculation about two thousands Matsubara frequencies
have been used.

Figure 3.6: Force on the film boundaries as a function of substrate plasma frequency calcu-
lated for different film plasma frequencies, in the calculation about two thousands Matsubara
frequencies have been used.
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Figure 3.7: Film-substrate force as a function of the film-substrate distance between ideal
metal substrate and real metal film, film thickness 100nm (triangles) and 10nm (crosses).
The fitting functions are −51.5 − 3.29ln(d1) (dotted line) and −55.7 − 3.52ln(d1) (dashed
line). The gray curve is the force between two semi-infinite systems, an ideal metal and a
real metal with the same plasma frequency of the film.

an ideal substrate one would expect the exponent x to become closer to 3 upon decreasing
the distance. The fact that it results to be significantly higher is a direct consequence of
the finite thickness of the film. Indeed, as first pointed out by Zhou and Sprunch [32]
higher negative exponents characterize the interaction in the presence of film of very small
thickness. An important consequence of this behaviour is that the calculated F ′ at 10nm
distance (approximately −7511.7N/m2) is considerably higher than the force F on the film
boundaries (approximately 0.001N/m2).
To conclude, the interaction of a metal film with a perfectly reflecting substrate leads to
an attractive film-substrate force and, at short distances, to a repulsive force on the film
boundaries. For 50 − 100nm thick films these forces are approximately of the same order
when the film-substrate distance is comparable with the film size. In the low distance range
(1−10nm) the force on the film can be neglected and the attractive film-substrate interaction
prevails in intensity. These considerations are expected to be important for systems, like
microswitches, that consist of two conducting electrodes, where one is fixed and the other
one is able to move, being suspended by a mechanical spring. The stability of the system
may depend upon the electromagnetic induced force acting on the mobile film [33, 34].

3.2.3 Bimetallic interfaces

The situation changes if one consider a more realistic description of the substrate. Referring
to equation (2.87) this corresponds to take ε1 = 1 − Ω2

1/ω
2. Figure 3.6 shows the behaviour

of the force per unit area on a 100nm metal film deposited onto various metal substrates as a
function of the substrate plasma frequency. Notice that the force is attractive when Ω1 < Ω3

and is repulsive in the opposite case. For Ω1 ) Ω3 one gets the repulsive force corresponding
to a perfectly reflecting substrate. The change in the sign it can be easily understood by
considering the force in the small d limit, i.e in the non retarded regime. At T = 0◦K the
force calculated from equation (2.106) is simply given by

F =
!

32πd3

Ωs(Ω2
1 − Ω2

3)
Ω̄(Ω̄ + Ωs)

(3.6)

where
Ω̄ =
√

(Ω2
1 + Ω2

3)/2 (3.7)
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Figure 3.8: F (Ω3) minimum and F (Ω3) maximum as a function of distance d, the fitting
functions are respectively −68.36− 4.17ln(d) (stars) and −49.10− 3.05ln(d) (triangles), cal-
culation were performed at fixed Ω1 = 5 × 1015rad/s

.

is the interface plasmon frequency obtained from the relation ε1(ω) = −ε3(ω), according to
what has been found in section 2.3.1. Note that F shows the expected change from the
repulsive to the attractive behaviour.
Figure 3.5 shows curves of the force on films deposited onto different substrates as a function of
the film plasma frequencies. The curves show two extrema: on the repulsive side a maximum,
that increases in intensity and moves to higher frequency upon increasing the substrate
plasma frequency; on the attractive side a minimum which decreases upon increasing Ω1 and
shifts to higher frequency values. This behaviour is consistent with the previous conclusions
concerning the ideal substrate: as the plasma frequency Ω1 increases the repulsive force on
the film becomes dominant.
It is interesting to see how the extrema behave upon varying the film thickness. As shown
in figure 3.8, the intensity of the repulsive maximum falls like d−3, in the range of distances
here considered, while for the attractive minimum it falls approximatively as d−4. Indeed the
occurrence of the maximum can be understood on the basis of the short distance formula (3.6),
which gives a d−3 dependence of the force, while the behaviour of the attractive part is mainly
due to retarded interactions. These results lead to the conclusion that the electromagnetic
fluctuation induced forces can give contribute of opposite sign, and with different dependence
upon the film size, to the deposited film stability.
As in the case of the ideal substrate, one can study the electromagnetic fluctuation induced
force F ′ between the film and the substrate as a function of the film-substrate distance. Based
on the previous analysis one expects the film-substrate force to be attractive and to lead to
a repulsive or attractive force between the film boundaries depending upon the difference
between the plasma frequencies: if Ω1 ) Ω3 the situation is similar to the ideal substrate
case, while for Ω1 * Ω3 the force on the film is only weakly modified by the interaction. The
various cases are illustrated in figure 3.9.
To see how these results depend upon the film thickness one has to compare the calculated

curves for film-substrate force as a function of the distance d1 with the electromagnetic
induced bulk-bulk interaction. This comparrison has been done in figure 3.10 for typical
values of the plasma frequency. As shown the results seem not to depend significantly upon
the film thickness for 100nm films, while size effects become important for d of the order of
10nm.
It is clear, from these calculations that, in the nanometric distances range, the adoption of
the simple force expression appropriate to ideal plates is not correct. Both the sign and the
intensity of the force may result wrong, if material properties and thickness effects are not
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Figure 3.9: Film boundaries force as a function of film-substrate distance, comparison be-
tween an ideal substrate (continuous line), a real metal substrate with plasma frequency
1016rad/s (dot-dash line) and 1015rad/s (dashed line). The film plasma frequency is
5 · 1015rad/s.

Figure 3.10: Film-substrate force as a function of the film-substrate distance for real metals
with 5 ·1015rad/s, film thickness 100nm (triangles) and 10nm (crosses). The fitting functions
are −51.4− 3.25ln(d1) (dotted line) and −53.3− 3.35ln(d1) (dashed line). The gray curve is
the force between two semi-infinite bulks, two real metals with the same plasma frequency.
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Figure 3.11: Free standing film. Force on film boundaries as a function of film plasma
frequency for different dissipation coefficients. γ = 0 continuous line, γ = 1014rad/sec long
dashed line, γ = 1015rad/sec dot dashed line, γ = 5 · 1015rad/sec short dashed line.

properly accounted in the theory.

3.3 Drude model calculations

In the preceding section it has been shown that the force may change in sign and intensity
depending upon the film size and the nature of the substrate. However the plasma model
does not provide an accurate description of the real metal dielectric properties, since it ne-
glects both the intraband absorption of the free electrons and the effects on the interband
transitions in the relevant frequency range.
A more accurate description is give by the Drude model (1.111) which includes the param-
eters Ωp, the plasma frequency, and γ the dissipation coefficient. For γ = 0, corresponding
to infinite relaxation time, one recovers the plasma model. While in the plasma model Ωp

is fixed by the valence electron density, the Drude model allows to extract the parameters
from the experimental data, thus taking into account both the real electron density and the
effective mass of the electron in the metal under consideration. Recently a careful study of
the fitting procedure for Au films, focused on the frequency range that is relevant in the
determination of the forces due to vacuum electromagnetic field fluctuations, has shown that
the Drude model can be useful to reproduce optical experimental data for films prepared in
various experimental conditions [20], thus allowing for a more accurate evaluation of the force.

3.3.1 Force on isolated metallic films

It has been shown in the previous sections that a free standing metal film is subject to a
negative pressure i.e. an attractive force per unit area F between the boundaries caused by
zero point oscillations of the quantized electromagnetic field. The force per unit area F is
calculated at zero temperature using expression (2.73). One can easily verify that also the
Drude model leads to a vanishing force in the two limits Ω3 → 0 (infinitely diluite metal) and
Ω3 → ∞ (ideal metal). Since the force cannot be identically zero for finite plasma frequency
values, extrema are expect between these two limits.
Figure 3.11 displays the calculated force versus plasma frequency curves for a 50nm film.
γ has been chosen comparable with those obtained by fitting optical properties and from
sample metal resistivity data [35]. For comparison the curve obtained using the plasma
model is given in the same figure. It is seen that the general shape of the curve is the same:
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Figure 3.12: g factor of equation (3.10), gray line; f factor of equation (3.13), black line.

the force is attractive and shows a maximum of intensity (a minimum in the curve) and a
long tail at high frequencies. However the inclusion of a finite dissipation coefficient leads to
significant modifications in the force intensity both at low and high frequency and causes a
shift in the position of the maximum.
In particular notice that, on increasing the dissipation coefficient, the force decrease at low
Ω3 while it becomes significantly higher at high plasma frequency. The weakening of the force
in the low plasma frequency range, can be understood using the small distance approximation
(2.106) to the Lifshitz formula, that can be applied when the film thickness d is much smaller
than both the plasma wave length λp = 2πc/Ω3 and the relaxation wavelength λτ = 2πc/γ.
In such conditions the force is due to TM modes only and is simply given by:

F (d) = − !
8π2d3

∞∫

0

(ε3(iξ) − 1)2

(ε3(iξ) + 1)2
dξ (3.8)

showing the typical d−3 behaviour of the van der Waals dispersion forces. Inserting the
Drude dielectric function into this equation one gets:

F = FP1 g

(
γ

Ω3

)
(3.9)

where

g(x) =
√

2
π

[
2(1 − x2) − 2

x(1 − x2)
− 1

(1 − x2)3/2

[
ArcTan

(
x√

2 − x2

)
− π

2

]]
(3.10)

and
FP1 = − !Ωs

32πd3
(3.11)

is the force calculated for γ = 0 (plasma model) in the low thickness regime. Ωs = Ω3/
√

2 is
the frequency of the free electron surface plasmon. Here γ <

√
2Ω3 is assumed, a condition

that is commonly verified in real metals. The plot of the g function, presented in figure 3.12
for a large interval of x values, shows that the correction to the force calculated in the ideal
plasma model is always negative and gets more significant on increasing γ.
At high Ω3 values one do not have a simple formula like equation (3.9) that allows to calculate
the force analytically. The plasma wavelength is small and the condition d * λp is not
satisfied. However it is possible to understand the reason of the increase in the force intensity
compared with the plasma model using the following simple argument. The vanishing of the
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Figure 3.13: Free standing film. Force on film boundaries as a function of film plasma
frequency for different dissipation coefficients. The notation and the γ values are the same
of figure 3.11

force as Ω3 goes to infinity is due to the exponential factor e−2ξK3d/c in QTM and QTE (see
equations (2.66)), since the fraction that multiplies the exponential goes to one both in the
plasma and Drude model (this corresponds to the condition of reflectivity equal to one). One
can write the exponential as e−2γ3d, for high Ω3 values one has γ2

3 , ξ2 Ω3
ξ2+ξγ , which shows

that for the plasma model the exponential goes to zero faster that for finite γ values. This
implies that both QTM and QTE go to one more slowly as γ increases, leading to a higher
intensity of the force in the Drude model for high Ω3 values. As previously observed the
occurrence of a maximum is a direct consequence of the retarded nature of the interaction.
Indeed formula (3.8), which is obtained by neglecting retardation effects, does not give any
maximum as a function of Ω3.

Figure 3.13 shows the calculated force per unit area in films of different thickness. The
shape of the curves and the behaviour as a function of γ are basically the same of figure
3.11 and follow the same trend that has been reported in the previous section: the force
decreases in intensity and the maximum shifts at lower frequencies on increasing d. Again
notice that the inclusion of the dissipation coefficient can cause a significant enhancement of
the force in the high Ω3 regime. Figure 3.14 displays the plot of the force as a function of d for
films of different plasma frequency. It is seen that the force, for relatively low plasma values
(figure 3.14 (a)) behaves as d−3 over a large thickness range. Significant deviations from
this behaviour appear at very high dissipation coefficients only. At high plasma frequency
(figure 3.14 (b)) different inverse power laws are present in the same interval of thicknesses,
in agreement with previous findings.
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Figure 3.14: Free standing film. Force as a function of the thickness for different plasma
frequency and dissipation coefficient values. γ = 1014rad/sec diamonds, γ = 1015rad/sec
crosses, γ = 5 · 1015rad/sec dots. Continuous line of figure (a) is ∼ 1/d3.6, dashed line of
figure (a) is ∼ 1/d3, continuous line of figure (b) is ∼ 1/d4 and dashed line of figure (b) is
∼ 1/d5.
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Figure 3.15: Film deposited on perfectly reflecting substrate. Force on film boundaries as a
function of film plasma frequency for different dissipation coefficients. γ values are the same
of figure 3.11

3.3.2 The film-ideal metal substrate interaction

The situation can be significantly modified if one consider the case of deposited films. Using
the plasma model it has shown that a metal deposited onto a perfectly reflecting substrate
is subject to a positive pressure between the boundaries, that tends to increase the film
thickness. This force turns out to be approximately double in intensity compared to the
force on the free standing film.
Figure 3.15 reports the results of the calculation of the force acting on a 50nm film deposited
on a perfectly reflecting substrate as a function of Ω3 for different γ values. For comparison,
the curve corresponding to the plasma model is also given. One can notice that the force
is repulsive and its intensity is nearly doubled in comparison with the isolated film case.
However the shape of the curves is basically the same: the force shows a maximum and a
long tail at high frequencies. With respect to the plasma model, the inclusion of relaxation
leads to an increase of the force in the high Ω3 region and a decrease at low frequencies. This
behaviour, illustrated in figure 3.15, can be understood using the same arguments presented
in the previous section. In particular, notice that in the small d regime the force is simply
given by:

F = FP2 f

(
γ

Ω3

)
(3.12)

where

f(x) =
1√

1 − x2/2

[
1 − 2

π
ArcTan

(
x√

2 − x2

)]
(3.13)

and
FP2 = 2

!Ωs

32πd3
= −2FP1 (3.14)

is the force calculated for the plasma model. The behaviour of the f(x) factor, reported in
figure 3.12, shows that the force is weakened compared to the plasma case. The strengthening
of the force at high Ω3 is basically a consequence of the slower decay of the exponential in
equations (2.66), as in the case of the free standing film.
The d−3 dependence is characteristic of the small d regime only and it is appropriate for
small plasma frequencies. As Ω3 increase this approximation does not hold any more and,
as in the case of the free standing film, different inverse power dependence are needed to
represent the force behaviour.



3.4 Stability of isolated films 119

3.3.3 The bimetallic interfaces

A more realistic description is achieved when the substrate dielectric function is described
by a Drude model. Figure 3.16 displays the calculated force per unit area for films deposited
onto a metallic substrate of fixed plasma frequency Ω1 as a function of Ω3 for different
combinations of dissipation coefficient values. The thickness of the film is 50nm. The curves
are typical of the behaviour that can obtained from the calculations for this kind of systems.
The behaviour is similar to the previously reported results on plasma model. The force is
repulsive in a limited range of frequencies and becomes negative when Ω1 is smaller than the
film plasma frequencies. This is strictly true when the dissipation coefficients of the substrate
and the film are the same. If the substrate relaxation frequency is lower than the one of the
film, the range of frequencies that corresponds to a repulsive force is larger and the force
intensity increases, while in the opposite case the force curve crosses the horizontal axis at
lower Ω3 values. To understand these findings notice that the force calculated in the van
der Waals, small d, regime, when the dissipation coefficient is the same for the film and the
substrate is given by:

F (d) =
!

16π2d3

Ω2
3(Ω2
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where Ωs = Ω3/
√

2 and Ω̄ =
√

(Ω2
1 + Ω2

3)/2. Clearly this approximation predicts a repulsive
force if Ω3 < Ω1 and an attractive one if Ω3 > Ω1 in agreement with the result of the full
calculation. This conclusion appears to be quite general and independent of the particular
model of dielectric function adopted to describe substrate and film dielectric functions. It is
consistent with the behaviour of the London dispersion force between dissimilar materials that
has been reported in the literature, mainly with reference to ceramic or dielectric materials
[30]. It has to be noticed that the force may change even by an order of magnitude when the
dissipation coefficient of the film is modified. This frequency is expected to be different in
a film compared to the one measured in the bulk optical properties, due to the contribution
of surface scattering and defects. This indicates that the use of the dielectric function of
the bulk metal to represent the optical properties of the film may lead to serious errors in
the determination of the vacuum force. Figure 3.17 illustrates the behaviour of the force
as a function of the substrate plasma frequency for a film with Ω3 = 1016rad/s, when the
dissipation coefficient is modified. The curves allow to understand how the force of the
film is affected by gradually changing the properties of the substrate. These results like
those of figure 3.16 are quite general since similar curves can be obtained by changing the
film thickness and the other parameters. The examples reported in the figure show that the
shape and intensity of the force can be significantly modified by varying the optical properties
of film and/or substrate. It should be observed that in the real situation of film deposition,
the optical properties of the film may be very sensitive to the experimental conditions: both
Ω3 and γ can vary significantly, well above the experimental errors, for films of the same
metal prepared by different experimental techniques [20].
To discuss the stability problem notice that, unlike the perfect metal substrate case illustrated
in the previous section, deposition onto a real metal does not necessarily give a repulsive force.

3.4 Stability of isolated films

The problem of the stability of a free standing film is commonly discussed in terms of compe-
tition between surface energy and surface stress and the volume strain energy [36, 37, 38]. As
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Figure 3.16: Film deposited onto a Drude substrate. Continuous line, γ3 = γ1 = 1015rad/s;
dashed line, γ3 = 1015rad/s and γ1 = 1014rad/s; dash dot γ3 = 1014rad/s and γ1 =
1015rad/s.

Figure 3.17: Film deposited onto a Drude substrate. The notation and the γ values are the
same of figure 3.16
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Figure 3.18: Plot of the second factor of inequality (3.34) as a function of M , by definition
−1 $ M $ 1/2

discussed in the next section, surface stresses can arise as a consequence of the different local
environment of surface atoms with respect to those in the bulk: if they are tensile stresses
they can originate a compressive stress within the film. If the compression is sufficiently large
it can cause buckling of the surface with changes in the lattice parameters of the outermost
of atomic planes. A brief introduction to elasticity theory is given in appendix A.

3.4.1 Surfaces

In nature atoms aggregates together to compensate their need of stability, a bounded atom is
more stable than a free one. An atom in the bulk of a defect free material is suposed to be as
much bounded as possible, being surrounded by the maximum number of other atoms. The
creation of a surface requires certain atoms to be surrounded by less atoms than in the bulk.
An atom that constitutes the surface of a body is less stable than a bulk one, it follows that
a surface is somehow unstable and an energy must be paid to keep it open. In a more formal
way one should say that a surface stress exists that tends to minimize the total surface of a
body and that some other force must exist in order to compensate the surface stress. This
force is provided by the bulk atoms that, being in an energetically favourable configuration,
work against any compression or stretch caused by the surface forces to change the surface
morfology.
As a simple system to play with, in order to understand the surface effects, one can consider

a thin film standing alone in the vacuum. In this case one deals with two identical flat
surfaces infinitely extendend along the x and y direction and separated by a distance d along
the z direction. The stability condition for such a system can be worked out through the
elasticty theory: the surface stress must cause some deformation on the film, this gives rise
to an elastic restoring force. In the equilibrium condition the elastic force must be equal to
the surface one. In the simpliest situation the film deformation is homegeneous and no shear
deformation exist: εxx = εyy = ε‖, εzz = ε⊥ and εij = 0 ∀ i (= j. Defining Γ0 as the
surface energy density, the total energy of the two surfaces of the film is given by:

FS = 2Γ0A0 (3.16)

where A0 is the film surface and Γ0 is a measurable quantity tabulated for various materials
and varius possible surface orientations. If the surface stress produces a deformation on the
film, also the surface energy changes, this is due both to the change in the total surface:

A = A0(1 + εxx)(1 + εyy) = A0(1 + ε‖)2 (3.17)
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and to the change of the energy density Γ:
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The deformed surface energy is therefore:

FS = 2A0(Γ0 + 2fε‖ + 4αε2‖) (3.19)

where:
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1
2

d2Γ
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(3.20)

On the other hand, the elastic energy stored in the film to compensate the surface modifica-
tions is given by:

FB = FV = FA0d0(1 + ε‖)2(1 + ε⊥) , FA0d0 (3.21)

where F is the bulk free energy per unit volume defined by (3.94) in appendix B and V = Ad
is the volume of the deformed film. In the last step only second order terms in the strain
have been retained. Replacing the F espression one gets:
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2ε2‖ + ε2⊥

)
+ 2λ
(
ε2‖ + 2ε‖ε⊥

)]
=

=A0d0µ

[
2ε2‖ + ε2⊥ +

λ

2µ

(
ε⊥ + 2ε‖

)2] (3.22)

or, in terms of the Poisson’s coefficient M and Young’s modulos E:

FB =
A0d0

2
E

1 + M

[
2ε2‖ + ε2⊥ +

M

1 − 2M

(
ε⊥ + 2ε‖

)2]
(3.23)

To find the equilibrium conditions for the deformed film one must search for the minima of
the total energy F tot = FS + FB :






∂FS

∂ε‖
+
∂FB

∂ε‖
= 0

∂FS

∂ε⊥
+
∂FB

∂ε⊥
= 0

(3.24)

from the second equation one gets a relation between the strain components:

ε⊥ = − 2M

1 − M
ε‖ (3.25)

whereas from the first equation one gets the condition:

2f + 8αε‖ = − Ed

1 − M
ε‖ (3.26)

retaining only the linear terms in the strain (α = 0) one obtains the simple condition:

2f = − Ed

1 − M
ε‖ (3.27)
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using now equation (3.100) to calculate σxx = σyy = σ‖ one obtains

σ‖ = K

(
2ε‖ + ε⊥

)
+

2
3
µ

(
ε‖ − ε⊥

)
(3.28)

but using (3.25):

σ‖ =
E

1 − M
ε‖ (3.29)

so the condition (3.27) becomes

f = −d

2
σ‖ (3.30)

for the two surfaces to be in equilibrium, the surface stress must be −d/2 the bulk stress.
With the first derivative one is able to find the extrema of the energy, to be sure of dealing
with a minimum the second derivative sign must be investigated. In particular the extremum
stability requires the determinant of the hessian to have positive eigenvalues, with a 2 × 2
matrix this is achieved when both the trace and the determinant are positive2.

∂2F

∂ε2‖
+
∂2F

∂ε2⊥
> 0

∣∣∣∣∣∣

∂2F
∂ε2‖

∂2F
∂ε‖∂ε⊥

∂2F
∂ε⊥∂ε‖

∂2F
∂ε2⊥

∣∣∣∣∣∣
=
∂2F

∂ε2‖
× ∂2F

∂ε2⊥
−
(

∂2F

∂ε‖∂ε⊥

)2

> 0
(3.31)

From the first condition on gets:

8α(1 − M) + Ed > 0 (3.32)

and defining the critical value αc one gets:

α > αc =
Ed

8(1 − M)
(3.33)

From the second condition (3.31) one gets:

α > αc
1 − M − 4M2

1 − M − 2M2
(3.34)

the plot of the second factor of the RHS is given in figure 3.18 for the allowed M values.
From the figure it is seen that the factor is always smaller than 1, it follows that condition
(3.34) is automatically fulfilled once that (3.33) is fulfilled.
A deeper analysis of the elastic properties of surfaces and thin films can be found in references
[37, 39].

3.4.2 Stability model of an isolated film

Treating the film as a continuum one can perform the analysis of the principal strains under
the assumption that the film is in a state of biaxial stress [36]. For an homogeneous system
like the one treated in section 3.4.1, taking the z-axis normal to the surface of the film, one
has σxx = σyy = σ‖ and σxy = σzx = σyz = σzz = 0 and, neglecting quadratic terms, the
equilibrium strains are given by:

εxx = εyy = ε‖ = σ‖
1 − ν

Y
εzz = ε⊥ = −2σ‖

ν

Y
(3.35)

2If a matrix is diagonal the trace is the sum of its eigenvalues whereas the determinant is their product.
Trace and determinant are invariant scalars so, even if the matrix is not in its diagonal form, the trace and
determinant values continue to represent the sum and the product of the eigenvalues.
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where E is the Young modulus and M the Poisson’s ratio of the metal. In terms of the
surface stress f

f = Γ +
∂Γ
∂ε‖

(3.36)

the equilibrium condition requires

f = −d

2
σ‖ (3.37)

so that one can write the strains as

ε‖ = −2f
1 − M

Ed
ε⊥ = 4f

M

Ed
(3.38)

here d is the film thickness and Γ is the surface energy per unit area. To include the vacuum
fluctuation forces, one has to carry out the same analysis adding to the surface and bulk
elastic energy, the vacuum electromagnetic energy of the film. As a first approximation
one can think that the vacuum energy is almost constant, i.e. is not affected by the film
deformation. With this assumption, the condition (3.30) derived in section 3.4.1 is still valid,
and using (3.101) one has simply to include the extra stress (force per unit surface) coming
from the vacuum pressure F (d) described by the very general expression (2.73). In this way
one is led to

ε‖ = −2f
1 − M

Ed
− M

F (d)
E

ε⊥ = 4f
M

Ed
+

F (d)
E

(3.39)

As expected by a linear approximation, the strain induced by the surface stress and the
vacuum electromagnetic force simply add to determine the strain condition of the system.
In a more general way one should remember that the dispersion force depends on the surface
and the thickness of the film and that it contains the film dielectric properties, dependent
on the film electron density. The film deformation prduces a strain of the film along the
directions parallel and perpendicular to the surface, this results in a modification of the
renormalized dispersion energy E(d)ren. described in (2.68):

FV = E(A, d)ren. = E(A0(1 + ε‖)2, d0(1 + ε⊥))ren. (3.40)

here A and d are the surface area and thickness of the deformed film, whereas A0 and d0 are
the ones of the undeformed film. In a more explicit form:

E(d)ren. =
!A0(1 + ε‖)2

4π2

∞∫

0

kdk

∞∫

0

[
ln(QTM (iξ)) + ln(QTE(iξ))

]
dξ

QTM = 1 − e−2d(1+ε⊥)γ3
(γ3 − ε3γ)2

(γ3 + ε3γ)2
QTE = 1 − e−2d(1+ε⊥)γ3

(γ3 − γ)2

(γ3 + γ)2

γ2 = k2 +
ω2

c2
γ2
3 = k2 +

ω2

c2
ε3 ε3 = 1 −

Ω2
p

ω2

1
(1 + ε‖)2(1 + ε⊥)

(3.41)

Notice that also the dielectric functions are affected by the film deformation: through the
plasma frequency, they depend upon the electron density, that can be modified by the change
in volume induced by the film strain. One can perform the same calculation presented in
section 3.4.1 considering now a total free energy given by the summation of the surface
contribution, the bulk contribution and the vaccum energy contribution:

F tot = FS + FB + FV (3.42)

of course the set of equations (3.24) is much more complicated but the final expressions will
allows one to account for the changes in dispersion interaction due to the film deformation,
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giving a more accurate model. Typical calculated values of the surface stress are of the order
of 1÷5N/m [38]. Taking typical values for the elastic parameters one can estimate the strain
values for d = 10nm to be of the order of 10−3 ÷ 10−4. The vacuum force contributions has
opposite sign, but the order of magnitude is different. For d = 10nm the maximum value
of F (d), as shown in figure 3.13, is of the order of 104N/m2, leading to strains of the order
of 10−5 ÷ 10−6, which are too small to compete with the surface stress effects. Therefore,
under normal conditions, the electromagnetic force does not contribute significantly to the
free standing film morphology. For thicknesses of the order of few monolayers, the situation
is less clear, since the electromagnetic force is expected to increase at least as d−3. However
in such cases a dielectric continuum theory is not adequate to represent the film optical
properties, since size quantization effects become important. Their inclusion leads to a very
different behaviour of the dielectric function and to an expression of the force where the
derivative of the film dielectric function with respect to d has to be considered (see chapter
4).

3.5 Stability of deposited films

Epitaxial deposition of thin metal films on various substrates is of crucial importance in sev-
eral applications ranging from the design of systems for heterogeneous catalysis and electron
emission to the technology of semiconductor devices and magnetic recording [40, 41, 42, 43].
In several cases a significant mismatch between the lattice parameters of the deposit and the
substrate is present. If the mismatch is not too large, the overlayer grows in a way that the
atoms of the deposit are in registry with the substrate atomic structure and the growth is
pseudomorphic. As the film thickness increases, mechanical strain energy builds up in the
deposited film, which eventually can cause instability unfavorable to uniform flat film growth:
the formation of dislocations or the continuation of growth in the form of islands become
energetically favorable. In several cases epitaxially deposited film grown layer by layer can
undergo a transition to a growth mode of three dimensional dislocation-free islands, which
form on top of a layer of a certain critical thickness [44, 45, 46, 47, 48]. It turns out that the
critical thickness is material dependent and decreases with increasing the lattice mismatch
strain [49, 50].
The structure and morphology of the deposited films is often determined by kinetic con-
straints rather than by the minimization of the free energy. However it is possible to work
in experimental conditions that allow the system to relax toward the equilibrium configu-
ration. In such cases equilibrium considerations may be useful to understand the physical
interactions that are responsible of the film evolution and to establish the conditions for the
existence of a critical thickness and its value.
One can discuss the stability issue using a continuum model [51, 52, 53, 54, 55, 39]. The
value of this approach lies in the fact that one can draw qualitative and some quantitative
conclusions on general aspects of the growth without the need of a microscopical descrip-
tion of the atomistic mechanisms present in the process. Within this model the stability of
epitaxial films results primarily from the competition between the surface energy and the
elastic energy, caused by lattice mismatch, since when a flat film surface is modified into a
wavy shape the surface energy increases, but the elastic energy decreases. Roughening of
the surface and island formation can occur when it is energetically favorable to relax the
elastic energy by increasing the surface area. It has been observed that since the surface
energy tends to stabilize perturbations at low wavelength, while the elastic energy amplifies
the perturbation at all the wavelength, any strained film, regardless of its thickness, should
be unstable. This prediction does not match with the experiments which show the existence
of a critical thickness beyond which the instability occurs [49]. This suggests that some addi-
tional force has to be present that competes with elastic stress and stabilizes the film within
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a range of thickness of the order of few nanometers. Long range forces, in particular the vac-
uum fluctuation forces between the interface and the film free surface, have been considered
as a possible source of stability in the system [49, 56]. Due to their peculiar size dependence,
these forces are expected to play a role only at nanometric distances and when they cause a
repulsion between the films boundaries.
In this section, the conditions under which the vacuum fluctuation forces can contribute to
deposited metal film stability, will be discussed. The purpose is to identify, both for the film
and for the substrate, the range of optical parameters, that can determine the existence of a
finite critical thickness below which the flat surface growth takes place.

3.5.1 Stability model for a deposited film

Consider the system sketched in figure 3.19 where a film of thickness d is deposited on an
elastic substrate thick compared to the film. Assume that, under suitable conditions, the
film can be grown as a single crystal on the substrate surface. If the film lattice constant
is identical to the one of the substrate and the substrate-film interface is perfectly ordered,
than the film will grow with zero macroscopic strain. On the other hand, in case of lattice
mismatch, and still assuming a perfectly ordered interface, the film will grow continuining
the substrate structure and will be strained in the plane of the interface, figure 3.19 (b).
The film will tend to relax this elastic energy through dislocation motion or by changing the
shape of the surface through mass transport, figure 3.19 (c). In the following analysis the
second mechanism will be taken into account. It is generally accepted that at T = 0◦K it
is the competition between the elastic energy and the surface energy that determines the
morphological stability of deposited film: indeed when a flat film surface is perturbed into a
wave shape, as indicated in the figure 3.19 (a), elastic energy decreases, but surface energy
increases. Surface roughening and island formation are expected to occur as a consequence
of this competition, when the flat surface cannot be stable [51, 52, 53, 54, 57].
However, when the size of the epitaxial film is nanometric, as in micro- nano-scale devices,

other forces come into play. Long range dispersion forces, in particular the vacuum fluctuation
force between the interface and the film free surface, have been considered as a possible source
of stability in the system. The analysis is carried out for a sinusoidal surface considered as a
perturbation of a reference perfectly planar surface, it is based on perturbation theory and
on the assumption that the elastic constant of the film and the substrate are identical and
in the absence of a stabilizing influence of the surface stress. For the two dimensional model
sketched in figure 3.19 (a), where x is the surface position and z = 0 is the reference plane and
the sinusoidally wavy shape is described by a cosine function of amplitude q and wavelength
λ:

z = d − q cos

(
2π
λ

x

)
(3.43)

one can show [57] that the stress concentration (stress for unit area and unit length normal
to the surface) is related to the stress concentration σ for the planar surface configuration by
the equations

σ′
xx(x, z) = σ

[
1 +

4πq

λ

(
1 − πd

λ

)
e−2πd/λcos

(
2π
λ

x

)]

σ′
zz(x, z) = σ

4πdq

λ2
e−2πd/λcos

(
2π
λ

x

)

σ′
xz(x, z) = σ

2πq

λ

(
1 − 2πd

λ

)
e−2πd/λsin

(
2π
λ

x

)
(3.44)

which shows that at the surface the stress concentration is minimum in the peaks of the
surface wave and maximum in the valleys and that in deeper locations away from the surface
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Figure 3.19: Geometric parameters for the wavy film model and different possible stable
configurations.

the stress is attenuated exponentially with a characteristic length λ/2π. Assuming that
d * λ one has, to the first order, that only the tangential stress contributes to the elastic
energy

σ′(x) = σ

[
1 +

4πq

λ
cos

(
2π
λ

x

)]
(3.45)

Now the elastic strain energy density is given by definition (3.106):

F (x, q) =
σ2

2Y

[
1 +

8πq

λ
cos

(
2π
λ

x

)]
(3.46)

where Y is the Young modulus and where the second order terms in q have been neglected.
Following references [49, 58] one can calculate the elastic energy stored in the deformed film
as

F (x, q) =
dFB(x, q)

dzdx
→ dFB = F (x, q)

dz

dq
dqdx

∆FB =
λ∫

0

q∫

0

F (x, q)
dz

dQ
dQdx =

σ2

2E

λ∫

0

q∫

0

[
− cos

(
2π
λ

x

)
− 8πQ

λ
cos2

(
2π
λ

x

)]
dQdx

(3.47)

∆FB = −σ2q2π/Y (3.48)

Notice that ∆fB does not depend upon the wavelength and, being negative, gives rise to film
instability for any kind of harmonic perturbation of the surface.
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The change in the surface energy density can be determined by multiplying the surface tension
Γ by the change in the surface length, according to definition (3.16):

∆FS = Γ∆2 (3.49)

in the limit q * λ the variation of the surface length is given by:

∆2 =
λ∫

0

√

1 +
(

dz

dx

)2

dx − λ ,
λ∫

0

[
1 +

1
2

(
2πq

λ

)2

sin2

(
2π
λ

x

)]
dx − λ (3.50)

∆FS = Γq2π2/λ (3.51)

showing that the surface energy increases as the surface is perturbed harmonically. The
comparison shows that, independently on the wave amplitude and the film thickness d, the
flat film surface becomes unstable when:

∆FB + ∆FS < 0

λ >πY Γ/σ2
(3.52)

the second member of this disequation giving a critical length below which the system is
stable under a wavy perturbation. Inclusion of the vacuum fluctuation force leads to an
additional contribution in the energy density that can be calculated to second order in the
surface modifications under the assumption of slightly ondulated surface q * d and q * λ:

∆FV =
λ∫

0

E(z)ren.dx − E(d)ren.λ (3.53)

but for small q:

E(z)ren. = E

[
d − q cos

(
2π
λ

x

)]

ren.

=

= E(d)ren. −
∂E(d)ren.

∂d
cos

(
2π
λ

x

)
q +

q2

2
cos2

(
2π
λ

x

)
∂2E(d)ren.

∂d2
+ ...

(3.54)

and sobstituting

∆FV =
∂2E(d)ren.

∂d2

∣∣∣∣∣
d

q2λ

4
(3.55)

Adding this term to the previous ones and imposing the equilibrium condition that the total
energy change be negative

∆FB + ∆FS + ∆FV < 0

λ2 ∂
2E(d)ren.

∂d2
Y − λ4πσ2 + 4π2ΓY < 0

λ± = 2π
σ2 ±
√
σ4 − ΓY 2 ∂

2E(d)ren.

∂d2

∂2E(d)ren.

∂d2 Y

(3.56)

one arrives at the following conclusions:

• in order to have at least two identical roots, the second derivative has to be positive,
corresponding to a repulsive force on the film;
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• the film is stable under wavy perturbations provided its thickness d is lower than the
critical thickness dc defined through the relation

∂2E(d)ren.

∂d2

∣∣∣∣∣
dc

= σ4/ΓY 2 (3.57)

• For d > dc there always exist two values λ+ and λ− and for any λ ∈ [λ−,λ+] the
condition (3.56) is fulfilled. The value:

λ% =
λ+ + λ−

2
=

2πσ2

Y

(
∂2E(d)ren.

∂d2

)−1

(3.58)

represents the minimum of the quadratic equation (3.56), i.e. the wavelength that
maximizes the energy gain of the perturbation.

For film of very small size, one can assume a van der Waals expression of the vacuum energy

∆FV = −Hq2λ/8πd4 (3.59)

where H is the Hamaker constant. One obtains the conditions

dc =

(
−HY 2Γ

2πσ4

)1/4

λ% = −4π2σ2d4

HY
(3.60)

which shows that the film can be stable only for negative Hamaker constant (repulsive force)
and it is inversely proportional to the stress concentration [49, 50].
Extension of the theory to three dimensions does not modify appreciably the stability con-
dition if a single wave perturbation is considered. In particular equation (3.57) is still valid
provided that one replaces Y with Y/(1 − ν2), where ν is the film Poisson’s ratio [39].

3.5.2 Results

The issue of film stability is currently discussed using empirical forms of the interaction
between the film boundaries based on the small d approximation [56]. The critical thicknesses
that have been reported in the study of metallic growth are of the order of few nanometers. In
this condition, and provided Ω3 is not too large, the use of the small d approximation, which
corresponds to the van der Waals force description, is quite reasonable. To make reference
to the previous work, the results obtained under this approximation will be presented first,
to be compared with those obtained including retardation effects later on.
In the case of a perfectly reflecting substrate, the energy second derivative appearing in the
condition (3.57) turns out to be

∂2E(d)ren.

∂d2
=

3
√

2!Ω3

32πd4
f

(
γ

Ω3

)
(3.61)

Figure 3.20 presents curves of ∂2E(d)ren./∂d2 as a function of Ω3 for a 6nm film at different
dissipation coefficients in the small d limit. The plot allows to determine the range of Ω3 where
a flat surface is stable, corresponding to the values of ∂2E(d)ren./∂d2 above the horizontal
line given by the second member of equation (3.57), which has been calculated taking typical
values of the parameters representing the elastic and surface properties of the film. The values
σ = 500MPa, Γ = 1J/m2, Y = 76GPa, reported in [49], have been used. Changing these
values simply shifts the horizontal line in the figure. The point where the second derivative
curves cross the horizontal line is the minimum plasma frequency that allows for the flat
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Figure 3.20: Vacuum energy second derivative plot for the Drude film deposited onto perfectly
reflecting substrate. The notation and the γ values are the same of figure 3.11. The film
thickness is d = 6nm.

Figure 3.21: Critical thickness for a 6nm film deposited onto a perfectly reflecting substrate.
The continuous and dot dashed lines represent respectively the plasma film and Drude films
in the small d approximation, γ = 5 · 1015rad/s. The long dashed and the dashed lines
represent again the plasma and Drude films respectively, but they include also retardation
effects.

configuration to be stable. It is seen that, given the film thickness, flat surface stability is
possible above a threshold value. On passing from the plasma model, where ∂2E(d)ren./∂d2

depends linearly on Ω3, to the more realistic Drude description the stability threshold moves
to higher Ω3 values. This indicates that, even adopting a simplified model of the substrate,
the conditions of stability depend critically upon the description of the film optical properties.
It is common practice to evaluate the vacuum energy contribution using the van der Waals
energy. As mentioned before, this is a good approximation only when the film size d is
much less that the plasma wavelength. If this condition is not verified, one obtains a rather
inaccurate estimate of the critical thickness. To give an example, figure 3.21 displays the dc

values calculated with the full theory, and those obtained with the small d approximation.
The comparison shows the inadequacy of the van der Waals description in the determination
of film stability for a large interval of Ω3 values. Notice that both theories predict the
existence of a finite dc at any Ω3 value, this result is peculiar and is a consequence of the
perfect reflectivity of the substrate. Relaxation effects play a minor role and lead to differences
in the critical values, more significant at large Ω3.
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Figure 3.22: Van der Waals energy second derivative plot. In the case of plasma model the
plasma frequency is Ω3 = 2 · 1015rad/s, continuous line and Ω3 = 1016rad/s, long dashed
line. Short dashed line and dot dashed line have been obtained using the Drude model with
Ω3 = 1016rad/s and γ3 = 1015rad/s, γ1 = 1014rad/s or γ3 = 1014rad/s, γ1 = 1015rad/s
respectively. The film thickness is d = 6nm.

To illustrate the importance of a realistic description of the optical properties of the substrate,
the outcomes of calculations using the plasma model will be discussed firs, neglecting the
relaxation effects for both the film and the substrate. Figure 3.22 illustrates the behaviour of
∂2E(d)ren./∂d2 as a function of Ω1 for films of different plasma frequency and 6nm thickness.
For Ω3 = 2 · 1015rad/s no stability region is achieved since the curve never crosses the
horizontal line. This conclusion is obviously dependent on the parameters chosen to represent
the elastic and surface properties. On the other hand for Ω3 = 1016rad/s one finds a threshold
value above which the flat film is stable. The difference is caused by the fact that for small
Ω3 values even a perfect metal does not provide a force repulsive enough to overcome the
instability due to the elastic stress. Indeed for Ω1 → ∞ the second derivative of the energy
for deposition on a perfect metal in the small d approximation is simply given by:

∂2E(d)ren.

∂d2
=

3
√

2!Ω3

32πd4
(3.62)

if this quantity is less than σ4

Y 2Γ one can never achieve a stability region.
In the plasma model the only relevant parameters are the plasma frequencies of the film
and the substrate. It is useful to represent the results in the form of a stability diagram in
the Ω3Ω1 plane, like those given in figure 3.23. Each curve in the diagram is obtained at
fixed film thickness as the locus of the couples Ω3Ω1 which satisfy the equilibrium condition
(3.57). The plane is separated into two areas corresponding to flat surface and rough surface
condition respectively. Notice that upon increasing the film thickness the domain of Ω3Ω1

values that allows for the existence of a flat surface gets narrower. Figure 3.24 reports the
calculated critical thickness as a function of Ω3 for a fixed substrate. Notice that, unlike
the perfect metal case, there is a finite range of film plasma values for which the flat surface
growth can occur. As expected this range reduces as Ω1 decreases. The maximum value of
the critical thickness is in correspondence with the maximum intensity of the repulsive force.
Turning to the more realistic Drude model one notices in the first place that the values of the
second derivative curve are systematically lower that those obtained in the plasma model, as
clearly shown in figure 3.22. Upon increasing the dissipation coefficient the crossing point
shifts to higher Ω3 values. Since γ depends primarily on the quality of the film, this result
suggests that the stability condition can be significantly modified by the surface and defect
scattering processes that take place in the film. The stability diagrams plotted in figure 3.25
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Figure 3.23: Stability diagram for the plasma film deposited onto a plasma substrate, retarda-
tion effects are not included. Different curves for different thicknesses have been represented,
above them the film is stable in its wavy morphology, below them the film is stable in its flat
morphology.

Figure 3.24: Critical thickness. For the plasma model the plasma frequency is Ω1 =
1016rad/s, continuous line and Ω1 = 5 · 1016rad/s, long dashed line. Short dashed line
represents the perfectly reflecting substrate Ω1 → ∞. For the Drude model the plasma fre-
quency value Ω1 = 5 · 1016rad/s has been used together with γ3 = γ1 = 5 · 1015rad/s, dot
dashed line.
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Figure 3.25: Stability diagram for the Drude film deposited onto a Drude substrate with the
same dissipation coefficient of the film, retardation effects are not included. Different curves
for different dissipation coefficients have been represented, γ = 5 · 1015rad/s dashed line,
γ = 1015rad/s dot dashed line and γ = 0 continuous line.

for a 6nm films illustrate how the inclusion of relaxation processes can vary the range of
plasma values allowing for a stable flat surface. From figure 3.24 it comes clear that the
critical thickness values are reduced compared to the plasma model.
Now it is interesting to investigate the modification on the films stability due the inclusion of
retardation effects in the dispersion force. The plot of the second derivative curve calculated
for the plasma model including retardation as a function of the substrate plasma frequency
for a 6nm film, presented in figure 3.26, shows that, unlike the van der Waals case, where
stability is ensured for all the Ω1 values above the crossing with the horizontal line, the full
theory predicts that the flat surface condition exists for a limited range of Ω1 values only.
This result puts limitations to stability arguments based on a van der Waals description
of the vacuum force, since it shows that the small d approximation is not adequate even
at nanometric thicknesses, if the substrate plasma frequency is high enough. The range is
smaller when relaxation effects are included into the theory. The stability plots in the Ω3Ω1

plane, given in figure 3.27, show the modifications occurring in the range of film-substrate
parameters compatible with the flat surface growth, when both retardation and Drude effects
are included in the calculations. The reduction in the values of the critical thicknesses for
a given Ω1 is illustrated in figure 3.28. It is clear from this analysis that the role of the
vacuum forces in determining the stability if deposited films depends crucially upon the
optical properties of both the film and the substrate. If a reasonably accurate description
of the dielectric functions is not available, then it is hard to draw reliable conclusions on
the expected surface morphology. Considerations based on simple empirical expressions of
the force based on the van der Waals approximation may lead to overestimate the range of
stability, if the conditions that make the small d approximation applicable are not met in the
system under consideration.
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Figure 3.26: Vacuum energy second derivative plot including retardation effects. Continuous
line represents the plasma model with Ω3 = 1016rad/s. The Drude model, represented
by the dashed line, is obtained with the same plasma frequency and γ3 = 1015rad/s and
γ1 = 1014rad/s. The critical thickness is d = 6nm.

Figure 3.27: Stability diagram with retardation effects. The dashed and gray continuous lines
represent the plasma film deposited onto plasma substrate with and without retardation
effects respectively. The dot dashed and black continuous lines represent the Drude film
deposited onto Drude substrate with the same dissipation coefficient γ = 5 · 1015rad/s with
and without retardation effects.
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Figure 3.28: Critical thickness including retardation effects. The gray lines represent the
plasma and Drude film of figure 3.24 in the small d limit. The continuous and dashed lines
represent again the plasma and Drude models respectively, but including retardation effects.
The substrate plasma frequency is Ω1 = 5 · 1016rad/s.

3.6 Conclusions

A rather complete set of results based on a continuum dielectric model has been presented,
to illustrate trends in the behaviour of the electromagnetic fluctuation induced forces on free-
standing and supported metal films, which allow to identify the conditions under which the
force is attractive or repulsive and how it depends upon the film thickness and the interacting
substrate (plate) properties.
It has been shown that both the sign and the intensity of the force between a film and a plate
depend upon the difference in the plasma frequencies and can be modified upon changing
the carrier density. This is in line with the recent proposal of modulating the Casimir force
between a metal and a semiconductor plate by illuminating the semiconducting material,
i.e. by enhancing the electron plasma and creating a hole plasma in the semiconductor plate
[59]. Any experimental system that allows to change the difference in plasma frequencies can
be used to modulate the electromagnetic force. The inclusion of a relaxation term in the
dielectric response funcion has been discussed showing its effect on the dispersion force.
In the second part of the chapter the possibilities that metal films deposited on metal sub-
strates can be stabilized by vacuum fluctuation forces has been widely investigated. It has
been shown that there is a variety of situations where these forces may play a role and the
constraints that have to be satisfied have been expressed, in order to allow the maintenance
of flat surface condition in the film growth, in terms of the parameters entering in the de-
scription of the optical properties of both the film and the substrate.
The theory is based on a continuum description of the mismatch stress and a dielectric ap-
proach to the film and substrate optical properties. The application to a real system requires
a detailed knowledge of the film optical properties. The requirement that the force be re-
pulsive as well as its intensity may or may not be satisfied for a film of the same material
depending upon the value of the relaxation frequency, the change in electron density that
takes place in the pseudomorphic overlayer, the surface scattering, etc. A definite assessment
on the role of the vacuum force on a specific system can be made only when these effects are
properly accounted in the film dielectric function.
The present theory can be improved along two main lines of development. One can improve
the continuum approach (i) by adopting a more realistic description of the elastic energy in
the study of deposited film stability with the inclusion of strain modifications in the substrate
and surface stress effects [39, 56], which have been neglected in the present paper; (ii) by
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including interband transition effects into the dielectric function, which are appropriate when
transition metal or noble metal are considered [60]. One can also extend the theory to deal
with the case of metal film onto semiconducting substrate.
For very small thickness, i.e. ultra thin films with d < 1÷10nm, the theory has to be modified
to include size quantization effects in the dielectric function has discussed in chapter 4. This
is expected to lead to significant modifications in the vacuum force, due to the change in the
film dielectric constant caused by the discretization of the electron energy levels. Moreover
for ultra thin film the surface energy is expected to depend upon the thickness. Such modi-
fications are consistent with the so called electronic growth model that has been frequently
used to describe metal growth onto semiconductor substrate [61, 62, 63, 64].

Appendix A: Basics on the elasticity theory

This appendix contains an introduction to the fundamental concepts of the elasticity theory,
as in the case of classical electrodynamics, one must forget about the microscopic atomistic
structure of matter and regard the media as a continuum. Within the theory of elasticity,
the medium is essentially treated as a spring that, subjected to a force that drive it out of
equilibrium, reacts with a restoreing force proportional to its displacement. The concepts
of applied force and displacement must be generalized introducing the stress and the strain
tensors. Than the Hooke’s law can be reformulated in order to describe the medium as a
complicated set of springs. The thermodynamics of the elastic deformation is also discussed
and the appendix concludes with some simple applications to homogeneous media. A deeper
analysis of this theory, together with the most common applications can be found in references
[65, 66].

A.1 Strain and Stress tensors

A solid body subjected to external forces can undergo deformations, changing its shape or
its volume. This process can be described knowing the initial coordinates x of each point of
the body and the corresponding coordinates after the deformation x′. A displacement vector
can be defined as:

u = x′ − x ui = x′
i − xi (3.63)

where ui is the i-th component of the vector u. Naturally the final coordinates x′ are a
function of the initial coordinates x′ = x′(x), the knowledge of this function allows one to
completely describe the body deformation. During the deformation of the body, the distance
between its points can change. If one considers two points, 1 and 2, extremely close to each
other, the i-th component of the difference vector x1−x2 is dxi whereas after the deformation
the difference vector x′

1−x′
2 has components dx′

i = dxi +dui. The distances l and l′ between
the two points, i.e. the moduli of the difference vectors are:

dl =
√∑

i

dx2
i dl′ =

√∑

i

(dxi + dui)2 (3.64)

using now the differential definition

dui =
∑

k

∂ui

∂xk
dxk (3.65)

one gets:

dl′2 = dl2 + 2
∑

i,k

∂ui

∂xk
dxidxk +

∑

i,k,l

∂ui

∂xk

∂ui

∂xl
dxkdxl (3.66)
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Figure 3.29: Pictorial representation of (a) the displacement in an infinitesimal unit volume
inside a medium and (b) in a flexed rod.

i and l are dummy indexes and can be exchanged to give

dl′2 = dl2 + 2
∑

ik

εikdxidxk = (δik + 2
∑

ik

εik)dxidxk (3.67)

where the strain tensor

εik =
1
2

(
∂ui

∂xk
+
∂uk

∂xi
+
∑

l

∂ul

∂xk

∂ul

∂xi

)
(3.68)

as been introduced. This tensor is dimensionless and expresses the variation of the infinites-
imal length in a certain direction due to the body deformation along another direction, see
figure 3.29 (a). Definition (3.68) shows that the strain tensor is symmetric εik = εki, this
means that for each point of the space there exist a set of principal axes that allows to
diagonalize it. In the diagonal case only εii are non vanishing and expression (3.67) becomes

dl′2 =
∑

i

(1 + 2εii)dx2
i (3.69)

one can define the relative stain along a certain direction as:

dx′
i − dxi

dxi
=

√
1 + 2εii − 1 (3.70)

In most of the applications of the elasticity theory one deals only with small strains, i.e. εik
is always small. This does not means that even the body deformation is small. Take for
example the thin elastic rod of figure 3.29 (b): even in the case of large flexions, its length
and thickness values are slightly modified with respect to the rest position. Nevertheless
for bulk systems (where none of the three dimensions is small with respect to the others) a
small strain always correspond to a small body deformation and the second order term of
the tensor (3.68) can be neglected

εik , 1
2

(
∂ui

∂xk
+
∂uk

∂xi

)
(3.71)

for the same reason only the first term in εii of the Taylor’s expansion of (3.70) must be
retained, (dx′

i − dxi)/dxi , εii, the components of the diagonalized tensor becomes directly
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Figure 3.30: (a) Pictorial representation of the stress tensor, σii components represent the
normal stresses while σik components represent the shear stresses. (b) Representation of the
internal forces, the dV nearest neighbors interaction annihilates all the opposite forces, only
those applied on the bounding surface Σ are relevant.

the relative strains.
It is also possible to calculate the effects of the body deformation on the unit volume dV =∏

i dxi:
dV ′ =

∏

i

dx′
i =
∏

i

(1 + εii)dxi = dV
∏

i

(1 + εii) (3.72)

retaining only first order terms in εii one get:

dV ′ = dV (1 +
∑

i

εii) (3.73)

so finally the relative volume variation is (dV ′−dV )/dV =
∑

i εii, i.e. the trace of the strain
tensor. The trace of a tensor is an invariant so, even if the principal axes change point by
point, this last result is independent of the choice of the coordinate system.
When a body is deformed by external forces it goes out of its equilibrium state, an internal
force rises to restore a new equilibrium condition, these are typically elastic restoring forces.
A new equilibrium condition is reached when the external forces are balanced by the internal
ones. The total force R acting on the deformed medium volume V inside the deformed body,
can be obtained summing all the forces acting to each infinitesimal volume dV :

R =
∫

V

FdV (3.74)

where F is the force per unit volume, i.e. a force density. Part of the force FdV applied to
each infinitesimal volume dV is compensated by the force applied on the infinitesimal volumes
nearest neighbors, as shown in figure 3.30 (b). The only uncompensated forces are the one
applied on the external boundary surface of the body, because of this, the volume integral
(3.74) can be transformed into a surface integral by means of the generalized3 divergence
theorem:

R =
∫

V

FdV =
∫

V

∇ · σdV =
∮

Σ

σ · dn̂ (3.75)

3The standard divergence theorem states that the volume integral of a scalar function can be transformed
into a surface integral of a vector field if the scalar function can be expressed through the divergence of the
vector field. Here one deals with the volume integral of a vector that can be transformed into a surface
integral if the vector field can be expressed through the divergence of a rank two tensor.
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here Σ is the surface bounding the volume V , n̂ is the versor normal to the surface Σ and σ
is the stress tensor. For a single component one obtains:

Ri =
∫

V

FidV =
∑

k

∫
∂σik

∂xk
dV =
∑

k

∮

Σ

σikdn̂k (3.76)

from a dimensional point of view the stress tensor is a pressure,
∑

i σikdn̂k represents the
force acting on the infinitesimal surface element dn̂k, as shown in figure 3.30 (a). Using the
simple argument that even the momentum of the force F×x must be expressed by a surface
integral it comes clear that the stress tensor, as well as the strain one, must be symmetric,
i.e. σik = σki [65]. In an equilibrium configuration the total force acting on the medium
must be zero, so the total force R acting on each possible volume V of the medium must be
zero too, the equilibrium condition is given by:

∑

k

∂σik

∂xk
= 0 ∀ i (3.77)

this is analogous to the elementary dynamics statement that the resultant of all the forces
acting on a pointy mass at equilibrium must be zero. Some force fields, as the gravitational
one, act on the whole body, through each single infinitesimal volume dV of the medium, these
body forces must be considered as all the other forces acting on the volume V and included
in the previous condition

∑

k

∂σik

∂xk
+ Fi = 0 ∀ i (3.78)

Finally mechanical forces (bending forces, torsional forces, mechanical pressures) are always
applied to the boundary of the bodies, they can not enter the stability conditions (3.78) and
(3.77). These surface forces rule the problem by means of boundary conditions: if a pressure
P is applied to the body surface, Pdn̂ is the force applied on the infinitesimal surface element
n̂, in an equilibrium condition this force must balance all the other forces R acting on a single
surface element of the medium:

Pidn̂ −
∑

k

σikdn̂k = 0

∑

k

σikn̂k = Pi ∀ i
(3.79)

A.2 Thermodynamics of deformations

Suppose to apply a certain force on a medium in order to deform it, once that the force is
no more acting on it, the medium can behave in different ways, a perfectly elastic medium
is able to recover the original volume and shape it had before the deformation. In plastic
media this is not possible, part of the deformation energy is dissipated modifying the medium
microscopic structure, the original volume and shape can not be recovered. A wide range
of materials present an elastic behaviour for small deformation whereas they enter a plastic
regime when the deformation are very strong. In the following only the elastic regime will
be treated. If one considers a local infinitesimal deformation of a medium, described by the
displacement δu, it is possible to calculate the work W needed to keep the deformation, i.e.
the same work made by the internal forces against the deformation:

W =
∫

V

dw dV =
∑

i

∫

V

FiδuidV =
∑

ik

∫

V

∂σik

∂xk
δuidV (3.80)
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where dw is the work density, integrating by parts with the generalized formula:
∫

V

∇ · β · Ydv =
∮

Σ

β ·Y · dn̂−
∫

V

β∇ · Ydv (3.81)

where β is a rank two tensor and Y is a vector, one gets:

W =
∑

ik

∮

Σ

σikδuidn̂k −
∑

ik

∫

V

σik
∂δui

∂xk
dV (3.82)

the deformation is supposed to be local so, on a large surface Σ, including a portion of medium
much larger than the one in which the deformation occurs, the surface integral in the RHS
vanishes. Now using the symmetry properties of the stress tensor, the last expression can be
rewritten to introduce the strain tensor (3.71):

W =
∑

ik

∫

V

σik
∂δui

∂xk
dV = −1

2

∑

ik

∫

V

σikδ

(
∂ui

∂xk
+
∂uk

∂xi

)
dV , −

∑

ik

∫

V

σikδεikdV (3.83)

To conclude the work density is given by

dw = −
∑

ik

σikδεik (3.84)

Now using the first thermodynamics principle, with all the thermodynamics variables ex-
pressed per unit volume, one gets:

dE = TdS − dw = TdS +
∑

ik

σikdεik (3.85)

or, in the case of Helmholtz’s free energy (per unit volume):

dF = −SdT +
∑

ik

σikdεik (3.86)

or finally, in the case of the Gibbs’s free energy (per unit volume):

dG = −SdT −
∑

ik

εikdσik (3.87)

Now some general expressions can be derived:

σik =
(
∂E

∂εik

)

S

=
(
∂F

∂εik

)

T

εik =
(
∂G

∂σik

)

T

(3.88)

A.3 Generalized Hooke’s law

In the preceding section it has been shown that the free energy F is a function of the strain
tensor, one can think to expand F in Taylor’s series. If the expansion variable is a tensor,
the coefficients of the expansion are tensors too:

F = F0 +
∑

ik

λikεik +
1
2

∑

iklm

λiklmεikεlm + ... (3.89)

using the definition (3.88) one gets:

σik =
(
∂F

∂εik

)

T

= λik +
∑

lm

λiklmεlm + ... (3.90)
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Figure 3.31: Uniform compression of a cubic volume (a) and pure shear deformation example
(b).

but if there is no deformation, εij = 0, the stress vanish, σij = 0, this means that λik = 0:
the first term of the series expansion of the free energy F must be the second order one:

F , F0 +
1
2

∑

iklm

λiklmεikεlm (3.91)

as a consequence, the stress tensor takes the form:

σik =
∑

lm

λiklmεlm (3.92)

this is the equivalent of the classical Hooke’s law, the elastic force replaced by the stress
tensor, the displacement replaced by the strain tensor and the Hooke’s constant replaced by
a rank four tensor with 81 components. λiklm it is usually called elasticity modulus tensor, it
must be said that, the strain tensor being symmetric, only 21 of the total 81 components are
linearly independent, in fact εikεlm must be invariant for indexes permutation, and if follows
that

λiklm = λkilm = λikml = λlmik (3.93)

Through the elasticity modulus tensor, it is possible to recover informations about the mi-
croscopic character of a medium, in fact, due to the peculiar microscopic symmetry of the
crystal lattice, the elastic response to a certain perturbation along different direction can be
the same. The higher the symmetry of the lattice, the lower the number of linearly inde-
pendent λ components. For a cubic system the number of linearly independent components
decrease from 21 to 3. In the case of a quite homogeneous amorphous or a polycrystalline
medium with small grains size, one can use the approximation of homogeneous medium in
which only two λ components are independent.

A.4 Homogeneous media and homogeneous deformations

This last part of the appendix is devoted to the study of homogeneous media acted on
by homogeneous deformations. In an homogeneous medium the general expression (3.91)
contains a lot of non-independent coefficients, it can be simplified using the linear algebra
theorems and reconduced to the linear combination of the two independent scalars built up
with the tensor elements, the squared trace and the sum of the squared elements:

F = F0 +
λ

2

(∑

i

εii

)2

+ µ
∑

ik

ε2ik (3.94)
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where λ and µ are called Lamé coefficients. Equation (3.73) shows that the sum over the diag-
onal elements of the strain tensor gives the relative volume variation, if this quantity is zero,
it means that the deformation modifies the body shape leaving the volume unchanged, such
a deformation is called pure shear deformation, see figure 3.31 (b). The opposite situation
is that of a uniform compression (expansion), that changes the volume leaving unchanged
the body shape, e.g. to perform a uniform compression on the cube of figure 3.31 (a), the
stress tensor must be diagonal: σik = const · δik. Each deformation can be decomposed in a
pure shear deformation and a uniform compression (expansion), this can be seen by adding
an subtracting the trace 1/3

∑
l δikεll to the generic strain tensor component

εik =
(
εik − 1

3

∑

l

δikεll

)
+

1
3

∑

l

δikεll (3.95)

the term in brackets is a pure shear term: it vanishes summing the three diagonal terms εii,
the last term in the RHS is a uniform compression (expansion term) because it is in the form
const · δik. Replacing this last expression into (3.94), after some simplifications, one gets

F = F0 + µ
∑

ik

(
εik − 1

3
δik
∑

l

εll

)2

+
K

2

(∑

l

εll

)2

(3.96)

where the compression modulus K is given by:

K = λ+
2
3
µ (3.97)

and µ is the same as before but in this context it takes the name of shear modulus. When
εik = 0 no forces are acting on the medium, F must have a minimum so the quadratic form
(3.96) must be positive, this means that both µ and K must be positive defined. The general
definitions (3.88) can be used to calculate the stress tensor, the total energy differential is:

dF = K
∑

l

εlldεll + 2µ
∑

ik

(
εik − 1

3
δik
∑

l

εll

)
dεik (3.98)

writing dεll = δikdεik it becomes

dF =
∑

ik

[
Kδik
∑

l

εll + 2µ

(
εik − 1

3
δik
∑

l

εll

)]
dεik (3.99)

and finally by virtue of (3.88) one reach the Hooke’s law for an homogeneous medium

σik = Kδik
∑

l

εll + 2µ

(
εik − 1

3
δik
∑

l

εll

)
(3.100)

The sum of the three diagonal components gives
∑

i σii = 3K
∑

i εii and is the scalar quantity
that allows to reverse the Hooke’s law

εik =
1

9K
δik
∑

l

σll +
1
2µ

(
σik − 1

3
δik
∑

l

σll

)
(3.101)

F is a quadratic form in the strain εik, from the Euler’s theorem

∑

ik

εik
∂F

∂εik
= 2F (3.102)
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Figure 3.32: Stretching of a free rod (a) and compression of a constrained rod (b). Dashed
contours indicate the rod shape before the pressure is applied.

and, using again (3.88) one gets:
F =
∑

ik

σikεik
2

(3.103)

An homogeneous deformation is a deformation that leaves the strain tensor εik constant in
all the medium volume. Imagine to pull the rod of figure 3.32 (a) along the z axe with the
uniform pressure p, the stress tensor can be determined imposing the boundary conditions
(3.79): no forces are applied to the lateral surfaces of the rod so

∑
k σiknk = 0 for i = x, y

whereas
∑

k σzknk = p gives the result σzz = p because the n versor is oriented along the z
direction and nx = ny = 0. Under the assumption that the medium is a uniform one, this
result can be used into the inverse Hooke’s law (3.101) to calculate the strains:

εxx = εyy = −1
3

(
1
2µ

− 1
3K

)
p

εzz =
1
3

(
1

3K
+

1
µ

)
p =

p

E

(3.104)

E is known as the Young modulus and it is always positive. εzz and εxx have opposite sign,
pulling the rod along the z direction it squeezes along the other two. The ratio between
compression and elongation of the rod is called Poisson’s coefficient

M = − εxx

εzz
= − εyy

εzz
=

1
2

3K − 2µ

3K + µ
(3.105)

and it ranges between −1 and 1/2. From the energy (3.103) comes the result

F =
p2

2E
(3.106)

Finally consider the rod of figure 3.32 (b), it is laterally constrained: under compression
no deformation can take place along x and y directions. The only non vanishing strain
component is εzz, one can use the Hooke’s law (3.100) to calculate the stresses

σxx = σyy =
(

K − 2
3
µ

)
εzz =

EM

(1 + M)(1 − 2M)
εzz

σzz =
(

K +
4
3
µ

)
εzz =

E(1 − M)
(1 + M)(1 − 2M)

εzz

(3.107)

combining the two expressions one can calculate the stress induced on x and y directions
from the constrains

σxx = σyy = −
K − 2

3M

K + 4
3M

p = − M

1 − M
p (3.108)
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where σzz = −p, a compression force per unit area. And to conclude the energy results:

F =
(1 + M)(1 − 2M)

2E(1 − M)
p2 <

p2

2E
(3.109)

the constrained rod is less strained with respect to the free one, because of this it contains
less elastic energy.
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This chapter deals with the modifications of the dispersion force due to the inclusion of
the quantum nature of the electron gas composing the interacting media. This quantum
nature comes clearly out when the size of the interacting objects is small enough to impose
a confinement to the electrons wavefunctions. For this reason thin films provide a suitable
system to be investigated since their electron gas is confined along one dimension and behaves
as a free classical gas along the other two. Moreover, isolated thin films or interacting
thin films, constitute a system with a relatively simple geometry compared to other low
dimensional structures. The dispersion interaction can be investigated with the Lifshitz
theory obtaining exact results. Generalizations of the ordinary Drude and plasma dielectric
function models will be presented and used to calculate the dispersion force acting on isolated
films or between identical films. A detailed comparison with the force calculated using the
standard dielectric function models will be given. The work described here has been published
in two papers, references [1, 2]

4.1 Introduction

Since the basic work from Lifshitz and coworkers, illustrated in section 2.3, theoretical studies
have been focused mainly on the determination of the forces between slabs, including semi-
infinite slabs, on the basis of a continuum description of the material dielectric function
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Figure 4.1: (a) reduction factor for gold and silicon films of different thickness as a function
of the film separation. (b) reduction factor of gold obtained with different dielectric function
models as a function of the film separation.

[3, 4, 5, 6, 7]. Both metal and semiconductors films have been considered with the use of
different dielectric function models. Figure (4.1), adapted from a work of Lambrecht et al. [6],
summarize all the interesting features of the interaction between identical films of thickness
D separated by a distance 2. It displays the reduction factor η defined as the ratio between
the Lifshitz force and its Casimir limit:

η =
F

FCAS
(4.1)

for gold and silicon films of different thicknesses. Independently of the film thickness, the
film distance and the film dielectric properties, the force between films is always lowered
with respect to the interaction between semi-infinite slabs, i.e. η ≤ 1, the smaller the film
thickness the larger the force attenuation. For a non dissipative metal decribed by the plasma
model, η → 1 at large film separation; inclusion of a dissipative behaviour by means of a
Drude model, leads to a force that always remains lower than the Casimir one. In the case
of a semiconductor described by a Lorentz model, the η factor goes to zero both at large and
small film separation. All these properties can be understood by looking at the reflectivity
of a single film, and considering that the modes that constribute the most to the dispersion
interaction are those whose wavelength is comparable with the cavity amplitude 2. Following
the derivation in appendix A, the reflection coefficient of a single film is given by:

rα = ρα
1 − e2idβ

1 − ρ2
αe2idβ

βj =

√
εj(ω)

ω2

c2
− k2 (4.2)

where α denotes the two possible polarizations (TE and TM modes), ρα is the single surface
reflectivity. Performing the change of variable ω → iω one obtains exactly the integrand of
the Lifshitz formula (2.73):

rα = ρα
1 − e−2dβ

1 − ρ2
αe−2dβ

βj =

√
εj(iω)

ω2

c2
+ k2 (4.3)

for large thicknesses one recovers the single surface reflection coefficient whereas, for small D
values, the film reflection coefficient vanishes. In the latter case the dispersion interaction is
drammatically decreased because the cavity walls are almost transparent to the electromag-
netic field. In the case of large thickness film:

• For large film separation only the large wavelength modes, i.e. the low frequency modes,
contribute significantly to the dispersion interaction. If a non dissipative metal film is
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thick enough, the reflectivity is simply given by the plasma model, it completely reflects
the small frequency modes trapping them inside the cavity, one recovers exactly the
Casimir’s limit and η → 1. In the case of the Drude model, even if the cavity walls are
able to trap the low frequency modes inside the cavity, part of their energy is dissipated
by the films and the dispersion force can not reach exactly the Casimir’s value. On
the other hand, if the thick film is described by a Lorentz dielectric function, it is
transparent to the low frequencies modes, i.e. the cavity walls are transparent to the
most significant cavity modes, η → 0.

• For small film separation only the small wavelength modes, i.e. the high frequency
modes, contribute significantly to the dispersion interaction. But both metals and
semiconductors are transparent to the high frequency fields and again they become
transparent to the cavity modes that contribute the most. η decrease rapidly with
decreasing 2.

4.2 Two interacting films

Model dielectric functions, give a simplified description of a film, that neglects the modifica-
tions in the electronic structure related to the presence of the boundaries. These are expected
to be valid when the size of the film is large, so that the surfaces play a minor role in de-
termining the dielectric response. For metallic films the calculated electronic distributions
deviate significantly from the bulk behaviour when the size of the film is less than ten times
the Fermi wavelength [8, 9]. If the size of the film is of the order of few nanometers the
continuum model does not provide an accurate description of the film properties and bound-
ary effects cannot be neglected. Such effects arise as a consequence of the discretization of
the energy bands due to the confinement potential, which produces the quantization of the
electron energy levels in various sub-bands and affects the optical and electrical properties
[10, 11, 12, 13, 14, 15, 16, 17].

4.2.1 The particle in a box model

A first rough model to account for the quantum size effects (QSE) felt by the electrons in a
thin film, is provided by the Wood and Ashcroft model described in section 1.11, also known
as the particle in a box model (PBM). Independent electrons of mass m are confined within
a distance d in the direction of the surface normal [18, 19]. Assuming a jellium model and
perfect planar surfaces the eigenvalue spectrum is simply given by:

Ek‖,n =
!2

2m
(k2

‖ + k2
⊥) =

!2

2m
(k2

‖ +
n2π2

d2
) (4.4)

i.e. described by a continuous quantum number k‖, giving the modulus of the parallel
wavevector, and a discrete sub-band index n coming from the quantization of the perpendic-
ular wavevector k⊥. The corresponding wavefunctions are:

ψk‖,n(r) =
√

2
V

eik‖·r‖sin

(
nπ

d
z

)
(4.5)

where V is the volume of the quantum well given by the product of the well surface A and
the well thickness d. In this simple model the electrons behave as a two-dimensional gas
along the x and y space directions and as standing waves in the z direction, with nodes on
the boundaries. As a first approximation one can assume the size d of the quantum well to
be the same as the size D of the ion distribution of the film. This approximation is too crude
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since it does not allow the spilling of the electron density past the film boundaries given
by the positive charge distribution, thus leading to a depletion of negative charge near the
surfaces. One way to eliminate this inconvenience without introducing softer boundaries is
to allow the electron charge to be distributed on a larger size than the positive charge. It
is common practice to discuss the effects of the confining potential in deposited films using
the phase accumulation model [20], according to which the condition that is satisfied by a
quantum well state is

2k⊥d + φA + φB = 2πn (4.6)

where φA and φB are the phases of the eigenfunctions accumulated at the two film interfaces
and n are integer numbers. For a free standing film, limited by two vacuum-film interfaces,
φA = φB . The case of an infinite quantum well is recovered by simply imposing φA = −π.
For softer profiles of the confinement potential the phase shifts are expected to increase
and to depend upon the energy. One can introduce a more realistic description of the film
electron states, still using the infinite potential well, by allowing the effective width d to be
larger than the size of the ion distribution d = D + 2∆, thus obtaining the quantization
condition D + 2∆n = nπ/k⊥, where ∆n gives the shift in the potential well width that
allows to reproduce the charge spilling out of the n-th state. This introduces an energy
dependence of the shift that in principle could be obtained by fitting the quantum well
energies to experimental data or to the energy level distribution resulting from a first principle
calculations. Previous works [21, 22] have shown that the energy spectrum is very sensitive
to the position of the barriers and relatively insensitive to the barriers height. One one can
take an average d value obtained by simply imposing the film to be neutral with an electron
charge of size d and a positive charge of size D. This leads to the following expression for
the effective film thickness:

d =
D

G(mF )
(4.7)

with:
G(mF ) =

3m0

2mF

[
1 − (m0 + 1)(2m0 + 1)

6m2
F

]
(4.8)

where mF = kF d/π, kF is the Fermi wavevector that is related to the ion electron density
n0 by the relation k3

F = 3π2n0, and m0 is the integer part of mF . Notice that, once D and
the positive charge density n0 are given, the d value can be determined unambiguously1. For
large D, when m0 , mF , one obtains d = D + 3π/4kF , which shows that the spilling out of
the charge in this limit is proportional to the Fermi wavelength.
With respect to the classical description of thin film optical and transport properties [23,
24], where surface effects are expressed as boundary conditions on the electron distribution
function in terms of the mean free path and the fraction of the electrons scattered specularly
at the surface, this theory has the surface effects incorporated as boundary conditions in the
one-electron hamiltonian, the only parameters being the film size and the Fermi energy.
The dielectric response of the Wood and Ashcroft model film, is described in section 1.11.
This new model differs from the plasma one, adopted in previous studies, in that: (i) it
has a tensor character with εxx = εyy (= εzz, (ii) the plasma frequency depends upon the
film density, which changes as a function of the film thickness, (iii) through the double
sum in the second member it accounts for transitions between lateral sub-bands, whose
probability amplitude is expressed by the momentum matrix element between the one electron
wavefunctions (4.5). In section 1.11 the occurrence of kinks both in the electron density
(figure 1.12) and in the dielectric function (figure 1.14) has been demonstrated to be a
consequence of the quantization of the energy levels. The occurrence of these quantum size
oscillations has been pointed out by several authors specially with reference to the electron
density, the total electronic energy and the film electrical conductivity [19, 25, 26].

1For the calculation of the film charge density see for example reference [19].
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Figure 4.2: Two identical interacting thin films, definition of 2, D and the electronic spill-out
∆.

The expression of the force per unit area F at T = 0◦ K in the configuration illustrated
in the inset of figure 4.2 can be obtained by extending the results relative to isotropic films
discussed in section 2.3.4, to the case of films with anisotropic dielectric tensor illustrated in
section 2.3.5. For this specific geometry, one obtains:

F = − !
2π2

∞∫

0

kdk

∞∫

0

dωγ(ω)
[

QTM (iω)2

1 − QTM (iω)2
+

QTE(iω)2

1 − QTE(iω)2

]

QTM =
ρTM (1 − e−2γTM D)
1 − ρ2

TMe−2γTM D
e−γ+ QTE =

ρTE(1 − e−2γT ED)
1 − ρ2

TEe−2γT ED
e−γ+ (4.9)

ρTM =
γTM (ω) − γεxx(ω)
γTM (ω) + γεxx(ω)

ρTE =
γTE(ω) − γ(ω)
γTE(ω) + γ(ω)

(4.10)

γ(ω) =

√
k2 − ω2

c2
γTE(ω) =

√
k2 − ω2

c2
εxx(ω)

γTM (ω) =

√(
k2

εzz(ω)
− ω2

c2

)
εxx(ω) (4.11)

This equation, which to the author khowledge has never been used previously for vacuum fluc-
tuation force calculations, deserves a few comments. (i) it has been obtained by considering
the zero point energies associated with the electromagnetic modes of films of finite thickness
under the assumption that the dielectric permittivity is represented by an anisotropic diago-
nal tensor. It differs from the original Lifshitz formula both because it depends upon the film
size D (i.e. has been obtained with the electromagnetic field boundary conditions appropriate
to a finite size film and not for a semi-infinite system) and for the presence of the anisotropic
permittivity. (ii) the force goes to zero as the film size D vanishes, since both QTM and QTE

go to zero 2. (iii) to calculate the force one has to determine the frequency dependence of the
dielectric tensor using the eigevalues and the wavefunctions of the quantized film, coming to
the result (1.148). In the following the force per unit area calculated for the dielectric tensor
(1.148) appropriate to the film is denoted by FQ, while FP indicates the force calculated
using the isotropic plasma model i.e. εxx = εyy = εzz. To evaluate the importance of the size
quantizations, one should compare FQ, calculated for given film thickness D and ion density
n0 at different distances 2, with FP calculated in the same configuration. Figure 4.3 (a)
displays curves of FQ calculated at fixed Ωp and 2 values as a function of the film thickness.
The Ωp values correspond to free carrier densities of heavily doped semiconductors. These

2If D goes to zero also n(d) goes to zero, as shown by equation (1.142) because m0 = mF = 1. In this
way both the transvers and longitudinal components of the dielectric tensor go to 1.
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Figure 4.3: (a) Black lines represent FQ as a function of the film thickness for different film
densities and separations, Ωp = 1014 rad/sec and 2 = 10 nm (continuous line), Ωp = 5 · 1014

rad/sec and 2 = 50 nm (dotted line), Ωp = 1014 rad/sec and 2 = 50 nm (dashed line).
The gray dashed lines represent FP for the same parameters. (b) relative percent difference
between the force with and without QSE.

systems are those which display higher modifications. Distances 2 ranging from 10 to 50 nm
have been considered. For comparison the curves of the corresponding FP vales are reported.
One can see significant differences between the two models for d values that are of the order
of few multiple integer of the half of the Fermi wavelength. The curves show quantum size
oscillations with the expected periodicity kF d = nπ superimposed over a regularly increasing
behaviour. For thick films the results of the isotropic plasma model are recovered. The size
induced modifications are better illustrated by the quantity:

δP =
FP − FQ

FP
(4.12)

which gives the relative variation of the force with respect to the isotropic plasma model. Fig
4.3 (b) presents plots of δP for the cases under consideration. It is seen that the size induced
modifications are very large, ranging from 50% to 10%, for films of nanometric thickness even
at distances 2 of several nanometers.
One can see similar modifications in the theoretical results obtained by keeping the film size

constant and changing its density. This is illustrated in figs. 4.4 (a) and (b) which display
force curves obtained as a function of plasma frequency. Notice that even for typical metallic
densities (Ωp of the order of 1015 ÷ 1016 rad/sec) the deviations from the plasma model are
quite significant and can be of the order of several percents for film separation distance 2
ranging from 10 to 50 nm. In a previous study on the Casimir effect for metal and semi-
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Figure 4.4: (a) Black lines represent FQ as a function of the plasma frequency for different
film thicknesses and separations, D = 1 nm and 2 = 10 nm (continuous line), D = 5 nm and
2 = 10 nm (dotted line), D = 5 nm and 2 = 50 nm (dashed line). The gray dashed lines
represent FP for the same parameters. (b) relative percent difference between the force with
and without QSE.
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Figure 4.5: (a) Black lines represent ηQ as a function of the films distance 2 for different
densities and thicknesses: continuous line Ωp = 1016 rad/sec D = 5 nm, dashed line Ωp = 1015

rad/sec D = 1 nm, dotted line Ωp = 1015 rad/sec D = 5 nm. Gray lines represent ηP as a
function of 2 for the same parameters. (b) Percent difference (4.12) for the three cases of the
(a) plot.
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Figure 4.6: Continuous line represents the percent relative difference δP , dashed line repre-
sents ηP − ηQ, dotted line represents the ratio 1/ηP for the case Ωp = 1015 rad/sec D = 5
nm

conductor slabs it has been pointed out that the Casimir force can be considerably reduced
by decreasing the slab thickness [6]. It is interesting to see whether quantum confinement
effects are important in determining the reduction at large 2 values. To this end figure 4.5
(a) shows the reduction factors ηP = FP /FCAS and ηQ = FQ/FCAS [27], where

FCAS = − !cπ2

24024
(4.13)

is the force between perfectly reflecting mirrors at separation distance 2 [28]. The films have
a nominal thickness D = 1 ÷ 5 nm and different electron densities. One can see that the
effects of the quantum confinement tend to decrease the reduction factor over a large distance
range. The correction depends upon both the film size and the electron density, being larger
for smaller values of these quantities. Figure 4.5 (b) plots the calculated relative difference
δP as a function of 2 for the same cases. It shows that relative variations of the force remain
significant even at very large distances thus giving sizeable reduction to the force in the large
2 Casimir regime. Notice that δP does not show a monotonous behaviour as a function of
2: it decreases regularly at short distances, it remains constant in a large range of 2 values
and, before going to zero for very large distances, it shows a local maximum that shifts at
higher 2 values upon decreasing the thickness and/or the electron density. This behaviour
is quite typical and can be reproduced in several cases. To understand this behaviour one
should notice that δP can be written as

δP = 1 − ηQ

ηP
(4.14)

Figure 4.6 shows the typical behaviour of the numerator and of 1/ηP as a function of 2. The
first curve decreases more or less regularly upon increasing the film separation. The change in
the slope arises from different inverse power behaviour of the short range (dispersion force)
compared to long range Casimir force [29, 30, 4, 31]. The second curve shows a regular
increase at short distances, it has a maximum and goes to zero at large 2 values. Therefore
the maximum in the δP corresponds to the range of 2 values where the reduction of the
Casimir force is larger compared to the ideal case, while the plateau is due to the combined
effect of the decrease of ηP − ηQ and the rise of the 1/ηP curve.

4.2.2 Finite depth well

In this section the PBM will be improved introducing a finite well model for the one-electron
potential along the surface normal. Notice that the use of a soft confining potential like a
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Figure 4.7: Comparison between the infinitely deep quantum well with artificial spill-out and
the finite quantum well with natural spill-out.

finite well, besides being closer to the real shape of the one-electron potential as determined
by first principles calculations [32, 33, 34, 35], allows for a better treatment of QSE for films
of small thickness, since it does not introduce a priori a distance within which electrons are
to be confined and leaves the Fermi energy free to oscillate with the film size [8, 9], a feature
that is not present in the PBM model, where the Fermi energy is kept equal to the bulk
value.
The electron gas will be again described by an independent particle model with the one
electron potential V (z). The electron energies are given by

Ek‖,n =
!2

2m
k2
‖ + En (4.15)

i.e. they are described by the continuous quantum number k‖ and by the discrete sub-band
index n coming from the quantization of the perpendicular wavevector, m being the electron
mass. Notice that now En can not be determined analitically, a numerical evaluation of the
one-dimentional well potential must be setup. The film wavefunctions are given by

ψk‖,n(r‖, z) =
1√
A

eik‖·r‖φn(z) (4.16)

here A is the surface area, again k‖ and r‖ are two dimensional wavevectors parallel to the
surface. Also φn(z) must be evaluated numerically and normalized independently from the
parallel component, in particular the functions φn(z) are the solutions of the equation

{
!2

2m

∂2

∂z2
+ V (z)

}
φn(z) = Enφn(z) (4.17)

with the proper boundary conditions. The Fermi energy EF is obtained through the aufbau
procedure i.e. by arranging the eigenvalues in ascending numerical order and counting until
the number of states needed to accommodate all the electrons in the film is reached. This
procedure leads to a Fermi energy that depends upon the film size and is generally different
from the bulk value [9]. This can be understood by noting that, to ensure charge neutrality,
the number of electrons and the number of ions per unit area have to be equal. The electron
density n(z) can be simply obtained from the wavefunctions:

n(z) =
1
2π

m0∑

m=1

(
2mEF

!2
− En

)
|φm(z)|2 (4.18)
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where m0 is the label of the last occupied state, while the ion density is simply given by
n0 = k3

FB
/3π2, where kFB is the bulk Fermi wavevector. By integrating the densities along

the z axis and imposing that both give the same number of charges per unit area, one gets
the relation

1
2π

m0∑

m=1

(
2mEF

!2
− En

)
= n0D (4.19)

which, for finite D values, is generally not satisfied if one replaces EF with its bulk counterpart
EFB = !2k2

FB
/2m. In the case of the PBM model this equation is not satisfied, since one

assumes that the Fermi level is the same as in the bulk. To obtain charge neutrality one
has to impose the additional condition that the electron density be confined on a length d
larger than D. As discussed in the previous section, this artificially introduces the electronic
charges spill-out but has the consequence that the average electronic density is lower than
the ion density [8, 19, 25].
For the purpose of the present study the potential is assumed to be a finite well V (z) = −V0

inside the film and zero outside. For such finite well model (FWM) the energies of the bound
states can be written as

Ek‖,n =
!2

2m
k2
‖ +

!2

2m
k2

zn − V0 (4.20)

where kzn are the quantized transverse wavevectors. They are obtained from the equation
giving the condition for the existence of bound states in a quantum well [36]:

kzn =
nπ

D
− 2

D
sin−1

(
kzn

k0

)
(4.21)

with k0 =
√

2mV0/!. Notice that the first term at the second member is the value of the
transverse wavevector for an infinite well model of size D and the second term goes to zero
as V0 goes to infinity. This implies that, for given film size and number of electrons, the
Fermi energy referred to the well bottom is higher in the infinite well model. Notice that
when V0 goes to infinity one does not recover the PBM, since the Fermi energy is varied
with respect to the bulk value in order to satisfy the charge neutrality condition (4.19).
Figure 4.7 illustrates the difference: in the PBM the electronic charge density is confined
within a distance d = D + ∆, larger than the size of the ionic charge distribution, to allow
for the electronic charge spill-out and to ensure global neutrality for EF = EFB . In the
FWM the charge spill-out results naturally from the behaviour of the single particle states
while the charge neutrality is achieved by varying the Fermi energy with respect to the
bulk value. Obviously in the limit of infinitely deep well (hereafter indicated as IWM) the
electronic charge turns out to be entirely localized within the length D and the Fermi energy
is strongly increased compared to its bulk value.
Once the electron energies and wavefunctions have been obtained, one can calculate the
dielectric tensor from the expression [18]:

εαα(ω) = 1 −
ω2

p

ω2
− 8πe2

Adm2ω2

∑

k‖,n

∑

k′
‖,n′

(Ek‖,n − Ek′
‖,n′)

f(Ek‖,n)|〈ψk‖,n|p̂α|ψk′
‖,n′〉|2

(Ek‖,n − Ek′
‖,n′)2 − !2ω2

(4.22)

a generalization of the Wood and Ashcroft model of section 1.11 where α = x, y, z labels
the cartesian component of the tensor, p̂α indicates the component of the electron linear
momentum, ωp = Ωpn(D)/n0 is the plasma frequency of the quantized electron gas (Ωp =√

4πe2N0/m is the free electron plasma frequency and n(D) is the average electron density
of the film) and f(Ek‖,n) is the occupation factor of the (k‖,n) state. In the IWM and
the FWM ωp = Ωp, while in PBM n(D) is smaller than n0, since the electronic charge is
distributed over a larger distance than the ionic charge (see figure 4.7).
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In order to illustrate QSE at different densities and potential depths, the elements Al, Ag
and Cs will be taken, their radius per electron in Bohr units rs/a0 is equal to 2.07, 3.02
and 5.62 respectively. The value of the potential depth is obtained by summing the metal
work function W with the calculated Fermi energy. Figure 4.8 reports the calculated Fermi
energies as a function of the product between the Fermi wavevector and the film thickness.
This allows to better point out the oscillations and the cusps arising from the crossing of the
Fermi energy by new subbands upon varying the film size, as in figure 1.12 (b). The figure
shows the V0 value appropriate to the bulk and to the large D limit, the results for the IWM
are also plotted. The comparison allows to illustrate the effects of the potential softening. In
agreement with previously published results [32, 9, 38] one finds that:

• EF is systematically larger than EFB and goes to the bulk value as D goes to infinity.
The difference is more pronounced and the bulk limit is achieved at larger size in the
low density systems, as it is clearly shown by the comparison between Cs and Al curves;

• As expected from the discussion of the previous section, the softening of the potential
leads to less pronounced deviations from the bulk values. Because of the stronger
electron confinement, the IWM has a larger Fermi energy that the FWM;

• The cusps correspond to integer values of half of the Fermi wavelength in the IWM
case. This feature is only approximately verified for the FWM.

As a consequence of size quantization, the z-component of the dielectric tensor is expected to
go to a finite value εzz(0) as the frequency goes to zero. This value increases proportionally
to D2 in the large size limit [18]. Figure 4.9 shows the quantity εzz(0)/D2 for the three
cases under study. Again the results show the cusps due to the filling of new subbands as
D increases, as in figure 1.14 (b). The asymptotic limit is obtained for kF D/π of the order
of 5 ÷ 6 in the three cases. Significant differences appear in the large D behaviour when the
FWM results are compared with those from the IWM model: εzz(0) is larger for finite wells
of small size, while it is smaller at high D values. The convergence to the asymptotic limit is
considerably slower for the infinite well, specially in the low density metals. This behaviour
reflects the differences in the distribution of the eigenvalues of equation (4.17). For the
infinite well there are infinite bound states whose energy scales like n2, see equation (4.21),
and the separation between two successive levels increases linearly with n. Such behaviour
is not present in the FWM, for which equation (4.17) has a finite number of eigenvalues
corresponding to bound states and a continuum spectrum at positive energies. The PBM
curve takes values closer to the FWM than to the IWM. This is primarily a consequence of
the fact that PBM allows for electron charge spill-out, while in IWM the electron distribution
is confined within D i.e. it has the same size of the positive charge.
The changes in the force caused by the size quantization will be discussed with respect to the
results obtained by using the isotropic continuum plasma model, where the z-component of
the film dielectric tensor is equal to the planar components. Again the symbol FQ indicates
the force per unit area calculated for the quantized film, while FP is the force per unit area
calculated in the isotropic plasma model. To better illustrate the results, in figures 4.10 and
4.11 the quantity (4.12) has been plotted as a function of the separation distance 2 for films
of 1 and 5 nm thickness respectively. Each figure displays the results for the three cases
under study and compares the finite well with the IWM at the same density. This allows
one to point out the modifications caused by the potential softening. Also show the curves
appropriate to the PBM are displayed. In agreement with the previous findings one observes
that

• QSE tend to reduce the intensity of the force;

• the reduction is more significant at low density (Cs) than at high density (Al);
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Figure 4.8: Fermi energy normalized to its bulk value for Al, Ag and Cs using the IWM
(dashed line) and the FWM (continuous line). The bulk Fermi energies and the work func-
tions have been taken from reference [37].
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Figure 4.9: Static value of the zz component of the dielectric tensor for Al, Ag and Cs using
the IWM (dashed lines), the PBM (dotted lines) and the FWM (continuous lines).
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Figure 4.10: Relative percent difference for the force between two identical films of thickness
D = 1 nm as a function of the films separation 2, for Al, Ag and Cs. Dashed lines have been
obtained using the PBM, dotted lines have been obtained using the IWM and the continuous
lines represents the finite well results.
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Figure 4.11: Relative percent difference for the force between two identical films of thickness
D = 5 nm as a function of the films separation 2, for Al, Ag and Cs. Dashed lines have been
obtained using the PBM, dotted lines have been obtained using the IWM and the continuous
lines represents the finite well results.
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• it may be considerably higher than 10% for 1 nm thickness and reduce to few per cent
at 5 nm;

• it can be appreciable over a distance interval up to 10 ÷ 50 nm.

The most important conclusion that can be drawn from the figures is that the potential
shape is important and can lead to a substantial modifications of the quantum size effects
both at small and at large distances. The models which confine the electronic charge tend
to overestimate the force reduction induced by size quantization. The curves for the PBM
show large force reduction (greater δP values) over a wide interval of distances. On passing
to the IWM case one notice that the removal of the constriction that the Fermi energy be
equal to the bulk value, still keeping an infinitely deep potential, leads to smaller δP values
and to a more rapid decay of the curves at large distances. Reducing the well depth to finite
values has a similar effect: it causes a general decrease of δP and a narrowing of the distance
interval over which QSE are appreciable. This also implies that any increase of the confining
potential depth at fixed ion density leads to higher δP values and to more significant QSE.
The large values taken by δP in the PBM case do not arise from the charge confinement
only, since, as pointed out before, the constraint on the charge distribution is weaker that in
the IWM. To a large extent they are a consequence of the plasma frequency normalization
caused by the decrease in the average electron charge density that it is necessary in order to
achieve global charge neutrality [19, 25]. In the isotropic plasma model one takes ωp = Ωp.
In the PBM this value is obtained only at large film thickness. Neglecting this normalization
i.e. taking the free electron plasma frequency in the parallel components of the dielectric
tensor (but not in εzz) would lead to δP values closer to the well potential models.

4.2.3 The generalized particle in a box model

To introduce intraband absorption one has to modify the dielectric tensor in a way that
allows to include relaxation time effects in the parallel components and to recover the Drude
behaviour in the large D limit. This cannot be done by simply introducing an imaginary
part of the frequency ω, since this violates the continuity equation locally [39, 40]. The
appropriate recipe is to replace into equation (4.22) ω2 with ω(ω + i2π/τ), where τ is the
relaxation time. For the parallel components this leads to the Drude dielectric function

ε(ω) = 1 +
ω2

p

ω(ω + iγ)
(4.23)

where γ = 2π/τ . Figure 4.12 shows the comparison between εzz for the PBM with and
without the intraband absorption. The inclusion of a finite τ eliminates the divergencies
corresponding to the transverse (optical) modes, the static value of the real part of εzz

remains unchanged. The results of the calculation of the force per unit area with the modified
dielectric tensor are displayed in Figures 4.13 and 4.14 for 1 nm and 5 nm films. The quantity

δD(γ) =
FD(γ) − FQD(γ)

FD(γ)
(4.24)

is reported, where FD is the force calculated using the bulk Drude model with a given
relaxation time and FQD in the one obtained by the calculation with the same relaxation
time and with size quantization included. For τ → ∞ one recovers the plasma model so
that δP = δD(0). The calculations have been performed assuming a finite potential well and
for two values of the relaxation frequency γ. The choosen values correspond approximately
to those reported for the metals under consideration [37]. The figures show a comparison
with the curves obtained by the plasma model with QSE. It is clear from these results that
the main effect of the inclusion of intraband absorption is to increase δ i.e. to increase the
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Figure 4.12: zz components of the dielectric tensor (a) and their London transforms (b) for
the PBM, gray line represents the τ → ∞ case, black lines represent the real and imaginary
parts in the case τ = 10−14 sec. The film thickness is D = 1 nm.

difference with respect to the calculations with the bulk dielectric function. The smaller is
the relaxation time the larger is the reduction of the force. The effect is qualitatively the
same in the three metals under study, but it depends upon the well depth and the film size.
The influence of the shape of the potential is illustrated in figure 4.15 showing the curves of
Ag films at a given relaxation frequency for the various models. Again it should be noticed
that the FWM gives the lower δD values. The PBM results show large δD values over a
very wide interval of distances. To a large extent this behaviour has to be imputed to the
renormalization of the plasma frequency. Figure 4.16 shows typical curves of δD as a function
of the film thickness for different values of the relaxation frequencies at a given separation
distance of 5 nm. As expected δD decreases with D, but the slope at large thicknesses (D of
the order of 10 ÷ 50 nm) depends significantly upon the relaxation frequency.

4.3 Isolated metallic film

The behaviour of the dispersion force acting on an isolated metallic films has been extensively
studied in chapter 3. The quantum confinement is expected to modify the dispersion force
on the film boundaries in the same way it modifies the force between films. For the purpose
of this study, only the PBM will be considered, but the following considerations hold for the
other models too. To study the QSE on the vacuum pressure acting on the film boudaries,
one has to calculate the vacuum energy with the PBM thickness dependent dielectric tensor
and differentiate with respect to the thickness, obtaining an expression for the Lifshitz force
very different from the usual one (2.93). Nevertheless this expression can be rearranged in
the form:

F (d) = − !
2π2

∞∫

0

kdk

∞∫

0

[
γTM
3

1 − QTM (iξ)
QTM (iξ)

CTM + γTE
3

1 − QTE(iξ)
QTE(iξ)

CTE

]
dξ (4.25)

this is the ordinary Lifshitz force (2.93) where two new coefficients appear, CTM and CTE ,
whose expression is:

CTE = 1 +
ε′xx

2(εxx − 1)

[
d − 1

k2 + ω2/c2εxx

(
γ2d + 2γ

)]

CTM = 1 +
d
2

(γT M

εxx
ε′xx − εxx

ε2zz
ε′zzk

2
)
− 1

2γT M 2

(γT M

εxx
ε′xx − εxx

ε2zz
ε′zzk

2
)(

dγ2ε2xx + 2εxxγ
)

+ 2ε′xxγ

εxx

(
k2

εzz
+ ω2

c2

)
− ε2xxk2 − ω2

c2 ε2xx

(4.26)
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Figure 4.13: Relative percent difference for the force between two identical films of thickness
D = 1 nm as a function of the films separation 2, for Al, Ag and Cs. Continuous lines
represent the results for γ = 0. Dotted lines have been obtained using γ = 5 × 1013 rad/s
for Ag and Cs and γ = 1014 rad/s for Al. Dashed lines have been obtained using γ = 1014

rad/s for Ag and Cs and γ = 1015 rad/s for Al.
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Figure 4.14: Relative percent difference for the force between two identical films of thickness
D = 5 nm as a function of the films separation 2, for Al, Ag and Cs. Continuous lines
represent the results for γ = 0. Dotted lines have been obtained using γ = 5 × 1013 rad/s
for Ag and Cs and γ = 1014 rad/s for Al. Dashed lines have been obtained using γ = 1014

rad/s for Ag and Cs and γ = 1015 rad/s for Al.
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Figure 4.15: Relative percent difference for the force between two identical Ag films of thick-
ness D = 5 nm as a function of the films separation 2, γ = 1014 rad/s. Continuous lines
represent the FWM, dotted line the IWM and dashed line the PBM.

Figure 4.16: Relative percent difference for the force between two identical Ag films separated
by a distance 2 = 5 nm as a function of the films thickness D. Continuous line represents
the result for γ = 0 whereas the dashed line has been obtained with γ = 1014 rad/s.
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Figure 4.17: Vacuum energy as a function of the film thickness for the PBM. Continuous line
Ωp = 1016 rad/sec, dotted line Ωp = 5 · 1015 rad/sec and dashed line Ωp = 1015 rad/sec

here γTM is given in (2.44), γ =
√

k2 + ω2/c2, ε′xx and ε′zz are the first derivatives of
the dielectric components components. Notice that for large thickensses d, εzz(d) becomes
constant, so that ε′zz = γTE′ = γTM′ = 0 and CTM = CTE = 1 recovering the usual force
expression for a plasma homogeneous film. With the definitions:

CTM = 1 + C̃TM CTE = 1 + C̃TE (4.27)

the force can also be written has:

F (D) =FL(D) + F %(D) =

=FL(D) − !
2π2

∞∫

0

kdk

∞∫

0

[
γTM
3

1 − QTM (iξ)
QTM (iξ)

C̃TM + γTE
3

1 − QTE(iξ)
QTE(iξ)

C̃TE

]
dξ

(4.28)

where the first term is exactly the Lifshitz force (2.93) and the second one is a correction
due to the d dependence of the dielectric tensor. For large film thicknesses, the second therm
must vanish whereas the first one must reach the value obtained with an isotropic plasma
model. Notice also that FL(D) does not contain any dielectric tensor derivative, so it must
be a continuous and non differentiable function. On the other hand F %(D) contains ε′zz that
is the derivative of a non differentiable function: in the neighborood of any cusp F %(D) is
a discontinuous function. Figure (4.17) shows the vacuum energy as a function of the film
thickness d: notice that cusps appear as in the case of two interacting film (in the latter case
the force was obtained differentiating with respect to the film distance 2). For free standing
films the force is obtained differentiating with respect to d, but the energy is not differentiable
in the neighbourhood of each cusp. As for the case of two interacting films, the QSE are
more pronounced for low electron densities. Figure (4.18) (a) shows the absolute value force
acting on the film boundaries as function of the film thickenss, the separate contributions
coming from the two terms of equation (4.28) are also plotted. As previously discussed, F %

is a discontinuos function. Notice also that FL is larger that the total force, this means that
F % has opposite (positive) sign. A comparison with isotropic plasma model, described in
section (3.2.1), is also given. Figure (4.18) (b) shows the force as a function of the plasma
frequency. It is seen that the QSE lowers the total strength of the force.
For the IWM and the FWM only εzz is thickness dependent, ε′xx = 0, and the coefficients
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Figure 4.18: (a) Black continuous line represents the absolute value of the force as a function
of the film thickness, gray line represents FL, dashed line represents |F %| and dotted line
represents the force calculated with the homogeneous plasma model. The plasma frequency
is Ωp = 1015 rad/sec. (b) Force as a function of the plasma frequency for a 10 nm film.
Continuous line represent the result obtained with the homogeneus plasma model whereas
dashed line is obtained with the PBM.

(4.26) simplifies as follow:

CTE = 1 CTM = 1 +
− d

2
εxx
ε2zz
ε′zzk

2 + 1
2γTM 2

εxx
ε2zz
ε′zzk

2
(
dγ2ε2xx + 2εxxγ

)

εxx

(
k2

εzz
+ ω2

c2

)
− ε2xxk2 − ω2

c2 ε2xx

(4.29)

only the TM modes are affected by the correction F %.

4.4 Temperature dependence

The effect of the temperature is to spread the electrons all around the Fermi energy partially
occuping the empty states. This electron distribution eliminates the discontinuity at the
Fermi level introduced by the aufbau procedure at T = 0◦K and the cusps disappear. In
the microscopic models previously used to describe the dielectric response of a thin film, the
effects of the temperature can be included through the occupation factor f(Ek‖,n) appearing
in (4.22). In the zero temperature case the occupation factor is given by:

f(Ek‖,n) = 2θ(EF − Ek‖,n) (4.30)

where θ is the Heaviside step function and the factor 2 accounts for the two possible spin
polarizations. At non zero temperature, following the Fermi-Dirac distribution, one has:

f(Ek‖,n) =
2

e
β(Ek‖,n−µ) + 1

(4.31)

where β = 1/kBT and µ is the chemical potential, with the assumption of kBT/EF * 1 one
can state that µ , EF . In the simplest case of an infinite well one gets:

∑

k‖

fk‖,n =
Am

π!2

1
β

ln

[
1 + e−β

(
!2π2n2

2md2 −EF

)]
(4.32)

For n ) m0 the exponent diverges and the exponential, together with the logarithm goes to
zero, the states far from the Fermi level are again empty. For n * m0:

eβEF ) 1 → 1
β

ln

(
eβEF

)
= EF (4.33)
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Figure 4.19: (a) Static value of the response function versus the film thickness, for Ωp =
2 × 1014 rad/sec at different temperatures, T = 0◦K (gray line), T = 5◦K (continuous line),
T = 10◦K (dashed line), T = 20◦K (dotted line). The inset shows the temperature spread
of the electrons through the energy levels for a 50 nm film. (b) ξ(iω) for the PBM having
d = 50 nm, Ωp = 5 × 1014 rad/sec (black line) d = 50 nm, Ωp = 1014 rad/sec (dashed line)
d = 10 nm, Ωp = 5 × 1014 rad/sec (dotted line).

independently of the temperature. So the sum over the occupation factors is again convergent
fot any T (= 0◦K. For T → 0 the β factor diverges and the exponential vanish.
Finite temperature corrections become relevant when the separation between energy levels is
of the same order of kBT , since only in that situation the levels above the Fermi energy can be
significantly populated. For practical purposes the temperature value can not be taken much
larger than the room temperature T = 300◦K (many experimental difficulties arise at higher
temperature) so the maximum energy spread induced by the temperature is of the order of
kBT , 0.026 eV. This means that temperature corretions are relevant for films thick enough
to have an energy level separation ≤ 0.025 eV. In the case of an infinite well, where the energy
level separation increases linearly with the quantum number n, the temperature effects are
more significant for low density films, in which only closer energy levels are occupied. For
small electron densities the assumption of kBT/EF * 1 does not hold anymore and one
has to calculate µ starting from the conservation of the electron number with increasing
temperature. The electron density is given by

n(d) =
∞∫

0

f(µ(T ), T )n(E)dE (4.34)

where n(E) is the density of states, independent of T , and where µ(0) = EF . So, moving
from zero temperature to finite temperature:

2
EF∫

0

n(E)dE = 2
∞∫

0

n(E)

e
β(Ek‖,n−µ) + 1

dE (4.35)

this expression provides an iterative way to obtain the µ value once that the Fermi energy is
fixed.
Figure 4.19 (a) shows the static value of the zz component of the dielectric tensor for different
temperatures, notice that cusps disappear and, increasing T , the dielectric function decreases.
The latter behaviour increases the anisotropy of the dielectric tensor, enhancing the QSE.
Figure 4.19 (b) shows the relative percent difference ξ between the dielectric functions at
T = 0◦ and T = 300◦K:

ξ(iω) =
εzz(iω, 0◦) − εzz(iω, 300◦)

εzz(iω, 0◦)
(4.36)
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as a function of the frequency. Notice that ξ increases by increasing the thickness and
by decreasing electron density. Changes in sign for ξ can occour because of a crossing of
εzz(iω, 0◦) and εzz(iω, 300◦). The introduction of a finite temperature can strongly modify
the dielectric function behaviour, the static value can change significantly, producing a change
in the dispersion force. A deeper ivestigation in this direction requires the use of the finite
temperature Lifshitz theory, and the choice of a technique to solve its intrinsic problems,
described in section 2.5.

4.5 Conclusions

The theoretical results that have been presented, illustrate the possible role of size quan-
tization effects in the electromagnetic vacuum force between very thin films and show how
the determination of these effects depends upon the description of the film electronic struc-
ture and upon the inclusion of intraband effects. However it is necessary to point out that
this analysis is still a mere indication of the corrections to the simple picture that assumes
the same dielectric function for films and bulk solids. Although the basic features of size
quantization (confinement of the electronic charge, anisotropy of the dielectric tensor, pres-
ence of inter-subbands transitions in the dielectric function) are already present in the models
discussed in this chapter, there is room for substantial improvements before an accurate com-
parison with experimental data, like those obtained by Lisanti et al. for Pd films [41], can be
done. A more detailed treatment should include (i) band structure effects, (ii) non-locality
of the dielectric response and (iii) non-local treatment of the reflectivity. A self consistent
first principles calculation of the inverse dielectric matrix for a slab of the appropriate size
and symmetry, from which a macroscopic dielectric function can be derived with band struc-
ture and non-local effects included, could provide the appropriate treatment of the first two
issues [42, 43]. Corrections to the Fresnel optics, along the lines indicated by several authors
[44, 45, 46], can lead to important modifications of the reflectivity even in the case of a free
electron gas film.
Still when comparing theory with experiments for thin films one should consider the fact
that measured relaxation frequencies turn out to depend upon the film size and morphology
[15, 47, 48, 49, 50]. This is largely due to the so called classical size effects arising from the
scattering of the electrons at the film boundaries. In view of the sensitivity of QSE to the
value of the relaxation time, comparison with experimental data may be possible only if a
realistic estimate of the modifications in the relaxation times caused by surface scattering is
available. Moreover it has been shown that variations in the experimental optical parame-
ters, caused by film morphology, can determine a change in the force of the order of 10%
[51, 52]. A different film growth technique or different growth conditions can determines
large differences in the plasma and relaxation frequencies, in view of a comparison between
theory and experiment, this parameters must be measured for each specific sample.
In extending this theory to the more realistic case of deposited films, one has to account
for the penetration of the electron wavefunctions into the substrate. This requires a modi-
fication of the quantization condition compared to the abrupt barrier potential adopted in
this chapter. However for semiconductor substrates where the confinement is essentially due
to the fundamental gap, the modifications of the potential should not alter appreciably the
main conclusions. For metallic substrate the extension is less obvious since the confinement
is related to the existence of symmetry or relative gaps of the projected bulk band structure,
that exist for particular directions only. In this case the solid-film interface has to be simu-
lated with a softer confinement potential [35].
In view of the sensitivity of the presented results to the film density, the observation of the
effects reported in this chapter could be made possible by some experimental technique that
allows to modify the carrier density in overlayers (doping [53], creating electron-hole plasma
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by illumination [54] etc.). Also by changing the substrate one may affect the confinement
potential, making it more abrupt or more rounded, and enhance or reduce QSE.

Appendix A: Reflection coefficient of a slabs

In section 2.3 the behaviour of the electromagnetic field in presence of surfaces and stratified
systems has been investigated. The calculation of dispersion forces requires the dispersion
relation of such systems to be known. Given a certain number of interfaces, one must solve
the Maxwell’s equations in the different media and impose the proper continuity conditions.
The aim of that calculations was the determination of the intrinsic modes of the system,
both localized or non localized. If one is interested in the determination of the response of
the system (in this case a slab of thickness d) to an external field, the set of equations (2.49)
must be modified in order to account for an incoming field:

E0(z) =






Ae−γ1z + Beγ1z z < 0

Ce−γ3z + Deγ3z 0 < z < d

Ee−γ2z z > d

(4.37)

also in this case γi can be both real or imaginary, according to definition (2.34). Generally,
once that an incoming direction has been established, the reflection coefficient r is defined
as the ratio between the amplitude B of the field back scattered opposite to the incoming
direction and the amplitude A of the incoming field. A transmission coefficient t can be
defined as the ratio between the amplitude E of the field coming out of the multilayer and
the amplitude A of the incoming field. Reflectivity R and transmissivity T are defined has
the square of the previous ratios. One can say that, because the intrinsic modes of the system
can be excited even in absence of an external field, the set (2.49) is a particular case of the
set (4.37) in which A → 0. Consequently the intrinsic modes of the system are given by the
real poles of the reflectivity coefficient. In agreement with the convention of the scattering
theory, γi can be redefined in order to put in evidence a complex phase:

βj =

√
εj(ω)

ω2

c2
− k2 (4.38)

E0(z) =






e−iβ1z + reiβ1z z < 0
C

A
e−iβ3z +

D

A
eiβ3z 0 < z < d

te−iβ2z z > d

(4.39)

Solving the system of equation coming from the interface condition, one can easily get an
expression for the coefficient r and t, both for the TE and TM modes. For the geometry
of a slab of thickness d with dielectric function εω surrounded by the vacuum, after tedious
calculations one obtains the following expressions:

rα = ρα
1 − e2idβ

1 − ρ2
αe2idβ

tα =
ρ2
αeidβ

1 − ρ2
αe2idβ

(4.40)
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where α denotes the TE or TM modes and ρ is the reflectivity of a single slab surface
(vacuum-slab interface):

ρTM =

√
ε(ω)ω2

c2 − k2 − ε(ω)
√

ω2

c2 − k2

√
ε(ω)ω2

c2 − k2 + ε(ω)
√

ω2

c2 − k2

ρTE =

√
ε(ω)ω2

c2 − k2 −
√

ω2

c2 − k2

√
ε(ω)ω2

c2 − k2 +
√

ω2

c2 − k2

(4.41)

Further details can be found in reference [55].



176 Quantum confinement effects



Bibliography

[1] A. Benassi and C. Calandra. Europhys. Lett., 82:61002, 2008.

[2] A. Benassi and C. Calandra. J.Phys.: Conf. Ser., 2009. To be published.

[3] I. Pirozhenko and A. Lambrecht. Phys.Rev.A, 77:013811, 2008.

[4] M. Bordag, U. Mohideen, and V.M. Mostepanenko. Phys. Rep., 353:1, 2001.

[5] V.S. Bentsen, R. Herikstad, S. Skriudalen, I. Brevik, and J.S.Hoye. J.Phys.A:
Math.Gen., 38:9575, 2005.

[6] A. Lambrecht, I. Pirozhenko, L. Duraffourg, and Ph. Andreucci. Europhys. Lett.,
77:44006, 2007. Erratum: Europhys. Lett. 81:19901, 2008.

[7] B. Geyer, G.L. Klimchitskaya, and V.M. Mostepanenko. J.Phys.A: Math.Gen., 40:13485,
2007.

[8] J.P. Rogers III, P.H. Cutler, T.R. Feuchtwang, N. Miskovski, and A.A. Lucas. Surf.
Sci., 141:61, 1984.

[9] J.P. Rogers III, P.H. Cutler, T.R. Feuchtwang, and A.A. Lucas. Surf. Sci., 181:436,
1987.

[10] P.D. Loly and J.B. Pendry. J. Phys. C, 16:423, 1986.

[11] S.A. Lindgren and L. Wallden. Phys. Rev. Lett., 59:3003, 1987.

[12] S.A. Lindgren and L. Wallden. Phys. Rev. Lett., 61:2894, 1988.

[13] T.C. Chiang. Surface Sci. Rep., 39:181, 2000.

[14] M. Jalochowski, E. Bauer, H. Knoppe, and G. Lilienkamp. Phys. Rev. B, 45:13607, 1992.

[15] M. Jalochowski, H. Knoppe, G. Lilienkamp, and E. Bauer. Phys. Rev. B, 46:4693, 1992.

[16] E.I. Rogacheva, O.N. Nashchekina, S.N. Grigorov, M.A. Us, M.S. Dresselhaus, and
S.B. Cronin. Nanotechnology, 13:1, 2002.

[17] Z. Hens, D. Vanmaekelbergh, E.S. Kooji, H. Wormeester, G. Allan, and C. Delerue.
Phys.Rev.Lett., 92:026808, 2004.

[18] D.M. Wood and N.W. Ashcroft. Phys.Rev.B, 25:6255, 1982.

[19] P. Czoshke, H. Hong, L. Basile, and T.C. Chiang. Phys.Rev.B, 72:035305, 2005.

[20] P.M. Echenique and J.B. Pendry. J.Phys.C, 11:2065, 1978.

[21] R. Otero, A.L. Vazquez de Parga, and R. Miranda. Surf. Sci., 447:143, 2000.

[22] R. Otero, A.L. Vazquez de Parga, and R. Miranda. Phys.Rev.B, 66:115401, 2002.



178 BIBLIOGRAPHY

[23] G.E. Reute and E.H. Sondheimer. Proc.Roy.Soc. London Sect. A, 195:336, 1948.

[24] F.E. Hutchinson and W.N. Hansen. Phys.Rev.B, 20:4069, 1979.

[25] P. Czoschke, Hong. Hawoong, L. Basile, and T.C.Chiang. Phys.Rev.B, 72:075402, 2005.

[26] Z. Wang, S. Wang, S. Shen, and S. Zhou. Phys.Rev.B, 55:10863, 1997.

[27] A. Lambrecht and S. Reynaud. Eur. Phys. D, 8:309, 2000.

[28] H.B.G. Casimir. Proc. Kon. Ned. Akad. Wet., 51:793, 1948.

[29] E.M. Lifshitz. Sov. Phys. JEPT, 2:73, 1956.

[30] I.E. Dzyaloshinskii, E.M. Lifshitz, and L.P. Pitaevskii. Adv. Phys., 10:165, 1958.

[31] F. Zhou and L. Spruch. Phys. Rev. A, 52:297, 1995.

[32] K.F. Schulter. Surf.Sci., 55:427, 1976.

[33] P.J. Feibelman. Phys. Rev. B, 27:1991, 1983.

[34] S. Ciraci and I.P. Batra. Phys. Rev. B, 33:4294, 1985.

[35] E. Ogando, N. Zabala, E.V. Chilkov, and M.J. Puska. Phys.Rev.B, 71:205401, 2005.

[36] A.S. Davydov. Quantum Mechanics. Pergamon Press, 1976.

[37] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Cornell University, Philadelphia,
1976.

[38] B.E. Sernelius, K.F. Berggren, M. Tomak, and C. McFadden. J. Phys. C: Solid State
Phys., 18:225, 1985.

[39] N.D. Mermin. Phys. Rev. B, 1:1019, 1970.

[40] P. Garik and N.W. Ashcroft. Phys.Rev.B, 21:391, 1980.

[41] M. Lisanti, D. Iannuzzi, and F. Capasso. Proc. Nat. Ac. Sci. USA, 102:11989, 2005.

[42] J.L. Li, J. Chun, N.S. Wingreen, R. Car, I.A. Aksay, and D.A. Saville. Phys. Rev. B,
71:235412, 2005.

[43] B.E. Sernelius. J. Phys. A: Math. Gen., 39:6741, 2006.

[44] P. Appel. Physica Scr., 24:795, 1981.

[45] P.J. Feibelman. Prog.Surf.Sci., 12:287, 1982.

[46] K. Kempa and W.L. Scaich. Phys. Rev. B, 34:547, 1986.

[47] G. Fahsold, A. Bertel, O. Krauth, N. Maggi, and A. Pucci. Phys. Rev. B, 61:1408, 2000.

[48] J. Sotelo, J. Ederth, and G. Niklasson. Phys. Rev. B, 67:195106, 2003.

[49] G.K. Pribil, B. Johs, and N.J. Ianno. Thin Solid Films, 455-456:443, 2004.

[50] H. Hoffmann and J. Vancea. Thin Solid Films, 85:147, 1981.

[51] I. Pirozhenko, A. Lambrecht, and V.B. Svetovoy. New J. Phys., 8:238, 2006.

[52] V.B. Svetovoy, P.J. van Zwol, G. Palasantzas, and J.Th.M. De Hosson. Phys.Rev.B,
77:035439, 2008.



BIBLIOGRAPHY 179

[53] F. Chen, G.L. Klimchitskaya, V.M. Mostepanenko, and U. Mohideen. Phys.Rev.Lett.,
97:170402, 2006.

[54] G.L. Klimchitskaya, U. Mohideen, and V.M. Mostepanenko. J. Phys. A:Math.Theor.,
40:F841, 2007.

[55] M. Born and E. Wolf. Principles of Optics. Pergamon Press, London, 1959.



180 BIBLIOGRAPHY



5
First principle calculation of the force between

silicon films

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

5.2 The simulation of a silicon film . . . . . . . . . . . . . . . . . . . . . . 182

5.3 The film dielectric tensor . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.4 The force calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

5.5 Local field effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

The corrections to the dispersion forces due to the quantum size effects have been investi-
gated in chapter 4. It has been shown that they are quite sensitive to the microscopic model
used to describe the electron confinement. In the previously used models, the film has been
treated as a uniform, continuum background of positive charge, the aim of this chapter is to
move to an atomistic description of the film, accounting for its ionic lattice structure. The
electron-ion and electron-electron interaction will be taken into account, providing substan-
tial improvements in the microscopic description of the film and leading to a more realistic
description of dielectric properties. Besides quantum confinement effects, ab-initio calcula-
tions allow to disclose the role of surface states whose presence is expected to be relevant for
ultra thin films.

5.1 Introduction

One of the most powerful tools used to describe the microscopic structure of matter, includ-
ing the electron-ion interaction and, at least in part, the many-body interaction among the
electrons, is the Density Functional Theory (DFT) within the Kohn and Sham scheme (KS)
[1, 2]. The KS theory provides single particle eigenvalues and eigenfunctions of an effective
hamiltonian for the electrons of the system once that the ion positions are fixed. Within the
Born-Oppenheimer approximation one can also perform ionic relaxations. For each step of
the ion dynamics, the forces among ions are caclulated once that the electrons are in their
ground state. It is well known that DFT provides correct results only for the ground state
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Figure 5.1: (a) sketch of the density profile along the z axes for the bulk cell (blue line) and
for the repeated film cell (red line). (b) 3D view of the film simulation cell with 24 atoms
and the [111] surface with 2 × 1 reconstruction.

of the system, whereas the dielectric properties of a system depend also on its excited states.
Despite of this limitation DFT is currently employed in the determination of properties of
many systems with satisfactory results [1]. A number of many-body techniques exist that,
starting from a KS calculation, can correct eigenvalues and eigenfunctions of the excited
states to better describe the response functions [3] (see also the end of section 1.10).
In the present study the KS theory will be used to calculate the dielectric tensor of a silicon
thin film, from which the dispersion force can be evaluated and compared to the results
obtained with different dielectric function models. The interest has been focused on silicon
for the following reasons, first silicon has a big relevance in the fabrication of micro- and
nano-mechanical systems, second, semiconductors allow to investigate the modification of
the dielectric properties due to the presence of surface states. Surface states arise because
the atoms at a surface have dangling bonds that must be saturated in some way. In covalent
semiconductors, the strength of the chemical bonds produces a reconstruction of the lattice
close to the surface and surface bands appear inside the gap. This strong modification of the
band structure of the system is expected to change the dielectric response of the medium
significantly. In free electron metals the bond is isotropic and one cannot identify surface
states coming from dangling bonds, even if the electron density of states may be modified at
the surface.
The use of a microscopic atomistic description allows to include in the response function local
field effects and to investigate their role in the dispersion force.

5.2 The simulation of a silicon film

To simulate the silicon film one has to chose a given surface, i.e. one has to cut the FCC lattice
along a particular direction. In the following the [111] direction has been chosen, the most
stable reconstruction of this surface is the 7×7 but it requires a very huge simulation cell and
it has a metallic behaviour [4]. In the following the 2×1 reconstruction has been considered [5]
which is the one naturally obtained after the cleavage operation. It shows a semiconducting
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behaviour [4]. KS calculations are known to understimate the gap of semiconductors [1],
they cannot account for neutral excitations (excitons) and they can suffer of many other
approximations made by the specific kind of implementation (functionals, pseudopotentials
ec.). For this reasons the results obtained for the silicon film cannot be direclty compared
with the bulk experimental dielectric function or with other bulk models. To be consistent
with the approximation of the method, one has to simulate also a silicon bulk and compare
the dielectric tensors of bulk and film obtained within the same method.
To calculate the electronic structure of the film the repeated slab approach has been adopted.
This technique is commonly used in the study of surface electronic structure. One has to
consider an artificial lattice obtained with a periodic array of silicon films intercalated by
vacuum films. This allows to exploit the Bloch periodicity and to adopt band structure
computational methods. The bulk case is achieved by putting the size of the vacuum film
equal to zero. The unit cell, illustrated in figure 5.1 has been obtained by regularly stacking
24 silicon atomic planes along the [111] direction (total thickness 1.9 nm) intercalated by a
vacuum film of 1.1 nm thickness. Allowing surface atom relaxation, which gives rise to the
2 × 1 reconstruction, one obtains a silicon film of 1.7 nm thickness.
Figure 5.1 shows the calculated electron charge density along the z direction normal to the
film boundaries. It has the same behaviour obtained in a bulk calculation inside the film,
while it shows significant modifications compared to the bulk at the two film surfaces. Such
modifications arise from the surface states. Notice that the film density goes quickly to zero
as one moves from the film boundaries into the vacuum part of the cell. It seems possible
to conclude that periodicity along the z direction does not introduce artificial interactions
between films. The surface reconstruction involves only the outer atomic layer and results in
the formation of a zig-zag chain of dimers along the y direction of the cell.
Figure 5.2 (a) gives a plot of the film band structure along the high symmetry directions of
the two dimensional Brillouin zone. The two arrows indicate the location of the conduction
and valence band edges obtained in the calculation of the bulk band structure. Notice that
the bulk band gap is 0.6 eV, lower that the experimental value 1.2 eV [6]. It is seen that two
surface bands appear in the bulk forbidden energy region, which are separated by a gap of
0.1 eV. The lower band is filled and the upper one is empty, so in principle optical transitions
between the two bands are possible. To illustrate the nature of the electron states in these
bands figure 5.3 gives the calculated probability density at the J point of the two dimensional
Brillouin zone. They appear to be localized on the two dimer chains present at the surface.
Most of the bands plotted in the figure correspond to states that behave in a way similar to
the bulk states, showing a regular periodicity in the inner layers and decaying exponentially
into the vacuum. To illustrate the different contribution of the atoms in the inner layers and
at the surface, figure 5.2 (b) shows the local density of states (LDOS) at the surface and in the
middle atomic layer to be compared with the bulk DOS. The comparison indicates that the
LDOS inside the film shows structures that are similar and cover the same energy intervals
that the bulk DOS. However significant differences are observed in the relative weight of the
structures both in the valence and in the conduction energy regions.
The calculations have been performed using the DFT KS implementation of the PWscf code
[7]. This code works with a plane waves basis set, norm-conserving pseudopotentials have
been used, and a local density approximation (LDA) functional has been chosen. Convergence
tests have been carried out in order to chose a sufficient quantity of vacuum in the simulation
cell, to properly sample the 2D Brillouin zone, to take into account a large enough number
of empty bands and of plane waves.
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Figure 5.2: (a) film band structure on the 2D Brillouin zone, red lines represent the surface
states inside the gap, dashed line represents the Fermi energy. The inset shows the high
simmetry points in the 2D Brillouin zone. (b) Silicon bulk DOS (shaded area), DOS projected
on the surface atomic layer (red line) and DOS projected on a inner atomic layer (green line).
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Figure 5.3: Square modulus of the surface states: the first row shows the highest occupied
valence state seen from different directions, the second row shows the lowest unoccupied
conduction state. The red line indicates the zig-zag surface dimers chains.

5.3 The film dielectric tensor

Once that the DFT energies and wavefunctions are known, the dielectric matrix can be
calculated by means of the RPA of section 1.10. Figure 5.4 shows the diagonal components
of the dielectrc tensor of the film. From the band structure of figure 5.2, a peak inside the
silicon gap was expected, but it appears only for the yy component. This is because the
dipole matrix elements along the xx and zz directions for the surface states, vanish. One
can easily see this, looking at the different parity of the lowest conduction and the highest
valence state of figure 5.3. Along the yy direction, for instance, the valence and conduction
states show opposite parity: the gradient of the valence state will have the same parity of
the conduction one and their overlap integral will be large. On the contrary, along the xx
direction the two states show the same parity: on applying the gradient operator the valence
state changes his parity and the overlap becomes negligible.
The off-diagonal components of the dielectric tensor are negligible.

5.4 The force calculation

The force has to be calculated using the Lifshitz theory for a five layers system (section 2.3.4)
generalized to the case of non isotropic media (section 2.3.5). The general expression is given
in equation (2.96). First of all it must be noticed that the KS calculations cannot be directy
compared with experimental dielectric functions. To test how far the DFT calculations are
from the experimental values, one can compute the bulk dielectric function and compare it
with the measured one [8]. Figure 5.5 (a) shows this comparision for the imaginary parts of
the dielectric function. The absorption edge is understimated and the spectral weight moves
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Figure 5.4: Real and imaginary parts of the diagonal components of the film dielectric tensor:
εxx dashed line, εyy dotted line and εzz continuous line

Figure 5.5: (a) DFT (continuous line) and experimental (dashed line) absorption spectrum
of a silicon bulk. (b) relative percent differences (5.1).

Figure 5.6: Relative percent differences (5.2).
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to lower frequencies. The relative percent difference between the force calculated with the
DFT dielectric tensor and the experimental one

δ =
Fexp − FDFTbulk

Fexp
(5.1)

is plotted in figure 5.5 (b). Notice that, at small distances, when the contribution from all
the frequency spectrum is important, the experimental force is larger that the DFT one. At
5 nm distance, only small frequencies become relevant and the understimation of the gap
is crucial, the force is larger and the relative percent difference becomes negative, reaching
values up to 40%.
To study the quantum size effects on the force between films, excluding the effects of the
various approximations made in the calculations, the comparison has to be perfomed between
the theoretical silicon film and the theoretical silicon bulk. The relative percent difference:

δ′ =
FDFTbulk − FDFTfilm

FDFTbulk
(5.2)

is plotted in figure 5.6 showing a discrepancy larger than 100% at large films separation. The
presence of two flat regions at large and small 2 has been found also in chapter 4 and therein
explaned. The large anisotropy and the strong absorption inside the silicon gap, due to the
surface states, make the force between films always larger that the force evaluated with the
bulk dielectric constant, i.e. the relative percent difference is always negative.

5.5 Local field effects

The RPA dielectric function used in the previous section, contains implicitly the average
electron density of the system. It is expected to hold when the local oscillations of the charge
are small and close to the average value. When a surface is introduced, rapid and strong
oscillations of the electron charge take place in its neighborhood, see figure 5.1. In this case a
local field theory can be used to compute a dielectric tensor that, being again a macroscopic
average, is more sensitive to the local oscillation of the charge (see section 1.5). To this
aim one can use the Adler and Wiser dielectric tensor model decribed in section 1.10. The
London transforms of the bulk and film dielectric tensors are plotted in figure 5.7. Notice
that, in the bulk, the inclusion of local field effects decreases the static value of the response
function getting closer to the experimental one. A decreasing trend can be noticed also in
the film case, however each component undergoes a different reduction and the anisotropy
increases.
Once the force has been calculated some interesting comparisons can be made. One can
calculate the analogous of (5.2) like in figure 5.8 (a). The relative percent difference decreases
by 20% with respect to the RPA. This is mainly due to the decrease of the static values of the
film dielectric tensor. Without the inclusion of local field effects, all the film components are
well above the bulk ones and the relative percent difference of the force is always negative,
with the local field correction some of the components fall below the bulk ones. For this
reason at small film separations, when the contribution of all frequencies is relevant, the
force calculated with the bulk dielectric function becomes larger than the force calculated
with the film dielectric tensor, leading to positive values of δ′. Another interesting comparison
is the one between the force acting between films calculated with and without the local field
corrections:

δ′′ =
FNLF

DFTfilm − FLF
DFTfilm

FNLF
DFTfilm

(5.3)

this relative difference is plotted in figure 5.8 (b) and is always positive, as expected by the
decreasing effect of local field corrections. Here the relative percent difference can be higher
than 25%.
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Figure 5.7: London’s transforms of the dielectric tensor with local field effect. (a) represent
the bulk London’s transform with (dashed line) and without (continuous line), local field
effects. The transform obtained from the experimental dielectric function is also given for
a comparison (dotted line). (b) gives a comparison of the diagonal components of the film
tensor with (black lines) and without (gray lines) local field effects. The convention for the
different components is the same as in figure 5.4.

Figure 5.8: (a) relative percent difference (5.2) with (continuous line) and without (dashed
line) local field effects. (b) relative percent difference (5.3).
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5.6 Conclusions

The analysis of the theoretical results allows to draw the following conclusions.

• The calculation of the dispersion force with the dielectric function appropriate to a
Si film of nanometric thickness leads to results that are widely different from those
obtained using the bulk dielectric function. Only in the high thickness limit the two
methods give the same results.

• The differences arise from two main factors. First the occurrence of both filled and
empty surface states in the bulk band gap gives rise to characteristic absorption struc-
tures in the dielectric tensor, most clearly seen in the εyy component, at low energy,
where the bulk is transparent. This effect is present both in the RPA calculation and
when the non-local field effects are included. Second, the modifications occurring in
the electronic states that are not confined to the surface lead to a behaviour of the film
dielectric tensor considerably different with respect to the bulk case even in the range
of frequencies at and above the bulk absorption edge. Both effects combine to give a
strongly anisotropic tensor.

• The inclusion of non-local effects in the determination of the macroscopic RPA dielectric
function causes deep modifications in its shape compared to the simple RPA. As a
consequence tha calculated dispersion forces show significant differences.

The conclusion about the role of the surface states seems to be at variance with the fre-
quently reported statement that surface effects are negliglible provided the separation dis-
tance is much larger than the surface region i.e. the region where surface state wavefunctions
are different from zero. Since surface states are typically localized within a few angstrom
distance from the outermost atomic plane, one expects their contribution to the force to be
negligible when the separation distance is of the order of 5 ÷ 10 nm. This is certainly true
if referred to the force between two semi-infinite or very thick slabs, since the surface region
has a small width compared to the film. However in the case of interacting nanometric films
the surface states contribution to the electronic structure is comparable with the contribu-
tion of the more extended states and causes deep modifications in the force behaviour. The
occurrence of a surface gap smaller that the bulk band gap provides a natural explanation
of the discrepancies in both δ′ and δ′′ quantities at high separation distances. An absorption
frequency affects the force at distances comparable with the wavelength. Since the frequency
of the surface optical transition is smaller that the bulk band gap, its effects on the force are
more evident at large distances.
One can conclude that modifications in the surface structure and morphology of thin nano-
metric films can produce significant changes in the dispersion force.
The estimate of the effects of non-locality in the determination of the macroscopic dielectric
function seems to indicate that these effects are crucial in order to obtain an accurate eval-
uation of the force starting from first-principle calculations. Previous attempts of including
non- locality of the dielectric function into dispersion force calculations have been based on
the use of RPA approximate forms [9] or on empirical expressions [10] where the wavevector
dependence of the dielectric funcion was explicitly given. For two semi-infinite gold films the
corrections lead to a significant improvement in the agreement with the experimental data
[9]. No attempt has been made up to now to calculate the macroscopic dielectric function
with its full dependence upon the frequency and the wavevector starting from the inverse
dielectric matrix.
In the present calculations the wavevector dependence of the macroscopic dielectric function
has not been explicitly considered, which would require a considerable computational effort,
only the macroscopic dieletric function in the vanisning wavevector limit has been considered.
Even with this limitation the results indicate that a realistic description of the dispersion
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force cannot be achieved without including the lattice periodicity in the calculation of the
film response.
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This chapter is devoted to the study of a possible application of the electromagnetic vac-
uum forces in the field of micro and nano-mechanical systems. Since dispersion forces between
macroscopic bodies depend upon their dielectric properties, the equilibrium distance between
two interacting bodies can be tuned changing their dielectric response. Policrystalline GeTe
is a suitable materials for this purpose, infact it can undergo a fast and reversible metal-
insulator phase transition, changing strongly its optical reflectivity and conductivity. Using
recent measurements of GeTe dielectric properties, the feasibility of a dispersion forces based
device will be discussed, whose the mechanical motion of a cantilever can be tailored via
crystalline-amorphous transitions. The work described here has been published in the paper
of reference [1].

6.1 Introduction

With the development of modern technology towards smaller structures an increasing at-
tention has been addressed to the role of electromagnetic vacuum fluctuation forces (dis-
persion or van der Waals and Casimir forces) in micro- and nano-electromechanical systems
[2, 3, 4, 5, 6, 7, 8]. In chapter 2 it has been shown that these forces vary typically with the
third or fourth inverse power of the distance between the surfaces of the interacting bodies
and therefore can be very intense in the sub-micrometer regime. When the moving parts of a
device come to such a close distance, dispersion forces affect the dynamics and the operation
of the device and, under certain circumstances, they can cause adhesion or stiction between
the surfaces, thus limiting the device lifetime. Devices actuated by Casimir force have been
designed and demonstrated [9, 10, 11]. Since these forces depend upon the reflectivity, the
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Figure 6.1: Simple representation of the dispersion forces based device.

size and the geometry of the interacting parts [12, 13], several possibilities can be explored
to devise structures that exploit such dependence in order to improve the performance of
existing devices or to design new types of devices [14].
This chapter explores the possibility of using materials, that undergo fast and reversible
phase transitions, to extend the travel range of a device. Thermally induced phase changes
between the amorphous and the polycrystalline state in a thin film have been observed since
a long time in tellurides containing Ge and Sb (GST materials) [15, 16, 17, 18, 19, 20, 21, 22].
The transition is accompanied by significant changes in optical and transport properties, a
feature that is exploited in optical data storage [23] and could be useful in new nanoscale
memories [24, 25]. Previous theoretical studies have shown that metal insulator transitions
may cause significant changes in the Casimir force behaviour [26, 27]. In the following this
transition will be used to modify the force between the components of a simple device. It will
be shown that the locations of the extrema in the total energy potential curve of the device
are displaced by the transition in such a way that the range of distances and the energy
interval over which the device can be operated can be significantly modified.

6.2 The model device

An ideal actuator [2, 14] will be considered consisting of two parallel plates separated by
a gap, with one plate fixed on a substrate and the other suspended by an elastic restoring
force F = −Kx0δ, where x0 is the unactuated distance and K is the spring constant. The
device is sketched in figure 6.1. The stationary plate has a flat surface at δ = 1, while δ = 0
denotes the equilibrium position of the movable plate in the absence of dispersion forces and
corresponds to the unstretched state of the spring. The attractive interaction between the
plates is provided by the electromagnetic vacuum fluctuation force, whose expression in terms
of the temperature T , the plates dielectric functions ε1 and ε1 and the inter-plate distance
d = (1 − δ)x0, is given by the Lifshitz formula (2.87):

F = − A

πβ

∞′∑

n=0

∞∫

0

γkdk

[
1 − QTM (iΩn)

QTM (iΩn)
+

1 − QTE(iΩn)
QTE(iΩn)

]
(6.1)

here A is the plate surface, β = 1/kBT , kB is the Boltzmann constant, Ωn = 2πn/!β is
the Matsubara frequency corresponding to the n-th thermal fluctuation mode, the prime on
the summation indicates that the n = 0 term is given half weight. QTM and QTE refer to
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transverse magnetic (TM) and transverse electric (TE) modes respectively and are given by:

QTM (iΩn) = 1 − (ε1γ − γ1)(ε2γ − γ2)
(ε1γ + γ1)(ε2γ + γ2)

e−2dγ (6.2a)

QTE(iΩn) = 1 − (γ − γ1)(γ − γ2)
(γ + γ1)(γ + γ2)

e−2dγ (6.2b)

with:
γ2

i = k2 +
Ω2

n

c2
εi(iΩn) γ2 = k2 +

Ω2
n

c2
(6.3)

and the dielectric functions are evaluated at the frequency iΩn by means of the London
transform (see appendix C of the previous chapter). In the calculation for the metallic phase
the prescription of reference [28] has been adopted, i.e. the n = 0 contribution of the TE
modes has been set equal zero. The behaviour of the force as a function of d is non linear: at
short distances it can be reproduced by a third inverse power of d (van der Waals regime),
but a single inverse power term does not reproduce its behaviour for d values larger than a
few tens of nanometer. As pointed out by several authors [29, 30], mainly in connection with
electrostatic actuators, there is an intrinsic instability in a device of this sort, which prevents
the plates to be stably positioned over a large distance. The system is bistable, having a
total potential energy with a local and an absolute minimum separated by a barrier. This
limits the range of motion of the device and determines stiction at short distances between
the plates [2, 3, 5, 6, 7]. The configuration illustrated in figure 6.1 has been adopted, where
both plates are made of telluride films deposited on proper substrates. For simplicity it has
been assumed that the thickness of the deposited films is larger than the distance between
the plates (if the film size is comparable to the distance, the substrate is expected to affect
the intensity of the force). This assumption can be removed by extending the expression of
the Lifshitz force to deal with a five layer system [31, 14].

6.3 GeTe dielectric properties and the force

To illustrate the model device, the attention has been focussed on GeTe, whose optical prop-
erties have been experimentally determined in both phases. It undergoes rapid transitions
between polycrystalline and amorphous states under either optical or electrical excitations.
According to the band theory in a perfect crystal rocksalt structure GeTe should exhibit a
semiconducting behaviour. However the stable polycrystalline phases are characterized by
large vacancy concentrations (typically 1020 cm−3) and local distortions [32, 33]. Compared
to other defects, that may be present, germanium vacancies have the lower formation energy
[34]. GeTe thin films show a p-type electrical conductivity with a high carrier density of up
to 5 × 1020 cm−3. This density is consistent with the concentration of Ge vacant sites, i.e.
the metallic conductivity is the consequence of the holes that are formed per single vacant
site. In the optical properties direct evidence of the metallic behaviour is provided by the
presence of Drude-like intraband absorption in crystalline phase [35] (see figure 6.2). On
the other hand the amorphous phase has typical semiconductor properties, as illustrated by
the behaviour of the imaginary part of the dielectric function, reported in the same figure.
Conventional semiconductors, such as Si or GaAs, do not show such large differences in the
optical properties as a consequence of the amorphous-crystal transition.
Figure 6.2 displays the calculated London transform for both phases. To obtain this curve
one has to reproduced the experimental data available in the range of frequencies 0.1÷ 5 eV
with a Drude-Lorentz model including both intra- and inter-band transitions in the metallic
phase, and pure inter-band transitions in the amorphous phase. The values of the carrier
density, the carrier effective mass, the relaxation time and the plasma frequency agree with
those derived from various experimental studies [16, 17, 18]. It is seen that ε(iω) turns out to
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Figure 6.2: Imaginary parts of amorphous and crystalline GeTe dielectric functions and their
London transforms, adapted from reference [35] as discussed in the text.

Figure 6.3: Relative difference between FCC , FCA and FAA.

be very different in the two phases in almost all the range of frequencies. As a consequence
of the intraband absorption, that is present in the metallic phase only, the curve for the
polycrystalline phase for small ω takes much higher values than the one for the amorphous
phase. Such differences over all the integration interval of equation (6.1) are expected to
determine significant changes in the force. One can use equation (6.1) to calculate the force
between two amorphous coated plates FAA, two crystal coated plates FCC , and the mixed
configuration FCA. Figure 6.3 reports, as a function of the separation distance, the relative
variation of the dispersion force between the plates with respect to the configuration with
both plates in the crystalline phase, when one or both plates undergo the transition from the
crystalline to the amorphous phase. The curves have a similar behaviour with two ranges, at
small and large distances, where the relative difference is constant, and a maximum in the
range between 50 nm and 5 µm. The constant values are a consequence of the fact that the
forces have identical behaviour as a function of the plate separation. At short distances the
force can be approximated by [36]:

F = − 1
4πβd3

∞′∑

n=0

∞∑

m=1

1
m3

(
ε1 − 1
ε1 + 1

)m(ε2 − 1
ε2 + 1

)m

(6.4)

which gives a relative change of approximately 28%, that does not depend upon the distance
and the temperature. Notice that for the n = 0 term of the Matsubara sum, the crystalline
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dielectric function diverges and:

ε− 1
ε+ 1

→ 1
∞∑

m=1

1
m3

= ζ(3) (6.5)

where ζ(x) is the Riemann zeta function. On the other hand, at large distances within the
present treatment of the temperature dependence of the Casimir force, the force between
polycrystalline plates is simply given by [28, 37]1:

FCC , − ζ(3)
8πβd3

(6.6)

In the amorphous case the force for large d cannot be written in a closed form. However it
can be very well approximated by the n = 0 term of the Matsubara sum

FAA , − 1
8πβd3

Li3

[(
εA(0) − 1
εA(0) + 1

)2]
(6.7)

where Lin[x] is the polylogaritmic function of n-th order in the argument x. From these
expressions one obtains a relative change of the order of 36%, in agreement with the exact
numerical results in figure 6.3.

6.4 Tailoring the device performance

Device instability is usually discussed in terms of a dimensionless parameter, like the ratio
between the Casimir energy at the equilibrium distance and the elastic energy [2, 14, 8]. This
can be done conveniently when the force has a simple inverse power dependence with the
separation distance. The analysis of the bifurcation diagrams as a function of the parameter
allows one to draw conclusions about changes in the critical separation with the material
dielectric properties. In the present case the force as a function of the separation distance
cannot be reproduced by a simple power law, so that a single dimensionless parameter cannot
be used to study the device instability.
The behaviour of the device depends upon the spring constant k, the area A of the plates and
the unactuated distance x0. The ratio Ξ = A/k gives a measure of the relative importance
of the vacuum and the elastic force, since they increase linearly with A and k respectively.
According to the values attributed to these parameters one obtains different intervals of
distances and energies of device operation at fixed x0. To show the effects of the phase
transition figure 6.4 gives the plots of the potential energy of the device for fixed k and
A at x0 values of the order of hundred nanometers. This choice corresponds to distances
where the relative difference of the force varies significantly (see figure 6.3). As expected,
on passing from the CC to the AA configuration the weakening of the vacuum force shifts
the stable equilibrium position towards smaller δ values and the maximum at larger δ. The
displacement is more pronounced for low Ξ i.e. soft spring and small area (figure 6.4 (a)),
where it can be of the order of 80% and more, than in the case of large Ξ plotted in figure 6.4
(b), where the increase of the travel range is of the order of 10%. The range of energies for
which the device can be operated is modified in a similar way. These curves provide examples
of the possibility of tuning in reversible way the device properties using the metal-insulator
phase transition. Figure 6.5 displays bifurcation diagrams of the device as a function of Ξ for
x0 equal to 100 nm (figure 6.5 (a)) and 5 µm (figure 6.5 (b)) [14, 38, 39] for the CC, CA and

1Notice that this behaviour is different from the expression of the Casimir force at T = 0◦ K that for a

perfect metal gives FCC = − !cπ2

240d4 . This formula has been frequently used in previous studies of the role of
electromagnetic forces in stiction phenomena.
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Figure 6.4: Potential profiles for CC configuration (dashed line), CA configuration (contin-
uous line) and AA configuration (dot- dashed line). In the (a) plot x0 = 100 nm, k = 0.1
N/m and A = 2 · 10−10 m2 letters A and B refer to figure 6.5 (a); in the (b) plot x0 = 200
nm, k = 0.5 N/m and A = 10−8 m2.
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Figure 6.5: Bifurcation diagrams for CC configuration (dashed line), CA configuration (con-
tinuous line) and AA configuration (dot-dashed line). In the (a) plot x0 = 100 nm, the
dotted line represents the Ξ value used in figure 6.4(a). In the (b) plot x0 = 5 µm, the
dotted line represents the force calculated using the T = 0◦ K Casimir’s force.
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Figure 6.6: δ0 as a function of x0. Dashed line corresponds to the T = 0◦ K Casimir’s force,
dot-dashed line is obtained in the small and large d limits of equations (6.4) and (6.6). Dots
represent the exact results for FCC (circles), FAA (triangles) and FCA (stars).

AA configurations. The curves have similar shapes, with a lower branch before the fold that
corresponds to stable solutions while the upper branch indicates the unstable states. The δ
values which allow to operate the device at a given value Ξ% are those which lie within the
intersections of the line Ξ = Ξ% with the upper and the lower branch of the curves (points
A and B in figure 6.5 (a)). At the Ξ value corresponding to the curve fold there is only one
intersection, which gives the critical separation δ0. As expected, the crystalline-amorphous
transition changes significantly the range of Ξ parameters over which the device can work.
Notice that δ0 varies between 0.21 and 0.22. The critical value is expected to change when
the functional dependence of the vacuum force with the plate separation is modified: for the
d−4 dependence typical of the Casimir force δ0 = 0.20, while for the d−3 behaviour, which is
characteristic of the van der Waals interaction and of the large distance force at T > 0◦ K,
δ0 = 0.25 [2, 14]. In the case illustrated in figure 6.5 (a), i.e. 100 nm distance, the critical
value deviates significantly from the third inverse power behaviour. The curves of the 5 µm
case show a similar behaviour. For the sake of comparison figure 6.5 (b) reports the curve
corresponding to a pure Casimir interaction, which has been often adopted in similar device
analysis. This force is appropriate to describe the case of metallic plate at large distances for
T = 0◦ K. Comparison with the results for the CC configuration shows that the ranges of
Ξ and δ values are considerably underestimated by this interaction. Notice that the vacuum
force at such distance cannot yet be described by a third inverse power law, as expected from
equation (6.6) at T > 0◦ K. This is most clearly seen by the critical δ0 value which is smaller
than 0.25.
To better illustrate how the separation distance dependence of the vacuum force can affect
the device performance, figure 6.6 represents the critical value as a function of the unactuated
distance. It is seen that δ0 varies between 0.25 at very short (less than 10 nm) and very
large (more than 10 µm) distances and a minimum slightly larger than 0.20. The minimum
occurs at different distances in the three configurations and it is found at smaller x0 for the
AA case. It is clear from this curve that simulating device behaviour on the basis of simple
inverse power law forces does not allow to get realistic results.

6.5 Conclusions

It has been shown that the metal-insulator transition in germanium tellurides can be exploited
in a simple device to modify its performance and the conditions under which it can be used.
The choice of the appropriate values for the parameters entering into the model may depend
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upon a number of factors, like the film quality [40], the possibility of controlling the kinetics
of the phase transition, the mechanical properties of the components, the surface roughness
[41] etc. which have to be clarified in order to plan the realization of a specific device. On
the theoretical side two aspects have to be further investigated. The first concerns the role of
the film size in determining the change in the vacuum force: this can be carried out along the
lines of previous studies [31, 14] with the purpose of determining the minimum thickness that
allows to detect significant vacuum force variations. The second has to do with the effects of
the finite plate area, which in the metal case may be needed to avoid inconsistencies related
to the Drude description of the intraband absorption [42].
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