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Résumé. — Nous étudions de fagon détaillée le probléme de I'attraction électronique induite par une déformation
entrainant une paire d’électrons localisés, appelée « bipolaron ». Nous explorons I’analogie entre les bipolarons et
les paires de Cooper itinérantes dans un supraconducteur. Nous montrons que les deux types de paires résultent
. de la nature microscopique de I'interaction électron-phonon et que suivant la constante de couplage, 1’état fonda-
mental devient un isolant bipolaronique au-dela d’une certaine valeur critique. Nous proposons un diagramme
de phase entre un métal, un supraconducteur et un isolant bipolaronique.

Abstract. — The problem of deformation induced attraction leading to localized pairs of electrons, the so-called
| bipolarons, is studied in detail. The analogy between bipolarons and itinerant Cooper pairs in a superconductor is

: explored. It is shown that the two types of pairing result from the microscopic nature of the electron-phonon
Hamiltonian and that following the coupling constant the ground-state becomes a bipolaronic insulator beyond
a critical coupling strength. A phase diagramme between a metal, superconductor and bipolaronic insulator is

proposed.

Introduction. — In a series of recent papers [1], we
have pointed out the fundamental interest of the
bipolaronic ground-state defined as a localized pair
of electrons coupled through lattice deformation.
The experimentally observed bipolarons, the charge
localization, their insulator-metal transition and other
physical properties have been dealt with at length [2].
We have also recently [3] suggested that there is a
fundamental symmetry between this bipolaronic

- ground-state and a superconducting ground-state

because these bipolarons can be considered as loca-
lized Cooper pairs in the limit of large electron-pho-
non coupling constant. A phase diagramme between
metal-superconductor and bipolaronic insulator has
been proposed that reflects the increasing instability
of the metallic electrons at the Fermi level to attractive
pairing interaction due to strain-induced coupling.

In part 1 of this paper, we shall briefly recall the

- essential results of electron pairing due to static

strain while in part 2 we shall describe in some detail
the dynamic Hamiltonian and will show that the
electron-phonon Hamiltonian contains within its

- very structure two complementary parts one of which
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gives rise to bipolaron formation while the other part
leads to superconductivity. Part 3 will be a succinct
discussion of some of the points still obscure.

1. Pairing due to static strain. — It is easy to see why
strain is essential if one is to form a pair of localized
electrons in a singlet ground-state out of two itinerant
electrons in an empty band. In figure 14, a one-dimen-
sional chain of identically spaced atoms are indicated,
with near-neighbour transfer integral t. The total
energy for two electrons in an otherwise empty band
is then

Ey=2¢ — 4t (la)

where ¢, is the single-site energy of an electron.

Were we to localize these two electrons in a pair
of undeformed neighbouring atoms (Fig. 1b) into the
singlet state, the ground-state energy will be

E,=2e+v—2t—1J (1b)

where v is the near-neighbour Coulomb repulsion
between the two electrons and J is the exchange
integral between two sites. '

We note thatv>J, E, is largerthan E, (AE=E, — E,
is positive) and hence E, can never be a ground-state
for the two electrons. On the other hand, if we relax
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Fig. 1. — 2 electrons in an undeformed empty lattice : @) delocalized;
b) localized.

the condition of a rigid lattice and allow the two neigh-
bouring sites to deform, it is easy to show [1] following
the Anderson [4] Hamiltonian, that such a localized
deformation gives rise to an effective total repulsion

2

gz. +v @

Ve = Mo

where g is an electron-phonon coupling constant and
w is a vibration frequency.

In the event V. become small or even negative,
E, can be lower than E,; and a localized pair of elec-
trons (a bipolaron) can form. In figure 2, we plot that
the total energy E; of the electron pair plus the elastic
energy involved in the deformation as a function of
static strain ¢ for different coupling constants g.
The zero of energy is taken to be the bottom of the
band and one sees that a critical finite strain ¢ = &
is needed to trap the two electrons into a bound
localized state. The transition to the bound-state is
sudden and is shown in the insert, as a function of
temperature, the displacement involved in the mean
field approximation. We note that bipolaron formation
is not necessarily due to optical phonons and that a
finite localized lattice strain is involved and in this the
problem is analogous to polaron formation through
finite acoustic deformation first treated by Toyo-
zawa [5). ;

ET g=0

temperature

9=9,

strain €

Fig. 2. — Electronic energy plus energy of deformation. In the inset :
strain versus temperature.
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2. Electron-lattice Hamiltonian. — The electron
lattice term used in the Anderson Hamiltonian [4] and
which we used for the results in part 1 is highly phe-
nomenological and does not take into account the
dynamical nature of the electron-lattice interaction
or throw light on the origin of this coupling between
the electrons. Furthermore the strain is taken in part 1

as a parameter and as a consequence the energy shift '

due to coupling was a first-order effect; however,
if strain is in reality a fluctuating quantity (varying in

time and in space and alternating in sign) the ground-

state energy of the coupled electron-lattice system will
be perturbed due to. second-order to begin with,
first-order terms will be identically zero. To see these
points clearly let us start with the tight-binding

Hamiltonian elements relevant for narrow bands that
we are interested in

Ho=Z‘:V.-°|ll/.~><ll/.~|+§VfllI/.»><lI/,~l G)

where ¥} is the crystal potential seen by electron at
J

the site i given by V¢ = Y. v}, superscripts a signifying
j=i .

that the sum is over the atomic potentials +* and
includes all sites j, ; s are the Wannier function on
a given site i.

The first term in (3) corresponds to a shift of the
atomic energy of a given electron due to crystal field
seen at site i while the second term of the Hamiltonian
refers to the spreading out of the atomic-like energy
levels into a band due to transfer of electrons between
different sites through overlap of the wavefunctions.
The simplest perturbation due to some local defor-
mation of the hamiltonian H, is seen in figures 3a
and b, corresponding to a lattice of four sites. We can
immediately see the two principal effects — first, the
deepening of the potential well at the sites 2 and 3
and secondly, increased hopping or tunnelling pro-
bability between these two sites due to shortened
distance. We can write in second quantization

1 ovs or,
=X N"T 8'+ZNC*CJ?_“’U @

| B

a. undeformed Llattice

b. deformed Llattice

Fig. 3. — Crystal potential : a) undeformed lattice ; b) deformed
lattice.
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where n; are the occupation operators at site i cor-
responding to ¢’s which are the creation and annihi-
lation operators for Fermions, &’s are the strains at
sites or at bonds i-j. T;;’s are the hopping integrals.
It is worthwhile to look at the two terms of H' and
see how they contribute. Calling the diagonal term of
H' H,, we write

1 oV¢
=ZN Je

i

(4a)

1 0V§

Define a coupling constant g; = N %‘— We note

that in H,, ¢ is a fluctuating term and cannot contri-
bute to first order due to averaging out of the effect
but it will in second-order because the mean-square
displacement of the atom is non-zero. Thus the second-
order process will give a contribution proportional
to g2. Note gZ ~ | %], If the electron is perfectly
itinerant over N atomic sites we have |¢, | ~ 1/N
but we need to sum the interaction over all lattice
sites to get

<\ 2
AEl_g N(‘?:) _0(@—»0 as N oo.

We thus see that for an itinerant electron the contri-
bution of the diagonal term of the perturbation -is
infinitesimally small and hence is usually neglected.
This is far from the case for a localized electron. Sup-
pose the electron is localized over n-sitesi.e.| Y7 |~ 1/n.

2 6V°2

This gives AE, ~— 75 and as n— 1, Ag

becomes a very large quantity. This term in literature
is known as the Franck-Condon shift, generally attri-
buted to interaction with optical displacement but as
it is seen here, it is really due to the diagonal contri-
bution of the perturbed Hamiltonian. There are several
points to be noted with respect to the diagonal term.
First of all it is the very basis of Holstein [6] Molecular
Crystal Model for polaron formation where all non-
diagonal terms are generally neglected. Second of all,
“as Toyozawa [5] pointed out, the total pseudo-momen-
tum is not conserved in the interaction process.
This implies that either we are in the presence of
recoiless transition as pointed out by Anderson [7]
or must invoke Umklapp processes. The Umklapps
imply short wavelength disturbances and any insta-
“bility associated with them will be charge fluctuations
of size quite small compared to the unit cell, asso-
ciated with motions of the atoms. Such an object is a
fair description of a covalent bond. The recoiless
transition implies that the linear interaction term
in the diagonal term of the Hamiltonian due to dis-
placement of atomic position may induce a defor-
mation of the electron orbital but not an electron
jump from one site to another. This means that
electrons follow the atomic motion adiabatically;
electron and nuclear motion can be separated and the

—
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Fig. 4. — Electron scattering due to phonons : @) normal, b) recoi-
less.

electron eigenvalue for a given site serves as an
adiabatic potential for the site or atomic displacement
Hamiltonian. Here we are in the presence of strong
electron-lattice coupling and which could lead to
small-polaron formation. In this adiabatic regime
the correct description is the Pekar wavefunction i.e.
a composite particle of electron wavefunction centred
about a static lattice distortion and it is known (8]
to give correct ground-state energy in the limit of
extreme strong-coupling. One can always define a
non-adiabaticity parameter y as the ratio of maximum
phonon energy to electron bandwidth; when y — 0
electron motion is infinitely more rapid than phonon-
motion and the former certainly follows the latter;
the motion is adiabatic (we are in the acoustic regime).
Hence we have the paradoxical result that the coupling
is strongest when the energy-transfer is smallest
(i.e. hov — 0). In the limit of zero energy-transfer, the
interaction becomes purely local, Franck-Condon
and recoiless. We are suggesting that the recoiless
transition is at the origin of a phonon-induced attrac-
tive interaction between two electrons at very short
distances (of the order of interatomic distance).
Rewriting H, in the form H, = ) g, n; ¢ where g,
i

is the coupling constant at site i, and introducing
phonon-operators for the strains ¢ and a canonical
transformation [9, 10} that is standard (leading to dis-
placed oscillator) we obtain the transformed Hamil-
tonian for the electrons

2
-9 g
Hl’*Hl:-—Ma?o- ni'—'—'—zzn”nu‘
2 i#j
91 &
- — N (4b
Mo ;""’ i (45)

where M is the atomic mass,
w is the lattice frequency,
g, on-site coupling constant assumed same for
all sites i .

and g, = go Zexp iq. (R, —
coordinates Wlth phonon wavevector g.

The first term of equation (4b) is just the polaronic
shift to site energies ¢, the second term is the contri-

‘R)), R bemg the site
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bution to Mott-Hubbard U while the last term leads
to overall diminution of near-neighbour Coulomb
repulsion v;;.

The non-diagonal part of the Hamiltonian is
written as

H= et G Rte,. o

It was shown first by Barisic-Labbé-Friedel [11] that
it leads to the B.C.S. Hamiltonian, when transformed

Hz_’szMw ZC,T CxC,, C (6)

where

6. = Chilw> S 6a)

The unusual form of the B.C.S. Hamiltonian here is
obtained quite trivially by Fourier transforming the
standard B.C.S. Hamiltonian into real space and
was written in this form amongst others by Bari [12].
This form and the nature of electron-electron inter-
action in real space in the case of Cooper pair forma-
tion with this Hamiltonian in narrow band solids was
first investigated in detail by Appel and Kohn [13].

Collecting all the electron terms including electron-
electron repulsion of the total Hamiltonian, we get

HT=H0+H' +Hrcp_.ﬁT
FIT = ZE?“ ni + Ue“'zn” n,'l +

+Vefriz: ia 10+ZTUC C

2
Js
- M2 ; i‘? C.-"i Cp er (7)
where
eoft gl —

2
Jo
Ma?
2
9o
U= U —
a= U Mot
2
g1
Ve = 0;; —
We shall now solve H; for the case of 2-site 2-
electrons. & terms can be dropped by redefining

zero of the system. A further simplification results by
observing that for 2-electrons in 2-sites we have

[(n,'T + n,'l) + (nZT + nZl)]Z == 4

and hence n;, nj, terms can be amalgamated into U.

dropping a constant v;; term to give us

Veff) Z

i=1,2

Hy = Uy — ny oyt

+ Z ;G C; — gl'Z CiCuCuCy ®
1,2 i,J

where

For the two-sites 1 and 2 let us define the following
basic vectors :

|a>=\i[(c;*T £,C3)10)
Ib>—7(c - CHCH)I0>
le> =ﬁ(Ci‘}C5“1 +CHCH)0)
ldy = = (CH CF — Cf CE)10D.

7

We have the following 4 x 4 matrix

la>d 6> le ld>
Uo — 4. 0 21, 0
0 Uy + 4. 0 0
2t¢, 0 0 0
0 0 0 0
The matrix is easily diagonalized to give use the
_ following eigenvalues
1 =0
- Ey;=Up+ g, where Upy=Uy — Vy 9

Uog—3: , 1 v
E,_ = °2 g t 5V (Uo=7) +16 15
where
to = Tij‘

The E, level in the eigenvalues (9) is the superconduct-
ing level while the E_ level is the bipolaronic level.
This 1s easy to see for the special case f, = 0 (Fig. 5).
We get

+=U0~_§s E—=0'

The bipolaronic level is now a non-bonding level. The
upper Hubbard level at U, is now split into two levels
due to the superconducting interaction into Ug+4;
and U,—4g,. We note that the superconducting pair

a b c

Ep Uptds E2
Up  smmmmmmmemmmmem emmmemcaaees
E+ Uo-§s E+——
Ep=Yo ool EF--ermmmmmmmane EF womemmmmmnme

2

o Ey,E-———o0 Eq4 ~——m—e—
E- e ————
Gg=0,tp =0 to=0,dg #o to# 0,35 #°

Fig. 5. — Energy levels of 2-electrons.
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Fig. 6. — Superconducting coupling constant §,.

appears as soon as the E, level goes below the Fermi
level &g (e = Uy/2) when g, achieves a critical value
(g, = 9.1). A non-zero t, (Fig. 5c) does not alter this
picture except the bipolaronic level E_ now makes its
appearance as a bonding state for the two electrons.
It should be realized that only when the two-electrons
on a site E level is occupied i.e. it is below e that the
average of the anormalous operator { C} C}} ) canbe
non-zero signifying onset of superconductivity. Note
also that the attractive interaction parameter g,
remains positive only as long as the sheath ¢z — E,
is less than hw. This indicates that the superconducting
transition temperature kT, ~ eg — &, ~ e — Uy + G,
will increase with g, only up to k7, ~ hw, must satu-
rate beyond and fall if §, is arbitrarily increased. This is
seen better if we write the condition for the appearance
of superconductivity as

U
A=sF—E+=g;——2‘l>0. (10)

The behaviour of g, as a function of bandwith ¢, is
expected to be non-monotonic (Fig. 6) by definition
from equation (6a). In the infinite bandwidth limit i.e.
case of perfectly free electron g, = 0 (they do not see
crystal potential at all hence are unperturbed by

1\Tc
x
2
=]
L
2
[
Q.
£
3
bipolaron insulators
superconductor
0 M A2 “x

electron-phonon coupling constant

Fig. 7. — Electronic phase diagramme.
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phonons) dT,;/0¢;; being zero. In the atomic limit §,
is also zero, because the non-diagonal transfer §,
implied in the overlap { ;| ¢; ) vanishes. We thus see
that superconductivity will appear at point 1 and
will cease at point 2 as bandwidth decreases. Below
point 2, the E_ remains the only occupied level and
hence the system will become a bipolaronic insulator.
As a function of the MacMillan [14] coupling constant
As = gi/2 to, the composite phase diagramme must
look like figure 7 where A, and A, correspond to
points 1 and 2 of figure 6 respectively.

3. Discussion. — In reference [3], the phase dia-
gramme figure 7 was given on intuitive grounds. In
this paper, we see the reasons behind such a diagramme.
The profound change from delocalized Cooper pair to
localized bipolarons as the electron bandwidth is

-reduced reflects the inherent microscopic process of

the electron-phonon interaction contributing more
and more to diagonal and hence to Franck-Condon
interaction. The two electron two-site model. Hamil-
tonian that we have proposed here and solved is
amenable to rigorous discussion. The phonon part
of the Hamiltonian remains to be analyzed and seen
if and what is the contribution of phonon softening
leading to saturation of T, as the coupling constant
is increased. We already see in the figure 2 that at
e = ¢, the elastic constant (around ¢ = 0) has
vanished. This means everytime a pair is formed, the
deformation becomes static and real rather than a
virtual process that leads to Cooper-pairing. Coupled
to diminution of the non-diagonal transition, this
would also lead to kill superconductivity. We may
equally note in passing that transition to the insulating
bipolaronic ground-state from the metal is not really a
Peierls transition; there is no doubling of lattice
periodicity. Like superconductivity transition no lat-
tice symmetry change is involved. It is not unsimilar to
pairing without superconductivity that Eagles [15]
treated except that « Eagles pairs » are not localized
and are not true bipolarons. The attractive elastic
interaction leading to bipolaron-formation is of the
Friedel-Eshelby kind i.e. highly anisotropic [16] and
oscillating with distance. This is why bipolaron
formation is not to be expected in elastically isotropic
solid. In point of fact dimensionality of the system is a
very key element to the problem and it is well
known [17] that in one-dimensional B.C.S. pairing
is incompatible with Peierls transition, or that in two-
dimensions the charge-density wave formation tends
to suppress superconductivity [18].
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