

Applied Physics 215

Fall Term 1960

Instructor: N. Bloenbergen

Office Hour, Pierce 231

Tuesday at noon or by appointment

The course will emphasize the physical aspects of fluctuation phenomena. Mathematical concepts of probability theory will be used without any attempt at rigor. A general background in physics equivalent to Applied Physics 132 and 181 is prerequisite. A mathematical background equivalent to App. Math.105b is also required.

References

The mathematical theory of probability is treated in Math 109 and Statistics 150, and in the following textbooks:

E. Parzen, Modern Probability Theory and Its Applications, Wiley, 1960.

W. Feller, Probability Theory and Its Applications, Wiley, 1950.

Applications to physical problems are discussed in the following intermediate texts:

C. Kittel, Elements of Statistical Physics, Wiley.

R. L. Lindsay, Physical Statistics, Wiley.

A collection of a series of very important research review papers is obtainable in an inexpensive Dover publication,

Noise and Stochastic Processes, edited by N. Wax.

Noise Problems in Electrical and Communication Engineering are discussed in:

Lawson and Uhlenbeck, Threshold Signals, M.I.T. Rad. Lab. Series, Vol. 24, McGraw Hill, 1950.

Davenport and Root, Random Signals and Noise, Lincoln Laboratory Series, Vol. 1, McGraw Hill, 1959.

D. Middleton, Introduction to Statistical Communication Theory (comprehensive theoretical), McGraw Hill, 1960.

A. van der Ziel, Noise, (experimental circuits), Prentice Hall,

Fluctuations in the quantized electromagnetic field are discussed in: Smith, Jones and Chasmar, Detection and Measurement of Infrared Radiation, Oxford University Press.

Tentative Course Outline

Elementary Probability

5 lectures

Definitions, sample space, random event, joint and conditional probabilities, statistical independence, fluctuation in number of particles, linear random walk, Poisson distribution, Bernouilli trials.

Random Variables

4 lectures

Distribution functions, averages, moments, characteristic functions, multivariate Gaussian distribution, Maxwell-Boltzmann statistics,

Time-dependent Random Processes

4 lectures

Time average, stationary processes, auto- and cross-correlation, spectral density, Wiener-Khintchin theorem.

Shot Noise

3 lectures

The method of Rice; noise in electron tubes and photocells.

Hour Examination

Brownian Motion and Thermal Noise

6 lectures

Diffusion Equation. The method of Fokker-Planck. Brownian Motion of a free particle and in a field of force. Thermal noise in electrical circuits. Galvanometer with electrical and mechanical damping.

Noise figure and noise temperature, excess noise 2 lectures Noise in non-linear circuits; the quadratic detector 2 lectures Fluctuations in Thermodynamic Quantities 2 lectures Fluctuations in the radiation field, waves and quanta, thermal detectors 5 lectures

APPLIED PHYSICS 215 FLUCTUATION PHENOMENA NOTES Professor: Nicolas Bloembergen Room: Cruft 319, TTS at 11 AM LECTURE I Course Intent: Physical Problems in Probability times Background Reading List: 1. Parzan, E., Modern Probability Theory & Applications, Wiley 1950 2. Feller, W., "1950 3. Ushensky, J.V., Introduction to Mathematical Probability, McGH 1957 Fields of Probability: 1. Games of chance 2. Genetics 3. Engineering (Quality Control) 4. Physics 5. Communications Engineering (signal to noise ratio) 6. Traffic (accidents) 7. Medical Science. Definition of Rendom or Chance Phenomenon; This is characterized by the fact that there is not the same situation under corresponding circumstances. Situations not uniquely determined because knowledge of circumstances may not be complete. Sample Space (s): Set of all possibilities Example: Throw of die, 5 consists of 6 points, k=1,...,6. Throw of 2 dice, S consists of 36 points

 $\begin{array}{rcl} \mbox{Pefinition of Probability:} \\ \mbox{P(k)} = & \mbox{Live} & \mbox{of favorable outcomes} \\ \mbox{N \to } \infty & \mbox{$\#$ of trials N} \end{array}$ An event is said to occur if outcome of random situation has its description contained in set A. Mutually Exclusive Events (A independent of B); P(A or B) = P(A) + P(B) Definition of Certainty; P(s) = 1 = P(A or "not A") Definition of Impossibility: P = O = P(A and "not A") An impossible event has probability zero, but an event whose probability is zero is not necessarily impossible. Example: probability of gas moleculess having a given velocity. Joint Probabilities; $P(A_E) = \sum_{i=1}^{N} P(A_E, B_E)$ $P(B_{\ell}) = \sum_{r=1}^{l} P(A_{r}, B_{\ell})$ LECTURE II 9/29/60 Mutually exclusive events have sets that do not overlap Joint Probability: P(A,B), probability that events A and B occur together. Conditional Probability: P(BIA) = P(A,B), this is the P(A)

probability that B occurs if one knows A is occuring.

statistically Independent Events; B is independent of A if P(BIA) = P(B), in which case we have the product rule, VIZ, P(A,B) = P(A)P(B)Suppose the following series of events: A., Az, ... AN, that is, N events. P(Am, An) = P(Am) P(An) is a necessary but not sufficient condition for these N events to be statistically independent. For example, take four events: A, ... Ay and define three new events: BI = [AI or A4] (means sum of AI and Ay sample spaces) BZ = [AZ OF A4] B3 = [A3 or A4] Now $P(B_i) = 1/2$ P(B2) = 1/2 $P(B_3) = 1/2$ and consider; $P(B_3|B_1, B_2) = 1 \neq P(B_3)$ because one knows A4 occurs, therefore these events are not statistically independent. We must have P(A,A2, ... AN) = P(A) P(AL) ... P(AN) for the condition of being statistically independent. Example f: Given: 6 balls, identical size, shape, etc., with 4 white and 2 red P(W) = 2/3 assuming P(any ball) = 1/6 indicating an "a priori" assumption must be made from a physical knowledge of the experiment. Example 2: Color: RRRRR WW B Hardness : HHHHS HS H or Softness P(H,R) = P(H|R) P(R), $P(H|R) = \frac{4}{5}$, $P(R) = \frac{5}{8}$... $P(H,R) = \frac{4}{5} \times \frac{5}{8} = \frac{1}{2}$

Physical Applications: Bernoulli's Distribution

Consider an experiment with two possible outcomes. In general, we will have two mutually exclusive events with probability p for event A and probability q for event B with q=1-p.

If we carry out the experiment N times to get n successes of event A, we will get for the total probability of these n successes over N trials for a single arrangement of the successes and failures, the value

(1) $P(n) = q^{N-n} p^{n}$ by applying the product rule for each success and failure events which are independent of each other.

However, there are N trials and the number of ways of arranging the results of these trials is No. The number of ways of arranging the success and failures within these N trials is N. Thus the probability of n successes n! (N-n)! scattered in any manuer throughout the trials is

(2) $P_N(n) = p^n q^{N-n} \frac{N!}{n! (N-n)!}$

Check: $\sum_{n=0}^{N} P_{N}(n) = (p+q)^{N} = 1$, the summation

showing that Pr(n) is a term of the binomial expansion

Average number of successes n of event A; (3) $\overline{n} = \sum_{n=0}^{N} n P_{N}(n)$

Mean Square: $(4) \quad \overline{n^2} = \sum_{i=1}^{N} n^2 P_N(n)$ A trick to calculate the moments of the Bernoolli Distribution ! (5) $(py+q)^N = \sum_{n=0}^{N} p^n q^{N-n} y^n \frac{N_0^n}{n!}$ (6) Take dy : Np(py+q) = Znpq N-my Fr(B) where $F_{N}(B) = \frac{N_{o}}{n!}$ (7) Let y = 1: Np = Zin PN(n) = n (8) Take d^2 : $N(N-1)p^2(py+q)^{N-2} = \sum_{n=0}^{N} n(n-1)p^2q^{N-n}y^{n-2}F_N(B)$ (9) Let y=1: N(N-1)p= Zin(n-1) PN(n) = n2 - 7 or: $(\bar{n})^2 - \bar{n}p = \bar{n}^2 - \bar{n}, \quad \bar{n}^2 - (\bar{n})^2 = \bar{n}(1-p) = Npq$ (10) (And is defined as the "mean square deviation" and is equal to $\overline{n^2} - (\overline{n})^2$ (11) . . (An) = Npq (12) If $p \ll 1$, $q \sim 1$; $(\Delta n^2)^{1/2} = (\pi)^{1/2}$ (13) Under these conditions, the relative fluctuation around the average may be equal to: $(An^2)^{\frac{1}{2}} = \int \frac{1}{n}$

LECTURE III 10-1-60 Poisson Distribution: Let N approach infinity and papproach zero such that (1) fim Np = finite constant p=0 Consider the following gas: V is the volume of the gas N is total number of molecules V N v is the volume of an element Given: One box at one time with N independent, noninteracting molecules, each molecule representing a trial. However, interactions do occur, but we will postulate that these interactions do not affect the distribution in space of the independent molecules. What is the probability m N trials to find n molecules in volume v, We have to know the a priori probability of being in v which is assumed to be To This may not be true as is the case in the atmosphere where a gravitational potential is present. We may now define along the lines of the Bernoulle distribution our distribution function in this case, which is the probability to find n specified molecules in volume v times probability of N-n being outside, times the redistribution function : (2) $\left(\frac{v}{v}\right)^{n}\left(1-\frac{v}{v}\right)^{N-n}$ $\frac{N!}{(N-n)!}$ $\frac{N!}{N!}$ Inducing the auticipated constant to

take the Dirac lumit keeping the density constant, that is, $\overline{n} = constant = Np$, we take $(3) \quad \overline{n} = N\left(\frac{\nu}{\nu}\right), \quad \frac{\nu}{\nu} = \frac{n}{N}$ Upon introducing this into (2) and taking tim we also take tim and factor out the N-200, we constant n. (4) $\dim \left(\frac{\overline{n}}{N}\right)^n = N(N-1)\cdots (N-n+1)\left(1-\frac{\overline{\nu}}{\overline{\nu}}\right)^{N-n}$ $N \rightarrow \infty = n!$ $= \lim_{N \to \infty} \left[\frac{\left(\widehat{n} \right)^{n}}{n!} \right] \left[1 \left(1 - \frac{1}{N} \right) \cdots \left(1 - \frac{n-1}{N} \right) \left(1 - \frac{\nu}{T} \right)^{N-n} \right]$ $= \frac{(\hat{n})^n}{N!} \quad \text{Jim} \quad \left(1 - \frac{n}{N}\right)^{N-n} = \frac{(\hat{n})^n}{N!} e^{-\hat{n}}$ $from e^{-x} = \lim_{N \to \infty} \left(1 - \frac{x}{N} \right)^{N}$ (n)" en is called the Poisson distribution function, $Check: (6) \bar{n} = \sum_{n=0,1}^{N=\infty} n \frac{(\bar{n})^n}{n!} e^{-\bar{n}} = \bar{n} \sum_{n=0}^{\infty} \frac{(\bar{n})^{n-1} - n}{(n-1)!}$ Introduce: n' = n-1 (6) $\bar{n} = \bar{n} \sum_{n'=0}^{p'} \frac{(\bar{n})^{n'}}{n'!} e^{-\bar{n}}$ but $\underbrace{\underbrace{\overset{n}}{\overset{}}}_{n=0} \underbrace{(\overline{n})^{n'}}_{n'1} \equiv e^{\overline{n}}$ (7) Therefore: n = n The Poisson distribution is the limiting case of the Bernoulli distribution. Shows that the density is not constant, but has fluctuations which are very small.

At NTP: N = 2.7.10 molecules /cc, thus 10° cc contains 2.7.10° molecules = n = N v Under these conditions we find that (8) $\left[(\Delta n)^2 \right]^{1/2} = \left[\bar{n}^2 - (\bar{n})^2 \right] = 1.65.10^8 = \sqrt{\bar{n}}$ (9) Relative Fluctuation: $[6n)^2]^{1/2} = 1.65 \cdot 10^8$ \overline{n} = 1.65.108 Is this always negligible? Take a cube v = 10-13 cc, about 5000 Å on a side. Now $\overline{n} = 2.7.10^{+6}$ molecules, Thus the relative fluctuation = 1 = 1 For the index of refraction of air (11= 1,00029) the part due to the polarizibility of the air is .00029. This would mean a fluctuation in the index of refraction of .00000029, too small to be noticed except possibily for very short wavelengths. Near the critical point, it is extremely wrong to assume no effects from molecular interaction, therefore there will be large variations in p. However, the above analysis applies to many problems: 1) Radioactive Decay 2) Electron emission Assume a time interval (At) such that only one particle is emitted. This time interval will be small but finite. The a prior, probability of electron emission is taken to be proportional to Ar; that is, p= AAN where A is a constant, and has the domensions of reciprocal time.

Consider a long time M: o pt in the the the the an in which there are a particles emitted. The number of trials N is equal to an N 15 50 large that only one particle can be suggesting the Bernoulli distribution, viz. (10) $P_n(r) = (A \Delta r)^n (I - A \Delta r)^{N-n} \frac{N_o^{\prime}}{(N-n)! n_o^{\prime}}$ Now take the Imit as before as N= and AT=0 and get the Poisson distribution, that is $(11) P_n(\bar{n}) = (\bar{n})^n e^{-\bar{n}}$ with $\overline{n} = pN = AATN = AT, SUR N = \frac{AT}{T}$ $(12) P_n(\tau) = (A\tau)^n e^{-A\tau}$ What is the probability to get no counts me time r and the first count in between r and r + Ar ? Since the counts are statistically

probability of the respective events.

(13) $P_o(\tau) = e^{-A\tau}$, $P_i(A\tau) = p = AA\tau$ (14) , P = Po(1)P.(AT) = AAT e-AT

This is also related to the probability of collisions: no collisions in r with the first collision between 1 and 1+AT

Shot Effect: Given a dide in the saturation region with saturation current lo. In time interval T; $\overline{n} = \frac{10}{e}T$ electrons on the average in T.

 $(15) (An)^2 = \overline{n} = 10T$

 $(16) \qquad \int \frac{(\Delta \pi)^2}{(\bar{\pi})^2} = \int \frac{(\Delta L)^2}{L^2} = \int \frac{e}{LoT}$

because the number of electrons is proportional to 2. This shows that a long time interval gives an accurate measure of corrent.

LECTURE IV 10-4-60

Consider the problem of the average distance between molecules at ordinary temperatures. If they are in a cubic lattice, the average distance is (N)", However, we shall consider a gas. Take sample of one molecule. How far to neighbor? Assume at distance R of a sphere about the sample molecule. We say that the neighbor is between R and R+AR.

Apply reasoning that there is none R and first in AR, The problem then reduces to the same problem as emission. some problem as emission. and the fact that the probability that a molecule will be in the sphere is p= 4 TR, we can write immediately: immediately: (1) $w(R)_{AR} = \begin{bmatrix} e^{-\frac{4\pi}{3}R^3N} \end{bmatrix} \begin{bmatrix} N & \frac{4\pi R^2}{T} \\ N & T \end{bmatrix}$

Average Distance: (2) $D \Delta R = R \omega(R) \Delta R$ (3) $D = \sum_{r=1}^{\infty} e^{-\frac{4\pi}{3}R^3N} \cdot \frac{N}{T} 4\pi R^3 \Delta R$ We replace this by an integral for convenience of calculation: $(4) D = \int_{-\infty}^{\infty} \frac{-\frac{4\pi}{3}R^3N}{r} \frac{N}{r} 4\pi R^3 dR$ $= \frac{1}{\left(\frac{4\pi N}{3T}\right)^{\frac{1}{3}}} \int_{0}^{\infty} \frac{-x}{e} \frac{1}{x^{\frac{1}{3}}} dx = .55396 \left(\frac{T}{N}\right)^{\frac{1}{3}}}{\prod \left(\frac{4}{3}\right)}$ This is what one would expect from looking at the which covers the random motion of the molecules. Random Walk: Make steps of length & either to right or left. Take N steps. How far do you get? The average is zero, but what is the mean squared displacement? This is the basic problem in diffusion and Brownian motion, that is, steps of length I with equal probability to right or left. What is the probability after N steps that one is at point ml. Could be anywhere between -Nl and +Nl, that is: (5) - NI, (-N+2)I, ..., ml; ..., (N-2)I, NI To be at ml, we must take <u>N+m</u> steps to the right and <u>N-m</u> steps to the left. Now one sequence has probability = (1)N

For all sequences:
(a)
$$P(m, N) = \frac{N!}{(\frac{N+m}{2})!} (\frac{1}{2})^N (\frac{1}{2})^$$

Simplifying, MZ (11) $P(m,N) = \left(\frac{2}{\pi N}\right)^{1/2} e^{-1/2}$ which is called a Gaussian distribution, and with which we can replace the Bernoulli distribution; however, it is only defined for integral values of m. Consider the following diagram ! Take x = me as a continuous variable. An interval of Sm B(m) has Δx points because m can be either even or odd. Take Δm so small Gaussian Approx. such that P(m,N) is constant, so we have (12) $P(m,N) \Delta m = \left(\frac{2}{\pi N}\right)^{1/2} e^{-\frac{m^2}{2N}} \Delta m$ with the m's two apart, then, (13) $P(x) \Delta x = \left(\frac{1}{2\pi N g^2}\right)^{1/2} - \frac{x^2}{2N g^2} \Delta x$ To apply this to diffusion: Assume N' steps in each time interval is constant, N=N'T. Now let N'-> 0, t = 0, such that (14) Lim N'l2 = constant = 2D Then ZITNEZ = ZITN'LZT = 4TDT $(15) : P(x,t) \Delta x = \frac{x^2}{(4\pi Dt)^{1/2}} e^{-\frac{x^2}{4Dt}} \Delta x$ which is also the solution of the differential equation of motion for diffusion with & function at origin at t= 0.

LECTURE I 10-6-60

REFERENCES : CHAPTERS 3, 4, 5, 6; Davenport and Routh Part I in Middleton Random Variable; X is able to take on discreet or continuous range. Assian a probability to each point of sample space so that it lies between 0 and 1, Define P(E) as the probability x = E, this overcomes the difficulty of zero probability at points on the continuous distribution curve. Define the probability density or frequency function as (1) $f(x) = \frac{\partial P}{\partial x}$ with f(x) Ax denoting probability to fund x in the interval X, X + AX. Also $(z) \int f(x) dx = 1$ which means that & must be found somewhere an sample space. However, certain distributions may be discontinuous at certain points. Therefore, a set of S functions may be added to the integral. functions P ç(x)

Joint Probability: f(X,y) AX BY denotes your probability that X is found in X, X+AX and you y, y+By. Complex Random Variake: Z = x + 14 can be introduced through joint probability definition. Conditional Probability: Conditional Probability: What is the probability that y is my, y + Ay when we know that x is m x, x + Ax? Answer: F(X,y) AX Ay f(x) Ax Statistical Independence: The probability of funding x in x, X+AX 15 independent of the probability of funding y in y, ytay. Statistical Independence occurs if and only if f(x,y) $= f_1(X) f_2(y)$, The probability, under statistical independence, for x to in x, x + ax if one knows y is in y, y + ay is: (3) $\int_{x} f_{i}(x) dx = f_{i}(x) \Delta x$ Problem of a Function of a Random Variable: A function of a random variable 15 also a random variable, for example, u=x2. The probability that is takes on x2 is the probability that x takes x. In general, u=u(x), u(x) given, then what is F(u). Assume inversion is possible: x = x(u), then, (4) $\int_{X} f(x) dx = \int_{X} f(x) \left| \frac{\partial x}{\partial u} \right| du$; $\left| \frac{\partial x}{\partial u} \right|$ because interval F(u) F(u) $f(x) = \int_{X} f(x) \left| \frac{\partial x}{\partial u} \right| du$; $\left| \frac{\partial x}{\partial u} \right|$ $f(x) = \int_{X} \frac{\partial x}{\partial u} \left| \frac{\partial x}{\partial u} \right| du$; $\left| \frac{\partial x}{\partial u} \right| du$; $\left| \frac{\partial x}{\partial u} \right|$ $\left| \frac{\partial x}{\partial u} \right| du$; $\left| \frac{\partial x}{\partial u} \right|$ $\left| \frac{\partial x}{\partial u} \right|$ space is positive.

Function of Two Random Variables; Given: M = M(x, y), v = v(x, y), x = x(M, v), y = y(M, v)Consider: $f(x,y) dx dy = f(x,y) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$ F(u,v) F(u,v) $with \frac{\partial(x,y)}{\partial(u,v)} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial u}$ $\frac{\partial x}{\partial v} \frac{\partial y}{\partial v}$ Problem of Averages: The statistical average of a random function g(x) is : (5) $\overline{g(x)} = \underset{n}{\leq} g(x_n) p(x) \implies \int g(x) f(x) dx$ discreet continuous In particular: $\overline{x} = \int x f(x) dx$, and $\overline{x^n} = \int_{-\infty}^{\infty} f(x) dx$ is the nth moment of f(x). Jourt Moment: (6) $\overline{X^m y^n} = \iint x^m y^n f(x,y) dx dy$ Central Moments are moments with respect to x as origin. First central moment = 0, second central moment = variance = $(x - \overline{x})^2$ Co-variance : $(7) \quad (x-\overline{x})(y-\overline{y}) = \iint (x-\overline{x})(y-\overline{y}) f(x,y) dx dy$ where $\overline{X} = \iint x f(x, y) dx dy$

Characteristic Functions: (8) $M_x(uu) \equiv e^{uux} = \int e^{uux} f(x) dx$ = Fourier Transform of probability density function f(x), then f(x) = 1/2TT ferrux Mx (uu) du. Moment Generation: (9) $d M_x(xu) = x \int xe^{xux} f(x) dx$ take M=0; find X = - 2 dMx (2m) du 1=0 In general : $(10) \quad \overline{X^n} = (-1)^n \quad \frac{d^n M_k}{du^n} \quad \mu = 0$ If characteristic function is known, moments are known and vice - versa. Consider the Taylor expansion for the characteristic function : (11) $M_{X}(uu) = \sum_{n=1}^{\infty} \overline{\chi^{n}} \frac{(u)^{n}}{n!}$ Joint Characteristic Function: Mxy (in, iv) = Se inx +ivy f(xy) dx dy = e inx +ivy Statistical Independence of Two Variables in Terms of Moments: x^myⁿ = x^m yⁿ 15 a necessary condition related to the separation of the integrand, For statistical independence, Mx, y (su, w) = Mx (su) My (w). Two variables are Imearly independent Xy = Xy, then will find the co-variance Fero.

LECTURE TI 10-8-60

Example of Distribution where No Moments Exist: Cauchy-Lorentz Distribution: Intensity (1) $J(z) = \frac{1}{\pi} \frac{u}{1+(z-z_0)^2}$ around a spectral line Do A very famous distribution is the Gaussian Distribution. For example, this is the distribution of momentum of the molecules of an ordinary gas. The probability of px to be in px, px + Apx 15: $(2) \frac{-p_x^2}{(2\pi m kT)^{1/2}} e^{\frac{-p_x^2}{2m kT}} dp_x = f(p_x) dp_x$ In Three Pimensions we have the Maxwell-Boltzmann. Distribution which is trivariant. (3) $f(p_x, p_y, p_z) dp_x dp_y dp_z = \frac{1}{(2\pi m kT)^{3/2}} e^{-\frac{p_x^2 + p_y^2 + p_z^2}{2m kT}}$ dpx dpy dpz It is seen that px, py, pz are statistically independent. What is the probability for the kinetic energy of the molecules to lie between E, Et dE, where $E = p_{x}^{2} + p_{y}^{2} + p_{z}^{2}$ Transform the momentum to spherical co-ordinates. m p, 2, q: $(4) \frac{-p}{(2mT kT)^{3/2}} e^{-\frac{p}{2mkT}} p^2 sm \ell dp d\ell dq$ Jacobian 2 (px py pz)

2 (P, 24, 9)

Now we have: (5) $f(p) = \int_{0}^{\pi} \int_{0}^{2\pi} f(p, v, q) \sin v \, dv \, dq = \frac{4\pi p^{2}}{(2\pi m kT)^{3/2}}$ ZWKT Now: p²dp = 1/2 pd(p²) = m (ZmE)^{1/2}dE Then : (6) $f(E) dE = \frac{2\pi}{(\pi \mu T)^{3k}} E^{1/2} e^{-E/kT} dE$ However, it would be easier to calculate E Sollowing method: by the following method. (7) $\vec{E} = -\vec{p}x^2 + \vec{p}y^2 + \vec{p}z^2 = \frac{3}{2}kT$ $= \frac{3}{2}kT$ calculating the average value of each component of the momentum squared. For the joint moment, we have, by statistical In dependence: (8) $p_x^n p_y^m = p_x^n p_y^m$ Important: px and px are linearly independent because the first moment vanishes. This is an example that linear independence is weaker than statistical independence. The Maxwell - Boltzmann distribution can be generalized to take into account other effects such as the gravitational potential. (9) $f(x, y, z, p_x, p_y, p_z) = Ce - \frac{V(x, y, z)}{kT} - \frac{p_x^2 + p_y^2 + p_z^2}{zm kT}$ R Not Gaussian For gravity: V = mg Z If V= 1/2 x x + 1/2 By2 + 1/2872 (harmonic oscillator) then we get a Gaussian distribution in both position and momentum.

Properties of the One Dimensional Gaussian Distribution; (10) $W(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ Xn = 0 for nodd $\overline{X}^n = 1.3.5....$ (n-1) for n even which is found by integrating the following integral by parts and obtaining a recursion equation (11) $\overline{X^n} = \frac{1}{\sqrt{2\pi}} \int x^n e^{-\frac{x^2}{2}} dx$ Consider the new variable : y= TX + m. Then: (12) $\omega(y) = \frac{1}{\sqrt{2\pi\sigma^{21}}} \int e^{-\frac{(y-m)^2}{2\sigma^2}} dy$ and (y-m)" = 1:3:5.7.... (n-1) 5" for neven Characteristic Function: (13) $M(t) = 1 + (\sqrt{t})^2 \sigma_{+\dots}^2 = 1 + (\sqrt{t})^2 \frac{t^2}{t^2} + 1.3 (\sqrt{t})^4 \frac{t^4}{4t}$ + (1) + $|\cdot 3\cdot 5 \cdot (\cdot, (2n-1)(77)^{2n} \frac{t^{2n}}{(2n)!}$ $\left(\frac{J^2 J^2}{2}\right)^n \frac{t^{2n}}{n!}$ $= \rho - \frac{\sigma^2 t^2}{\rho}$ We take the Fourier transform of w(y) with the above characteristic: $(14) \int_{2\pi}^{1} e^{-\frac{\sigma^{2}t^{2}}{2}} e^{\frac{1}{2}(y-m)t} dt = \frac{1}{2\pi} \int_{e}^{\infty} -\left[\frac{\sigma^{4}}{\sigma^{2}} + \frac{y-m}{\sigma^{2}}\right]^{2} dt$ $= \frac{1}{\sqrt{2\pi\sigma^2}} - \frac{(y-m)^2}{2\sigma^2}$ The characteristic of a Gaussian is a Gaussian.

LECTURE VII 10-11-60

Let us start with two statistically independent variables, x, y, The density function is: (1) $f_{1}(x) f_{2}(y)$ Consider z = x + y which is also a random variable, with mean $\overline{Z} = \overline{X} + \overline{Y}$. Also, $\overline{z^{2}} - (\overline{z})^{2} = \overline{x^{2}} - (\overline{x})^{2} + \overline{y^{2}} - (\overline{y})^{2}$ Consider the Gaussian: (z) $\frac{1}{2\pi\tau^2} e^{-\frac{\chi^2+y^2}{2\tau^2}} dx dy$, with σ the same Defme. (3) $Z = \frac{1}{\sqrt{21}} (X + y)$ Geometrically: $z' = \frac{1}{\sqrt{27}} \left(x - y \right)$ (4) Then: $x^2 + y^2 = z^2 + z'^2$ X and we have: $\frac{1}{12\pi\sigma^2} e^{-\frac{\chi^2}{2\sigma^2}} \frac{1}{1} e^{-\frac{\chi^2}{2\sigma^2}}$ Integrate over z' and get _____ e - ze Consider a multi-variate Gaussian Distribution : (5) $\omega(x_1, x_2, ..., x_n) = \frac{1}{1 e^{-\frac{x_1^2}{2\sigma_1^2}}} e^{-\frac{x_1^2}{2\sigma_1^2}} \frac{1}{1 e^{-\frac{x_2^2}{2\sigma_1^2}}} \frac{1}{1 e^{-\frac{x_1^2}{2\sigma_1^2}}}$ Make a linear transformation for two random variables. (6) $y_1 = a_{11} X_1 + a_{12} X_2$ 42 = azi X: + azz Xz Find Xi (y1, y2) and Xz (y1, y2) and substitute in (5).

Multiply by the Jacobian and get the bivariate Gaussian distribution. $(7) \frac{1}{2\pi \sigma \tau (1-\rho^2)^{1/2}} \exp \left[-\frac{1}{2(1-\rho^2)} \left(\frac{y_1^2}{\sigma^2} + \frac{y_2^2}{\rho^2} - \frac{z\rho}{\sigma \tau} y_1 y_2 \right) \right] = \omega(y_1 y_2)$ We assert that : (8) $\overline{y_1^2} = \overline{r^2}$, $\overline{y_2^2} = \overline{r^2}$, $\overline{y_1y_2} = \overline{\rho}\overline{r}$ p is the correlation coefficient, a sort of normalized your Imear moment, with the restriction that: -1=p=1. If p=0, then we have two independent Gaussian distributions. (9) $\sigma^{z} = \overline{y_{i}^{z}} = a_{ii}^{z} \overline{\chi_{i}^{z}} + a_{iz}^{z} \overline{\chi_{z}^{z}}$ $\prod_{j=1}^{j} \sigma_{j}^{z} = \sigma_{j}^{z} \overline{\chi_{z}^{z}} + \sigma_{jz}^{z} \overline{\chi_{z}^{z}}$ $T^2 = y_2^2 = a_{21}^2 \sigma_1^2 + a_{22} \sigma_2^2$ $y_1 y_2 = \rho \sigma \tau = a_{11} a_{21} \sigma_1^2 + a_{12} a_{22} \sigma_2^2$ For a fixed yz (conditional probability), we get a Gaussian distribution for y. Consider the General Case: A joint Gaussian distribution function for n independent variables, viz., equation (5): (10) $W(X_1 \dots X_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma_i^{2i}}} e^{-\frac{X_i^2}{2\sigma_i^{2i}}}$ Consider y,, ys. 5 may be less than n because the integration over n-s will give unity. We define the transformation ; (11) $y_k = \sum_{i=1}^{n} a_{ki} X_i$ which will be distributed according to an s variate Gaussian distribution.

Then:
(12)
$$\omega(q_1,...,q_s) = \frac{1}{(2\pi)^{3/2}} \exp \left\{ -\frac{1}{2\pi} \sum_{i=1}^{N} Bis q_i + q_i \right\}$$

where $B = |Bis|$, and $Bis = cofactor of element biss in
the b matrix defined by:
(13) $bis = \sum_{i=1}^{N} a_{ii} a_{ii} a_{ii} \sigma_i^2 = (q_{ii} q_{ii})$
Proof: Introduce a S function such that.
(14) $d(x-x') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{+t(x-x')} dt$
(15) $\omega(q_1,...,q_s) = \frac{1}{(2\pi)^{\frac{1}{2}+2}} \int_{-\infty}^{\infty} a_{ii} a_{ii} dx \dots dx_n$
 $\cdot \int_{x=i}^{\frac{1}{2}} \exp \left[its (q_s - \sum_{i=1}^{N} a_{ii}) dt, \dots dt_s \right]$
We have taken the old distribution and multiplied by
the transformation expressed by the S function. We now
can make perfect squares out of the x's. This,
integrating over the x's and keeping y and t as
garameters:
(6) $\omega(q_1,...,q_s) = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} dt, \dots dt_s = \sum_{i=1}^{N} \int_{-\infty}^{\infty} dt, \dots dt_s = \sum_{i=1}^{N} \int_{-\infty}^{\infty} dt, \dots dt_s = \sum_{i=1}^{N} (e^{-\frac{1}{2}} \int_{-\infty}^{\infty} dt, \dots dt_s + e^{-\frac{1}{2}} \int_{-\infty}^{\infty} dt, \dots dt_s + e^{-\frac{1}{2}} \int_{-\infty}^{\infty} dt, \dots dt_s = \sum_{i=1}^{N} (e^{-\frac{1}{2}} \int_{-\infty}^{\infty} dt, \dots dt_s + e^{-\frac{1}{2}} \int_{-\infty}^$$

Substitute, integrate, and get a distribution in n. Then reverse and finally get distribution in y. Random Processes : Consider an ensemble of N diodes with noise signals present. N Considering voltages at different times in the ensemble of diodes, we get in general, the diagram on the left. 12 Month This is mathematically described by a series of yourt distribution functions. mh w. (V.t.) An infinite number wz (V,t, Vztz) (will describe a random process, and t_1 t_2 t_3 -t) V and t will be come continuous. LECTURE VIII 10-13-60 Correlation Coefficient . (1) $y_1^2 = \sigma^2$, $y_2^2 = r^2$, $y_1y_2 = \rho\sigma\tau$ $(2) \quad \left(\frac{y_1}{\sigma} + \frac{y_z}{\tau}\right)^2 = 1 + 1 + \frac{2}{\sigma} \frac{y_1 y_2}{\sigma \tau} \ge 0$ then 2 (1+p) ≥0 Start again with $(3) \left(\frac{y_1}{\sigma} - \frac{y_2}{\tau}\right)^2 = 1 + 1 - \frac{z}{\sigma} \frac{y_1y_2}{\sigma} \ge 0$ then 2 (1-p) 30 Therefore: p = 1

If p=0, ynym = yn ym for a Gaussian distribution whose random variables are Imearly and statistically independent. Gaussian Processes; We have wi(xiti) which is the probability that we are between x, x, + Ax, ; t, t, t + At, , and we can form the yourt probabilities we (x, ti, xetz); wa (x, ti, xetz, xata) Consider the noise roltages on a large number of dodes, as per last lecture. A purely random process is defined as $\omega_2(x,t_1,x_2t_2) = \omega_1(x,t_1) \omega_2(x_2t_2)$. Markoff Processi The probability depends on past history, but if known at one previous time, knowledge of all others is not needed, that is, for example is (4) P(Xst3 | Xiti, X2t2) = P(X3t3 | X2t2) does not depend on $P(x,t_i)$ Now through a combination of a pure random process and an Markovian process, we should be able to find the yourt probability. Consider wi(xite), then; (5) P2 (Xiti Xiti) W. (Xiti) = W2 (Xiti, Xiti) $P_3(X_3t_3|X_2t_2) \quad \omega_i(x_2t_2) = \omega_2(X_3t_3, X_2t_2)$ Now: P(x3t3 | xiti) P(xiti | xiti) wi (xiti) = W3 (xiti, xiti, xiti) $= \frac{\omega_z (x, t_i, x_z t_z) \omega_z (x_s t_s, x_z t_z)}{\omega_z (x_z t_z)}$ Pe must satisfy the Smolochowsky Equation. We proceed as follows: (6) W3 (Xiti, X2tz, X3ts) = P(X3ts | X2tz, Xiti) P(X2tz | Xiti) W. (Xiti) Not needed (Markoff Process)

We now integrate over x space and get. (7) $\omega_2(x_3 t_3, x_i t_i) = P(x_3 t_3 | x_i t_i) \omega_i(x_i t_i)$ = W, (x, ti) P(x3t3 | x2t2) P(X, ti | x2t2) dx2 Upon simplifying, we have the Smoluchowsky Equation. (8) P(X3t3 X, t) = (P(X3t3 X2t2) P(X,t1 X2t2) dx2 Example of a Markoff Process: Random Walk. The position after n steps depends not on the probability of the previous step but only on the position of the previous step and not those before. If one step position away is not known, knowledge of two steps away helps. Statimary Random Process: Co-ordinates does not matter. All co-ordinate probability functions are dependent only on a tune interval. Example: noise voltage across resistors or diodes Transient processes are not stationary random processes. Consider Voltage and Current: (9) W3 (Vi 9, t, V2 92 tc, V3 93 t3) = W3V (Viti, V2t2, V3t3) W3P (9, t, 92t2, 93t3) Viti, etc., is now redundant symbology as there are no longer samples involved. Correlation Functions: Rx (titz) = X(ti) x(tz) = XiXz For two fixed times, Rx becomes the joint linear moment. For a stationary process, Rx (tite) = Rx (T) = X(0) X(T)

Tout Linear Moment around the Mean Value: Normalized
Auto- Carrelation Function:
(10)
$$\rho_{A}(t;t_{A}) = (1,-\overline{x})(x,-\overline{x}_{A}) = \overline{x_{A}x_{A}} - \overline{x_{A}x_{A}}$$

 $\overline{\sigma_{A}} \overline{\sigma_{A}} = \overline{\sigma_{A}} \overline{\sigma_{A}}$
 $\overline{\sigma_{A}} = [(\overline{x_{A}} - \overline{x}_{A})^{2}]^{1/2}$, $\overline{\sigma_{A}} = [(\overline{x_{A}} - \overline{x}_{A})^{2}]^{1/2}$
For a statemary process:
(11) $\rho_{A}(t) = \frac{\rho_{A}(t) - (\overline{x})^{2}}{\sigma^{2}}$
 $\underline{\mu}ECTOPE I = 0^{-15-60}$
Two Simultaneous Random Breesses:
(12) $\rho_{A}(t;t_{A}) = \overline{x_{A}} \overline{u_{A}}^{2} - \overline{u_{A}} \operatorname{stat}_{A}$ are complex
 $x_{A} + aken at t_{A}$
 $y_{A} + aken at t_{A}$
 $\mu_{A} + \mu_{A} + \mu_{A} + \mu_{A}$
 $\mu_{A} + \mu_{A} + \mu_$

From the foregoing, taking the complex conjugate and the statistical average can be interchanged. If stationary, Rx 15 a decreasing function of time. That is, take $(4) \quad \left(\frac{\chi(0)}{\sigma} \pm \chi(\tau)\right)^2 \ge 0$ $\frac{\chi^{2}(0)}{\sigma^{2}} + \frac{\chi^{2}(T)}{\sigma^{2}} + \frac{\chi^{2}(T)}{\sigma^{2}} + \frac{\chi^{2}(T)}{\sigma^{2}} + \frac{\chi^{2}(T)}{\sigma^{2}} = 0$ $2 \overline{X^{2}(0)} \pm 2 \overline{X(0)} \overline{X(T)}$ and $\overline{X(0)} X(T) \leq \overline{X^2(0)}$ Thus the correlation function decreases as time progresses for a stationary process. Integrals Along the Process: X (5) $y(s) = \int h(t) \times (s,t) dt$ random variable of electrons in limit of som depends on circuit of vandom variables device. configuration × (sn,tn) Take h(t) constant; (6) $y = \frac{1}{b-a} \int_{-a}^{b} x(s,t) dt = time average of the random$ process over a funite time interval.

Now; $(7) \langle x \rangle = \lim_{T \to \infty} \frac{1}{2T} \int_{T}^{T} x(s,t) dt = time average of x.$ If the process is stationary, the limit exists and has physical significance only in this type of process as a rule. Time Auto and Cross Correlation; (8) $\mathcal{R}_{x} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t+T) dt$; time auto-correlation (9) $\mathcal{R}_{xy}(t) = \lim_{T \to \infty} \frac{1}{2T} \int_{x(t)} y^*(t+t) dt$; time cross-correlation Ergodicity: The time average is the same as the statistical average. This means that the time average over a large number of samples at one time is the same as the time average of one sample over a large time interval. General Problem of Random Flights: Consider step y in a series of N steps. The distribution function is Ty (Ty) dry, the probability density for the oth step. What is the probability to arrive in R, R+dR after N steps? (10) $W_N(\bar{R}) = \iiint \left[\frac{1}{(2\pi)^3} \iint e^{\lambda} \left(\frac{z}{z}, \bar{\lambda}_{\bar{J}} - \bar{R}\right) \cdot \bar{\rho} d\bar{\rho}\right] \prod_{\bar{J}}^{N} \tau_{\bar{J}}(\bar{\lambda}_{\bar{J}}) d\bar{a}, \dots d\bar{a}_{\bar{J}} \dots d\bar{a}_{\bar{N}}$ subject to the restriction Zing = R Because of the awkward boundary conditions, we multiply by the 3 dimensional & function, S(Zing-R).

LECTURE X 10-20-60 $\frac{2x^2}{\tau^2} \pm 2 \frac{x(0)x(r)}{\tau^2} \ge 0$ Errata: then Rlo) = | R(T) , which means that R(T) has a limit which is R(0). Example: - R(0) Random Flights: take a step in an arbitrary direction of arbitrary length. Let r(i) di be the probability of a step in the direction ñ, ñ+dñ. After N steps what 15 the position R which is the total displacement R = Zing where is is the direction and length of the g th step? (1) $W_N(R) dR = \iiint T_N(\bar{n}_3) d\bar{n}_3$ 30 with BC of ZR, lies between R, R+dR We can get rid of the combersome boundary conditions with a & function: $(z) S (Z_{1}\bar{n}_{3} - \bar{R}) = S (Z_{1}x_{3} - \chi) S (Z_{1}z_{3} - \chi) S (Z_{1}z_{3} - \chi)$ which can be written in an integral form as: (3) $\frac{1}{2\pi}\int e^{\lambda}(\underline{z}X_{3}-\underline{x})\rho_{x} d\rho_{x}$, etc.

Now: (4) $W_N(\bar{R}) d\bar{R} = \frac{1}{(2\pi)^3} d\bar{R} \iint e^{-x\bar{p}\cdot\bar{R}} A_N(\bar{p}) d\bar{p}$ where $A_{N}(\bar{p}) = \prod_{n=1}^{N} \int \int e^{\lambda \bar{p} \cdot \bar{R}_{g}} r_{g}(\bar{\Lambda}_{g}) d\bar{n}_{g}$ = [SSSe ~ r(A) da [for identical ry Now assume each by 15 a Gaussian Distribution, although not necessarily the same in each step. (5) $T_{f} = \frac{1}{(2\pi h^2/3)^{3/2}} e^{-3|\bar{n}_3|^2/2l_3^2}$ where Is is the mean displacement in the 4th step. We get for AN(p): (6) $A_N(\bar{p}) = exp\left[-|\bar{p}|^2 \frac{\lambda}{2} \frac{\lambda_0}{6}\right] = exp\left[-|\bar{p}|^2 N \bar{d}^2\right]$ and: (7) $W_{N}(\bar{R}) d\bar{R} = \frac{1}{(2\pi N \bar{\ell}^{2}/3)^{3/2}} \exp \left\{ \frac{-3|\bar{R}|^{2}}{2N \bar{\ell}^{2}} \right\}$ I is the mean squared distance of each step. Regardless of the special nature of r, W(R) tends. in large N to be a Gaussian. This is called the Central Limit Theorem. (8) $A_N(p) = \int e^{+px} f(x) dx = \int 1 + 2p \langle x \rangle - \frac{1}{2} p^2 \langle x^2 \rangle + \dots$ If N >>1, then: (9) AN (p) = e Np < x> - 1/2 Np2 2x2)

and;

(10) $W(X) = \frac{1}{2\pi} \int e^{-\frac{1}{2}N\rho^2 \langle x^2 \rangle} - \frac{1}{2\rho(X - N \langle x \rangle)} d\rho$ $= \frac{1}{\left[2\pi N \langle x^{2} \rangle\right]^{1/2}} e^{-\frac{\left(X - N \langle x \rangle\right)^{2}}{2N \langle x^{2} \rangle}}$ which is the central limit. This means that we can sample an arbitrary distribution function many times and get a Gaussian. We can therefore say that the distribution of the sample mean is a Gaussian. (11) $W(X_{mean}) = \frac{1}{\left[2\pi \frac{\langle x^2 \rangle}{N}\right]^{1/2}} e^{-\frac{(\chi_m - \langle x \rangle)^2}{2\frac{\langle x^2 \rangle}{N}}}$ LECTURE XI 10-22-60 Sample Means : $SN = A_1 + A_2 + \cdots + A_N$ which tends to a Gaussian at high N. Mean Square Deviation: $\left(S_N - S_m\right)^2 = \left(A_2 - S_m\right)$ true Mean Each measurement is statistically independent of the others. Only errors that are averaged out are statistical errors, not systematic errors.

Wiener - Khintchine Theorem ; Power Spectral Density: 9(t) A MA Art (1) $\mathcal{R}_{y}(t) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{t} y(t) y(t+T) dt$ Consider y(t) to be bounded in a finite time interval. Introduce Yr = y(t) 0 = t = T = 0 elsewhere T can be taken so large that times beyond no longer are important. One could also define Yr(t) to be periodic in T. However, we will just say that Str(t) dt exists. Expanding and defining in Fourier integrals: (2) $Y_T(t) = \int_{-\infty}^{\infty} S_T(f) e^{-2\pi i f t} df$ no 2π factor because f $S_T(f) = \int_{-\infty}^{\infty} Y_T(t) e^{2\pi i f t} dt$ is used and not ω . If y(t) represents the correct in a 1-2 resistor, then if Jory2(t) dt is the average power dissipated, and; <u>stift</u> represents the power dissipated in a unit frequency interval around f. If Yr (+) 15 real, then Sr(+) = Sr* (-f)

Returning to the correlation factor. (3) $\mathcal{R}_{y}(r) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{t} y(t) y^{*}(t+T) dt$ $\Rightarrow \mathcal{R}_{Y}(t) = \lim_{T \to \infty} \frac{1}{T} \left(Y_{T}(t) Y_{T}^{*}(t+\tau) dt \right)$ when T >TT. Now, substituting the transforms for the Yr's: (4) $\mathcal{R}_{Y}(t) = \lim_{T \to \infty} \int \frac{S_{T}(t) S_{T}(t')}{T} e^{2\pi i f' t'} df df' \int_{e}^{e} \frac{2\pi i f' t'}{e} dt$ $= \lim_{T \to \infty} \int_{-\infty}^{\infty} \frac{Sr(f)}{T} e^{2\pi x f \cdot t} df \qquad \delta(f - f')$ = $\lim_{T \to \infty} \int_{0}^{\infty} \frac{2|S_{T}(t)|^{2}}{T} \cos 2\pi ft df$, if Y_{T} is real. Now introduce $G(f) = fin 2 |Sr(f)|^2$ for positive frequencies and is called the power spectral density. Therefore: (5) $\mathcal{P}_{Y}(T) = \int G(F) \cos 2\pi F f dF$ The time auto-correlation factor is thus the Fourier transform of the Power Spectral Density. We could have defined : (6) $G'(f) = \lim_{T \to \infty} \frac{S_T(f)}{T} \frac{S_T^*(f)}{T}$ which is half the previous 6(F) because G'(F) is over both positive and negative frequencies with G'(F) = G'(-F) for real processes. (7) $G'(+) = \frac{1}{2} G(+)$

The inverse transform is: (8) $H \int \mathcal{P}_{Y}(r) \cos 2\pi f r dr = G(f)$ Examples: G(F) 4 AAA > 2 ç, LECTURE XII 10-25-60 Power Spectral Demsity: (1) $R_y(t) = \lim_{T \to \infty} \frac{1}{2T} \int_T y(t) y^*(t+t) dt$ (2) $G(f) = \int_{-\infty}^{\infty} R_y(r) e^{2\pi \lambda f r} dr$ (3) $G(f) = \lim_{T \to \infty} \frac{S_T(f)}{T} \frac{S_T(f)}{T}$ For an evgotic process, we can replace R by R, because the time average is equal to the statistical average. For ergotic stationary processes: $(4) \quad G(f) = \int \mathcal{R}(r) e^{2\pi i f r} dr$ $R(\gamma) = y(t)y(t+\gamma)$ We can extend this reasoning to non-ergotic processes if R(r) exists and is independent of the time. This is called a wide-sense stationary process. Then the existence of R(A) implies G(f) exists. G(f) is now the statistical power density and is non-negative because of upper bound on R(+). $\int_{0}^{T} y(t) e^{2\pi i ft} dt \stackrel{2}{\geq} 0$

We may now construct ; (5) $\frac{1}{T} \int y(t) e^{2\pi i f t} dt \int y^*(s) e^{2\pi i f s} ds$ $= \frac{1}{T} \int R(t-s) e^{2\pi t} f(t-s) ds dt$ We define p=t-s (6) (5) = $\frac{1}{T} \int_{r}^{T} R(r) e^{2\pi i fr} dr dt + \frac{1}{T} \int_{r}^{0} \frac{T+r}{r} dr dt \ge 0$ $= \int \left(1 - \frac{|\mathcal{H}|}{T}\right) R(\mathcal{H}) e^{-2\pi x f \mathcal{H}} d\mathcal{H}$ We now define $R_T(T) = (1 - \frac{|T|}{T}) |T| \leq T$, then: ItI >T (7) $\lim_{T \to \infty} R_T(t) = R(t)$ for every T, that is, $\lim_{T \to \infty} R_T(t) R(t) = R(t)$ Therefore : (8) $\int_{T\to\infty}^{T} \int_{T} (1 - \frac{|T|}{T}) R(T) e^{-2\pi i f T} dT = \int_{T}^{\infty} R(T) e^{-2\pi i f T} dT \ge 0$ which shows that the statistical spectral density is positive. Consequences: $R(t) = \int G(t)e^{-2\pi i ft} df$ $R(0) = \int_{-\infty}^{\infty} G(f) df \longrightarrow \int_{-\infty}^{\infty} \frac{y(t)y^{*}(t)}{1} dt = \int_{-\infty}^{\infty} \frac{s(f)s^{*}(f)}{1} df$ For real, stationary processes, G(f) = G(-f). Reference on W-K Theorems See Davenport and Root, Ch. 6.

Examples:

Take a stationary random process with a Gaussian I: correlation function and with a normalized autocorrelation function, R(0) = 1. $R(t) = e^{-\frac{T}{2\epsilon_2}}$ $G(f) = \int_{-\infty}^{\infty} e^{-\frac{p^2}{2\epsilon}} e^{2\pi \lambda f^{p}} dt = E \int_{-\infty}^{\infty} e^{-\frac{(2\pi f\epsilon)^2}{2}}$ Note that : $\int_{-\infty}^{\infty} G(f) df = 1$ Point of interest: if E => 0, R(r) -> S(r), a purely random process, and the power spectral density -> constant =0. However, physically, purely random processes do not occur. As & gets small, G(f) -> constant, G(f) -> constant =0, or a wide spectrum. Df Take the random process ! y(t) = A cos (Wot + 4) . A and 4 are II : independent random variables. I is distributed uniformly over $0-2\pi$, $f(q) = constant = 2\pi$. $y(t)y(t+r) = \frac{1}{2}\overline{A^2}\cos\omega_0r + \frac{1}{2}\overline{A^2}\cos(2\omega_0t + 2\varphi + \omega_0r)$ $\cos(z\omega_0t + 2\varphi + \omega_0r) = \int f(q) \cos(z\omega_0t + 2\varphi + \omega_0r) dq$ = 2T \subset cos(zwot+zq+wor)dq = 0 since the cos ig even over the interval. y(t) y (t+r) = = A2 cor up r, thus we have a stationary process in the wide sense.

Now $G^+(t) = z\overline{A}^2 \int cos \omega_0 t^2 cos 2\pi f t^2 dt^2 = \frac{1}{z} \overline{A}^2 S(f-f_0)$ Because: $\int_{0}^{\infty} \cos 2\pi f \tau \, d\tau = \frac{1}{2} \int_{0}^{\infty} (e^{2\pi i f \tau} + e^{-2\pi i f \tau}) \, d\tau$ $= \frac{1}{2} \int_{e}^{\infty} \frac{2\pi i f T}{dT} = \frac{1}{2} S(f)$ $\int \cos \omega_0 \tau \cos 2\pi f \tau d\tau = \int \left[\frac{1}{2} \cos \left\{ 2\pi (f+f_0) \tau \right\} + \frac{1}{2} \cos \left\{ 2\pi (f-f_0) \tau \right\} \right] d\tau$ = 1/4 S (f-fo) We see that this is a mon-ergotic process, LECTURE XIII 10-27-60 Non - Stationary Random Processes : Take g(t) = A cos wot A it random random process variable (1) y (+) y (+++) = = = A² cos wor + = A² cos (2wot + wor) This depends on t explicitly and the process is therefore not stationary and cannot have a Foorier transform to the PSD. However, we can construct Ry (1) for each individual sample as follows: (2) $R_y(t) = \lim_{T \to \infty} \frac{1}{T} \int_0^T y(t) y(t+t) dt$ = $\frac{1}{2} A^2 \cos \omega_0 t + \dim \frac{1}{2} A^2 \int \cos (2 \omega_0 t + \omega_0 t) dt$ = I A cos wor

We can still define the PSD for each sample even though it is statistically not stationary. From previous results, the spectral density is obviously a S function.

Example: Random Telegraph Wave

One Sample: - t ->

We will make the Fourier transform of the auto-correlation function for each sample function. The important thing about the process is to indicate the number of zero crossings in a given time interval. We say that the average number of zero crossings is a per second. We assume that the number of zero crossings the ma time interval T will be Poisson distributed.

(3) $P_T(k) = (aT)^k e^{-aT}$

we now construct the auto-correlation function Ry (r), saying that y(t) y(t+t) = +1 if number of 0 crossings is even = -1 "" " odd

The probability for an even number can be found from the Poisson distribution.

 $\begin{array}{rcl} (4) & R_{Y}\left(t\right) &=& +1 & \overbrace{even}^{p} & \underbrace{(a\,r)k}_{k=0} & e^{-a\,t} & -1 & \overbrace{odd}^{p} & \underbrace{(a\,t)k}_{k=1} & e^{-a\,t} \\ & & & & \\ \end{array}$

Taking the absolute value of & prevents a catastrophe because the interval is assumed positive in the Poisson distribution.

Spectral Density ! (5) $G(f) = \int_{-\infty}^{\infty} R(t) e^{\lambda \omega \tau} dt = \int_{0}^{\infty} (\lambda \omega - \tau \alpha) \tau dt + \int_{0}^{0} (\lambda \omega + \tau \alpha) \tau d\tau$ $\int_{e^{-(\mu\omega+2\alpha)}}^{\infty} d\mu'$ $= \frac{-1}{z\omega - za} + \frac{1}{z\omega + za} = \frac{4a}{(za)^2 + \omega^2} = \frac{1/a}{1 + \left(\frac{2\pi f}{za}\right)^2}$ = $\frac{2 T_c}{1 + w^2 T_c}$, defining $T_c = \frac{1}{za}$ with $R(t) = e^{-\frac{1}{2}/T_a}$ This is called the Lorentz form of the spectrum: <u>4 τε</u> 1 + 4π²f² τε² G+(F) 1 να - f → 2πf= 4. This happens to be normalized because 56+(f) df $= \frac{47c}{2\pi} \int_{0}^{\infty} \frac{1}{1+x^{2}} dx = \frac{2}{\pi} \tan^{2} x = 1$ If the telegraph problem is bimary in nature: We get $R_{Y}(r) = \frac{1}{4} + \frac{1}{4}e^{-2a/r}$ We get for the PSP a & function for the constant term. and then the regular shape of the horentz curve. 1 G+ (4) 1 - + -2

Shot Noise: References ; Ch. 7, Davenport and Root Wax: S.O. Rice Consider a Diode: Assume that one electron is emitted from the cathode. As the electron comes closer to the anode, the r(t) ×1 charge on the anode changes and the current is dq = 1 Now the charge induced on the anode is postulated to be ex and then: (6) $\lambda = \frac{e\dot{x}}{d}$; $\dot{x} = \frac{eF}{m}(t-te) = \frac{eVa}{md}(t-te)$ time of departure from cathode (7) $\mathcal{L} = \left(\frac{e}{a}\right)^2 \frac{Va}{m} \left(t - te\right)$, which plots as; (8) $d = \frac{1}{2} \frac{e V_a}{m d} T_a^2$ 1 $\lambda = F(t)$ Kar random variable Now the total correct is I(t) = Z. F (t-tc) to electrons andorn variable, distributed uniformly 1 I(+) 1

LECTURE XIV 10-29-60

Shot Noise :

Assuming no space charge, Flt-tr) F(+) is the current pulse for the 1 kth election - + >

The total corvent $I_{k}(t) = \underset{k}{\overset{K}{=}} F(t-t_{k})$ is a random variable. What is the mean, variance, correlation, PSD, etc. ? (1) $\overline{I_{k}(t)} = \begin{pmatrix} dt_{i} & \dots & dt_{k} & \dots & dt_{k} \\ \overline{T} & \dots & \overline{T} & \overline{T} & \dots & \overline{T} & \overline{F} \\ \hline T & T & T & T & \overline{T} & \overline{F} & \overline{F} \\ \hline \end{array}$ For the kth electron , (2) $T_{k} = \frac{1}{T} \int F(t-t_{k}) dt_{k}$ Then for all, since the average of a sum is the sum of the averages: (3) $\overline{I_{k}(t)} = \sum_{l=1}^{K} \frac{1}{T} \int F(t-t_{k}) dt_{k} = \frac{K}{T} \int F(t-t_{k}) dt_{k} \text{ since}$ F(t-ty) is the same for all electrons. This is the average current of K electrons in a time T arriving at the anode. (4) Now the probability of having K electrons in a time T is $\overline{I(t)} = \sum_{k=0}^{\infty} \frac{P(k) \kappa}{T} \int_{0}^{\infty} F(t-t_{p}) dt_{p} = Ne = average number of electrons$ per second. Therefore, the total mean square correct is: (5) $\overline{I^2(H)} = \sum_{k=0}^{\infty} P(k) \int \cdots \int \frac{dt_i}{T} \cdots \frac{dt_k}{T} \sum_{k=0}^{K} F(t-t_k) F(t-t_m)$

$$= \sum_{k=0}^{\infty} \frac{P(k)k}{k} \int_{0}^{T} F^{2}(t-t_{k}) dt_{k} + \sum_{k=0}^{\infty} \frac{P(k)}{T^{2}} \int_{0}^{T} F(t-t_{k})F(t-t_{k})dt_{k} dt_{k}$$

$$= N \int_{0}^{T} F^{2}(t-t_{k}) dt_{k} + N^{2} \left[\int_{0}^{T} F(t-t_{k}) dt_{k} \right]^{2}$$

$$= N \int_{0}^{T} F^{2}(t-t_{k}) dt_{k} + N^{2} \left[\int_{0}^{T} F(t-t_{k}) dt_{k} \right]^{2}$$

$$= \frac{N \int_{0}^{T} F^{2}(t-t_{k}) dt_{k}}{T - \sigma} \sum_{k=0}^{\infty} \frac{1}{\tau} \int_{0}^{\infty} F^{2}(t-t_{k}) dt_{k}$$

$$= \frac{N \int_{0}^{\infty} F^{2}(t-t_{k}) dt_{k}}{T - \sigma} \sum_{k=0}^{\infty} \frac{1}{\tau} \int_{0}^{\infty} F^{2}(t-t_{k}) dt_{k}$$

$$= \frac{1}{T^{2}(t)} - \left(\overline{T(t)}\right)^{k} = N \int_{0}^{\infty} F^{2}(t-t_{k}) dt_{k}$$

$$= \frac{1}{T^{2}(t)} \int_{0}^{\infty} F^{2}(t-t_{k}) dt_{k}$$

$$= \frac{1}{T^{2}(t)} \int_{0}^{\infty} F^{2}(t-t_{k}) dt_{k}$$

$$= \frac{1}{T^{2}(t)} \int_{0}^{\infty} F^{2}(t-t_{k}) f(t-t_{k}) dt_{k}$$

$$= \frac{1}{T^{2}(t)} \int_{0}^{\infty} F^{2}(t-t_{k}) \int_{0}^{\infty} F^{2}(t-t_{k}) \int_{0}^{\infty} F^{2}(t-t_{k}) dt_{k}$$

$$= \frac{1}{T^{2}(t)} \int_{0}^{\infty} F^{2}(t-t_{k}) \int_{0}^{\infty} F^{2}(t-t_{k}) \int_{0}^{\infty} F^{2}(t-t_{k}) dt_{k}$$

$$= \frac{1}{T^{2}(t)} \int_{0}^{\infty} F^{2}(t-t_{k}) \int_{0}^{$$

The PSD of N independent events is N times the PSD
of one event. From the Fourier transform of the
correlation function:
(8)
$$G_{+}(f) = ZN \int_{-\infty}^{\infty} F(f) F(f+T) e^{2\pi i f t} dt + 2N^{2}e^{2} S_{+}(f)$$

which is the PSD of the deviation from the mean.
New $F(f) F(f+T)$ vanishes for $Y > Ta$.

For fix ta', the exponent almost vanishes and we have ; (9) $G^{\dagger}(f) = 2N \iint_{-\infty}^{+\infty} F(t) F(t+r) dr dt = 2N \iint_{-\infty}^{\infty} F(t) dt = 2Ne^{2}$ $= Z \overline{I(t)} e$ This then is a wide spectrum, holding rigovrously only for S functions of current and will tail off as f > Ta'. If it did not, the power would be infinite, If we know F(+) to be of the form A, then we can evaluate for G+(f). However, G+(f=0) = z I(t)e is always true regardless of Ta, what is the statistical average over a finite time period? Consider a large sample of diodes in time o to To. Average over period of To To infinite time average (9) $\langle \Delta \lambda \rangle_{T_0} = \frac{1}{T_0} \int_0^{T_0} \left(I(t) - \overline{I(t)} \right) dt$ (10) $\left\{ \langle \Delta I \rangle_{T_0} \right\}^2 = \frac{1}{T_0^2} \int_{0}^{T_0} \Delta I(t) \Delta I(t') dt dt'$

LECTURE XY 11-1-60 . Continuation of shot Noise : (1) $\langle \Delta I \rangle_{T_0} = \frac{1}{T_0} \int \Delta I(t) dt$, $\Delta I(t) = I(t) - \overline{I}$ $\left(\left(\Delta I\right)_{T_0}\right)^2 = \frac{1}{T_0^2} \int \int \Delta I(t) \Delta I(t') dt dt'$ If we had an instantaneous ammeter, we would measure $\Delta I(H)^2$. However, m reality, we see $(\langle \Delta I \rangle_{T_0})^2$. Let t' > t+t , To >> Ta , Then $(Z) \left(\langle \Delta I \rangle_{T_0} \right)^2 = \frac{1}{T_0^2} \int_0^{T_0} \int_1^{T_0 - t} \Delta I(t) \Delta I(t + t) dt dt$ For a stationary process, the integral is independent of t. 200 4004 ntegrand exists only around this axis. we can then let to go from - so to + so. $(3) \frac{1}{T_0^2} \int dt \int^{\infty} \Delta I(t) \Delta I(t+t) dt$ = I JO AI(+) AI(+++) d+ We could have defined a new axis T. Would then get: $(4) \quad \underbrace{1}_{T^2} \int \sum_{n=1}^{2\pi} \int \Delta I(t) \Delta I(t+m) dT dr$ which is twice what we had before: The error is in the Jacobian. First: Second: $\begin{array}{l}
t = t \\
t = t + \gamma
\end{array}$ $\left\{ \left| J \right| = 1$ 1J1 = 1

Continuing : (5) $\int \Delta I(t) \Delta I(t+r) dr = \frac{1}{T_0} G(f=0) = \frac{1}{2T_0} G^+(f=0)$ = <u>eI</u> which decreases as time increases , The spectral density at zero frequency is the long time average of the statistical average. We can derive physically that for N electrons arriving on the average in time To, $AN^2 = N$, $\overline{T} = Ne$, Then ! (6) $(\langle AI(t) \rangle_{T_0})^2 = \frac{e^2}{T_0^2} \Delta N^2 = \frac{e^2 N}{T_0^2} = \frac{e \overline{L}}{T_0}$ which gives the same result as (5). Space Charge Limited Case: The presence of space charge leads to the suppression of fluctuations because of the damping effect of the field of the other electrons. Reference: van der Ziel, Ch. 5. The result is that: (1) G*(fl = ZeIT2, OKTKI where $P^2 = 3(1 - 174) 2 k Te gd$ p re = 1noise suppression. Gactor (8) $gd = \frac{dI}{dVa} = \frac{3}{2} \frac{I}{Va - Vm}$ The same formula can be used for the shot noise in a triode. However, a different treatment is required for pentodes.

Pentodes: A new factor enters because the current flow is distributed between the screen and anode. We use the following diagram. We say that the chance for an Plate 13 ---- screen electron to hit the anode is ; 1 virtual cathode (9) $p = \frac{la}{la + ls}$ with $q = l - p = \frac{ls}{la + ls}$ We examine the partition noise in the case 1=0. We suppose that there are N electrons before the screen in time To, The = pN, and Ana = pqN (Bernoully distributed). From previous arguments : (10) $\overline{A}\overline{La^2} = e^2 -pqN = \overline{La}\overline{Ls}e$ $\overline{Lb^2} = \overline{Tb} (\overline{La+Ls})$ (11) in $G_{part}^{+}(f_{p}) = 2 Ia Ise$ 10 + 15 Now consider P = 0. There is no relation between the time of emission and the probability of hitting the screen or the plate. Partition and emission tune are statistically independent, and the mean squared deviations can be added, that is, $(12) \quad \Delta m_a^2 = p_q N + p^2 N P^2$ because (Dna) = p2 DN2 and from (6) random random partition emission term Total Fluctuation; $\frac{(13) ((\Delta La))^2}{[T_0^2]} = \frac{pq Ne^2}{T_0^2} + \frac{p^2 Ne^2 \Pi^2}{[T_0^2]}$ $(14) \quad G_{Ia}^{+}(f=0) = 2e Ia \qquad \frac{ds + Ia}{ds + Ia}$

If the screen is wide we do not have random partition noise but have essentially two triodes in parallel. If T = 1, equation (14) reduces to equation \overline{XIV} (9). The effect of partition does not appear because the purely random process of emmission is not affected by the purely random process of partition.

LECTURE XVI 11-3-60

hz) The Phototube: Suppose n photons/sec are emitted from the light source. y is the efficiency of the phototobe surface. No interactions between photons in the light beam. We can momediately write for the corrent:

(1) re = Ane = y M To and

(2) (Alph) = mme² = e Iph To To

Now Gph (f=0) = Ze Iph which is the same as the shot noise in the space - charge free diode.

Photo moltipliers:

Secondary current

all anode emissions are independent of each other. The number of electrons emitted per incident electron = p. what are the fluctuations in the corrent and the PSD?

Now i Iz = Iph p, Git (f=0) = Ze Jph p

The first \$\$ is because of the fraction of primary current. The second \$\$\$ is because of the different effective "charge" of the secondary electrons.

Let us take the more general case when p is a random process. We have that the number of secondaries emitted per primary is p with probability Bp where: $(3) \underbrace{\Xi}_{p=0} \beta_p = 1, \underbrace{\Xi}_{p=0} \beta_p p = \overline{p}$ Now: Nsec (for Npri primaries) = Z pr = Z (p+Apr) and $\overline{N^2}_{sec} = \left\{ \sum_{i=1}^{N} (\overline{p} + \Delta p_i) \right\}^2 = N^2 \overline{p}^2 + N (\Delta \overline{p_i})$ $\left\{N\overline{p} + \sum_{i=1}^{N} \Delta p_i\right\}^2$ (because $\overline{\Delta p_i \Delta p_i} = 0$, $\overline{\Delta p_i} = 0$) for fixed Nora incident. We now want to average over Npre: we can replace North Npre, North North because Npre and Nsec are statistically independent. There fore: (#) $\overline{N_{sec}^2} = \overline{N^2} \, \overline{p}^2 + \overline{N} \, (\Delta p_{\star}^2)$ (subtract; $\overline{N_{p}^2} = \overline{N_{sec}}$, $\overline{N_{sec}^2} = \overline{N^2} - \overline{D^2} - \overline{z}$ Non p - N p = AN pri and $\Delta N_{sec}^2 = \Delta N_{pre}^2 \vec{p}^2 + N_{pre} \Delta p^2 = N_{sec}^2 - N_{sec}^2 - N_{sec}^2$ = AN²sec We may continue this and arrive at results for any number of electrodes. Further Fluctuations in Vacuum Tubes : 1) Secondary Emission 2) Photo-effect of light from cathode 3) Fluctuations m grid current. Case of Floating Grid: lg = leg + lions + lph = 0 G= (+=0) = Ze | Legi + Ze | Lions + Ze | Lph |

Proof That Shot Noise has Gaussian Distribution and 1(t) 15 a Gaussian process. Consider current due to k electrons. We now write the probability of I if we know K electrons are arriving: (6) $p(I_{\kappa}) = \frac{1}{T_{0}} \int_{2\pi}^{\pi} \int_{2\pi}^{\infty} e^{-\lambda I_{\kappa,M}} \int_{k=1}^{\pi} F(t-t_{\kappa}) du \cdot dt, \dots dt_{\kappa}$ = the Service [to So e w F (t+r) dr] K du Now K is Poisson distributed: f(K) = (n To) K e-n To Then : (7) $p(I) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\lambda \mu I} e^{-\pi I_0} \frac{\left[\pi \int_{0}^{T_0} e^{\lambda \mu F(t-t)} dt\right]^K}{K^{-1}} d\mu$ $= \lim_{Z \to T} \int_{a}^{\infty} e^{-\lambda u T} e^{-\lambda v T} e^{-\lambda v T} \left[\bar{u} \int_{0}^{T} \left\{ e^{\lambda u F(t+T)} - i \right\} dT \right] du$ Now $\overline{\iota} \sim \overline{n}$. Introduce normalized random variables: $\sigma^2 = \overline{n} \int_{\infty}^{\infty} F^2(t) dt$, $X = \frac{I - \overline{I}}{\sigma}$, $u' = \sigma u$ replace with - or to to Then ; (B) $p(x) = \frac{1}{2\pi r} \int_{-\infty}^{\infty} e^{\lambda u' x} e^{-\lambda u' \frac{T}{r}} e^{x} p \left\{ \frac{1}{n} \int_{0}^{T_{0}} \left[e^{\lambda u' r} (t+n) - 1 \right] dr \right\} du'$ expand in power series $e^{-\lambda u' \overline{1}/\sigma} e^{\lambda u' \overline{n}/\sigma} \int_{\infty}^{\infty} F(t) dt = e(charge)$ $+ e^{-\frac{u''}{\sigma^2} \overline{n}} \int_{\infty}^{\infty} F^2(t) dt + higher terms$ As ñ 30es to a, higher terms vanish and $p(x) = \frac{1}{2\pi^2} e^{-x^2/2}$

LECTURE XVII 11-5-60
Joint Gaussian. Shit Noise:
Shit noise may be distributed according to a
multivariate Gaussian.
Fourier Representation of the Shit Noise current
(1)
$$L(t) = \frac{a}{2t} + \frac{a}{2t} \left(an \cos \frac{2\pi n t}{T} + bn \sin \frac{2\pi n t}{T} \right)$$

where $an = \frac{2}{T} \int_{0}^{T} L(t) \cos \frac{2\pi n t}{T} dt$
 $bn = \frac{2}{T} \int_{0}^{T} L(t) \sin \frac{2\pi n t}{T} dt$
If $L(t)$ is a random process an and be are random
variables. If $L(t)$ gaussian, On , be are gaussian and also
their sum. Consider:
(2) $L(t)$ to form gaussian
 $L(t)$ to form gaussian
 $L(t)$ to form gaussian
 $L(t)$ to form $2\pi n t$ and $m = 0$ that is, the coefficients
(3) $\overline{Tn} = \overline{bn} = 0$
 $\overline{at} = \overline{bn}$
 $bnbm = \overline{andm} = 0$, $\overline{anbm} = 0$ That is, the coefficients
(4) $\overline{Tn} = \overline{bn} = 0$
 $\overline{at} = \overline{bn}$
 $bnbm = \frac{4}{T2} \int_{0}^{T} \int_{0}^{T} L(t) + L(t+T) \cos \frac{2\pi n t}{T} \cos \frac{2\pi m (t+T)}{T} dt dT$
 $writing $t' = t+\pi$. Integrand is stationary process
so we can change hoursts on t to $\pm \infty$.$

- (

Expanding the trig terms; (5) andm = 4 5 Ry(r) (cos 2mnt cos 2mmt cos 2mmt - cos 2mnt sin 2mmt sin 2mmt) dt dr $= \frac{2}{T} \int_{T}^{\infty} R_{y}(t^{*}) \cos \frac{2\pi n T}{T} dr \quad Snm = \frac{1}{T} G^{+} \left(f = \frac{n}{T}\right) Snm$ Therefore: $\overline{a_n^2} = \overline{b_n^2} = \frac{1}{-} G^+ (f = \frac{n}{-}).$ We note that as T is larger, Fourier components become more dense. Inverting we have: (6) $G^+(f)df = \sum_{1}^{n=T(f+df)} \left(\overline{a_n^2} + \overline{b_n^2}\right) = \frac{T}{Z}\left(\overline{a_n^2} + \overline{b_n^2}\right)df$ This representation is helpful in solving specific problems. Example: 2(+) A what is VAB? Circuit equation: $C = \frac{dV}{dt} + \frac{V}{R} = \lambda(t)$ B Since it) is sum of periodic signals, so will V(t): Substituting; $\lambda(t) = \frac{a_0}{2} + \frac{2}{N+1} \ln \cos\left(\frac{2\pi nt}{T} + \ln\right)$ $V(t) = \frac{a_o}{z}R + Re \sum_{u=1}^{\infty} \frac{Cn exp\left(\frac{2\pi u ut}{T} + u\varphi_n\right)}{\frac{1}{R} + u \frac{2\pi u}{T}C}$ where $c_n^2 = a_n^2 + b_n^2$, with distribution $e^{-\frac{a_n^2 + b_n}{2\sigma^2}} dan dbn$ = e 202 in din dan which is not gaussian but is the radial distribution. We may write for the sum term in the current, $\sum C_n \cos\left(\frac{2\pi nt}{T} + q_n\right) = Re \sum C_n \exp\left(\frac{2\pi nt}{T} + 2q_n\right)$

$$F_{t} \quad cn \quad and \quad qn \quad are \quad random \quad variables, \quad V(t) \quad is \quad vandom process. We see that $V(t) = \frac{a}{b} R$. What is spectral
 density?

$$(7) \quad G_{t}^{+}(f) = \frac{a}{b} R^{2} 2 S^{+}(f) + \frac{T}{2} \overline{G_{t}^{+}} \\ = \frac{a}{b} R^{2} 2 S^{+}(f) + \frac{G_{t}^{+}(f)}{|\frac{1}{a} + x z n f|_{t}^{2}|} \\ = \frac{a}{b} R^{2} S^{+}(f) + |Z|^{2} G^{+}(f) \\ = \frac{a}{b} R^{2} S^{+}(f) + |Z|^{2} G^{+}(f) \\ = (Z|^{2} G^{+}(f), \quad ncorporating the S function at the origin in G^{+}. \\ We velow to examine the groperties of the Ca's in the current representative:
$$(8) \quad \overline{A(f)} \quad A(f+t) = \frac{2}{b} C^{+}(G) \cos (\frac{2\pi n f + r_{t}^{2}}{T} + R_{n}) \cos (\frac{2\pi n f + r_{t}^{2}}{T} + R_{n}) \cos (\frac{2\pi n f + r_{t}^{2}}{T} + R_{n}) \sin (\frac{\pi n f + r_{t}^{2}}{T} + R_{n}) \sin (\frac{\pi n f + r_{t}^{2}}{T} + R_{n}) \sin (\frac{\pi n f + r_{t}^{$$$$$$

(

LECTURE XVIII 11-8-60

Linear Fixed Parameter System:

Input x(t) gives output y(t). Meaning of linear: a. X. + az Xz => azyz + azy;

Fixed Parameter: R,C,L not functions of time. Linear amplifiers belong to this class. The result is:

(1) $G_{out}(f) = |A(\omega)|^2 G_{in}(g)$

where Alw) is the system function, be it impedance or transfer function.

Sometimes more convenient to use impulse response function h(t) where relation of output to imput is (z) $y(t) = \int_{h(t')}^{\infty} x(t-t') dt'$

To see meaning of h(t') let x(t-t') be & function. Then output is hit or y(t) = h(t). To be physically possible, must have h(t) = 0 for t 20 so that lower limit on integral 15 zero, To show relation between h(t) and Alw), we Fourier transform:

(3)
$$\chi(t-t') = \delta(t-t') = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\lambda \omega (t-t')} d\omega$$
. Then
(4) $\chi(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} h(t') e^{-\lambda \omega t'} e^{\lambda \omega t} dt' d\omega$

$$= \int_{-\infty}^{\infty} A(\omega) e^{-\lambda \omega t} d\omega$$

$$(5) A(w) = \frac{1}{2\pi} \int h(t') e^{-wt'} dt'$$

We have shown that h(t) is just the Fooner transforme of A(w).

what happens when random process passes through the system ? $(6) \quad y(t) = \int h(t') \quad x(t-t') \quad dt' = \overline{x(t)} \quad \int h(t') \quad dt'$ If x(t-t') is bounded, y(t) exists if (7) SIM(ti) dt exists and it does for stable systems, or $|y(t)| \leq \int |h(t')| |x(t-t')| dt \leq A \int |h(t')| dt$ what is the corvelation function of the output as related to the imput? (8) $y(t) y(t+r) = R_y(r) = \int_{-\infty}^{\infty} h(x) h(B) x(t-x) x(t+r-B) dx dB$ Rx (++ x-B) If the import is stationary, the output is stationary. (9) Gout $(f) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\alpha) h(\beta) e^{-2\pi i f \alpha} e^{2\pi i f \beta} \int_{-\infty}^{\infty} e^{2\pi i f \beta} R_x(\mathcal{P}_{+\alpha-\beta}) dt d\alpha d\beta$ = Sha) e 2 Frifa da Sh(B) e 2 FrifB dB Gm (f) $|A(\omega)|^2$ Extension to n-pair Terminal Networks:

I. -> Stable V. Linear of Io Iz -> Fixed Vo Vz Parameter

This network can be described as the matrix of the equations: (10) II = you Vo + + you VN IN = YNO VO + + YNN VN y's are the short circuit transfer admittances. Given VN ingot voltages, what is open circuit output voltages ? (11) Vo (open circuit) = $\frac{V_{0+k}}{k} - \frac{Y_{0+k}}{Y_{00}} V_{k} = \frac{N}{k} A_{k}(\omega) V_{k}$ This is of interest to us when V's are noise voltages. Must examine if V's are correlated or not. We now write the result for Gout (F) for the same procedure as for the two pair terminal network. (12) Gove $(t) = \underset{k=1}{\overset{N}{\underset{j=1}{\underset{k=1}{\atopk=1}{\underset{k=1}{\underset{k=1}{\underset{k=1}{\underset{k=1}{\atopk=1}{\underset{k=1}{\atopk=1}{\underset{k=1}{\atopk=1}{\atopk=1}{\atopk=1}{\atopk=1}{\underset{k=1}{\atop$ where Gim(f) is the Fourier transform of the crosscorrelation function Vx (H) Vy, (+++) For uncorrelated noise inputs: (13) $G_{out}(f) = \sum_{k=1}^{\infty} |A_k(w)|^2 G_k(f)$

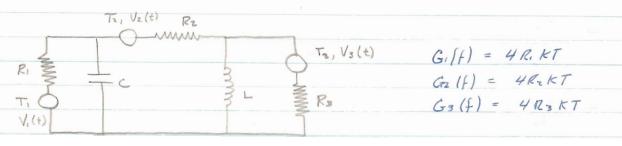
LECTURE XIX 11-10-60 Thermal Noise: Other random processes present other R than random emission. For example, thermal noise in resistor, Because of random motion of electrons, can get momentary unequal charge distribution in resistor, Also called Johnson noise. Drude - Lorentz electron models Momentum will be distributed according to: (i) $exp\left[-\frac{p^2}{2mkT}\right] p^2 dp$ Consider direction as random variable : - - - - × Consider strip of length L bent into ring with direction x along the ring. The corrent due to one electron is: (z) $le = \frac{e v_x}{v_x}$ UX/L is the number of times per second that electron goes thru given cross-section of ring. Introduce resistance , what is collision time? In simple mode?, take this time to be always to. Electron only changes direction on collision, or & changes. Current looks like:

B is total time interval. We will analyse current in
terms of Fourier components, which are:
(3)
$$d_{\pm} = \frac{\pi}{G} \int_{0}^{0} h(t) \cos 2\pi f_{\pm} t dt \left\{ f_{\pm} = \frac{4}{O} = f_{\pm} f_{\pm} g_{\pm} e_{\pm} f_{\pm} f_{\pm}$$

There fore : (9) $G^{\dagger}(f_{R}) = Jim \left[\theta \frac{a_{R}^{2} + b_{R}^{2}}{2} \right] = \frac{2e^{2} r kT}{mL^{2}}$ We now wish to get an expression for the resistance. For N electrons, multiply (a) by N, because the electrons are independent. The number of electrons per unit valume = N = n, Now the relation between conductivity, n, and T is: $(10) T = \frac{\chi e^2 f}{2m}$ because average drift velocity of electrons in a field 16 Ux drift = <u>eE</u> p. Thus: $(11) \quad G^+(f_{\mathbf{x}}) = \underbrace{4\sigma \, \mathbf{k} \, T \, \mathbf{A}}_{\mathbf{x}}$ Now R= TA or: (12) G+(FR) = 4kT which is PSD for current through the resistor as measured by an infinitely fast ammeter which shorts out the resistor. Equivalent Circuits: noiseless Noise current Querator G^+ = 42T SR,T Noiseless Noise resistor Noise voltage Generator GV = 4RKT. Experimentally, would take voltage output, amplify it, and read with guadratic detector. resistor noise Amplifier S Noise T->

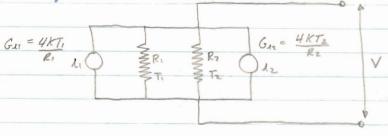
LECTURE XX 11-12-60

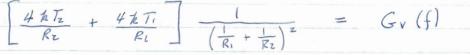
General Formulation of Johnson Noise! We take for $I^{\overline{z}}$: $(1) \pm L I^{\overline{z}} = \frac{kT}{2}$ Consider: from Brownian motion of electrons and equipartion of energy, and coverent flow as linear combination of electron momentum in one direction, Then kmetic energy is associated with one degree of freedom. Assume Gr(+) as wide spectral density, (z) $G_r(f) = z \sigma^2$ Good assumption because I will damp out high frequency components. For current PSD: (3) $G_{\perp}(f) = \frac{z \sigma^2}{R^2 + \omega^2 L}$, and, (4) $\overline{\lambda^2} = \int_{-\pi^2}^{\infty} \frac{2\sigma^2 df}{f^2 L^2} = \frac{2\sigma^2}{2\pi RL} \arctan \frac{2\pi fL}{R} = \frac{\sigma^2}{2RL}$ $= \frac{kT}{k} \quad \text{from } G_V(F) = 2\sigma^2 = 4RkT$ No exponential e-IZITET since r=0. Now consider RLC circuit: $R = \frac{1}{2} L = \frac{1}{(\omega L - \frac{1}{\omega c})^2}$ (6) $\overline{L^2} = \int_{0}^{\infty} \frac{2\sigma^2 df}{R^2 + (2\pi fL - \frac{1}{2\pi fc})^2}$


Evaluate by contour integration and get: it = kT. NOW: (7) $G_{v_c}(f) = \frac{4RkT}{\omega^2 C^2 R^2 + (\omega^2 L C - I)^2}$ (8) $\frac{1}{2}CV_c^2 = ZRETC \int_0^{\infty} \frac{df}{\omega^2 c^2 R^2 + I\omega^2 Lc^{-1} l^2} = \frac{kT}{2}$ by contour integration, which is the potential energy of the capacitor. This is because circuit represents the harmonic oscillator in terms of V and I, and one gets the usual equipartition of energy in terms of 1/2 KT. Nyquist Theorem: Assume RI=RZ=R lossless MRI transmission Ine NNN R2 T Using thermodynamic V(+) L equilibrium, power 000 delivered by each vesistor V(+) N must balance. How many modes are there's NA = L or N = L = f If LAF = 1, there is one mode in AF or number of modes in AF = LAF The number of modes passing per unit time through a cross-section, is Af. Each mode carries an energy toT since the waves are harmonic oscillators with H carrying kmetic energy and E potential energy. Wave is at temperature T because it only see the resistor reservoirs at each end. Therefore the power transported by the modes is ETAF.

Calculate power one resistor delivers to the other as load: (9) Power delivered by noise voltage generator in Ri to Load Rz $= \frac{4R_i kT df}{(R_i + R_2)^2} R_2$ = kT df for Ri=R2 By working backwards, can find power generated by RI = 4RIKT. This now shows the wideness of the spectrum of the Johnson noise, Even without transmission line ! (10) $G_{R_{1}}(f) R_{2} df = G_{R_{2}}(f) R_{1} df$ $(R_{1}+R_{2})^{2} \qquad (R_{1}+R_{2})^{2}$ for thermodynamic equilibrium. LECTURE XXI - 11-15-60 df Lossless Filter (1) Z(f) = R(f) + x V(f)T Z (F) R. T O VR what is power delivered to load resistor? (z) $G_{Vz}(f) R_{L} = G_R(f) R(f)$ $[Z + R_{L}]^2$ $[Z + R_{L}]^2$ Thus gower delivered to load resistor must equal power delivered by load resistor for thermodynamic equilibrium. And, Gyz = Re Z F(T,f) GR = RL F(T,F)

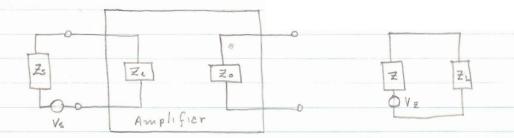
Nyquist has shown that the universal function F(T,F) 15 not dependent on f and is equal to 4 th T.


When the temperatures are not equal, thermodynamic equilibrium does not exist and a net flow of power occurs until power dissipation heats up the cooler vesistor until equilibrium is restored.


In general, one sees physically that only dissipative elements can generate noise voltages.

All moise voltages are uncorrelated, that is, Vilt) Vilt' = 0

Example:



Thevenin Equivalent Circuit:

 $4R \not k T_{eff} = \left(\frac{4 \not k T_2}{R_1} + \frac{4 \not k T_1}{R_1}\right) R^2$ $R = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}}$ $T_{eff} = T_2 \frac{R}{R_2} + T_1 \frac{R}{R_1}$ V(+) Teff If $T_1 = T_2$; $T_{eff} = T_1 = T_2$ 0

Can measure noise in circuits experimentally.

Define:	Available power gain	
	Power available at output	
	Power available from source	

Maximum incremental noise power delivered to load is $\frac{G_{v}(F) R_{e} Z_{L}}{|Z + Z_{L}|^{2}} = \frac{G_{v}(F)}{4R} = \frac{kT}{4R}$

 $= \frac{V_{out}^2 / 4R_o}{V_s^2 / 4R_s} = \frac{R_s}{R_o} \frac{V_{out}^2}{V_{in}^2} \frac{Z_s}{Z_s + Z_4} \Big|^2$

11	Rs	A (w) Zs	c	P(f)
	Ro	ZitZs		

Noise power available at output =
$$\int_{0}^{\infty} kT P(f) df$$

= $\int_{0}^{\infty} kT P(f_0) df = kT (BW_{eff}) P(f_0)$
 $f_0 - \frac{BW}{Z} eff$

where BWess is the bandwidth obtained by replacing the frequency distribution with a rectangular figure with the same area as under curve and same hieght as P(fo).

Calibrate system by placing diode across source and increase cathode temperature until noise out put is doubled according to:

(2 e la) doubling = <u>4 kT</u> noise cotput R

LECTURE XXII 11-19-60

Johnson Noise Spectrum: Git(F) = 4kT 1) Dyquist argument: no cretoff (most muclue QM) 2) Resistor: HE cutoff at collision frequencies, f> 1/Ta = 10'3 cps QM eutoff = f > KT At room temperature & = 3.10" cps 3) Ultimately, capacitive and inductive effects bring about cutoff much lower than those above. Noise in Circuits : Noise Figures Rs 4 Ta S F = (Signal power) Hoise power) available in (Signal power) noise power) available out Z. () Vs Amplifier always adds noise from its own resistors at finite temperature and shot noise.

Example: Actual Triode Amplifier NMW Los Mul Rai C3 RG1 We refer all noise to an input grid current. Thus, $G_{effective PSD}(f) = \frac{4 k T_s}{R_s} + \frac{4 k T_s}{R_g} + 2 e \left\{ |\lambda_g^+| + |\lambda_s^-| \right\}$ grid shot noise current + $\frac{2 e Ja}{g^2 |z|^2}$ + $\frac{4 k Ta}{Ra} \left(\frac{Ra}{Ra + Rax}\right)^2 \frac{1}{g^2 |z|^2}$ noise in output resistor plate shot referred to grid. noise referred to grid $Z = \frac{1}{\frac{1}{R_g} + \frac{1}{R_{g+1}} + \frac{1}{4}\omega C_g}$ Noise figure is obtained by dividing above expression by PSD of noiseless amplifier of 4/2/3. Also, we can define an effective noise temperature which may be more useful than a noise figure, writing Geffective psp (F) = 4k (Ts + Tw) input grid current with INTN = (F-1) InTs. F and TN are related in that they measure the noise power added by the amplifier. Refer now to original diagram: Assume signal power 5 with signal to noise ratio: 5/kTs B, B = band width what is F ? $\frac{S/kT_{5}B}{GS/(GkT_{5}B+GP_{N})} = 1 + \frac{P_{N}}{kT_{5}B} = 1 + \frac{T_{W}}{T_{5}}$ FI

Cascaded Amplifier Stages: Consider two stages : S/KTSB F1+2 = G.G.25/(G.G. & TSB + G.G. & TN, B + G. & TN_B) $= 1 + \frac{T_{N_1}}{T_5} + \frac{T_{N_2}}{G_c T_5} = F_1 + \frac{F_2 - 1}{G_c}$ Noise generated in later stages does not contribute as much to overall noise figure as gain factor appears in the denominator, If we have attenuator, reverse occurs, and noise in later stages contributes more. For example, consider a transmission line. $G = \frac{1}{L}$ $G = \frac{1}{L}$ If matched to source and at same temperature, $F = L = \frac{1}{G}$ LECTURE XXTIL 11-22-60

Continuation of Circuit Noise;

Johnson noise in an RL circuit is mathematically equal to the Brownian motion of a free particle, The Langerin equations for each are:

Johnson Noise

L de + Ra = V(t)

Brownian Motion

 $m \frac{dv}{dt} + \beta v = F(t)$

F(t) is force due to the collisions of molecules on the particle.

Johnson Noise Brownian Motion I' = kT V2 = KT Thus we see that equipartition occurs after long enough time. General Solution of circuit Langerm equation: $(1 \quad \lambda = l_0 e^{-\frac{R}{L}t} + l_0 e^{-\frac{R}{L}t} \quad , \quad l_0 = \frac{1}{L} \int V(\xi) e^{\frac{R}{L}\xi} d\xi$ $(z) \quad \overline{L} = l_0 \quad e^{-\frac{e}{2}t} \quad \overline{V(e)} = 0$ (3) Now $f(L_{from}) = \frac{1}{\sqrt{2\pi kr}} e^{-\frac{L\lambda^2}{2kr}}$ (4) Then $\overline{z^2} = z_0^2 e^{-z_{\overline{z}}} + e^{-z_{\overline{z}}} \int \sqrt{|z|} \sqrt{|z|} \sqrt{|z|} e^{-z_{\overline{z}}} dz dz$ ZRATS(E-n) Make transformation u= E= h, v= E+h, Then double integral is; (5) $e^{-\frac{2R}{2}t} \frac{1}{L^2} \int_{a}^{2t} \int_{a}^{\infty} 2R t T S(u) e^{\frac{R}{2}v} \frac{1}{2} du dv$ We get: (6) $\overline{J^2} = J_0^2 e^{-2\frac{R}{L}t} + \frac{2LRT}{R}e^{-2\frac{R}{L}t} \int_0^{2t} e^{\frac{R}{L}v} \cdot \frac{1}{2}dv$ $= \frac{kT}{L} + e^{-\frac{2R}{L}t} \left(\int_{0}^{2} - \frac{kT}{L} \right)$ We see that is decays to its equipartition value after a long time. Is all right to take V as & function as long as fluctuation time is kT L less than circuit time - t -> constant.

The analogous result for Browman Motion is:
(1)
$$\overline{v^{2}} = \frac{4T}{m} + e^{-\frac{2\pi}{m}t} \left(v^{2} - \frac{4T}{m}\right)$$

For higher mements, we take
 $V(t) \cdots V(t_{0}) = \frac{2}{m} V(t_{0}) V(t_{1}) ;= 0$ for anti-
 $v(t_{0}) \cdots V(t_{0}) = \frac{2}{m} V(t_{0}) V(t_{1}) ;= 0$ for anti-
 $v = 0$ dd.
How meany ways can we divide up $2n$ elements on
 n gains's
 $(2\pi)!$
 $v^{2} - n!$
we an grove that given above conditions, the distribution
is a gaussian. Expand $V(t)$ in a Former series ($V(t)$ periodic
with general T).
(3) $V(t) = \frac{2}{m} (a_{k} \cos 2\pi f_{k}t + b_{k} \sin 2\pi f_{k}t) ; f_{k} = \frac{4}{T}$
with $a_{k} = \frac{2}{T} \int_{0}^{T} V(t) \cos 2\pi f_{k}t dt$
Take $2n$ the movient of a_{m}
(4) $\overline{a_{k}^{2m}} = (\frac{2}{T})^{2n} \int \int \cdots \int dx_{2\pi} f_{k}t \int \cdots \int dx_{2\pi} f_{k}t_{m}$
 $v V(t_{0}) \cdots v(t_{m}) dt_{0} \cdots dt_{1m}$
 $= \frac{(2n)!}{2^{n} n!} \left[(\frac{2}{T})^{n} \int_{0}^{T} \int_{0}^{T} \cos 2\pi f_{k}t_{k} + \sqrt{(t_{0})} V(t_{0}) dt_{k} dt_{j} \right]^{k}$
 $= 1 \cdot 3 \cdot 5 \cdots (2n - 1) (\overline{a_{k}})^{n}$ which is the $2n$ th
moment of a gaussian.

We can also show that any and by are independent gaussian distributed. We can plug in differential equation the series V(t) and get 1/1 as a linear function of any and by. Thus ill is gaussian distributed. Thus Johnson Noise and Brownian motion are gaussian random processes. In Brownian motion, one is usually not interested in velocity but in displacement. We must integrate solution. Note that 1(t) 1(to) = 10 e t and this is The fourier transform of the Lorentzian PSD of this circuit $G_{L}(f) \stackrel{\sim}{=} \frac{1}{1 + \frac{\omega^2 L^2}{R^2}}$ LECTURE XXIV 11-26-60 Langevin Equation: (i) $m \frac{dv}{dt} + Bv = F(t)$ whose equation is a v = voe - B/mt + in e B/mt f F(E)e mEdE with $\overline{v} = \overline{v}_0 e^{-\beta/mt}$ and $\overline{v}_0 = \overline{v}_0^2 e^{-\beta/mt} \left(e^{-\frac{\alpha}{m}t} = p\right)$ and $\overline{v^2} = \frac{kT}{m} + (\overline{v_0^2} - \frac{kT}{m})e^{-\frac{2B}{m}t}$ v(t) is a gaussian process and v(t,), v(tz) has a yount gaussian distribution. Thus; (2) $W(v, v_0, t) = \begin{bmatrix} m \\ 2\pi k T (1 - e^{-\frac{2B}{m}t)} \end{bmatrix}^{1/2} exp \begin{bmatrix} -\frac{m}{2kT} & (v - v_0 e^{-\frac{B}{m}t})^2 \\ -\frac{m}{2kT} & 1 - e^{-\frac{2B}{m}t} \end{bmatrix}$

Note that in limit of t - a, W is the Maxwell Boltzmann distribution independent of Vo. In observing Brownian motion, one observes the mean displacement over I second instead of the velocity. Therefore, integrating (2) 1 (3) $x = x_0 + \frac{mv_o}{B} \left(1 - e^{-B/mt} \right)$ $+ \prod_{m} \int_{c}^{t} e^{-\beta_{m}t'} dt' \int_{c}^{t'} e^{\frac{\beta_{m}t''}{m}t''} F(t'') dt''$ $= x_{0} + \frac{mv_{0}}{B} \left(1 - e^{-\beta/mt}\right) - \frac{1}{B} e^{-\beta/mt} \int_{0}^{t} e^{-\beta/mt} \int_{0}^{t} e^{-\beta/mt} dt''$ + 1 5 F(t") dt" by partial integration. The mean displacement . $(4) \quad \underline{X} - \underline{X}_{6} = \frac{mv_{o}}{\beta} \left(1 - e^{-\beta mt} \right)$ For the mean square displacement, using F(t") F(t") = 2BkT & (t"-t"): $(5) \quad (x-x_0)^2 = \frac{2\beta kT}{\beta^2} + \frac{m^2 v_0^2}{\beta^2} \left(1 - e^{-\frac{\beta}{2m}t} \right)^2 + \frac{2\beta kT}{\beta^2} \left(-\frac{3}{2} + 4e^{-\frac{\beta}{2m}t} - e^{-\frac{2\beta}{2m}t} \right)$ The displacement will be distributed as a gaussian: (6) $W_{\gamma_0}(x, x_0, t) = \left[\frac{\beta^2/m}{2\pi kT \left(\frac{2\beta}{m}t - 3 + 4e^{-\beta/mt} - e^{-2\beta/mt}\right)}\right]^{1/2}$ • $exp\left[\frac{\beta^2}{2mkT} \frac{\{x-x_0-\frac{mv_0}{3}(1-e^{-\frac{\theta}{m}t})\}^2}{2\frac{\theta}{m}t-3+4e^{-3/mt}-e^{-2\theta/mt}}\right]$ We will be more interested in $(x-x_0)^2$ than in distribution. We now averge $(x-x_0)^2$ over the velocity which we take the be distributed Maxwellian.

 $(7) (X-X_0)^2 = \frac{Zm \not kT}{B^2} \left(\frac{B}{m}t - 1 + e^{-\frac{D}{m}t}\right)$ = zkt for t>> m $= \frac{hT}{m} t^2 \qquad \text{for } t << \frac{m}{\beta}$ 11 In Brownian motion we are interested in t >> The For heavy objects it would be tic m. We now calcutate (x-xol2 for ,1 second: $m = \frac{4\pi}{3} a^3 \left(p - p_0 \right), \quad \beta = 6\pi h a \quad \text{with av 10" cm}$ do not consider because particles are assumed to be free. If particle is too small, displacement is too large for eye to follow properly, In H2O and in . / sec, (X-X)2 = a2, This is the optimum smallest size of particle. We could observe for long time and find (X-Ko)2 indeed becomes proportional to time. Note that as t -> 00, (6) becomes: $\frac{1}{(4\pi Dt)^{1/2}} e^{-\frac{(\chi-\chi_0)^2}{4Dt}}; D = \frac{kT}{B}$ (8) Large times means that particle has forgetten its initial velocity. This discussion shows that the displacement is large crough that it may be observed, yet IX-xoje is of the order of the resolving power of the eye so that diffusion may be observed directly,

LECTURE XXV 11-29-60

Errata: (x-xo)2 = mizo2 (1-e-B/mt)2 + ZBET t + MZBET (-3+4e -e mt) Fokker Planck Method: Master Equation: X' X' + dx' Xe ×. what is the probability to jump from x to x', x'+dx' in time t, t+dt ? (1) $P(x', t'=t+\Delta t | x t) = P(x'(x) \Delta t \Delta x'$ Number of jumps out of interval dx in time dt is $W(x,t) dx \int P(x'|x) dx' dt$ Number of jumps into: [P(x|x') W(x', +1 dx' dt (2) Net flow: $\frac{\partial W(x,t)}{\partial t} = \int \left\{ W(x',t) P(x|x') - W(x,t) P(x'|x) \right\} dx'$ which is the master equation. The process is Markovian since past history is irrelevant and also the assumption is made that probability is proportional to tune unterral. Now derive Fokker-Planck equation from it. Assume P(x'/x) is a shouly varying function of x. If x'-x = -y is the jump distance, P(x'1x) rapidly -o for largey. Let P(x'|x| = P(x,y) in order to bring in y explicitly. Then, from (2): (3) $\frac{\partial W(x,t)}{\partial t} = \int W(x-y,t) P(x-y,y) dy - W(x,t) \int P(x,-y) dy$ probability per unit time to jump at all.

Exacting the assumption of slowly varying
$$P(x'|x)$$

we may expand in a Taylor series:
(4) $W(x-y,t) P(x-y,y) = W(x,t) P(x,y) - y \left\{ \frac{d}{dx} W(x,t) P(x,y) \right\}_{X}$
 $+ \frac{1}{2} y^{2} \left\{ \frac{\partial^{2}}{\partial x^{2}} W(x,t) P(x,y) \right\}_{X} + \cdots$

$$\frac{\partial d}{\partial t} = \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \right) + \frac{\partial d}{\partial x} \left(\frac{\partial d}{\partial x} \right)$$

Apply to random walk: A(x), B(x) are constants surce independent of P(x,y), w(x,t). From right-left symmetry, $\overline{\Delta x} = 0$ and $\overline{\Delta x^2} = a^2 N \Delta t$, therefore $B = a^2 N$. Then, for FP equation;

(7) $\frac{\partial W}{\partial t} = \frac{1}{2} a^2 N \frac{\partial^2 W}{\partial x^2}$ which is diffusion equation. $D \Rightarrow \Delta x^2 = z D A t$

Fundamental solution: Boundary conditions at t=0; W=8(x-Ko) and we know that solution is a gaussian, thus we write:

(B) $W(X,t) = \frac{1}{\sqrt{4\pi}Dt} e^{-\frac{(X-X_0)^2}{40t}}$

from previous knowledge that random walk in limit of lapge number of stops is gaussian.

Assumption of large number of steps is implicit, n derivation of FP equation. Now apply to Brownian Motion: Use FP equation on velocity or momentum of particles, rather than on position. (9) $A(p) = J_{m} \frac{\langle av \rangle}{\Delta t} = -\frac{B}{m}v$ from $m \frac{dv}{dt} + \beta(v) = F(t)$, F(t) = 0We obtain B(v) from Langevin equation: $\overline{U} = V_0 e^{-\frac{B}{m}\Delta t}$ $\overline{v^2} = \frac{kT}{m} + \left(v_0^2 - \frac{kT}{m}\right) e^{-\frac{2R}{m}} dt$ $\frac{1}{\Delta t \rightarrow 0} \frac{(v - v_0)^2}{\Delta t} = \frac{1}{\Delta t} \frac{v^2 - 2v_0 v}{v^2} + \frac{1}{v_0^2} = \frac{2\beta kT}{m^2} = \beta(v)$ Then the FP equation for Brownian motion: (10) $\frac{\partial W(v;t)}{\partial t} = -\frac{\beta}{m} \frac{\partial}{\partial v} \left\{ v \cdot W(v;t) \right\} + \frac{\beta kT}{m^2} \frac{\beta^2 W}{\partial v^2}$ whose solution we already knows $(11) \quad W(v, v_0, t) = \left[\frac{m}{2\pi kT(1 - e^{-g/mt})}\right]^{1/2} exp\left[-\frac{m}{2kT}\frac{(v - v_0 e^{-g/mt})^2}{1 - e^{-g/mt}}\right]$ This method is seen to lead to difficult differential equations. However, in external fields of force, there is usually no other way.

LECTURE XXVI 12-1-60

Brownian Motion: The displacements are not strictly Markovian. $\frac{11}{X-X_{0}} = \frac{m\nu_{0}}{B} \left(1 - e^{-B/mt}\right)$ $\frac{(z)}{(x-x_0)^2} = \frac{m^2 v_0^2}{a^2} \left(1 - e^{-\frac{B}{2m}t}\right)^2 + \frac{2BkT}{a^2}t + \frac{m2BkT}{a^3}\left(-3 + 4e^{-\frac{B}{2m}t} - \frac{2B}{a^2}t\right)$ Now : $(3) \quad \overline{X - X_0} = 0$ (4) $\overline{(x-x_0)^2} = \frac{2mkT}{m} \int \frac{B}{m} t - 1 + e^{-\frac{B}{m}t}$ x(t) may be considered as a Markoff process, if only tumes t 77 m are considered. In the FP equation: A(x)=0 (5) $B(x) = \frac{2kT}{B}$, letting t become small but greater than 3/m. Thus, (6) $\frac{\partial W}{\partial t} = \frac{1}{2} \frac{2kT}{B} \frac{\partial^2 W}{\partial x^2} = D \frac{\partial^2 W}{\partial x^2}$; $D = \frac{kT}{B}$ (Emstern) Thus process its Markovian in t >> 3 for free particle ma fluid. Particle in a Field of Force: Gravitational Force: K = 4TT a3 (p-po) g Now the drift velocity is given by the balance between the force and the damping.

 $\frac{171}{dt} = \frac{K}{B}, \text{ of which we only observe the average} \\ \frac{171}{dt} = \frac{K}{B}, \text{ of which we only observe the average} \\ \frac{171}{dt} = \frac{1}{B}, \text{ of which we only observe the average} \\ \frac{1}{2} \frac$ We can now write the Smoluchowske Equation : $\frac{\partial W}{\partial t} = -\frac{K}{\beta} \frac{\partial W}{\partial x} + D \frac{\partial^2 W}{\partial x^2} ; \quad A = \frac{K}{\beta}$ We find the stationary solution : (9) $D \frac{\partial W}{\partial x} = \frac{k}{\beta} W$; or $W = constant \times e^{\frac{k}{D\beta} x}$ We can see how this fits with the thermodynamic argument that we should get Maxwell-Boltzmann distribution: (16) $W = constant \times e^{-\frac{V}{\lambda T}}, V = -K \times, W = constant \times e^{\frac{K \times V}{\lambda T}}$ but D = AT so the two results are equal. If we multiply 19) by No, we have + diffusion correct on the left and the drift current on the right. In any field of force we have the general Smolochowski equation: (11) $\frac{\partial W}{\partial t} = -\frac{1}{3} \frac{\partial (KW)}{\partial x} + D \frac{\partial^2 W}{\partial x^2}$ For harmonic oscillator force, K = XX: $\lim_{d \to 1} \frac{\partial W}{\partial t} = -\frac{\alpha}{\beta} \frac{\partial (xW)}{\partial x} + D \frac{\partial^2 W}{\partial x^2}$ which is the FP equation that was obtained previously. This is good only for highly damped harmonic oscillator.

Sedimentation Problem. t= Particles in fluid in constant field of force. The Smoluchowski equation is: $(13) \quad \frac{\partial W(x,y,z,t)}{\partial t} = - \frac{4\pi a^3}{3} (P - P \partial S \quad \frac{\partial W}{\partial z} + D \left[\frac{\partial^2 W}{\partial z^2} + \frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial x^2} \right]$ Consider only 2 direction and that homogeniety exists in the other directions. $(14) \quad \frac{\partial W}{\partial t} = C \frac{\partial W}{\partial z} + p \frac{\partial^2 W}{\partial z}$ Substitute: W = U exp $\int -\frac{c}{zD} \left[z - z_0 \right] - \frac{c^2}{4D} t$ Thus $\frac{\partial \mathcal{U}}{\partial t} = D \frac{\partial^2 \mathcal{U}}{\partial t^2}$ Boundary Conditions: t=0: W= 8(Z-Zo) $t \ge 0$: $D \frac{\partial W}{\partial z} + cW = 0$ for z = 0For U: U= S(2-20) at t=0 $D \frac{\partial U}{\partial x} + \frac{1}{2}CU = 0, t > 0$ We now solve and write the solution : $(15) W(z, z_0, t) = \frac{1}{2/\pi p t^{1/2}} \exp\left\{\frac{-(z-z_0)^2}{4p t} + \exp\left\{\frac{+(z-z_0)^2}{4p t}\right\}\right]$ • $exp\left[-\frac{c}{2D}(z-z_0)-\frac{c^2}{4D}t\right]+\frac{c}{DT/2}e^{-\frac{c^2}{D}t}=\frac{c^2}{z(Dt)/2}$

Plotting for different times "t": For discussion of this problem, see Wax, p. 59 t=0 t= 0 W Chandvasek har. 7=0 LECTURE XXVI 12-3-60 Harmonic Oscillator: The equation of motion is: (1) $m \times + \beta \times + \alpha \times = F(t)$ not Markovian, as it involves a second time derivative, hence, it is difficult to solve for the displacement even though given the distribution for F: However, we can write two coupled linear first order differential equations; (2) $\dot{X} = \frac{p}{m}$ (3) p = -B - A + F(t)For the stationary state; we can take the spectral density: $(4) \quad G_{X}(4) = \frac{ZB \not AT}{\left|-m\omega^{2} + ABw + \alpha\right|^{2}}$ (5) $G_p(f) = Z \omega^2 \beta k T m^2$ $(\alpha - m\omega^2)^2 + \omega^2 \beta^2$

(a)
$$G_{P^{+}}(f) = \frac{24\% A KTm}{(N-mw^{2})^{2} + mw^{2}f^{2}}$$

We can find the correlation functions by contaur
integration:
(f) $\overline{x(f)} \overline{x(t+r)} = \frac{AT}{mw^{2}} e^{-\frac{BT}{mm}} (\cos \omega + \frac{a}{2m} - \sin \omega, r)$
where $\omega e^{2} = \frac{AT}{m} = \frac{a}{2m} e^{-\frac{BT}{2m}} \frac{1}{2m} (\cos \omega + \frac{a}{2m} - \frac{a}{2m})^{2}$
(b) $\overline{f(t)} \overline{r(t+r)} = m + T e^{-\frac{AT}{2m}} (\cos \omega + \frac{a}{2m} - \frac{a}{2m})^{2}$
(c) $\overline{f(t)} \overline{r(t+r)} = m + T e^{-\frac{AT}{2m}} (\cos \omega + \frac{a}{2m} - \frac{a}{2m}) \int_{0}^{\infty} \frac{1}{(x-mw^{2})^{2} - \frac{a}{2m}} df$
(c) $\overline{x(t)} \overline{r(t+r)} = \int_{-\infty}^{\infty} f_{p^{-}}(t) df e^{i\omega^{2}} = \frac{dA A T}{2m} \int_{0}^{\infty} \frac{1}{(x-mw^{2})^{2} - \frac{a}{2m}} df$
 $= \frac{AT}{w} e^{-\frac{BT}{2m}} - \frac{BT}{2m} - \frac{a}{2m} (x-mw^{2})^{2} - \frac{a}{2m} df$
(c) $\overline{x(t)} \overline{r(t+r)} = \int_{0}^{\infty} \frac{1}{(x-mw^{2})^{2} - \frac{a}{2m}} \frac{1}{(x-mw^{2})^{2} - \frac{a}{2m}} df$
 $= \frac{AT}{w} e^{-\frac{BT}{2m}} - \frac{BT}{2m} - \frac{a}{2m} (x-mw^{2})^{2} - \frac{a}{2m} df$
We see that the cross correlation vanishes for $T = 0$
 $a_{-} expected - because at T + 0, we have $H = Bawett - Batment$
 $Batribution and we could write out this distribution
hence we have solved completely for the stationary
state, that is, we have $W(x, t, x, t, t, \tau)$
We could do sawe groecous distribution $heck$
 $and the expective rise to solve a for free garhiele to
find a time - degendent position distribution beck
and $Dristem m$ Was.
Setting up FP equation in two variables, p and x . Must
find:
 $A(x) = dm \frac{AT}{AT} = \frac{T}{2m}$
 $A(y) = 2m \frac{AT}{AT} = -\frac{BT}{2m}$$$$

 $B(x) = \lim_{\Delta t} \frac{\Delta x^2}{\Delta t} = 0$ B(Xp) = Jun AXAp = 0 $B(p) = Jm \Delta p^2 = 2BZT$ We can now write FP equation: $\frac{\partial W(x,p,t)}{\partial W(x,p,t)} = -\frac{p}{m} \frac{\partial W}{\partial x} + \frac{\partial}{\partial p} \left[\left(\frac{Bp}{m} + \alpha x \right) W \right] + \frac{BkT}{m^2} \frac{\partial^2 W}{\partial p^2}$ Can find result in Olhlenbeck and Wang in Wax. The point of this example is to indicate the method of forming FP equation by splitting up second order differential equation. Example: Galvanometer Damping: NOS NR Introduce notation: Moment of Inertia: & Torsion constant i a Duoise Deflection : 29 Assume square loop of dimensions a, b in a constant magnetic field Ho. Loventa Torque: K = MHLab cos 20 = YL, 24 << 1 The mechanical equation of motion: (11) & 22 + B22 + x 22 = F1 + F(t) mech Electrical equation: (12) - L dr + 1 R = Vs + Vinduced + Fer (t) neglect signal - y il

from Vinduced = - 1 d fH-dH = - Habn coall il = - 8 il Solve simultaneously ! (13) $d \frac{z^2}{2} + \left(\beta + \frac{r^2}{R}\right) \frac{z^2}{2} + \alpha \frac{z^2}{2} = \frac{r^2 \frac{z^2}{2s}}{R} + F_{mech}(t) + \frac{r}{R} \frac{r}{F_0}(t)$ electrical damping (14) $G_{22}^{+}(f) = \frac{4\beta k T_{RIF} + \frac{k}{R} 4R 2 T_{R}}{\left|-\omega^{2}R + \lambda \omega \left(\beta + \frac{k^{2}}{R}\right) + \alpha\right|^{2}}$ (15) $\overline{2^{2^2}} = \int_{0}^{\infty} G^+ df = \frac{\beta T_{air} + \frac{t^2}{R} T_R}{\beta + \frac{\delta^2}{R}} \frac{k}{\alpha}$ = InT where Tair = TR = T so that under equilibrium, equipartition is observed. Some periodicity observed in underdamped noise; m f f mm f f For overdamped: However, UZ 15 same for both cases.

Steady state solution of FP Equation:
6)
$$\frac{\partial W}{\partial t} = -\frac{\partial}{\partial X} (AW) + \frac{1}{2} \frac{\partial^2}{\partial X^2} (BW)$$

(a) $\frac{\partial W}{\partial t} = 0$; $AW = \frac{1}{2} \frac{\partial}{\partial A} (BW)$
(b) $\frac{2}{B(x)} = \frac{1}{BW} \frac{\partial}{\partial X} (BW)$
 $\frac{2}{B(x)} e^{\frac{1}{2}B(x)} e^{\frac{1}{2}B(x)} \frac{dx'}{B(x)} e^{\frac{1}{2}B(x)} e^{\frac{1}{2}B(x)$

Thus, we get a guassian under this approximation which is generally valid as the probability decreases rapidly as one moves away from Xm. This whole argument rather follows from the central limit theorem. The FP equation will usually tend to a gaussian. This same result could also be had directly from the master equation,

 $2\left(\frac{\partial A}{\partial X}\right)_{X_{380}}$

what we have said is that the mean is the most probable value and large variations from the mean do not occur. Example: Floctuations in Semi-conductor Carrier Density. (4) Probability of a carriers = P(x). Setting up the master equation with probability of absorption x; generation B: (5) $\frac{dP(n)}{dt} = \alpha(nti)P(nti) + \beta(n-1)P(n-1) - \left[\alpha(n) + \beta(n)\right]P(n)$ For an intrinsic material: $\alpha(n) = \alpha n^2$, $\beta(n) = constant$ For n type: $\alpha(n) = \alpha'n^2$, $\beta(n) = b(Nd-n)$ Radioactive Decay: ~ (n) = a'n , (3(n) = 0 since only decay occurs. Fluctuations in state of gas under EM radiation: n is number in excited state, (absorption of photons) $\alpha(n) = \{A + B_{\mathcal{D}}\}n$, p = density of electronsstimulated spontaneous emmission emmission B(m) = Bp(N-n) (emmission of photons) R number in excited state Random Walk: $\alpha(n) = \beta(n) = constant$

Now calculate fluctuations:
(6)
$$\frac{d\bar{x}}{d\bar{z}} = \frac{d}{d\bar{z}} \int \pi^{p(n)} dn = -\langle x(n) \rangle + \langle \beta(n) \rangle$$

from equation (5). Now make linear assumptions
Expand $\alpha(n), \beta(n)$ around steady state value
(corresponding to xm):
 $\alpha(n) = \alpha(nm) + \alpha'(n-mm) + \cdots$
 $\beta(n) = \beta(nm) + \alpha'(n-mm) + \cdots$
 $flues, since $\frac{d\pi m}{d\bar{z}} = 0$;
(1) $\frac{d(\bar{u} - nm)}{d\bar{z}} = -\alpha(nm) + \beta(nm) + (-\alpha' + \alpha')(\bar{u} - nm)$
 $\frac{dt}{d\bar{z}}$
Note that the vate of decay depends on the time
which one would expect. The system decays exponentially
to its equilibrium at a characteristic time
 $\frac{1}{n} = (-\alpha' + \beta').$
We can be the same thing for the mean square
deviation :
 $\beta(n) = \frac{1}{2} [n-mm]^{2} [ln] dn, method of solution is in
 $\beta(n) = \frac{1}{2\bar{z}} [n-mm]^{2} + cm(nm)^{2} + constant is in
 $\beta(n) = \frac{1}{2\bar{z}} [(n-mm)^{2} + cm(nm)]^{2} + cm(nm) + \beta(nm) + \beta(n$$$$

LECTURE XXVIII 12-8-60 Fluctuation in Semi-conductor Carrier Concentration: (1) $A(n) = \lim_{x \to 1} \frac{\Delta n}{\Delta t} = (-1)\alpha(n) + (+1)\beta(n) = -\alpha + \beta$ $(2) \quad B(n) = \lim_{x \to 1^{\infty}} (\Delta x)^2 = |\alpha(n)| + |\beta(n)| = \alpha + \beta$ Then the FP equation is: $\frac{\partial}{\partial t} \int n P(n) dn = - \int n \frac{\partial}{\partial n} \left[(-\alpha + \beta) P \right] dn + \frac{1}{2} \int n \frac{\partial^2}{\partial n^2} \left[(\alpha + \beta) P \right] dn$ $or \quad \frac{\partial \tilde{n}}{\partial t} = + \int (-\alpha + \beta) P \, dn - \frac{1}{2} \int (\alpha + \beta) P \, dn$ o from boundary conditions $= -\alpha(n) + \beta(n)$ In the steady state: N=No, x(No) = B(No) We then expand linearly around the steady state: (3) $\frac{\partial n}{\partial t} = -\alpha(n_0) + \beta(n_0) = -\alpha(n_0) + \beta(n_0) + (-\alpha' + \beta')_{n_0} (n - n_0)$ $= \frac{\partial(\overline{n} - h_0)}{\partial t} \qquad which is good for small floctuations from \overline{n_0}.$ $T_{decay} = (-\alpha' + \beta')_{h_0}^{-1}$ For the mean square deviation: $\frac{1}{dt}\int (n-N_0)^2 P dn = -\int (n-N_0)^2 \frac{1}{dx} \left(-\alpha + \beta \right) P dn$ $+ \frac{1}{2} \int (n - n_0)^2 \frac{d^2}{dn^2} \left[(\alpha + \beta) P \right] dn$ 2 [(n-No)(-x+B) P dn = 2 [n-No)(-x+B) 1 by partial integration

or, m the linear approximation:
(d)
$$\frac{\partial (n-m)^2}{\partial t} = 2 (n-n_0)^2 (-\alpha' + \beta')_{n_0}$$

The second term gives by partial integration,
(e) $\overline{\alpha + \beta}$
or, in the linear approximation:
(i) $\frac{\partial [(n-n_0)^2}{\partial t} = 2 (n-n_0)^2 (-\alpha' + \beta)_{n_0} + \alpha(n_0) + \beta(n_0)$
and in the steady state $\frac{\partial [(n-n_0)^2}{\partial t} = 0$,
(f) $(n-n_0)^2_{s_s} = -\frac{\alpha(n_0) + \beta(n_0)}{2 (\frac{1}{\alpha + \beta})}$
The previous solution to the FP equation gave:
(g) $P(n)_{s_s} = constant e^{-\frac{(n+\alpha)^2}{2 (\frac{1}{\alpha + \beta})}}$ which checks with (7).
Upper solution of equations (d) and (d) we have :
(f) $[n(\theta-n_0)](n(\theta-n_0)] = [n(0) - n_0]^2 e^{-t/theory}$
and :
(o) $G_{en}(t) = \overline{An^2(t)} - \frac{2 theory}{1 + \alpha^2 t^2 leany}$
 $er = a Corentation Spectral density.$

At low temperature, only small fraction of donors ionized so that Nd >> No and

 $(n - n_0)_{ss}^2 = \frac{n_0}{2}$

At high temperatures : Nd = no, Nd - no = 0 so very small deviations.

This is not purely random creation process as we would expect, $\Delta n^2 = n_0$, as there is not an infinite supply of donors. The $\frac{1}{2}$ comes from the creation relation $\alpha(n) = \alpha n^2$.

We now consider shot noise in a semi-conductor when an electric field is applied. Recall that Johnson noise is related not to floctuations in carrier density but to carrier velocity. Semi-conductors become noisier when more corrent 15 passed; this does not happen in a metal.

LECTURE XXIX 12-10-60 Noise in Semiconductors: (1) $(n - n_0)^2 = n_0 \left(Nd - n_0 \right)$ ZNd - no (2) Il 15 mobility: Uduft = UE, J = next (3) Lifetime $T = (\alpha' - \beta')^{-1}$ The average current produced by one electron during its lifetime cross ////// $(4) \quad e \quad \frac{\times}{2} \quad \frac{1}{7} \quad = \quad e \quad \frac{\mu e r}{2} \quad \frac{1}{r} \quad = \quad e$ (5) or $\overline{L} = n_0 \frac{e}{P_2}$; $\overline{\Delta u^2} = \frac{e^2}{T_2^2} \overline{\Delta u^2}$, $\overline{T_2}$ is transit time = $\frac{1}{T_2} = \frac{\mu E}{L}$ The correlation functions is: (6) $\Delta_{\perp}(t) \Delta_{\perp}(t+t) = \frac{e^2}{T_2^2} \Delta_{\perp}(t) \Delta_{\perp}(t+t) = \frac{e^2}{r_2} \Delta_{\perp}^2 e^{-t/r}$ $[7] \quad G_{\perp}^{+}(f) = \frac{e^{2}}{r_{z}^{2}} \frac{n_{0}(Nd - n_{0})}{2Nd - n_{0}} \frac{4r}{1 + \omega^{2}r^{2}}$, vacuum diode, PSD = Ze Io In diode we had high cut off and constant PSD because of short transit time, however, now transit time is long enough to be of interest. Now 1 $\frac{1}{10} \frac{1}{1^2} = \frac{ME}{R^2} = \frac{M^2}{\sigma^2} \frac{T^2}{R^2} = \frac{1}{10^2} \frac{1}{10^2} \frac{T^2}{R^2}$ so that the PSD is proportional to 12 and not i as in vaccoundides. Assomption made here is that 1277 Throughout derivation.

Gr (A) dexcess " I de f noise : or I' XI² 1 Johnson Noise 10-3 10° - log f -"Excess" noise is usually due to defects in material. These occur at frequencies of 10-3 cps which is just right for diffusion of imperfections. Analogous to "flicker" noise in vacuum tubes due to emission from semiconducting oxide cathodes. Another type of excess noise is contact noise due to semiconducting oxide solder joints. Hard to theorize these effects as there is little knowledge of details. Schottky's Theory of Flicker Noise: It area lowering of work function St over small area A by adsorbed impority. Na Cathode

From theory of thermionionic emission : Jo & e The

Then increase in J due to decrease in 4: e to at - e to

and $\Delta I = A J_0 \left(e^{+ \frac{\Delta \Psi}{\Lambda T}} - 1 \right)$ due to one imperfection

Noise comes from varying number of imperfections. Then

 $\Delta I = A J_0 \left(e^{\frac{A \psi}{2T}} - I \right) \Delta N$

For correlation: $A_{L}(t) O_{L}(t+tr) = A^2 J_{*}^2 \left(\frac{\Delta \psi}{h Te}\right) \overline{\Delta N^2} e^{-\frac{\psi}{h Ta}}$

where we have used &4 small and the correlation function for shot current in semiconductor. Because of different adsoubtion times Va which are due to the many different ways of diffusion, we have a distribution on Ta, so PSP becomes: $G_{t}^{+}(F) \longrightarrow \int \frac{47a}{47a} \frac{3(7a)}{47a} dTa$ with g(Ta) ~ In to give i dependency of excess noise. In metallic resistors, little fluctuation in number of carriers except maybe near the fermi surface, so there is no shot noise nor excess noise. Reference: van der Ziel, Ch. 8, Noise LECTURE XXX 12-13-60 Noise in Non-Linear Devices: Narrow output Noise band 1(1) A mput filter at fo Can always make F-series expansion of noise

current;

 $u(t) = \sum_{m=1}^{\infty} \left\{ a_m \cos 2\pi \frac{n}{T} t + b_m \sin 2\pi \frac{n}{T} t \right\}$

We can also write x(t) = A(t) coastafot + B(t) sunzafot where : A(H) = E { an con 2TT (m - fo)t + bn sin 2T (m - fo)t } $B(t) = \frac{2}{2} \left\{ -a_n \sin 2\pi \left(\frac{n}{T} - f_0 \right) t + b_n \cos 2\pi \left(\frac{n}{T} - f_0 \right) t \right\}$ A and B represent random gaussian variables because an and In are independent gaussian variables. We can write complete distribution if we just know all the linear moments, that is , A(+) A(++7) { these give w { A(t), B(t), A(t+r), B(t+r) } B(+) B(++7) $A(t) B(t+\tau)$ In forming distribution we make use of the properties of the day, ba, i $\dim \overline{a_n^2} T = \dim \overline{b_n^2} T = G(f = \frac{n}{T})$ with anon = andre = anom = 0 Then; $\overline{A(t|A(t+t))} = \overline{B(t)B(t+t)} = \int_{0}^{\infty} G^{+}(f) \cos 2\pi (f-f_{0})t df$ $= \frac{1}{2} \int G(f) \left\{ e^{2\pi L \left(f - f_0\right) t} + e^{2\pi L \left(f + f_0\right) t} \right\} df$ A150 1 $\overline{A(t) \ B(t+M)} = \int_{0}^{\infty} G^{+}(f) \ sur \ 2\pi \left(f - f_{0}\right) \pi \ df$

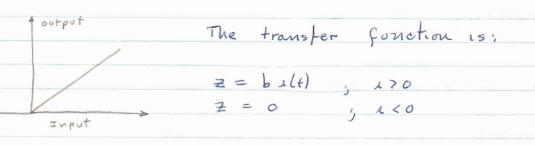
The total power is again: $\frac{1}{2} \quad A^{*}(t) + B^{*}(t) = \int G(f) df$ We now assume 1(t) is the input to a guadratic detector whose output is yel? What is out got frequency distribution? a Quadratic o 1(4) Detector y(4) 0- y=12 Consider writing ilt as envelope - phase; 1(+) = V(+) con {2 T fot + q(+) } where $V^2(t) = A^2(t) + B^2(t)$ $Q = arc \tan \frac{B(t)}{B(t)}$ We now write the appropriate distribution function; $W \{A(t), B(t)\} = \frac{1}{2\pi\sigma^2} e^{-\frac{A^2 + B^2}{2\sigma^2}}$ $\sigma W(V, \varphi) = \frac{1}{2\pi\sigma^2} V e^{-\frac{V^2}{2\sigma^2}}$ Now q is uniformly distributed in 0 = q = 2TT as the W(V, q) is independent of q. The quantity V e - V2/202 is called the Ray leigh distribution. Now the output of the detector is i $y(t) = \int a^2 x^2(t) = \int a^2 V^2(t) \cos^2 \{2\pi f_0 t + \varphi(t)\}$ = $\pm \int a^2 V^2(t) + \pm [a^2 V^2(t)] \cos \left\{ 4\pi \int b t + 2\varphi(t) \right\}$ We now connect a low-pass filter the output : y(t) pass Z(t) A filter

Thus $z(t) = \pm a V^2(t)$ with consequent distribution: $W(z)dz = \frac{1}{a\sigma^2}e^{-\frac{z}{a\sigma^2}}dz$ From gaussian distribution on i(t), we get Rayliegh distribution on the envelope V(t) and an experiential distribution on Z(+). For fixed of at import B(+)=0, then Z(+) would have been : z(+) = = a A²(+) where A is gaussian distributed or $z'(t) = \frac{1}{\sqrt{2\pi\sigma^2}} \frac{1}{\sqrt{2z'a'}} e^{-\frac{z'}{a\sigma^2}} dz'$ which is χ^2 distribution. A remarkable propertie of the exponential distribution is that the r.m.s. deviation is equated to the mean That is: $\overline{Z(t)} = a\sigma^2$; $\overline{Z^n(t)} = n': a^n \sigma^2 n$ Variance: $AZ^2 = Za^2\sigma^4 - a^2\sigma^4 = a^2\sigma^4 = (\overline{z(t)})^2$ form of distribution for noise in Z(+), Most probable value. 2(+) 15 Z=0, A physical example of this distribution would be nonstruments playing the same frequency note, The different instruments will have rapidly varying phases, thus the power is proportional to the number rather than nº. Any problem that has random phase associated with it has this distribution.

LECTURE XXXI 12-17-60 From last time: to, Bandwidth a detector filter $w(z)dz = \frac{1}{a\sigma^2}e^{-\frac{z}{a\sigma^2}}dz$ Correlation: $y(t) y(t+t) = x^2 r^2(t) r^2(t+t)$ with $R_{L}(t) = L(t) L(t+t)$ then (from homework problem) $y(t) y(t+r) = \alpha^2 \left\{ R_1^2(0) + 2R_2^2(r) \right\}$ $= \alpha^2 \sigma^4 + 2 \alpha^2 R_a^2(r)$ For PSD of g, take & transform: $G_{y}(f) = \alpha^{2} \sigma^{4} S(f) + 2\alpha^{2} \int \mathcal{R}_{x}^{2}(r) e^{-2\pi i f r} dr$ We can write the last integral as: S (Relt) G (F') e 2TTIF e - 2TTIF df' dr or $G_{y}(f) = \alpha^{2} \tau^{4} \delta(f) + z \alpha^{2} \int G(f') G(f - f') df'$ convolution of imput PSD

Assume a rectangular import PSD: 4 Ga fo- tB -fo output PSD 15; from the convolution integrals the Then 8(0) 4 62 Area of $\mathcal{S}(0) = 4\kappa^2 A^2 B^2$ 422 AB ZXZAZB seen after low pass filter 240 25+B Zfo-B Let the time of meter indecation be th then the = 1 with $(\Delta Z_{\tau})^{2} = \frac{4\alpha^{2}A^{2}B}{z tn} \propto BB^{\prime}$ Now assume signal at fo into mpot. We can represent this by S functions superposed on the input noise PSD. We write for the input: S(t) + In(t) where $S(t) = U \cos(\omega_0 t + 2^{\circ})$ where 2 is distributed uniformly in 0-215 so that Import 15 stationary: $Output: y(t) = x \int 5^{2}(t) + 2s(t) \ln(t) + \ln^{2}(t)$ $\frac{1}{y(t)} = \alpha \frac{1}{s^2(t)} + \frac{1}{n(t)}$ average noise average output output signal

For the correlation function: $R_{y}(r) = \alpha^{2} \left[R_{s^{2}}(r) + 4 R_{s}(r) R_{1}(r) + 2 R_{s}(o) R_{1}(o) + R_{yn}(r) \right]$ Now $R_{s^2}(r) = \mathcal{U}^2 \cos^2(\omega_0 t + 2\theta) \mathcal{U}^2 \cos^2(\omega_0 t + \omega_0 r + 2\theta)$ = 1/4 H4 + 1/4 cos Zwo 1 Rs (1) = Il con (wot + w) Il con (wot + wot + 2) = I ll' con wor what is new output PSD ?. 5(0) of area = $e^2 \left(\frac{M^2}{2} + 2AB\right)^2$ Area = a llt ZXZAZB Beat of signal to noise 8 Zatas 250 250+B -250 Zfo-B


LECTURE XXXII 12-20-60 * a (1 + ZAB)2 Output PSD: No sidebands $za^{2} \mathcal{U}^{2} A$ as signal has been passed thru love - pass filter. 1 ar M2 Input PSD with signal superposed on noise -fo fo Signal power input: 2 ll2 Noise power input: ZAB Signal power out: 1/4 a 2 M4 Output noise power in an interval of Af = The around zero frequency: Za" M" A AF + 4a" A B AF For $\frac{S_L}{N_L}$ 771: $\frac{S_0}{NO(4H)} = \frac{1/4 M^2}{2 A \Delta F} = \frac{S_L}{2 N_L} \frac{B}{\Delta F}$

For $\frac{S_{e}}{N_{e}} \ll 1$: $\frac{S_{o}}{N_{e}} = \frac{1/4}{4} \frac{M^{4}}{4} = \left(\frac{S_{e}}{N_{e}}\right)^{2} \frac{B}{\Delta f}$

Move important case: Si 771: If we use integrated that this is independent of B. No Z Nu. Notice It is only band width in audio section that matters, For Si K(1: So x 1 , not independent of B. Small signals in quadratic detectors die Further suppressed which is general for all detectors.

This analysis can be repeated for modulated signals, taking care to include Fourier components. Result is similar to results obtained here.

Linear Detector:

Let p(1, 12) be the joint distribution of input at two times 1(t), 1(t+r). Then:

$$Z(t) Z(t+T) = b^{2} \int \int I_{1}(t) I_{2}(t+T) p(y_{1}, y_{2}) dy_{2} dy_{2}$$

The problem is essentially done, Must take inverse Fourier transform to find PSD. However, if input is gaussian with variance T², we can go further and the moments of the output are:

$$Z^{2n} = \frac{1}{2} b^{2n} \sigma^{2n} (.3.5...(2n-1))$$

$$\overline{z^{2n+1}} = \underbrace{b^{2n+1}}_{\sqrt{z\pi\sigma^2}} \int_{0}^{\infty} \frac{2n+1}{2\pi\sigma^2} = \frac{3^2}{2\sigma^2} dy$$

we get for the joint moment,

 $\overline{z(t)} \overline{z(t+r)} = \frac{b^2}{2\pi r^2 (1-p^2(r))^{1/2}} \iint y_1 y_2 \exp\left[-\frac{y_1^2 + y_2^2 - 2p(r)y_1 y_2}{2\sigma^2 (1-p^2)}\right] dy_1 dy_2$

For solution, see Rice Section III and Davenport and Root Chapter 12.

The output psd for the linear detector is not much different than that of the guadratic detector when only noise is present at the input.

If we had cubic detector, we would have 3rd harmonic components in output as seen from expanding cos 30 and 5m30.

Case of General Non-Linear Device : = g (4) ; L -> g Introduce Laplace transfer function .

 $f(u) = \int_{\partial} g(y) e^{-yu} dy$ Then $z = \frac{1}{2\pi i} \int e^{i u y} f(u) du$ $u' - i \infty$

where the integration is in the complex "in" plane. Now we can formally write the correlation function: $z(t) = \int g(y_i) g(y_2) p(y_1, y_2) dy_1 dy_2$

 $= \frac{1}{(2\pi L)^2} \int_{C} f(\mathcal{U}_1) d\mathcal{U}_2 \int_{C} f(\mathcal{U}_2) d\mathcal{U}_2 \int_{C} e^{\mathcal{U}_1 \mathcal{Y}_1 + \mathcal{U}_2 \mathcal{Y}_2} p(\mathcal{Y}_1 \mathcal{Y}_2) d\mathcal{Y}_1 d\mathcal{Y}_2 d\mathcal{Y}_2$

sourt characteristic function of mpot.

If the signal and noise are independent, we have the product of the characteristics Mis (ti, te) Mix (ti, te) See Rice, section IV, Pavenport and Root Ch. 13.

The unportant point is that all components of mput PSD must be convoluted with each other to find PSD around for. For w = integer in wth law device, we have infinite number of convolutions.

LE CTURE XXXIII 1-5-61

Fluctuations in the EM Field. This is essentially a problem of sorting particles out in boxes each with non-equal apriori probability. Governed by M-B distribution: (1) $e^{-E_{1}/2T}$ $E = E_{1}/2T$ i representing a particle. We can also throw this into a phase space form C e = E (px Rg A = xy Z)/LT dx dy dz dq x dq g dp = (z)We will find that the normalization constant contains Planck's constant. Now, the average energy of the system is , E = Zi Ei e (3) Ze - Er/AT we will calculate floctuations from the mean. Photons in Black box is in contact with a Temperature reservoir. This means that photon gas interacts with the outside world, and fluctuations in the mean will occur. Calculate E= and show that this is not the same as E. $(4) \overline{E^2} = \underbrace{E_1}_{L} \overline{E_2} \overline{E_1} \overline{E_$

E e - EI/XT pefme, $\alpha = -\frac{1}{\lambda T}$, $z = \pm e^{-E_a/kT} = \pm e^{\alpha E_a}$

Then . (5) $\overline{E} = \frac{1}{2} \frac{\partial \overline{Z}}{\partial \alpha}$, $\overline{E^2} = \frac{1}{2} \frac{\partial^2 \overline{Z}}{\partial \alpha^2}$ Z is called the partition function. There fore (6) $\overline{\Delta E^2} = \frac{1}{2} \frac{\partial \overline{Z}}{\partial \alpha^2} - \frac{1}{\overline{Z}^2} \left(\frac{\partial \overline{Z}}{\partial \alpha}\right)^2 = \frac{\partial \overline{E}}{\partial \alpha}$ We now note that the definition of specific heat $C_{i} = \frac{\partial \overline{E}}{\partial T}$, Since all macroscopic thermodynamic quantities assume that DEL is small, that is; DE2 E2 should be of the order 10th which is true when we have 10° particles. Now during calculation, we require that quantum states (i) doe not change, This means for EM waves that volume of box does not change as Eigenstates depend on nodes which are governed by volume of box. Continuing: (7) $\overline{\Delta E^2} = \frac{\partial \overline{E}}{\partial \alpha} = \frac{\partial \overline{T}}{\partial \alpha} \frac{\partial \overline{E}}{\partial T} = \chi T^2 C_V (due to Einstein)$ If we have large number of particles, it is clear that $\overline{\Delta E^2}$ goes as N⁻¹ since α depends on N^+ . $\overline{E^2}$ Nt'. Ist Example: Ideal Gas with N atoms. E = = = NKT and Cv = 3 Nk. Then; $= \frac{3/2}{9/4} \frac{N^2 T^2}{N^2 \chi^2 T^2} = \frac{2}{3} \frac{1}{N}$ so that in an ideal gas with large N, The fluctuations are negligible. However, for small N and T, fluctuations will be large.

2nd Example: Quantized Harmonie Oscillator we will neglect zero point Ee = nahz energy. what is Z3 The $\overline{Z} = \underbrace{Z}_{N_{x}=0} e^{-\frac{N_{x}}{hT}} = \frac{1}{1 - e^{-\frac{h\nu}{hT}}}$ $\frac{2}{2} n_{\mu}h_{\mathcal{D}} e^{-\frac{n_{\mu}h_{\mathcal{D}}}{h_{\tau}}} = \frac{h_{\mathcal{D}}e^{-\frac{h_{\mathcal{D}}/h_{\tau}}{h_{\tau}}}}{(1 - e^{-\frac{h_{\mathcal{D}}/h_{\tau}}{h_{\tau}}})^2} (He^{-\frac{h_{\mathcal{D}}/h_{\tau}}{h_{\tau}}})$ Ē = $= \frac{hz}{e^{hz/hT} - 1}$ $C_{V} = \frac{(h \pi)^{2}}{2T^{2}} e^{h\pi/4T}$ $\left(e^{h\pi/4T} - 1\right)^{2}$ and we get for DE2 $\Delta E^{z} = (hz)^{2} \frac{e^{hz/kT}}{(e^{hz/kT} - 1)^{2}}$ Classically we know that E= 2T for harmonic oscillator, we have the same here

for E when T is large, that is, for AT >> hz, Also, we find that E goes as e -hz/AT when 2T << hz.

Classically, we should have infinite number of modes in a black box each corrying energy ht which would mean infinite energy coming out at hole in black box. This is problem is what faced Planck, and is resolved by e hulting off everging at ht.

We now make connection with photons. ne can be considered as the number of photons in mode ha m black box . ha is conversion from harmonic oscillator energy to number of photons. Then: (8) $\overline{n_{x}} = \frac{1}{e^{h \omega / h T} - 1}$; $\Delta n_{x}^{2} = \frac{e^{h \omega / h T}}{(e^{h \omega / h T} - 1)^{2}}$ = $\overline{M}_{a}(\overline{M}_{a}+1)$, some $\overline{M}_{a}+1 = \frac{e^{h\omega/kT}}{e^{h\omega/kT}-1}$ Thus if The is large, the fluctuations increase This is the same as EM wave going three quadratic detector. LECTURE XXXIV 1-7-61 How many modes will exist in given volume? Analogous to transmission lines. These modea should be independent of building conditions provided 23 Lic V. Also independent of whether boundary absorbs on reflects. However, mitially need BC to facilitate counting, Assume veflecting walls. E Vanishes at boundary, thus we have sure waves, E = A such x x suchy y such z e aut Lx This is havemonic solution of Maxwell's equation, Now wave only vanishes at both boundaries if: Kx Lx = nx T Ry Ly = NyT 12 LZ - NZTI

Consider now the nomber of waves possible in an interval of the wave vector. That is, the number of standing waves with wave vector k in a small element shx, shy skz

Anx Dry Drz = Lx Ly LZ Akx Aky Akz

 $|te| = \frac{2\pi}{2} = \frac{2\pi}{c}$

For number of standing waves with frequency between p and $p + \Delta p$ = $4\pi k^2 \cdot LxLyLz \cdot \frac{1}{73} \cdot dk$

Only first octant because change of sign of wave number gives same standing wave.

Finally, the number of standing waves is given by $\sqrt{4\pi 2^2}$ AZ

making transformation from k to 2.

This is independent of boundary conditions in the Timit of Targe volume. Also same result given by Born-von Karman boundary conditions.

Black Body Radiation Field:

We can integrate mode distribution from r=0 to $p=\infty$ as there will be only small number of long wavelengths in EM considerations. We also assert that each mode carries average energy of the harmonic oscillator: hr

Then the average energy density: $\overline{\mathcal{U}} = \int \frac{h\nu}{e^{h\nu/kT}} \cdot 2 \cdot \frac{4\pi\nu^2}{c^3} d\nu$ two waves (for each h) of different polarization $= 8\pi^5 k_{gatz,} T^4$ Evalute by substitution x = hz and set: = $\frac{1}{n^4}$ $\frac{1}{n^4}$ 3!Item of real interest is fluctuations and. We consider oscillators as independent of each other, we consider creation and absorbtion of photons is due to one oscillator and each frequency is independent of others, we can then use expression of last time. $\Delta \mathcal{U}^{2} = \int_{0}^{\infty} \frac{(h v)^{2} e^{hv/kT}}{(e^{hv/kT} - 1)^{2}} \frac{BTv^{2}}{c^{3}} dv$ However: ANZ = CUETZ Cru = specific heat $\frac{\partial \mathcal{U}}{\partial T} = \frac{32\pi 5 \mathcal{I}^4 T^3}{15 h^3 c^3}$ where : of black body radiation AUZ = CV KTZ is very generally good for any system of evergy levels.

We now ask for the average number of photons in radiation field: N = Z The te is index of modes and polarization My is average number of photons per mode. $\overline{\mathcal{M}_{k}} = \frac{1}{\frac{h \mathcal{D}(k)}{\lambda T} - 1}$ Average number of ghotous in one cc. in a frequency interval An: $\overline{N} = \frac{1}{\rho^{\frac{hD}{hT}} - 1} \frac{\theta T p^2}{c^3} \Delta z$ Mean square deviation from average number of photons: $\overline{\Delta N^2} = \overline{\Delta N_k^2} \frac{\vartheta \pi \nu^2}{c^3} \Delta \nu = \frac{h\nu}{\pi T^2} e^{\frac{h\nu}{\pi T^2}} \frac{\vartheta \pi \nu^2}{c^3} \Delta \nu$ $= \overline{N_k} \left(\overline{N_k} + 1 \right) \frac{\vartheta \pi \nu^2}{c^3} \Delta \nu \qquad (e^{\frac{h\nu}{\pi T}} - 1)^2 \frac{c^3}{c^3} \Delta \nu$ Relate ANC to N: At high frequencies, low temperatures hz 571 Then: ANZ = N as before at beginning of course. At low frequencies, have the then: $AN^{2} = \frac{N}{8\pi\pi^{2}}$

LECTURE XXXV 1-10-61

Spectral Lmes as Natrow - Band gaussian signal. Na Spectral lines can be thought of as many atoms radiating with separate phase, like instruments m orchestra. Atoms do not emit together, but with random phase and create a narrow band process. [Devices can be made to emit light coherently [Laser]]. Thus we can consider light to be made up of random amplitude and phase. 2 autil cos {wat + e(t)} with Power a { Le au(+) cra { wot + q(+)} Various light detectors detect power and are thus square law detectors. We write for the correlation: $P(t)P(t+r) = \overline{P}^{2} \{1 + z p(r)\}$ In analogy with previous results: P-> g(t) from g(t) = ~ 1'(t) $p(r) = \left[\underbrace{\exists}_{1} a_{1}(t) \cos \left\{ w_{0}t + \varphi(t) \right\} \right] \left[\underbrace{\exists}_{2} a_{1}(t+r) \cos \left(w_{0}(t+r) + \varphi(t+r) \right\} \right]$ [Z a (+) con { wot + q(+)}]2

Recall for quantum floctuations:

$$\overline{\Delta \eta_{2}^{2}} = \overline{\eta_{2}} (\overline{\pi_{2}} + i) = \overline{\eta_{2}^{2}} + \overline{\eta_{2}}$$

$$\frac{1}{\pi^{2}} = \overline{\eta_{2}} (\overline{\pi_{2}} + i) = \overline{\eta_{2}^{2}} + \overline{\eta_{2}}$$

$$\frac{1}{\pi^{2}} + \overline{\eta_{2}} + \overline{\eta_{2}}$$

$$\frac{1}{\pi^{2}} + \overline{\eta_{2}} +$$

 $\Delta N_t^2 = N_t + 2\kappa^2 \vec{P}^2 t \int p^2(t) dt$ for t >> The Suppose all atoms emit exactly in phase Then : $p(t) = cos w_0 t^{\nu}$ which gives infinitely sharp spectral line. Plugging in the equation for NE: $Z \propto^2 \overline{P}^2 \int \int P^2(t'-t'') dt' dt'' \rightarrow \chi^2 \overline{P}^2 t^2$ Thus, for cohevent light source: $\Delta N_{t}^{2} = N_{t} + N_{t}$ or the fluctuation of a single electromagnetic source. The above treatment brings in the stochastic process of the detector, unlike the treatment before. However lexcept in Lasers) width of spectral line 15 A2 = 108 eps, so case of independent emitters 15 more physical. Suppose we call spectral distribution 5(2), Can write: $\iint p(t) g(v) e^{2\pi v v t} dv dt = \int g^{*}(v) g(v) dv$ and $\Delta N_t^2 = N_t + 2\alpha^2 P + \int g^2(n) dn$ can be shown to be proportional to 1 spectral 2 AW W width

Then we can write:

 $\Delta N_t^2 = N_t + N_t^2$ $(\Delta \omega)t$ number of ogcillators that must be considered.

when this is done, results are same as before. The more oscillators taking part, the wider the line. Must not make (aw)t <1, limitation of oncertanty principle. If (SW) + = 1, we have coherent light source.

We have been considering point sources and polarized. If spatially distributed and unpolarized, most modify (aw) & term. We only write result here for spatial coherence factor. 1 2 ~ light wave length Z A d A ~ solid angle polarization detector

Reference: L. Mandel, Proc Phys Soc London 72, 1037

(1958)

LECTURE XXXVI 1-12-61 Fluctuations in the Radiation Flux: The EM radiation passing thru O in t seconds in direction 22, 5 contained in the volume V= ct O con 22. 68 cos20 0 The number of oscillators in volume V in direction it over the solid angle dre in frequency do is: 2 d - R v = d v 4 e³ polarization The appropriate intensity; T/2 2TT $d(v) dv = 2 \frac{hv}{e^{hv/hr}} \frac{v^2}{c^3} dv \int c \cos v \sin v dv dq$ This is the energy amitted by a one cm2 black body in I sec in dz at temperature T. The average energy of the oscillators is used. The intensity after integration is (integration over d-2): $d(z) dz = z \pi \frac{hz}{e^{hz/AT}} \frac{z^2}{e^z} dz = \frac{c}{4} u(z)$ angular energy density integrations Because we have fluctuations in the we will have fluctuations in d(x). The integrated intensity is i $d(m) = \int d(n) dn = \sigma T^4$ 215 24 stephan - Poltzmann where $\sigma =$ 15 h3 c3 Constant.

Consider the mean square fluctuations in energy of a black body at temperature T with area of and in time t. We find that these fluctuations are . $\Delta W^2 = \frac{c}{4} O t \Delta u^2$ msf in everyy density which comes from: $\Delta W^{2} = \int \int \int OCt \cos 2 \sin 2^{L} d2^{0} dq \frac{2z^{2}}{C^{3}} \frac{(hz)^{2}}{(hz)^{KT}} dz^{0} dq \frac{2z^{2}}{C^{3}} \frac{(hz)^{2}}{(e^{hz/kT}-1)^{2}}$ = HOTOKT5 from $u(z) = \frac{4}{c} \sigma T^4$, $\Delta u^2 = \frac{16}{c} \sigma k T^5$ The total radiated flux from a black body of area 0 is 507" = W/t and the msf in this flux : $\Delta \phi_t^2 = \Delta W^2 = 40 \sigma h T^5$ $\frac{1}{t^2} = t$ This is a statistical average over a time average. As Black bodies are seldom isolated, where is ingoing and outgoing flux so the total radiated fux is: $\phi = \tau O \left(T^{4} - \overline{T_{o}}^{*} \right)$ $\Delta \phi_t^2 = \frac{\Delta w^2}{t^2} = \frac{405 \, k \left(T \, 5 + T_0 \, 5 \right)}{t}$ Of course, this is the integrated result over all frequencies and directions.

Consider a Black Body Boloweter: We can write a Langevin equation for the temperature of the body knowing that eventually it will be brought into equilibrium via either radiation or conduction from external heat reservoir. $\begin{array}{cccc} C_{2^{\prime}} & \underline{d} & \underline{\Theta} & = & - \propto & \underline{\Theta} & + & F(t) = - & \underline{\Phi} \\ & \underline{\Phi} & & dt \\ & \underline{heat} & & \\ & \underline{heat} & & \\ & \underline{cupacity} & & \\ \end{array}$ we must require that in the steady state: Go Q2 = Co LT2 The solution 15: $\theta = \theta_0 e^{-\frac{\omega}{cv}t} + \frac{1}{cv} e^{-\frac{\omega}{cv}t} \int_0^t F(t') e^{t} \frac{\omega}{cv} t'$ $\overline{\theta^2} = \theta_0^2 e^{-\frac{2\alpha}{c_v}t} + \frac{F(t')F(t'')}{F(t'')} \left(1 - e^{-\frac{2\alpha}{c_v}t}\right)$ $\Theta(t) \Theta(0) = \Theta_0^{\tau} e^{-\alpha} t$ Thus is the system tune constant.

1-14-61 LECTURE XXXVII

 $c_v \frac{d\theta}{dt} = -\alpha \theta + F_{\theta}(t)$ Fluctuations due to heat conduction or radiation must satisfy:

AE2 = Cr &T2

Assume times much greater than characteristic time. cula. The solution is: $\overline{\theta^2} = \theta_0^2 e^{-\frac{2\pi}{\alpha_v}t} + \frac{1}{2\pi}\left(1 - e^{-\frac{2\pi}{\alpha_v}t}\right) \overline{F^2}$ $F(t')F(t'') = F_2 \delta(t'-t'')$, $F^2 = 2 \propto 2T^2$ NOW DE= COAT = CVB Then: $\theta_{xy}^2 = \frac{\Delta E^2}{G^2} = \frac{\lambda \Gamma^2}{G^2}$

A problem arises because Einstein equation assumes constant temperature while we use & which is time dependent. The point is that the body can be considered its own reservoir and heat transferred to it is unmediately distributed over its degrees of freedom.

Calculate PSD, Assume wide band.

 $G_{\phi}^{+}(f) = \frac{G_{\phi}^{+}}{|f|^{\omega}c_{v} + \alpha|^{2}} = \frac{4\alpha\lambda T^{2}}{\omega^{2}c_{v}^{2} + \alpha^{2}}$

 $\overline{\Theta^2} = \int_0^\infty G_{\theta}^+(H) df = \int_0^\infty \frac{4\alpha k T^2}{4T^2 f^2 cv^2 + \alpha^2} df = \frac{k T^2}{Cv}$ $AG_{t}^{2} = \frac{G_{\theta}^{+}(0)}{2t} = \frac{2 \alpha h T^{2}}{\alpha^{2} t}$ Radiation : $E = TO(T^{4} - T_{0}^{4}) = TO\frac{d}{dT}T^{4}\theta = 4TOT^{2}_{0}\theta$ power area of body Taylor series expansion $\Delta q_{t}^{2} = (4t_{s}^{*}0 T_{o}^{*})^{2} \Delta \theta_{t}^{2} = (400 T_{o}^{*})^{2} \Delta \theta_{t}^{2}$ = (400 To3) 2 kTo2 from: Et = 4t + 0 To = 0 $\overline{\Delta E_t^2} = (4t\sigma O T_u^3)^2 \overline{\Delta \Theta^2}$ Finally using the value for a: $\Delta Q_t^2 = \frac{8 \sigma O \lambda T_s^3}{t}$ this was derived from the heat conduction equation and is exactly the same as that from considering EM oscillators directly, VIZ, $Aq_{t}^{2} = 4 \sigma O \lambda T_{0}^{5} + 4 \sigma O \lambda T_{0}^{5} = 8 \sigma O \lambda T_{0}^{5}$

Radiation Measurements: Temperature rises as radiation is incident on element. e evacuated black coating wires must be made thin, so conduction will not be much. However, the thinner the wire, the higher the resistance and hence Johnson noise. We also have Peltier heat. The total equation is: $C_V \frac{d\theta}{dt} + \alpha \theta + \alpha S(T_f\theta) = F_{\theta}(t)$ Relfier The circuit equation is: IR = SO + FU(t) p John son These equations are compled and can be combured : $C_{v} \frac{d\theta}{dt} + \alpha \theta + \frac{s^{2}T\theta}{R} = F_{0}(t) - \frac{sT}{R}F_{v}(t)$ We can write unmediatly: uncorrelated $G_{\theta}^{+}(f) = 4 \times \pi T^{2} + \frac{s^{2}T^{2}}{p^{2}} + \frac{s^{2}T^{2}}{$ JW W + x + 527 12

However, we really measure the corrent fluctions instead of the temperature fluctuations. Replace de by you and substitute for a in the current equation and get: $\mathcal{L}\left[\frac{R+\frac{s^{2}T}{x+jwcv}}{\frac{s^{2}}{x+jwcv}}\right] = \frac{SF_{0}(f)}{2tjwcv} + F_{v}(f)$ with : $G_{a}^{*}(f) = \frac{4\alpha kT^{2}s^{2}}{(R\alpha + s^{2}T)^{2} + \omega^{2}G_{v}^{2}R^{2}} + \frac{4kRT(\alpha^{2} + \omega^{2}G_{v}^{2}R^{2})}{(R\alpha + s^{2}T)^{2} + \omega^{2}G_{v}^{2}R^{2}}$ In the steady state, using P as the average incident flux = Fo(t). Get: XIR + IST = P on $\overline{L} = \frac{P_{averase flox}}{\left(\frac{\alpha R}{S} + ST\right)}$ and $\Delta lt^2 = G_1(0) = \Delta qt^2$ $zt = \left[\frac{\alpha R}{5} + 5T\right]^2$ The problem is to minimize the fluctuations by choosing proper materials (cu, a). The ptimon case would be aken the only fluctuations were that of the incident flux Reference: Smith, Chasmar, Jones.

LECTURE XXXVIII 1-17-61

 $G_{\lambda}(f) = 4\alpha \not T^2 S^2$ + Johnson Noise $\left(R\alpha + 5^2T\right)^2 + \omega^2 C_V^2 R^2$ ALt = Gr (0) 2t 4xKT2 U $(ST + \frac{\alpha R}{2})^2 zt$ The DC response is: $\overline{L} = \overline{P}$ $ST + \frac{\alpha R}{r}$ where x = 40073 Alt is output fluctuations noise fluctuations at import " $\Delta q_{\ell^2} = \frac{8 \tau 0 T^{\frac{5}{h}}}{4}$ $\left(\frac{noise}{signal}\right)_{out} = \Delta L_t^2 = \Delta q_t^2$ $\left(\frac{1}{\lambda}\right)^2 = \left(\frac{1}{\varphi}\right)^2$ noise signal maident radiation Thus the noise figure is unity. This analysis is for bolometer. (Natural Precision) Golay Cell incident 1-mm measures Incident Radiation change m expands gas resistance when incident radiation raises the temperature

If we plug in numbers ; 0 = 5.67 . 10-12 watt / 0m2 k = 1.38 · 10-23 Joules we find that [Δq_t^2] = 4.5.10" watts $if t = 1see, 0 = 1 cm^2, T = 300°K$ The relative fluctuations in flux is: $\begin{bmatrix} \overline{\Delta \varphi_t^2} \\ \overline{(\overline{\varphi})^2} \end{bmatrix}^{1/2} = \begin{bmatrix} \underline{8 \, \overline{\tau} \, 0 \, \underline{4 \, T^5}} \\ \underline{t \, (\overline{\tau} \, 0 \, \overline{\tau}^4)^2} \end{bmatrix}^{1/2} = \begin{bmatrix} \underline{8 \, \underline{k}} \\ \overline{\overline{\tau} \, 0 \, \overline{t \, T^3}} \end{bmatrix}^{1/2}$ = 8.10-10 we claim that the uncertainty in temperature of the black body is 1/4 of this is ; $\frac{\Delta T}{T} = 2.10^{-10}$ This analysis has been for black body radiation of all frequencies. We now compare with noise thro fransmission line. radiation from star transmission a matched dectector Different from BB in that we have huited solid angle and limited set of frequencies. This device accepts only a narrow band of frequencies. Fluctuations are analogous to those previously considered for transmission rue.

we are in the region where has is ht T 710°K $\overline{n_{\nu}} = \frac{1}{e^{h\nu/hT}} = \frac{\lambda T}{h\nu}, q = \lambda T \overline{Z} = \lambda T \Delta \nu$ $\Delta q_i^2 = \frac{1}{t^2} \sum_{\text{oracillators}} h^2 z^2 \Delta \eta_z^2 = \frac{1}{t^2} \sum_{\text{oscillators}} h^2 z^2 (\overline{\eta_z})^2$ $= \frac{\chi^2 T^2}{t^2} \sum_{\text{oscillators}} = \frac{\chi^2 T^2}{t^2} t \Delta \mathcal{D}$ and : $\left[\frac{\Delta q_{t^{2}}}{(\bar{q})^{2}}\right]^{1/2} = \left[\frac{4^{2} \Gamma^{2} \Delta \mathcal{D}}{\hbar^{2} T^{2} \Delta \mathcal{D}^{2} t}\right]^{1/2} = \left[\frac{1}{\Delta \mathcal{D} t}\right]^{1/2} = 10^{-4}$ if we accept DN = 100 Mc/sec, over a time of integration of one second. Mis is used to measure temperature of stars within , of ok, The mus un q 15% APrus = hT (AZ) 1/2 which is the same as detector considered previously (ABB') If t= 1 sec, 0 = 1 cm2, T = 300 °K The number of EM oscillators entering guide 15 ct 41 22 AD Ada thus we see that the flow Now 4TTA da = (of EM escillators is in agreement with previous results. This concludes the formal lecturing.

and the second	
to have a second se	
	\frown
	()

BASIC COURSE OUTLINE

I. Elementary Probability Theory and Definitions A. (1) Random in chance plienomenas retuations not unquely determined because of lack of prowledge of all variables and initial conditions. 121 Sample Space; set of all possible automes. (3) Probability: P(k) = Line # of successor N 700 # of trials N (4) mutually Exclusive events; A is independent of B. $P(A \circ B) = P(A) + P(B)$ (5) Certainty P(5) = 1 (6) Impossibility : P=0, Impossible event has probability zero, but probability zero doer not mean inspossible. Example: probability of gas molecular having given velocity. Sound Probability : probability that events A and B occur together, P(A,B). Conditional Probability, probability that B occurs when one knows A occurs, (8) P(B|A) = P(A,B)/P(A)B. Atatistical Independence : B is independent of A if P(BIA) = P(B) in which case we have the product rule P(A,B) = P(A)P(B). more generally, P(A, A, ... AN) = P(A,) P(Az) ... P(AN) C. Bernaulli Pistribution: 11 Two mutually exclusive events : probability P(A) - p, P(B) - q with q = 1-p 21 Perform & Trials, get n successes of 1A1 and N-n failures (B). The probability of one requence is prqN-n. (3) We possible sequences = N.b., Sequences of successes = n.b. of failures = (N-N.b. - Therefore, the probability of n successes in N trials is: PN(N) = N.b. pⁿqN-N n! (N-N)b

C. (4) Calculate momente with [py+9] = = gn pg v-n N: n: (N-N), and take derivatives, knowing that p+g=1 and letting y >1 after derivative. (5) Properties: n = Np, Duz = Npg = n for peci. (6) Fluctuations from the mean = In2. Relative fluctuations = (Dnt) 1/2 / T.

D. Poisson Pistribution (1) Take limit of B distribution such shat Line = constant = n (z) $p = \frac{\overline{n}}{N}$, $(P_N(n) = (\frac{\overline{n}}{N})^n (1 - \frac{\overline{n}}{N})^{N-n} \frac{N!}{n! (N-n)!}$ $= \frac{(\overline{u})^n}{n!} \frac{N(N-1)\cdots(N-n+1)}{N^n} \cdot \left(1-\frac{\overline{n}}{N}\right)^{N-n}$ $= \underbrace{(\overline{n})^{n}}_{N_{0}}, \quad 1 \left(1 - \frac{1}{N}\right) \dots \left(1 - \frac{n-1}{N}\right) \left(1 - \frac{\overline{n}}{N}\right)^{N-n}$ (3) $\lim_{N \to \infty} P_N(n) = \frac{(\bar{n})^n}{n!} e^{-\bar{n}}$ (4) Properties: n=n, An2 = n. Density n is not constant but has small fluctuations, Timiting case of Bernoulli distribution . he application we must determine to initially or p. all particles independent, have no interaction.

Random Walk: E. (1) siven equal probability of making steps of length I either to left or right, what is position me after N steps? (2) Could be anywhere between +NI and -NR, must take N+m steps to right and N-m steps to left. This will give the Bernoulli distribution: $P_{m}(N) = \frac{N!}{\left(\frac{N+m}{2}\right)!} \left(\frac{1}{2}\right)^{N}$ (3) make approximation, letting N → 20, Lim γN → 20 using Aticling's approximation N' = JZπN⁷ (N=)^N

E. (4) Plug in (2), expand, niglect terms in N-2 on, and use m (1) 61 We get $P(m, N) = \left(\frac{2}{\pi N}\right)^{1/2} e^{-\frac{m^2}{2N}}$ which is a gaussian with which we can replace B distribution when neglecting tails. Good for integral me. Can get diffusion equation by making $+ \rightarrow me$, $\Delta x \rightarrow zamel$. F. Random Variables (1) The random variable x is a variable in the sample space, taken on discreet or continuous values. (2) $f(x) \equiv \frac{\partial P}{\partial x}$ (probability density) (3) Jourt Probability Density: f(x,y) = f(x) f(y) for (4) Conditional Probability: £(x,y) dxdy = probability (4) Conditional Probability: £(x,y) dxdy = probability of y when we know probability of x. (5) Functions of random variables are also random variables. (6) Transformation of Probability Densities : Given f(x,y), x = x(u,v) y u= u(x,y) we want y = y(u, v) | v = v (x, y)f(u,v) f(x,y) dx dy = f (x=x(u,v), y=y(u,v)) J du dv $J = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\ \frac{\partial x}{\partial v} & \frac{\partial y}{\partial v} \end{pmatrix} = \frac{\partial (x, y)}{\partial (u, v)}$ f(u,v) = f[x = x(u,v), y = y(u,v)] JFor one variable: $f(u) = f[x = x(u)] \frac{dx}{du}$ must usually renormalize. G. Averages, Joint Moments, Characteristic functions. (1) g(x) = S g(x) f(x) dx (2) foint moment: xmgn = II xmgn f(x) dx dy (3) Central momente are with respect to \overline{X} . First is yero, second in variance $\overline{S^2} = \overline{X^2} - \overline{X}^2$, or $\overline{X^2}$

G. (4) Covariance $[(x - \overline{x})(y - \overline{y})] = \iint_{\infty} (x - \overline{x})(y - \overline{y}) f(x, y) dx dy$ where $\overline{x} = \iint_{\infty} x f(x, y) dx dy$ (5) Characteristic functions : definitions Mx (111) = e the = 5° e har f(x) dx or the Fourier transform of the probability density function. (6) moment generation: $(-1)^n \frac{d^n}{du^n} M_{\lambda}(1,u) \bigg|_{u=0} = x^n$ and then: $M_{\lambda}(1,u) = \sum_{0}^{\infty} \overline{X^n} \frac{(1,u)^n}{n!}$ (7) Joint Charateristic function Mxy (LU, 10) = e MX + 100 = Se MX + 100 f(X, Y) dxdy $\frac{dund}{xmg^{n}} = (-1)^{n+m} \frac{\partial^{m+n}}{\partial u^{m} \partial v^{n}} \frac{M_{xy}(M, u^{n})}{\int_{\tau=0}^{\mu=0}}$ (8) Statistical Independence: covariance = 0 xmyn = xm gn, Mxy (m, w) = Mx (m) My (w), and we say x and y are uncorrelated. H. Youssian Distribution. (1) Physical basis in maxwell - Boltymann statistics , (2) f (px, py, pz) dpx dpy dpz = (2T mhT)^{3/2} e 2mhT dpx dpy dps (3) Le spherical coordinates : $f(p) = \frac{1}{(2m)t^2 \lambda T)^{3/2}} e^{-\frac{p^2}{2m\lambda T}} p^2 \sin^2 dp \, dv \, dq$ (4) $F(E) = \frac{z\pi}{(\pi \lambda T)^3 h} E'^{h} e^{-E/\lambda T}$ (6) Ju general : f(x, y, Z, Px, Pz, pz) = C e T e (px + pz + pz) zmht (6) Reinciple of Equipartition of energy. When the everyy of a system of particles depends on an additive quadratic term, such as momentum, The maxwell Boltzmann distribution gives

for the average energy of the system the value 1/2 kt. Each quadratic term of the Hamiltonian contributes this amount to the average energy. as the quadratic term is usually momentum, it is associated with the directions of motion of the particle. In 3-P, E = 3/2 kT, hence The equipartition theorem states that each degree of freedom will contribute 1/2 hT to the mean energy. (7) The general one dimensional gaussian r_2 : $W(x) = \frac{1}{\sqrt{2\pi 5^2 t}} e^{-\frac{(x-xm)^2}{2\sigma^2}}$ with (x-xm)n = 0 if n odd (x-xm)ⁿ = 1.3.5... (n-1) 5ⁿ if n even Can show by partial integration. (8) $H_{x}(i,u) = e^{i u u u - \frac{u^{2} \sigma^{2}}{2}} = e^{-\frac{u^{2} \sigma^{2}}{2}} = \frac{2}{\sigma} \left(-\frac{\sigma^{2}}{2}\right) \frac{u^{2u}}{u!}$ if Xm = 0. Bivariate Pistribution with yero mean: (1) $W(x,y) = \frac{1}{2\pi\sigma_1\sigma_2} \exp\left\{-\frac{x^2}{2\sigma_1^2} - \frac{y^2}{2\sigma_2^2}\right\}$, no correlation (9) (2) $M_{xy}(14,10) = exp\left\{-\frac{u^2 \sigma_i^2}{2} - \frac{v^2 \sigma_z^2}{2}\right\}$ (3) $W(y_1, y_2) = \frac{1}{2\pi\sigma_{P}(1-p^2)^{1/2}} exp - \left\{\frac{1}{2(1-p^2)}\left(\frac{y_1^2}{\sigma^2} + \frac{y_2^2}{\tau^2} - \frac{2p}{\sigma_{P}}y_1y_2\right)\right\}$ with p2 = y2, p2 = y2, y, y2 = por (10) multivariate Galaxian: For n independent variables: W(X1, X2, ··· Xm) = II JETTORE e Zore Generally: Generally ; $W(\lambda_1 \cdots \lambda_N) = \exp\left[-\frac{1}{2|\Lambda|} \sum_{m \in I}^{N} \sum_{m \in I}^{N} |\Lambda|_{mm} \chi_m \chi_m\right]$ $(2\pi)^{N/2} |\Lambda|^{1/2}$ $M_{X}(TV) = exp(-\frac{1}{2}V' \Lambda V)$ where $V = \begin{pmatrix} v_i \\ v_c \\ \vdots \\ v_N \end{pmatrix}$, $\Lambda = \begin{pmatrix} \lambda_1 & \dots & \lambda_i \\ \vdots \\ \lambda_{N_1} & \dots & \lambda_{N_N} \end{pmatrix}$, $\lambda_{N_M} = E(X_N, X_M)$

I. Markoff Process: (1) a markovian process is a process such that the conditional probability that y lies In yo, you + dyo at time to given that y = y1, y2, ... yw, at Times to, tz, tz, ... ta-1 dependa only on the value of y at the previous time two. In a physical process this means that the process and its distribution do not have any past pistory beyond the immediately previous state. (2) Smoluchowsky Equation: P(X3t3 | Xiti) = SP(X3t3 | X2t2) P(Xiti | X2t2) dX2 (3) Examples " Random Walk, position after n steps depends only on position of step before. If one step away not known, two steps helps, J. Stationary Random Processes; Ergotic Processes (1) Choice of time coordinates does not matter. (2) all probability functions are dependent only on Time interval and not on absolute position in Time. (3) Examples: noise voltage across resistors and diodes, (4) Correlations: X(til K(te) = Rx(t) if stationary where & is true interval. For stationary processes $P_X(T) = \frac{R_X(T) - (\overline{x})^2}{\sigma^2}$ Referition of Various Terms (Kittel) K (1) Hochastia or Random Variable: This is defined if set of possible values is given and if probability of attaining

cach value is given. The number of points on cast die is nandere variable with 6 values, each having p=16. (2) Central Finit Theorem: The seem of a large number of independent stochastic is itself a stochastic variable. The central limit theorem rays that the distribution of this seem tends to a gaussian in the limit of large numbere.

K. (3) Random Process as stochastic Process! This is a process in which the variable & does not depend on the time in a completely definite way. all we can do is examine The system at different times and derive a certain probability distribution. These processes are quite simple when stationary. Gaussian Random Process: This is one in (4) which all the basic distribution functions f(Xa) are gaussian distributed. The distribution of a finite number of gaussian random variables is also gaussian. I. Correlation Functions and Power Spectral Density A. Correlation Functions (Hatistical) U) Cross Correlation: Rxy = X, y2*, X, at t., y2 at t2 (2) auto Correlation: Rx(H,te) = X, X2* 8. Time average: <x> = Fine 1/0 x (t) dt (2) Cross Correlation: Rx,y (t, t2) = Jim I Jx,(ti) yelt2) dt (3) Auto Correlation : Rx (tite) = Lim 1 5 xi (t) X2 (t) dt C. Power Spectral Pensity, (1) Correlation functions Statistical : R(+) = X(+) X(+++) (stationary) Ture 1 R(+) = Zim 5 × lt/ × (t+7) dt If we have statistical over a interval. we can write: Rx (T) = Sinc + 1 x(t) x(t+F) dt x(t) x(t+T) not T->0 T 0 where ender t of

(2) Ergatic processes: $(X) = \overline{X}, R(T) = \mathcal{R}(T)$ with probability one. (3) Wide - Sense Stationary: a process whose probabality distribution is not invariant under a shift of the time arigin, but whose means and correlation functions are independent of time. (4) Weiner - Khinctine Theorem: G(f) = Sort (t) e That dr & G+(f) = 4 lo Ry(t) cos 2 T fr dr $R_Y(t) = \int_0^\infty G(f) e^{-i\pi ft} df \left\{ R_Y(t) = \int_0^\infty G^{\dagger}(f) \cos 2\pi ft df \right\}$ $G(f) = \frac{1}{2} G^{\dagger}(f) \quad G(f) \equiv \dim \underbrace{S(f)S^{\dagger}(f)}_{T \to 0} S(f) = \int \underbrace{g(t)e^{2\pi i f t}}_{T \to 0} dt$ and $\underbrace{g(t)}_{T \to 0} = \int \underbrace{S(f)e^{-i\pi i f t}}_{T \to 0} dt$ Very usually, a random process will involve (5)a Trigonometric function of Time and a uniformly distributed phase angle ! $x(t) = A \cos[\omega(t) + e]$ $\overline{X(t) \ x(t+r)} = \frac{A^2}{2} \cos \omega_0 t$ The following relations are warful in these problems. $\overline{Cox [ayt + q] \cos [w_0(t+r) + q]} = \frac{1}{2} \cos \omega_t$ + 1 cos (2wot + 29 + wor) " because the cosine has mean value yers over an period. $\int \cos 2\pi f t \, dt = \pm \delta(s)$ 8 (f+fo) = 0 since fro, Jo con 20 for con 21 fr dr = 4 S (f-fo) fo >0. $\int_{e}^{\infty} dt = \int_{e}^{\infty} e^{-\lambda c \pi f t} dt = \delta(f)$ (6) non-stationary Random Processes; If the statistical auto-correlation function is not wide sense stationary, we can use time suto -con-- elation function and take PSD. In this way the PSD is defined for each sample. Actually Parengent and Roat take This as definition of PSD.

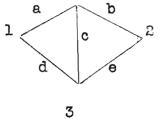
D. Example: Random Telegraph fignal: 11) suppose the average # of a crossinga per second is a . The number of pero crossings I in time interval T is given by Pouson distribution $P(H) = (aT)^{k} e^{-aT}$ T_{1} (2) Now $R_y(t) - y(t)y(t+t) = +1$ if here = -1 if hold (31 Then; $\frac{h_{y}(r)}{e^{t}} = \frac{2!}{2!} \frac{(aT)^{t}}{aT} e^{-aT} - \frac{2!}{2!} \frac{(aT)^{t}}{T!} e^{-aT}$ $= e^{-aT} \frac{2!}{a!} \frac{(-aT)^{t}}{t!} = e^{-2aT}$ (4) Take Fourier transform for PSD. E. Fourier deries Representation of PSD: (1) $\mu(t) = \frac{a_0}{2} + \sum_{n=1}^{2} (a_n con 2\pi nt + b_n Ain 2\pi nt)$ $an = \frac{2}{T} \int_{0}^{T} \mu(t) \cos \frac{2Tnt}{T} dt$ $bn = \frac{2}{T} \int_{0}^{T} \mu(t) \sin \frac{2Tnt}{T} dt$ (2) $\overline{a_n} = \overline{b_n} = 0$, $\overline{a_n} = \overline{b_n}$, $\overline{a_n} \overline{a_m} = \overline{b_n} \overline{b_n}$, $\overline{a_n} \overline{b_m} = 0$ (i) $\overline{a_n a_m} = \frac{z}{T} \int R_y(T) \cos \frac{z\pi nT}{T} \int nm = \frac{1}{T} G^+ (f = \frac{n}{T}) \int nm$ (4) $a_n^2 = \overline{b_n^2} = \frac{1}{\Gamma} G^+ (f = \frac{n}{\Gamma})$ (5) Farm G+(H)df = I (an + bn) df F. Wide Band PSD; a) This is PSD that is independent of frequency over a wide range of prequencies.

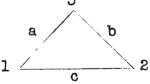
G. harrow band PSD and other Relations; (1) a narrow band process is one whose bandwidth of af the significant part of ite spectrum is small compared to the center prequency for One can calculate the second moment (z) of a random variable covery the PSD of the variable " $\overline{x^2} = \int_0^\infty G^+(f) df = \int_0^\infty G(f) df$ Linear Fixed Parameter applications. H. (1) RhC, T are not functions of time (2) G(F)out = | A(f)|² G(f) m Alf) is system transfer function and may be an amplification, impedance, or admittance of the electrical or mechanical varieties. (3) Extension to n-pair terminal networks Gout (F) = 2 2 An(F) Ant (F) Gun (F) 2=1 K=1 The Gun (F) are cross spectral densities of atter inpute which are correlated. Four uncorrelated inputs: Gout (4) = E [Ax (5]] Gx (f) in (4) Many times the signal source is a narry resistor or a noisy deade. The spectral densitys of these devices are after modived in problems using the above equalions. (5) noise in circuito, noise figure F = (signal power) available in (signal pouls) marse groues) available out

H. 151 This analysis consists is reflecting all noise in The circuit back to the input and then dividing by PSD of norseless amplifies. I. non - linear systems : (1) Quadratic Detector; $y(t) y(t+t) = x^2 x^2(t) x^2(t+t) , \quad R_{\perp}(t) = x(t) x(t+t)$ $= \alpha^{2} \left[R_{i}^{2}(0) + 2R_{i}^{2}(t) \right] = \Gamma^{2} \alpha^{2} + 2\alpha^{2} R_{i}^{2}(t)$ The PSD is: $Gy(f) = \chi^2 \sigma^4 S(f) + z\chi^2 \int R_c^2(f) e^{\chi z \pi f \tau} d\tau$ or $G_{y}(f) = \alpha^{2} \sigma^{4} S(f) + 2 \alpha^{2} \int G(f') G(f-f') df'$ and where $T^2 = \int_{-\infty}^{\infty} G(H) df$ The loss pass filter eliminates the sidebanda. III. Langevin Equation and Fakher - Planch methods A. Properties of Langevin equation 11 We begin with the equation of motion ma field of force which is a purely random process. $\int \frac{d\psi}{dt} + B\psi = F(t)$ where I is an inertial constant, B a damping constant and F(+) the purely random process forcing function. We define J/B = To as the time constant of the process.

A. (2) We rewrite the equation as : $\frac{d\psi}{dt} + \frac{1}{r_0}\psi = \kappa(t)$ where we assume $K(t) = \frac{F(t)}{T}$ to be a purely random process whose PSP is 40. We also assume it to be a random gaussian process with yero mean. Merefore; K(t) = 0, $\overline{K(t_1)}\overline{K(t_2)} = 2DS(t_1-t_2)$ The general solutions of equation (2) are: (3) W = 40 e - t/to + e - t/to / K(E) e E/to de V = 40 e - + 1% $\Psi^{2} = \Psi^{2}_{0} e^{-2t/T_{0}} + e^{-2t/T_{0}} \iint \overline{K(\ell)} K(\eta) e^{\frac{\ell+\eta}{T_{0}}} d\ell d\eta$ 208(5-2) = 40° e - 2t/10 + 2D e - 2t/10 2t 0/10 . 12 dv $= \phi_{0}^{2} e^{-2t/T_{0}} + 2De^{-2t/T_{0}} \begin{cases} \frac{1}{2}T_{0} e^{2t/T_{0}} - \frac{1}{2}T_{0} \end{cases}$ $= p\gamma_{o} + e^{-ct/r_{o}} \left\{ \psi_{o}^{2} - p\tau_{o} \right\}$ The limiting forms as t -> as are: (4) \$ + + 20 = O 42 = DTo as This is a gaussian process, we have: (5) $m = \overline{\psi} = \psi_0 e^{-t/t_0}$ $\tau^2 = \overline{\psi^2} - \overline{\psi}^2 = Dt_0 \left(1 - e^{-2t/t_0}\right)$

A. (6) We can then write for the distribution function : $W(\Psi, \Psi_{o}, t) = \frac{1}{\left[2\pi DT_{o}\left(1 - e^{-2t/T_{o}}\right)\right]^{4/2}} e^{x} \rho \left\{\frac{-\left(\Psi - \Psi_{o}e^{-t/T_{o}}\right)^{2}}{2DT_{o}\left(1 - e^{-2t/T_{o}}\right)}\right\}$ (7) We can also find the spectral density and correlation function of 4. $\frac{4 \text{ No}^2 \text{ D}}{(2\pi f)^2 \text{ To}^2 + 1}$ $G^+_{\psi}(\varsigma) =$ $R_{\psi}(\tau) = 470^{2} D \int_{0}^{\infty} \frac{\cos 2\pi F f}{(2\pi F)^{2} f_{0}^{2} + 1}$ = $T_0 D e^{-T/T_0}$ If we have a second inertial element A in (8) the physical system, the Langevin equation $J \frac{d^2 \psi}{dt^2} + B \frac{d\psi}{dt} + A \psi = \frac{d}{dt} [F(t)]$ which we rewrite as . $\frac{d^2\Psi}{dt^2} + \frac{1}{T_0}\frac{d\Psi}{dt} + \omega_0^2 \Psi = \frac{d}{dt} \left\{ \kappa(t) \right\}$ where $\omega_0 = \int_{-\pi}^{\pi}$ $G_{\ell}^{\dagger}(\ell) = 40 T_{0}^{2} \omega^{2}$ $\omega^{2} + \tau_{o}^{2} (\omega_{o}^{2} - \omega^{2})^{2}$ which can be integrated to give either Ry (1) or 42-200 This equation is useful easentially in elletric circuits.


B. Fokker - Planch Equation (1) the FP equation is derived from the Amoluchowsky equation as a markall process assuming that the conditionability of jumping all of one interval to another is slowly varying. This assumption is made on the master equation, ves. $\frac{\partial W(x,t)}{\partial t} = \int \left\{ W(x',t) P(x|x') - W(x,t) P(x'|x) \right\} dx'$ (2) The Fother - Planch equation is then: $\frac{\partial W(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left\{ A(x) W(x,t) \right\} + \frac{1}{2} \frac{\partial^2}{\partial x^2} \left\{ B(x) W(x,t) \right\}$ where $A(x) = \frac{1}{At \to 0} \frac{y}{At}$, $B(x) = \frac{y}{At \to 0} \frac{y^2}{At}$ (3) For the bangevin equation of before, where $\overline{\Psi} = 4_0 e^{-t/t_0}$, $\overline{\Psi}^2 = DT_0 + e^{-2t/t_0} \{ 4_0^2 - DT_0 \}$ Then dim $\frac{\overline{\psi}}{At} = -\frac{1}{70} \psi$ assume it gets Atrio $\frac{\overline{A\psi^2}}{At} = 2D$ than To Writing the Langeven equation as in 4: We write the F-P equation as : JW = - Jy {A(4) W} + 2 Jyz {B(4) W} we have: $\frac{\partial W}{\partial t} = \frac{1}{T_0} \frac{\partial}{\partial t} \left\{ \frac{\partial W}{\partial t} + D \frac{\partial^2 W}{\partial q^2} \right\}$ (4) the steady state solution is : $D \frac{\partial W}{\partial 4} + \frac{\Psi}{T_0} W = 0$, $W(4) = \text{constant } e^{-\frac{(\Psi - \Psi_0)^2}{D T_0}}$


B. (5) The general steady state solution, using method of least descent and expanding A(X) in Taylor server, heeping first term, is : $W_{SS}(X) = \frac{constant}{B(X_m)} e^{-\frac{(X-X_m)^2}{2\sigma^2}}, \sigma^2 = \frac{-B(X_m)}{2(\frac{\partial A}{\partial X})_{X_m}}$ C. Relations of Constante in General hangeven equation to Physical Problems. Problem 4 No D PSD of driving fluctuation R-L Circuit HRAT 4/R 4RhT 1 Brownian 4BKT YBAT m/B v motion Heat 4dhT2 Cr 0 HakTZ Co Temperature Transport Difference

and the second of the second of the		0
	and fine have been and	
		0
	at the	
	2 Carter	
		0
	The 1999	()
	and the second	

Applied Physics 215 Problem Set 1 Due October 18, 1960

- 1. Consider a box containing 5 balls, three white and two black.
 - a. What is the probability of drawing a white ball first, then a black ball?
 - b. What is the probability of drawing a black ball on a second draw without knowing the color of the first ball taken out.
- 2. Consider a family with 4 children, and assume that each child has probability 0.51 of being a boy. Find the conditional probability that all the children will be boys, given that a) the eldest child is a boy b) at least one of the children is a boy.
- 3. Consider the diagram. Each of the five links can be either open or closed. If the probability of each link being closed is 1/2, what is the probability that 1 and 2 are connected?
- 4. Consider the diagram. Each link can be closed with a probability p, all links being independent. That is the probability that the three terminals are connected. What would the probability be if a and b are closed with probability p and c closed with probability p¹?

- 5. Six persons are to meet in the restaurant of a hotel. The hotel has however three equally attractive restaurants. What is the probability that three persons are waiting in one restaurant, two in another and one in the third?
- 6. The probability to make a step forward of length L is p; the probability to make a step backward of length l is q = 1-p. That is the average displacement and variance after N steps?

Applied Physics 215 Problem Set 2 Due November 1, 1960

The Maxwell-Boltzmann distribution over space coordinates is given by $\exp\left[-V(x,y,z)/kT\right]$, where V is the potential energy.

What is the average potential energy of a linear harmonic oscillator?

What is the average total (potential and kinetic) energy of a three-dimensional harmonic oscillator?

 Two pendula are connected by a spring to represent two coupled harmonic oscillators,

$$V(x_1, x_2) = \frac{1}{2}a x_1^2 + \frac{1}{2}\beta x_2^2 + \frac{1}{2}\chi (x_1 - x_2)^2$$

What is the average potential energy if the system is suspended in a gas at temperature T?

9. Let x and y be statistically independent random variables with the probability density functions

$$p(x) = \frac{1}{\pi \sqrt{1 - x^2}} \quad \text{and} \quad p(y) = \frac{y \exp\left(\frac{-y^2}{2}\right)}{(0)} \quad \text{for } y \ge 0$$

Show that their product has a gaussian probability density function.

10. The random variable x has an exponential probability density function

 $p(\mathbf{x}) = a \exp(-2a | \mathbf{x}^{\dagger})$

a. Determine the mean and variance of x.

b. Determine the nth moment of x.

11. Let x_1 , x_2 , x_3 , and x_4 be real random variables with a gaussian joint probability density function, and let their means all be zero. If E denotes statistical average, show that

$$E(x_{1}x_{2}x_{3}x_{4}) = E(x_{1}x_{2})E(x_{3}x_{4}) + E(x_{1}x_{3})E(x_{3}x_{4}) + E(x_{1}x_{4})E(x_{2}x_{3})$$

12. Let x(t) be a sample function of a stationary real gaussian random process with a zero mean. Let a new random process be defined with the sample functions

$$y(t) = x^2(t)$$

Show that

$$R_{\mathbf{y}}(\widetilde{\boldsymbol{\mathcal{I}}}) = R_{\mathbf{x}}^{2}(0) + 2R_{\mathbf{x}}^{2}(\widetilde{\boldsymbol{\mathcal{I}}})$$

13. Consider the random process defined by the sample functions

 $y(t) = a \cos (t + p')$

where a and \emptyset are statistically independent random variables and where

$$p(\phi) = \int_{0}^{\frac{1}{2\pi}} \text{ for } 0 \leq \phi \leq_{2\pi}$$

a. Derive an expression for the autocorrelation function of this process. b. Show that $E(y_t) = \langle y(t) \rangle$

Applied Physics 215 Problem Set III Due November 15, 1960

14. In each interval γ_a a voltage can assume one of the values +1, o or -1 with equal probability of $\frac{1}{3}$. What are the correlation function and spectral density for this random voltage signal, which can change only at times n γ_a .

15. Let a random process have sample functions

$$y(t) = x(t) \cos (\omega_0 t \div \theta)$$

where ω_0 is a constant, Θ is a random variable uniformly distributed over the interval $0 \leq \Theta \leq 2\pi$, and x(t) is a widesense stationary random process which is independent of Θ . Show that the y(t) process is wide-sense stationary and determine its autocorrelation function and spectral density in terms of those for x(t).

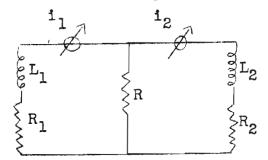
 $\mathbf{w}(\mathbf{t}) = \mathbf{x}(\mathbf{t}) \cos \left[(\omega_0 + \delta)\mathbf{t} + \Theta \right]$

This represents y(t) heterodyned up in frequency by an amount δ . Show that w(t) is wide-sense stationary and find its autocorrelation function and spectral density in terms of those for x(t). Show that the cross-correlations between y(t) and w(t) are not stationary, and show that y(t) + w(t) is not widesense stationary. Show that if the heterodyning is done with random phase, i.e.,

w(t) = x(t) cos
$$\left[(\omega_0 + \delta)t + \Theta + \Theta^{\dagger} \right]$$

where Θ' is uniformly distributed over $0 \leq \Theta' \leq 2\pi$ and is independent of Θ and x(t), then y(t) + w(t) is wide-sense stationary.

Applied Physics 215 Problem Set III Page 2


17. Prove explicitly that the shot noise spectral density in a temperature limited plane parallel diode with transit time γ_a is given by

$$G(f) = \frac{\delta e_a}{(2\pi f \tau_a)^4} \left[(2\pi f \tau_a)^2 + 2 - 2\cos(2\pi f \tau_a) - 4\pi f \tau_a \sin(2\pi f \tau_a) \right]$$

18. A photocurrent i_{ph} is amplified by consecutive secondary emission stages. In each stage the average multiplication is \bar{p} with a mean square deviation $\overline{\Delta p}^2$. What is the shot noise fluctuation in the amplified photocurrent after n stages. By how much does the amplification process increase the <u>relative</u> fluctuations in the photocurrent in the limit n > > 1.

Applied Physics 215 Problem Set 4, due December 13, 1960

- 19. Two equal resistors at temperatures T₁ and T₂ respectively, are connected by a matched lossless transmission line, which has a rectangular passband of 10000 cps. width. Calculate the net power transfer in watts. If the heat capacity of each resistor is 0.1 cal/degree, how rapidly is thermal equilibrium reached?
- 20. Consider an RC circuit. What is the time-auto-correlation function for the voltage across the capacitance? Is there a cross-correlation between the current in the circuit and the voltage across C?
 - 21 Consider the two-mesh circuit of the diagram, where all resistors are at the same temperature T.

Express the mean square fluctuations of i_1 and i_2 in terms of integrals of the power spectral density. Are the fluctuations of i_1 and i_2 statistically independent? Discuss the two limiting cases $R \longrightarrow 0$, and $R_1 = R_2 \longrightarrow 0$.

- 22. A temperature limited diode has a saturation current i_a. A parallel RLC combination connects the cathode with the plate via a battery. Calculate the voltage fluctuations across the RLC combination, if the temperature of the resistance is T.
- 23. A diode operates in the exponential region with a retarding potential at the plate. In this region the current in the diode is given by

$$i = i_a \exp(-eV_a/kT_{cat})$$

The diode current passes through a resistance R at temperature T_R . Calculate the voltage fluctuations across the diode ΔV_a . Express the result in terms of the dynamic internal resistance $R_i = \frac{\partial V_a}{\partial 1}$.

24. A signal source is connected via a lossy transmission line (attenuation L) at temperature T to an amplifier with an effective noise temperature T_{eff}. What is the effective noise temperature at the source end of the transmission line?

Applied Physics 215

Problem Set 5, due January 10th, 1961

- 25. Consider spherical particles of aluminum suspended in a column of water 10 cm high. Give the order of magnitude of the radius of aluminum particles, at which they would remain suspended indefinitely. If the radius of the particles is 10^{-4} cm, at what initial rate will sedimentation proceed from a homogeneous suspension? The density of aluminum is 2.7 and the viscosity of water at 25° C 0.9.
- 26. Consider a critically damped RLC-series combination, $R = 2(L/C)_{*}^{1/2}$ Calculate the auto-correlation function of the thermal noise current. Also calculate the cross-correlation function between the current and the voltage across C.
- 27. An intrinsic semiconductor has a pair creation rate \mathcal{E} and an average number of electron-hole pairs n per unit volume. Calculate the spectral density of the current shot noise in a piece of cross section A and length \mathcal{E} .
- 28. Consider the "hard-collision" model of a monatomic gas. This means that regardless of the initial velocity of the atom the velocity after a collision is distributed according to the Maxwell-Boltzmann distribution. Let $F_i = \int K_i dt_i$ be the impulse during the ith collision. Calculate the correlation function $\overline{F_iF_j}$ for two consecutive impulses, and also for the case that the collisions are not consecutive.
- 29. Let x(t) be a sample function of a stationary narrow-band real gaussian random process. Consider a new random process defined with the sample functions

$$\mathbf{y}(\mathbf{t}) = \mathbf{x}(\mathbf{t}) \cos \omega_{\mathbf{t}} \mathbf{t}$$

where $f_0 = \omega_0/2\pi$ is small compared to the center frequency f_c of the original process, but large compared to the spectral width of the original process. If we write

$$x(t) = v(t)\cos\left[\omega_{c}t + \phi(t)\right]$$

then we may define

$$y_{L}(t) = \frac{V(t)}{2} \cos \left[(\omega_{c} - \omega_{o})t + \phi(t) \right]$$

to be the sample functions of the "lower sideband" of the new process, and

$$y_{U}(t) = \frac{V(t)}{2} \cos \left[(\omega_{c} + \omega_{o})t + \emptyset(t) \right]$$

to be the sample functions of the "upper sideband" of the new process.

- a. Show that the upper and lower sideband random processes are each stationary random processes even though their sum is nonstationary.
- b. Show that the upper and lower sideband random processes are not statistically independent.
- 30. Let V_t be the envelope of a stationary narrow-band real gaussian random process. Show that

$$E(V_t) = (\frac{\pi}{2})^{1/2} \delta_x$$

and

$$\delta^{2}(v_{t}) = (2 - \frac{\pi}{2})\sigma_{x}^{2}$$

where $\sigma = \frac{2}{x}$ is the variance of the gaussian random process.

bob large ormatted to the succtral Kidti = milori- wil) non-consecutive - This act then we rey defin Fu Fu) =+ m ((vi - v: X, vi - vi) to be the semple functions of the How of the how we have this techarialy; For consecutive

tow that the upper and lower sideband random processe are each stationary random Arucesses even though their aun is nonstationary.

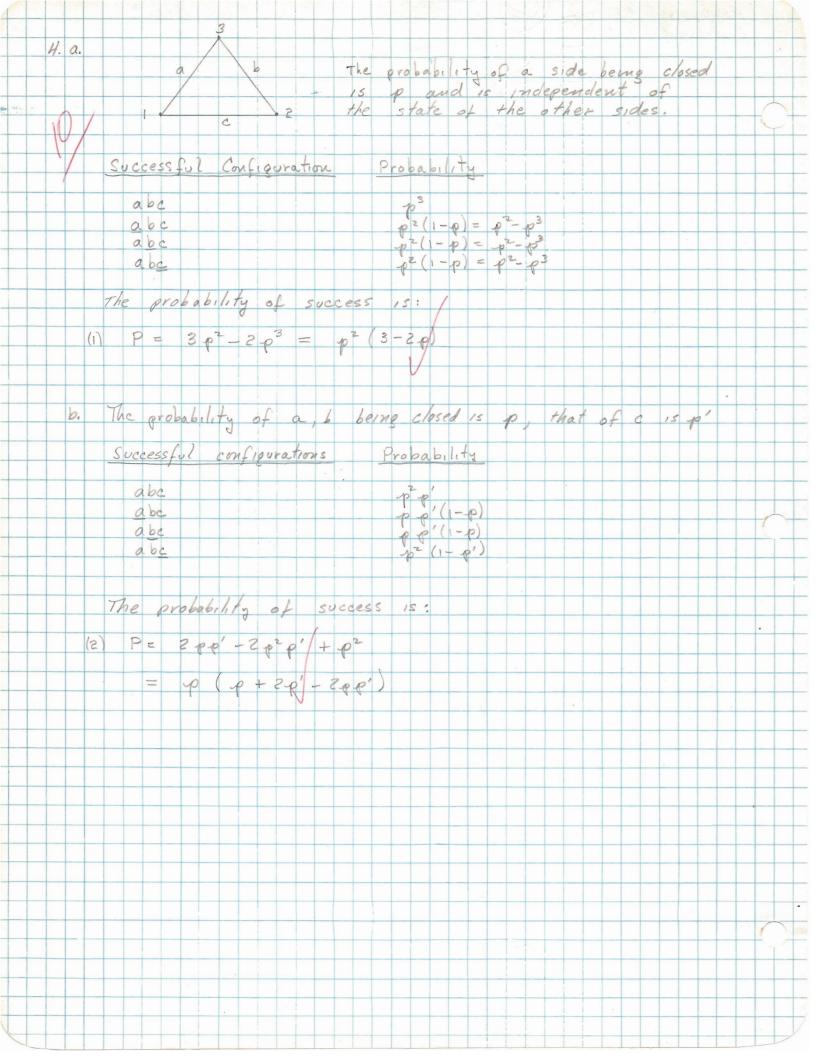
 b. Whet the types and lever sideband random processes are not statistically independ

30. Lot V, be the envelope of a stationery narrow-band real gaussian

end

where $rac{2}{ imes}$ is the variance of the sussian rendem process.

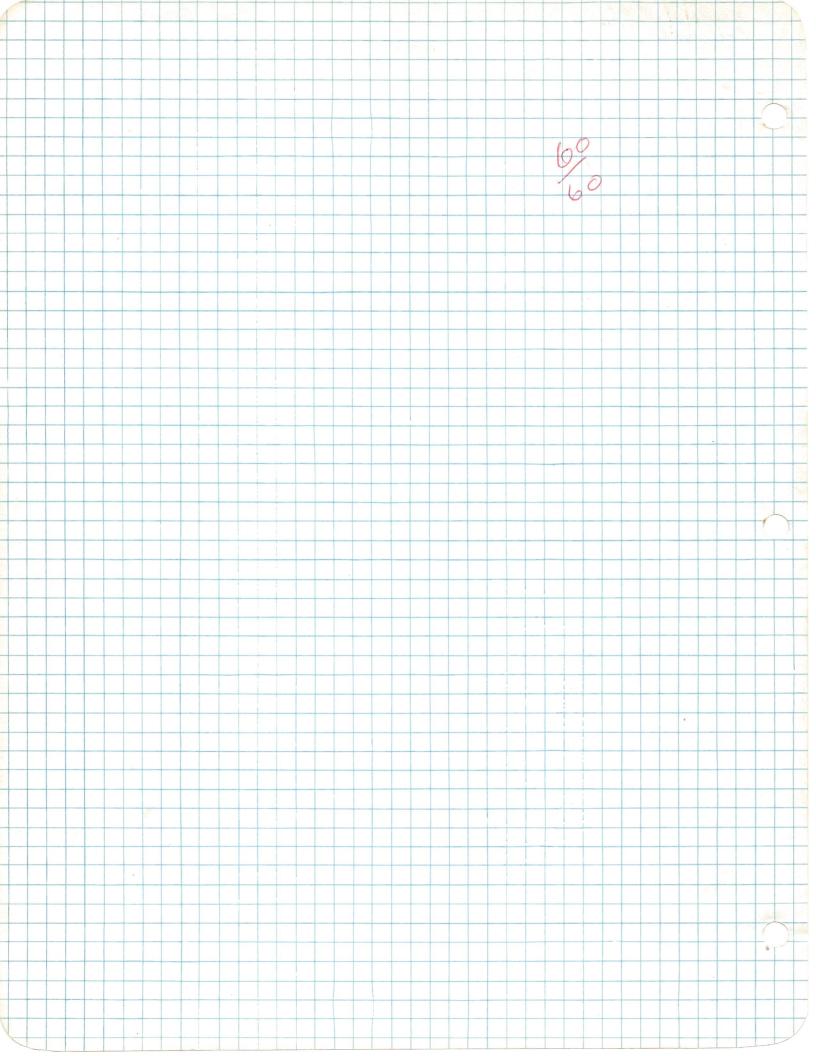
31. Consider a synchronous or phase-sensitive detector consisting of a local oscillator, mixer and low-pass filter. The input signal is $\underline{s} \cos \omega_0 t$. The input noise has a spectral density A in the interval $f_0 - \frac{B}{2} < f < f_0 + \frac{B}{2}$ and vanishes outside this band. The local oscillator output is $L \cos \omega_0 t$. The output of the mixer is given by the product $L \cos \omega_0 t x$ input Calculate the signal to noise ratio at the output of the lowpass filter. Make a comparison with the square-law detector.


1		A	155	161	Un	nei	nt	4 -	# 1	1			5		1	1					1						177			P	au	2	G	ro	n	t	1				
B				ble												E	-											-				PP									
						:			1						5.	-	2	1	-		-	-				1			1	A	P	2	15							-	
		-					_	-	-	_	_		_			-		-	-	-	-	-		-	-	-				10	5-	5	- 6	60							
	-	-		-		-	-	-		-			_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-					_		1	-			-	-
4		-	-	-	-	-	-	-	+	+	+		-	_		-	-	+	+	+	+	+	+	+	-	+-		-	-							-	-		-	-	-
	-	1	0	(i)		-	1	w	W	W	B	B		_		-	-	+	+	-	+-	+		+		+	+	-									-				
-	-	1.	a.	(7)			-	•	•	+	+	-	-	-		-	-	+	+	+	1.	+-	-	+-	+-	+-	-														
	-	-				4	10	+	0	< <	100	240	2		46	4	:	+	60	+	hr	1	1	. /.	4.		P	-	il	- 0.		-0	_))		-	
	-					,	5	+	11	5			Th	0	n	ar	260	6	1.	1		4	a p	4	17	NJ.	of	200	ar	cau	C	5	107	an L	4	_ n	al	6			
		5	1							-		-		-	0	1	140	Nº I		9	1	1	164		-						F	11	5		-						1
	1	10	1/	(2)		P	(w	J)	-		3/3	5												-																	
		1/																	-																						
		/													7	the	2+		B		Dec	cui	5	6	n he	en		we		kr	100	J	n	1	ha	5					1
						0	cc	U	re	d		15	4								1																				
				1			-	-			-	-		,		,		_		-	-	-	-		-																1.1.2
				(3)		F	1 (B	N	J)	=		4	-	19	12	-	-	-	-	-	-	-	-	-	-	-														-
	-					-	7	-	6	-	-	_	11			-	/	1		,	-	1	1	-		-	-	,	0							-		1		_	
	-		_	_		1	he	Ve	2 + 0	ore	2	1	he	,	P	ro	ba	611	17	4	1	he	at	1	w.	a	na	1	13	-	bo	Th	2	00	Cu	+	a	he	n	-	-
				-		a	1e	+	K	200	ou	,	TU	ha	T	-	W	6	n e e	- 01	-5	-	an	d	+	he	m	· k	5	15	*	_								-	
				(4)		p	1	1	2)	+	-		P/	(L		Þ/	BI	N		10	-	3		1	-	1	<u>/</u> Ξ	3				-	-	_					-	+	+
				()		1	1					-	0	1 1			1			-	•	5		2			<i>y</i> -				-				-						1
																				-				-		•													-		
	P .		Ь.		TU	ne	0	pr	ob	ia	6,	1,1	4		th	at	4	W	or	E	3	6	m	01	tuo	2/1	9	e	xe	10	SIL	ie .	e	ve	nt	s			1		1
					0	C	ci	12	-	1:	s :		0								-						0								1						N.
6	F															~												,													
				(1)		F	?(W	or	- F	3)	;	=	P	(1	V)	+	P)(1	B)	=		1	(02		ce	rt	ai	nt	4										
																															~							-	-	-	
						N	ou	э,	t	he		PI	ro	ba	6	11	ty		+	he	at	1	fi	rs	t	W	ļ, Ĵ	+1	ren	1	B	0	cc	Ur	S	1	15	-	2		
	-				-	• •	5	•	,	Th	e		01	-h	e	r	0	21	te	r	na	TI	re	-	15	-	£	irs	t	B	,	th	en	e	B	a	ga	n	1	-	
					-	u	n	IC	h	+	15	-	-	_			-	-	-	-	-	-	-	-		-	-						-					-	-	-	
				(z)	-	P	1	R	R		-		PI	R)	P	R	P	5	y	-	2		1	-	-		.1				;	-				-	_	-		
				(-)										- 1								~																			
						T	he		P	+0	ba	Lb	1	F.	1	-	2	0	1+	ho	~		W	B		or		B	B	(24	nut	La	_11	4	P	xc	10	sev	e	
						e	ve	n	t	s)		15	:	4	9	0	1						,				-							-	J		-				
							-																																		
				(3)		P	(u	V, E	3	0	~	E	3, E	3)		1		P	(W	B	1	-	P	(8,	B)		-	>	4												
									-	-	_	_		,				,						_					-				_	,						_	
						u	sh	1C	h	1	15	_	th	e		pi	rob	ab	ili	ty		0	F		ee	++	ty	8	B		m	, ,	+1	e		sec	:00	10	•	-	
			_			0	ra	24	1,	1	wh	110	h	1	15		al	50		+1	he	0	pr	bo	abi	117	Y	0	F	3	er	++1	mg	2	B	3	m	-	-	-	
		_	-		-	+	he	-	f	12	-51		C	Yr	au	U.			-	-	-		-	-	-	-	1		-		-	-	-	-		-	-		-		-
				-	-			-	-	+	+	+	+	-			-		-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-		-	-		
				-		-		-		+	-	-			-				-							-			-											-	
				-	-			-	-		-	+								1																					
5	P																																								
											_	_						1.4														_						_	_	-	
L		_									-	_															-								_		_		-	-	1
									_												1		1																	1	

2. a. (1) Each event is statistically independent. If we know with certainty that the first child is a boy, it influences In no way the outcome of the next three trials. Therefore, by the product rule for statistically independent events, we have:

(2) $P(4 Boys) = (.51)^3 = .132$

- b.(1) Here we know that at least one of the children is a boy, hence there is no chance that they are all girls. However, we may assume that four girls are possible in order to calculate the probability that at least one boy occurs, that is:
 - (2) P (at least 1 boy = 1 P(4 girls) = 1 (.49)*
 - (3) We know what the probability is for 4 boys and at least one boy is: (.51)⁴. Now the problem becomes one in conditional probability: what is the probability that 4 boys occur when it is known that at least one boy occurs ?
 - (4) P(4boys) at least one boy) = $(.51)^4 = .0725$


15		K	135	161	11 70	len	it	#	Z	-						1	1			1000					1.4			F	au	2	0	fra	an	t		1.1		1	1	21,	
		C	mi	tin	ve	ed	•																					D	EA	7P	-1	9P	- /	16							
																				-	1	-	-					A	P	21	5					-		13			
											1																	1	0 -	-5	-6	0					_	1	-		
1														-	n	1																									
	-														V	/		_						-	_			-							-			_			-
	É								-				Ĺ,	1				_		-				-	-				_					-		_	-				_
		3.												0				-	_	-			,		-	-		-	-		-		-	-	-	-				1 -	-
	-						a	/			6				-	_	TI	ne	P	ro	bal	611	ty		fe		be	ing	3	0	pe	n	1	ar	C	105	ed				_
_	-				_	K		-	-	c				-			15	3	σ	ne	-1	na	24	-	We	0	w	11	C	on	310	der	1	th	ie		-	-		_	-
	-				1						/	/		5		-	50	UCC	e	S	ul	(200	41	20	ra	tio	ms	,	d	en	pt	m	3	op	en	-	-	-		_
	-						0	1		/		e	-			-	bi	a	nc	he	S	a	111	h		a		par	-	0-	no	ler	-	+l	ne	-		-		-	4
	-			_		-		-	-	_					-	-	ap	p	10	pr	a	te	-	le	tte	er	-	-	-	-	-	-	-	+	+	+-	+-	+			-
	-						1	1)		4	~			1		-	0	1				C	-			10	2	^	0	-	L	-	-	D	1	-	1	1			-
	-			5	UC	ce.	ssf	- 11		Cu	nf	191	ra	Tic	M	-	Pr	000	bil	ity	-	3	5	000	es	sfu	1	Con	1713	ura	TIO	n	-	Tra	ob	a,b	111	ty			-
						-	1 -	1		-				-	-	-	-	-	5	-	-	5	-		- 1	-	1	-	-		-		-	-	-	5	-	-			-
	-							de						-		-	-	T	/	-	-	3	-	-		be			-	-	-		-	-	P		-	-			-
	-		-				_	cd		-	_	_				-	-	1	-	-	-	12	-			bc			-		-	-	-	-	1	a H	-	-			-
		-						cd		-						-		1	-	-		5	-	-		bc			-	-	-	-	-	-	6	1	-	-			-
								ca cd					-				1/	-	1	-		5	-			be			-		-		-		+	,	-	-			-
								d									-	4		-		2	-			bc			-			-	-	-	ı	1		-		1	1
								de										1				3	-			ba								-		-		-			
								de										4				3				bc									n	1				1	-
						-)			~																
				Al	1	Co	nf	191	Iro	ti	on	5	1	bar	e		09	00	1		ore	ba	6,	1,1	Eg		be	au	se		+	he		pr	06	ab	1.	ty			
				of	2	ea	ch	5	6	va	no	h		be	in	19		pe	en	0	۲	C	10	se	Z	1	5	e	90	al		7	he	p	ro	bal	1,11	ty		1	
1)				7	5	UC	ce	55		15	4	the		50	in	r	0.	4	+	he	1	pr	06	ab	,1,	tie	5	0	4	e	ac	h	1				9			
								1/4														V																			
								0																																	
				(1)		P	=	11	16	1	5	5		-	6	10	=	1/	2																		-				
																													1					-	_	-	_			1	
				I	+	15	-	mi	ter	es	tu	ng	,	+	0	2	101	te		th	ai	t	+	he		50	ar	np	le	-	SP	ac	e	1	-		-	-			_
				C	m	to	12	15		2	5	1	3	2	(Po	35	16	211	it.	es		,	51	2	ce of m	-	+	he	2 ,	P	ro	ba	61	11	ty	0	P			-
				a	M	1	ć	on	F	3	ore	at	ion	L	15		+	he		50	m	1e	<i>,</i>	1	-he		PI	ro bi	abi	11	ty	0	£	a	-	-	-	-			-
				50	vè	CE	5	5		15		7	-h	e-	7	p	ta	/	-	2	U.	m	16	er		of	-	5	00	-C-	es	50	25	-	-	-	-	-			-
		-		d	IV	10	le	d		67		+	he	-	5	12	e		0,	E	7	the	2	-5	a	m	ple	e	3	pa	CE	2.		-	-	-	-	-			-
				(z)) =				5								-	-		-	-			-	-							-	-		-	-		-	-
			-	(=)		[-	-		30	2	-	- /	5	/			-	-			-				-		-						-		-	-	-		-	-
																		-	-			-											•	-	-	-				-	-
																		-				-														-	-				-
																		-																-		-	-			-	-
-													_									-																		1	1
		-													-																										
-																-																									
																																									1
	1																																								
																s.,																									
																												1												-)	
<																																							-		

100			A	ssi	cn	MA	nt	#	1																					P	u	2	1	52	0.	,t	100			Ser.	
			P	rol	le	m	5	et	#	1																					EA										
							ed																								P									17	
				1																										1	0 -	5	- 4	60	>						
																																									_
+C						-	-		-	-	-			_					-						-					_		_						-		4	7
-	-	-		-	1		-	1	-	, ,				-	_		-	-	-		,						_				_	_									_
-		5.	-	U	le	n	na	ke	7	the		fo	110	w	ng	-	a.	\$5	yn	P	ti	m.	s :		_		,			,		-		_					-		-
-			-		-	-	1)	-	Ea	ch	-	pe	rs	00	1	n	vs	T	3	0	1	nt	6	a	-	ves	ta	ur	ani	t,		-	_			_			-		-
	+				-		2)		In	e	P	ro	bo	b	1/1	Ty	4	of		a		pe	rs	on	-	3	217	ng	12	cte	>	a	na	1			-		-		-
-	-	-	-		-	-	2		ou	e		re	31	au	ir	an	LT	-	15	-	th	e 4	5	an	ne		1. 6	?.,	, 1	3	-		-		41		-		-		-
-	-	-			-	-	5)		EU	1 CP	-	P	er	50	m	-	15		12	ai	51	121	90	15 K	1a	610	-	+	ror	n	77	ne	- 1	01	PTC	2 F			-	-	-
									1						-	-	-													+	+	1									-
						Su	cce	255	fu	1	0	m	Fig	Ur	ati	on							S	an	np	le	5	Pa	.ce	1		-	4						-		-
					-																				-			-												1	
									3			2									G	rou	ps			1	10.	, 0	FC	1 OV	fig	501	rat	tio	NS						
																																1								_	
									1			3		2	_							,0					_		_	3	_	-							_		_
-								-	-		-		-		-		•				5	, 1	0						_	6	_	-	_								_
-			~	_	-	-		-	4		-		_	-	3						1	1,2	,0)			_			6	_	+									_
-		1	(/	-		-	,	-	-	2		-	3	-					3	3, 5	, C		_		-	_		3	-	+	-	-	_		_		-	-+	-
-	-		\cup	/				-	-	-	-	<u> </u>	1	-	2			-	-		1	, 2	, 3		_		-	-	-	6	+	+	-		^				+	-+	-
-	-		/			-		-	3		-				2						2	, 2	1 - 1	-	-			-		3	-	+	-		-		_		-	-	-
-		1	-								-								-		6	, 1	, /			_	-			3	+	+	-						-		
	4							-	2			3											-							+	-	-							-		
7	1																																								
																											1													. 8	
					TI	103	5	th	er	e	a	re		5	8	6	00	551	6,	11	les	\$	12	r	. 7	^L he		50	en	P	le	-	SP	ac	e						
					0	F	u	sh	ICI	h	6		ar	e	5	sa	tis	F	ac	to	ry			The	15		+1	le	P	ro	ba	6	11.	ty		of	2		_	-	
-					f	m	di	ng		4	ner	n	0	dis	tr	16	ut	ed		n	Ľ	12	3,	2,	1	9	ro	UP	P	1	5	",	_							1	_
								1																_	_		-			+	_	+	-	-	-					-	-
-								F	Ξ	-	628	1 m	1		-	114	6		_						_		-	-		+	+	+		-	_			-	-		-
-					Th	15		or	PEL	100	ne	05		21	die	tiz	100	1/5	ha	ble	p	~		0.17	te l			1	a	+			Ca	- 2		<	24	10	10	-	-
					50	ac	e			ier	0		th	P	0	ro	ba	6,	1,7	Le.	5	0	E	+	he	2	28	~	012	14		6		,	t	10	an	an	ne.		
					4		_		Dri		9			-	-0						-							0			-	-		-		-					-
					I	F	+	he	0	67	e	:+:	s (P	ers	son	15) ,	arc	2	d	ist	in	30	115	ha	ble	ء,	a	ie	1	m	ay		u	se					
					+1	he	£	601	110	w	121	8	e	90	1a	.t	ion	2 (F	ron	n	F	ei	ler).								0							1	_
	-								1				- 1								0						_		_	-	_	_	_	_					_	-	_
		_			(1)		P	(1	e.)	IJ	-	1	6 0					-		n	JC		j	_	.1	61 :	+ -1	22	+	, ,	. +	te	22	7	1	٢			-	-	-
		-										h		ke.		11	Te.	1 /					_	-	_	-	-	_		+	-	+		-	_	_	_		-+	-	_
								41				11				7			n		1		7	/	-		-	1		+		1	1	-)		-		-
		-		-			w	TR	-	R 1	-	the 1.	2	nu t.	m	be	r	0	+	0	by	ec	TS	((pe	rsi	on	5)	5	20	-	T	ne	-	2	02	пв	er	-		
		-	_		-		of ea	-	Ce	.//:	5 (11	es	T	er.	a7	1/5	1	,	PI	>	Rz	, '	1.	- 1	en	+	1:	5	Th	2	2	10	m	be	r	L	K	+	-	-
		-																					1							+		+	-			-	-		-		-
1	4				(z)		P	13	,2,	1)	1	-				61			1		6	7			ę	20						1						-	-	-	-
-										-					3!	2.	(1	1	3)		1			2	43	?														
							Ho	w	er	er	,	+	he	re	4	ere	2	6		a	ka	his	e	ме	n	ts	1	+h.	JS												
											-								40		0					1															
				((3)		P	-	-	6	6	(7	20	3)	-		-	8	-												-				_			-		
			_				1					1 4	4	-				_				_								_	_	-			_		_			Y	
																																							_	5	

Let N steps be taken from some arbitrary origin either to 6. the right or left with final arrival at position m -N -N+1 -3 -2 -1 N-1 - m -> N is even, m must be even, and if N is odd, mas odd. arrive at m, there must be taken N+m steps to the To right and N-m steps to the left. The probability of a step to the right is? p and the probability of a step to the reft is g = 1-p. clearly, the probability of any given sequence is the probability of steps to the right times the probability of the number of steps to the left. This must be multiplied by the number of such distinct sequences to form the distribution function. p 2 g 2 (1) $W(m, N) \in N!$ (N+m) (N-m) | 2) · (2) · which is immediately identifiable as a Bernoulli distribution of the type: ри д N-и N! И! (N-и)! (a)with the well known relations: II = Mp TAIR = NPG = NP-NP2 make the dentification 11-3 N+m in our random walk We proben. We thus and from direct substitutions $\mathcal{M} = \mathcal{N}(2p-1)$ (3)m2 = 4/12 - 4/12 N + N2 $(\Delta m)^2 = m^2 - \overline{m}^2 = 4N\rho_{e}$ the case of the usual random walk, with equal In probability in both directions, we see that m=0 and the = N which one expects. Also m lies to the right for p>1/2 and to the left for p<1/2, also as me expects. Of course, me can find these values in terms of remeth by the identification X - me, thus (4) X = The $(\Delta x)^2 = (\Delta m)^2 l^2$

19	Assibn ment #1	Paul Grant
8	Continued	DEAP-AP-1G
		AP 215
		10-5-60
+()		
	Problem 6 Continued	
	Continuea	
	For the case of unequal steps in each	direction, we will
	For the case of unequal steps in each define the new random variable:	
	(5) $x = nL - (N-n) l = n(L+2) - Nl$	
	where h is the length of a step take direction and n is their number. N	en in the forward
	direction and m is their number. N	-n 15 the number
	taken in the reverse direction of len	gth I.
	(6) $X = \pi (1+1) - N1$	
	$(7) (Ax)^2 = \overline{x}^2 - \overline{x}^2 = (L+e)^2 (\overline{n^2} - \overline{n}^2)$	
×	Now the probability for n steps to be t	aken in the
	forward direction "1s:"	
	(0)	
	$(8) \qquad \qquad N! \qquad p q N-n \\ n! (N-n)! \qquad p \qquad 3$	
\sim	N (N-N)	
	the Bernoulli distribution with:	
	$\overline{\mathcal{M}} = \mathcal{N}p$ $\overline{(\mathcal{A}\mathcal{N})^2} = \mathcal{N}pq = \mathcal{N}p - \mathcal{N}p^2$	
	$(\Delta n)^2 = Npq = Np - Np^2$	
	Thus we have	
	$(9) \overline{X} = N p (L + 2) - N 2 \sqrt{2}$	
	(10) $(Ax)^2 = Np(L+L)^2(1-p)$	
	We see that for L=l, we pass to the p For L=l, p= 1/2 we have our usual	overious case.
	For L= l, p= 12 we have our usual	vandom wack
	mean and variance.	

	-		2	1	2.5	516	No	p	it	4 #	12			2.5			1.000			153	125	1					1	1	100	P	211	2	6	ra	ini	+					
						214		PIC			-	-	,							1	-							-							16	-		1			
																																215	-					1			
					ç.							1																		10											-
	-										1																														
	-																																								
		1																																-					_		
			7.		(1)		G	11	en		t	he		Ma	xu	Jel	1-	B	301	+2	mo	27	n		d	15	tr	160	st.	102	c .	e	X	p	- V	(x, u	12)	1	T		
																																		1					-		
					(z)		7	he		P	ot	En	ti	a?		en	erg	4	0	f	+	he		cla	55	100	al		ar	115	01	tro	PI	c		th	re	e			
							d	m	en	151	mon	ral	2	h	ar	m	on	1C		05	10	11	at	or	;	15:		ĺ													
		1	()	1																																					3
		\square	1					V	2	-	Ł	(x x	2 -	F.	332	+	8	72	2)		u	he	re	-	d	. /	3,	8	a	· e		thi	ree	2						
	1	1					12	d	ep	en	de	en	t		6	rce	-	c	m	ste	m	ts										1									8
																										,															
		_			(3)	,	*	-			М	ax	we	22	-	Bo	1+	22	na	m	n	0	115	ri	00	tio	n	fo	2	+	his		5	35	te	m					
\square		_								;																		4						9							
		_									e	×P		- 1	12	(X	x	+	By	C -	48	72	1/.	ET			u	hi	ch	-	d	er	па	no	(+	0				
	-								1				-											-																	
	_	-							be	-	2	100	m	al	12	ea	ł,	V	17	1,			-													-		-			
	+		_							0	((C			-	. 1	1	-	2	-	2		-2)	1.	7		_		,											
	+	-	_	_						n)	ex	P	-	1/2	(d X	+	130	2-4	-8	z)	1h	T_	dx	d	y	人王							-			_	
_	+	-	-	_			_				-	- 06	-			-			-																			-			
	+	-		_		-	_			=	0	9	6	20			5	11	1		-	0	2		- 2	37		7			_					-					
	+	-		_					-		8	2)))	e	×P	Ľ	1/2	- (0	K X	+	BY		-8	Ż]/1	e T	1	dx	di	j d	2	V	2	-		-			-+-	
	+	-										0	-	20		15.	T		-			r		1		2		2 \	1	-		1	1.			-	-			-	
-1		-		-	_				1	-	8	n	-	17	-	pΓ	00			6)	P	L	1/2		84	+	K Z)	12	-1		24	di	6		-					
	Т	-		_	-				-					0		J	21	T													_									+	
	+	-						-	11	-																					-	-					-				
	+	-	-					-		-	. /	L	-	1.0			7			1	3		ć		7	-	4	r_	В 17 1	0	73/	12								-	
	+	-	-			-								Va	< 15	6												2	π	21	1	-			-					-	
	t	+	-	x											_		_									_				-			_			-					
	-	+	+		(4)	-	p	(1)		V		5	d	38	-			0.	0	Γ	1	6	~	~2	+ (2	2.	X	72)	1.	T	1								-	
	+	+	+			-	(T.	T	4 -	-7	3/z		er	P	L	/	21	~	~	τp	- 3	Ŧ	0		/ *	61									-	
	+	+						-				L	11	K	1																										
																																									1
				((5)		Fo	r	+	he	1	m	ear	- ,	ha	m	m	c	05	cii	1/a	for	-	ch	ear	-14	4														
									_		~													1		0		-													
								p	3	V ()	14		-		-	a TT 7	-		e	×	2	-	1/2	X	XZ	1-	6T														
								1	-		3				JZ	π	T					-				_		1													
					(6)		N	101	u	1	/ (x) =	-	12	α	X	•	;		\vee (x)	V		1-2	a	X	E											-			-
																								_	1											-				_	
							u		7	rec	.08	n	17 era	e	7	-ha	t	(5)		5	a		of	ie	-	dip	me	nsi	on	al		Ga	US	\$1	an		m	ol	_	
		_			_		X	52		15		M	er	214		th	e	1	/ar	ia	no	e		/																	-
		_	_		_		_	-							,							1		/	-		_	_			_		_							_	
	4			_				X	6	=			ki	-		;		1(x)	Ξ	-	1	V	k	1					-	_		_								-
)				_			_	_				æ		_								_				_					_	_								
	+	+			-		-																_				_			_	-									-	
	-	-		_	_												_					_	_							_		_		_						-	
	-	-	-		-	_			_															_				_				-	_	_				_			_
	-	-								_	_			_	_	_					_			_						_		-	_	_		_				-	-
V		_		_	_			_																																	1

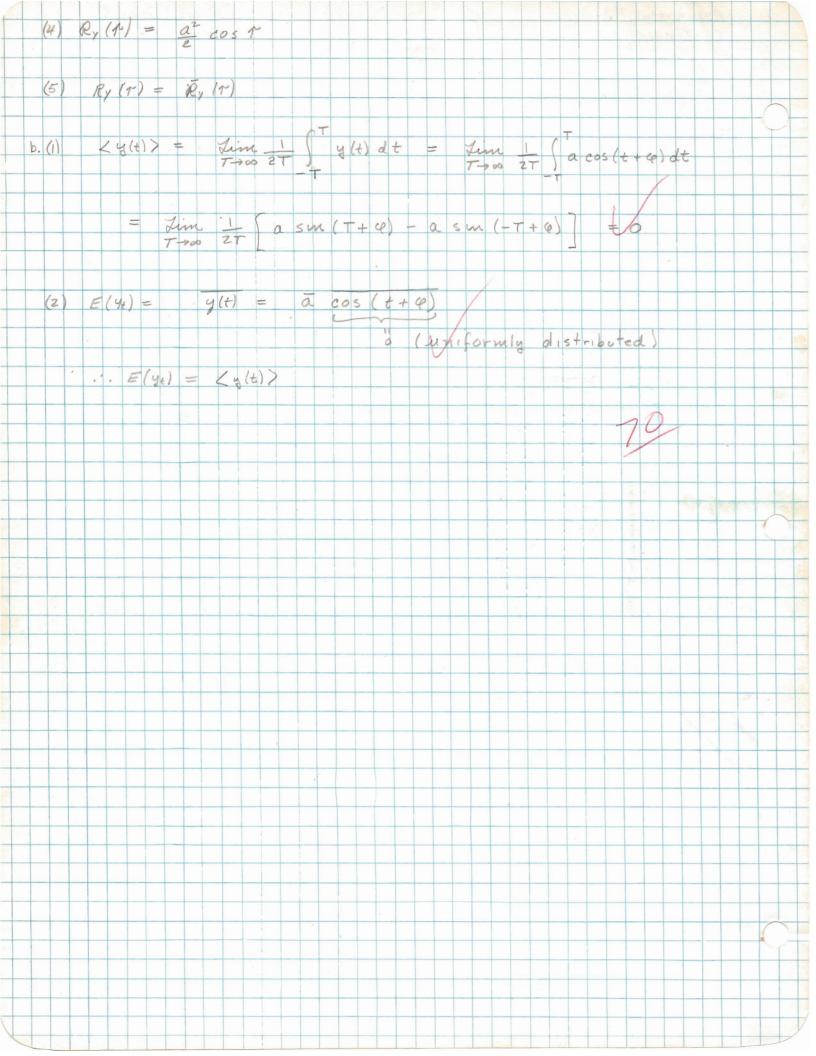
6							1											1						Z	27	2.		22	1	1		3		34	1			1	1	
	(7)	V	(x,	3,5	2)	H		1/	za	X	-	F	1/2	B	12	+	1	28	1 N	12		×.	1			1		24											2
	-					1																		-			-	7		~	-	7	-	~				-	7	2
	_			{	>(V)	5	-	1	ok '	e	X	p {-	1/2	a)	2/	kT	1.		B	_	e	(p	E	21	By	2/2	T	•	0		- 6	2 × ()-	1/2	82	2/1	LT		-
+	+-	-			-	-		-	V 2	Th	-	_							Ja	Th	T								V	211	R	_		-	_		-			
		-			110	4	10			tri	10	10	to	_	~		SIA	M		1	14			4				41			-				_		-)	-
+ +	+		-																				101	10	re,		wi	IK									-	-	-	
				1	XZ	U		h	T	ر	ÿ	2		K	T	2	3	2	-	p	Τ																			_
																				0			-																	
					V	(x	3	2)		16		3/	2	k7	-																				1					
	-					-				-	-		. 1	1		,			/	2										L (,				_	_		_
	(3																																		ar	nor	110	-	-	-
		-	09	CI	1/a +	to	r /	13		tu	JIC.	e	-ti	he	0	ve	ra	pe		KI	ne	Tic	_	or	-	Po	Ter	nti	al	ę	221	erg	y				-	-	-	
	-		5	la	115	110	ali	y	6	we	- 6	500	2	TH	13	by 1		av	ler D	R	12	8		The	2		Ha t	11	10	210	m		20	1			-	-	-	
				ie			1					0		-													5.74	2.1	121	16	2									_
						H :	-		Px	t+	Pj	+-	Pz		+	1	2	(2	xz	+	By	2	+ 4	- Z	2)										-					
											27	'n				-																								
				- 1			-				0		,				1			,			1							,			11							_
		-	T	he		au	ver	ag	e	10	F_	t	he		in	210	m	re	217	507	n	-	t	er.	m	1	5	70	157	-	an	107	the	7			-		_	-
	+	-	G	av	55	1a	n	-	va	110	n	e e		, V	112	É,	-	-			-	-			-		-		_	-		_	_					+	-	-
	-	-				-	-	Z	E		3	m	k	T			-	T	1	:	3,	6	T		-		-		_								-			-
	-						0	1								1	-	r			12	PE-	1																	
					H	1		31-	k T	-																														
																																						-	~	1
		-			-	-	-	-									_																	-			_	1		
	-		-		-	-		+		-			_		-			-	-					-	-	-		_		_	_			_				_	-	_
	-		-		+	-	-	+-	-	-	-						-	-	-		-		_	-	-	-		-	_		_						-		-	_
	-	+			+	-	-	-		-			-				-		-		-			-	-	-	-												-	-
	-	+			-		1																															-		
						-	-	-									-											-										_		
	-	-			-	-	-	-	-	-	-				-		-	-	-		-			-	-	-	-	-							-		-	-	_	
		-			-	-	-	-	-	-	-	-			-		-	-	-		-	-	-	-	-	-	-				3			-	-		-	-	_	_
	-	-			-	-	-	-	-		-	-				-	-	-					-			-												-		_
																													<i>.</i>											
		-																																						
	_	+		_	-	-	-	-	-	-	-				-	-	-	-		-	-	-	-	-	-	-		-						-	-					_
		-			-	-		-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_			-	-			-		-
		-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-			-		-	-				-	-
								-	-	-		1									-						-	-												
																									-			-										(1	
																																							1	-
-					-	-	-					-			-										-										-			_		-
		-				-	-	-	-	-	-			-	-	-	-	-	-			-				-	-		-		_			-	-			-	_	7
			-	-	-	-	-		-						-									-	-	-		-	in the					-			1.5		/	
	-	1	1		-	-	-	-	-	-	A second						-											-												

1000			1	Ass	16	Um	en	st	#	0	1		1		100			57.	100	22	0.00		4								Pa	ul		Gr	an	t	0	5- P	10	NA.	
						nve						-									·														1			1			
											-								-												AP	2 2	213	5					_		
-									-			-									-										10	- 2	8-	60	2						
					- 1		-	-	-	-	-		-							_										_									_		-
1)							-	-	+	-	-	-	-			-			-							_		-	-			_			_			-		
		8.		()		Gu	10.		-	a	0		tar					6.	16	-	+	10	×	2.0	to	et.	1											-	-		-
		0,		(7)						d						n	w	mi	cn	-	7	1C	- 1	00	ier	110	a ç	e	ие	19	1	13							1		-
												V									-																				-
							V	X .,	Xz		=	1/2	2 d	X	2	+	1/2	ß	X	2	+	トレ	8	(X1	-	Xz)	2														-
1																																									
				(z)		W	e	h	ala	11	th	at	1	he	5	ys	te	m		in		the		g a	5	15	s a	de.	ser	16	ed		by				12				
						M	las	eu	,e	11	- 1	Bo	172	m	ar	in		51	tai	hs	tic	S		fo	r	N	hic	h	+	he		po	ter	1ti	al	-		1	4	1	_
		_				27	ne	13	y	~	15	e	115	tr	16	ote	e d		1'	n	+	he	1	fo	רזפ	n		01	SP	5-	v	(x)	41	ł),	1 1/2	T			-		
						W	e	+1	re	n	1	nau	e	f	or		the		d	15	tri	60	tio	n	f	221	cTi	on	:	-		_							-		-
							1	1.	-	07	h	0.01	1	110	1	d	12	+	B	V-7		_)	X	2,	×	Y-	2	2	X y	×-	1	14	T						+		
		14	\cap			T		41	F	- 1	(Ľ	- 12	1		~1	1	1	~ 6		0	~1	-	- 1	~2			0 ~1	~ ~	-77	R					_		-		
	1			-															/												5										
	-					-	02	1 6	2×1	2	-	1/2	(5.	x+	88	X,	2/4		B	+ ?	12	Xz		-	28	X	Xz)/	KT	-										
								-					`					/		6											1								-		
			_				1		-	-						1													0		_				. 1				-		-
						w	h	cl	1	w	e	1	mr	nea	dia	te	14	,	re	co	e v	112	e	4	25	7	the	2	fo	122	n	0	F	7	the	P			-	-	-
-					_					te														w	17	h	7	ler	0	n	ea	n		21	10	-		-	+		
						N				ero													_	_					-	-	-		-	-	_	_	_	-	+	-	-
	1							01	1	-				1		1	-	0	D	٢.		1			1	X	2	1	X	202	-	-	2. P	,	. x	(2)					
								11				21	10	11	- P	2)	12		F	L	Z	().	- ,	2)	(U	2	T	T	,2		-	TT		1.0)	7				
							,		-	_	_					_			_											_		_						_	_		
		_		(3)		M	a k	M	3	6	280	pe	٢	1	de	nti	FIC	ati	on	5',				_	-		_	-		-	_	-	_				_	-	+	-	-
-							1		0	2) (2		-	A	T				-	1.	-	2)	02		_	k	T	-	-		p	-	_	-		8	-	-	+		-
		_		-	_					1	1	- Comm			+7	-	3		(1.	J	•]	10	=			+0	,	j	51	~ 1		2)	1	-	21	-	-		-	
																															(1							1	
						T	her	n;		D P		=		3+				(2	1	1 -	-	hT					02	+	k	T	P	-	1 =	= 0						
								4		r				2+	8		,	1				σ	2(×+	7)		3		+	30	1	1						_	_		
									_	,	1	-									,			_				_		_		_				_	_	_	-	-	-
						a	m	d	,	af	te	r	W	lor	e	~	m	m	p	,10	te	m	;	-	_		_	_		-		-	_						+	-	-
			_					6	2	5	-	-	kT	-	(1	2 -	2)					-	N	2	-	4	T	1	d	- 21		-			-	-			+	+	-
-		_	_				-	0		-	-	-				-	-		F	-	5	-	-1		_	_	21	1	BB		-	×	-	-						-	
													130	x t	- /5	8	+	oc (- (30	+	130		- 01	4									
														. 2																											
								J	2	1	-	-		8-																										1	_
								-		-		(a-	-+)	(B	+7))							_			_		_	-		_						_	_		-
-								-	-	-	-	-												_			_			_							_			-	-
-	-							-	-	-																				-											
								-	-	-	-	-	-							-	_			-			-			-	-		-					-		-	1
	-							-	-	-		-																												-	1
	•)	
1																																							-		

-

	+ď)
	BX+B
	-+) - //
28 X1 X2	1/2 RT (B. Bat Ba
+	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	T d'
intial en 1/2 (Sx.	-2 p 2 p 7 1
	$\begin{array}{c} X_1^2 = \\ X_2^2 = \\ X_1 X_2 = \end{array}$
e averaş V (x1, x1	shere
(4) 77	

100					IGA				# ;	2																	- 1					Pa	au	2	Gr	an	t	2		1	5.5	-
			C	M	tin	100	d																									DE	A	P-	AP	-1						
_						_		-	-	-	-	-	-	_	_					-	-	+	-	_					-	-	-		PZ				-					
									+-	-	-	+	+	-	_				-	+	-	+	-	_			_		-	-		10	9 -	28	3-	60	2					
						_	-	-	-	+	+	+	-	-	-			-	-	+	+	+	+	_			-		+	+	+	-	-	-	-	-	-		-			
			_		_		-	-		-	+-			-	-			-	-	+	+	+	+	-					+	+	-	-	-	-	-	-	-	-				
	+	9.		(1)		6	. 1/	0.24	,	+	+	_ /	(x)	0		_		T	+	+	+	+	+	-		1			C		ex	1	- 9	2/2		4	12	4			_	
	-	7.		(* /		G	100	c n	- ;	+	1		1			-	t S	-		2	11/2	+	1	-	p	19	1 2		1	A		PI		16	1							
	-						-	-	+	+	+	+	+	+	-		" [-		-	-	+	+	-				-	6	+			-)	c	12	0				
						a	11	th	-	D	(x	. 4)	=		p	(x)	p	(4)	T	t	20	t	15		X	.0	zn	d	u		24	e		ta	ti	sti	cal	1/4	
		-				10	n	de	pe	ne	te	ni	t.			1			1	9	1)		-								9				1					0	
	11		1																																							1
	Y	1		(2)		4	ei	t		u	-	2,	(x	; 4		P	- 1	XL	1		0	ar	nd		-	fu	d		p	(1)	L)											
	1			ς.					1				_	_					~				_						1													
	-			1.)		_			-	-	0	-	-	_	_				-	-	-	-	_	~						,		_	-			-	-				_	
				(3)		12	1	ge	ne	220	LL,	1	f	'	-		1	1 =	:	g,	(X,	4))	-)	< = ,	= {	1 (el,	2)	1					-				_	
							-	-	-	-	-	-	-	-	-		U	=	-	82	(×	3)	-		1	3.	= .	2	(u	1.2)	-	-	-	-	-				_	
				•	_			-			-	-			-				-	-		-	-	-					-	-	-		-	-	-	-		-				
					. 7	rha	en		+	1	17	11	15)	-		n	1	× -	C	, ,		-	2)		9	(×	14	11	-		-	-	-		-					
						nu			+	T				1	-		P	(51	,	9	-		- /		-	(1	-		-		-									
								-	1	1	+	1	+	+					+	+		+	+							Ť												
				(4)		F	or		001	+	PI	rob	le	m		u	Je		ch	00	se																					
											1				Í																											
								U	1=	8	()	1.2	:	7	X	Y			2	X	Ł	£	, (-	м,	v)	=	М	1/2	-												
	-							U		- 9	3 ()	K, 4	3)	8	2				1	4	15	F.	2 (u	,2)	4	7	5													
- 1				_						-	_	-	_	+					-		+	+	_	_	_			-	-	-	-	-										
-	-				_		1	1	1 4	1	-	+	-	1	24		2	y	1	-	+-	+	1/.				<u>^</u>	1	-	-		-										
_	-			_	_		-	01	X,Y	() (r)	-	-	+-	1	94		99		-	-	-	+	-1	5		(0		-	-	45	E	-	-			-					_
			_			_	1	9(4,1	5)		+	+	+	24	X	9	4		-		+	- /	u)	12)	-	-	-	5		1	5	-				_	-		
		_	-		-	-			+	+	-	+	+	1	0	-	4	10	1	+	+	+	-	/ .					-		+	-										
						-		-	+	-	+	-	+	+	-					+	+	+	-	+	_				-	-	-		-				-					
				5)		· .		1	01	u,	(1)		=	+	10	» (·	1=		KJ		y).	. 1	-				-		-	-											
								1			41											1																				
						I	f	2	X	an	d	4	ar	e	3	+	at	15	tic	al	1/4		12	10	le	oe.	na	ler	nt													-
													2								-	-			- 1					1												
									p	()	1,0	1)	17	-	-	p	(×	(=	1	()	T) (4)		10	1																
					_		0			_	-	-		-	_			0	0	1			42 1					1.1	-			-									_	
		-	((6)	_		FI	no	411	4	-	p) (.	л,)	-	_	}	P		X =	17		-1	p(4)		dy yo				if	-	el	=	X	-				•	
	-			-		_			-	-	-	-	-	-	-	_	-	- 20		-	-	+	-	+				0	-	-	-	-			-	-	-					
			-	(7)			-	1	V -	-	u	1	-	+	-	-	1		-	-	-	+		2	-		2	1	-	-	-	-			-		-	-		-	-	
				1		-	P	(X=	-	4)	-	+	-	TT	-	-	J	2	77/2	2	-	-	-	71		And and the owner of the owner owner owner own	-	11	z]'	1/2										
						-				-		+		-	+		L. 1		11	12	-	+		+		11	L	2	-	m	-								-			
													-								42	,																				
																C	2	y	e	-	y Z	15		,																		
	1		((8)		Th	en	2:		+	٥ (.	u)	11	=			-				5.1	2	0	14			2		m			y	m	US	+	be	2	ere	pate	er		
																Ju	11	La	2-	M	-	1					-		tho	in		1	F	02	+1	he	12	nte	gri	anc	e	
																							_						0	e	×15	t.										_
_						_					-				-									-	-																	_
		_	_			_					-	-	-	-	_	_	_		-	-		-	-	-	_						-										-	
L					_	_				-	-	-	-	-	-	_			-		-	-	-	-	_															_		/
										-	1	-	-	_	_		_		1			1	_											_								


4			P	955	IGA	m	en	t	#2				-																	Pa	ul	2	G	ra	ni	t				~	
			C	m	tin	nue	ed																				2	2		D	EA	P.	- A	P-	- 1.6	F	0.7				
																																	5								
																																	3-								
	-	-	+	1	+	-		-	-	-			-	-	-	-	+	+	+	1	+	-		-	4	1)	+	+	10			1	-	-	+	+	-			-
1	5	-	-	+-	+	+	-	+	-	-	-	-	-	-	+	-	+-	+	+	+	+	+-	+	+	+	V		-	+	-	-	-	-	-	-	+	+	-			-
	-	-	+	+	+	-	-		-			-	-		-	-	+-		+-	+	+	+-	-	-	1		-	+	-	-		-	-	+	-	+-	+				-
	-		+	-			-			-		1		-		-	-	,	+-	1		-	+	-	-			-	-			-	-	-	-	-	-				_
	-	10	. a.	. (1,)	6	108	en:		1	(X	2	11	a	2	ex	6	(- 7	Za	X	()	-	-	-	-	_	-	-	-	-		-	-	-		_	_	-			_
						U	ve		no	te		th	at		p	(x)		=	P	(-x			ar		P	(κ)	1	\$	a	n	er	102	c	fu	n	et.	n				
						0	in	d	+	ha	t		a		15		th	e	2	10	12	na	11	za	t,	(x)		00	ns	ta	n	E						1			
			1	-	-						0					-	1	1	1	-	-	-			1	-	-	-	-					-	-	-	1				
			-	(2)	7			0	1	V	0	20	1	2	1	vI	1	1.	-	~	-	L	-		ns ra		. 1				-			44		-				-
			-	(-			-	-	u	1	X	C	P-	(-	6	n 1	× 1	10	XX	-		2	0	SI.		MS	re	Eli	on	-	51'	nc	E	1	1	-0	-	1		-	-
			-	-		-		-		-0	6	-				-	-	-	-	-	-	-	12	Te	8	ra	nd		15	0	m	-	00	aa	-	fu	ne	110	L.		-
			-	-	-																												-	-		-	-				-
			-			-	-	-		-	~~~	-			/	-		1		-	-	-	f		2	-	20	X					-		-	-					1
				(3)	>	12	=	(2		XZ	0)	P	(-	20	U X	1)	d	X :	= 2	a	1	X	E	2			dx												
										_	100				1								5																		
																					1																				
									=	1	20		-	2	_		-			1/																					3
													1	al	3				2	az																					1
													L C	-				1	-			-	-			1		-						-	-						1
			-	-	-		-									-	-	+	-	-	-	-	-	-	-	-	-	-	-					-	+	-					-
			-	-	-			-				_				-	00	-	-	-	-	-			-	-	-	-							-	-	-				-
			1	1	-				,		-	_				1	1	. 744	1	-	1	-	1	1										-		-				-	-
			b.	(1))	Co	ns	10	er		>	(m	B		a	- \		X	e	×	0 (.	-20	x X	1)	d	x :									-	-	-				_
	-															-	00	_		-		_													-	-					
1																																									3
						I	+		061	1100	15	4	ha	+		the	e	12	te	pro	a. 2	4	111	1	V	an	isk	e	wh	en	ev	er	-	2	1	15					
						0	d	d	2	be	ca	us	e	-	the	-	2	n	tes	sro	inc	1	u	11	1	6	e	0	dd		T	he	re	Los	re		it				
						,	5	1	150	C.	2		m	14		Lo		10	1	10	10-		e Ve	221					1				1			1					
											-	~	20			0				14	C.I.		10			21	00	16	100	,	-	E.									
				(2)			×2	n	-	a		(V	271		2×	01	-2			1	XX														-			-		
				-			~		-	0)	1		0	~ ~	FI	-2	u.	1	1,0	in									-				-		-			-	
			-	-							-	-00		-		_		-		-																-	-			-	-
				-							-	0						-		-							_			_		_			-	-	-				-
									-		C		en	_		1		\$									-		1		_										-
							3		20		1	X	272	2	<p< td=""><td>(-</td><td>Za</td><td>X</td><td>) 0</td><td>LX</td><td></td><td>11</td><td>1</td><td>20</td><td>•</td><td>(</td><td></td><td>2)</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>-</td></p<>	(-	Za	X) 0	LX		11	1	20	•	(2)		-									_		-
		_									0	/														1	2	12	n+1											1	-
		1							,		1			_												(~)												-	
						2	=	(27	n)	1																														
									(2		in																														
									(6)	ag																														1	
																					-																				1
										-													_																		
	-	-							-	-	-	-		-	-	-							-					-			-	-				-					
	-	-					-			-		-	-	-		-			_						_						-	-				-					-
		-										-		-		-								-																	-
		-		-								-		-		-			_					-			-				-	_					_				-
	~	-		-							-			-			_						_								-	_	_						-		-
-																																							-		
																													1												
										-																															1
									-																			-			-	-								1	
		-	-			-	-	-	-	-	-	-		-		+	-				-	-			-		-	-	-			-	-		-		-	-		17	
V		_												-									-		_									-			-	-		/	
				-	-		-			-		-		-		-			_		_														_	_					

11.	C	ms	id	ler	+	he		fo	110	w	. 171	2	-	m	ul	+,	va	rla	te	2	6	au	135	510	n		ch	lan	ac	ter	15	tie	-					
	£	VN	ct	10	x:														200	2		5		-														
	(1))				(1								-	1							-															-	
0	1			hend	re		Ŧ	he	1	m Vi		M	V	21	ve	5	01		th									h					~			~		
$\langle \rangle$				-		-	V	15	-	Vz.	1				-	Λ	-	11		1	21	-	6				19								_	_	-	_
										UN	/										XNI			~	~		ynr	,										
																	λ.	nni	1 =	:	E	.()	Xn	Xv	u)		-	1										
		Vou							,				1		1	1		5 1	1	1-		7													-		_	_
	(2	.)	E	- (X1	Xz		• >	(1))	2		(.	-1)		0		V	(1)	-	1	V	= 0												_	_	_
	0	ons	Ide	er		-	v	-1	Λ	7	Г		Fo	r	0	re	de	-	4			/														_	-	+
													2																									
				(v.	v.	2 7	53	ν.)			11									10	1	1.0							_							-
			-				-		_			λ	31	2	32	-	13	3	13	4		23																-
											1									/				1		-												
			=		(v	12	U	63	54)										V3																		
			-	-																3 V 432				24														
									_			-				-		-					-	-													_	
			N																																	- Nzy		
				+	λ,	312	125	+	λ:	327	522	53	+	13:	3 0	3		- 2	341	24	1/3 .	+ /	41	25,2	54 +	- Jy	+2 V	2 Vy	+	λy	32	532	54	+	144	1 24	12	
		1	-	λ	111 1	v.z	+	. λ.	22	52	2 -	H J	33	23	۲.	+ /	444	1 V.	2	ł	()	liz	+ 7	21)	v_1	T2	t	()	13	+)	31	2	VB					+
	-		1	+ (1	4+	Ju	.)	V. 1	254	+	-	(٦	23	+	λa	52)	Vz	3	5 +	-	(٨	24	+	42) -	Vz.	54	+	+ (λs	44	÷λ	43) 5	2 23	1	_
				-			.7					2				2				- 2				1														
		11																						λız								23				×		
																-		,	_	12	4	Uz	24			2	13	42	32									-
		5	20	HC	e		-	E	(X-	n X	m)	0		E	. (.	Xn	1 X	n)																				
																		+												1	-							

				- (_(t
				-								_			
	(4)	91									(3		Р		
		-				92	Statistics of the local division of the loca						rak		
	(-,		-			1 07	Concernance of the local division of the loc	92.	22		С	1	210		
N	() ⁴	Nx 20:				53	M	891	Mx	Mx V4	on.	lue	m		sno. tin
L	9					\$25	2000	14			510		1		
	4 (84				4			y	15	ler		b		-
V X.	2	,					P		-	-	,				
	v	-	•(+	+			-	(12
E	-			(>	λ		(-)	λųι	1				
				λιτ	23	24	λz	1)(134	10	M,				
5 X 4				υ	((4	λ	4	4	32				17R
				2	λ4	λ:	()	33	e	+	301	-			
				+	42	3	22	V3	×p	λ	54	-			
	=			λι	54	53	Vz	+	5-	4		-			
E				zl	+)	+	+	7	-12	v,					
(x	E			5,	14	λ13	- /	13	7	+					
(, X	/ X1			+	Ui	3 2	412	v,	-'_	λ.					
3)	Xz			λ	+	-	251		2-	24					
Ē	Xs			37	- 1	+ 1	+	+	v	72		-			
(x.	X4)			53	24	123	· λ·	2 hz				-	-		
X4				+	V2	, V-	23 1	зУ	-	+					
)	4			2 s	. 1		V3	2	(;	λ.					
+				4	F A	+)	+	+).).41	34					
Ē	λз	V		\mathcal{V}_{4}	34	34	λz	λ 3	12	v_3					
: (4		0	-) (v	54	4	541	4 -)					
: 2-		th	7	λ	3))	V2	54	+ /	ex					. *.
,) /	en		1	44	e	ex) c)	Aiy	P					
4		+	-	<i>V</i> 4	×p	(P	e X	е	Vi	E					
1/2		ter		+	, {	S-	P	x	+	- 12					
X3		m		21	- 1	22	<u>[</u> -	рſ	λ					21:	2 C
)		15		42	- 1	7	2 T	_ 1	24	v					
		u	-	5 :	VĽ.	- '.	V	1.	2	<u>_</u> ^					
a		shi		+ 1	r	L	`_^	V	2	1		-		-	t
E				24	.7	. 7	_ 7	1	+	v		_			15
D	λz			22	-	-]	V-	7	λ,			-			
]	3	va		+1				F -	347			-			
		u 19		134					5=			, , ,			
		sh	•	253)			1			
•)			-			1	1	-			
								_							

1							1				14	1												1								2.			Th						
	12.		(1)	0	Siv	en	a	th	ie	1	ran	nd	m	1	P	roc	ces.	S	1	41	+)	8	X	tt)	0	0 h	ere	2	×	(t)) ,	5	a							
-				5	sa	n	PI	le.		fu	20	: to	or	e	0.	2	a		st	at	ion	iar	-4	j	re	al		ga	us	51	a	n		pr	-00	es	3		1		
	-								ro						_								d								_		-		_			,	_		-
-	-				0	,	10)				1.)	7			-	-	-	-	2		-	- /		1		-			_	-	_	-	_	_	_	_	_			-
-			(2)		15	y	1.)	1		y	(t) (1 (t+	· 7°)		1	:	X	- (t)	X	- (-	+ 1	r)	_	-		_		-		-		-	-	-			H	-
-	1	Di	-	S				-	10							-		4	1					1	- +					ak		-	4			-	-	-			
									10			10	Ce	55		S	2	10	ar	100	a r	3	,	10	21	0	15	1	m	ar	e		7 1	e					-	13	-
		Y		C	PILA	NI	5		10	,			X (t)	-	2	X																								
														t+	1	-		-	2	,																				1	
																				-									-												
				K	ee	pn	19		n	_	n	11	nd	L	0	nli	3,	th	e	+	w	e		m	te	rv	al		m	at	te	rs		1	Vo	w,	_	_	_	_	-
	-																		d		a	ec	or	dr	ng	>	+0	2	a		6	1 10	ir	lai	te	_	_	-	-	-	-
-	-	-		2	an	155	510	en		di	57	rib	ut	10	n,	V	12						_					·	-	-	-	-	-	-	_	-		_		-	-
-			(3)	_		0	11	X	1	-					1	-	-	-			ſ	•		1			(1.2		V	2		2	2 4	v	_	7		-		-
					-	P	1	3 1	2)	-		211	σ.	0-	1	- 6	31 1	12	6			-	Z	(1-	p)	2	5,2	+	Xz	ī Z	-	5/	T.	Ta	-	7			-	
											0	0 0	0														~	,						JI	-2		-				-
			(4)				Ry	(1)) =			5	2	12	X2	-	Æ	> ()	×, ,	Xz	0	1x	d	XZ														-		1	1
											- 00	-00					4		1																						
-											,			,	-	-				,									,	_	_	_					_	-	_		
-	-		W	e	2	na	y	C	ala	cul	ate	2	+	his	s	w	17	k	1	he		he	P	01		th	e	C	ha	rac	te	ris	s 7	1c	,	Cuz	107	tion	r	-	-
-	-	-	}	04	- +	he	-	bi	Va	ria	te	-	30	203	\$10	en		P	roc	es.	5.4	-			_	_			_	-		-	-	-	_	-	-	-	+	-	1
-	+			_		N	1.1	1 21	- ,	25)	-		0		ſ		1	~	2.	- 2	,		12	25 3	2	1	7	F	2)	~	200	-	7	_	-	-	-	-	+	-
				_		/* 1	X (10	<i>, 1</i>	02	1			e	XP	L	-	2	0		1	+	- 0	2	2		-	6	019	2	12	0,0	2	1						1	
																																							1		-
					w	17	h		E	1	X,Z	XZ)	=	(- ,	()	+	9	4	Mx	(1	vi,	10	E)	7															
																					do	2	2	22		1	υ.	Vz	H	0											
												,						_									-														_
-			(5) M			8	-	-	(1	52	Ve	4	-	TI	0z	P	v	1)	€	X	P	2							_	_							_	
-		-				22	52					-	-	-	-	-	-	-	-	-	-									-	-	-	-	-					_		-
1			-			23	M	5	1			- (-	2		-	5			+	(- 7/	-	1	-	T	م	27	2	-	X.		5	7						-
-	-					the state of the s	2 5	down of the	-	-			VZ	-	EA	P	L	-	2	T	1	VZ	0	2	-		Ve],	01)	e	. ~ 0		-		•					-
						-																		1																	1
								1x		-		52	2	0	5,2	vi	+	0	, J	25	v	2		ex	P	5	-								3						
				•	9	vi	9	2 52						1											1																
•															-		-	1	2	-											5		7						_		_
-	-	-			-			-			-	+	-	2	0,0	12	P	(02	22	+	0	F, (2	P	v,)	e	X	P	2	-	1						-		-
	-		-		-							1	-	10	- 2)-	k		- 5		0.0	T		10	2,	F		~	~	pt	-	2	0	XP	5		7		-		-
-	-	-	-		-			-	-		-	-		10	1	01	4	4	10	2	15.0	2	/	0		2	T	10	12	P	1		e	~P	1		1	*		-	-
											-				1							×.																			
																									1																
															-																							_			
				×	-											-									-										-					4	5
		•	-								-			-	-	-	-	-	-	-	-	-				-	-					_							_	•	
-	-	-	-				-		-		-		-	-	-	-	-	-	-	-	-	-		-	-						_	_								+	-
-	-	-	-	-	-		-			1		-	-	-	-	-	-	-		-	-	-	-				-									-	-		-	-	-
1	-												-		-			-	-																					./	1
1																										-	11		-											/	

$+ \frac{a^2}{2} \int cos(2t+2e+4) dt$	$\frac{\partial^{2} v}{\partial x} \frac{\partial^{2} v}{\partial x}$	$= \frac{1}{2} $	$which will vanish = \sqrt{2} $	$when 27, 72$ $Z 51^{2} 52^{2} p^{2}$ $X_{1} = X_{2} when$ $X_{1} = X_{2} when$ $Y_{1} = X_{2} when$ $Y_{1} = X_{2} when$ $Y_{2} = 0$
$T \rightarrow oo T] o T = 0 T] o T] o T = 0 T] o T] o T = 0 T] o T] o T = 0 T] o T]$	(2) Ry (4) -	$= \frac{1}{2} \overline{a^2} \cos\left(\frac{b}{2} + \frac{a}{2}\right)$ $= \frac{1}{2} \overline{a^2} \cos\left(\frac{b}{2} + \frac{a}{2}\right)$	$cos(t+q+r)$ $\frac{1}{2}\overline{a^{2}}cos(2t+2q+r)$	~
$= \frac{1}{1-2} = \frac{1}{1-2} $		$\frac{1}{2} \int_{0}^{T} \cos\left(2t + 2e\right)$	- m) dt	

		5516	2 1 1 1 1 1 m	1 1 1 1 1 1 1		a 1	1																				1							it	1	18		1
	1	Prob	ler	MS		14	-/	8			-			-	+	+	+	-	1		+	+	-	+	-	-			-	-	15	-	-	16	-		-	
																															- 60							
		-	+	+	+	+	+	+	-	-	+		-	+	+	+	+	-	-	+.	-	+	+-	-	-	-	-		-		-		-	-	-		+	-
	1	4.				AU	(t)																															
					+1	+	-		-	-	-		-	-	-	+	-	+	+	())	P(0	0 1	?(-	1)	0	P(0)	11	-133	-	-	-	-		-	
					0				6							1	-			1	Ne		w	sh		to	f	or	m	-	y (.	t)	40	(t+	1)			
			+	-	0	-	-	-	Ta.	-	-	27:	1	-	370	2	+	+	+	6	ve	tar	m	2 4	u	or	k	6	n	th	le	+	Cir	57			+	-
	10				-1	t														5	ta	tis	ti	ca	110	1	al	ik	e.	070	ler	2	a					
			-	-	-	-	-	-	-	_				-	-	-	+	+	-	-	-	-	-	-	0		-			-			-				+	-
			E	ac	h		121	te	rv	al		15	3	to	ti	57	t, c	ali	14		in	d	epi	en	de	nt		04	2	4	he		0+	he	rs			
											,								~																1		-	-
					fr	oru		th	e	a	60	ve	C	T S	ta	te.	me	in	ŧ.	1	7 (C		y (C T	/)			3	./	3			,	V	Γ			
	+++		(3)		E	2	-	Δ		+ .	< 2.			-	0			N	,	2			-	-	-										_		_	-
																																				_		
	++		-	-	y	(+)	y (t+	Ŷ	')	=		(+1) (-	+1)	P	(+	•1, •	1)	-	4	(0)	(0)	P	(0,	0)		+	(-1	,-1) (21.	-1, -	-1)	+	-
																																				-		
		_	(4))	0	th	er	211	cn	nb	1210	ti	m	5,		4,1	te	. /.	+1,	0	0	P	+	1, -	1	N	ar	C	L	m	005	51	61	6	51	ne	e	
())									on	19		ai	6	n	10	2,											
+		-	-								=								-	-		-		-				_	_			_					+	
					No	pu		P(+1	+	1)	15		de	r7	tai	n	12		m	e		51.	nce	2	u	e	,	Kn	100	J	+	ha	+	81	ve	n	
_			-		+	he	0	cur	re	ni	t Lhe	a	t		on	e		to	m	e	1	n		the	2	12	1+0	erv	al	,	+	he	. c	Ur	re	it	-	
					,'	,	P	(+	1,+	1)	=	P	10	,0)	2	PI	-13	-1		W	1	13	7 h	e		sa	Me	2.									
		_	(5)		_		(+)	L	1+	+1	٣)		-	Z	12											_	_	_				_		-	_	_	-	
						-																																
		-		N	ow		th t	115	_ /	Co	rr	ela	to	m		fr	n	ct	100		13		20	+	1	no	leo	pe	na	le	nt	-	0	F	7	-	-	1
				a				M		()		0	ee.	1			U		01	16		M	10		are	•												
		-	(6))	F.	2	(70)	-	1		1		_	1	-	٦ (-	11	T	1+	+ 90]	-	1+							_							-	-
						- 3					Li T-	20	5	T	-)_	3	(7	1 9	LT	TT.		ac														-	
				Th	15		24 7	100	KO	/		-			20		1		1.		Т	-			6	_		1.		_	_	_	_	1	-	N	~	+
				the	ere	fo	re	:	ra		15										1	a		w	LTE	29	ra	(5		av.	er	-	2	-		Ta.		7
			(7)		P	, 1.	n)	-		1 Ta	S o	a-1	7				14		+		Y		2/:	3	Ta	-1	1+	_	2	2		()		11	1	_	-	1
-			(77		~	10		_		Ta	0	30	0	-1	30	5 40		a	0				2/:	a	0	d	5		-	(AN N	3	(_	T	a)			
+												_	-																_				_				-	-
																				_																		1
																																				-		
							-	-		-				-									_										-				-	1

-

P

									(8
	,								3)
									-
								1-	S
							-	24	12
							1	32	10
						-		D:	e
							3		
							8 3	+	
						8 3	-		th
							S	-	e
		-						+	
							ſ,	_	P
						T	Ta C	+	YO
						-	51		re
						-	S	00	es
						(2		5
						:0	т . ц	+	
						s	÷.	-	15
						2 1	2		
						75	de	+	0
						7	۲	-	W
								2	de
	-					2	-	-	2
								+	3
					,		Ta		e
								-	115
							5.	+	e
							ra 7	-	
			-						5
									te
-									at
									tio
									no
							2		ar
						SL	+		ry
					2	n	2		,
						T	π		
						TS	F		4
							Ta		ve
						P.			
						1	s v		
							n		ho
		-		-			21		20
							7 f		e
							Ta		
									4
							_		Por
							1		
									+
							1		h
									6
				1					
)			-	7)	

$f:$ $\cos\left\{2\pi\left(f+f_{o}\right)^{a}\right\}$
T.

1																1	2		1	0.0									N.				1	1							
	(8)	1	We	2	h	an	2	-	51	10	w	n	1			C	05	21	T f	T	0	12	I		12	8	2 (3	F)	-		3	1		R		1		-		-
							-	-	. ,	+	-	_		-	-	10	-	-	-	-	-		+.	-	-	_	-	-	+-	-		-	-	-		-				-	
-				0	51	Ng	7	7	Fh.	15	,		+1	he	/	FI	151	f.	a	n	d	7	th.	ire	4	17	47	tes	220	2/5		Ve	21	51	h	a	5		-		-
			_	2	-	-	+								of											5										2	-	-			_
					-	-	+	f	ro	n	1	0	-	a	2.	-	76	1e	0	sec	in	rd	+	an	rd.	-	f	or	th	+	w	//	3	\$11	e			1	-(1	-
					-	-	+	-	9	;	<i>f u</i>	n	CT	or	15		ar	-	10	+	F	4	21	nd	+	fo	-+	-	1	•	+	+	-		+	-	-	-		-	-
-				. '		1	- 00	51	7)	7	-	12	-		1	T	5	(+	Co.	- 6	1)	+	-	2	(-	- 5		- 5	1	1	+	-	1	-	-	+			-	
						J	0			1					8	L					,						1		,	1.	7										
								• •																																	
_				Th.	en		(6)		ł	e	co	m	25	:																	-									
_	(0)		-	1	>	1		+	-	, ot	>			d				-	1	-	-	-	-	-	-				-			_		_	-		-	-			
-	(9)		6	- (I	-)	-	-	4		-	G	÷ (.	f')	1	81	++	fo		- ()		t	5 (f	- 6	6 -	f'`)		d	5.	-	-		-	-	-	-				_

 $= \frac{1}{4} \left[G_{x}^{*} \left(f_{+} f_{0} \right) + G_{x}^{*} \left(f_{-} f_{0} \right) \right]$

This result looks like a very close analogy to the sideband frequencies of a amplitude modulated wave. This is what one would expect y(t) appears to be a noise signal modulated by a cosine wave.

.

10			A.	ssi	GN	mer	Nt	-	#	3	1																		F	ai	12		Gr	an	rt					in the
	14	-	Co	n1	tinu	ed	-	_				-	-	-	-	-	-	-	-	-	-			_			-				9P			-	16		-	2		
						-	+	-		-	-	┝	+	+	+	-	+	+	+	-	1	+	-	-	-						21			-	-	-	-	-	_	
	+					-	+	+			-	+		+	+	-		-	+	+	+	+							11		2 -	60		-	+	-				
	-																																							
_	+						1	_				Λ	-	-		-	-	-	-		-	-	-			-	- 11						_		-	-		_		
	-	16.	_	(1)		10	10	./	P	VOC	cei	de,	re	2	1	ier	e	-	15	e	55	er	211	al	19		th	e I	50	ar	NE	2	a.	5	L	n	1	25		-
		- 14				P		010	78	m		/		-				0	151	re	101			ne		co		210		m		F	ac	.10			-	-	-	_
			-			u	00	(t)	u	11	++	p) . ,	-	X	(+) ×	(+	+1) (0	sſ	(u	0+	- 5)t	+	0	C	05	5	(4	00 +	5	t.	+ (منه.	+ 5)	۴.	-0
-	-	- 1.	_																			L						7			L					-	•			
	-					-	-	-	2	C×.	(7)		COS	((No t	-91		+		2	Kx	(7-)	0	os	L	2 (0	No	+ 5.) t	+	- 2	Θ	4	(u	10+	-8)	75			-
		10		/											,																									1
_		/		(2)		K	75	_	θ		13	5	d	st	nb	ute	d	4	un	1F	or	ml	y '.						1							_				
	-					-	1	4)		, /	1.1	A .)	-		P	1.	~)	-	-	1	P	14	1			1	0 (+	c	0	2		-	-	-	-	-			-
																																		-		-				
						I	m	_		fi	n	di	ng		th	e	F	25	D,		we	0	fo	110	w	+	he		sa	m	e	2	ne	th	00	4				
	-		_			a	15	-	1	n	,	pr	06	le	m	.15	5,	-	50	+	41.	ng		F	0 -	7	-	60	+ 1	2)	Y	-	> 0	v.	-			-	-
+-	+			(3)		Gu								1.1						·						2					_			-		-	-			
				(-)		Gru	2	(7		-		4		L	ZX	1	1+	10	+ 4)	+	(2×	(Ť -	+	0 -		7											
			_	_		6	We	2		no	w		se	F	1	IP	-	the	2	C	ros	55-	C	srr	ela	tio	n	-	be	tw	ee	x	_	y	(t)	-			
-1	1		-	-	-	6	ar	nd		C	0:0	t) :	-	-	-	-	-	-	÷	-	-																		
				(4)		a	11	t)	C	1(t+	2	5	-		X	(t))	11	+1	-)	00	55	(4)o+	4)	t+	6	$\left \right $	os	(Wo	t	+ u	101	+	- 0)	1	- 15
			_							/													L					+												. F.
				_		· ·	-	5	C		r (()		0	7 -	- /		L	-	-		21	>						-								-		-	-
-	~			-		CO	5	2	50	Wo	+ 2	o]1	+	θ	1 :	- (Wo	6 -	- W	01	+	0)	3					-		-					-	-				
											_					5																								
_							=	4	20	5	11	Wo	+5) t	+0	(cos	(1	No	t	tu	001	+	θ)	+		50	n	5]		su	1	C).				
-				-		-	+	+	-			-	-	-	-		-		-											_		_								-
			(5)		w	12]	4	(t	+7)	V		1	Rx	(2)	00	5 {	S	t-	- a	01	2	+	1	R	x (*	(-7	cos	52	2.000	t.	+ 2	9+	St	+ 4	007	4
									0											(-				2		e					(7
-			_	-		-	-	+	-	_	*		=	-	2	Rx	(1	•)	e	20	5	St		wo	7-2		_		-	_	_	-								
				-		I	+	1	5	e	Pa.	51	14		50	en		1	ha	t	-	th	e	-	270	55	-	co	22	el	at	n	2	4	2	ne	+	n		
						14	5	7	no	+		m	d	e/	en	de	in	t	e	t	7	ł.	a	in	d		d	ep	en	1de	en	t	0	MI	14	1	n	ori p ar		
			-			w	h	c	h	,	13	s	2	ie	ce	35	ar	7	1	+0	/	1	he	2	e	ارم	de	2 -	5	er	15	e	-	57	a	tio	n	ar	4	
			-			C	n	10	117	t1	n		1	w	e	2	nig	h	T	a	30	1	fo	rn	1:		_	_				-								
			(6)		y	22	4)	u	> ('t f	+1)	1)	-	X	(t)	X	t+	r)	F	05	(Wor	t+	.0) a	05	Tu	No-	+ 8)	t.	+ (0	JO +	(8	7	+ 6	9		
			-			0																		_			_		L						-			7		
-	1		-	-		-	11	-	-	2	- /	ex.	(t)		CO	S	(8	t	+ 0	Voi	7+	5	1)	_				-	-		_				_				-
			-	-		-	1	, 1	11	. 2		0	DA	120		10	_	14	F	~	to	tu	21	ar	1	in	2	+1	he			. 1	6	<	o no	50			-	
									10	- M		a	54	A		13		10	4	5	101	. / 0	FI C	100	1		-				a	10	-							3
																										_			_			_		_						
						-		+	-	-														_				-	-	_		-	_	_			_	_		
				-			-	-	-	1	-					-				_			-					-	_	_	_	_			_			-		

(7)	Lo	+		F	1+) =	-		w	(t))	+	y	lt)			Th	er	1		F	2	11	4	t+	p))	11	-	w	lt	1	+	yl	(+)	15	le	, (t+	r)	+		7 (t.	+ 1	-)	1		Anne
			-																1					-	1																			-						
																											1															_	-	ł					_	
			We qu	e		U	Ula	de	2	5	'e	n	5-6	2		5	+	a	to	n	1a	ru	1	1		H	00	we	ev	er	+1		w	e		4	as	le	_	e	21	50	1	/				Ŧ	7	
	-	1	J'	15	++	-	sk L	NO	d	ne		~	t	ho	se e	2		5	Rto	27	Y Fi	14	1	t.	+9	~)		æ t	-h	e	re	R	207	, 1 e	14	, t	+ Z	7-) to	t	a +	re	e)	1	1s	100			1	
			n	01	4		w	Id	le		3	e	ns	e		-	57	ta	+	īd	21	a	y		đ			-	-			1		-	_									-	- 54	-		+	1	
(8)		(รแ	ien	x	;	+	w	(+	1	= /	,	X ((+)	1	C	05	5	(w	0	+ 0	n)	t	+	0	+	6)'	1	<u>ا</u>	c	NI	+	k		0	3	Ø	1	1	n	d	ep	e	210	le	et	-	
			a o a	bu	10		5	C	f	21 ro	t	0)	~	p	Je	27	10	d	5	7	re	50	51	, P Its	e	el	n		d	T	7	he	5	i Fe	20	.1	2	20	di th	a	70	2/1	1 E	,	0	1				
												v																	- 1						-	~	11	e	20	la	2		7	+h	a	t .		+	-	-
					Ru	, 12	t,	6-	-n)	1)		R	ف	61	~)		<	-	112	1	Rx	(1	-)	0	20.	5	(0	Vo	+ .	£)	1		+	-			-					-					+		
					R,	, ((+)	, t	+1	•)	11	2	R	y	(1	-)		E		-	12	R	x ('r')	С	0 5	-	w	s 7	v												-	-				-	_	
(9)	1	20	w	~	R	wy	, (12	t	+1	(م		-	-	X	(+	-)	X	lt	+	r		c	25	5	(ω	0	+ .	8) t		te	, -	t E	· 1	1	c	05	; (w	0	t-	t u	100	+	- 6)			
			=	-	1	Rx	(9	(4	(00	5	(S	t	+	0	1	- u	10.	p)		ł	4	R	x	1)	c	25	50	20	NO	+	5)	t	+	u	0	7	+	26) -	te	<i>e</i> '	1				
	-		=	_	5	+	+	-	_		+	-			-				-				+	-	_			-	-	_	5	-	+	+	-				+	×*		-	-	+		-		+		
(10)		-	Ry		1	+	t	+1	-)		-	-	× /	41	×	14	4	pc)		-	e	()		+	+	(c			-	1.	1		.)/	+	+ 0	6)	+	A		- 0	1	7	-							
(10)				y au																																						-		>		-	1	T	7	
			-		12	2	KX	. (()		C	20			t		ł	01		+	u	01	+	E	1) +	-	2		KX	(7	1	C	05	L	We	st.	Ŧ (We	, f ()(ti	-73	14	- 21		-]		
				0					_				_						-		_		-				-		-				+	+			~		+		_								_	-
<u>(n)</u>		F	ro	m		(1	7)	:		F	27	(t	t	+	7)	2	-	/	Ru	1	r.)	+	k	Y	11	N)		=	-	2	R×	(1	M)	LC	05	(1	wo	+ 2	r).	T	+	co	5	w,	-	1	
		_		-	,	Ri	Z (170)	/									-				-	-				-							-	-		-	-				-	_				-		
		0	an	d		4	he	vs			TX	: (t)	-	+	0	W	(+	-)	+	۴.	y	Ŀ	t)			1.	5		U	01	de	2 -		se	n	50	-	+	5	to	2+	10	по	r	y.	,			
						+											1											-											+									+	_	
						+	-									_			-													-										-			_		+		_	
											-													-				-	-	•		-	-	-				-	-					-						
						-				-				-	-													-				-		-					+		_		-	_		-	-	+		
											-				-																								+				+				+	+		
						-				-		-																															-							
									•											_												-															(-)	
					-	+					-				-				-									-						1					+											
											+				+	_																	·		-								+				+	+		
	- 12					+																										-									-								>	

Continued Continued $ \begin{array}{c} $	2	A	155	161	me	Nt	- 1	#3	-																			P	au	2	G	rra	n	t		22		
$(1-1) = \frac{1}{2} = \frac{1}{2$				-														1			14							Þ	EA	P	- h	P.	-					_
17. 0) The anode current pulse in a temperature limited parallel plate diale as a function of the transit time for one electron is well known and given by: $\frac{1}{100} = e \operatorname{pradv}; \frac{d^2x}{dt^2} = \frac{v}{m} \frac{v}{dt}$ $\frac{1}{100} = e \operatorname{pradv}; \frac{d^2x}{dt^2} = \frac{v}{m} \frac{v}{dt}$ $\frac{1}{100} = e \operatorname{pradv}; \frac{d^2x}{dt^2} = \frac{v}{m} \frac{v}{dt}$ $\frac{1}{100} = \frac{v}{v} \frac{v}{t} = \frac{v}{m} \frac{v}{t} = \frac{v}{m} \frac{v}{dt}$ $\frac{1}{100} = \frac{v}{v} \frac{v}{t} = \frac{v}{m} \frac{v}{t} = \frac{v}{m} \frac{v}{dt}$ $\frac{1}{100} = \frac{v}{v} \frac{v}{t} = \frac{v}{m} \frac{v}{t} = \frac{v}{t} \frac{v}{t} $	2	_			-	-	-	_	-	_			-	-		-	-	1	-	0.00	1.174	-	-	-	3	-	-						-	-	+			_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						-	+		-					-	-	-		-	+	+	-				_	+	-	1	1-1	2 -	- 60	3		+-				_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\frown	-				+	+	+	+	-			-	-	-	-	-	+	+	+	-			-	-	,			-	+	-	+	+	+	+		-	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							-										-	1	+	-												-	-	-				-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		17.		(1)		The	2	a	no	od	e	(cur	ve	n	t	1	DU.	150	2	1	n	a		te	m	per	at	wr.	e	11	m	1+	ed				
$m \overline{a} = e \operatorname{grid} V ; d^{2}x = e Va \\ dt^{2} \qquad m d$ $Va \qquad x = e \operatorname{Va} t \qquad ; ra = (2m) h d$ $Va \qquad x = e \operatorname{Va} t \qquad ; va = e \operatorname{Va} t \\ e^{\operatorname{Va}} d$ $A = (e^{\operatorname{Va}}) x = e \operatorname{Va} t \qquad ; va = e \operatorname{Va} t \\ e^{\operatorname{Va}} d$ $A = e \operatorname{V} x = e \operatorname{Va} t \qquad ; va = e \operatorname{Va} t \\ dt \qquad m d$ $A = e \operatorname{V} x = e \operatorname{Va} t \qquad e \operatorname{Va} = e \operatorname{Va} t \\ dt \qquad m d$ $A = e \operatorname{V} x = e \operatorname{Va} t \qquad e \operatorname{Va} = e \operatorname{Va} t \\ dt \qquad m d$ $A = e \operatorname{V} x = e \operatorname{Va} t \qquad e \operatorname{Va} = e \operatorname{Va} t \\ dt \qquad m d^{2} m d^{2} d$						pa	ra	lle	2		pl	at	e		d	10	de		a	s	a	,	Lur	ict	-in	- 0	of	th	re	1	ra	us	1+		1		_	_
$dt^{T} \qquad m \ d$ $t^{T} = (2m)^{T/t} \ d$ $e^{T/t} \ d$ $e^{T/t} \ d$ $dt^{T} \qquad m \ d$ $t^{T} = (2m)^{T/t} \ d$ $dt^{T} \qquad m \ d$ $dt^{T} \qquad dt^{T} \qquad m \ d$ $dt^{T} \qquad dt^{T} \qquad d$		_			_	+1.	m	e	+	fo	or		m	e		e/	ec	t	ro	h	15		we	211	k	Eno	w	n	0	en	d	3	12	er	r.	64	•,	
$dt^{T} \qquad m \ d$ $t^{T} = (2m)^{T/t} \ d$ $e^{T/t} \ d$ $e^{T/t} \ d$ $dt^{T} \qquad m \ d$ $t^{T} = (2m)^{T/t} \ d$ $dt^{T} \qquad m \ d$ $dt^{T} \qquad dt^{T} \qquad m \ d$ $dt^{T} \qquad dt^{T} \qquad d$		-			-	-	+	+	-	11	-	-	-	0	an	ad	V		+		12	X		-	0	Va	2			+	+	+	-	+	+		-	_
$V = \frac{e^{V_{R}}}{md} t ; v_{R} = \frac{e^{V_{R}}}{md} \frac{1}{md} $ $A = \frac{me^{V}}{md} ; A = \frac{me^{V_{R}}}{md} \cdot \frac{e^{V_{R}}}{md} = \frac{e^{V_{R}}}{md} \frac{1}{md} = \frac{1}{md} \frac{1}{md} \frac{1}{md} = \frac{1}{md} \frac{1}{m$									V	rvi	u			-	611		Í	1			di	24	=		m	d	-							-				-
$V = \frac{e^{V_{R}}}{md} t ; v_{R} = \frac{e^{V_{R}}}{md} \frac{1}{md} $ $A = \frac{me^{V}}{md} ; A = \frac{me^{V_{R}}}{md} \cdot \frac{e^{V_{R}}}{md} = \frac{e^{V_{R}}}{md} \frac{1}{md} = \frac{1}{md} \frac{1}{md} \frac{1}{md} = \frac{1}{md} \frac{1}{m$							-																				۰.		-					x				
$V = \frac{e^{V_{R}}}{md} t ; v_{R} = \frac{e^{V_{R}}}{md} \frac{1}{md} $ $A = \frac{me^{V}}{md} ; A = \frac{me^{V_{R}}}{md} \cdot \frac{e^{V_{R}}}{md} = \frac{e^{V_{R}}}{md} \frac{1}{md} = \frac{1}{md} \frac{1}{md} \frac{1}{md} = \frac{1}{md} \frac{1}{m$			•				-	_			la	X=	d					X	E		e	Va		tz		;	Ta	11	1	2 11	1.	1/2	d	_				
$ \begin{array}{c} \overline{v} = \underline{e^{v_{a}} t} ; \overline{v_{a}} = \underline{e^{v_{a}}} r_{a} \\ \overline{md} ; \overline{v_{a}} = \underline{e^{v_{a}}} r_{a} \\ \overline{md} ; \overline{md} = \underline{e^{v_{a}}} r_{a} \\ \overline{d} \\ \hline \underline{v_{a}} = \underline{e^{v_{a}}} r_{a} \\ \overline{d} \\ \hline \underline{v_{a}} = \underline{e^{v_{a}}} r_{a} \\ \overline{d} \\ \hline \underline{v_{a}} = \underline{e^{v_{a}}} r_{a} \\ \hline \underline{v_{a}} \\ \overline{d} \\ \hline \underline{v_{a}} \\ \hline$		_	1	Ċ		-	+	-	+	-			-	-		-	-	-	-		1	m	ol.			-			1	el	1a)	-		+	-			_
$\begin{aligned} & = \operatorname{Me} \mathcal{T} ; \mathcal{A} = \operatorname{Me} \mathcal{T} , \operatorname{me} e \left[\operatorname{ectrm} \operatorname{in} \operatorname{mnt} \operatorname{area} \operatorname{per} \operatorname{unit} \operatorname{islow} \right] \\ & \mathcal{A} = \underbrace{evr} = \underbrace{e^{\tau} V_{\mathbf{A}} + e^{V_{\mathbf{A}}}}_{\mathbf{A}} = \underbrace{d^{t}}_{\mathbf{A}} e^{V_{\mathbf{A}}} = \underbrace{d^{t}}_{\mathbf{A}} e^{V_{\mathbf{A}}} = \underbrace{2}_{\mathbf{A}} \\ & \operatorname{mod}^{t} 2\operatorname{Im} \operatorname{Td}^{t} \operatorname{md}^{t} \operatorname{Td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \operatorname{td}^{t} \\ & \operatorname{td}^{t} \operatorname$		-	-		-	-	+	+		-	- x	=0			-	-	-		17-			ev	a .	t	-	-	25-	· 1	e	2 1	a	Z		+	-			-
$A = e^{2r} = e^{2} V_{a} + e^{2} = e^{4} = e$							-												-	-		21	d	-	2	-	va	-	1	m	d	10	d	+				-
$A = e^{2r} = e^{2} V_{a} + e^{2} = e^{4} = e$																																						
d mode i zm. The mide To i. $la \in le$ t Ta (2) $R_{a}(t) = \overline{m}$ $la(t) = tr$ la(t) = tr la(t) = tr la					1	-	V				-		l	=	2	1e	vI	9	,											- 1				r e	m	tv	olon	1
$i A_{a} = \frac{2e}{T_{a}} + \frac{1}{T_{a}}$ $i A_{a} = \frac{2e}{T_{a}} + \frac{1}{T_{a}}$ $i A_{a} = $	_	_	_	-		1 :	=	e	2	-	3	=	e	22	Vo	2	t	-					=	0	22	-		eV	a	E	2	2	12	+	-		-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	++	-			-	-	-	0	a	-	-			-			-	-	-	2	m	·		-	la_	-		m	dz	-		10	L	-	-			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								1	15	2	e		+				-															-		-	-			-
$ \begin{array}{c} (2) R_{a}(T) = \pi \end{array}) la (t) la (t) la (t+T) dt \\ \hline \\ $											To	22	4												(+ 00			/	1								
$\frac{1}{7a}$	-					Na													(2) /	2. (1)	=	ñ)	1	a (t)	1a	4	t+	T)	dt	-			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,				i	re	-			1	_						-	-	_					-	- 00			1	\square	-	-	-	_	-	-			-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-				Ta.		-	/	4	-						-	-	-	-			-0	-		-	11	Y					-			1	-	-
(3) $\mathcal{R}_{4}(\mathcal{P}) = \overline{T} \left(\begin{array}{c} 2e \\ e \\ 0 \end{array}\right)_{0} \overline{T_{a}^{*}} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 2e \\ 0 \end{array}\right)_{0} \overline{T_{a}^{*}} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T_{a}^{*}} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T_{a}^{*}} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T_{a}^{*}} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T_{a}^{*}} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T_{a}^{*}} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \\ = \frac{4}{7} \overline{T} \left(\begin{array}{c} 1e \\ 1e \end{array}\right)_{0} \overline{T} \\ = \frac{4}{7} \overline{T} \\ = \frac{1e}{7} T$			-			-	1	/	-								+				ol	er	e la	c+	Fore	5	Th	e	0	e p	cm	ge 1d	1	no				-
(3) $R_{k}(r) = \overline{\Xi} \left(2e + 2e (t+r) dt \right)$ $e \int_{0} \frac{r_{a}^{2}}{r_{a}^{2}} \frac{r_{a}^{2}}{r_{a}^{2}} \left(\frac{t^{2}}{r_{a}} + \frac{r_{b}^{2}}{r_{a}^{2}} \right) dt = 4\overline{\Xi} \left(\frac{t^{3}}{r_{a}} + \frac{r_{b}^{2}}{r_{a}^{2}} \right) \frac{r_{a}^{2}}{r_{a}^{2}} \frac{r_{a}^{2}$							T			1	à				>		L			-	P		sie		e or or c		P	-		36	-01		1			e		
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ $							-							~	Ta																							
$= 4\overline{1}e \left((t^{2} + rt)dt = 4\overline{1}e (t^{3} + rt^{2}) ra^{-r} - ra^{-r} - ra^{-r} + rt)dt = 4\overline{1}e (t^{3} + rt^{2}) ra^{-r} - ra^{-r} - ra^{-r} + ra^{-r} - ra^{-r} + ra^{-r} +$				(3)	-	Ri	(1)	19	=					2		1	ŧ,			(t t	~)	0	dt					_	_	-	_	-				-
$= 4\overline{1}e \left((t^{2} + r^{4}t)dt = 4\overline{1}e \left((t^{3} + r^{4}t^{2}) \right)^{1/2} - \frac{1}{12} - $		_				-	-	-	-	-	-	e				-		-	-	Ta	-					-		_			-	-	-	-				-
$= 4 \overline{Ie} \left[\overline{T_{a}^{3}} - 7 \overline{T_{a}^{2}} + 7 \overline{T_{a}^{2}} - 7 \overline{T_{a}^{2}} + 7 \overline{T_{a}^{2}} - 7 \overline{T_{a}^{2}} + 7 \overline{T_{a}^{3}} - 7 \overline{T_{a}^{2}} + 7 \overline{T_{a}^{3}} + 7 \overline{T_{a}^{2}} - 7 \overline{T_{a}^{2}} + 7 \overline{T_{a}^{3}} + 7 \overline{T_{a}^$		-	-			+	3		1	4	Ī,	0		To	2-:	1+	2 1	1	~ + ~	1	It		-	1	4 T	0		1 + 1	5,	1	v ti	2)	79	Ta-	7		-	-
$= HIe \left[T_{a}^{3} - rr_{a}^{2} + r_{a}r^{2} - r^{2} + rr_{a}^{2} - r^{2}r_{a} + r^{3} \right]$ $= HeI \left[T_{a}^{3} - rr_{a}^{2} + r^{3} \right] = HeI \left[1 - 3r + r^{3} \right]$ $= HeI \left[T_{a}^{3} - rr_{a}^{2} + r^{3} \right] = HeI \left[1 - 3r + r^{3} \right]$ $= T_{a}^{4} - 3 = 2 = 4 = 3 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7 = 7$									-)。		L	T		C	10			T		T	a4		3	+		2)	10					-
$= He\overline{I} \qquad \boxed{1a^{3}} - TTa^{2} + T^{3} = He\overline{I} \qquad \boxed{1-3T} + T^{3}$ $= He\overline{I} \qquad \boxed{1a^{3}} - TTa^{2} + T^{3} = He\overline{I} \qquad \boxed{1-3T} + T^{3}$ $= Ta^{4} \qquad \boxed{3} \qquad \boxed{2} \qquad \boxed{6} \qquad \boxed{3} \qquad Ta \qquad \boxed{2Ta} \boxed{2Ta} \qquad \boxed{2Ta^{3}}$ $= \int or or t < ta and o otherwise pecause$ $= The currents due to different electrons are un-$ $= correlated, and each electron's motion is independent$ $= of the others.$											_		_		-																				7			-
$= H e \overline{I} \qquad \boxed{1a^3} - T Ta^2 + T^3 = H e \overline{I} \qquad \boxed{1-3T} + T^3 = H e \overline{I} \qquad \boxed{1-3T} + T^3 = \frac{1}{2} \qquad \boxed{7a^4} \qquad \boxed{7a^4} \qquad \boxed{3} \qquad \boxed{7a} \qquad \boxed{7a^4} \qquad \boxed{3} \qquad \boxed{7a} \qquad \boxed{7a^3} = \frac{1}{2} \qquad \boxed{7a^3} \qquad $			_			-	1	-	L				1		-	- '	21	ra.		- 1	Ta	22	-	2	-	ł	21	a	-	~	270	2	+				-	-
for 0< t <ta 0="" and="" because<br="" otherwise="">the currents due to different electrons are un- correlated, and each electron's motion is independent of the others.</ta>			-			+	-	-	-	1	a		•	3								_		-		-	2					-	-	-	1		-	-
for 0< t <ta 0="" and="" because<br="" otherwise="">the currents due to different electrons are un- correlated, and each electron's motion is independent of the others.</ta>						+	-	-	1	4	0 7	Ē	5	4	Taz	>	-	7	7	2	+	T	37	_	-	4	0	Ŧ	T	1 -	-	3 1		1	73	7		-
for orients due to different electrons are un- correlated, and each electron's motion is independent of the others.									-				l	-				_	_		Ŧ		1	-		3	-	ra	L	1								
The currents due to different electrons are un- correlated, and each electron's motion is independent of the others.								~																														
of the others. lated and each electron's motion is independent of the others.				_		-					-							1																-			-	-
) of the others. hauli also consider			_	_		-	-		_		1										5			1														-
laule also consider	-	-				-	+										na	-	e	ac	n	e	1ec	tr	m	2	-	mo	TIO	n	1	5	n	nat	pe	na	en	1
						-	-	of	-	P	ne	-	01	M	1			0			1	1			Con	1	de	~	-					-				-
r negative																		sh	ou	ld	. 0	ul,	20															
									-			-					1				-	~	ne	40	ati	ne												
						-	-	-	-		_	-	_		_							1	-	1						-	-	-	-	-				-

4					~					1	00																		2015	1				-1		1	1000										
	(4)		6	r +	(f)				4										f							-				1		_															
						•	11	1	6	e: Pa	Ĭ 4		J	Ta	Ľ	1	3	3 .	-	1	- 1	3011	4		7	3	,]	C	05	2	.17	f	~	da	Re-				-			_	-		2	
									-	+	+	-	_	_	-	+	+	_	-	+	+	-+	_	-	+	-	_	_	-	+	-	-					+					+	_				
	(5)				7	а ³ 3		0	C	0 5		21	rf	1		d 1	U I			3.;	727		5				SI	n	2	Τ	f	P	R.,						-		-						
	(6)					Ta Z	2	ſ.	re T	-	ci	25		277	f	r	d	۴	17			Ka n	2	5	С	03	10	11	¢.	ĩa	+	-	2.	Tf z	Ta 22	5	54	n	21	тf	Ta			1	.7		
						. T	3			-	_						_				-	_			1	4	_			1	+	_					_	_			-	_	_	_	-		
	(7)			16	-	0	P	ŝ	co	ST	2.77	rf	7		11			-	16	2	Ta	5		sи	1	51	r£	Ta	-	6	Z	π <u></u>	-) 0	X	2	su	n	. Z	.Π	fτ		dT	~			
				0	16	1a 21	3 Tf	3	su	~	21	τf	.10	~	-16	3 2	πj	F {		4	π	fī	1a		S	m	2	πf	Ta	- (1	. (2П	4	72	62	ra	2 _	- 2	.)	Co	S	217	FT0	2	- 2	2	7	
				=	101	(2	πf	Ta)3	SI	m	211	- f	10		-	-	21	τş	29	i a	TW	su	A 1	2 (1	ŗĘ	To	L	+	110	= (21	τf	Ta)2	co	25	2π ;	FT	a	_	-	_	_			
					-	-	20	5 1	2 1	ГŞ	T	a		+	1]		(2	π	(7	- 4													8				`							ť	7	
	(8)	(6)	-	7		-1		(2	.π{	-T	ia)	2	co	s	2	π	47	a	-	F	-1~	E (2	π (25	1a) 3	51	m	2	π	- 1	6	-	42	(2	Π.	f7	Ja.	12						
	(9)		<u>_</u>		L	(-	217	£.	2	15	2		7	π	ET				(2		1				. 7		.4	-		0	05	27	TC	20	+	- 1	+	-	- 1	2	π£	2		2			
					-		(21																2		/		-10	λ.					1.2					2			1	10					
																				-	-	_	7	/																		1	-				
	(10)		G	r I	(f)		-			'6 2 П					2	-S	(2	πç	· To	2)2	-	+	1		-	Co	S	2 11	·	ra.		- 2	π	f,1	a	S	m	2	π	FT	à	1	-			
						W		1	8	е nf	II T	- a)	4	[(2	217	ç	ra.	2		+	2		-	2	c	.0 :	8	21	F	To	á	-	4	Π,	f	Ta	_	sv	22 7	T	F	Ta.]		
				_							+						_				-	_				_												_			-	-	_				
											+							_		-	+					+										-					-	-	+		75		
																									-	-				17														~).	
										_	-									-																						-	-				
					_						+										+	+													-)

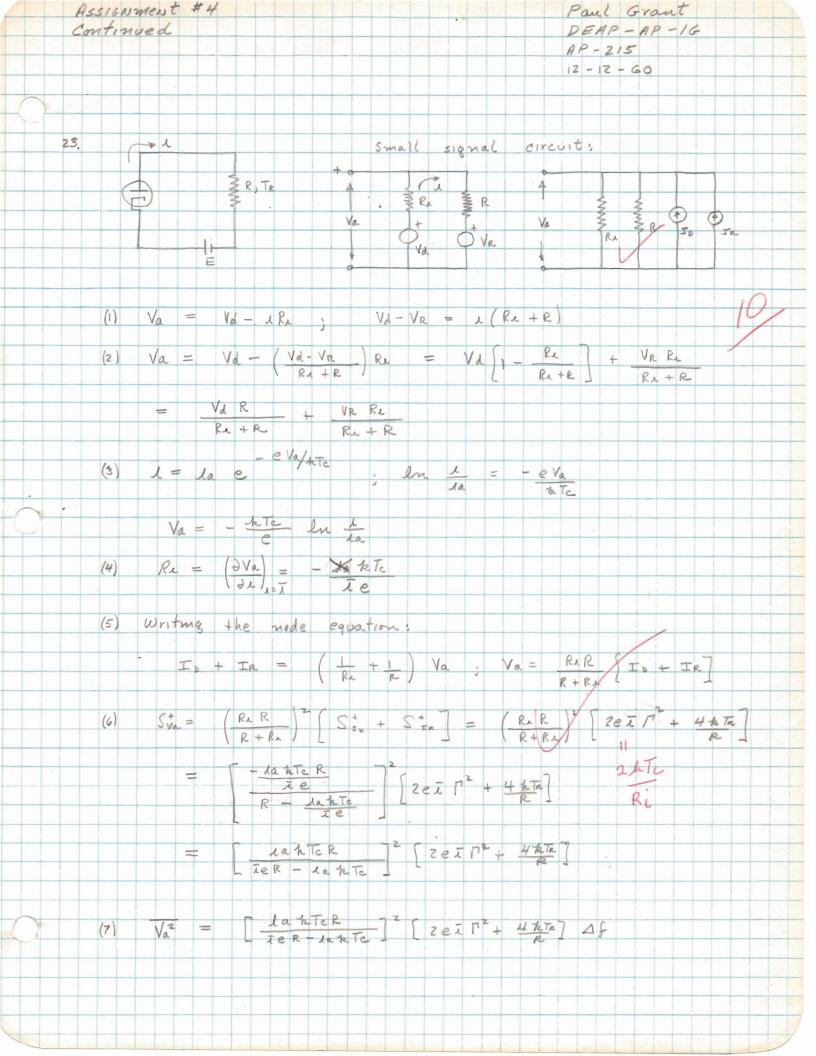
P			A	510	5N	me	ent	+ =	# 3	3	3		12	3														F	Pa	ul		Gr	an	rt						-
				1		ve	1000																								- A							2		8
-														4						1	- 25	1		6				×	PP	2	15									1
																								1.02				1	1-	12	-6	0								
																								h																
(5																			1	1		10	V	1															
																-							-																	
																																								1
		18.		(1)		Th	he	6	as	C		re	121	10	2	b	er	fur	ee	n	-	4	10					50	na	10		10	110	te	n					
		1.0.																																ron					-	1
				1		51		1	106		1	2	1	1	4	60					7	,	La		10			E	101	1	000	2	1	n	and a	+60				T
		1				1	20	10	100	4		b	br	the	no	e	-	10	70	4	n	1	24	Ja	1		Car		a		m		1	n	,	4	1		tive	
						RI		st	ta	. 1	-	5				5	. 7	+	6	7 6	10	na s.	5	01		10	m		ar	e	a	92 4.		M	A	2		ca.	1700	-
						CO	n	57	000	nc	-	P	-	a	no		1	5		21	ne	un	1	5	90	Par	e	1	de	1	a	-10	m			2-	-	2 /	-	-
						-	-	AI.	2		-	-	AN	2	-	-	2	L	1	T		17		2		-	-							-	-		+	+	-	Г
							6	1/3	sec	-	-	6		pr	1	P		T	-	N P	rec.	6	14	1			-								-	-			-	-
						,	11	th			T		19	-	Ā	Ī.		10		-		-	-												-				-	-
						C		, , , , ,		-	143	Dec				P.n.	4	P	-			-	-	-		-									-				-	-
						1	4	,	11	-	1.	200	4-	10	+		21	0	C	1	1	11.			-	d	2	-	P.	-		-	1	, to		. 14		1	-	
						re	1	-	05		CO	NS	IP	JC.	/		n	C	+	0 11	00	n	3	21	10	de	6		+01		a	P	na	10	m	117	PI	er		
								-	-	-	-	-						-	-	-	-	-	-	-	-	-	-								-		-	-	+	-
				M.C.	da	t	477		-	-	-		-					12)	-	(1)	-	-	1		-	1	-	C		-		L		-	1				-	
			(161	- I		1				-		-					(2)	-														m	5	DI	egi	nn	in	3	-
		-			No				o V	0	-								-	w	it	h	1	th	e	0	th		a	210	de	1	_					-		-
	V		-	/	No							-							-			2	-	-	12	-	2		11	-	-2	-						-	-	-
	0	-			N,			-		-	-	-	-					-	-	4	ZN	-	-	Δ	No	P)	+	No	4	1P	-			-	-		1	-	-
		-		-	NI	~	7				-	-								-	. 12			-		2	-2		77	-	p	-	-							
	-	-					\geq		-0	V2	-	-								4	ZN.	2	-	4	N	-	P	+	Ni	4	P						-		-	-
	-	-		-	-		/				-				,			-		-	-	-	-	-	. 1	2	-4		-	a 100	-		_2				2			-
					Nz				Va	<1	11	V2 4	ζ.,	1	14+1				-	-	-	-	-	4	N	ð -	p	+	N	00	P	P	2	+	N	4	6	-	1	-
			-		-						-	-		_						-	. 1	2 .	-	-	117	-	-2		11	-		-			-					
				-							-	-					_			4	N	3 .	-	4	N	2 _	P	+	Nz	4	P2	-	_							
	Vnti		-		ī						-				_		_			-		-				-	6		-		-	4	,	-	-	7	2		- 1,3	-
	0	f	-		In	-														-	-	7	-	Δ	No	P		+ N	0 4	sp	P	-	+	N,	4	P	p		12	
				_						_	-	-		_		_				-	-	-		+	N	2 .	44	2	_			-	_				-	-		
				_																-		2		-	1	2		2	-	T	-	>			_			-	12	
			_			-						-		_		-				2	ZN	4	1	2	AN	3	P	-	+ 1	Z	4	0-	-		-					
				>	- (Fal	1va	non	net	er		-		-	_	_						-		-			_ 8	-	_	-	2	- (6	-		-		_ 4		
		-	_																-	-		-	1	4	7 Nº	5 -	P	+	No	4	p .	P	+	- N	11/	763	1	0		
				-		_	_																-	+	- 1	JZ	4	pz	P	-		N3	4	- P .	-			-	-	-
			_		_			_					_		_	_		_					-							_			-			_	-	-	-	-
			-	. 1	_	-	1.1.9			-		1Z	_	272		1-	-	2	n-	2	_	-	21	n-4		-		27	-6	_			_		-					
		_	((3)			Nn	-	-		21	0	p		+	()	10	P		+	N	11	0		+	N	1	5		+	•	+ 1	1					-		-
			-	_	_				_			-		-	-	_	_	4		-	_		2	-	_			1	_		-		-		-			-		_
		_			_			_			v 1	l	+	N	Jn-	3	1)	t	- 1	Jn-	2	R	+	F	Nr	1-1) 2 te	Δ.	92		-						_	-	-
		_	_	-	_			_	_	_	-		-		n	-		-			n-1	1/	_	-	2	n-	2-	2%		-		-	-		-		-	-		-
				_	_	_		-	=		2	No	-	P		+		2	p	1	N	1	N.	k T	P				_	-							-	-		
		-			_					_			_	_	_			_		1	R	-0							-	-		-			-					-
	~		-	1	_				_	_	-		_	-	-	-													-	_		_			-	-		-		_
	-		-	(4)		N	ow	:		N	=	1	5 NI P	0	_	-	2										_		_		-	_	-		-		-	-		_
			_	_	_	_	_	_		N	2 3	- 0	P 1	11	-	-	p	No											_						_				-	_
-			_						_	N)3	11	P	NZ	-	:	P	N	0										_	_			_		-	-				-
			_	_						_	-	i		_	n	-												_				-			_	_	-			-
			_	_	_					N	In	5		1	7	N	2	_											_	_		_								-

(7) $AN_{R}^{2} = AN_{0}^{2} + AP^{2} \int 1$ $N_{0}^{2} = N_{0}^{2} + AP^{2} \int 1$ $N_{0}^{2} = N_{0}^{2} + DP^{2} \int 1$ Rearrangreg; (8) $AN_{0}^{2} \int AN_{0}^{2} \int P^{2} = AN_{0}^{2} - P AN_{0}^{2} \int P^{2}$ $N_{0} = AN_{0}^{2} - P AN_{0}^{2} \int P^{2}$ $AN_{0}^{2} = AN_{0}^{2} - P AN_{0}^{2} - P^{2}$ $AN_{0}^{2} = AN_{0}^{2} - P AN_{0}^{2} - P^{2}$ $AN_{0}^{2} = AN_{0}^{2} - P^{2}$ $AN_{0}^{2} - P^{2}$ AN_{0}^{2	
--	--

4		SIGN						11/	1						2423		2							Par	ul	(Fra	an	t		1	4
	Pro	oblen	ns i	19-	24	+		-	-20			25 20	2	i de	2.ak	8		4	1	2014	1 Sta			DE	AF	2 -	AP	-	16	2		
	1.1.1	1	5			1	0	-	12		2			and a	242	50		4					_	AP	- 2	15	-	1				
		1.	-	1.00												_		-					-	12-	- 12	- 6	60	1. 1	-			
			00			1			-																	12		3	2.00			1.18
		1 may																4							-	1	1				12	1
-						5	1	-			*			_												1		-	2.1			-
	19.		-			1	-					_						-							_	1.1					_	1
						hos	sles	5			-			()	1	Pow	er	0	deli	vei	-eo	l	ba	V	1	m	to			-		6
			MMN	R, Ti		tre	ausw	1155100	1	AAA	R2	[2					Ŧ		V	2	Rz			1	_	-					-	13
			Z			lin	e			Ĩ									(RI	+ R)2		Ra	2							1
	0/		,0			BW	= 10	605		C	Ve																				1	2
	17							-		_			_				1)		G	V.S	f) .	Af		Rz					8			
	1																						(Ri+	$R_1)^7$	-					_	13
																	-		4%	Ti	R	, R2	- 1	AF								
																			()	$R_1 +$	Rz)	2										
		(2)		Sin	nil	ar/	'y ,	+	he	N	owe	er.	de	live	re	d	1	64		12	4	nt	-0	R	2	15	;					1
Sec.							Č.			, i								0														
	30					4	to Ta				f															1						
D							(Ri+	R2)	2																						
		(3)	I	4	T	2.	< т	-	,	Th	e	ne	et	0	ocu	ser	-	d	eli	ve	rea	l	+	5	Rz						12	
														,																		
				15			P =	=		47	k R.	2 Ri	DA	(Ti	- Ta)	1		4	th	. R.	Rz	4f	A	T					1	
2										CR	2,+1	$e_z)^z$	2											+ Re.							23	
2								8																								
-		(4)		No	w	é	20	-	m	ic	1	T	*		P	6	- 7	đĢ	2 =		- J	ma	2	d	(AT							
R							1											-													12	
						bec	call	se	of	tu)0 r	esi	sto	rs	(-)	be	car	use		Q	d	ecr	ease	25	a.	\$	tw	ne	men	rease	s,
			-																		1											
		(5)	5	d		4	-	8	k	RI	Rz.	AF		7	4	T :	=	0								V -					13	
			l	dt	-				Jm	AC	(R.	+ R-	12												1			2				
											-				2									t	12							
		(6)		A.T		-		K	e	XP	1-	8	3 R	K, K	.2	44	-]	t		6		K	e		1							
											L]	5 m	CI	RIH	-RZ)	2												1		120	
1																												1			103	
		(7)	I	n	4	the	5	P	rob	les	n		R.	= R	2	AF	=	104	CP	3		m	2	-	10	-1 c	ay	10	eer	ee.		
																	1										/					
			J	-=	4.	186	1	1001	es/	ca	l. ,	-	k =	=	1.3	8.	10-3	23	200	sle	1d	leg.				/						
													1.0																		-	
			. ² .	F	> =		14	k	Δf	4	T	=	(1.3	8.	10	28)	(10	(2	AT	-	15	۱.	38	- 10	-19		T	wie	att	5	
																		-						1								
		(8)		γ =	=		J	me	- (R	+ R2	.)2		=			m					1				80						
									And in case of the local division of the loc	No. of Concession, name	2 1	Contraction of the local division of the loc					2 k				1					,						
														1						•	/										1	
					-	•	(4	1.18	(6)	(10	5-1)			1-10	ole	1 ca	2) (Ca	2/0	eg		_	-	1.5	1.	10	8	sec	1	4	-	
1	-																degi														1	
																													1		12	
					=	. ((1.	51.	10	8)	(3.	169	- 10	-8)	-		4.8	•	10	10	40	00	24		-						
																						0										
			R	en	rar	ks.	:		TH		112 0	1.	1	to	ko		41	8.	10	10	n	en	rs		1	22		+1	ie	1		
2																		Ĩ	1.5		V				To							1
V																									1		-		1.5	-		7
-					-			-	h	-		-	1 miles			- de							_		_	1						

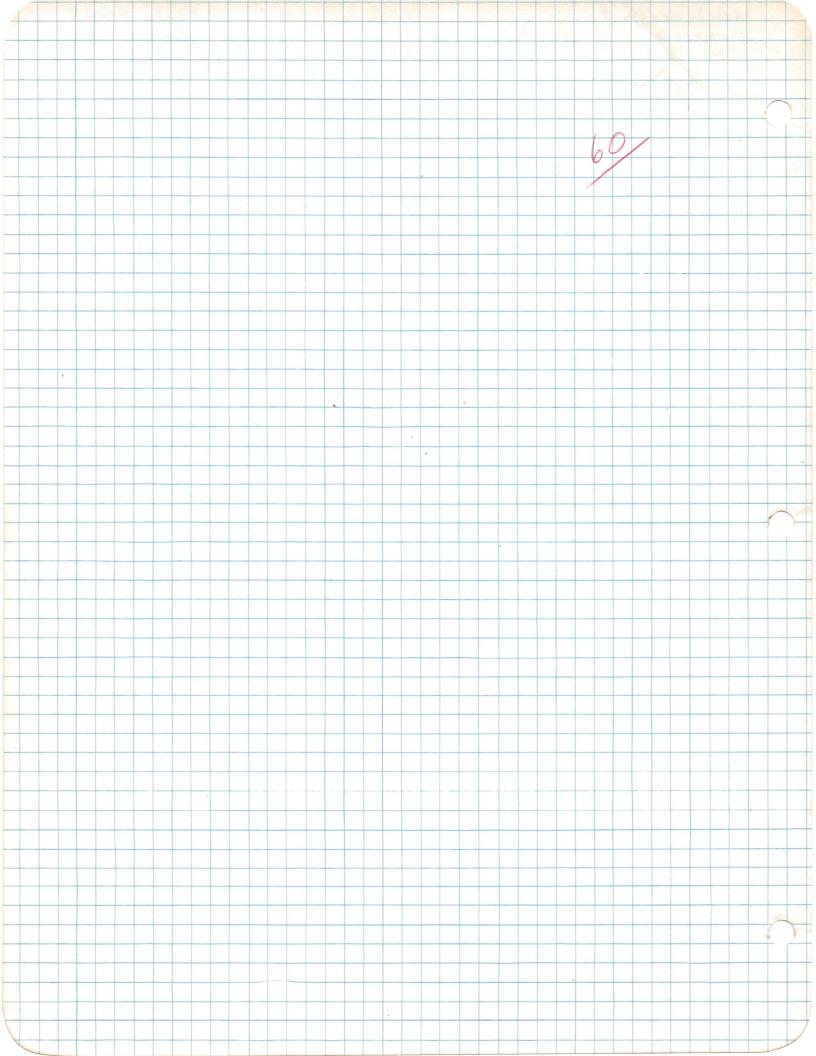
1	4			4				11	1					1			1					. /			01	07			1		L					,		1
	Va	lue 6° h	ero	rto	re	-	d	K	1 ei =	ver	10	00	K	+0		4.	7e 8.	cr 10	ea. 10	se	ear	+0	0	lat	ter	- 10		AT	-	17	500	0	d	31	be	C		
	3	6 %			T	315		sh	ou	> 5		+	he	`	1	re	m	er	de	us	14	7	10	ng		+1	me	2	4	+	u	00	110	1		_		-
	ta	ike lovi	0	fo	2	200	th	er	m	al	P.	e	29	UI	16	FI	100	00	-	70		60		50	27	0	P	-13	y		re	d	10	TI	ne	1	-	-
	der ti	an	sfe	err	ed	,	,	Th.	15	-	50	r	40	-7	102	a	te	,	e a	5	17	4 10	1 54	100	25		th.	at	-	1	the	2		0 6		-	1	
	υ	nII	lei	se		1	s	Ģ	ore	oce	ec	di	N	3		+0	w	ari	ds		eq	01	1.6	62	10	m	_	ai	+	a	r	ate	0			_	-	-
	5	rge		er	100	131	2		50	ch	-	+	ha	-+ +		u	e	1	wi	11		no	+	ł	ne 1,	1	207	he	270	ed	-	Ь	y	0	2	-		-
	10	130			NC	rei	as	e		n	1		m	1	0	2		au	er.	m	3	01			117	e		76										
																											_		_						_	-		
			-				-	-	-	-	-	-			_					_		_						-	-	-	-	-						
							_	_	_																	_									_	_	_	
		-	+			_	+	-	-	-	-	_	_							_			_	-		-	+	-	-	-		-	_			-	-	
									÷																							-			ж. 1			
							_	_																			_	_		_							_	
			+	-			-	+	+		-	-	-														-	+	-	_		-	_		-	-	+	-
								_	_		_																_	_		_					_	_	-	-
			-				+	+	-	-	-															-	-	-								-		
																																	-				-	2
	-	-	-				_	_	_	_	_															_	_	_	_	_	_					-		
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		+	-	-			- 1		-		-	-	_							-	-						+	-	-	_		-				-	-	
												1																										
			-	-			_		_		_		_			-				-								-	-				-			_	_	-
			1	-			-	-		-						-										_					-			_				
			-	-		_	_	_	_	_	-						*		-							_	_	_	_		_					-	-	
		+	+								-									-						-			-	_							-	
																																				3		
				-					-		_					-	-	-	-								_	-	-	_		_				-	_	+
																													4									
						_	+	_	+	+	-	-													_	-	+	-	-	-	_	-				+	-	+
									_		_																	_	_		_							
			-	-			-	-	-	-	-							-													-				-	1	-	
						_		-										-																				-
			-				-	-	-	-	_															-	-	-	-	_					_	-		
																																						7
																																			-			

	ASSIGN		# 4	!					1		1	Paul G	rant	
	Contine	red		181								DEAP-A	1P-16	
					Anna I	2. 2. 14.						1P 215		
					102							2-9-60		
				. 1	12									
ż	20. Co	mside	r 1	the .	follo	wing	51	mple	cira	cuit	consist	ing of	a	
	r	esis to	12	at.	te	mper	ature	2 T	a	nd	a cap	acitor.		
			+ + -	R			+ +							
			m	A-			+				4			
		O.	1	7 =	=	0		(P)	MR	Te	Vo			
	_	TV			C .			T	1K	6	-			
ſ	D/													
			Gt =	= 4 k	RT				GI =	= 4	21			
							~							
	(1)	T		1 -	0 + 1	=) =	= 1/	1	sRC +1		Vol S+	EC)		
	(1)	-	V	0 (5		2/	Ve	> (R		Vo (5+	1/C		
	(2)	Vo =	- (.	1/0		I -	->		IC	I	, wo	= tra		
			(5 + 1	IRC I		1	JW	t wo	/				
	(4)	0+		11	2	1+		ne .	2.	111 -	T D			
	(3)	(5 Vo	1	, 2	+ 000	Gr	Ħ	w2.	· 420 .	72	16			
				w										
						100						2 COS 40	,	
	(4)	Vo	(t) Vo	(t+r)	= -	GV	to co:	s w 1	dw	H	ZZTRWO	Cos ce	pp dw	
		-									11:20	0 202 7	- Wo	
	(5)	0	. 1		100	max	dx		201 1	p+5	e maz 22 + a2	7		
	(5)	Con	nside			(2 + a		11	171 2	K L	22+23	- 1		
			dir	ns		ni z	- ?	-	ema			2-ma		
			アー	1a (7	+12			220			ea		
	1.0		00	mrk					-ma		000		14	
	(0)	-	2	x2+a	2 d.	(=	-	Пе	a	8.		22 7 a2	-	
			00						The Cala					
	(7)	1.)	COSC	0 4 J + 000-	2 =	-	re-						
				we	+ wot			ZW	0					
	(0)	VI	14)	10 (++	au)	=	47	· - P	o et	www				
	(8)	Va		0(14		-	RI	κw	9					
No.	(9)	1	8	Ri	- 1/sc	3		RC +	1 1		S/R V	- 7	RV	
				169	150		5	KL T			S+ tec		put two	
						1	-							
			=	= 1	WCI	0	2	-	400	T				
								7	w two					
					1									


	1re .		15	dur		d.			
a) TT	ey ar		dw' dr 2 TT dev'	AWT		elated			
kT .	rce. the)t di dw	, 20 U U		cor			
4	5001		ω'-ω. -ω)	2)		re			
	2		e + (' (w'	R W	7	a			
- + 0	0150		n S	4.1	UP.	nt			
	21	25) e*	₽ C	et	rre			
2	12	·) d	* (w' ') e			C L			
du	an	+1) S' (w	1)	S	d			
	5	* (+	S (u) S*	lw	ı	an			
	he) Vo	. W S (w	74	in	e			
02 02 02 02 02 02	+	e e la		ąω.	Au				
t u	of.		fo 80	10 0	wo				
UZ	S a	- L T) c - a = (-a)	o G	kT T				
k T u TT	tion.	lim T-200	T C	211 50 -00	(-3	wo Ah			
40.3	nc		im -> 0	с 24 ЛГ	74)				
	fu	(r) =	0 7 21		(2)				
1 V	th	Reve	11 11))		50			
(10)	bo Th	(11)							102

-			As	516	N	me	nt	t	#.	4				2											-										nt					
			Co	nt	inc	rec	d	50	-	1	1	-		1º	1				-		-				1	-		No.						- 1	G		10		1	
	-	-					91	-	-	-	-	-	-	-	-	-	-	+-	-	+	+	+	-	-	-	-		-			21			-	-	-	1.1		-	
								-	-	-	-	-	-	-	-	_	-	-	-	-	+	-	-		-	-	-		12	2 -	9-	-6	0	-	-	-			-	
						-		-	-	+	-	-	-	-	-	+	-	+-	+	-	+	+	+			+	+	-	-		14. 1	-	_	-	-				-	-
	F	-					-	-	-	-	-	-		+	+	+	+	+	+	-	+	-	+		-	-	+	-				-		-	-				-	
	+	21,					-	-	-	+-	+-	+	-	+	+		+	+	+	+-	+	+	+		+	+	+			-	-		-	-	-	-			-	
-	+	<i>C</i> ',					-	-		-	+	-	+	-	1	-	+	+		10	1			~) ~		-		1)				1					-	+
		-		_		{	6.	(1	1	4	1	1		3		+	+	V	1E		nas		se	P	ia.	EO	-	a	to	1	les	/3	10	rs				+	-
						-	L			4	NA	R,	12	4	B	12	+	-	+	000	. <	n	01	ge	103		+>	P	2	10	72		a	ha		in				
						V V	ANNA	2.,-		1	F	T	T	-	2									80									1							
						ALA		,		(P	V			ANN.	Rz,	T																							
						(\int_{Λ}^{+}							(Gi	► ′1	=		4 R.	k	T		GV	11	- 6	YR	R	T :	6	+ +2	5	48	R2 te	2 T	
							Ľ								T	12				al	ef	ine	d	0	15	w	ide		PSU	,	121	der	en	den	rt	of	·f			
																						_			-		-			-									-	
	-	-			W	e	US	se	-	La	PI	lac	e	+	ra	ms	fo	sr w	r.	0	an	gl.	75.	15		thr	00	34	00	t;					-					
-	-							-	-	-	-	+-	-	-	-	-	-	-	-	-	/	-	-	-	-	-	-				-			1	(2	2			
		-		(1)		-			2	D	-)	-	-	-	R	-	-	-		1	1	1		-	Vı.	14							-		-	-		-	
	-	-		(1)			K	. 1	٢	R	+	SL	1	-		R	+	-	1	1	-	~	-	-	-	VI.	V						-	-	-			-	-	*
		-					-	-	R	-		-	-	-	R +	R,	+	sL	2	1		12	1	-		V -	- Vz								-					
										-	-		-			- 6			-		1	-	1			V		1												
2	1									1	1	+	-	1	1	+	1		1		1		+		1															
				(z)			Δ	11		1	RI	R	+ R	z R	2	+ 5	R	Lz	+	- R	R	. +	. 5	Lz	R	+	sL	R-	ts	Lil	22	+	52	Lil	-2					
1	- i							Ξ		41	42	5	-	+	(1	216	2.1	- 1	-2 K	2 +	- 21	R	+	4	Rz	s	+ (RI	R-	+R	R	+	RR	2)						
K	+																																		-			_	-	
-	-			(3)		4	1	, v	=		(Vi -	-V)	(R	+R.	2 +	sl	2)	+	R	- (V-	VZ	1		-											-	-	
	-							-	-	-	-	-	-	-	-	-	4	-	-	-	+	-	-	-	-	-	-										_		-	
	-					-		-	18	-	-	11.	R	+R	2 +	-sl	2)	-		-	-	F	2	11	-	-	-	1	0	+ -	1-		,		-		-	•		
	-							-	-	-	-	-	1.4	4	T	-	-	-	1	-	-	-	4	- V ;	2	-	-	1	162	T S	2	2 1			-	-	-	-	-	
	-								-	-	-	-	-	-	-		-	-	-	-	-	+	-	-	+	-			_									+	-	
				(4)			Lz	1		-	((1.	- 1	12)	(5	2 +	R	+ 5	L)+	F	21	V	-V)		-												-		
							-					-	-	-		-	-	2	-	F	-	È	-		-															
													1																											
								1			_	R	VI		-	(RI	+1	+ 5	sL	.1)	V.		+		R	+	sLi)	V										
										-	-		-					-	4	-	-	-		_			4												-	
-	-			10		-		,,		-	1	-	1	-		-	-	-	-	-	-	-	-		-	-	-	-									_		-	
	-		((5)	-	Ir	2	th	e	5	te	ad	y	51	ta	le	-	5	-7	1	ce		+	_	-	-	-													
	-			-	-			-	-		-		-	4		-		10	1	-			,			1	P		1	P	0,	. 0	0		0.	2		24,1	12	
-	-			-	-		-	-	-	-		A		>	+	71	₩.	IR	1 4	2 .	+ 6	-2 (+	- 41 K	4	61	K2	1 +	(RIG	< 4	R	CRI	+	KR	2	w	611	- 4/	
	-			-						1	-	-	-	-	-		-	-	-	-	-	+	-	-		-	-										-			1
							l,	11	-		(R. +	Rz)+	70	022	M		-		R	- V	12	-	-	(Rz.	+ 1	al	-2)	V	1								
														4			X				4					È		6	2		V									
	and the second se	1					12		=			-	RA	. V	1	-			(2	+1	2).	+ +	wL		V2	+	(RI	+	zω	Li)	\vee		-					
	-											-	-			-					2	-		-					-											
		-									-	-	-	-					_	-	-	-	-	-													_		-	
-	-			-	_					-	-	-	-		-	-		-		-	-	-	-	-	-	-					_						-	-	-	
				-	_					-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	*									-		-			
1					_			_		-											-																125		-	/

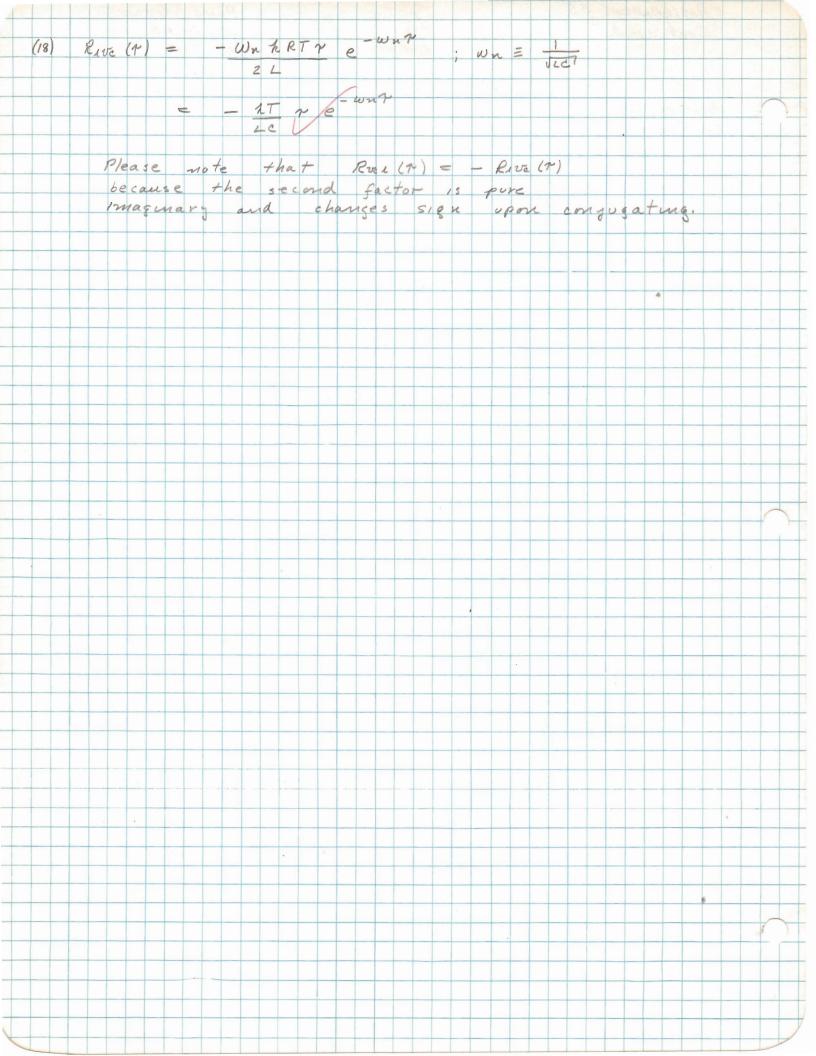
														4
			(11)			(10)	-		(9)	(8)		(7)		(6)
			A			ŀ				L	G	G		
				w		<i>4s</i>	re	co				; +		
					51	R-	ma	ol. Urs			1	4		
-	so	T	, R		hor	*0	12	re	I.	J		4		
	t	2	2 -		t	, V		th	2 =	2 =		'nТ	1	
	hus		70		cir	->	50	av e		÷ z	-			
	5	2			eur	0 (5	to	115			(Rit		
	+ ne	AT	V		+	no	+1	a ros)_0	a G		- Rz		
	her her	R	Vz	2 + W 1 D (R 1 ²	de	more	aeg he que	nd s-c deg	Giz	(RIR	Z RI		Yz	s a th
	re 2000	Jo	~		vel	e no		ori	de	dw		w² L		
	1R2=		0		ops	nse	CUI	ro	ف			22		
	701 T	2241 4 (R	• /		5	qe	rre	ss tr	,	,		R		
	z a ei	2 0	/		acr	mer	nts	- c ms	G.	Gi		+	,	
	- c xpe	-20)	Δ		05:	atec	s	orr	+ 12	+		5.		ta t
	eori	12	(R1)		s	();	are	ela	as	as		R2 MI		isti
	rela	,	R2-20		the	Ji.	2	tio		ab		.}		call
	+		160		-	12#	2	ns sh	abe	201		R2		ly
	ey	12	~ =		ne	-	no t		ove	ie		+		13
	E	1			two	V	S	ar as)	2		(m		nde
	betare	21	ω		ork	Rz	ta	non				Rz		pe
	we	T	421		= ,	t y wi	tis /	ng the	mt	501		+ 4		nd
	en bot	=),	222		_	lz)(k △(2	tico	+	tegr	ve		2 22		exi
	-h	00 0]	4		-	2-20)	ally	henoi	rati	bu		3		ŧ,
	the	522 A (ω ²			wLi 2	0F	se	n	1 0		R		0
	2	-1 R1,1	R2) _	n	vol S]		ve
	cu	due Ri-	• (2		e	1 V2	ıde	ta						U
	orre d	>0)]	1+2		xpe	-	per	rce						se
	nt	2	2)2		cts	- <	nd.	4						+.
			-		: 2	2	en	Of ar						he
					sun		t	e						
		-			ce		2	Tz.		-				
					No per							chool and a second		-


C		A.	5510	4N	me	nt	#	4																		F	au	2	G	ra	nt		1			1
			m																1							1	DER	P.	-A	P-	16	-		13	1	
																		11								h	P-	21	5	_	_			_		
																										1	2-	9.	- 6	0						
			1																																	
. (
	2	2.		_	7	la																											1			
			1	K												1								4												
			Ċ	ち		-		-	3	Z	-					-					5	44	~					11)							
-						-	C	1	3 L	N	R,	-				RL		-	-c		3.	AAA		2,-	г			14	/							
		+	-		,	-			-	ſ	10,	-							C		3	1		- 1		-		1								
		+	+	-	E	-		-		-	-	-			(DV	D					0	5	1 _A			-		-	-	-	-				
		-	+	1	E				-			-				F	U							~		-	-					-			1	
		2		-	-			-				-					-	-		-	-	-	-		0		-		-			-				
				-				-	-	-	-	-	-			-				_	_						-		-	-	+	-			-	-
			-	-	-	-		-	-	-	1	-	1	-	P				5		. 11	1	-		107		000	114	10	2+	-	21	-4.1	ite	-	
				L	<				B	2	4	-	-		1	,				-	-	-		- +)	1								•	-
			Tp	P	4444	R	e T	= c		2	ANN I	(PI	R	1	6			1	1	-		- '	110	1	s.	-	105	13	101	LL.	T	of		-	
				-					-		F			-	1				d	100	1e;	N	101	sel	105	5.	(JIR	-		R	-				-
			-	-		-	-	-	-		-	-	-		0									e I		-	-					-			-	
				-		-						-							9	Ip	-		60	- 1	a		-					-			-	-
			(1)	-	F	1	1		1				1	1.					-					-					+	+	+	-			-	-
			(1)	-		(Ru	+ .	R)	+	sĊ	-	SL		0	1	_	1	b	1	+	. 7		IR	-		-		-	-	+-					1
		_		-								-	-					_				-					+		-	+	+					+
				-		,			-		1	-	L			1		IJ	-	R+	- R	~			+		-		-	+		-				-
		-	(2)		De	f-	ne		G	-	R	+	R	2		R		=			RA															
	1	-		-		-			-			-		_				-	_						-		-								+	
			10			-)				_	1	-					2		9				τ	-		+					-	-		-	-
			(3)				IR	,	+	SC	+	51			=		5	2	+	R	10			LC	_										+	-
		_		-		_			_			-		-							5/	C													-	+
		_	-	-				-	-		1-	-		1	(_	5/0						-		-					-				
						V	0 =	-	_	_	(ID	+	I	e)	-							-	_		- (-	-		-						-	+
		_	-					_			_	-		-	L		5	2	+	-	Te	+	L	E		-			_	_	-				-	-
		_							_	_	_														_		_		_		-			_	-	-
							-	~>		()	ID	+	I	R)						10						_			_	_	_					-
									_		_						(1		- ú	52)	+	1	w	100	-	1		_	_	-					-
		_								_					-			_											1	F	47				-	
		_	(4)		De	ef.	20	2:		_	wo	-	=	-	6			2	No.	u	0	=	R	TC.		3	lun	= ' '	2 2'	J	40			-	1	1
								~				-						T	-	0		_			_					5	-	-			-	
		_			.'	1	(50	=	-		2	e.	la	R-		71	21	- [-			2		-		_			_				1	
											L	-			R	22	-	_	7	L	-	(4	00	- 40	²) ²	+ 4	180	20	- w	2	_					1
													C			2									-				-		-	P	+ 2	1.6.	- 7	
									-	=	ZTT	A	1 -	-	0		-	-	~		-	-	-		-		ZTT	A.	=)	20	e la	RC	2	+21	-1	1
													L	U	54	+ 2	w	0 0	EZ	EZ.	-15	w	+	wo	-				L	-					1	
											-	-				2					-					(2		2						-	
								z	Z	TTP	7		-	-	w	.2 1	7	2	22		-		5	2	2.17/	A	-	ce			21	112	100	tw-	(3)	
											1	-	()	0-	- 0	(2)	(w	-	15	/		-				1	- ()	N+1	~	· ~	7) (w	-15)	La.	1-	
																				_			-													
	7				w	he	re	0	χ^2	=	E	1-	2 8	2]	w	0	+	12	E.	2	1 -	1110	-1	12 0	102		1	R	el	9						
								1	BZ	-	(x ²)*				n	e †	10																	15
	*																																			
							ta	ki	ng	Ult.	<	1	A	or		th	e	2	nor	e	P	hy	310	call	14	M	ter	est	ing	L	ina	ler	dan	mpe	A	1
								as													V	0			0				3							1
																															2					

				Ċ						. (
	(9)	(8)		7)						(6)		(5)
		, ,								ł		
	7				72	di				100	,'	s
I1 01	10.				* -0	m				0 %	,	(1
L nlu	30	12 m		Vo	ž			(Tai	1		U
15 E					C	S	- X	1	KIT	V	2 :	Joz
.,	V			11 012			4	× ×	ng			
.se 5 2	01	+1						-		11		
en :0	ta		1			M					00 10	0
t. cr	3		L	4		2	-	17		A		N N
t ha vi	0		0143		+		×	(0	ıd	ne		1
ha t	1	yur e		0	x)		*		ve	>	2	+
t	5		6	-				A	5	u		an
the	- Pa			-	- ×		->			,2	1	-1
+ h1	e.		7	-			60			du		
3	ro			1/2		2				0	X	2.0
ri a s do	,			;								2
250						1);	12	Sp) — (e		1.
, t 'm 7	The		ſ		9/. 6			lim	7	3)(2	1
pt ke	re				2			6		w t		2 2
	e for t	20	3		(x2	X		S	2 x	F (P)		1/2
20	2 :				-	*						
31				1/10	ď.		e vo			3		
en of sla					Í		10,	22				
era				2 8	1		12		5(AZ		
on	e			51.					Z -	1		
y de			-7	- Uu		U U			· X	00		
<i>v c c c c c c c c c c</i>	Val],	0/				*)(
alı das				12					11			
d	Ľ			Co					+ ~	du Lu		
2			r	05		e	4	2	c *			
1200	⊃ #			6		- 1)	×) (
deo	-			11		0/2	e			ω-		
ه و م مرین	7			1	10		6/	x v		- 04		
25	ne			-2			2			•) (
de				S.W.				×		w		12
ut		T		2			-	2)		- 02		
-				r						5		
			,	7)	-	
								-				

(9) $V^{*} = 0$, as $\overline{I}_{k} = 0$, $\overline{I}_{k} = 0$, $\overline{I}_{k} \overline{I}_{k} = 0$ (9) $V^{*} = V_{k}^{*} = V_{k}^{*} = V_{k}^{*} = \begin{bmatrix} \frac{1}{2} e^{\frac{1}{2} \left(\frac{1}{2} e^{\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} e^{\frac{1}{2} + \frac{1}{2} e^{\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} e^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} e^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} e^{\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} e^{\frac{1}{2} + \frac{1}{2} + \frac$						20	200		1975				1978																									
(9) \therefore $\overline{AVe} = Ve - Ve = Ve = Ve = \left[\frac{Aeet Tee}{Eet - Aeete}\right]^{2} \left[2e\overline{z}, T^{2} + \frac{AEe}{Te}\right]_{\overline{a}}^{2}$ Re there are no reactive components in the circuit, The integral of S_{in}^{*} cannot be taken integra one epecifies = desired passion de for a the integral $ae above which can be thought of as the integral aver the pass band of.$					2		2																									1						
(9) \therefore $\overline{AVe} = Ve - Ve = Ve = Ve = \left[\frac{Ae}{EEE} - Ae^{AE}\right] \sum 2eII Pe + AEE Jeight Jeight Personal States and the circuit of the circuit $		(8)		V	_	-	-	0		,	0	15	3	Id	U	0	,	IR	-	0		,		Id	IR		= 0			-							-	
As there are no reactive comportants in the circuit, the integral of Sin cannot be taken unless one specifies a desired pressband of programmers AR as abore which can be thought of as the integral oter the passband of.		-		-	-													-			-									-						-	-	
As there are no reactive comportants in the circuit, the integral of Sin cannot be taken unless one specifies a desired pressband of programmers AR as abore which can be thought of as the integral oter the passband of.		10)		-	-	_	.1.5	-		1	12		-	2		-	12	_		-	r	10	. 1	e Te	R	-	-	2	5-	0-		2 1	4	1.1.7	0	7		
As there are no reactive comportants in the circuit, the integral of Sin cannot be taken unless one specifies a desired pressband of programmers AR as abore which can be thought of as the integral oter the passband of.		(9)	. '	•	+	4	Va	-	=	V	a	-	Va.		11		la.	-	H	-	L	Ĩe	R	-	la	kT	٤.	-	1 c	e	61	Ť	-	R		14	-	
specifies a desired pressioned of frequencies AR as above which can be thought of as the pregrat over the passband of				+	-	-				-		-						-		-		-	-					-		+	+	-					+	2
specifies a desired pressioned of frequencies AR as above which can be thought of as the pregrat over the passband of					A	5	+	her	re		1.1.6	0		20 0		,	ea	ct	ive		1	200	0	~	enti	ts		121	-	th	e	-11	MIS	it			-	
specifies a desired pressioned of frequencies AR as above which can be thought of as the pregrat over the passband of					th	he		12	te	er.	21	0	F	10	St		e	an	n	ot	-	2	e	7	tak	en	L	6	n	les	55	5	ne	2				
					51	ne	ci	fie	25		a		d	'es	Ire	ed		P	a	55	60	n	d		0+	1	. /	re	gu	en	ere	5	2	sf)			
				0	15	:	4	60	ve	_		ivi	410	:h	-	c	a	~	6	e		+	40	Ug	ht	-	of	6	15		th	0	n	ite	er	al		
		_		-	o ve	er	-		th	e		P	as	s 6	an	ed.		2	P.			_	_	-				_	_	_	_	-				_		
					-	_									_	-		_	_			-	-	_			_	-	-	-	+	-			_	_		
		_		-			-							_						-		-	-	_		-	_	-	-	-	+	-						
				-	-															-		-				-		-	-	-		-	_					
																											-	+	-									
			-	_																	_									_	-							
				-	_	_								-						-		_	_				_	_	-	-	-				_	_		
			_	+	+	-				_							_	_		-	-	_	_	_		-	-	-	+	+	+	-	-		11			
				+	+	-	_				_	_				_	-	-	-	-	-	-	-	-	-	-	-	+	+	+	+-	-		_	-			
				+	+	-	-		_		-	- 12		_				-		-	-		-		-	-		+	-	+	-	-		-				
	6			+	-														1									+	-	+	+						-	
																														+								
																																						2
	10	1																																-				
		_		_						_								_		_						_		_	_	_	-	-				_	_	
				+	_													_	_	-		-	_	_		_		-	-	+	-				_			_
			· .	+	-	-												-		-	-	-	-	-		-	-		+	+	+			_				
			-	-	-	-					_	_				_		-		-	-		-		-	-	-	+			+	-				-		
							•																							+								
																																	-					
																				_									-		_			_				
										_										'							_	_			_				-			
		_																	-			-	-	_	_	-		-		-		-						
					-													_	-	-		-		-		-		-		-		-						
				-	-														-	-	-	-				-	-	-	-	+		-			-			
																															-							
					*																													t			-	100
																																		4				
		-		_	_	_															_		_				_	-	-	-	_	-		•	_			
		_			_	_	_			_								_	_	-		_							-	-	_							
					-	-				-	_							-	-	-		-	-	_	,	-	-	-	-	-	-	-					-	
	1				-					1	-								-	-		-	-					-				-		_	-			

	HS.					#	et	2.4			3	3		1	100		1	12		1	X	12	123	12			P	a	11	4	Gr	an	t	E.A	
		tin						_																•			10.000	10000	-			- 16			
1				X														1												215		-			
			à															1												- 6		2			
			J.																																
\cap	1.1.1																																		-
																															1				
	24.																1	1										1)			1	+		
1					-0					T			-	0	0		-										1	U	/	/	-				
			VVV	Rs	, Ts				Lo	5 5	3						1	T	A	phi	line a	1						/	/						
			<	7					Tr	ans	201 - 3	sin	N				1	-		¢f							•	1		-					
			(DV	s					ne.						-		1	10	++										+	-	-	1		1.5
					-				6	2	1	•			4			1											1	-	+		-		
							-						-	0 (-																-				
																		-								-			1		-				1
		(1)		T	10		201		0		0	~		-		4		1/1	ha			011	+		to	+	60		2		1.	110	~		-
		(. ,			5:		rio	13	-	+	P	ou	e	"	0	LI.	1	17	ne		m	20	-		TO		E		an	up	201	Fre			18
		2		1						-							1		-	-						-			-	-	-		4		-
					G	X	T	A	C	4	-	(1 -	_ (- 1	1	F	- /	C	2			1.	Ter	FA	P									
					•	10	15	4	1	1	-	(1	C	1	C	1		1	1	-	-		op		J						-			
		(2)	-		110						+				- (1)0	1	-	4	h			L	ad	k	1		1	- 1.	-		-			
		(-)				-	rak	a	n		n	oa	2	44	et	ie	CI	tra	1	1	12		1	~~~	c ti		0	1	PL 1	24	0	+			
		-																															01-		
		-			77	L	15	1 m	155	10	n		/1	nc			ar	ra	-	f	m	a		7	he	-	210	015	e	-	0-0	suc	er		
	+++	-	-		at			T	ne		5	04	in	Ce	-	•	-	-						-	-			-							
	+ +				-		17	- 1	C			1	1)	1	T		C		-		1	-	e ff	~	C		-	-	-				
					6		215		-1	-	-	-		- 0	-1				1		T	a the set	R	-	e + +	4		-		-	+	-	-		
			-			-				-	+	+	-		-	G	2	-	-		-										-				
	+++					-		-	-+	+	-	-	_			-	-	-	-			-							-+	-	+	-	-		
		(3)				-		-	-	1	- 1	-	_		-	-	-		11							-	1		-			1			
		(3)		6	ve L	-	n	00	,	014	1	m	1e	-	a	M	- 1	ef	40	CT	100	2		N	015	e	Te	n	1P	er	a	10	F &		
				a	t	-	th	e		50	20	ra	ce		-	/		>	1	Ph.	a t	-	15	2				-		-			+	*	
			-																						+						+		+		-
			4	F	RT.	-	-	:	-	-	7/	2/	5	4	5	+	-	(1.	-		and the second second	-			T	R	10	64	4	T	-		-		
						-			-+		-+	-+	-		-	-	-	1		G 2	~			-		-		-	-	+	-		+	-	
	-	_						. /	-			-	_		-		-	1	-			-				-		-			-	-	-		
				0	2	-	7	. /	=		9	- /	5	-	+	(1	-	91	T	7	-	/	ef	5	-			-							-
			<i></i>				_	-			-	-	_		-	-	-	G		-		-	-								+	-	-	•	
						_				(T		_		1	1 -	1		-			T.		2	4										
			-			_	_	-	-	7		14	-	+		1	1	41	1	+		re	FF	3	-					-		-		-	
	_					_						-			-	-	-	-	-			-	-										-		
			-				-			_		-																							
			-								-	-				-	-	-	-	-		-	-				-	-					-		
			-							_		1	_		-	-	-	-			-	-		-									-	++	
									-	-	-			-	-	-	-	-	-	-	-	-	-	-		1					-	-		-	
			-			-		_				-			-	-	-	-	-	-	-	-	-	-										-	
			-							_		-		-	-	-	-	-	-	-		-		-									-	++	
			-			41-									-	-	-	-	-		-	-	-			-									
					T	5			_	_						-	-	-	-	-	-	•		-			-			-					
A I						_						_			•	4		-	-	-	-			-		-						_			-
											_			-	-	-		-	-	-		-	-	-				-							
								_		_							-	-		-		-	-				-			-		-	-		
														-	-	-	-	-				-	-	-		-							,		
									_			4					-	-	-	-		-	-												
								*										-	-	-	-			-				-		-		-			1
1														1						-		-	-	_		120							1		


	4	SSIGNN	nent	#5									8			P	aul	Grant	
		roblem			1.5			2	12			1-18				- C. M	And the second	0 - AP-16	
								1					i in			A	P2	15	
																1	-7-	61.	
										-							-		
\pm	_		1							_			_						
	25.	(1)	The	Fok	ter-	- Pla	nck		equ	var	Fine		for	-	Bro	ani	an	motion	
			1 N	a	8	ravi	tat	iona	22	3	lie?	d	15	1					
	It		2			+ W/			124	,	_	•							
	12		2W 2t	=	Ċ	95 9 M	+	D.	22W	2									
			0.0						01										
			•	+		-	1			4		411	a3	10					
				42	+ + •		whi	ere	(. =	5	3		(1)-	Po) 9	-			
				4 ±			+ +							B					
		Zo m	mi							D	_	-1	7						
	= 10) e va								D :		1	<u>T</u> 3	3	B	-	0117	20	
	-									-			-						
					(2)	We		och.		+60		etan	d.		tata		In the	n of:	
										ne		100	7	5	inic	50	10110	7 OT .	
							p d'	W	+	C	du	U	=	0					
							o d'	22			12	-							
					-	2 -													
		(3)	W =	n	e	C Z		wh	icl	h	15	th	e	e	9011	bri	m	distribut	ion.
			Norn	maliz	ing	,	Sw	dz	V	-	m	e	D	di	2 =	n	DE	= 1	
							0	_				0	-		_		-		
						-	1/07				_								
			or	W =	C	e		_			_								
		(11)									,	. /				1			
		(4)	We	200		mak	e	the	1	ph	451	cal	0	arg	ume	nt	74	hat we	
	3		MITI	ally.	as.	Sume	2 1	he	he	184	+	sf.	th	e	119	uid	10	be 11.	
	1		12/12	L	an	1a	let	- +	1/2	-	gar	tic	105		ome	2 .	to	equilibri article	t.
		2	he	The	R	nav		de la	19	1	pro	00,01	1170	6	+02	a	P	have	10
			the	ar	ral.	6.1	4	we	. 11	re	mo	ve.	T	1e	he	1 da		, that	
			a	par	tic	10	01	1	ha	VP	a		aro	bal	11,1	4	A	.36 0	4
			bein	2	at	70	4	Ve	t	ake	2	th	15	R	2	the	- D	urnose	of
			find	ma	Y	ne.	ore	der		of	-	na	an	itu	de	of	4	he max	mon
			radi	Us D	00	the	e i	par	-tro	cle	51		9					urpose he max	
	-														_			1. 1. 1.	
				20 =	D	- :	= _	3 K	1	31		1							
-			_					411	a	- (p	- Pe	18							
			3			2.	6 T	-		-	-			>/		-1	611.	2 12 1	
			a	~		31			1	-	=	(.	239	11	1.38	. 10)(.	3.10 ²) erg	-
					1	411 2	-0 ()	1-10	0) 9	2			(10)	(1.	7) (9.81	, 10'	2) CM2.5 Se22 C	M
								-						-				500 0	M
				-		6.1	-18	-	3		2	10-	-18	-	3				
						0 1	0	cu	N		T	10		cu	6				
			1.	2 1	5 1	0-6	cu	9			Vh.	5	0.01	0 kg	×120	in fi	na	necome	200
			net	and	0.0	0	1	cha	20		2		pepp	+		iu n		assomes L enou	ala
			fm		Par	0	-do	0	200	0	Z.º	na	6 24	tu	de	5		- choo	
		1	TUY		and a			1	0	F			1	141					
		12							12 0	4									

199				
	(5)	If the initial	condition is	s a homogeneous suspension,
		whas the follow	ing form	at t=0
		1 . W & Zo	Norma	alizmę:
		W ze Zo		
			5n	ndz = nzo = 1
			~	
		20	V	$W(t=0) = \frac{1}{z_0} ozz z_0$
		- 2 +		o otherwise.
		lleing the Etter	Planck agus	ation dw a dw a dzw
		Using the Forner-	Tanch eque	ation, $\frac{\partial W}{\partial t} = C \frac{\partial W}{\partial z} + D \frac{\partial^2 W}{\partial z^2}$
		dt dt		$f = 0 \qquad as \qquad \partial W = \frac{\partial^2 W}{\partial z^2} = 0 \qquad \dots$
				o, where the boundary
		cannot be cro		Q .
	161	Another way of	thinking	about this is to argue
		that we conside	- only tim	about this is to argue
		damping under	which we	obtain the terminal velocity.
		THIS average velo	adjana to t	as to zero with time
		as equinorium s	earmentario	The is reached. Diarring with
		the Langevin eg		
		m der + Br	= F(t) +	Fa
		dt		
		Since ave consider	+ >> 24 -	
				B m dv B dt
		or T = 4/3 TT a3	(p-po) 9	B dt
			and the second se	$= \frac{2}{9} \frac{a^2 (p - p_0)g}{m}$
		- 6 77	70	
		= (.222)(10-8)(1.7)(9.81.10	02) = 4,12.10-6 cm/sec
			9	
		This can be cons	idered as	the initial sedimentation
		rate. We can	convert +1	his to more proper units
		by considering a	flow den	isity made up of the original
		number of part	cles per	the units of particles (cm sec :
		velocity which	will have	the units of particles / cm sec :
	_			
			Pita - 11	.12.10° no particles / cm².sec
		· · pedimentation	Nale = 4.	inc in no variar coursec

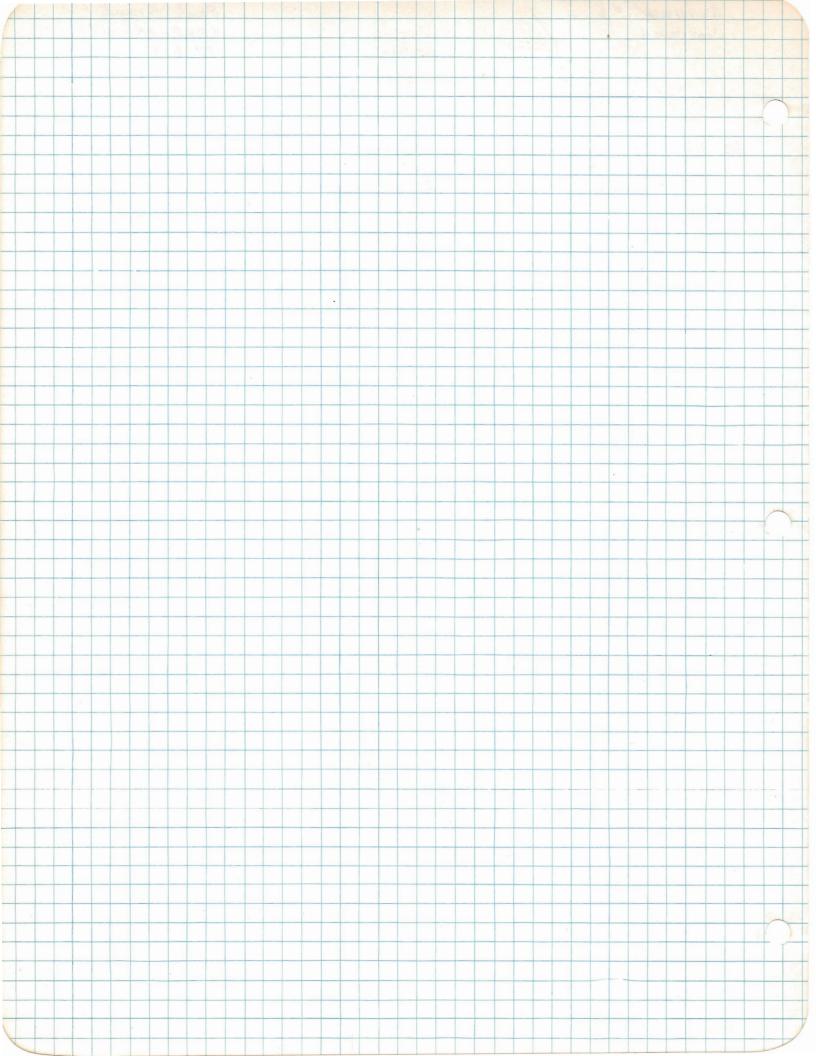
	ASS	HANMENT #5 Paul Grant
		blems 25-31 DEAP-AP-16
		tinued AP 215
		1-5-61
		- seres
	26.	S L D Grs = HRRT 10
	1.1.1.1.1.1.	$\frac{1}{C} = \frac{1}{V_{c}} + \frac{1}$
		$\frac{1}{\sqrt{16}} = \frac{1}{\sqrt{16}} = \frac{1}{\sqrt{16}} = \frac{1}{\sqrt{16}} + $
		$\begin{array}{c} \begin{array}{c} 0 \\ \overline{v_5} \end{array} \end{array} $
		52 + 5 R/L + 1 22
		$= \frac{s/4}{2} \frac{v_s}{2} \frac{\omega_n}{\omega_n} = \frac{1}{2} \frac{s}{2} \frac{1}{2} $
		$= \frac{s/4}{s^2 + 2 \beta \omega_n s + \omega_n^2}, \omega_n = \frac{1}{\sqrt{16}}, \beta = \frac{R}{2} \frac{C}{4}$
-		
	(4)	Under critical damping R= 2 JE, F=1
	(5)	
		$(s + w_n)^2$ $(s + w_n)^2$
	(1)	$-C = \omega^2$
	(6)) $G_{L}(\omega) = \frac{4\pi RI}{L^{2}} \frac{\omega}{(\omega^{2} + \omega_{T})^{2}}$
\ \	(7)	
		$R_{\perp}(r) = \int G_{\perp}(f) \cos 2\pi f r' df = \frac{1}{2\pi} \int G_{\perp}(u) \cos \omega r' d\omega$
		= KRT W2 cos wr dw
		$\pi L^2 = -\infty (\omega^2 + \omega^2)^2$
	(8)	Into the complex plane; consider
		I'M Z ALY
	_	$\int z^2 e dz$ $= e (z^2 + a^2)^2$
		$-c(z^2+a^2)^2$
		where c u:
		There is a double pole
		at z = ea inside the contour and the integral vanishes properly on
0.		the sempcircle.
	(9)	The residue is: Lim d S Z e im Z
	(*)	The residue is: Lim d S Z e ma 2
	12	

	11		Li z +	in	1		(2	-+	10	12	5	2	ze	4.21	17	+	,	ım	zz	e	<i>i</i> m	ZZ	-	- 2	.(:	7 +		a).	7	- e	27	uz						
					_		-										_	-) 4			-				1											
		1	=				4a	2	S.	12	a	e	m	a .	+ .	e 7	Ma	2	e	m	az	+	- 4	110	a•	-	a	2 6	01	m	a					1		
																16	-	-																				
			=	,	{-	L	2			40		+	1	3	e	-	m	a	. 1	=		1 4a	L	(1 -	- 11	na) e	-	ша	-							
/0.		*.			20		202		co:							11		2	π	- u	(1 +	- 0	Un	2]	C		wn	p									
		an	nd		R,	('	۲-)	11	=	2	k	. R n	T 12	-	(1 +	u	Jnc ,	r) sig	e v i	-a	m	•	;		0	Un	د غ	8	- 0	1	1						
(11)		Fo	2	th.	e.	С	ros	5.	- 20				_				0~	7) (6	w	V r. P																
				G	200	- (£)	-			7	-	-		-	-	-	Т	-	-														-				
				-	-) ;			-	5	8	-	Ve	lt) (P	17-e	. F	0.4	dt																	
				-	-		(5)									t'	e	22	12	70	a	it'			_	Π	. (+	11	1 (6		2.5		7-			
					Si	(+) _	500	(;	()	IJ			A*	-	5	2	Z	5	(+)) U	5	(ť)	e					<i>J</i>	d	t	dt	-		1	dt	
											ŋ	14		AZ	*		2	e	TTZ	f 1) 	8 V 0	· (s)	12.	\$ (t t	-7)	0	d t	0	17	>						
											1e	.+1	4, :	ng		t	1	B	t	+	-7-																	
(12)	•	'.		G	iv	ic.	(ç) -			, , ,	li F-	n d	2	5.	e (:		Svi	* (f)																		
						1			ATZ	*	258	> 	2	112	f1	7	Ĩ	1 T	in ->	00	L T	J _o	- V5	(+) 2	J.S.	- (-	t+	7-1	d	t] 0	٩٢					
											2									(50	~ ~ ({									1	167			d			
																																						/

	1	95516	NN	1ent	#5					17	1		12				Par	el	G	ra	nt		200	
	(conti	20	ed						1			199						- AF			1.2.2		
100			1		· · ·	-				13	1363	13	1		19 30		AP	2	15	100			1 4 8	
					1 22					1							1- :	5-	61					
	8																							
	Pro	oblen	c. 2	6		*							1.8							11				
	Co	ntin	ued													i								
	(13)	Git	Je	(+)	-	A*	G	vel	(f)															
						×																		
		•																						
			,				,																	
	(14)			-	+u		1		2															
			-				(300	+ 00-	n)														1	
			81										_											
			Ve	E	L			_	Lwc		-	W	-	Us										
					SC			.4	wc			4.	(Jw	+ w	$n)^2$		1						
									-															-
			A	-	Ve	#		(en															
					Ve			(1	w + 1	Un)	2													
	-				*												1							1.1
	(15)	G	ive	(00)	=	S	wn			0					2%	R	T							
				11-1			L		(u	12+	w2)2							1					1.1
											- Pa	-												E
							-			00			wi	-										
	(16)	P.		(2)	=	1 W	2 2	KRT		(w	e	wi	di	w								_	
	()	- National Action	2			The other diversity of	TTL	Contraction of the local division of the		-0	14	12-	+ w	2/2	-		1							
							11 -							PG 1									-	
							+						-			1.1		+						
	(17)	T	. +-	++-	440		-		1			-	The					1	ned	tio	215			
	011	47	21	7	the s	con	pre		Pro	me	- /		Ine		Sa	a	~	-	L		16			
		no	1	a	S	6e	708	2	a	na		TN	ie	Ð	an	e	. C	mi	00		15		-	
		03	ea	:			++					-						-						
				~			+-+						+			-		-						
				(c	ver	070	142			5	70	0+ 1	1-	(2))			-1	-).	_	Ze	2 un	Z		
					ve "	12/2		Ŧ	611 3		- V			()	-		1(±] -		12	2+0	12)2		
			-	-00 (w + 0	un)																1		
										-			-									+-+-		
		R+		=	Le Z-	1	d	5	70	orn	17	7		(2)	10)25	em	Ŧ	24 7 4	2mz	3-21	2+10	120	em 2	
+		(K.	-	-	Z-	nal	17	2	12		212		5	(=10	1001 2	-	+1	mae				140	-	
									(Z	TA	~)~)				(2+	10)	T				
											-	_												
	_			-	-4	nz S	0	am		-	am	2,	. 11	2	0-a	m				-an	t -			
					- + (2 3	E					-	4	a	C	-	=	-	The second se		-			
										16 a	.4								4	2				
	4											-						-			1	+++		
					2						1		-		-		-			-	-	-		
1				(w e	1w	P-	112				0.	-	- 00.	np	-				-				
12		The	m:				a	- 2	=	3	П	1	e					-						
			111 I. P.	-	oo (i	02+1	Nn	-			Za	m										-	-	
												_			_									
																	_							
												_			-	1					-			/
						1			-	1				-										

6 3 8	As	SIGNN	nent	# 5		Emer	1.1.1.1			Paul Gra	ut
		itinu					1. R.3 1. 2 1. 2			DEAP - AP- 10	5
				1844			1-11-51-3			AP 215	
10										1-5-61	
Ter and											
0											(*)
	27.	11)	The	fall	1001.700	PAUDA	tions	110 50	derived.	in lecture	2
		01	for	th	e fluc	turtion	124	CATT	er dons	ity ma	
					duc for			. Carr		d	
			sen	icon	auc tor	•				16	
		-	al	n) =	orabe	bility	of ab	savation		10	
					6.000		of ab	SUPPLICA			
			B	(n) =	prob	abitity	of 3	enerati	on		
						4					
			Elus	tint		+60	steady	-t.to			
			FILE	10ari	ows in	ine	STEAR	STATE			
				42210		(~	(no) + B	(24.2))			
				ANIO					-		
						23-	- ~ (no) +	B'(no) {			
								5			
	+		1	24	on Fu	+	,				
	+		Corr	e lati	on FU:	neriou	•		2.4		
				A 74	10) 000 10		An	10) 0	- T/AL		
				An	(0) Dh (1) -	41	(0) C			
			1		01	41		2 (1		
			whe	re	Th 15	The	carrier	- life	time:		
					[ok' (no)	- 11	1-1				
			The	=	Lac (no)	- 15 (NOIT			· · ·	
	+	+-++					-				
		(0)	-	1	L.		1 4		11	+ 11	
		(2)	(on:	sider	The	fluc	TUATIONS	m	the curr	ent flowm	9
	/		т	The	follow	ng	sample	:			
	1										
1	1			N		-	Th	e curr	ent due	to one	
	/		_	1			e	lectron	_ during	its lifetis	me 15:
			A -	e l	> .	6		0			
				-				E.	XH = 1	e, x = u	Etz
					e			AT L	2	Te	
									1	E /	
								and	The - M	eE which	-
			_	1		1		5 T			
	1	15 X	he	tra	usit.	time	for e	lec trov	is. Then	, from	
		the	eg	vatu	ms of	the	shot	effeci	5		
										•	
				人 =	No E		Dr2	. =	e An Me		
						2			Te		
		d	und				2				
				4	A los A	L (4) :	= - e	- Anloi	An(M)		
							1º				
								,			
05			15	the	corre	lation	func	tion.			
			1								
							120 m. 20				

(3,			R	, (1	,)	11 0		e	2	-	2 (0)		0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12	e														
		×	441					П	2 72																						
			+					(00	2			-					-7	1-1	e .				_							
(4)	G.	i (1	(u	1		4	-)	, П	12	Av	t (o)	CO	SI	w P	e			e d	N										
					=		4	1 0	2	In	(0)		-				:1				-		-	-			-				
					_		-		discount of the local division in which the local division in the	Wanted Street Statistics	72	No. of Concession, name		•		1	+	- (U2				-	-							
								, ,	N	2	-	2,				ile															
					=		4	Me	Me (e +	An The	-w	2)										+								
																		-						+							
(5,) .	It rel	at	sho	uld	ho	no	w	be	r	poi	nt -he	ed	hol	ou es	+	the	at	6	an the	e	xac to t	the	P	and SD	-ali	15:	05			
						_				_				_	_	_		-			_		_	_						*	
			(Gŧ	(w)	11		4	ez	}	-	21	12 (0)	10	.e	-	+		ム	nnl	0)	No	h	- ?		_				
					_	_				_				_	_						- (1	+ 1	Lh	au -)]				_		
(6		Fo	r						nsi								tor	,						-	·						
			_	_	d	(n)	11	C	a n	2	;		В (n)	L	+	Ь			for	tr	bor	th.	1	hole	5	and	L	_		
		7	·	4	ho		to	. A.	1 :	e ta	te	,		1	2 Z	-	L								æ	(20)		h		H	
								ľ	-													No		2	~		-		_		
			A 74	[= (0]		-			2 (-2	6/2	10)		1)		12	- Nc	>				_								
			P	1 -	=	5	26	7-1	5		n	0	6	-	_	Ł	> 4	Δn	2- (0))											
						+								-		+					-		+	+				1	3)	
		7	he	1 Ye	life	to	me: 11	5	ar	e a	th	re	5	an	ne	,	For	-	ea t	ch	4	ari	r I e	r ,+	ty	0e	(mes	atri	insi Aue	c/	
			to		the	2	~	10	6.11	tre	s	k	001	24	3	d	ff	er	er	t.			1						due		
			De	Fi	ne			-	1	1	-	1	12	-	-	-	2						_				_				
												-																			
			The	n:	-	6	F_	(w) =		8	P	2		k	4	2		(1	- 1	2	26	2 00	2-1		-					
					1			_			er										-	26	4)							
								-	T	2	4	+	No	. jo	2 40	2	7		-				-							-	
																	4														
					2	2		-	8	e	-4	+	4	- 4	_ 2_	1		-													
				-						1	- no	5 P.			-	7					-)


	ASSIGNM	ent #5 Paul Grant
	continu	
		AP 215
		1-8-61
28.	(1)	From a fundamental definition of mechanics,
		the impulse is equal to the change m
		momentum:
		$Fe = \int K_e dt_e = m \left(v_e'' - v_e' \right)$
<u> </u>	(1)	
	(2)	If the two impulses are consecutive, we have
		that the mitial velocity before the second collision is equal to the final velocity after
	9	the first.
	7	The First
	TO	$F_{2} = \int K_{2} dt_{2} = m(v_{2}'' - v_{2}') = m(v_{2}'' - v_{2}'')$
	10	
	(3)	The velocities before and after collision are
		taken to be given by independent maxwell -
		Boltzmann distributions.
		$p(\tau_{i}', \tau_{i}'', \tau_{j}', \tau_{j}'') = p(\tau_{i}') p(\tau_{i}'') p(\tau_{j}')$
	(4)	$F_{2}F_{3} = m^{2} \left(\int \left(p\left(v_{1}^{\prime}, v_{1}^{\prime}, v_{3}^{\prime}, v_{3}^{\prime\prime}\right) \left(v_{2}^{\prime\prime} v_{3}^{\prime\prime} - v_{2}^{\prime} v_{3}^{\prime\prime} - v_{3}^{\prime} v_{2}^{\prime\prime} + v_{1}^{\prime} v_{3}^{\prime\prime} \right) \right)$
		dvi dvi dvj dvj"
		$= m^{2} \sum \sum p(v_{2}") p(v_{3}") v_{4}"v_{3}" dv_{3}" dv_{3}"$
	_	- {{ p(v=1) p(v=") v= v=" dv=" dv=" - } p(v=") v= v=" dv="
		+ $SS p(v_2') p(v_2') v_2' v_2' dv_2' dv_2' \xi$
	(5)	It is now clear that Fr Fr = 0, F none of the velocities are equal, as each double integral has the same value as the sthers.
		the velocities are equal, as each double integral
		has the same value as the sthers.
N		
	(6)	FF = Ve'':
		$p(v_{a}', v_{a}'', v_{a}'') = p(v_{a}') p(v_{a}'') p(v_{a}'')$
		plan, a, by the plan plan plan plan plan
		where $\rho(w) \rightarrow f(\rho) = 4\pi$ $\rho^2 \rho^2 m \pi$
		where $p(w) \longrightarrow f(p) = \frac{4\pi}{(2\pi m kT)^{3/2}} p^2 e^{-\frac{p^2}{2m kT}}$
	1	

400	19 39	1				3	14	5								57	1	151					~					2			1								
	(7)			F.	Fr	-	-	5	-	17	5	f	p	:)	f(p'	()	41	P	()	1	pi"	p	"	+	P	" p.	1.		pi	p.	11	-	Pi	112)			
																		1.					10			-	1		1		10			-			-		
					-		+	+	+		-		•	d	Pi	d	p.	4	d	p'									_									1	
					=		ſ	C	C				-	2			(2 ()	1						. 2	2					-					
					-		-)	+((p)	P	0	P		-	•)	P	+	6	10	27			H		-	C, S											
			The						L.	_				ha		4		- 0				,					2		1						L	4			
			m	-	SI		il il	NU	m	eri	ca	n		re	50	a (+	4	PF	e o vo	w	a	the	e	e	let	in	1.4	2	MI	y in	te	9r	al	es,	120	2			
×						_		_	_								-		-													0							-
	(8)		1	f (-	(g	p	de	0		-7			1ª	5 -P	3 e	-	-P 2m	2 hT	de		1)		0		a	5	it	· .	ی	a	n		od	d					
							-	_			_		- 00						V						2	nr	m-1	ant	4	04	2	a	8	au	551	an			1
				~															0				p2																
	(9)		1	p	z ţ	10)d	P	=			-	4	T	T	3/1		5	1	4	e		-р ² 2т	RT	d	P													-
			- 00	>								(2	11 2	N 7				-0	6					-							-								
					-	-	4	1						2				4 /	24	n th 7	12		Г	TT	5	2	1 -	-	-	.1	-								
					-	(2	17 2	ma	17)	3/2	-	•				8	-				1	-	U						2	2							1		•
						_			1 -	-		• .					-			_	4	1		1	N	is	sel	4	A	Jr	e	1						_	
				3	-	6	62	n	RI	/	+		_				H	A	1	3r	n M	1		(- 70	1	200	ner									-	1	
	()				_					1				F	20	N	<i>w</i>											-											
	(10)		. • .		FA				=		-	22	-	/			-	-	-	-	-		-						-			8						. 3	
				Th	es e	?	re	3 11	175	6	are	e	re	a.50	m	ab	le		a	5	or	1e	a	100	, Id		ex	Pe	ct	-	2	10						-	-
					ori rre																																		
				m	2121	05		51	en	-		12	di	ca	tes	\$	6	00	rk		do	ne		6	4	1	ar	- +1	GI	e		be	ta	ve	en				
			-	CO	1/1	510	ms	5.	+	+	I	F	_	02	10	-	11	110	le:	5.	6	J	2	2 221	- ,	o	ne	-	y	et	3	:						-	-
							P	p'	-	-	=		-		3 %	T				or	-		th	e		eq	UL	pa	N	6+	i m	L	ť	m	era	34	,	1	
						-	20	m	-	-	-	0				L	-		-	-	-		-											-					
											w	be	x	a	la	K		Ì	1	7			*																
							-		-	-	-		_				2	-	-	1		6	l	T															-
			1			-	_											-i																					
			-		_			-	_		-				-	-			-	-	-	-		-	-				_					-					
					_		-			-		•					-	-	-	-				-				_						-		-		-	-
																																				<		7	
					-	_	-	-		_	_				_	-		-	-	-		-	-											+		-			_
			-											1.8						-								×											
																				-										s									7
									_								-																					/	

ASSIGN.	ment #5 Paul Grant
Contin	ved DEAP-AP-16
	AP 215
	1-9-61
	그는 그는 것 같은 것 같
29. 0. (1)	$x(t) = v(t) \cos \int w t + p(t) f$
	and is a sample function of a stationary
	real gaussian vandom process.
(2)	$y(t) = x(t) \cos \omega_0 t$
	fo = wo << fc, but fo >> bandwidth at fo.
(3)	u, H = u(t) and $S(u) = u(t) + 10 H = 0$
	$y_{1}(t) = \frac{y(t)}{2} \cos \frac{y(w_{1}-w_{2})t}{2} + \frac{y(t)}{2}$
	$y_{\mu}(t) = \frac{V(t)}{z} \cos \left\{ (\omega_c + \omega_o) t + \varphi(t) \right\}$
	$\frac{1}{10}$ (1) $\frac{1}$
(4)	y (t) y (t+m) = + V(t) V(t+m) cos { (we - wo) t + e(t) }
	$= \cos\left\{\left(\omega c - \omega b\right)\left(t + \tau\right) + \varphi\left(t + \tau\right)\right\}$
	$= \frac{1}{2} V(t) V(t+r) \cos \int z(we - w_0) t + (we - w_0) + + \phi(t) + \phi(t+r) f$
	+ $\frac{1}{2}V(t)V(t+m)\cos\left(\omega_{c}-\omega_{o}\right)m + \varphi(t+m) - \varphi(t)\right)$
(5)	Let t-1
	t+n-2
	y 1, y 2 = 1 V. V2 core & 2 (we-wo)t + (we-wo) 2 + 9, + 92 }
	+ 1 V. Vz con S (we-wo) v + q2 - q, 5
(6)	Now, from (1), Rx(1+) = X(t) x (t+T) as given.
	y. (t) and yu (t) are of the same functional form as x (t) m/y we -> we -wo we +wo is different and this just a constant. Thus
	form as x (t) only we -> we - wo we + wo
	is different and this sust a constant. Thus
	we can write:
	$\frac{1}{y_{L1}}\frac{1}{y_{L2}} = R_{y_L}(\gamma)$
	Julyuz = Ryu (4) S statimary processes.
	Yul Yuz = Ru (A)
	du que l'un a stationità processes.

		(7)	y		-		ye	1	+	0	1 11	, ,	1		×	1+	.)	co	5	wo	t		e (ŧ)]		+	V1	1	at	2	6	1	40	1	6	t s	>(4)	Ţ	
		(8)	y (t)	Ye	lt	+:	r.)	-	31	-	×	(+)	×C	t -	+7	1	C	05	Wo	t	C	ve	a	20 (15-	+1	-)										
			u n	o'	10	- 1		, / +	5 a	tir	na	ot	44	1	n	de	P	en	di	en	t		0	F		+1	m	e		de	nd		7	her	et	Con	0		
	b.	(1)																u C	t)		a	re			no t	4		51	a	t, s	+1	co	11	5					
			/n										e y																										
																				(1	+)	P	(9	2+)															
			U	0)	e	re			P	(U	4)	3	-		V	× set	4	ex	PS	-	2	t Gx	3		1	V	t	2	0						N.				
*					_			-	r	((et.)	IJ			2	a		J	0	<	q	(V	27	T														-
		(2)	y	L ((+)	Y	м	(+)		•	-		1 8	1	12	(+)	(10	2	(20	ມເ	t	+ 2	4	? (t	17	ł	-	co	e,	(2	مدى	ち	3				-
				-		-	18	-	J ²	(t)	-	10	2(20	00	t)			0	5		0	e		15		c	zl 1.	s 7	21	60	, / e	d						
				_																VZ	111	60	~~	11	y	,													
		(3)	č	_								2	J	e	2	d	115	tr	. 6	v +	ed	-	J	ur	u i f	20	rz	nl	y yo										
					+			-		0	-)																			-								
		(4)						1					an				1.1							10	+		4	ta	+	15	<i>+,</i>		. /	14					
				,	2	d	e	0.	e	10	le	n	t.			0								10										9					
																									N														
-				+	-																																		
																																					- 4		
							-											-																					

ASS16N	newt # 5	Paul Grant
Contin	THE REAL PROPERTY AND ADDRESS AND ADDRESS	DEAP-AP-16
		AP 215
		1-7-61
Po (1)		11.4 11 1 1 1
30, (1)	It was shown in lecture	that the distribution
- r	function for the envelope	and phase of a
	narrow band gaussian	process 15 given by "
	$W(V_t, q_t) = W(V_t) W(q_t)$	$ = \frac{1}{2\pi} \frac{V_t}{V_t} e^{-\frac{V_t}{2\sigma_x^2}} $
		Z TT TX tt
	where w(q) is uniform/	y distributed in 05 % < 27.
	JX is gaussian variance.	
	$W(V_t) = \underbrace{V_t}_{\mathcal{O}_{\mathcal{R}}^2} e^{X_t} P \left\{ - \underbrace{V_t}_{\mathcal{O}_{\mathcal{R}}^2} \right\}$	$(, V_{e} > O ,) $
	Okt L ZOX.	
	$W(P_{e}) = \frac{1}{2\pi} ; 0 \leq P_{e}$	2 277
(2)	$E(V_{t}) = (V_{t} W(V_{t}) dV_{t})$	$= \frac{1}{0x^2} \int_{0}^{\infty} \frac{-\sqrt{t}}{20x^2} dV_t$
(2)		- Ox ²) VE C avt
	= 2 (Vt @ 2012 dVt =	$= 2JZIJX (X^2 e dx)$
	$= 2 \int_{0}^{\infty} \frac{V_{t}^{2}}{2 \sigma x^{2}} e^{-\frac{V_{t}^{2}}{2 \sigma x^{2}}} dV_{t} =$	
	$X = \frac{Vt}{\sqrt{2} \sigma x}$	
	$= \int \frac{1}{2} \int $	
		Δa
(3)	$E^{2}(V_{t}) = \frac{1}{\sigma^{2}} \left(V_{t}^{3} e^{-V_{t}^{2}/2\sigma_{x}} \right)$	$dV_t = 20x^2 \times e dx$
(5)	$E^{2}(V_{t}) = \frac{1}{G_{x}^{2}} \int_{0}^{1} V_{t}^{3} e^{-V_{t}/2G_{x}}$	ave - cox x c dx
	Let $x = Vt^2$	
	24x2	
	dx = Vt a	l Ve
		- Au X
	$= 2 \sigma_x^2$	
(4)	$\sigma^{2}(V_{t}) = E^{2}(V_{t}) - [E(V_{t})]^{2} =$	$\left(2-\frac{11}{2}\right)\overline{v_x}^2$
(4)	0 (vel - r (vel - lr (vel -	

	Assignment # 5	Paul Grant
	Continued	DEAP-AP-16
		AP 215
4		1-5-61
31		
	2 (t) = s(t) + n(t) Hiver y(t) Low Z(t)	
	filter	
	$s(t) = S \cos \omega_0 t$	
	L(E) = L cos Wot	
	ose.	
	(1) $y(t) = L(s(t) + n(t)) \cos \omega_0 t$	
	(2) y(t) = 4 (s(t) + n(t)) cos wot	
	(3) $y(t) y(t+t) = \lambda^2 \cos \omega_0 t \cos \omega_0 (t+t)$	S(t) s(t+t)
		L at -
	+ s(t) n(t+t-) + n(t) s(t+t-) + n(t)	n(+++)7
	= 4 Lª s(t) s(t++) cos wot cos wo (t++) cos	
	+ 2L2 s(t) n(t+n) cos wot cos wo (t+n)	
	+ LZ n(t) n(t+1) cos wot cos wo (t+1)	
	(11) 112 to take the tate to a conce	and the liter
	(4) We now take the statistical avera	ge, knowing that
	(4) We now take the statistical avera s(t) is non-stationary, n(t) is n(t), s(t) are uncorrelated:	stationary, and
	n (t), soti are un correlated:	
	$y(t) y(t+r) = \lambda^2 \cdot s(t) \cdot s(t+r) \cos \omega_0 t$	$\cos \omega_0 (t+\tau)$
	+ Rr (r) cos wot cos wo (t+r) 5	
	(5) We now find the time auto-c	orrelation function
	by the definition:	
	$R_y(r) = K_{rus} - y(t) y(t+r) dt$	
	$R_{y}(p) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \frac{1}{y(t) y(t+t)} dt$	
	Using coswot coswo (t+N) = 1 con	wor + 2 con (2wot + wot)
	(6) fine 1 5 5 2 cos wo 4 + 2 cos (zwot + wo 9)} T=00 T 6 2 cos wo 4 + 2 cos (zwot + wo 9)}	$dT = \frac{1}{2} \cos \omega_0 \gamma$
	T-roo Jo	
	$+ \frac{1}{2} \operatorname{dim}_{T \to \infty} \frac{1}{T} \cdot \frac{1}{2\omega_0} \operatorname{sm}(2\omega T + \omega_0 t^0) = \frac{1}{2}$	- cos wor
	T+200 [CW0	

(1)
$$f_{inv} = \int_{0}^{T} \int_{0}^{T} den ext are $u_{0}(t+\tau) \int_{0}^{t} dt$

$$= \int_{T+r}^{T} \int_{0}^{T} \int_{0}^{T} \int_{0}^{T} den ext are $u_{0}(t+\tau) \int_{0}^{T} dt$

$$= \int_{T-r}^{T} den ext are $u_{0}(t+\tau) \int_{0}^{T} dt$

$$= \int_{0}^{T} den ext (2w_{0}t + w_{0}t) \int_{0}^{t} dt$$

$$= \int_{0}^{T} den u_{0}\tau + \frac{1}{8}$$
(2) $r_{i} \cdot \theta_{0}(\tau) = s^{2} \int_{0}^{t} den v_{0}\tau + \frac{1}{8} s^{2} u^{4} + \frac{1}{8} \theta_{0}(\tau) \cos w_{0}\tau$
(3) $G_{i}^{*}(\mu) = H \int_{0}^{\infty} \theta_{0}(\tau) \cos w\tau d\tau$
(4) $G_{i}^{*}(\mu) = H \int_{0}^{\infty} \theta_{0}(\tau) \cos w\tau d\tau$
(5) $\int_{0}^{t} \cos^{2} u_{0}\tau + \cos u^{4}\tau d\tau$
(6) $\int_{0}^{t} \cos^{2} u_{0}\tau \cos u^{4}\tau d\tau$
(7) $\int_{0}^{t} \cos^{2} u_{0}\tau \cos u^{4}\tau d\tau$
(8) $\int_{0}^{t} \cos^{2} u_{0}\tau \cos u^{4}\tau d\tau$
(9) $\int_{0}^{t} \cos^{2} u_{0}\tau \cos u^{4}\tau d\tau$
(9) $\int_{0}^{t} \cos^{2} u_{0}\tau \cos u^{4}\tau d\tau$
(9) $\int_{0}^{t} \cos^{2} u_{0}\tau \cos t d\tau d\tau$
(9) $\int_{0}^{t} \cos^{2} u_{0}\tau \cos t d\tau d\tau$
(9) $\int_{0}^{t} \cos^{2} u_{0}\tau \cos t \cos t d\tau$
(9) $\int_{0}^{t} \cos^{2} u_{0}\tau d\tau$
(9) $\int_{0}^{t} (t) \int_{0}^{t} (t)$$$$$$$

	Assignment	#5			Paul	Grant
	Continued				DEAP	- AP- 16
					APZ	15
					1-7-	61
$() \rightarrow$	Problem 31					
	Continued					
,	\rightarrow $c + (c)$	0212 0		12/2 010 21		
($(z) G_{3}^{+}(f) =$	5-4 0	(f) +	52L2 & (f-2)	- 6	
		4		0		
	+ -	- 5212 51		1^{2} c + (c c)	1 12 (+ 10)	
	T T	4 2 0(24 5n (f - fo/	+ + Gt (f+	ro/
	= \$	2L2 S(E)	+ 5222	(1 - 2 - 1 + 1)	2 C+ (C-C) + L	Gt / (44)
		2 0 131	8	0 (1	$= \frac{1}{4} \operatorname{Grt} \left(f - f_0 \right) + \frac{1}{4}$	On (TTp)
1	3) For purp	opses of	companyes	we we	pute the si	onal imput
	PSD:			Com	FUIS THE ST	8
	Star in the or had been					
	slt) sl	t+1) =	52 con	wot cos wolt	+11)	
		Sel Standard				
		125250	os wor	+ cor (zwot	+ Wor) {	
					2	
	$R_{s}(\gamma) =$	1 5	2 cos wor		Store States (A	
		Carl Star Star Star	No track and the R			
	G = (1)	= 4	Rs (7) cos	wr dr =	1 5° 5 (f - fo	
		10				
	G*(+)4		20			
<u> 18 18 18 18</u>			Area =	SZ (signal)		
	<u>a - 16 - 53</u> 65	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2	2	$G_{N}^{+}(\xi) =$	A B/2 2 5 2 50+ 8/2
			A		in fo-	B/2 2 F 2 50+ °/2
		Are = f	a			
		(nois	and the second sec			
and and an		Choi				
	0	So- 8/2	fo fo + B/2		→ ç	
			10 10. 72			
	Gitti					
	00					
				0		
			2			
	n	$Area = \frac{s^2}{s^2}$	2	Area = 5		
				B/2		
		······································		$rea = \frac{8AL^2}{4} + \frac{AL^2}{4}$		
	BA 12/4		A			0
	0	8/2	ro i	250		÷
			· · · · · · · · · · · · · · · · · · ·			

A.			6 3			2		AN			13																									
A			RY		1		1	8.9	1	23	11.89	(DAY)	193								24	2.2.1		2.5	1.44	· 12 24	Arr	12 573	ine a	and the second	and					
	(14)		We	1	nau	5	pa	155	+1	hroc	oh		a		Ina	5	pa	55		C.I	1/ei	F	11	161	ch		01	in	no	te	5					
				e														Ĩ	1				-	n		T	-	-	-		-					
			100	1		3	VIN		a	a	10	0.00	a		7	to	-										1								4	
			(1)	e	1	10	1	1	1		1	ha		C	11			7		1						11	1	L			-	2.	100		-	7
		*	we	4	-1'	ne	n	-"	lav	e	-	he		to	19	and	My	5				-			- 1	lade	2			AB	11	A		A		4
			S	igne	1			1				1	2	P	4	21.	H	2	=	0	Se	-	-	tr	Nor		i	+ -	-	4	H			+	4	-
1			51	gni	al	P	pour	ser	-	INI	Pu	-	Ξ	P	-	19	H	A	-	- 9	1	7	pus	-	P	wR	00	-	-		-	.2	4	4	4	4
		A						4			4		P		-	P	P		11		A	1	N	0152	-	-	+	1	1		Sil	-	4		4	4
R R	4		N	lois	e	F	pou	Ner	C	12	100	Ť	=		AF	3 -	-		N	-	A			A			+	t		F	4			4	4	4
				400					4		4		P			,				1	F.			Sie	p	wr	· oc	u.				15	4	4		4
			N	0156	2	P	1000	er		00	ter	it	=	2	AI	2/4		=		No	-		1	0	1	2	1	from	as	10)-		2				
																					N	1			00	low	2	for	F	1	2	1				
B. A.	22		51	igna	al		001	we	2	0	ute	out	1	E	5		14	=	-	So	C				for			7	7	4	r					
11								SET.		20																B	N			4						
									20										1										-							
	(15)			50				C,	SZL	2/2	24				1	1	52	-	N		-			3		S	1									a
				No						BIG						A	7B								-	N	~						E		T	
									A								-		S	TA	B				av	6.1							A			A
			0	110	-			+1	hat	-	+4	5		SI	IR		at		4	he	Ž	2	.+	au	+	1	,	r	24	to	1		La			1
			+	the		C	211	R		10	2	+	ho		120	01	+						1,	200.		-	-			-	-		0		4	-
			-	ne	,	T	sh 4	1	1	or	+	1	ne		m	10	1	-	n	1	a	7	19	VICO	no 1	1	w	nar	7.	Te	E			+	+	4
			a	no	4	-	Tr	la.	-	4	4	-	15	10	ra	ep	1en	di	en	T	11	ot		T	he		bo	and	w 1	100	th	-		~	+	4
			10	St	-	al	11	17	npi	UT		SA	NK	<		02	nla	Ke		7	the	2	9	rua	dr	at	ic		de	2 Te	CT	70	4	for	4	4
			Ce	when	ch	2	+	h	5	1	5	0	nli	5	tr	ve		f	or	-	3	121	N	-	< 4	-	+	-		1		4	-	4	4	4
-			A	1150		3	101	No		Ó	ler	ien	ds	P	0	n	2	12 1	NJ	-		vi	a		2.	22	4	1	10	To	de		67 M	4	4	4
3			120					SA	-	al			-													4	1							4	4	
				(Po																					4	-								-	-	-
			1	Voti	e	1	the	et	7	mis	xn	19		519	n	al		14	5	2	not		1	nci	100	led	1	as							-	
-			1	par	rt	0	F	0	npo	ut	5	137	na	22		b	ut	-	15		P	art	F	of		001	FR	out			If	2	1 BUT			4
1				,+	1	15		in	cl	lud	led	4	,	w	e	5	et	50															137			
																									81											
					50	-		8	5	1				t	zk	m	R.	+	he		in	00	t	P	ous	er		as		+1	e	ø	vol	duc	t	
					No				1	Ne		7		of		+	The		5	G	no	2		Por	u e	r	0	ind		os	c 1/	Ilay	For	A		
			ALC:					A						1 1	ow					2				1		a							A	ay		
				T				A						T	-																				T	
								E	AV		AU											9.	5												T	
				T				A		a y	AN									7	5/7	67.					1	1						T		
				T				al	AV													63				1	1	1				-		-	4	
			AV	17					ar		17	-										-4	00	A		0	1	-	-						-	
			AN	1					A		ty	T												A	4		1	-			-	4	4	+	+	-
	1			-	H				A	4						H											+	-	P				A	-		-
				-	-	-		A	-	4	4								-						-			-				-		4	4	-
	4			4		4	A	A	4	4	A														4		4					4	4	4	4	4
	1. 1.								4		4															2	4	-					4	4		4
								E																	4		4								4	
			20																																	
		2.								20																										
			80						21	20	A																									
			1						E																								A	AV		
			68 87	AB	21		AN		EV	A.7								ESY						E		517	47							a cl	7	21

Applied Physics 215 Hour Examination November 17, 1960

- 1. (a) Two random variable x and y have zero means and equal variances σ . They have a correlation coefficient $\rho = 0.7$. Calculate the variance of their difference.
 - (b) Two independent Gaussian random variables x and y have variances σ and \mathcal{T} respectively. Calculate the joint moment $\underline{x}^{m}\underline{y}^{n}$.
- 2. A photo-multiplier tube counts incident light quanta at an average rate of one count per second. When counting is started at t = 0, what is the probability that the third count will occur after exactly 1 second? and after 3 seconds? and after 10 seconds?
- 3. A periodic voltage $V(t) = Asin(\omega t + \emptyset)$ has a constant amplitude, but a random phase \emptyset , which is uniformly distributed in the interval $0 \Rightarrow 2\pi$. Calculate and sketch the probability density function f(V) of the voltage at an arbitrary time.

HARVARD UNIVERSITY FACULTY OF ARTS and SCIENCES Examination Book

Name	Paul Grant	
	11-17-60	 The second se
Subject	AP 215	Contraction of the
Section	i ni	and

DO NOT REMOVE PAGES FROM BOOK DO NOT REMOVE BOOK FROM ROOM

J. L. Hammett Co., Cambridge, Mass.

$$0 \quad a) \quad () \quad \sigma_{n}^{*} = \overline{x^{2}} - \overline{x}^{2}, \quad \sigma_{n}^{*} = \overline{y^{2}} - \overline{y}^{*}, \quad \overline{x} = \overline{x} - \overline{2}, \quad \overline{x} = \overline{x} - 2\overline{x}\overline{y} + \overline{y}^{*}, \quad \overline{y} = \overline{x^{2}} - 2\overline{x}\overline{y} + \overline{y}^{*}, \quad \overline{y} = \overline{x^{2}} - 2\overline{x}\overline{y} + \overline{y^{*}}, \quad \overline{y} = \overline{y^{*}} - 2\overline{x}\overline{y}, \quad \overline{y^{*}} = 2\overline{y^{*}} - 2\overline{y^{*}} - 2\overline{x}\overline{y}, \quad \overline{y^{*}} = 2\overline{y^{*}} - 2\overline{y^{*}} - 2\overline{y^{*}} - 2\overline{x}\overline{y}, \quad \overline{y^{*}} = 2\overline{y^{*}} - 2\overline{y^{*}} - 2\overline{y^{*}} - 2\overline{y^{*}} = 2\overline{y^{*}} - 2\overline{y^{*}} - 2\overline{y^{*}} = 2\overline{y^{*$$

(1) Use Poisson distribution $P_{N}(n) = (\overline{n})^{n} e^{-\overline{n}}$ (2) $P_{n}(\tau) = (\alpha \tau)^{n} e^{-\alpha \tau}$, $p = \alpha \Delta \tau$ $\overline{n!}$ 2 (3) Probability That no countr in time r and first count in time + Ar is a Ar e (4) Probability That Two counts occur in time I and third in T+AT = $P_2(T) P_1(\Delta T) = a \Delta T \left(\frac{(aN)^2 e^{-aT}}{2} \right)$ $ON = \frac{a^3 h^2}{2} e^{-ap} \Delta \tau \qquad (should possibly be a sum over n form E$ (5) Replace At by dt and integrate over period of interest. a = 1 (4) $P(T) = \frac{1}{2} \int r^2 e^{-r} dr =$ = - 1 2 2 e - 2 + Sr e - 2 dr $= -\frac{1}{2}r^{2}e^{-r} + \int e^{-r}(-r - i)$

$$= -\frac{1}{2} r^{2} e^{-r^{2}} - r^{2} e^{-r^{2}} - e^{-r}$$

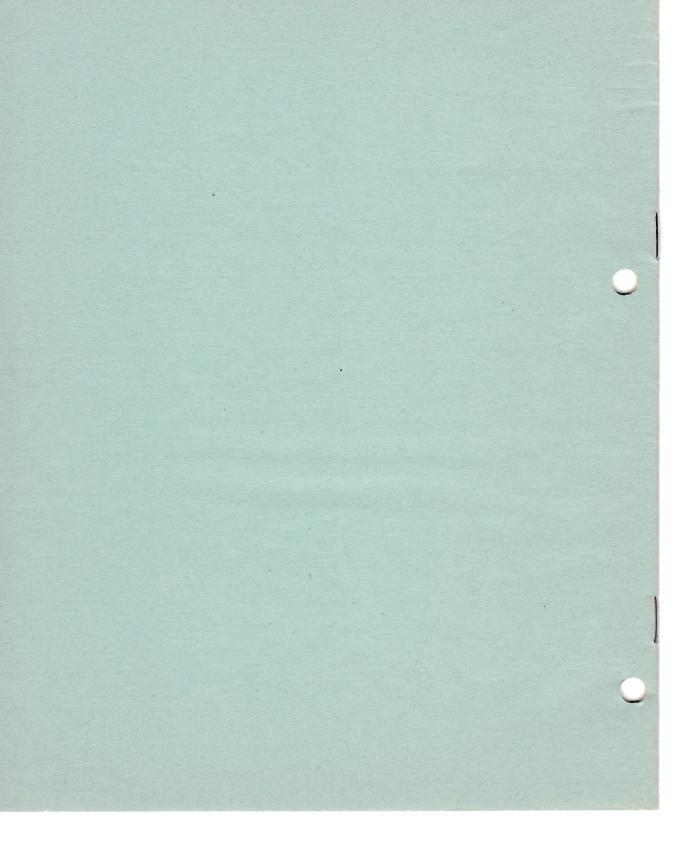
$$= -e^{-r^{2}} (\pm r^{2} + r^{2} + r^{2} + 1)]_{0}^{T}$$

$$-e^{-r} (\pm r^{2} + r + 1) + 1$$

$$= 1 - e^{-r} (\pm r^{2} + r + 1)$$

$$T = 1 : P(1) = 1 - \frac{r}{2} e^{-1}$$

$$T = 3 : P(3) = 1 - e^{-3} (\frac{q}{2} + 3 + 1)$$


$$= 1 - \frac{17}{2} e^{-3}$$

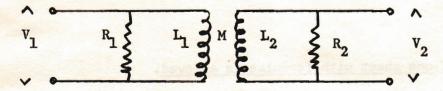
$$T = (0 : P(10) = 1 - e^{-10} (50 + 10 + 1)$$

$$= 1 - 61 e^{-10}$$

(3) (1) V = A sm (wt+q) $f(q) = \frac{1}{2\pi} o \leq q \leq 2\pi$ f(x) = 5(2) $f(v) = f \int q = q(v) \int \frac{dq}{dv}$ I am not sure This can be done as $\varphi = \varphi(Y) = sui' \frac{Y}{A} - \omega t$ is a multiple valued function. Perhaps if it is restricted to the range of definition of q { O < q < 2TT } it will be valid over this principal volue. (3) $\frac{dq}{dv} = \frac{1/A}{51 - (\frac{v}{2})^2/2} = \frac{1}{[A^2 - v^2]^{1/2}}$ (4) $f[q=q(v)] = \frac{1}{2\pi}$ (5) . . . $f(v) = \frac{1}{2\pi A} \cdot \frac{1}{\int 1 - (\frac{v}{2})^2 \frac{1}{2}}$ thech normaticals over for wheteh

(6) $f(v) = \frac{1}{2\pi A} \cdot \frac{1}{\int 1 - (\frac{v}{A})^2 \int \frac{1}{2} \frac{1}{2} \frac{1}{2}$ f(v) is valid only in VCA or VCI £(v) .. ZTTA +A _ V-> -A (7) $\frac{2}{2\pi A} \int_{A}^{A} \frac{dv}{[1-(\frac{v}{A})^{2}]^{1/2}} = \frac{2}{\pi} \frac{2}{\sin^{2}t} = \frac{2}{\pi} \frac{\pi}{2} = 1$ i normalized

.


Applied Physics 215 Final Examination January, 1961

1. Define briefly and give one physical example of each of the following

- a) Non-stationary random process
- b) Narrow-band gaussian random process
- c) A non-gaussian stationary process
- d) A two-dimensional Markoff process
- e) A non-Markoffian process
- 2. Describe all stochastic processes that may occur in a thermionic tetrode.

Answer three out of the following four problems

 Consider two RL circuits, coupled by a mutual inductance M, as shown in the diagram. Both resistors are at the temperature T.

<u>Derive an expression</u> for the cross-correlation function of the noise voltages V_1 and V_2 .

4. A radioactive source has exactly N_0 radioactive nuclei at t = 0. The half life of the source is 10 seconds. Calculate the mean square deviation in the number of radioactive nuclei in an ensemble of such sources, as a function of time. At what time does $\overline{\Delta N^2}$ reach a maximum?

(OVER)

Applied Physics 215 Final Examination page 2

- 5. Consider a random walk in two dimensions with steps of length ℓ . The steps are in the direction of the positive or negative x-axis, or along the diagonal making an angle \emptyset of 45° or 225° with the positive x-axis. These four directions have equal a priori probability. Calculate the distribution in direction \emptyset after a large number of steps when the random walk started at the origin. What is the most probable direction in which to observe the random walker?
- 6. A very long, lossless transmission line is terminated at both ends by a matched resistance R. The temperature of the resistors are T and $T + \Delta T$ respectively. If the transmission line transmits all frequencies, calculate the heat conduction between the two resistors. What is the spectral density of the temperature fluctuations of each resistor when its heat capacity is c_y ?

The use of one sheet with formulae is allowed.

Sample Space; Set of poss. out.	Goussian M-B stat.	Wiener-Khintchine
Prob. $P(k) = \lim_{k \to \infty} \frac{\# \text{ success}}{\# \text{ trials}}$ M.E. $P(A + P(R)) = 0$	$f = \frac{1}{(2\pi m \hbar T)^{3/2}} e^{-\frac{(p_{x}^{2} + p_{y}^{2} + p_{z}^{2})}{2\pi m \hbar T}}$	Theorem:
M.E. PIAI + P(B) = P(AOr B)	{ [217 m/hT] - p2	G(4) = J Ry(r) e 2 raft dr & G+(4) = 4 J Ry(r) cos 2 mfr dr
$3 \cdot P: P(A \text{ and } B) = P(A, B)$	= 1 Prize TWAT P2 dp	$\left\{ \begin{array}{l} R_{y}(t) = \int_{0}^{\infty} \mathcal{G}(t) e^{-2\pi i t} d\eta + \left\{ \begin{array}{l} R_{y}(r) = \int_{0}^{\infty} \mathcal{G}^{+}(s) \cos 2\pi i f \tau' d\varsigma \right\} \right.$
C. P: $P(B A) = P(AB)/P(A)$	· sme de da	
Stat. Ind. P(A., AU) = P(A.) P(AN)	$= \frac{z\pi}{(\pi\lambda T)^{3}R} E^{\prime/2} e^{-E/\hbar T}$	This pair forms with Theorem (Kittel)
Bernoulli Dist.	In potential, add e TT	$G(t) = \frac{1}{2} G^{+}(t), G(t) = \pi \sin \frac{S(t)S^{*}(t)}{T}, S(t) = \int_{0}^{\infty} y(t)e^{2\pi i t} dt$
Two M.E. events, P(A) - p, P(B)	Equipartition: Due to quad.	a free all a share a sh
9=1-p -29	terms in exp. soch as p2	deefed relation;
Take N trials, get n successes	Gaussian I-PS W(x) = 1 C 20	wi cos [wot+@] coz [wo(t++)+ce] = ± coz ∞o T
N-n failures. Prob. of one	(x-m)h = 0 n odd fro	+ 2 cos (zwat + 29 + wat)
seq. = phq N-n	= 1.3.5(n-1) on never	Now Statu RROLAND sprade web soleta MD
Possible seq. = N^{1} , so cresses Fail = $(N-N)!$ = $N!$	Mx (14) = e 1911 - 12 52/2	If x(t) x(t+1) not wide serve stati, can use
Prob. n successes, N trals.	Bivariate: W(4:42) = -1	The ROM and take PSD. In this way, PSD defined
$P_N(n) = \frac{N!}{N!(N-n)!} + \frac{n}{2} q^{N-n!}$	· exp - { 1/2 (1-p3) (1/2 + 42 - 2) y	yill for each sample. DER. use this for def.
	02 = gr, 72 - y2, y0 y2 = p 57	Inf Random Tel. I of O crosse/sec = a. # min
Epy+qIN = No gr pr qN-r NI	Molt. Var:	I tune interval T 15 Siven by P dist.
p+q=1 $n! (u-m!)$	$ \begin{array}{l} M & Olt. Var: \\ W(X, \cdots X_{H}) = exp \left[-\frac{1}{2H(1)} \left[\frac{N}{X = 1} \frac{N}{M(1)} \right] A \right]_{NH} \end{array} $	$ x_n x_{m}] \left\{ \begin{array}{l} P(t) = (aT)t = -aT, Ry(T) = y(t) y(t+y) = t \\ 1 \end{array} \right\} \\ = t + t + t + t + t + t + t + t + t + t$
$\overline{n} = Np$, $\overline{An^2} = Npq \equiv \overline{n}$, pxc1	(2m) M/2 [-1]/2	(a) Ry(r) = out down - at do in tord
$(A_{N}^{2})^{N_{2}}/\bar{n} = 1/\sqrt{n}$	$M_{X}(i T) = exp(- \pm T A T)$	$\begin{cases} P_{y}(r) = \sum_{i=1}^{n} P(h) - \sum_{i=1}^{n} P(h) = e^{-at} \sum_{i=1}^{n} \frac{(-aT)h}{h} = e^{-aT} \\ Tahe E transform (are Pao) \\ \end{cases}$
Poisson Dist. Limit of B dist.	$V = \begin{pmatrix} v_1 \\ v_N \end{pmatrix}$, $A = (A)$, $\lambda = X_1$	HXWL John SOF 130
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	14. 1. 16 P	of PSD: Langerin Equation and F-P Methods.
P-0 - TAIN, ANN IN MAR 39	Markoff Process: process such } That could prob. y m yo, yotdyn	$\Lambda(t) = \frac{1}{2} + \frac{1}{2} \left(an \cos \left(\frac{1}{2} n t + \cdots \right) \right) \qquad J = \frac{1}{2} \frac{dy}{dt} + B \psi = F(t) , \frac{J}{B} = T_0^{2}$
$P_{N}(n) = \left(\frac{n}{N}\right)^{N} \left(1 - \frac{n}{N}\right)^{N-n} \frac{N!}{n! (N - n)!}$	at time to given that y =	an = = fralt) con stant de { J-mertia, B-damping
$= \frac{(\overline{n})^n}{N!} \cdot (\cdot (1 - \frac{1}{N}) \cdots (1 - \frac{n-1}{N}) (1 - \frac{\overline{n}}{N})^{N-N}$	3 gin , your at times to, two)	$\overline{du} = bn = 0 \text{ assume} \left\{ \begin{array}{c} du + \frac{1}{T_0} \psi = \kappa(t), \kappa(t) = F(t) \\ \frac{1}{T} \end{array} \right\}$
$\lim_{N \to \infty} P_N(n) = \frac{(n)^n}{n!} e^{-n}$	(depends only on y at previous)	and = his andre = (K(t) is nurely random process
	Smalley, P(xstelxiti)	of zero mean, PSD = 4D,
Prop.: n = n, An2 = n no interaction assumed lurry wrong	= { P(xsts) xets) P(x,t, 1xets) dxz . }	1 100 min att
EMIGSIMAN DE DAM INT	here and the second second	= + 6 (1===) ann { 4- 4 0 = 1/0 + e), K(E) e le
$P_n(P) = (a_P)^n = a_P$	Stat. R. P. Erg. Pro.	G+(f)df = I (av2+62) } ID = 4 0-2/10
Prob. of emitting in AP = a AT	shift of time axis, depend)	More ne PSD: $\overline{\psi}^z = p P_o + e^{-2t/T_o} \left\{ \psi_o^z - D T_o \right\}$
	only in interval. $\overline{X_1 X_2} = R(\tau)$ if station.	wide band = ind. of f also called pure random As t-roo: There = 0, there = Dro
$M \Delta P = a \Delta T (aT)^{n} e^{-aT}$	$\rho_{\mathbf{x}}(\mathbf{T}) = \frac{R_{\mathbf{x}}(\mathbf{T}) - (\mathbf{\tilde{x}})^2}{r^2}$	process. Rista S(7) Because this is paussian process
Ramdom Walk: given equal prob		Norrow Band = afrested we can find dist. for.
of steps of length it to reft or		$\begin{cases} = \int_{0}^{\infty} G(t) df \\ = \int_{0}^{\infty} G(t) df \end{cases} \begin{cases} Carrel, \notin PSD; \\ G\phi(f) = \frac{47^{\circ}}{(e\pi f)^{\circ} f^{\circ} + 1}, & R\psi(\tau) = T_{0} De^{-T/\tau_{0}} \end{cases}$
Fight, what is prop of barnent	Stochastic or RV : 16 set of	
me after N steps.	pess. values given and prob. of each one given, this is defined.	Limear Fixed Parameter Suppose $J \frac{dt+}{dt+} + B \frac{dt+}{dt+} = \frac{d}{dt} F(t)$ Systems: RLC, $T \neq F(t)$ is the set of th
B. Dist. $P_{\rm m}(N) = \left(\frac{1}{2}\right)N \frac{N!}{N!}$	Cent. Lunit. Theorem: SRV 15	$\begin{cases} d^2 \phi \\ dt^2 + \frac{1}{T_0} d\psi + \omega_0^2 \phi = \frac{d}{dt} k(t) \end{cases}$
Use Storl Approx. (N-m): (N-m);	of 2 tends to gaussian in limit	
let N - 00, and get :	Random process i RY X does not	$ \left(G_{out}(f) = \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} A_{k}(f) A_{k}^{*}(f) \right) \qquad \qquad$
$P(m,N) = \left(\frac{2}{TN}\right)^{1/2} e^{-\frac{mL}{2N}}$	depend on time in a completely	LIGmoute Gmilfi) errevits.
can get diffusion equation by	prob. dict. fr. for RV.	uncorrelated; the F-P equation is derived
taking x=ml, Am = dx, N=N'T	Gaussian RP. each ru has	Gout (f) = D (Ax (f)) ² Gx(f) from Sm. eq. as a Mart. Pro. assuming that cond. prob. of A Noise Figure: A Noise Figure:
N' + 00, +=0, time N'22 = 20	gaussian dist. Also, funte = disi	1) Noise Figure : Aumping from me interval to
Randon Variable: varible in	Carr. Fns:	I Fel noise " lavail. in 3 another is slowing burging. This
Sample space, discreef or cont. (Prob. Density: $f(x) = \frac{\partial P}{\partial x}$	Stat. $Rxy = x_1y_1^*$ $Rx(hiz) = \overline{x_1x_2^*}$	(sig. power) avail. out Viz. Dw = - Jx {A(x)w} + 2 Jx {B(x)w}
26: 2(x,3) = 2(x) 2(3) - 12 21	Tune: Rx(tite) = Lin - (X, X,* dt	Non-Linear Systems (where Ac Zim AV , 8= Zim AV Atrop t , 8= Zim AV
fue of r.v. also r.V.	Tune: $R_x(t+t_e) = \lim_{T \to \infty} \frac{1}{T} \int_0^{T} x_1 x_1^* dt$ $2x_7 = \lim_{T \to \infty} \frac{1}{T} \int_0^{T} x_1(t) dt$	Quad. Det. y(1)= x12(t) Using above Langevin eq.
Transformation of Prob. Den.	PSD:	
Given $f(x_i,y)$; $x = x(u,v)$ $\{u = u(x,y), y = y(u,v)\}$	$R(t) = \chi(t)\chi(t+t)$ station.	$\begin{cases} 3(1) \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = 3(2) \\ \frac{1}{2}(1) \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} =$
f(x, y) dx dy = f(x = x(uv), y = y(uv)) J	R(r) = fine - (x(t) x(t+r) dt	$\begin{cases} R_y(t) = x^2 \overline{x^2(t)} \overline{x^2(t+t)} \\ A = -\frac{1}{T_0} \Psi, B = 2D \end{cases}$
$J = \begin{cases} X_{M} & Y_{M} \\ X_{V} & Y_{V} \end{cases} = \frac{\partial (x, y)}{\partial (u, y)} du dy \end{cases}$		Retails attraction Assuming at gets small but = 250210 +2 Riteria Stags larger than To
and the second s		(SS sola of F. Peg. , use
f(wv) = f(x=x(wv), y=y(wv)) J	dist. fr. not invariant under	1 = 0 a + ca kuting) we thad at least descent, expand
I variable: fluit = f(x=ximi) dx/du]	time shift but means and	Galtien 5 S(f) A in Taylor series, keep first
Averages: give Salviflyide	Correlations don't depend on twie.	$\left\{10 + 2\alpha^2 \int G(f') G(f') df'\right\} \text{ term. } e^{-\frac{(\psi - m)^2}{2\sigma^2}}$
Joint M. Xmyn = IS xmyn (x,y) dxdy	- there -	- AZ- (Constitution) and a state of the sta
variance : (x-x1(y-g) = SS(x-x1(y-g))	(Xy) dxdy	the second
char. m: Mx(14) = paux = feaus	C(x)dx (Jo correspondence 20	fall components of R-L, Up 4RAT UPST
$\overline{\chi^{n}} = (-\lambda)^{n} \frac{d^{n}}{d\lambda^{n}} M_{\chi}(\lambda u) \Big]_{\lambda I = 0} M_{\chi}(\lambda u) =$	Zix (14) (So an 2# for con2#fi	pdp / mpor psp must be / chant
elte O 1 - in Carl		
Joint Char. Mxy = 200x + 144	- 4015 101	
Joint char. Mxy = erax + 1vy	1+" My (201 AV) (Existing the = SI	(around fo. 2=) Heat & Cula yakt yakt
Joint Char. $M_{XZ} = e^{\lambda a X + \lambda r y}$ stat. Jud. $\frac{X^{m}g^{n}}{X^{m}y^{n}} = (-\lambda)^{n+m} \frac{\partial^{n}}{\partial \lambda}$	1+" My (201 AV) (Existing the = SI	

Find many Spectral	Lines as NB Gauss, Proc.	Radiation Measurements & Space	Charge Lunited & Brownian Motions
) –	of orchestra playing same		G+(1=0) = 2 IE P { X-X0 = m to (1-e-10/mt)
MB dist Falter (note	but all out of phase	Ha Bolometer: Case: A v radiation mises 64721 temp. hence resis. (suppose	and is noise ((x-xo)2 = m2002 (1-e-Bat)
- Little Ze Enter Solid.p	with light ewithed from ((= ac(1) core { wort + q(1)})2	could also be used as : Portal	+ 20AT to + 2010AT
E E E C Fight	dectors detect power	Der D because of heat and 5	s: partition worse (-3+4e(1)-e-2(1))
E' = E Ere() { thus T	$\frac{P(t) P(t+r)}{Vad. dectector.} = \overline{P^2} \left\{ 1 + 2p^2(r) \right\}$	conductance. still, not get to	ande = 1a (X-Xo) = = int
Signation from the second	{ would usually have just		= pN 1a+1s)=1+e-pmt)
a = - /mi, z = ze-au	(wave flucti, but get quanti	Lag LIST - FIN	49N. For 1=0 = 241+ + 27
$E = \frac{1}{E} \frac{\partial E}{\partial x}, E^{2} = \frac{1}{E} \frac{\partial^{2} F}{\partial x^{2}}$	of photon in detector. Prob	P P P P P P P P P P P P P P P P P P P	$\frac{e^{2} \operatorname{Ank}}{T^{2}} = \frac{\operatorname{Ia} \operatorname{Is} e}{\operatorname{Ia} \operatorname{Is} e} = \frac{1}{2\pi} \frac{1}{2} \operatorname{Is} + \operatorname{Is} \operatorname{Is} \frac{1}{2} \operatorname{Is} $
$\therefore \Delta E^{z} = \partial E ; C_{u} = \partial E$	for liberation = ~ Pdt.) Equations carpled, can go cross	= 2To ala = 2Jals for t row, we get
QM states don't change	Prob. for N in tune t is	de R (1+0	TO (Latus) (Diffeq.
means dimensions of box constant.	P dist. Then cale. Ne		Ition and shot noise HADAILEAR - (x-Xo)
$\Delta E^2 = \frac{\partial E}{\partial a} = \frac{\partial T}{\partial a} \frac{\partial E}{\partial T} = \frac{\lambda T^2 C_V}{C_V}$	$= \overline{N_6} + z\alpha^2 \overline{P}^2 + \int_{P^2}^{P^2} (r) dr$) current	F= paN + oz N P2
Ideal Gass E= ZNAT	If all in torta	$\begin{cases} \frac{(M)}{S}_{ave} = \frac{\overline{\Delta x^{2}}}{(\overline{x})^{2}} = \frac{\overline{\Delta q^{2}}}{(\overline{p})^{2}} = \frac{(M)}{(\overline{p})}_{rad}, \\ \text{Noise figure is 1, natural precision,} \\ \text{At telsec, } 0 = fan^{2}, \overline{r} = 300^{\circ} \text{K} \\ (\overline{\Delta q^{2}}, \frac{1}{2})^{2} = -fan^{2}, \overline{r} = 300^{\circ} \text{K} \end{cases}$	(ala))= +9 Ne2 + 27 2772 (x-20) of eye power
AE2/E" = 2/3 1, thus	phase get ANE = De+N+.	Noise france in the rad.	Tot Tot Can also set
For large N, fluet. negligible	Zme width Az = 108 cps	At the life of the internation of the life	Gia (0) = 7 e Ia [Is+Ia [] } } A=0, B= a2N from
QM HO: Neglect opt E.	Define spectral dist. g(D).	(AQ. 1/2 - 0 -10)	
$E_{L} = \mathcal{M}_{L} \mathcal{H} \mathcal{D}, \mathcal{Z} = \frac{1}{1 - e^{-\mathcal{H} \mathcal{D} / \mathcal{A} T}}$	Get: ONE = NE + 202 P't Sgillado	(Phototube: $\overline{AN^2}$ see $\left[\frac{F \cdot P}{\sqrt{2}} \int \frac{F \cdot P}{$
E= Enchre e-ma au/at E e ()	$\alpha_{2}: u = \overline{N_{+}} + \frac{1}{N_{e}^{2}} \sum_{(\Delta \omega) t}^{2}$	that Temp, flucts is 14 on {	= AN^{2} pri $p^{2} + Npri \Delta p^{2}$ Other fluctuations: In ss: Wo e the
Een	the more oscillators take	$\frac{A\Gamma}{T} = 2 \cdot 10^{-10}$	Secondary emission (which is MB.
$= \frac{hv}{(1-v-hv/hT)} \frac{1-e^{-hv/hT}}{(1-v-hv/hT)^2}$	Fluctuations in Rad. Flux.	Comparison with Xmissim Line	PE Effect
= hos envtar_1 can fund cu	10t day EM thru 0 in t seconds	Different from BB in that } we have limited sold angle }	B(n) = constant.
etutar -1 1 can fund CU	volome v=ctocost.	Jand inneted set of freq. Only	Lorente Model, momentum & subseption 200
and DE2. See that HO	cteased & of ose. my matrice	Analycone for He is some and	gauss dist. le= eve, (N-tupe: x(n)= a'n-
# of modes court exist	Z da we day, the intensity	considered for Amission time.	G = period. Q1 = 20 - La la la
thus resolving paradox. no 15	$\begin{cases} \frac{z}{p_0} \frac{dx}{c^2} \frac{y^2}{dz} & \text{ The intensity} \\ 15 \neq (y) dz = \frac{z}{c^{1+p_0}} \frac{y^2}{c^2} dz \\ \end{cases}$	We are in region where	$\begin{cases} e & e \ e \ e \ o \ d \ e \ d \ d$
# of photons. The = -1	(15 & (DTAD = Charlen C3 dD) dC	2.c ho echt, t > 10°k, No = AT	[The SS: allo) = B(Mo)
$ \stackrel{\#}{=} of \ photons. \ \overline{\mathcal{H}_{L}} = \frac{1}{e^{\hbar \omega / kT}} $ $ \frac{\partial \omega / kT}{\partial \omega / kT} = \frac{\partial \omega / kT}{\partial \omega / kT} $	$= 2\pi \frac{h_{2D}}{e^{h_{2}T/aT}} \frac{\pi^2}{c^2} dD = \frac{c}{4} \mu(t_0)$	1 to the 20 = high of the	$ = \frac{2e}{2L} \sum_{i=1}^{N} \frac{1}{2} \sqrt{k_i} \cos \frac{1}{2} \cos \frac{1}{2} + \frac{1}{2} \sin $
	/ here and a second half have by about	$ \left\{ \begin{array}{c} \overline{\Delta \mathcal{R}^{1}} = \pi^{2} T^{2} \\ \overline{tc} \end{array} \right\} = \frac{\pi^{2} T^{2}}{tc} \\ \begin{array}{c} \overline{\mathcal{R}} \\ \overline{tc} \end{array} = \frac{\pi^{2} T^{2}}{tc} \\ \overline{tc} \end{array} $	$\begin{cases} Get! & g_{k}^{\perp} = \frac{q_{k}^{\perp} q^{2}}{6^{2} l^{2}} \mathcal{L}_{k}^{\perp} \mathcal{L}_{k}^{\perp} \mathcal{L}_{k}^{\perp} \\ \overline{q_{k}}^{\perp} = \frac{q_{k}}{1} \frac{q_{k}^{\perp} q^{2}}{6q_{k}} \mathcal{L}_{k}^{\perp} \mathcal{L}_{k}^{\perp} \mathcal{L}_{k}^{\perp} \mathcal{L}_{k}^{\perp} \mathcal{L}_{k}^{\perp} \mathcal{L}_{k}^{\perp} \\ \overline{q_{k}}^{\perp} = \frac{q_{k}}{1} \frac{q_{k}^{\perp} q^{2}}{6q_{k}^{\perp}} \mathcal{L}_{k}^{\perp} L$
If The large, flucti mercase like EM aprices on goad det.	Recurse of floct, in 2, and has fluct. in & (2). Integrated de	The design of the second second second	emile = a (nol +
	$15: d(v) = \int d(v) dv = \sigma T^4$	(which is same as prevois	(Gn (k) = tim } and) 2(- a'loo)+ (100)
Perists of States : "I'm Lixtu = nx T, E = SM & xe"	with J = ZTTS 24 - SB constant	1 considerations.	$= \frac{2e^{2} + \lambda T}{mL^{2}} for le. $ $Gon(t) = \Delta nor \frac{2}{m} \frac{2}{r^{2}} \frac{e^{2} + \lambda T}{r^{2}} for le.$
$\int_{0}^{\infty} Lx \Delta h \chi : v = \frac{V}{\pi^2} \Delta h \chi : v$	15h°C	Shot Effect: No space charge	Mal. by D. then It (and any) e m
$ \mathbf{x} = \frac{2\pi}{2\pi} = \frac{2\pi}{2}$	MSF in energy of BB with area O in time t. These are	I for le - A = F(t-th)	of elec / volum = N = n int I = noe? Me 31
	DWZ = = = Ot Diz commission	Total current for K electrons IK(t) = Z F(t-te).	$ \begin{cases} \sigma = \frac{ne^{i}r^{o}}{2m}, p = \frac{e^{i}}{A} \end{cases} \begin{cases} T_{1} = \frac{e^{i}}{4} \\ T_{2} = \frac{e^{i}}{4} \\ T_{1} = \frac{e^{i}}{4} \\ T_{2} = \frac{e^{i}}{4} \\ T_{3} = \frac{e^{i}}{4} \\ T_{4} = \frac{e^{i}}{4} \\ T_{5} = \frac{e^{i}}{$
t of standing waves	AWE = SSSoct cost smilded a 202 (ha) 2	here here and a spal of	Get: Galfe 4AT ant R. ME en The MA
63 Philippin	= 40 to x76 (enerthing)	UZ Contraction	
Could use BYK BC	$\frac{-40t\sigma R^{10}}{sunce} = \frac{4}{c} \sigma^{0} T^{4},$	$= \frac{1}{T} \sum_{o} \int_{o}^{T} F(t-t_{A}) dt_{A}$	Alt. proof using (G) _ Juoise due to
Elack Body Radiation Each mode carries E of HO.	SUZ = 16 other 5. The total	= E STECT-taildty which I	13 wide PSD. analogue to flicky
ho/ eitht -1	flux from BB of area o is	the strength south sup	1
Avg E density = IL = Seku/AT_1	0074 = w/z and the ms	F Now K is P distributed;	$\int x(t) = V(t) \cos(2t) fit + q(t)$
· 2. 4/1/22 /207 mivolues B	M PTUX is:	$\overline{I(t)} = \sum_{k=1}^{\infty} P(k) \overline{I_{k}(t)}$	To and the first With and the from
geolary Fation is new bers	$\Delta q_{\ell}^{2} = \Delta w^{2} = 4 \sigma 0 h T^{2}$	= S P(K) K (F(t-ta) dta = Ne	to of modes in AF (WIV. e) = 200 Ve 100
All ascillators radiate ind.	This is stat. ave over time	avg, where N is ans # of elect/sec.	
of each , freq. are also und.	Suce BB is non-isolated,	Nell Titer = 3. P(R) Const dt. dt 25	GRI (1) Rodf = GerRidf Schet. Fick. Noise Soac - WAT, DIE ASO (2 500 - 1)
$\overline{\Delta U^{2}} = \int_{0}^{\infty} \frac{(hz)^{2} e^{\frac{hz}{h}t}}{(e^{hz/hT} - 1)^{2}} \frac{\partial (Tz)}{c^{2}} dz$	P is: $P = TO(T^4 - T_0^4)$	(FIt-ta) Flt-tail	(Ri+Rz) (Ri+Rz) Raula = A Joi 1 AV et the ON
However, Are - Cr KT	$\left[\overline{\Delta q_t^2} = \frac{\Delta w^2}{\tau^2} = \frac{40 \sigma h (T^5 - \overline{tos})}{t} \right]$	= Z PIRE ("F'(tta) dta	Jout off f= AT 30 10 CHS 1758- LitAR = V6 + Wind + Freth
$Cv = \frac{4\pi}{4T} = \frac{32\pi5}{5}\frac{1}{4}\frac{7}{T}$ specifie	over all directions, and fre	S. 2 OKYKKATCO - IN LA	or capacity first been the
$from \overline{U} = \frac{g_{ex}}{g_{ex}} + \frac{g_{ex}}{g_$	Line office and group Li	The second secon	Noise mercuits: Amp, add own noise. Everything in terms of
All' = Cuit is generally good	Heat Flow: a is given by = 0 & (14-Tou) = 450136	10	Input PSD. Elt. Noise Temp:
for any system of E levels	Firl Flortvations 2		$G_{m}(f) = \frac{44}{Rs} \left(T_{S} + T_{N} \right), \ hT_{N} = \left(F - 1 \right) hT_{S}.$
Ava I of phatoes in Rad. field.	due to heat could or P	172) can au sarrie for regier	
$\overline{N} = \frac{1}{e^{\frac{1}{R}^2/4T-1}} \frac{\theta_T \theta_T^2}{e^{\frac{\pi}{2}}} \Delta \tau$	E2 - 7 - 2 - 7 do		1422 stayes: Fitz = 5/4TSB
	$\overline{F^2} = Z\alpha \lambda T^2 C_V \frac{d\theta}{d\epsilon} = -$	E (22) F(HF(HF))	GIGES ANTED + THIG + GITER
	$F(t) = -\overline{P}$. Cun show from - $U = 0$ $\overline{T} = 0$ $\overline{A} = - [U = 0]$	$\frac{1}{2} \int \frac{1}{2} \int \frac{1}$	T(t)e = 1 + Twi + Twi + Twitte + the the the twitten
1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	= 400 To 30, DE= (4007	a of the second second	The second se
AND - II has	d that Alpe is the same	as for Long time ave, go	$a_{IE} a_{I} (t+\tau) d_{t} d_{t} = \frac{1}{2T_{0}} \frac{G^{t}(t-\sigma)}{G^{t}(t-\sigma)} = \frac{e}{T_{0}} \frac{I}{T_{0}}$
Sunces and st	ant and a second se	= (< AT > To)2	