

PHYSICS 251a

QUANTUM MECHANICS

NOTES

Professor: Dr. Furry Room: Jefferson 250, MWF at 12 <u>LECTURE I</u> Recommended Reading hist: Introductory: Schiff Bohm Mandd

Paulino & Wilson

Advanced: Dirac Kemble Pauli in Hand. d. Phys. Kramers Landau & Lifshitz

Three Main Catagories of Problems in Physics: 1. Phenomenological (e.g., valences in chemistry) 2. Atomic & nuclear structures (Quantum Mechanics) 3. Nuclear Forces, Quantum Field Theory (Inadequate today)

Assumed Backpround: 1. Interference and diffraction of light and X-rays, wave nature of light. 2. Black - body spectrum, photoelectric effect, Compton effect, particle nature of right. 3. Combination Principle of Spectral States 4. Bohr theory of atomic states 5. Franck - Hertz Experiment 6. Stern- Gerlach Experiment 7. Discreet states of atomic and molecular systems

8. Electron Diffraction, wave motion of matter 9. Particle nature of matter, oil drop experiment, shot effect, etc. Classical Idea of Objectivity; Phenomenon is in principle independent of the means of observation. This idea is dis counted by quantum mechanics, which does not say that more knowledge affects objectivity. The experimental apparatus used to learn knowledge of a system may completely exclude gaining knowledge of other aspects of system - Principle of Complementarity. LECTURE II 9/28/60 The key problem in the principle of complement-arity is the solution of the wave-particle. duality. PLANE WAVES INCIDENT h v d INTENSITY This effect includes many photons or particles. We get the usual diffraction pattern indicating the wave nature of light. It is possible to wonder if one could not count the number of photons, its velocity and direction, while passing through each slit.

Let us envision the following "thought experiment" Bus #1 Total Switch Complete Total 2 (#1+#2) # 2 Total W Position of cell on Screen We have our screen covered with minute counters of 100% efficiency which are wired into a gigantic switch controlled by a mechanism W which senses which slit a photon has passed thru and gates its return to the proper display. The display indicates the number of dounts for each counter in position on the screen. Consider the following cases: Wave Field Pattern "W" not there Case D)))) "W" is there Gives answer 1 Case (2) "W" is there Gives answer 2 "W" there but not read Total counts only read

We will now examine two postulates of Quantum Mechanics and examine the results in this light. 1. Predictions about system behaviour (past or future) are, in general, statistical. 2. Predictions are based on; a) a suitable wave function, if system is completely prepared. b) For system not completely prepared, based on a suitable Gibbs ensemble. A Gibbs ensemble is a standard way of dealing with ungrepared systems, for example, the statistical mechanics of gas systems where it is not possible to know everything about each of the particles. As can be seen from the diagrams, the presence of W' destroys the diffraction pattern, and makes the two sources incoherent. When "W" is used but not read, we have an ensemble of 1/2 case O and 1/2 case @ or their average. It is only when "W" is removed that the interference occurs. does not affect the outcome of the experiment, but the outcome is affected by a change in the apparatus. The Quantum Mechanical situation is not like classical physics statistical situation, i.e., it is not decribable by a Gibbs ensemble. Next time: Setting up of W(r,t) = SA(k)e (ka-at) Fourier analysis of wave particle that 15 free: w = w(k), for photons, w = c kr, to are rectors r, k are scalars

LECTURE III 9-30-60

We will consider the Fourier representation of a free garticle or a wave packet (1) $\Psi(n,t) = \int A(k) e^{\lambda(k\cdot n - \omega t)} dk$ where A(1/2) is given by the Fourier transform (2) $A(k) = \frac{1}{2\pi} \left(\Psi(n,t) e^{-\mu(k\cdot n - \omega t)} dn \right)$ for which w = kc for the e.m. field case, we will think of $\Psi(r,t)$ as a scalar function of an e.m. field and $\Psi^2(r,t)$ as its intensity. where I is large tells us where the particle night be. Fix the # and y directions and consider motion in the × direction: A K2 $K_{x} = \frac{2\pi}{\lambda}$ out of out of phase phase by -TT IN Phase We shall fimit the domain of & to the interval Dx and consider it to be zero otherwase. The wave packet, as shown by equation (1), can be considered to be made up of a large number of waves with slightly different wave numbers kx. As can be seen, outside ax the waves interfere and the total change in phase over Ax is 21. Now the phase factor is kin in space or simply kx x for the above case. Then the

spread in kx over the interval Ax must have 211 as the result of the product of these two quantities; as its limiting value, or Ax Akx = 211.

In reality, however, the wave packet does not vanish at the ends of the interval sx, but in reality exists to a finite degree. Thus, there is not complete interference because the change in phase is not 2T, but is less than this value. Therefore, AXAlex = ZIT where At is the whole range in which the particle may be reasonably found, and Aka is between two important kx's. Thus, for each, direction in k space, at time t, we have (3) AX Akx = 21T Dy Aky = ZTT AZAKZ ZZT The same operation an be done with the frequency and the time, VIZ, (3') At AW = 2TT in volume element "Y" The above discussion expresses a classical statement about where a classical wave field is appreciably different from zero. Now introduce the Einstein photoelectric law, Bohr frequency, and de Broglie hypothesis, VIZ., (4) hz = kE, + wk. fn.] Deduce <math>AE = hAz $hz_{nm} = En - Em \qquad = hAw$ (5) p = h = the deduce Ap = the Ak What suggested this to de Broglie was the four vectors of special relativity: (6) $p_{\mu} = \left(\vec{p}, \frac{E}{c}\right), \text{ thus } k_{\mu} = \left(k, \frac{\omega}{c}\right)$

Operating on equations (3,3'); (7) Ax Apx ~ h By Spy v h AZAPZ ih AtoE in h An examination of equation (2) shows that we could reverse the roles of Ax and Akx, etc. The uncertainty principle applies to all bodies, IF it did not, one could get a violation by considering a body for which it does not hold and use conservation Jaws to transmit the property between bodies. We will now consider the mechanism W of our previous thought experiment: When a wave changes from a plane to a circular wave, a change in momentum is produced which a { In will react against the mechanism W. a p p p By conservation of momentum and considering & small? (8) Sp=pB with B = h ; then Sp=pl = h We require that $\Delta p < Sp$; thus $\Delta p < \frac{h}{a}$ Upon then introducing the uncertainty condition : (9) $\Delta x \stackrel{>}{=} \frac{h}{\Delta p}$; $\Delta x > a$

Thus, if we try to measure which slit the particle went through by measuring its momentum reaction at the slit, we find an uncertainty in the position which is more than the distance between the slits, and the interference will not occur, A partially working W gives a smear at high orders where Sp is large enough to make W work and gives an interference pattern in the center where Sp is small. More uncertainty discussions may be found in Bohm, pp. 91-92. LECTURE II 10-3-60 For background, consult a reprint by Dover publications on Einstein with article by Bohr. As well as having a lower limit on the uncertainty of the product Apx Ax, there are also Imits in some cases on the individual quantities Ax and Apr. For Apr the lower lumit is zero, but for ax the lower lumit depends on whether or not the particle motion is relativistic or nonrelativistic. In general: (1) $\Delta x \ z \ \frac{h}{mc} = \frac{h}{mv} \frac{v}{c} = \lambda \frac{v}{c} \rightarrow 0 \ for$ non-relativistic motion. For light quanta, lower limit is &, thus we find that Non-Relativistic Quantum Mechanics (NRQM) is concerned with particles.

Non-Relativistic Wave Mechanics (NRWM): Free Particle: $(2) E = \frac{p^2}{2m}, or$ (3) $\hbar \omega = (\hbar k)^2$, $\omega = \frac{k}{2m} k^2$ or the frequency of the de Broglie wave is proportional to the square of the wave vector magnitude. A superposition of de Broglie waves gives the most general wave function, viz., (4) $\Psi(\mathbf{r},t) = \int A(\mathbf{k}) e^{\lambda(\mathbf{k}\cdot\mathbf{n}-\omega t)} d\mathbf{k}$ assuming that the wave functions may be added, one of the main foundations of quantum mechanics. Apply a small change in time, At, and move n in the direction of k, Ark. And = w at will eventually move back into phase. The The phase velocity would then be: (5) $\overline{\mathcal{V}_{Ph}} = \frac{\omega}{k} = \frac{\hbar}{k} = \frac{\hbar}{2m} = \frac{1}{2} \overline{\mathcal{V}_{Particle}}$ In special relativity: (6) E= m²c⁴ + p²c², then, (7) $\omega^2 = \left(\frac{mc^2}{\hbar}\right)^2 + k^2 c^2$; so that $\frac{\omega^2}{\hbar^2} = \frac{m^2 c^4}{p^2} + c^2$ and $k^2 = \frac{m^2 c^4}{p^2} + c^2$ $(\theta) \quad V_{Ph} = \frac{\omega}{k} = \frac{E}{p}$ Now p= (mass, not rest mass) Vparticle = E Vparticle From this and (8) (9) $V_{ph} = \frac{\omega}{k} = \frac{E}{p} = \frac{c^2}{V_{particle}}$

which is the result one usually sees in the de Broglie theory. Equation (9) would seem to indicate that the phase velocity is greater than that of light. However, a particular phase 15 not observable so no information could be transmitted faster than light. This saves us from embarrassment over the fact that Uph > C. Ouly the phase difference is observable and detectable. If we expand (6) such that: (10) $E = mc^2 \left[1 + \frac{p^2}{(mc)^2} \right]^{1/2} = mc^2 + \frac{p^2}{2m} at small p$ and neglect the intrinsic energy mc², we see that equation (5) follows in a non-relativistic manner, We shall build our wave function such that the result is appreciable in only one region by choosing A(k) judiciously. How does this region move? We write (11) A(k) = A(k) e LE(k) where E(k) is the phase of the particular wave coefficient A(k). For one particular wave in the whole superposition of waves: (12) $|A(k)| e^{\lambda \left[k \cdot \lambda - \omega t + \epsilon(k)\right]}$ where kin - at + E(k) is the particular phase of our individual wave. For motion in the x direction, we have for a stationary phase, that is, no change of phase with respect to a change in kx; assuming that in the region of the particle, the phase is about the same for each kx, the following! (13) $\frac{\partial(phase)}{\partial kx} = x - t \frac{\partial\omega}{\partial kx} + \frac{\partial E}{\partial kx} = 0$ 2 kx Solving for X: $(14) \quad X = -\frac{\partial E}{\partial kx} + t \frac{\partial w}{\partial kx}$

where de can be thought of as Xo and Iw is defined as the group velocity. Thus we have for the velocity of motion . (15) $(\mathcal{V}_{group})_{X} = \frac{\partial \omega}{\partial k_{X}} = \frac{\partial E}{\partial p_{X}} = (\mathcal{V}_{particle})_{X}$ as seen from the classical equation, $\dot{x} = \frac{\partial E}{\partial \rho_x}$ For the group velocity in general: (16) $\frac{\partial \omega}{\partial k_{\lambda}} = \frac{\partial \omega}{\partial k} \frac{\partial k}{\partial k_{\lambda}} = \frac{\partial \omega}{\partial k} \frac{k}{k_{\lambda}} \quad \text{where } \frac{k}{k_{\lambda}}$ is the direction cosure of the group velocity. Thus dw = the Under Relativistic conditions: (17) $2EdE = c^2 \cdot 2pdp$; $dw = dE = \frac{p}{E/c^2} = \frac{p}{(mass)}$ Now, for the general case of quantum-mechanical particles, we will choose the following form of the wave coefficients; (18) $A(k) = \varphi(p,t) e^{i\omega t} \left(\frac{h}{2\pi}\right)^{3/2}$ and $dk_{x} = \frac{df_{x}}{t}$, etc. The exponential time will remove the time dependency of of the phase factor of the wave and the is chosen with "fore sight". Substituting in (4): (19) $\psi(r,t) = h^{3/2} \int \varphi(p,t) e^{\frac{r}{h} \cdot n} dp; dp = dp_x dp_y dp_z$ Using the Fourier Transforms, VIZ., (20) $f(x) = \frac{1}{\sqrt{2\pi}} \left(e^{xkx} g(k) dk \right)$ $g(k) = \frac{1}{\sqrt{2\pi}} \left(e^{-xkx} f(x) dx \right)$

Transforming (19): (21) $\varphi(p,t) = k^{-3/2} \psi(r,t) e^{-\lambda \frac{p}{R} \cdot \lambda} dr$ In this system the momentum and position have no lower limit independent of each other. We now consider the probability of finding the particle. It would seem reasonable to assume that distribution of the position of the particle. would take the shape of the intensity of the particle wave; (22) W(r)dr = | V(r,t) | dr thus is the probability of funding the wave in dr. A corresponding distribution should be; (23) $W(p)dp = \varphi(p,t) dp$ Impose conditions of normality, VIZ., (24) $||\Psi|^2 dr = |$ $(25) \int |\varphi|^2 d\varphi = 1$ These conditions must occur together because 4=4(a) as seen from equation (19). Also e= e(4) from equation (21). We must also check that they are independent of tune. Thus, using (20)*; (26) $\int |\psi|^2 dr = h^{-3/2} \int c \ell^*(p,t) \psi(r,t) e^{-\lambda p \cdot n/h} dp dr$ USing (22); (27) $\int |q|^2 dp = h^{-3/2} \int q^*(p,t) \psi(n,t) e^{-x p \cdot x/h} dx dp$

These are equal with the exception of the constants which may be accounted for in the normalization constant. Thus SIUI2da = SIUI2dp. Check for constancy with time: It is clear that for a free particle, [1912dp is independent of time. We will take general & for a free particle and see that it satisfies the Schroedinger equation. (28) at the = -the day and next time will check that d /4/2 dr = 0 LECTURE I 10-5-60 One of the important facts of Wave Mechanics is the introduction of waves in both co-ordinate space and momentum space. (1) $\Psi(r,t) = h^{-3/2} \int e^{-p \cdot n/t} \varphi(p,t) dp$ (2) $Q(p,t) = h^{-3/2} \int e^{-ip \cdot n/k} \Psi(n,t) dn$, with $(3) \qquad \int |\psi|^2 dz = \int |\varphi|^2 dp$ The relation (3) is also constant in time. We know for the free particle; (4) $Q(p,t) = C A(k) e^{-\lambda wt}$, with $w = \frac{\hbar k^2}{2m} = \frac{p^2}{2m\hbar}$ This is one way to construct the waves. However, usually one wants to work with 4. 4 must satisfy the Schoedinger equation for the free particle. (5) $1\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi$

If one tried to construct a solution to the
Schriedinger equation, one would get (1) constructed
out of de Broghe waves. We now work (5)*,
(5)*
$$-A \pm \frac{dU^*}{dt^*} = -\frac{h^*}{2m} \nabla^2 \Psi^*$$

Now form $\Psi^*(5) - (5)^* \Psi$ and get:
(6) $A \pm \frac{dU^*}{dt} \Psi^* = -\frac{h^*}{2m} \left[\Psi^* \nabla^2 \Psi - (\nabla^2 \Psi^*) \Psi \right]$
Integrate over all space:
(7) $A \pm \frac{dt}{dt} \int |\Psi|^2 dx = -\frac{h^*}{2m} \int [\Psi^* \nabla^2 \Psi - (\nabla^2 \Psi^*) \Psi] dx$
Use Green's Theorem on right side
(8) $A \pm \frac{d}{dt} \int |\Psi|^2 dx = -\frac{h^*}{2m} \int (\Psi^* d\Psi - d\Psi^* \Psi) dS$
surface
Assume that wave functions rawsh at large
distances. This is motivated by fact that particles
are somewhere in the universe. Theorem tethes
are somewhere in the universe. Theorem tethes
(9) $d \pm \int |\Psi|^2 dx = 0$ and is the universe.
(9) $d = \int |\Psi|^2 dx = 0$ and is the undependent of time.
 $\frac{10}{2m}$
Consider average values. Define:
(0) $\overline{F(a)} = \int F(a) W(a) da = \int \Psi^*(a,t) F(a) \Psi(a,t) da$

Now, given 4, how does one find
$$\overline{f}(p)$$
? We will
assume $\overline{f}(p)$ is expandable in a power series. Then
the problem is finding $\overline{p}_{n}^{\infty}$.
(12) $\overline{p}_{n}^{\infty} = \int q^{*}(q) p_{n}^{\infty} q(p) dp$ (use $\varphi = \varphi \frac{1}{2} \psi \frac{1}{3}$)
 $= \int q^{*}(q) dp - h^{-3/2} \int p_{n}^{\infty} e^{-x p^{-n}/k} \psi(a) da$
 $= h^{-3/2} \int q^{*}(q) dp \int \left\{ \left(-\frac{\pi}{4} - \frac{1}{2} - \frac{\pi}{4} \right)^{\infty} e^{-x p^{-n}/k} \right\} \psi(a) da$
Trategrate by parts n times:
(13) i, $\overline{p}_{n}^{\infty} = h^{-3/2} \int q^{*}(q) dp \int e^{-x p^{-n}/k} \left(\frac{\pi}{2} - \frac{1}{2} - \frac{\pi}{4} \right)^{\infty} \psi(a) da$
 $\overline{\psi^{*}(a)}$
 $= \int \psi^{+}(n,t) \left(\frac{\pi}{2} - \frac{1}{2} \right)^{\infty} \psi(a,t) da$
The general:
(4) $\overline{p}_{n}^{*} - p_{1}^{\infty} - \int \psi^{*} (\frac{\pi}{4} - \frac{1}{2} - \frac{\pi}{4} \right)^{\infty} \left(\frac{\pi}{4} - \frac{1}{4} \right)^{\infty} \psi(a, t) da$
The general:
(4) $\overline{p}_{n}^{*} - p_{1}^{\infty} - \int \psi^{*} + \left(\frac{\pi}{4} - \frac{1}{2} \right)^{\infty} \left(\frac{\pi}{4} - \frac{1}{4} \right)^{\infty} \psi(a, t) da$
The general:
(4) $\overline{p}_{n}^{*} - p_{1}^{\infty} - \int \psi^{*} + \left(\frac{\pi}{4} - \frac{1}{2} \right)^{0} \psi(a, t) da$
The general:
(4) $\overline{p}_{n}^{*} - p_{1}^{\infty} - \int \psi^{*} + \left(\frac{\pi}{4} - \frac{1}{2} \right)^{0} \psi(a, t) da$
The general:
(4) $\overline{p}_{n}^{*} - p_{1}^{\infty} - \int \psi^{*} + \left(\frac{\pi}{4} - \frac{1}{2} \right)^{0} \psi(a, t) da$
The general:
(4) $\overline{p}_{n}^{*} - p_{1}^{\infty} - \int \psi^{*} + \left(\frac{\pi}{4} - \frac{1}{2} \right)^{0} \psi(a, t) da$
The general:
(4) $\overline{p}_{n}^{*} - p_{1}^{\infty} - \int \psi^{*} + \left(\frac{\pi}{4} - \frac{\pi}{2} \right)^{0} \psi(a, t) da$
The general:
(4) $\overline{p}_{n}^{*} - p_{1}^{\infty} - \int \psi^{*} + \left(\frac{\pi}{4} - \frac{\pi}{2} \right)^{0} \psi(a, t) da$
The dynamical variable χ is represented by multiplying ψ_{n} when ψ_{n} when ψ_{n} when ψ_{n} with $\psi_{$

 \cap

 \cap

and it to - 1. Then the dynamical operators are ;

(17)
$$p_{1} \rightarrow p_{2}$$
. $X \rightarrow -\frac{h}{\lambda} \frac{\partial}{\partial p_{2}}$
 $p_{2} \rightarrow p_{2}$. $Y \rightarrow -\frac{h}{\lambda} \frac{\partial}{\partial p_{3}}$
 $p_{2} \rightarrow p_{2}$. $Y \rightarrow -\frac{h}{\lambda} \frac{\partial}{\partial p_{3}}$
 $z \rightarrow -\frac{h}{\lambda} \frac{\partial}{\partial p_{2}}$

It is more common to use coordinate space. The reason is that most functions of p are expressible in power series. Many functions of n may not be (for example, 1/n). However, this does not mean that the problem cannot be solved in momentum space.

A generalization of average value is the concept of matrix representation. However, this time we use separatestates. Define the operator A:

(18) Aba = (4 A 4a dr, also:

(18)' Aba = S 9 A 9a dip

where the Aba can be taken as matrix elements. There is significance in this matrix diagonal.

T	Aaa	Aab	Aac	
	Aba	Abb	Abc	
	;	(4	
	6	•	(

The matrix diagonals are the expectation values for their respective states. The main difference between Matrix Mechanics and Mathematical Matrices is that the matrices in Quantum Mechanics are infinite and elements have physical meanings.

LECTURE VI 10-7-60 Recapitulation; (1) $\bar{X} = \int \psi^* x \, \psi \, dr$, $\bar{p}_x = \int \psi^* \left(\frac{\pi}{2} \frac{d}{Jx} \right) \, \psi \, dr$ It is important now that the order of 4t and 4 be preserved. Also, matrix elements are: (2) Aab = J Va A Vo dr Asking why there is order in the 4's brings as to the definition of Hermitian operators, Hermitian Operators; (3) Aab = \ 4a* A 4b dr = \ (A 4a)* 4b dr This will lead to: $\|A\| = \begin{pmatrix} A_{12} & A_{12} & A_{13} & \dots \\ A_{21} & A_{22} & A_{23} & \dots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{pmatrix}$ (4)Now: (5) $A_{ba} = \int \Psi_{b}^{*} A \Psi_{a} dr$, $(A_{ba})^{*} = \int \Psi_{b} (A \Psi_{a})^{*} dr$ Therefore, a Hermitian operator gives a Hermitian matrix, VIZ., (6) Aab = (Aba)* This also means that the diagonals must be real.

Unitary Operators: (7) $\int (U \Psi_a)^* U \Psi_b dr \equiv \int \Psi_a^* \Psi_b dr$ Definition of the Adjoint of an Operator: At means the adjoint of A: (8) $\int \Psi_a^* \underline{A} \Psi_b dr = \int (\underline{A}^\dagger \Psi_a)^* \Psi_b dr$ For Hermitian operators: At = A or a Hermitian operator is a self-adjoint operator. For Unitary Operators; (9) $\left((U^{\dagger} U \Psi_a)^* \Psi_b dr \equiv \int \Psi_a^* \Psi_b dr \right)$ (10) $U^{\dagger}U^{\dagger} = \underline{I}$ or $U^{\dagger} = \underline{U}^{-1}$ The same relations hold in momentum space. The official definition of Hermitian and Adjoint operators ; (11) Hermitian: (A 4a)* 4b - 4a* A 4b = divergence (12) Adjoint: (At 4a)* 46 - Va* A 46 = divergence This divergence, when integrated, gives boundary terms which in our case may be dropped because V=0 at r= a However, one must sometimes be careful of singularities in the potential functions. However, there is one operator we must insist is always Hermitian and that is the Hamiltonian. This operator occurs in Schroedinger's Equation ; (13) 1 to H = H 4

. For the free particle: $(14) H = -\frac{\hbar^2}{2m} \nabla^2 = -\frac{p^2}{2m}$ We may show that it is indeed Hermitian with the following : (15) $(\underline{H} \psi_a)^* \psi_b - \psi_a^* \underline{H} \psi_b = -\frac{\hbar^2}{2m} (\nabla^2 \psi_a)^* \psi_b - \psi_a^* \nabla^2 \psi_b$ √2 4ª, because √2 is real $= \nabla \cdot \left[-\frac{\hbar^2}{2m} \int (\nabla \Psi_a^*) \Psi_b - \Psi_a^* \nabla \Psi_b \right]$ Green's Second Theorem, when integrated over boundary vanishes. Therefore, H 15 Hermitian. This result, and the others using Green's Theorem, indicate that when the integrands represented in (15) are integrated over all space, their difference vanishes and they are thus equal. It should be that the operator X is Hermitian. That is, (15) $(X \Psi_a)^* \Psi_b - \Psi_a^* X \Psi_b = X^* \Psi_a^* \Psi_b - \Psi_a^* X \Psi_b = 0$ since X 15 real. For the momentum operator: (17) $(\underline{P}_{\mathbf{x}}\cdot\underline{\Psi}_{a})^{*}\underline{\Psi}_{b} - \underline{\Psi}_{a}^{*}\underline{P}_{\mathbf{x}}\cdot\underline{\Psi}_{b} = (\underbrace{\underline{t}}_{\underline{x}}\underbrace{\partial}\underline{\Psi}_{a})^{*}\underline{\Psi}_{b} - \underline{\Psi}_{a}^{*}\underbrace{\underline{t}}_{\underline{x}}\underbrace{\partial}_{\underline{x}}\underline{\Psi}_{b}$ $= -\frac{\hbar}{\lambda} \left(\frac{\partial}{\partial x} \psi_a^* \right) \psi_b + \psi_a^* \frac{\partial}{\partial x} \psi_b$ $= \frac{\partial}{\partial x} - \frac{\hbar}{x} \psi_a^* \psi_b$

Algebra of Wave Functions and Operators: If 4, 42 are admissible, then ci 4, + c2 42 15 acceptable. This is the rule of superposition. The operators are Timear operators, that is: (18) A (a. 4. + a. 4.) = a A 4. + a A 4. $(19) (\underline{A} + \underline{B}) \Psi = \underline{A} \Psi + \underline{B} \Psi$ $(20) (cA)\Psi = cA\Psi$ c may be t, -, or complex, but if complex, then (cA) 15 a non - Hermitian operator. $(21) \quad (\underline{A} \underline{B}) \Psi = \underline{A} (\underline{B} \Psi)$ $(22) \underline{A}(\underline{B}+\underline{C}) = \underline{A}\underline{B} + \underline{A}\underline{C} \qquad 2 \quad Distributive Law$ $(\underline{B}+\underline{C})\underline{A} = \underline{B}\underline{A} + \underline{C}\underline{A} \qquad 2 \quad Distributive Law$ (23) A (BC) = (AB)C = ABC Associative Law Concerning the communative law; in general: (24) AB \pm BA Commutating Operators are defined by s (25) AB = BA, examples: (X, y) or (px, py) For (X, px), however (26) $X p_{x} \psi = x \frac{h}{2} \frac{\partial \psi}{\partial x} \int p_{x} \chi \psi = \frac{h}{2} \frac{\partial}{\partial x} \chi \psi$ $= \frac{\hbar}{4} \left(\times \frac{\partial \psi}{\partial x} + \psi \right)$ (27) $p_X \times \psi - \chi p_X \psi = \frac{\hbar}{\lambda} \psi$

LECTURE III 10-10-60
More on Operators:
(1) AB = BB, in general
Introduce the commutator bracket notation, viz,
(2)
$$[A,B] = AB - BA$$

Ruli's Notation: $[B,B] = i(BB - BB)$
Dirad's Notation: $iR[B,B] = i(BB - BB)$
Dirad's Notation: $iR[B,B] = AB - BA$
Now:
(2) $P_{i} \ge \Psi = \frac{\pi}{2} \ge \frac{3\Psi}{32} + \frac{\pi}{2} \Psi$
 $x = \Psi = \frac{\pi}{2} \ge \frac{3\Psi}{32}$
(4) This $[\Sigma, \Psi] = it$
In general:
(5) $[\underline{X}_{1}, \underline{X}_{2}] = 0$, $[\underline{P}_{2}, \underline{P}_{2}] = 0$; $[\underline{X}_{1}, \underline{T}_{2}] = ith S_{4E}$
Let us investigate what other physical quantities
cau be formed in Quantum Mechanics, ith is
necessary that the product of two Hermitians
be a Hermitian if they commute, when:
(6) $[\underline{Y}_{1} + AB + 4d =](\underline{S}^{+}\underline{B}^{+}\Psi)^{*}\Psi_{2} da$
then: $(AB)^{*} = \underline{B}^{+}\underline{B}^{+}$
 $If me encounters two classical quantities whose
operators do not commute, we may form the
symmeterized product.$

 $(7) \quad \frac{1}{2} \left\{ \underline{A}, \underline{B} \right\} = \frac{1}{2} \left(\underline{A} \underline{B} + \underline{B} \underline{H} \right)$ the brackets { } are known as the anticommutator brackets. This would be an ordinary product if A, B were to commute. If A and B are Hermitian: (B) $\begin{bmatrix} \underline{A}, \underline{B} \end{bmatrix}^{\dagger} = (\underline{A}\underline{B} - \underline{B}\underline{A})^{\dagger} = (\underline{B}\underline{A} - \underline{A}\underline{B}) = - \begin{bmatrix} \underline{A}, \underline{B} \end{bmatrix}$ sometimes called anti-Hermitian. Perivation of the General Uncertainty Principle: We must specify: (9) Average or Expectation: A Mean squared deviation. Variance: $(A - \overline{A})^2 = (\Delta A)^2$ Standard Deviation: [[AA]2] 1/2 values of k. Before we had: Ax 4px 2 h Now we are going to get: [(1x)2] 1/2 [(1+p)2] 1/2 which may lead to a smaller uncertainty than before. Given two Hermitian operators, B, B, we define: (10) $\propto = \underline{A} - \overline{\underline{A}}$; $\underline{B} = \underline{B} - \overline{\underline{B}}$; $(\underline{A}\overline{\underline{A}})^2 = \overline{\underline{X}^2} = \int \Psi^* \underline{x}^2 \Psi dz$ $= \left((\underline{\alpha} \Psi)^* \underline{\alpha} \Psi \, dr = \int |\underline{\alpha} \Psi|^2 \, dr \right)$ Consider an integral assumed to be positive; (11) $\left| \left| f - \varepsilon e^{i\theta} \right|^2 dh \ge 0$ where \$ 15 real and $|f - \xi e^{18}g|^2 = (f^* - \xi e^{-18}g^*)(f - \xi e^{18}g)$

Thex:
(2)
$$\int |f|^2 dx - 2 \xi Re \left\{ e^{i \xi} \int f^4 g da \right\} + \xi^2 \int |g|^2 dx \ge 0$$

This we have a quadratic in ξ , with the condition that,
since ξ is real:
(3) $\int |f|^2 dx \cdot \int |g|^2 dx = \left[Re \left\{ e^{i \xi} \int f^4 g da \right\} \right]^2 \ge 0$
In Schwartz' Inequality, we pick f to give 0 phase
factor, i.e., make $\{ \}$ real and gets.
(if) $\int |f|^2 dx \cdot \int |e|^2 dx \ge \left[\left[\int f^4 g da \right] \right]^2$
which means: $|\overline{R}|^4 \cdot |\overline{B}|^4 \ge |\overline{R} \cdot \overline{B}|^2$ or $1 \ge \cos^2(\overline{R}, \overline{B})$
Returning to Variance:
(if) $(\overline{R} - \overline{R})^2 = \overline{R}^2 - \overline{R}^2$
(if) $\int |f|^2 dx \cdot \int |g|^2 dx \ge \left[\cos \delta \cdot \frac{1}{2} \int (f^4 g + g g^4) dx \right]^2$
Take $f = \mathcal{E} \Psi$; $g = \mathcal{E} \Psi$
If $\delta = 0$:
(if) $\left\{ \pm \int [(\mathfrak{E} \psi)^4 - \mathfrak{E} \psi + (\underline{E} \psi)^4 \oplus \Psi] dx \right\}^2 = \left\{ -\frac{\mathcal{E} \mathcal{E} + \mathcal{E} \otimes \frac{1}{2}}{2} \right\}^2$
which is a symmeterized groduct.

For Y = Ma : (18) $\frac{\lambda}{2} \int \left\{ (\underline{\omega}\psi)^* \underline{\beta}\psi - (\underline{\beta}\psi)^* \underline{\omega}\psi \right\} dr = \left[\lambda (\underline{\omega}\underline{\beta} - \underline{\beta}\underline{\omega}) \right]^2$ Then: $(\Delta A)^2 \cdot (\Delta B)^2 \geq \int \mathcal{L}[A, B]^2$ Final Result; (19) $\sqrt{(\Delta A)^2} \cdot \sqrt{(\Delta B)^2} \geq [A,B]$ (20) $\sqrt{(\Delta X)^2} \cdot \sqrt{(\Delta R)^2} \stackrel{2}{\rightarrow} \frac{h}{2}$ LECTURE TTT 10-14-60 More on General Uncertainty Principle (See Bohm): (1) $\int |\xi|^2 dr \cdot \int |\xi|^2 dr \ge \int \int f^* g dr \Big|^2$ with $f = \alpha \Psi$, $g = \beta \Psi$. (2) $\alpha^2 \cdot \beta^2 \geq |\alpha\beta|^2$ Now : (3) $\alpha \beta = \frac{1}{2} (\alpha \beta + \beta \alpha) + \frac{1}{2} (\alpha \beta - \beta \alpha)$, then: (4) $\chi^2 \cdot \beta^2 \geq \frac{1}{2} \left\{ \chi, \beta \right\} + \frac{1}{2} \left[\chi, \beta \right]$ Bohm comments that suce & and B are Hermitian, the anti-commutator is real, but the commutator is imaginary. Thus, we must take the magnitude of the right hand side of (4).

(5) $\overline{\alpha^2} \cdot \overline{\beta^2} \ge \left(\frac{\overline{\alpha\beta} + \beta\alpha}{2}\right)^2 + \left(\frac{\overline{\alpha\beta} - \beta\alpha}{2}\right)^2$ Classically Z. B2 = IXBI means that the correlation factor is less than one. Finally, (6) $(\Delta A)^2 \cdot (\Delta B)^2 \geq \left(\frac{\Delta A \cdot \Delta B + \Delta B \cdot \Delta A}{2} \right)^2 + \frac{1}{4} \left[A, B \right]^2$ from AA = A - A. Plot a Classical Distribution: p= correlation factor DISTRIBUTION P <O AB p>0 B B B - A-> - A -> However, we can always choose a state to make p=0. However, m Quantum Mechanics, we have 1/4 [A, B]² left over. Therefore, at the very least; $\int \overline{(\Delta A)^2} \int \overline{(\Delta B)^2} \geq \frac{1}{2} \int [A, B]$ (7) In particular ; (8) $\sqrt{(\Delta x)^2} \sqrt{(\Delta p_x)^2} \geq \frac{1}{2} \hbar$ This is not the same as the heuristic derivation result because standard deviations are used.

We will now attack the guestion as to what is the form of the optimum wave packet that satisfy the equal sign in the uncertainty principle. Let X and px be zero. Take; $(9) \int \left| f - \xi e^{-\xi} g \right|^2 dh \ge 0$ The discrimment will vanish (see equation (1)) by choosing properly f & g and the Schwartz Inequality will have the equal sign. Thus choose arbitrarily: (10) $X \Psi = C \rho_X \Psi = C \frac{\hbar}{\lambda} \frac{\partial \Psi}{\partial X} = K \frac{d\Psi}{dx}$, ... (11) U= c'e xc, take IK to be real and regative, then 1 = - R2 and $(1z) \psi = c' e^{-\mathcal{R} x^2}$ We demand normality: (13) $\int |\psi|^2 dx = 1$: $|C'|^2 \int_{e^{-2\pi^2 x^2}}^{\infty} dx = 1$ Now: $\Gamma(q) = \int_{-\infty}^{\infty} e^{x} x^{q-1} dx$ $q \Gamma(q) = \Gamma(q+1); \Gamma(1/z) = \int \overline{\Pi}$ Let $y = 2 \pi^2 x^2$, then $2|c'|^2 \int_0^{\infty} e^{-y} \frac{dy}{2\pi \sqrt{2y^2}} = 1$ and find 1012 . The =1 (14) ,', $\Psi = \frac{K'^{1/2} 2'^{1/4}}{\pi'^{1/4}} e^{-K^2 \chi^2}$ thus x = 0 and px = 0 Now: (15) $(\Delta x)^2 = \overline{x^2} = \mathcal{K} \int_{\overline{m}}^{2^7} \int_{X^2}^{\infty} e^{-2\mathcal{K}^2 x^2} dx \left(\propto \int_{0}^{\infty} y'' e^{-y} dy \right)$ $= \frac{1}{4 \kappa^2}$

Then finally: (16) $\Psi = \frac{1}{(2\pi x^2)^{1/4}} e^{-x^2/4x^2}$ which is the square root of the Gaussian distribution. Let us now calculate $\overline{p_{k}^{2}}$. (17) $p_{x}^{z} = \int \psi^{*} p_{x}^{z} \psi dx$ $p_{x}^{2} \psi = -\hbar^{2} \frac{d^{2} \psi}{dx^{2}} = -\hbar^{2} \frac{d}{dx} \frac{1}{(2\pi x^{2})^{1/4}} \left(-\frac{x}{2x^{2}}\right) e^{-\frac{x^{2}}{4x^{2}}}$ $= \hbar^{2} \left(\frac{1}{2 \bar{x}^{2}} - \frac{x^{2}}{4 \bar{x}^{2}} \right) e^{-x^{2}/4 \bar{x}^{2}} \frac{1}{(2 \pi \bar{x}^{2})' \mathcal{H}} ; \text{ then}$ (18) $p_{x}^{2} = h^{2} \left(\frac{1}{2x^{2}} - \frac{1}{4x^{2}} \right) = \frac{h^{2}}{4x^{2}} ; thus$ (Ax)2 (Apx)2 = x2 px2 = th2 and we have the ideal (19) wave packet. Let us examine the correlation factor which should indeed vanish. (20) X px + px X = ZXpx + th = ZX px + [px, X] $2 \times p_{X} \underbrace{e}_{(2\pi \pi x^{2})^{1/4}}^{- \chi^{2}/4\chi^{2}} = 2 \times \frac{\hbar}{\sqrt{\pi}} \frac{\partial}{\partial x} \underbrace{e}_{(2\pi \pi x^{2})^{1/4}}^{- \chi^{2}/4\chi^{2}} = -\frac{4\chi^{2}}{4\chi^{2}} \frac{\hbar}{\pi} \underbrace{e}_{(2\pi \pi x^{2})^{1/4}}^{- \chi^{2}/4\chi^{2}}$ Now 2x px = - th , and we get p=0 Time Derivatives of Operators: In classical mechanics, the time derivative of a function is the value of the function at two ends of a vanishingly small time interval divided by this time interval. In quantum mechanics we may not use this Inniting method because the first measurement will destroy the validity of the second measurement. A first precise measurement of x will destroy the accuracy of px, hence Vx, the very quantity trying to be measured.

In Quantum Mechanics, we can prepare a great many specimens in a system and measure state at time t after the preparation. Prepare another system and measure at t + At. Do this many times and divide the average of the difference between the states at the two different times by At. In the mathematical limit, we have the definition: $\begin{array}{rcl} (21) \quad dA &=& d \overline{A} \\ \hline dt & & dT \end{array}$ LECTURE IX 10-17-60 Time Derivatives of Operators: Given A, we define dA such that. $(1) \quad \left(\frac{d\underline{A}}{dt}\right) = \frac{d\underline{H}}{dt}$ Now (z) $\frac{d}{dt} = \frac{d}{dt} \int \psi^* A \psi \, dr = \int \psi^* \frac{\partial A}{\partial t} \psi \, dr$ + $\int \frac{\partial \psi^*}{\partial t} A \psi dr + \int \psi^* A \frac{\partial \psi}{\partial t} dr$ since the limits on the integrals are independent of time. The operators may depend explicitly on time, for example: Now, X' = X-Vxt and involves time. However, , t is very common to $\begin{array}{ccc} \times & find & \frac{\partial \underline{H}}{\partial t} = 0, \\ & \frac{\partial \overline{L}}{\partial t} \end{array}$

Using the Schnedunger Equation;
(3)
$$AR \frac{J\Psi}{JE} = H\Psi$$
, $-AR \frac{J\Psi}{JE} = (HP)^*$
We have:
(4) $\frac{d}{dE} = \int \{\Psi^* \frac{JB}{JE} \Psi + \frac{d}{R} (H\Psi)^*B \Psi - \frac{d\Psi}{R} H\Psi \} dr$
 $= \int \{\Psi^* \frac{JB}{\delta E} \Psi + \frac{d}{R} \Psi^* [H, B] \Psi \} dr$
Since H is a Hermitian operator. Finally,
(5) $\frac{dB}{dE} = \frac{JB}{JE} + \frac{d}{R} [H, B]$
(6) $\frac{dB}{dE} = \frac{JB}{JE} + \frac{d}{R} [H, B]$
We have made no distinction between the states on Ψ
so (6) is good for any matrix element. In the
general case of no explicit true dependence of B on
fine:
(7) $\frac{dE}{dE} = \frac{d}{R} [H, B]$
We show that true differentiation of a product is
similar to commutation of three operators:
(8) $\frac{d}{dE} = \frac{dB}{dE} = \frac{dB}{dE} + \frac{d}{dE}$
(9) $[B, BC] = [B, B] C + B [E, C]$
(10) $[B, C, B] = [B, B] C + B [C, B]$

Consider:
(ii)
$$[\varphi(A), \varphi_{-}] \Psi = \varphi \varphi_{A} \Psi - \varphi_{A} (\varphi \Psi)$$

 $= \varphi_{A} \Psi - \varphi_{A} \varphi \Psi - \varphi_{A} \varphi \Psi$
 $= -\varphi_{A} \varphi \Psi$
"Herefore,
(iz) $[\varphi(A), \varphi_{A}] = -\frac{\pi}{A} \frac{\partial F}{\partial A}$, and
(iii) $[\chi, F(p)] = -\frac{\pi}{A} \frac{\partial F}{\partial A}$.
We can show:
(iv) $[\chi, \varphi_{A}^{N}] = -\frac{\pi}{A} \times p^{n-1}$; $N \ge 1$
by the commutation rules (9) and (00), V/Z .
(iii) $[\chi, \varphi_{A}^{N}] = [\chi, \varphi_{A} \varphi_{A}^{N-1}] = [\chi, \varphi_{A}] \varphi_{A}^{N-1} + \varphi_{A} [\chi, \varphi_{A} \varphi_{A}^{N-2}]$
 $= [\chi, \varphi_{A}] \varphi^{N-1} + \varphi_{A} [\chi, \varphi_{A} \varphi_{A}^{N-2} + \dots + \varphi^{N-1} (\chi, \varphi_{A})]$
 $= \frac{\pi}{A} \varphi^{N-1} [\chi, \varphi_{A}] \varphi^{N-2} = A \# \times \varphi^{N-1}$
This demonstrates that this rule holds regardless of
the representation space.
Results Applied to the Free Particle:
(iii) $\dot{\chi} = \frac{A}{\pi} [\psi, \chi] = \frac{A}{\pi^{-2}M} [\varphi_{A}^{R}, \chi] = \frac{A}{M}$
 $\frac{W_{A}}{2} size that the velocity of the contrad of the particle
is equal to the average momentum over mass or
gust what one would expect classically.$

also, is = 0 for a free particle, therefore ! salates (17) Px = 0 That is, the acceleration is zero. Calculate: $\frac{d}{dt} (\underline{x} - \overline{x})^2 = (\dot{x} - \overline{x})(x - \overline{x}) + (x - \overline{x})(\dot{x} - \overline{x})$ $= \frac{1}{m} \left(p_{x} - \overline{p}_{x} \right) \left(x - \overline{x} \right) + \frac{1}{m} \left(x - \overline{x} \right) \left(p_{x} - \overline{p}_{x} \right)$ $\frac{d^2}{dt^2} (x - \bar{x})^2 = \frac{2}{m^2} (p_x - \bar{p}_x)^2$ Now, by Machaurun Series: (18) $(X-\bar{x})^2 = [(X-\bar{x})^2]_{t=0} + \frac{1}{m} \{(p-\bar{p}x), (X-\bar{x})\}_{t=0}^{t}$ + $\frac{1}{2}\left[\left(p_{x}-\bar{p_{x}}\right)^{2}\right]$ + t^{2} This means that the wave packet spreads out as time mereases because the variance increases. We could eliminate the middle term by using a taylor expansion around t= to which we would have in a classical ensemble. This whole problem is avalogous to a string of cars on a highway which are moving at constant velocity and which would disperse after a period of time.

LECTURE X 10-19-60 Resume of Previous Work: Generally Valid Statements: $\Psi(n,t) = h^{-3/2} \int e^{-p \cdot n/\pi} \Psi(p,t) dp$ 9(p,t) = h-3/2 Se-2p.n/t 4(n,t) dr $\int |\psi|^2 dr = \int |\varphi|^2 d\rho = 1$ $W(n)dn = |\Psi|^2 dn$, $W(p)dp = |\Psi|^2 dp$ Coordinate Representation: X = X. ...; Px = th d ... Momentum Representation: X = - tr d; Px = px $\frac{d}{dt}\int |\Psi|^2 dr = 0 \quad ; \quad i\hbar \frac{d\Psi}{dt} = H\Psi \quad with \ H \ Hermitian$ $\left[\begin{array}{c} X_{3}, p_{\kappa} \right] = I \hbar S_{j\kappa} \quad \left[\begin{array}{c} X_{3}, X_{\kappa} \right] = \left[\begin{array}{c} p_{3}, p_{\kappa} \right] = 0 \end{array}\right]$ $(\Delta A)^2 (\Delta B)^2 \geq \frac{1}{4} [A, B]^2$, $\sqrt{(\Delta x)^2} \sqrt{(\Delta p_x)^2} \geq \frac{1}{2} t$ $\frac{dA}{dt} = \dot{A} = \dot{A} = \frac{d}{dt} A$ by definition $\frac{dA}{dt} = \frac{\partial A}{\partial t} + \frac{1}{\hbar} \left[\underline{H}, \underline{A} \right]$ Definitions: Adjount Hermitian Unitary Commutator Symmeterized Product Algebraic Rules of Operators

Particle Subject to Conservative, Non-Velocity Dependent Forces It is a Quantum Mechanical Postulate that & obeys: (1) $i\hbar \frac{\partial \Psi}{\partial t} = H\Psi$, with (z) $H = \frac{p^2}{2m} + V(n) - \frac{h^2}{2m} \nabla^2 + V(n)$ This choice was a key point in Schroedingers early work on simple classical problems of central forces. In Classical Theory; Hamiltonian function is H(p,q)In Wave Mechanics: Hamiltonian operator is $H(\frac{\pi}{2}\frac{d}{2},q)$ Ambiguities that may arise in other coordinate systems are taken care of when using the proper taplacian in that system. Here notice can be taken that one of the essential features of non-relativistic Quantum Mechanics is that it leans on classical mechanics on the form of its Hamiltonian. Let us now consider once again time differitiation of J1412 dr m a more general sense. $\frac{d}{dt} \int |\psi|^2 dr = \int \frac{\partial}{\partial t} \psi^* \psi dr \qquad \text{with}$ $\frac{\partial}{\partial t} \psi^* \psi = \frac{1}{\lambda \hbar} \left[\psi^* \underline{\mu} \psi - (\underline{\mu} \psi)^* \psi \right] \quad \text{from the}$ Schroedinger equation. When this is integrated over all space, the integral will vanish since H is Hermitian. Now Consider the integral over a fixed boundary S enclosing a volume G. First we may, using the above form of the Hamiltonian, write: $\frac{\partial}{\partial t}\psi^*\psi = \frac{\imath t }{2m}\left(\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^*\right) = \frac{\imath t }{2m}\nabla \cdot \left(\psi^* \nabla \psi - \psi \nabla \psi^*\right)$ The potential term drops out on expanding the Hamiltonian in the above equations.

 $\frac{d}{dt}\int \psi^* \psi \, dt = \frac{i\hbar}{2m}\int_{G} \nabla \cdot \left(\psi^* \nabla \psi - \psi \nabla \psi^*\right) \, dt$ Using the divergence theorem . (3) $\frac{d}{dt} \int \psi^* \psi \, dr = -\int \int Jn \, dS$, where (4) $\vec{J} = -i\hbar \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right)$ Now this gives the change with respect to time of the probability of a particle in the region G. Therefore I is the probability per unit area per unit time going through S which is called the probability flux vector. The mathematical definition of Hermiticity is that $\psi^* H \psi - (H \psi)^* \psi$ be a divergence. However, we would desire to define " physical" Hermiticity as a vanishing integral over a surface surrounding the divergence. There are conditions where the space may be not infinite and the integral will still vanish. Suppose & to be confined in a box and & to be zero on the wall. Also the normal derivative 24 =0. This makes H "physically" Hermitian and the integral vanishes. Also, in general, the Hermiticity of H must be preserved for different states, that is :

 $\left(\left(\Psi_a^* H \Psi_b - \left(H \Psi_a \right)^* \Psi_b \right) dr = 0$

Let us now consider some cases of where the potential is discontinuous and examine the boundary conditions of P at these points.

Let us say that the and to are of the form: $\Psi_{a} = \frac{F}{2\alpha}$; $\Psi_{b} = \frac{g}{2\alpha}$ where f and g are analytic functions. Thus: $\operatorname{Lim}_{n^{2}} n^{2} \left[\frac{f^{*}}{n^{\alpha}} \left(\frac{\alpha g}{n^{\alpha+1}} - \frac{\partial g}{\partial n} \right) - \frac{g}{n^{\alpha}} \left(\frac{\alpha f^{*}}{n^{\alpha+1}} - \frac{\partial f^{*}}{\partial n} \right) d\Omega \right]$ $= \lim_{n \to 0} \frac{\left(g \frac{\partial f^*}{\partial n} - f^* \frac{\partial g}{\partial n}\right)}{n^{2\alpha - 2}} \int d\Omega = 0$ Thus a singularity of 4 of the form 4 ~ 1/2 must have a <1. For two dimensions, use the relation between a surface integral and a line integral. For one dimension if cannot have - singularities stronger than the logarithmic type. LECTURE XI 10-21-60 Static Potential Fields Continued: From before: (1) it 24 = H4 (2) $H = \frac{P^2}{Zm} + V(\alpha) = -\frac{\hbar^2}{dx^2} + \frac{\hbar^2}{dy^2} + \frac{\hbar^2}{dy^2} + V(\alpha)$ In the absence of explicit time dependence: $(3) \quad \dot{A} = \frac{1}{4} \left[H, A \right]$ $\dot{X} = \frac{1}{2} \left[H, X \right] = \frac{4x}{m}$ $p_x = \frac{1}{h} \left[\frac{H}{h}, \frac{P_x}{h} \right] = \frac{1}{h} \left[V(n), p_x \right] = \left[V(n), \frac{1}{h^x} \right]$ $= -\frac{\partial V(x)}{\partial x} = -\frac{\partial V(x)}{\partial x} = -\frac{f_x}{f_x}$

therefore : (4) $\dot{x} = \frac{fx}{m}$; $\dot{p}_x = m\dot{x} = fx$ (mean value of fx over wave packet) This is known as Ehrenfest's Theorem. We must remark, however, that in general: (5) $f_x \neq f_x(\bar{x})$. The equality would be approximately true for a narrow wave packet because the change in fx over the weath of the packet would be small. There is a good correspondence between classical and wave mechanics during the time the wave packet stays small. It is this meguality that prevents wave mechanics from reducing completely to classical mechanics. Is it possible to have the wave packet stay small with time or will it spread indefinitely? The answer is that the particle can be confined in a potential "box" and will have a constant wave packet shape. Let us examine the problem in its one - dimensional aspects. $H = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x)$ The particle is confined in the well and its wave packet will spread to the walls (s) Consider: (6) $\frac{d}{dt} (x-\bar{x})^2 = \frac{1}{m} \left\{ (p-\bar{p})(x-\bar{x}) + (x-\bar{x})(p-\bar{p}) \right\}$ which is the correlation factor between position and momentum. Choose the initial shape of the wave packet such that: (7) $\left[\frac{d}{dt} \left(X - \bar{X}\right)^2\right] = 0$ Such a choice makes the wave packet shape Gaussian.

Now take:

(8) $\frac{d^{2}}{dt^{2}} (x-\bar{x})^{2} = \frac{2}{m^{2}} (p-\bar{p})^{2} + \frac{1}{m} \left\{ (f-\bar{f})(x-\bar{x}) + (x-\bar{x})(f-\bar{f}) \right\}$ Now choose the shape of the well, that of the harmonic oscillator potential f x x, f = -sx. Then: $(9) \frac{d^{2}}{dt^{2}} (x - \bar{x})^{2} = \frac{2}{m^{2}} (p - \bar{p})^{2} - \frac{2s}{m} (x - \bar{x})^{2}$ Already considerable simplification has taken place. Now take the initial Gaussian packet so that [dz/dt² (x-x)²] +=0 =0 by choosing properly the ratio of momentum and position variances; which ratio will be independent of the uncertainty conditions. This ratio is: (10) $\leq (x - \bar{x})^2 = \frac{1}{2m} (p - \bar{p})^2$ Now take: (11) $\frac{d^3}{dt^3} (x - \bar{x})^2 = \frac{2}{m^2} \left\{ (p - \bar{p}), (f - \bar{f}) \right\} - \frac{2s}{m^2} \left\{ (x - \bar{x}), (p - \bar{p}) \right\}$ Substitute f= -sx, f=-sx; (12) $\frac{d^3}{dt^3} (x - \bar{x})^2 = -\frac{2s}{m} \frac{d}{dt} (x - \bar{x})^2$ $\frac{d^{4}}{dt^{*}} \left(x - \bar{x} \right)^{2} = -\frac{2s}{m} \frac{d^{2}}{dt^{*}} \left(x - \bar{x} \right)^{2}$ Thus all derivatives will varish upon t=0 and upon expansion into a Machaurn series all coefficients of the will vanish. For the case when x=0, p=0, t=0, V = - 5/2 X2 1 (13) PE = KE $\frac{5}{7}\overline{\chi^2} = \frac{3p^2}{7}$

For this case, not only will the packet not spread, it will not move as can be seen from equation (4). This is called a stationary state, If we position the packet off center, $\dot{x} = \frac{\bar{x}}{m}; \quad \dot{x} = -\frac{5\bar{x}}{m}; \quad the packet$ stationary state center will just move back and forth in the usual harmonic manner. The above analysis leads directly to the proper shape of the wave packet and well. This result could also have been obtained from a superposition of the Hermite polynomial wave functions for the Harmonic Oscillator. Statimary States: W(R) = constant in time W(p) = constant in time J (a) = constant in time Only the phase of the waves can be changed with time. Again : (14) $z \hbar \frac{\partial \Psi}{\partial t} = H \Psi$ Introduce the stationary state: $\Psi(n,t) = T(t) \cdot u(n)$, then: (15) 1th Tu = (-th V2 + V(n)) T. u Itit = HM = E, the constant of separation. Finally, (16) it lnT = Et + constant $T = e^{-\lambda E t/\hbar}$ H u = E u

LECTURE XII 10-24-60

Stationary States: There is no dependency on time, therefore, from the uncertainty principle, $\sqrt{(\Delta E)^2} \sqrt{(\Delta t)^2} \geq \frac{1}{2} t.$ we see that if there is no dependency on time, $\Delta t = 0$, and the energy of the stationary states is strictly defined. We obtain stationary states for non-time dependent Hamiltonians, Then; (1) $\Psi(n,t) = e^{-\lambda E t/\hbar} \mu(n)$ (2) <u>H</u> U = EU Justification of Symbol E; A. Bohr frequency condition, En' - En" = Tiw, transitions B. E is additive. The & functions can be multiplied together to form probabilities when I's are

independent.

C. E = H where H is the Hamiltonian.

Also, if:

(3) $\int \psi^* \psi \, dn = 1$; $\int u^*(n) \, u(n) \, dn = 1$, and:

(4) $\overline{H} = \int u^* H u \, dr = E \int u^* u \, dr = E$ (5) $H^2 = \int u^* H H u dr = E^2 \int u^* u dr = E^2$

There i

(6) $(AH)^{z} = (H - H)^{z} = H^{z} - H^{z} = E^{z} = 0$

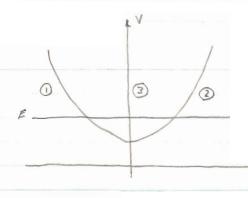
Thus showing that E is perfectly defined.

However, stationary states are really a fiction because transitions may occur with time from higher to lower states in an isolated system. Then, given an atom in an excited state with a lifetime around At ~ 10 (Tor B) sec, the uncertainty principle gives :

AE ~ 10 erg sec ~ 10 - (19 or 20) ergs ~ 10 ev. 10-70r8 sec

However, the usual distance or difference between stationary states is 1 to 2 er, hence the uncertainty 15 negligible. Thus we can consider excited states as stationary.

Consider the following equation, called an Eigenvalue equation:


(7) Hu = Eu

where is - eigenfunction, characteristic function E - eigenvalue, eigenwerte, characteristic value.

The eigenvalues of an operator represent possible physical states of a system, They may be discrete or continuous or mixed. An example of a continuous operator would be the position x.

Many 3-D problems can be reduced to 1-D problems by separation of variables, thus we shall consider examples of the latter.

Harmonic Oscillator .

 $\left(-\frac{\hbar^2}{zm}\frac{d^2}{dx^2}+\gamma(x)\right)\mu(x)=E\mu(x)$

or: $\frac{d^2 u}{dx^2} = \frac{2m}{\hbar^2} \left(V - E \right) u$

In region (): V-E is +, and if u is + ; u If Il 15 - ; Il A In region (2): V-E 15 +, same as () In region 3: V-E is -, and if it is +; il (if in is - ; il V We desire it to vanish at I as. Thus we must choose the proper value of E to prevent blowing up of i at a. see this argument in Pauling - Wilson which brings out discreet nature of eigenvalues. Number of nodes: E3 o: in lowest state Ez 1: next lowest E. 2: next state above LECTURE XIII 10-26-60 Harmonic Oscillator: Consider the following potential: Xh Xa V(X) > E for X < Xa and X > Xb is considered. Let $\mathcal{U}_{-}^{(\prime)}(X,E) \rightarrow 0$ for $X \rightarrow -\infty$ and $\mathcal{U}_{-}^{(\prime)}(X_{a},E) = 1$

Now there is another possibility: Choose : 11-(2) (X, E) such that the Wronskian is: $\begin{array}{ccc} \mathcal{U}_{-}^{(2)} & \mathcal{U}_{-}^{(1)} \\ \mathcal{U}_{-}^{(2)} & \mathcal{U}_{-}^{(1)'} \end{array} = 1$ We see that U-121 is not a multiple of U-" because the Wronstran will varish. Now Let ut (X, E) -> o for X -> +00 and ut (Xb, E) = 1 Choose M+" (X, E) such that the Wronskian is Unity as above. Now, all this holds for differential equations of the form : u'' = K(V-E) uwhere the absence of it means the Wronskian is a constant. Thus we can form independent solutions as follows : $\mathcal{U}_{-}^{(1)}(X,E) = A \mathcal{U}_{+}^{(1)}(X,E) + B \mathcal{U}_{+}^{(2)}(X,E)$ $\mathcal{U}_{-}^{(2)}(x, E) = C \mathcal{U}_{+}^{(1)}(x, E) + D \mathcal{U}_{+}^{(2)}(x, E)$ where A=A(E) and B=B(E) with B(E)=0 at the elgenvalues. Particle in a Box: Boundary Conditions. V=d0 V=00 $\mathcal{M} = 0$ at x = 0, aThen; - E3 $\mathcal{U}'' = -\frac{2m}{\hbar^2} E \mathcal{U}$ -Ez $M = C SIN \frac{2mE}{E^2} X$ - E, In case V is merely large, $u'' = q^2 u$, $u' = -\frac{1}{q}$ As q 2 0, 11 ro, but u = 00, so u=0 X V=0 0 a

Since $\mathcal{U}(a) = 0$, $\mathcal{S}(a) = 0$ t^2 a = 0then $\boxed{\frac{2mE}{L^2}}a = nT$, $n = 1, 2, 3, \dots$ and : $E = \frac{n^2 \pi^2 h^2}{2 m a^2}$ $\int \mathcal{U}^2 dx = 1 = e^2 \int \mathcal{S} \mathcal{U}^2 \left[\frac{Z m E}{h^2} \times dx \right] = e^2 \frac{a}{2}, \quad c = \sqrt{\frac{Z}{a}}$ and $ll_m(x) = \sqrt{\frac{2}{a}} \sin \frac{m\pi x}{a}$ Note that we coold expand any function, f(x), as $f(x) = \underset{i=1}{\overset{i}{\underset{i=1}{\underset{i=1}{\underset{i=1}{\atop}}}} In(x) \cdot Cn$ with the result a Fourier series. As a matter of fact, any well behaved quantity can be expressed as an expansion of orthogonal functions (eigenfunctions). However, this cannot be proved in general. For Storm- Liourille problems when the variables can be separated, we have: $(p(x)m')' + q(x)m + \lambda p(x)m = 0$ eigenvalue Boundary Condition: Au' + Bu = 0 (homogeneous) For two different eigen functions and eigenvalues, when Available, we can form : $\int dx \left\{ \mathcal{U}_{2}\left(p\mathcal{U}_{i}^{\prime}\right)^{\prime} - \mathcal{U}_{1}\left(p\mathcal{U}_{i}^{\prime}\right)^{\prime} + \left(\lambda_{1} - \lambda_{2}\right)p\mathcal{U}_{1}\mathcal{U}_{2} = 0 \right\}$ d (Mz p Mi - Mip Mi)

 $= \left[\mathcal{U}_{2} p \mathcal{U}_{1}' - \mathcal{U}_{1} p \mathcal{U}_{2}' \right]_{a}^{b} + \left(\mathbf{h}_{1} - \mathbf{h}_{2} \right) \int_{a}^{b} p \mathcal{U}_{1} \mathcal{U}_{2} dx = 0$ if BC satisfied at limits then $\int_{a}^{b} p \mathcal{U}_{i} \mathcal{U}_{z} dx = 0$, $Az \neq \lambda$, and thus My Me are orthogonal. However, this is also assumed to be true if variables cannot be separated. The same thing can be done with the Schroedinger equation by forming: \mathcal{M}_{2}^{*} $H \mathcal{M}_{1} = E_{1} \mathcal{M}_{1}$; $(H \mathcal{M}_{2})^{*} = E_{2} \mathcal{M}_{2}^{*}$ $-\mathcal{M}_{1}$ Then: $\int (\mathcal{M}_2^* \mathcal{H} \mathcal{M}_1 - (\mathcal{H} \mathcal{M}_2)^* \mathcal{M}_1) dr = (E_i - E_2) \int \mathcal{M}_2^* \mathcal{M}_1 dr$ $\therefore \int \mathcal{U}_{2}^{*} \mathcal{U}_{1} dr = 0, \quad E_{2} \neq E_{1}$ In many dimensions, we can have degeneracy, that is, for a given eigenvalue, there are several different eigenfunctions. If we use only Twearly independent wave functions, then for f-fold degeneracy, there are I Invearly undependent functions for the same ergenvalue. Are desenerate functions orthogonal within themselves? Introduce the notation (f,g) = I + g da and consider the degenerate set of wave functions wi, wz, wz, w, wf, which are not orthonormal.

We than form '. $\mathcal{U}_{i} = \frac{\mathcal{V}_{i}}{\sqrt{\left(\mathcal{V}_{i}, \mathcal{V}_{i}\right)^{2}}}; \quad \mathcal{V}_{i} = \mathcal{U}_{i}$ $\mathcal{M}_{Z} = \underbrace{\mathcal{V}_{Z}}_{\left(\mathcal{V}_{Z}, \mathcal{V}_{Z}\right)}^{\prime}$, $\mathcal{V}_{Z} = \mathcal{W}_{Z} - (\mathcal{M}_{I}, \mathcal{W}_{Z}) \mathcal{M}_{I}$ $M_3 = \frac{v_3}{\sqrt{(v_2, v_2)}}$; $v_3 = w_3 - (M_1, w_3) M_1 - (M_2, w_3) M_2$ and m general: $\mathcal{M}_{n} = \frac{\mathcal{V}_{n}}{\left(\mathcal{V}_{n}, \mathcal{V}_{n}\right)^{\prime}}; \quad \mathcal{V}_{n} = \mathcal{W}_{n} - \sum_{k=1}^{n-1} \left(\mathcal{M}_{k}, \mathcal{W}_{n}\right) \mathcal{M}_{k}$ and so forth to we and les. This is called the Schmidt or the gonalization procedure, LECTURE XIV 10-28-60 Recapitulation ! Linear Independence Schmidt Procedure: Given we, (k=1,...,F) We form orthonormal functions via: $Ma = \frac{V_{k}}{[123, 121]}, \quad V_{k} = W_{k} - \frac{1}{2} (M_{j}, W_{k}) M_{j}$ (fig) = [f*g dr.p Expansion Theorem: We can expand a function of as a series in orthogonal functions, VIZ., $f = \sum_{n=1}^{\infty} Cn \, Mn$, Cn = (Mn, f)

This expansion will converge to the function in the mean, but may not at certain points. For example, Fourier series at discontinuities in the function where it then converges to the mean. Consider, now, the potential well: It is hard to expand in only E3 three functions. We must include the continuous spectrum also. These functions are not quadratically integrable, that is, the integral: - Vo Jutu dr. diverges. The worst case is, of coorse, for free particles. We can expand in terms of these functions, except that we use an I sign instead of the Z sign. $f(x) = \int a(k) \frac{e^{-\lambda 2x}}{\sqrt{2\pi^2}} dk$ $a(k) = \int_{-\infty}^{\infty} f(x) = \int_{\sqrt{2\pi}}^{\infty} dx$ where we see $M_{h}(x) = \frac{e^{\lambda h \cdot x}}{\sqrt{2\pi^{2}}}$, then: $a(k) = \int u_k^* (x) f(x) dx$ analogous to $u_k = \int u_k^* (x) f(x) dx$ Now let us take these functions and form a wave packet 1 this gives shape quadratically of packet integrable.

A Ke Ak Now study: $\int \mathcal{U}_{A'}^{\dagger}(\mathbf{x}) \mathcal{U}(\mathbf{x}; \mathbf{k}, \Delta \mathbf{k}) d\mathbf{x} = \frac{1}{2\pi\lambda} \int \frac{d\mathbf{x}}{\mathbf{x}} \left\{ e^{\lambda \left(\mathbf{k} + \frac{\Delta \mathbf{k}}{2} - \mathbf{k}' \right) \mathbf{x}} \right\}$ - e 1 (1- 4k - k') x } We will use contour integration. Integrate along the real axis, but exclude x=0. Two paths possible, or Consider the following theorems from Phillips, p. 125. supposing Q(x) to have only simple poles on the real axis ! P & Q(X) e MAX dx = ZTTA Z, R+ + TA ZR° ; M>0 P∫° Q(X) e^{mux} dx = - 2TTL ZR + TLZR°, m>0 € Then, if Q(x) = 1, there are no residues either in the upper or lower half plane and the only singular point is on the real axis at the origon. $R^{\circ} = \lim_{x \to 0} \left\{ e^{\pm 2\pi i x} \right\} = 1$ There fore it is clear that, for: $k' > k + \frac{\Delta k}{2}$: m(0, and C is: $(), \int o$ K' < k + Ak : mso, and ciss for , Sin o

And, for, 2 - Ak < k < k + Ak First terms C: $\frac{1}{2\pi L}$ $\frac{1}{2\pi L}$ $\frac{1}{2\pi L}$ = $\frac{1}{2}$ Second term: C: $\frac{1}{2\pi L}$; $\frac{1}{2\pi L}$ $\frac{1}{2\pi L}$ = $-\frac{1}{2}$ and $\int \mathcal{U}_{R'}(x) \mathcal{U}(x; h, \Delta h) dx = 1$ Emally: $\int_{-\infty}^{\infty} \mathcal{M}_{\lambda}^{*}(x) \mathcal{M}(X; k, \Delta k) dx = \begin{cases} 0 & if k' \text{ not in } \Delta k \\ i/2 & if h' \text{ on } boundary \\ 1 & if k' \text{ in } \Delta k \end{cases}$ This is called normalization on the scale of k: - k AK Therefore an expansion in terms of continuous ergenfunctions will use I instead of Z and be normalized in the scale of k. We are two-fold degenerate in the continuous spectrum, as we can see from the two different starting points of M=0, or u'=0. If we have complete symmetry in potential then if u(x) is an eigenvalue, u(x) also is an eigenvalue. For the descrete spectrum: u(-x) = C u(x) $M(x) = C M(-x) = C^2 M(x); C = \pm 1$ For continuous spectrum! $\frac{\mathcal{M}(X) + \mathcal{M}(-X)}{2} = \mathcal{M}(X), e^{-2} e^{-2} e^{-2}$ $\frac{\mathcal{U}(x) - \mathcal{U}(-x)}{2} = \mathcal{U}_0(x), \quad 0 \longrightarrow odd$

Then the complete set of states for the symmetrical potential well is: Ma (X), Ma (X), M3 (X), Mek (X), Mok (X) and the expansion theorem takes the form ; f(x) = a. M. + a. M. + as M3 + f dk ac (k) Mex (x) + f dk ao (k) Mok (x) where $dn = \int u dx f dx$, $ae(k) = \int u e_k(x) f dx$ Hueristic Argument: Using the diagram, we would get V=00 discreet states for E>Vo, expand a function as a sum and then V=0 let x = and Z = S. LECTURE XV 10-31-60 Recapitulation: Normalization of discreet spectrum: Build packets around k: M(x; k, sk) = Me(x) dk Then: $\int \mathcal{U}_{k}^{*}(x) dx \int \mathcal{U}_{k}(x) dk = \begin{cases} 0 & k' \text{ not } m & \Delta k \\ Ak & \\ 1 & k' & m & \Delta k \end{cases}$ Although this was shown for the free particle, it holds in the general case. Another aggroach to this problem is to use a convergence factor.

Example: $1 + x + x^2 + x^3 + \dots = \frac{1}{1 + x}$, |x| < 1For x=1, the sum of the series is 1/2, that 15, we take the lumit as x -> 1. In the same way: $\lim_{x \to 0+} \int_{-\infty}^{\infty} e^{-\alpha |x|} \mathcal{U}_{a}^{*}(x) \mathcal{U}_{a}(x) \mathcal{U}_{x} = 0 , \quad h' \neq h$ convergino factor For 2'= k, nothing can be done, the integral diverges. Let's see what free particle gives, using e-ax² as the converging factor: $\operatorname{Jim}_{X \to 0} \int_{0}^{\infty} e^{-\alpha^{2} \chi^{2}} \underbrace{\mathfrak{U}_{\lambda}^{*}(\chi)}_{X} \underbrace{\mathfrak{U}_{\lambda}(\chi)}_{X} \underbrace{\mathfrak{U}_{\lambda}(\chi)}_{X} d\chi = \operatorname{Jim}_{X \to 0} \int_{-\infty}^{\infty} \frac{e^{-\alpha^{2} \chi^{2}}}{2\pi} \underbrace{\mathfrak{U}_{\lambda}(\chi)}_{Z} d\chi$ $\mp (\alpha)$ In the exponent, $-\alpha^{2}\left(\chi^{2}-\chi(\chi-\chi')\chi\right) = -\alpha^{2}\left(\chi-\chi(\chi-\chi')\chi')\right)^{2}-\chi(\chi-\chi')^{2}-\chi'\chi''$ Then: $I(\alpha) = \frac{1}{2\pi} \int e^{-\alpha^2 y^2} \cdot e^{-\frac{(k-k')^2}{4\alpha^2}} dy$ $= \frac{1}{2\sqrt{\pi}} e^{-\frac{(k-k)}{4\alpha^2}}$ Now: $\lim_{\alpha \to 0} I(\alpha) = 0$, if $k' \neq k$ $x \to 0 = \infty$, if k' = kThen define: $\delta_{G\alpha}(1-t') = \frac{1}{2\sqrt{\pi}1\alpha} e^{-\frac{|\chi-\chi'|^2}{4\alpha^2}}$ with, obviously, Soca (k-k') dk = 1

Consider, now, the following lumit: Sex (h-h') tim SGx (k-L') = S(k-l')which is called the Dirac 1 11 Deita Function. This function has the following properties: S(x) = 0 , x = 0 = 00 otherwise $\int_{a}^{b} S(x) dx = 1, a c o c b$ = 0, o therauseThe Divac Pelta Function plays the same role in integrals as the Kronecker delta plays in sums. $\int_{a}^{b} f(x) \, \delta(x - x_0) \, dx = \begin{cases} f(x_0) , & a < x_0 < b \\ 0 , & otherwise \end{cases}$ and corresponds tos Z. Am Simn = {An, k < n < l m=k 0, otherwise Then the normalization scheme for orthogonal functions 15 1 (um un dr = Smn (discrete) (Un' Un dr = S(k-h') (continuous, normalization on & scale) We could also normalize on an energy scale.

To show this, sumply consider: $\int_{contains} F(y(x)) \, \delta(x - x_0) \, dx = F(y(x_0))$ and $\int F(y) \delta(y - y_0) dy = F(y(x_0))$ contains b $y_0 = y(x_0)$ Now $dy = \frac{dy}{dx} dx$, then $S(y-y_0) \left| \frac{dy}{dx} \right| = S(x-x_0)$ l could possibly be -. and finally: $S(y-y_0) = \frac{1}{\left|\frac{dy}{dx}\right|} S(x-x_0)$ Therefore: $\int \mathcal{U}_{E'}^{*} \mathcal{U}_{E} dr = \mathcal{J}(E - E')$ (E scale) $\int \mathcal{U}_{\lambda}^{*} \mathcal{U}_{\lambda} dr = S(\lambda - \lambda') \quad (k \text{ scale})$ Then $U_E(n) = \frac{1}{\left|\frac{dE}{dE}\right|^{1/2}} U_R(n)$

what is the method of forming the normalization of non-free problems? Use the asymptotic expansion where V >0 for large n. For example, cuthing off orthogonal functions at a finite number of terms. We always get a form of trig function for the asymptotic expansion in the first term.

Useful Relation: $\int e^{\lambda kx} dx = 2\pi S(x)$

LECTURE XVI 11-2-60 Solvable Problems, Rectangular Potentials: V=0 V=~ -Vo BOK Well We usually consider the bound states only, and thus impose the following conditions: 1) Maro, X at 200 2) <u>u</u>' is continuous where V is discontinuous 3) Symmetrical Well, VIXI = V(-x) Now, when the above is the case, we can define a reflection operator such that : R f(x) = f(-x)and also, [E, H] = 0 when V(x) = V(-x), that is; \underline{R} \underline{H} $\underline{M}(\mathbf{x}) = \underline{H} \underline{R}$ $\underline{M}(\mathbf{x})$ Suppose we have stationary states: $H \mu(x) = E \mu(x)$ $\underline{H} \underline{R} \underline{\mu}(x) = \underline{R} \underline{H} \underline{\mu}(x) = \underline{E} \underline{R} \underline{\mu}(x)$ and H .u(-x) = E u(-x)

This means that in one - dimension :

 $\frac{\mathcal{R} \, \mu(x) = \, \mu(-x) = \, C \, \mu(x)}{\mu(x) = \, C \, \mu(-x) = \, C^2 \, \mu(x)}$

and either u(-x) = u(x)or u(-x) = -u(x)

This property is called parity of state.

This property also holds in 3 dimensions. Define vector i. If we have R f(i) = f(-i), we have inversion symmetry.

Physical Appearance of Well Wave Functions: When we consider the well, whose sides are not of infinite potential, we have a tunneling effect which is classically not possible, because the particle would have to have negative kinetic energy.

Consider:

We actually find from smears in the x-ray pattern, a finite probability of being outside the box. In this region, the wave function is usually of the form:

 $\psi \sim e^{-\frac{\pi}{k}}, \quad \pi = \int \frac{2m(V-E)}{h^2}$

For measurement outside, DX 2 to Now DX Apx 2th, then Apx > tike and (Apx)² = V-E.

Thus, for a particle at rest outside the well needs an X-ray of energy V-E to reveal its presence.

Loops and nodes are not predicted classically either, as one would expect an uniform distribution. However, waves in stationary states are analogous in complementarity to particles and a uniform distribution could be built up from a superposition of stationary states.

Reflection and Transmission:

E

what is the chance of reflection or transmission of an electron coming in from left with a given kinetic energy &

Classically, if KE is larger than highest PE, the electron will be completely transmitted.

Another Case:

- E, some transmission E Total reflection

We can talk about reflection and transmission Coefficients R and T.

we now examine the mathematical methods of funding these coefficients.

(III) I) R and T are functions of the amplitudes of V=0 un normalizable plane waves (I) which we assume to be incident on our model.

Boundary Conditions: Particles are streaming from left to right with none incident from the right, so that we can write: In region III; $\mathcal{U} = e^{i \pi x}$, $\pi' = \frac{2m (E - V_{III})}{\pi^2}$ In region I : M= Ae + Be-itex $\mathcal{K} = \int \frac{2m(E - V_I)}{t^2}$ The number of equations we arrive at is dependent on the number of potential regions. We would have 6 equations in II II 6 unknowns. T LECTURE XVII 11-4-60

Collision Problems: For meidence from the left, the BC for fixed E II E 15 ; M= e 1 kn x m III. - Vn I V Varies (I) with $\hbar^2 k_n^2 = 2m(E - V_n)$

In region I: there are two solutions possible, enter enter from " = zm (V-E) M. Then the complete solution in this region is: M= Ae" + Be - when and the complete solution is; $\Psi = \begin{cases} e^{\lambda k_n x} e^{-\lambda Et/h} \\ (A e^{\lambda k_n x} + B e^{-\lambda k_n x}) e^{-\lambda Et/h} \end{cases}$ In III m I Although we are using plane waves, they can be considered as part of a slowly decaying wave packet behaves as plane wave mmmm Probabilities calculated with plane waves are proportional to actual probabilities. Now, the probability current density is: $J = \frac{h}{zm\lambda} \left(\frac{\psi^*}{dx} \frac{d\psi}{dx} - \frac{\psi}{dy} \frac{d\psi^*}{dx} \right)$ In Π : $f = \frac{h}{2m}(2\pi kn) = \frac{h}{m} = \frac{\partial}{\partial n}$ In I: $f = \frac{\hbar}{2m\lambda} \left(|A|^2 2\lambda ke - |B|^2 2\lambda ke \right)$ + the A*B (-1 ke + 1 ke) e - 2 kex + the BAt (-ike + ike | e-2 dex Then: $f = (|A|^2 - |B|^2) v_a$: $|B|^2 v_a$ to right and ve = tike

Consider the general case: We can choose: We can show that is and is are orthogonal and we will normalize in the k scale. $\int u^{+}(x, k_{n}) u(x, k_{n}) dx = \int \{|A|^{2} e^{-\lambda(k_{n} - k_{n})} + |B|^{2} e^{-\lambda(k_{n} - k_{n})} dx$ + $\int e^{\lambda (k_1 - k_2) x} dx$ Notice ke = ka + (Va-Ve) Zme ; ke = ka + (Va-Ve) Zmu = and Zke(ke-ke) = 2kr (kr-ke), near kre = kre Let $x = \frac{he}{ha} x'$ and x' = x''Then the IAI2 Ser (kn-kilx dx - the IBI2 Ser (kn-ki)x" dx" + $\int_{0}^{\infty} \frac{x(hn-hi)x}{dx} = \frac{he}{hn} |A|^2 \int_{0}^{\infty} e^{x(hn-hi)x} dx + \left(\frac{he}{hn}|B|^2 + 1\right) \int_{0}^{\infty} e^{x(hn-hi)x} dx$ $= \frac{ke}{\hbar a} |A|^2 \int e^{x} (\hbar - \hbar a) x \, dx = \frac{2\pi}{T} \delta(\hbar a - \hbar a)$ Hence Mpr = IT Il (Il normalized in the ker scale) We could normalize v in the the scale and get: Vie = II V We can expand any function them as: $f(x) = \underbrace{\mathbb{Z}}_{\mathcal{A}} \left(\mathcal{U}_{\mathcal{M}}, f \right) \mathcal{U}_{\mathcal{A}}(x) + \int_{\mathcal{M}} \left(\mathcal{U}_{\mathcal{R}}, f \right) \mathcal{U}_{\mathcal{R}}(x) dx$ + In (The, f) The IXI dhe

LECTURE XVIII 11-7-60 Errata: $u_{An} = e^{ik_n X} \int_{2\pi}^{T}$ $\overline{v_{ke}} = \int_{\overline{z\pi}}^{\overline{z}} e^{-\lambda \overline{ke} \cdot x}$ $\overline{v_{ke}} = \underbrace{\sum_{\overline{z\pi}}^{\overline{z\pi}} e^{-\lambda \overline{ke} \cdot x}}_{\overline{e} + e \cdot e} \quad \forall e$ Va VZTI Now: $f(x) = \sum_{n=1}^{N} (\mathcal{U}_n, f) \mathcal{U}_n(x) + \int (\mathcal{V}_{2e}, f) \mathcal{V}_{2e}(x) dke$ (Discreet terms) + $\int (M_{RR}, f) M_{RR}(k) dk + \int_{0}^{n} (w_{R}, f) w_{R}(k) dk$ (For E greater than Un) (non-degenerate continuous (degenerate & continuous) spectrum) $\mathcal{H} = \frac{2m(V_R - V_e)}{t}$ The Hydrogen Atom: We will treat this problem by the polynomial method. Schroedinger Equation: (1) $\nabla^2 u + \frac{2m}{t^2} (E - V\{n\}) u = 0$ where $V(n) = -\frac{Ze^2}{2}$ Choose suitable units: t=1, 2m=1, Ze2=2 Then: unit of length: $\frac{\hbar^2}{m \neq e^2} = \frac{a_0}{\neq}$ where a_0 is Bohr radius unit of energy: $\frac{Z^2 me^4}{2 h^2} = Z^2 R hc$

Another system of units that are used are due to Hartree; h=1, m=1, $e^{z}=1$. Substituting: (z) $\nabla^2 u + (E + \frac{z}{\lambda}) u = 0$ N(LA) Consider general case of potential as function of r. We can separate the variables and obtain spherical harmonics: (3) $\mathcal{U} = R(n) Y_{e}^{m}(\theta, \varphi) = R(n) \cdot C_{em} P_{e}^{m}(\cos\theta) e^{2m\varphi}$ with $\left| Y_{k}^{m} \right|^{2} d = 1$, $l = 0, 1, 2, \dots$ Form of e comes from assumption that wave functions are single-valued. If in is not integer, we get branch lines. Now, we must preserve the property that the wave functions are isotropic in space, thus, if we change the co-ordinates we get new branch line so we must say mis an integer and the wave functions are single valued. Now, our vadial equation is; $R'' + \frac{z}{2}R' + (E - N\{n\} - \frac{l(l+l)}{2})R = 0$ (4) We have no m in the equation and the radial wave functions are (22+1) fold degenerate. Define a rotator operator Rai which commutes with the Hamiltonian, Now take Hu = Eu and operate with R : HRa, i II = ERai II Thus there is a finite degeneracy in which a rotation can be expressed with a sum of other spherical harmonics. We have here a natural symmetry which leads to a natural degeneracy.

when form of N is substituted, we find an accidental degeneracy such that the energy does not depend on l. Upon substituting N= 2 (5) $R'' + \frac{z}{A}R' + (E + \frac{z}{A} - \frac{l\{l+1\}}{R})R = 0$ (this term can be thought of as the centripetal force potential) Now $\frac{d^2}{dn^2} + \frac{2}{n} \frac{d}{dn} = \frac{1}{n} \frac{d^2}{dn^2} n$, then: (6) $(nR)'' + (E_n + z - l\{l+l\})_{nR} = 0$ The boundaries are n=0 and n=00 Look at asymptotic solution; ~ > = R"+ER = 0 ... with: R~etf=En Take: RNE-FER Now, we have a singularity at n=0, which is also regular if the coefficient of the first derivative is not stronger than in and the coefficient of R not stronger than is and such is the case here, We make the solution of the form! (7) Z Cn R B+n For n = 0: $n^{-2+\beta}$: $(o \beta(\beta-1) + c_0 2\beta - c_0 l(l+1))$ we get indicial equation: B(B+1) - l(l+1) = 0; B=l, B=-l-1 We through out B=-1-1 because 2 will be worse than R-2. We shall find for R (B) R= re e v

LECTURE XIX 11-9-60

Continuation of Hydrogen - Like Model: (1) $\mathcal{U} = \mathcal{R}(\mathbf{x}) \; \bigvee_{\mathbf{0}}^{\mathcal{M}} (\mathbf{0}, \mathbf{c})$ (2) $(nR)'' + (E + \frac{2}{n} - \frac{l\{l+i\}}{n})(nR) = 0$ l(2+1) is centripetal potential; classically, M(angular momentum) (3) $\lambda R = \lambda^{l+1} e^{-\int -E' \lambda} v$ from asymptotic solution and indicial equation. Substituting (3) into (2); $(4) \ 2'' + 2 \left(\frac{l+1}{2} - \sqrt{-E^2}\right) v' + \frac{2}{2} \left(1 - \left\{l + i\right\} \sqrt{-E^2}\right) v = 0$ Make definitions: 22J-E = X 2l+2 = b l+1 = aand get: (5) $\frac{d^2v}{dx^2} + \left(\frac{b}{x} - 1\right)\frac{dv}{dx} - \frac{a}{x}v = 0$ which gives one of the confluent hypergeometric functions, The Laguerre polynomials. We now solve by the polynomial method : $(6) \quad v = \sum_{k=1}^{\infty} C_{k} X^{k}$ Substituting in (6): (7) $\sum_{k=0}^{\infty} C_k \left\{ \left[k(k-1) + bk \right] x^{k-2} - \left[k+a \right] x^{k-1} \right\} = 0$

Pearrangung:
(a)
$$\sum_{k=0}^{n} x^{k+1} \left\{ C_{k+1} (k+1)(k+1) - C_k / k + a \right\} = 0$$

Then: $C_{k+1} = \frac{k+a}{(k+1)(k+1)} C_k$
(d) $T = 1 + \frac{a}{1+b} x + \frac{a(a+1)}{1+b} x^2 + \frac{a(a+1)(a+2)}{1+2+(b+1)} x^3 + \cdots$
 $= iE_{-}(a, b, x)$
These type of functions derive from the so-called
Gaussian hypergeometric series:
 $iE_{-}(a, b; b; x) = (\pm \frac{a \cdot \beta}{1+b} x + \frac{a(a+1)\beta(\beta+1)}{1+2b} x^2 + \cdots$
 $i= iE_{-}(a, b, x)$
We have for the special case above $i \cdot iE_{-}(a, b, x) = \frac{1}{2} \lim_{\substack{a \geq a \\ a \geq b}} \frac{F_{-}(a, b, b; x)}{a \geq a}$
 $iE_{-}(a, b; b; x) = (\pm \frac{a \cdot \beta}{1+b} x + \frac{a(a+1)\beta(\beta+1)}{1+2b} x^2 + \cdots$
 $i= iE_{-}(a, b, x)$
 $iE_{-}(a, b; b; x) = (\pm \frac{a \cdot \beta}{1+b} x + \frac{a(a+1)\beta(\beta+1)}{1+2b} x^2 + \cdots$
 $i= iE_{-}(a, b, x)$
 $iE_{-}(a, b, b; x) = iE_{-}(a, b, x) = \frac{1}{2} \lim_{\substack{a \geq a \\ a \geq b}} \frac{F_{-}(a, b, b; x)}{a \geq a}$
 $iE_{-}(a, b; b; x) = iE_{-}(a, b, x) = \frac{1}{2} \lim_{\substack{a \geq b \\ a \geq b}} \frac{F_{-}(a, b, b; x)}{a \geq a}$
 $iE_{-}(a, b; b; x) = iE_{-}(a, b, c)$
 $iE_{-}(a, b; b; x) = iE_{-}(a, b; c)$
 $iE_{-}(a, b; c)$
 iE

We have for given
$$\pi$$
: $l = \pi \cdot i$, $\pi \cdot i = \pi$
For $E > 0$: Define $El = \pi$, then $J = l = \pi H$
We get for solution;
(12) $\Lambda R = C \Lambda^{4H} e^{-\Lambda M \Lambda} iF_1(R + l + \frac{1}{K}; 2R + 2, 7R + \Lambda)$
or $\Lambda R = C \Lambda^{4H} e^{-\Lambda M \Lambda} iF_1(R + l + \frac{1}{K}; 2R + 2, 7R + \Lambda)$
where $C's$ are the same in each. We do the
above by Rummer's First Formula:
 $e^{-\chi} \cdot F_1(R, b, \chi) = iF_1(b - \alpha, b, -\chi)$
We now can write:
(13) $\Lambda R = C \Lambda^{4H} e^{-\Lambda M} iF_1(R + l - n, 7L + 2, 7R / n)$
or $\Lambda R = C \Lambda^{4H} e^{-\Lambda M} iF_1(R + l - n, 7L + 2, 7R / n)$
or $\Lambda R = C \Lambda^{4H} e^{-\Lambda M} iF_1(R + l - n, 7L + 2, 7R / n)$
 $LECTORE X II - 14 - 60$
Problems 12-15 (inclusive) due Menday Nov. 21.
Continuation of Hydrogenia Quee Equation:
(1) $(\Lambda R)'' + (E + \frac{2}{\Lambda} - \frac{2(l+1)}{\Lambda^2})(R \Lambda) = 0$
Found that
(2) $\Lambda R = \Lambda^{4H} e^{-\int E^T \Lambda} iF_1(R + 1 - \frac{1}{\sqrt{2T}}; 2R + 2, 7 \sqrt{2T} \Lambda)$
or $\Lambda R = \Lambda^{4H} e^{-\int E^T \Lambda} iF_1(R + 1 - \frac{1}{\sqrt{2T}}; 2R + 2, 7 \sqrt{2T} \Lambda)$

$$We \quad \text{cut off series } \text{ and get}$$

$$(3) \quad E = -\frac{1}{\pi^{2}} \quad \text{for energy levels,}$$

$$(4) \quad aR = C a^{d+1} e^{-A/\pi} \quad F_{1} \quad (l+1-\pi); \quad 2l+2; \quad 2a/\pi)$$

$$AR = C a^{d+1} e^{-A/\pi} \quad F_{2} \quad (l+1+\pi); \quad 2l+2; \quad 2a/\pi)$$

$$RR = C a^{d+1} e^{+A/\pi} \quad F_{2} \quad (l+1+\pi); \quad 2l+2; \quad 2a/\pi)$$

$$Nste: \quad l+1+th - (2l+2) = m-l-1 = 0 \quad or + tont, \quad fhen$$

$$\int F_{1} \quad (l+c; b; x) = \frac{1}{p} (1+b+x) = \frac{1}{p} (1+b+x) = \frac{1}{2} + \frac{1}{2} +$$

Then, because of demensionality of the (big) by x)
(a)
$$\Delta k = -C \frac{(2k+1)!}{(n+k)!} = A^{-k} e^{-A/k} \left(\frac{d}{dA}\right)^{n-k-1} A^{n+k} e^{-2A/k}$$

we now wish to normalize $(AR) := \int_{0}^{1} (AR)^{n-k-1} A^{n+k} e^{-2A/k}$
(b) $1 = |C|^{n} \frac{(2k+1)!}{(n+k)!} \int_{0}^{\infty} A_{n}F_{n}(k+1-n) = 2k+k + 2A/k} \left(\frac{d}{dA}\right)^{n-k-1} A^{n+k} e^{-2A/k} dA$
The grate by parts; to form.
 $\left(-\frac{d}{dA}\right)^{n-k-1} = \left(-\frac{d}{dk}\right)^{n-k-1} \left(-\frac{n}{k}\right) \left[\left(-\frac{2A}{k}\right) + \frac{k+1-n}{(1+k)!} - \left(\frac{1-k}{k}\right)^{2} + \cdots + \frac{(n-k-1)!}{(n-k-1)!} \left(\frac{(2k+1)!}{(n+k-1)!} - \left(-\frac{2A}{k}\right)^{n-k-1} - \frac{(1-k)!}{(1+k)!} - \frac{(1-k)!}{(n+k-1)!} - \frac{(1-k)!}{(n+k)!} - \frac{(1-k)!}{(n+k)!}$

Finally:
(1)
$$A Rns = \frac{1}{2} \left(\frac{2}{m}\right)^{2k+2} \left\{ (n-k-1)! (n+s)! \right\}^{-\frac{k}{2}} e^{-\frac{k}{2}} \left(\frac{d}{ds}\right)^{n+k-1} e^{-\frac{2\pi}{2}n} \frac{1}{n^{n+k}} e^{-\frac{2\pi}{2}n} \frac{1}{n^{n+k}} e^{-\frac{2\pi}{2}n} \frac{1}{n^{n+k}} \frac{1}{e^{-\frac{2\pi}{2}n}} \frac{1}{e^{-\frac{2\pi}$$

(7)
$$\mathcal{R} \wedge \mathcal{L} \subset (2\delta+i)! \left\{ \frac{e^{-\pi \omega/2}}{\mathcal{R}(k+1+\alpha\omega)} - \left(\frac{-\omega}{2\hbar}\right)^{2H} \frac{d\alpha}{\alpha} - \frac{d\alpha}{\alpha} + \frac{e^{-\pi\omega/2}}{\alpha} + \frac{e^{-\pi\omega/2}}{\alpha} \left(\frac{d\alpha}{2\hbar}\right)^{2H} e^{-\lambda\hbar\alpha - \alpha\omega} \frac{d\alpha}{2\hbar\alpha} + \frac{e^{-\lambda}\hbar\alpha - \omega\omega}{\alpha} \frac{d\alpha}{2\hbar\alpha} + \frac{e^{-\lambda}\hbar\alpha - \omega\omega}{\alpha} \frac{d\alpha}{2\hbar\alpha} + \frac{e^{-\lambda}\hbar\alpha - \omega\omega}{\alpha} \frac{d\alpha}{2\hbar\alpha} + \frac{e^{-\lambda}\hbar\alpha - \omega\omega}{2\hbar\alpha} \frac{d\alpha}{2\hbar\alpha} + \frac{e^{-\lambda}\hbar\alpha}{2\hbar\alpha} + \frac$$

Then we have:
(a)
$$P^{2} + Q^{1} = K$$
 satisfying $K = M = M M$
 $Q = \int_{\overline{ZK}}^{\overline{MW}} q$, $P = \frac{P}{\sqrt{ZWKW}}$
(c) $[Q,P] = \frac{1}{2K} [Q,P] = \frac{L}{2K} (evidently $k = \frac{L}{2})$
 $\overline{Le} Q$ representation $Q \Rightarrow Q$, $P \Rightarrow \frac{1}{2K} \frac{d}{dQ}$
 $Pefine: New Operators:$
(s) $Q = Q + AP$
 $a^{\dagger} = Q - AP$
 $a^{\dagger} = Q - AP$
 $a^{\dagger} = K - A[Q,P] = K + \frac{L}{2}$
 $a^{\dagger} = K - A[Q,P] = K + \frac{L}{2}$
 $a^{\dagger} = K - \frac{L}{2}$
(c) $[K,Q] = [Qa^{\dagger}, Q] = a[Q^{\dagger}, Q] = -a$
 $[K, A^{\dagger}] = a^{\dagger}$
 $Crossider Ka = MM:$
(f) $Kau = aK_{M} + [K,Q]A = (m-1) au$
 $To show that all eigenvaloes are positive,
show K is opositive':
(e) $\overline{K} = \int M^{k} (-\frac{1}{2} \frac{d^{2}}{dQ^{2}} + Q^{2}) M dQ = \int (\frac{1}{2} |\frac{du}{dR}|^{2} + Q^{2} |M|^{2}) dQ$
 $-West be > Q_{i}, abricus ly.$$$

Thus, to keep signification positive, we stipulate that
in the Eu
$$\rightarrow K\mu = \eta \mu$$
, $\mu \neq 0$ and we have
a lowest eigenfunction to such that:
(1) a the = 0; $(a + \pm \frac{d}{da}) t_0 = 0$
 $\pm db' = -Q the with solution $tb = Ce^{-a^{\pm}}$ which is
our gaussian wave packet for the lowest wave
state of the harmonic occillator.
(10) $C^{-2} = \int_{-0}^{\infty} e^{-2a^{\pm}} da - \int_{T_{-}}^{T_{-}}$, then $t_0 = (\frac{d}{T_{-}})^{t_0} e^{-a^{\pm}}$
We can now find lowest eigenvalue
 $to the consider:$
(11) $K do = (a^{\pm}a + \frac{t}{2}) t_0 = \pm t_0$
How consider:
(12) $Ka^{\pm}u = a^{\pm}Ku + [K, a^{\pm}]u = (\eta + 1)a^{\pm}u$, then
(13) $t_1 = C, a^{\pm}t_0$, $K th = (1 + \frac{t}{2}) t_0$
To find Cn :
(14) $t_{m} = c_{m}(a^{\dagger})^{m} t_{0}$, $K th_{m} = (\eta + \frac{t}{2}) t_{m}$
To find Cn :
(15) $C_{m}^{-2} = \int_{-\infty}^{\infty} [(a^{\dagger})^{m} t_{0}]^{\pm} (a^{\dagger})^{m} t_{0} dd$
Use definition of Adgoint operators; VIZ ,
 $\int dt^{\mu} A v da = \int (R^{\pm}u)^{\mu} t_{0} dd$
 $with a (a^{\dagger})^{m} t_{0} = [a (a^{\dagger})^{m}] t_{0} = m (a^{\pm})^{m'} [a d^{\pm}]$$

There fore
$$G_{n}^{\infty} = \pi G_{n-r}^{\infty}$$
, $G_{n} = \frac{1}{1\pi^{2}} G_{n-r}$
 $G_{0} = 1$, $G_{0} = \frac{1}{12\pi^{2}}$, $G_{n} = \frac{1}{12\pi^{2}}$, G_{n-r}
 $G_{0} = \frac{1}{12^{n}+1}$, $G_{n} = \frac{1}{12\pi^{2}+1}$, $G_{n} = \frac$

LECTURE XXIII 11-21-60 Continuation of Harmonic Oscillator; (1) $Q = \frac{m\omega}{2t} q$; $P = \frac{tt}{2t} p$ $H = (P^{2} + Q^{2}) \hbar \omega \qquad : E = (n + \frac{1}{2}) \hbar \omega , n = 0, 1, 2, 3, ...$ (z) $\mathcal{M}_n(Q) = \left(\frac{z}{T}\right)^{1/4} \left(\mathcal{M}_n^2\right)^{1/2} \left(Q^+\right)^n e^{-Q^2}$ $a^{+} = a - \mu P \rightarrow a - \frac{1}{2} \frac{d}{da} \qquad (M^{-} da = 1)$ Determine a new Un in terms of q such that [un dg = 1. (3) $\mathcal{U}_{n}(q) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} (mb)^{-1/2} z^{-n/2} \left(y - \frac{d}{dy}\right)^{n} e^{-y^{2}/2}$ where $y = \sqrt{2}Q$; $a^{\dagger} = \frac{1}{\sqrt{2}}\left(y - \frac{d}{dy}\right)$; $y = \sqrt{\frac{1}{4}}Q$ (4) Notice: $(y - dy)f = e^{\frac{y^2}{2}} \left(-\frac{d}{dy}\right)e^{-\frac{y^2}{2}}f$, then (5) $M_n(q) = \left(\frac{m\omega}{Th}\right)^{1/4} (n!)^{-1/2} 2^{-n/2} H_n(q) e^{-y^2/2}$ where Huly) are the Hermite polynomials: $H_{u}(y) = e^{y^{2}} \left(-\frac{d}{dy}\right)^{u} e^{-y^{2}}$ We can form the generating equation for Haly) thus ; (6) $\leq H_n(y) \frac{t^n}{11} = e^{y^2} e^{-(y-t)^2} = e^{2yt-t^2}$

Two Dimensional Harmonic Oscillabr:
(7)
$$H = \frac{|\bar{x}|^2}{2m} + \frac{m\omega_z^2}{z} x^2 + \frac{m\omega_z^2}{z} y^2$$

(8) $\left[-\frac{\bar{x}_z^2}{4m} \left[\frac{\bar{x}_z^3}{4m} + \frac{\bar{x}_z^3}{4m} \right] + \frac{m\omega_z^2}{z} x^2 + \frac{m\omega_z^2}{2} y^2 - E \right] \mathcal{U} = 0$
Separating the variables: $\mathcal{A} = d(x)Y(y)$:
 $-\frac{\bar{x}_z^2}{2m} \frac{1}{\mathcal{U}} \frac{d^2\mathcal{U}}{dx^2} + \frac{m\omega_z^2}{x} x^2 - E = \frac{\bar{x}_z^2}{2m} \frac{1}{\sqrt{dy^2}} - \frac{m\omega_z^2}{2} y^2$
Make the traditional aggments putting $E = E_1 + E_2$;
(9) $-\frac{\bar{x}_z}{2m} \frac{d^2\mathcal{U}}{dx^2} + \left(\frac{m\omega_z}{2} x^2 - E_z\right)\mathcal{U} = 0$
 $-\frac{\bar{x}_z^2}{2m} \frac{d^2\mathcal{V}}{dy^2} + \left(\frac{m\omega_z}{2} y^2 - E_z\right)\mathcal{V} = 0$
 \mathcal{W}_z get for solutions;
(0) $E_z = (n_z + \frac{1}{z})\bar{x}\omega_z$, $PE = \frac{m\omega_z}{2}x^2$
 $E = (n+1)\bar{x}\omega_z$; $\mathcal{U}_m = \mathcal{U}_m(x)\mathcal{U}_m(x)\mathcal{U}_m$
 $n = 0; n_z = 0$
 $n_z = 0, n_z = 0$
 $n_z = 0, n_z = 0$
 $x_z = (n_z - \frac{1}{z})\bar{x}\omega_z$

Three Dimensional Case : we get the results: E = (n, + 1/2) two + (n2+ 1/2) two + (n+1/2) two For isotropic case: E= (n+3/2) tw n=0; 000 N=2: (200 020 n=1: (100) 002 0 10 011 101 The degree of degeneracy is a combinatorial problem. or indistinguishable We can divide the objects in $(n+2)_{o}^{i} = (n+i)(n+2)$ ways. Therefore, the levels have a demeracy of degree (n+1)(n+2) Another Way: The coefficient of x^n in $(1 + x + x^2 + \cdots)(1 + x + x^2 + \cdots)(1 + x + x^2 + \cdots) = \frac{1}{(1 + x)^3}$ $= \frac{1}{2} \frac{d^{2}}{dx^{2}} \frac{1}{1-x} = \frac{1}{2} \frac{d^{2}}{dx^{2}} \left(1 + x + x^{2} + \dots \right)$ $= \frac{1}{7} \left(1.2 x^{\circ} + 2.3 x + 3.4 x^{2} + ... \right)$ This concludes the discussion of exactly solvable problems.

Variation Method:
Consider the solutions to
$$(H - E_n) dn = 0$$
. We can
expand an series of these solutions, viz.,
(ii) $dl = \sum_{n}^{L} a_n dn$; with $\int |u|^2 a_n = 1$
then: $Hu = \sum_{n}^{L} a_n E_n dn$
(ii) $H = \sum_{n}^{L} a_n dn = \int \sum_{m}^{L} a_m H_m^m \sum_{n}^{L} a_n E_n dn dn$
or $\overline{H} = \sum_{m}^{L} \sum_{n}^{L} a_m^m a_m E_n S_{MR} = \sum_{n}^{L} |a_n|^2 E_n$
(iii) $\overline{H} - E_0 = \sum_{m}^{L} |a_n|^2 (E_n - E_0) > 0$
LECTURE XXIV $H - 23 - 60$
Variation Method:
(i) $\overline{H} = \int \frac{M^m H M}{M} dn > E_0$
 $\int |A|^2 dn$
One dimensional Example:
 $M' discontinuous at X_0$:
 $\frac{M}{M} = \frac{1}{\sqrt{a}} \frac{d^2}{dx}$ we have the usual second
derivative plus $\delta(X - x_0) \sum M'(X) - M'(X)$
 $H = -\frac{4^2}{\sqrt{a}} \frac{d^2}{2a}$; $E_0 = \overline{T^2} \frac{4^n}{n}$
 $M = \frac{1}{\sqrt{a}} \frac{d^2}{2a}$ on $\frac{\pi N}{2a}$; $E_0 = \overline{T^2} \frac{4^n}{n}$

n

Normalienng:
$$\int u^{2} dx = 2c^{2} \int_{0}^{u} (u^{n} - x^{n})^{2} dx = \frac{u^{n}z^{2}}{(u+i)(2u+i)} c^{2} = i$$

$$\int u^{*} H u dx = \frac{(u+i)(2u+i)}{H(2u+i)} \frac{x^{*}}{Hu^{*}} = \overline{H}$$

We wish to minimize \overline{H} by differentiating with
respect to the grameter \overline{x} .

$$\frac{d}{dx} \ln \overline{H} = \frac{1}{n+i} + \frac{1}{2n+i} - \frac{1}{2n-i} = 0$$

or $4n^{2} - 4n - 5^{2} = 0$, $x = \frac{1 + i67}{2}$
We get $\overline{H} = E_{0} \left(\frac{2557 + 5}{\pi^{2}} = 1.0030\right)$ or about .376
error.
Check ware functions:
 $\overline{H} = \frac{2}{4} |a_{n}|^{2} E_{n}$
 $\overline{H} > |a_{0}|^{2} E_{0} + \frac{2}{(1 - |a_{0}|^{2})} 9E_{0}$
 $1 - |a_{0}|^{2} = \frac{4}{10} (\frac{1}{E_{0}} - i)$
Wave function may be quick different from real wave
functions uset still give a good approximation to the
energy.

Application : He I - like

$$H^{2} = -\frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \frac{\pi e^{2}}{\Lambda_{i}} - \frac{\pi e^{2}}{\Lambda_{i}} + \frac{e^{2}}{\Lambda_{i}}$$
operating on $\mathcal{M}(\Lambda_{i}, \Lambda_{i})$.
Introduce: $\mathcal{R}=1$, $2m=1$, $e^{2}=2$
length: $a_{0} = \frac{\hbar^{2}}{me^{2}}$
 $Energg: Rhc = \frac{me^{2}}{2\hbar^{2}}$
 $Then H = -\nabla_{i}^{2} - \nabla_{i}^{2} - \frac{2\pi}{\Lambda_{i}} - \frac{2\pi}{\Lambda_{i}} + \frac{2}{\Lambda_{i2}}$
 $H_{0} = H'$
Thus He now splits up into two H-like cases :
 $H - -\nabla^{2} - \frac{2\pi}{\Lambda}$ with ground state as : $\int_{T}^{2\pi} e^{-2\pi}$; π^{2}
 $Transferring to He I-like case :
 $\mathcal{M} = \frac{3^{2}}{\pi} e^{-3(\Lambda_{i}+\Lambda_{i})}$
 $H = 2^{2}(\Lambda_{i}+\Lambda_{i})$
 $\mathcal{M} = \frac{3^{2}}{\pi} e^{-2(\Lambda_{i}+\Lambda_{i})}$
 $\mathcal{M} = \frac{3^{2}}{\pi} e^{-2(\Lambda_{i}+\Lambda_{i})}$$

This would be product of spherically symmetric wave functions of two non-interacting electrons.

a station is

We can split Hamiltonian into
$$\overline{H} = \overline{H} - \overline{H}'$$

(z) $H_0 = H_0(5) - Z(\overline{Z} - 7) \cdot \left(\frac{1}{A_1} + \frac{1}{A_2}\right)$
 $H_0(3) \Delta = -Z 3^2 \Delta$, $\overline{H_0(3)} = -Z 3^2$
(3) $\left(\frac{1}{A_1}\right)_3 = \int_0^{\infty} \frac{3^3}{\pi} \frac{1}{A_1} e^{-\overline{Z} 3A_1} UT A^2 d\alpha$
 $= 4 \int_0^{\infty} 3^3 n dn e^{-\overline{Z} 3A_2} = 3 \int_0^{\infty} dx e^{-x} = 3$
 \overline{H} (4) $\overline{H}_0 = -\overline{Z} 3^2 - Z(\overline{Z} - 3) + \overline{Z} 3 = -\overline{Z} 3(2\overline{Z} - 3)$
 $Wc an expand \overline{h_1} because of explorical symmetry
into Legendre Functions:
(4) $\overline{h}_0 = \frac{2}{A_1^2} \frac{A_2}{R_2^{1+1}} P_2(con t) - \frac{1}{A_1} \frac{V_1^{1/A_1}}{\sqrt{A_1^2}}$
(5) $\frac{1}{A_12} = \frac{2}{A_1^2} \frac{A_2}{R_2^{1+1}} P_2(con t) - \frac{1}{A_1} \frac{V_1^{1/A_1}}{\sqrt{A_1^2}}$
 \overline{V}
 $\overline$$

(i)
$$\left(\frac{Z}{An}\right) = \frac{5}{4} \cdot 3$$

Finally:
(ii) $\overline{\left(\frac{Z}{An}\right)} = \frac{5}{4} \cdot 3$
Taking the minimum:
(iii) $\frac{dH}{d3} = -42 + 43 + \frac{5}{4} = 0$; $3 = Z - \frac{5}{16}$
with $\overline{Hmm} = -2(Z - \frac{5}{16})^{2}$
We check this against the imiration energy; He'I:
(iv) $\overline{Em} = -\overline{Hmm} - 2^{2} = 2(Z - \frac{5}{26})^{2} - Z^{2} = \frac{217}{120} (addeeg with)$
 $= 22.95 \text{ ev}$
 $\overline{Eeperimentall_{3}} = 24.46 \text{ ev}$
 $\overline{Eeperimentall_{3}} = 26.46 \text{ ev}$
 $\overline{Eeprimentall_{3}} = 26.46 \text{ ev}$
 $\overline{Ee$

If u= c (e-3,1,-3,2 - -32A1 - 3.A2) u(n, n) = - u(n, n) (antisymmetric) spectroscopically 'S. Now: (Us, Ma) = JUs* (n, n) Ma(n, n2) dridre must equal - (Ms* (m, n) Ma (n, n) dredn. and thus (Is, Ma) = 0 If me can find this property between successive states, the minimum level for any state can be found. LECTURE XXVI 11-28-60 Pertorbation Theory: We will use the traditional Schroedinger perturbation theory for stationary states. (1) HUE = EME Expand Me in terms of some function de ; (2) $ME = \leq (n | E| V_n$ (3) $\leq Cn(E) \not\vdash v_n = E \leq Cn(E) v_n$

Now gerform the operation
$$\int The^{+}(3) dx$$
:
(4) \leq_{n} Hima $C_{n}(E) = E C_{m}(E)$
(5) where $Hima = \int The^{+} H The dx$
(6) $C_{m}(E) = \int The^{+} H dx$
Now:
(7) $\int He^{+} He dx = 0, E' \neq E$ and substituting from (2)
 $\int \leq_{n} C_{m}^{+}(E) T_{m}^{+}. C_{n}(E) The dx = 0, E \neq E'$
or $\leq_{n} C_{m}^{+}(E') C_{n}(E) = 0, E \neq E'$
The C's can be thinght of as worke functions in
a view representation satisfying equation (4).
In equation (4), we can think of $C_{n}(E)$ as a
column vietrix and the sum on n as their product
Recall $\leq_{n} H_{n} B_{n} = C_{n}$.
(8) $\leq_{n} C_{n}^{+}(E_{n}) C_{n}(E_{n}) = S_{n} A_{n}$
which is availed of $\int He_{n} He_{n} dE_{n} dE_{n} dE_{n} = S_{n} A_{n}$
Which is availed of $\int He_{n} He_{n} dx = S_{n} A_{n}$
which is availed of $\int He_{n} He_{n} dx = S_{n} A_{n}$
 $K = C_{n}^{+} C_{n}^{+}(E_{n}) C_{n}(E_{n}) = S_{n} A_{n}$
 $K = C_{n}^{+} C_{n}^{+}(E_{n}) C_{n}(E_{n}) = S_{n} A_{n}$
 $K = C_{n}^{+} C_{n}^{+}(E_{n}) = S_{n} A_{n}$

 \cap

 \frown

Then (8) becomes : (8') 2' Sur Sue = She (10) on Z. Sin Sne = Sie or $S^{\dagger} = S^{-1}$, $S^{\dagger}S = I$ That is, S is a unitary matrix. Sometimes StS = SSt but in this case it holds for infinite matrices. We know that it is hermitian and (4) takes the form: (11) Z Hmn Snk = En Smk Performing Z Sem · (4) : (12) Z Sem Hun Snp = Ex Ste or (S+HS) = En Set where $E = \begin{pmatrix} E_i & 0 & 0 & \cdots \\ 0 & E_2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ or STHS = E which is just the diagonalization of the Hamiltonian. In the new notation, (2) becomes: Mk = Z Vn Snk (13) and (6) becomes : (14) Smik = (Um Un dr

We now go to perturbation theory and take for un solutions of an unperturbed problem. Hamiltonian is called Ho: (15) Ho Mm = En Un Case where En's are all different: (16) H = Ho + Y where V is small compared to the energy of the un perturbed state. However, we will find that it is easy to expand in terms of a dummy parameter I which we consider small instead of V. (16') $\underline{H} = \underline{H}_0 + \lambda \underline{V}$ (λ called tag) Expanding En as a sum in terms of A. (17) $E_R = E_R^{(0)} + \lambda E_R^{(1)} + \lambda^2 E_R^{(2)} + \dots$ (18) SNR = SNR + A CNR + A² CNR + (19) Hmn = En Smn + I Vmn Plugging in (11): $\sum_{i} \left(E_{n}^{(o)} \delta_{mn} + \lambda V_{mn} \right) \left(\delta_{nk} + \lambda C_{nk}^{(i)} + \dots \right)$ (20) = (Et + 1 Ex +) (Sma + 1 Cuit +)

We now equate equal powers of X: $E_{n}^{(0)}$ $S_{mk} = E_{k}^{(0)} S_{mk} \qquad (\lambda^{\circ})$ (21) $E_{m}^{(0)} C_{mk}^{(1)} + V_{mk} = E_{k}^{(0)} C_{mk}^{(1)} + E_{k}^{(1)} \int_{mk} (\lambda')$ (22) Em Cut + & Vun Cut = Et Cut + Et Cut + En Cut + En Sun for (12) These are hey equations in the perturbation theory. LECTURE XXVII 11-30-60 Perturbation Theory: (11) Zi Hmn Snik = Ek Smit (16) $H = H_0 + V$ We are considering non-degenerate perturbation theory. Putting m=k m (ZI): (23) Ex = Vxx First order correction For m = k m (21); (24) $C_{mk}^{(1)} = \frac{V_{mk}}{E_{+}^{(0)} - E_{+}^{(0)}}$ or $M_{k} = \tilde{U}_{k} + \tilde{\Xi}_{1} \tilde{U}_{m} \frac{V_{mk}}{W_{k}}$

we form the normalization integral. $[25] \int \mathcal{U}_{\pi}^{*} \mathcal{U}_{\pi} \, dr = \int \left(\overline{\mathcal{U}_{\pi}^{*}} + \underline{\mathcal{E}} \, \underline{\mathcal{C}}_{m\pi}^{*} \, \overline{\mathcal{U}}_{m}^{*} + \cdots \right) \left(\overline{\mathcal{U}_{\pi}} + \underline{\mathcal{E}} \, \underline{\mathcal{C}}_{m\pi}^{''} \, \overline{\mathcal{U}}_{m} + \cdots \right) \, dr = 1$ 1 + C+2 + C+2 = 1, Thus C+2 is pure imaginary (26) We can then stipulate Cin =0 (27)Consider m=k m (22): (28) $E_{k}^{(2)} = = \underbrace{ \sqrt{2\pi} \sqrt{2\pi} \sqrt{2k}}_{n \neq k} \frac{\sqrt{2\pi} \sqrt{2k}}{F_{4}^{(0)} - F_{7}^{(0)}}$ ____ Et + VER If En below Ex then (28) is negative and En (0) Ex tends to rise. If En above Ex, opposite effect occors. We see that the levels seem to repel each other in second order perturbation theory. Degenerate Perturbation Theory: (151) Ho $U_{n,\alpha} = E_n^{(0)} U_{n,\alpha}, \alpha = 1, 2, \dots g_n$ (11) $E = H_{m,\alpha;n,\beta} S_{n,\beta; \neq j} = E_{k,\beta} S_{m,\alpha;k,\beta}$ (18') $S_{n,B;k,k} = S_{nk} S_{BS}(k) + \lambda C_{n,B;k,k} + \dots$ $E_{R_1}s = E_{R_1}s + A E_{R_1}s + A^2 E_{A_1}s + \cdots$ (17')

(191) Hm, x; n, B = Em Sma SaB + d Vm, x; n, B En [Em Smn SaB + 1 Vm, a; n, B] [Snn SB+(h) + A Cn, B; 28 + ...] = (E2 + A Ez, r + ...) (Smk Say (k) + A (ma; k, r + ...) oth order: Em Sma Sar(1) = E2 Sma Sar (1) (ZI') 1st order: Em Cm, a; k, & + Z. Vm, a; k, B SB+(k) = Et Cm, a; t, & + Sm & Say (2) Ex, 8 Set m=k: $\frac{1}{\beta=1} \left\{ V_{k,\alpha}; t, \beta - E_{k,t} S_{\alpha\beta} \right\} S_{\beta\delta} (k) = 0, \quad \alpha = 1, 2, 3, \dots g_{k}$ (29)For fixed 8: we have gr equations in gr unknowns which are homogeneous and linear, thus determinant vanishes. $V_{k_1 l_3 k_3 l} - E_{k_1 \delta}^{(i)} \quad \forall E_{j l_3 k_1 z} \quad \forall \pi, i j \pi, 3$ Va, 2, 1, 1 Vx, 2; 1, 2 - Ex, 5 Vk, 2; 1, 3 = 0 (30) This is the secolar equation. If all roots are unequal, the perturbation has removed the degeneracy.

LECTURE XXVIII 12-2-60

Continuation of Perturbation Theory: Additional Equation : (22'1 Em Cm, a; kd + Z Vm, a; k, B Cn, B; k, P = En Cm, x; k, t + Et, t Cm, x; h, t + Smk Et, t Sat (k) If some roots of the secular equation are equal, the first order perturbation has not completely removed the degeneracy. Suppose the orrginal degeneracy of Ex" is Sk, with f remaining degeneracy of level k, {X=1}, We can form E'k, t, A independent of A X=2 X=f A A = 1, ... f. Solving (21') with m to k (31) (m, x; h, + = $\frac{\mathcal{Z}}{\mathcal{Z}} \quad \forall m\alpha; h\beta \quad S\beta \mathcal{Z}$ $\frac{\mathcal{Z}}{\mathcal{Z}} \quad \mathcal{Z}$ Z J Uma V UZ, B SBY dr 13 J WAY = right linear combination Examine: If we choose right combinations to begin with, the secular equation will be diagonal. How is this done? Examine symmetry, since this is what gives rise to degeneracy originally.

If there is only one such &, that is &'= &, we have when the first order has removed all degeneracies: $E_{\mu r}^{(2)} = \underbrace{\underbrace{\mathcal{Z}}}_{\alpha \beta \delta} \underbrace{\underbrace{\mathcal{Z}}}_{n \neq k} \underbrace{\underbrace{\mathcal{S}}_{\beta \alpha}(\uparrow k) \quad \forall k, \alpha; n, p \quad \forall n, \beta; t \delta \quad \mathcal{S}_{\delta r}(\uparrow k)}_{E_{\pi}^{(0)} - E_{\pi}^{(0)}}$ which reduces to the second order non-degenerate upon choosing proper combinations. If some degeneracy remains, we have a second order secular equation: First of all, change notation: $X \rightarrow X, A , S_{SY}(k) \implies S_{S,YA}(k) \implies S_{S,YA}(k) \implies S_{S,YB}(k) \stackrel{(k)}{=} S_{S,YB}(k)$ since there might still be some degeneracy left. Thus we have: Z SAB (1,8) St, B; x Z { Ss, 8c (k) Scp (k, 8) which gives the secular equation: Define Z. The Ssec= WK(d,c) $\frac{2}{2} = \frac{V_{\pi}(s, 1); n_{\beta} V_{n\beta}; \chi(s, 1)}{E_{\pi}^{(0)} - E_{\pi}^{(0)}} - E_{\pi, \beta A}$ $\frac{2!}{3} \quad \frac{V_{k,(k,1)}}{E_{h}^{(0)} - E_{n}^{(0)}} \quad \frac{1}{2} \quad \frac{V_{k,(k,1)}}{E_{h}^{(0)} - E_{n}^{(0)}}$ = 0

$$\begin{aligned} & \text{Applications of Perturbation Theory:} \\ & \text{Example: Perturbation Theory:} \\ & \text{(b) } h = -\frac{\delta^{2}}{\delta k^{2}} - \frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} + y^{2} \\ & \text{(consider } -\frac{\delta^{2}}{\delta k^{2}} + k^{2} \\ & \text{(consider } -\frac$$

Then
$$E_{00}^{(0)} = \frac{a^2 \left| \int_{-\infty}^{\infty} \int_$$

Now asing
$$\varepsilon'' = -\frac{a}{2}$$
; $So_{1,x} = -S_{10,x}$
we get $\omega_{[0,1]} = \frac{1}{52} (v_{10} - v_{11}^{*})$
The $\xi \ \xi \ , \xi \]$ denote anti-commutation and
comutation symbology respectively. This the energies
are:
 $\varepsilon_{[0,1]} = 4 + \frac{a}{2}$; $\varepsilon_{[0,1]} = 4 - \frac{a}{2}$
Now $\varepsilon_{[0,1]}^{(1)} = \frac{2}{4} + \frac{1}{2} + \frac{c}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{a}{2}$
Now $\varepsilon_{[0,1]}^{(1)} = 4 + \frac{a}{2} - \frac{a^{*}}{8}$; $\varepsilon_{[0,1]} = 4 - \frac{a}{2} + \frac{a}{8}$
 $i'_{1} \ \varepsilon_{[0,1]} = 4 + \frac{a}{2} - \frac{a^{*}}{8}$; $\varepsilon_{[0,3]} = 4 - \frac{a}{2} - \frac{a^{*}}{8}$
No $\varepsilon_{[0,1]}^{(1)} = 4 + \frac{a}{2} - \frac{a^{*}}{8}$; $\varepsilon_{[0,3]} = 4 - \frac{a}{2} - \frac{a^{*}}{8}$
No $\varepsilon_{[0,1]}^{(1)} = 4 + \frac{a}{2} - \frac{a^{*}}{8}$; $\varepsilon_{[0,3]} = 4 - \frac{a}{2} - \frac{a^{*}}{8}$
No $\varepsilon_{[0,1]}^{(1)} = 4 + \frac{a}{2} - \frac{a^{*}}{8}$; $\varepsilon_{[0,3]} = 4 - \frac{a}{2} - \frac{a^{*}}{8}$
No $\varepsilon_{[0,1]}^{(1)} = 4 + \frac{a}{2} - \frac{a^{*}}{8}$; $\varepsilon_{[0,3]} = 4 - \frac{a}{2} - \frac{a^{*}}{8}$
No $\varepsilon_{[0,1]}^{(1)} = \frac{1}{2} + \frac{a}{2} - \frac{a^{*}}{8}$; $\varepsilon_{[0,3]} = 4 - \frac{a}{2} - \frac{a^{*}}{8}$
No $\varepsilon_{[0,1]}^{(1)} = \frac{1}{2} + \frac{a}{2} - \frac{a^{*}}{8}$; $\varepsilon_{[0,3]} = 4 - \frac{a}{2} - \frac{a^{*}}{8}$
No $\varepsilon_{[0,1]}^{(1)} = \frac{1}{2} + \frac{a}{2} - \frac{a^{*}}{8}$; $\varepsilon_{[0,3]}^{(1)} = \frac{1}{4} - \frac{a}{2}$
 $\varepsilon_{[0,1]}^{(1)} = \frac{1}{2} + \frac{a}{2} - \frac{a^{*}}{2} + \frac{a}{2} + \frac{a}{2}$

Now consider example where first order perturbation does not completely remore the degeneracy: (5) $H_0 = -\nabla^2 + \Lambda^2 = H_X + H_y + H_z$ $with E^{[0]} = 3 5 7$ 000 100, 010, 001 100, 002Choose for perturbing potential: (6) V = za(xy + yz)and we have : E000 = 3 + 0 + ... thus we consider second order : (7) $E_{000} = 2 \frac{|7a \cdot \frac{1}{2}|^2}{-4} = -\frac{a^2}{2}$ 50 that E000 = 3+0 - a2 Now consider next states We set up secular equation: (00 010 00) - E⁽¹⁾ a 0 100 $a = -E^{(i)} = 0$ $E^{(i)} (za^2 - E^{(i)^2}) = 0$ 001 0 a -E" $E^{(1)}=0, +\sqrt{2a^2}, -\sqrt{2a^2}$ Thus for this level, the first order removes the degeneracy We now form the proper wave functions: Using the same procedore as before we have:

0: $C_{010} = 0$: $W_{(101)}^{*} = \int_{151}^{1} (V_{100} - V_{001})$

+
$$i \mathbb{P} a_i$$
; $-i \mathbb{P} Coo + Cov = 0$
 $Cov - i \mathbb{P} Cov = 0$
 $fhex : $\omega_{R, i} \mathbb{P} a_{R} = \frac{1}{2} (v_{1,00} + i \mathbb{P} v_{0,10} + v_{0,1})$
 $-J \mathbb{P} a_i$: $\omega_{(L, STal)} = \frac{1}{2} (v_{7,00} - J \mathbb{P} v_{0,10} + v_{0,1})$
 $\mathcal{L} \mathcal{E} CFURE \overline{XXX}$ J^{2-7-60}
 $Re call for one dimension:
 $H_{K} = -\frac{\partial v_{i}}{\partial x^{2}} + x^{2}$
 $Cryptonialos: 2n+1$
 $matrix closents: \int_{\overline{T_{2}}}^{\overline{T_{2}}}$
In three dimensions:
 $Ho : Hx + Hy + Hz$; $Y = Za(Xy + y^{2})$
 $Cryptonyalos; 3, 5, 7, ...$
 $For the cryptonyalos 7;$
 $\overline{Z}_{N+2} \left\{ V_{NCNYM1}; v_{N} v_{N} v_{N} - \overline{E}_{inp}^{(N)} \right\} Suing' v_{N}; X = 0$
 $Cning' v_{N}$
 $from cyclicne [29] of the general treatment. The c's
form i:
 $\omega = \sum_{N=1}^{2} U_{NCNYM2} C_{NCMYM2}$$$$

\frown		011	101	110	200	020	002		
								Charles and	
	011	- E (1)	a	0	Ó	va	Jza		
	101	a	- E ⁽¹⁾	a	D	0	0		
	110	0	a	-E(1)	Jzla	Ja	0		
								= 0	
	100	0	0	Jza	-E(1)	0	0		
	020	Ja	0	vza	0	-E (1)	0		
	002	Jza	D	0	0	0	-E"		

Operations: -JZ x 2nd column + 5th column

-E"	a.	0	0	0	Jza	
a	-E	a a	0	J€ E "	0	
0	a	-E"	Ja	0	0	
0	0	Jzla	-E"	0	0	
Ja	0	52 a	0	-E"	0	
Jza	0	0	0	0	- E ⁽¹⁾	

*

	- E "	a	0	0	Jzla	
-E"	3a	~E''	3a	0	0	
	0	a	-E"	Jzla	0	
	0	0	v2 a	- E(1)	0	
	20	0	0	Ø	-E"	-

- E"	$\frac{2a^2}{E^{(0)}} - E^{(0)}$	a.	0	0	
	3a	- E''	3a	0	
	0	a-	$-E^{ij}$	vza	
	D	0	Ja.	$- E^{(i)}$	

,

Jz a (4 th row) + (3rd row) $\begin{array}{c} -E^{(1)}^{3} & \frac{2a^{2}}{E^{(1)}} - E^{(1)} & a & 0 \\ 3a & -E^{(1)} & 3a \\ 0 & a & \frac{2a^{2}}{E^{(1)}} - E^{(0)} \end{array}$ with the result that : $E^{(1)^2} \left(2a^2 - E^{(1)^2} \right) \left[2a^2 - E^{(1)^2} + 6a^2 \right] = 0$ $E^{(1)} = 0, 0, J_{2}[a, -J_{2}[a, 2J_{2}]a, -2J_{2}[a]$ so that the first order perturbation has not completely removed the degeneracy, we now examine the c's : $E^{(1)} = 0$; $C_{011} = 0$ $C_{110} = 0$ (6th and 4th) nothing (Zud and 5th) Cioi + J27 Cozo + J2 Cooz =0 (1st and 3rd) C101 + JZ C200 + JZ C020 = 0 " 0r C002 = C200 We now have one equation left in three unknowns so we choose two of them. Choose: Cioi = 0: Q1 = 1 (V200 - POZO + 2002) Choose: Cozo = 0 : 92 = 1 (JI VIOI - U200 - U002) However Q, q2 although normal, are not orthogonal. Take Q1 = Q1 Q2 - (Q1, Q2) Q1 = 1 V101 - 1 V200 - 1 V002 + 1 (37200 - 2020 + 000)

or $\Psi_2 = \int_{\frac{3}{4}}^{\frac{3}{4}} \overline{\mathcal{V}}_{101} - \int_{\frac{1}{24}}^{\frac{1}{4}} \overline{\mathcal{V}}_{200} - \int_{\frac{1}{6}}^{\frac{1}{4}} \overline{\mathcal{V}}_{002} - \int_{\frac{3}{4}}^{\frac{1}{4}} \overline{\mathcal{V}}_{002}$ upou normalizing ez - (q, qz) q. with Jz We can now form from equation (39) in the general treatment the determinant for E(2). Combinations of 4 and v: 211 112 310 013 130 031 0 101 Jaa vza 0 0 0 200 Jaa 0 9 0 0 0 - 1 020 0 0 0 131a Jala 0 5 002 0 a JJa 0 0 0 ψ_{1} $\frac{a}{\sqrt{3^{1}}}$ a a -a a -a Similarly, 42 5a/Jz 5a/Jzy1 -a/Jz1 -a/Jz1 -a/Jz1 -a/Jz1 -a/52 $\sum_{n=1}^{2} |V_{n}; (\psi_{i})|^{2} = \frac{4}{3} \frac{z}{a^{2}} - \frac{7}{6} a^{2}$ Then: $Z_{1} | V_{n}; (\psi_{1})^{2} = \frac{10}{3} a^{2} - \frac{5}{4} a^{2}$ \leq (cross products) = $\frac{8a^2}{2}$ - $2a^2$ $\begin{vmatrix} -\frac{7}{6}a^2 - E^{(2)} & -\frac{\sqrt{2^2}a^2}{3} \\ -\frac{\sqrt{2^2}a^2}{3} & -\frac{5}{6}a^2 - E^{(2)} \end{vmatrix} = 0$ 50 ! E¹²¹ = - = a², - = a², degeneracy removed The correct wave functions (C. 4. + Cz 4.) are: $\mathcal{U}_{7,0;1} = \frac{\sqrt{21}\psi_1 + \psi_2}{\sqrt{37}}; \quad \mathcal{U}_{7,0;2} = -\psi_1 + \sqrt{27}\psi_2 = \psi_2!$

LECTURE XXXI 12-9-60

Exact solution:

$$H = -\nabla^2 + \chi^2 + y^2 + z^2 + za \chi y + za \chi z$$

Q

We now diagonalize Q

- $\begin{vmatrix} 1-\lambda & a & 0 \\ a & 1-\lambda & a & = 0 \\ 0 & a & 1-\lambda \end{vmatrix}$
- $(1-\lambda) \left[(1-\lambda)^2 2a^2 \right] = 0$
 - d=1, 1+52a, 1-52a
- We can now separate the variables in the Schroedingor Equation and get:
- $E = 2n_{1}+1 + (2n_{2}+1) \left[1+\sqrt{2}a\right]^{1/2} + (2u_{3}+1) \left[1-\sqrt{2}a\right]^{1/2}$
- which will give perturbation results on expansion of radicals.

The perturbation theory presented here is that of Schroedinger's but others can be developed.

Recall: Z Hmu Sup = En Smp or (STHS) = ER. Sin We wanted to find E2's that diagonalized. H.

If there were a finite number of states, one could set the determinant equal to zero; However, here we have infinite determinants:

$H_{a} - E$	Hiz	
Hzi	Huz-E	- 0
e e	1	<u> </u>
l.	1	

We can split off segments if the process has a limit. We can use this if we are discussing pereturbations between close levels.

The WKB Method (Wentzel, Kramers, Brilloun)

Really discovered by Jeffrey's and Poincare'.

Landau-Lifshitz call this the guasi-classical method. We can look a wave function and estimate its wavelength, writing,

$$d = \frac{k}{p}$$
, still having $p = \sqrt{2m(E-V)}$

where E-V does not change much over the wave function's wavelength d.

 $\lambda = \frac{\hbar}{P} = \frac{h}{\sqrt{2m(E-V)}}$

(1) The condition we need is $|\nabla \lambda|$, $\lambda = |\nabla \lambda| < < 1$

Consider the general wave equation;

(2) $H\left(q, \frac{\hbar}{\lambda} \frac{\partial}{\partial q}\right) \psi + \frac{\hbar}{\lambda} \frac{\partial \psi}{\partial t} = 0$

Now focus attention of phase of wave function:
(3)
$$\Psi = e^{4S}$$
, S_{0} is Hamilton's principle function.
Now suppose this approximation can be expanded
in gowers of \overline{k} if \overline{k} is sufficiently small.
(4) $S = \overline{k}^{-1} S_{0} + \frac{1}{2}S_{1} + \frac{1}{8}S_{2} + \cdots$, S'_{3} are real
Now substitute in Ψ and then in wave equation:
Take coefficients of \overline{k}° :
(5) $H\left(\frac{q}{q}, \frac{\partial S_{0}}{\partial q}\right) + \frac{\partial S_{0}}{\partial \tau} = 0$ (Hamilton Jacob, Equation)
We can new do this for other powers of \overline{k} .
First, write:
(6) $-\frac{1}{2}m}\overline{\nabla^{2}\Psi} + V\Psi + \frac{1}{2}\frac{\partial\Psi}{\partial t} = 0$
For \overline{k}° :
(7) $\frac{1}{2m}(\overline{\nabla S_{0}})^{2} + V + \frac{dS_{0}}{\delta t} = 0$ (H-3 equation agein)
Now for \overline{k}^{\prime} :
(8) $-\frac{4}{2m}\overline{\nabla^{2}S_{0}} + \frac{1}{\sqrt{m}}(\overline{\nabla S_{0}})(\overline{\nabla S_{0}}) + \frac{1}{\sqrt{m}}\frac{\delta S_{0}}{\delta t} = 0$
(9) $\overline{L}m$ classical mechanics, S_{0} is unit of action,
and $\overline{\nabla S_{0}} \to \overline{q}$
The auentum weekenics, for the probability density;
(10) $\frac{1}{m}(\overline{p}, \overline{v}, \overline{q}) + \frac{q}{m}, \overline{p} + \frac{\partial \rho}{\partial t} = 0$

Now this equation reduces to:
(12)
$$\overline{V} \cdot (p\overline{v}) + \frac{\partial e}{\partial t} = 0$$

which is the equation of continuity of probability
flow. Hamilton first vocal this to approximate
physical options with geometric appression of the
analogy carries over.
LECTURE XIXII (2-12-60
Continuation of WKB Method:
(13) $-\frac{\pi^{*}}{2m} \frac{d^{*}u}{dx^{*}} + (V-\overline{v})A = 0$, for stationary states.
(14) $-\frac{\pi^{*}}{2m} \frac{d^{*}u}{dx^{*}} + (V-\overline{v})A = 0$, for stationary states.
(15) $\frac{1}{2m} \left(\frac{dS_{2}}{dc}\right)^{*} + (V-\overline{v}) = 0$ (Hauniton Such Equation)
 $\sigma_{2} \frac{dS_{2}}{dx} = \frac{1}{2m} (\overline{E} \cdot V)$, $\sigma \cdot \frac{dS_{2}}{dx} = \frac{1}{2} P$
For $E > V$:
(17) $S_{2} = constant \pm \int \overline{fzm} (\overline{v} - \overline{v}) dx$ is not good
(17) $S_{3} = constant \pm 1 \int \overline{fzm} (V - \overline{v}) dx$ is not good
(18) $-\frac{1}{2m} \frac{d^{2}S_{3}}{dt^{*}} - \frac{1}{2m} 2 \frac{dS_{3}}{dt} \cdot \frac{dS}{dt} = 0$

We get : $(19) \frac{S_{o}''}{S_{o}'} = -2S_{i}'$ - 1/2 log So' + constant = S, or - I log zm (E-V) + constant = S, for E>V, on E<V since the IT goes into the constant. We can even through the im into the constant or write it any way we please, such as, Si = - + log Z E-VI + constant Thus : (20) $e^{5\prime} = \frac{constant}{\left(\frac{2|E-V|}{m}\right)^{1/4}}; \quad \mu = e^{\frac{150}{h} + 5i}$ (21) $\mathcal{U} = \left[\frac{2(E-V)}{m}\right]^{-1/4} \left\{A \in \left(\frac{L}{h}\right) \int_{\sqrt{2m}(E-V)}^{X} dx - \left(\frac{L}{h}\right) \int_{\sqrt{2m}(E-V)}^{X} dx\right\} + B \in \left\{B \in \left(\frac{L}{h}\right)^{-1/4} + B \in \left(\frac{L}{h}\right)^{-1/4} \right\}$ for E>V. For VDE: (22) $\mathcal{U} = \int \frac{2(V-E)}{m} \int \frac{1}{2} \int \frac{1}{k} \int \sqrt{2m(V-E)} dx - \frac{1}{k} \int \sqrt{2m(V-E)} dx$ Consider: (23) $j = \frac{\pi}{2m\mu} \left(u^* \frac{d}{dx} u - u \frac{d}{dx} u^* \right)$

Upon substitution of (21) into (23) y we get, after tedious calculation: (24) $J = |A|^2 - |B|^2$ The amount of flux to left and right are constant. This means that in this approximation there is no reflection for smooth, slowly changing motentials. Analogous to slowly changing index of reflaction optics, where bending of light occurs, Upon substitution of (22) into (23): (25) $y = \lambda (C^*D - CD^*)$ (24) The problem is now to find the relation between A, B, C, D; C,D E A,B Xo approximation is no good as Y-E changes rapidly classical turning point Consider manipulation in the complex plane: Although Xo is a sungular point of the approximation, it is not in the actual solution. The fact that the constants 20 change over the plane 13 called Stoke's phenomenon.

We write:

$$\frac{d^{2}\mu}{dz^{2}} + 4z^{2} \left\{ g(z) + \lambda \right\} \mu = 0$$
where $\lambda^{z} = \frac{zm}{k^{z}} E_{z}$, $g(z)^{2} = -\frac{V}{E_{z}}$, $\lambda = \frac{E}{20}$
where $\lambda^{z} = \frac{zm}{k^{z}} E_{z}$, $g(z)^{2} = -\frac{V}{E_{z}}$, $\lambda = \frac{E}{20}$
where $\lambda^{z} = \frac{zm}{k^{z}} E_{z}$, $g(z)^{2} = -\frac{V}{E_{z}}$, $\lambda = \frac{E}{20}$
where $\lambda^{z} = \frac{zm}{k^{z}} E_{z}$, $g(z)^{2} = -\frac{V}{E_{z}}$, $\lambda = \frac{E}{20}$
where $\lambda^{z} = \frac{zm}{k^{z}} E_{z}$, $g(z)^{2} = -\frac{V}{E_{z}}$, $\lambda = \frac{E}{20}$
where $\lambda^{z} = \frac{zm}{k^{z}} E_{z}$, $g(z)^{2} = -\frac{V}{k^{z}}$, $\lambda = \frac{E}{20}$
($g + \lambda$)² $\lambda^{z} = 0$ at the twining point.
 $M = \int_{z}^{z} (g + \lambda)^{2} dz$
($g + \lambda$)² $\lambda^{z} = 0$ $\pi + \frac{E}{2} e^{-\lambda k \omega}$
($g + \lambda$)² $\lambda^{z} = 0$ $\pi + \frac{E}{2} e^{-\lambda k \omega}$

 $M = \int_{z}^{z} (g + \lambda)^{2} h^{z} dz$

 $A = \frac{e^{\lambda k \omega}}{(g + \lambda)^{2}} H = 0$

 $\lambda^{z} = \frac{zm}{k^{z}} E_{z}$, $g^{z} - \frac{V}{k^{z}}$, $\lambda = \frac{E}{20}$

 $group on the asymptotic solution:$

 $d = (g + \lambda)^{-2} (A e^{\lambda k \omega} + B e^{-\lambda k \omega})$

(for from 20: $g(z_{z}) + d = 0$)

where $\omega = \pm \int (y + d)^{1/2} dz$ along a straight line: Now the plot of yth vs x. gives two curves: ytd do not 3+2 con fuse OR these diagrams with behavior exponential Mexponential ascillating ascillating Ko of V. Now go into the complex 2 plane. the following diagrams indicate the behaviour of w as one circumvents the branch point to. III real - W - + Imaginary wt + real Sa We pick the sign of the square root in w to make a positive. We write w+ above and below the real axis because the plane must be cot. We make the cot as shown, Expand y+ 1 in Taylor series about Zo! 1+1 = 0 + · y' (zo) (z-zo) + ··· (y+x)"= (y'(zol) 1/2 (z-Zo)"z + ... Then ; $\omega = \int \left[(y'(z_0))^{1/2} (z - z_0)^{1/2} + \cdots \right] dz$ $= \frac{Z}{2} \left(y'(z_0) \right)^{1/2} \left(z - z_0 \right)^{3/2} + \cdots$

Therefore near Zo! $\omega \sim n^{3/2} e^{\lambda \frac{3}{2} 0}$ The function changes from in its principle value as we real to imaginary everyy have cut the Tw + plane. It is 600 seen that as we circum. rent Zo, W Now return to original gres real and imaginary about every 60°. Higher order terms in diagram. We see we can work solely with one the series will diagram. cause variations in this angle. T Consider: $\begin{pmatrix} A I I \\ B I \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} A I \\ B I \end{pmatrix}$ Bdominant Sz - L T'I A dominant We can deduce some properties about the above B dominant matrix 53 $\begin{pmatrix} A_{\rm TL} \\ B_{\rm TL} \end{pmatrix} = \begin{pmatrix} I & \infty \\ 0 & I \end{pmatrix} \begin{pmatrix} A_{\rm L} \\ B_{\rm TL} \end{pmatrix}$ TI The one's appear because of the possibility of BI = 0. Also, using the same reasoning; $\begin{pmatrix} A_{III} \\ B_{III} \end{pmatrix} = \begin{pmatrix} I & O \\ (B & I) \end{pmatrix} \begin{pmatrix} A_{III} \\ B_{III} \end{pmatrix} \xrightarrow{,} \begin{pmatrix} A_{I'} \\ B_{I'} \end{pmatrix} = \begin{pmatrix} I & \delta' \\ O & I \end{pmatrix} \begin{pmatrix} A_{III} \\ B_{III} \end{pmatrix}$ $= \begin{pmatrix} | & \mathcal{E} \\ 0 & | \end{pmatrix} \begin{pmatrix} I & 0 \\ \mathcal{B} & | \end{pmatrix} \begin{pmatrix} 1 & \alpha \\ 0 & | \end{pmatrix} \begin{pmatrix} \mathcal{A}_{\mathcal{I}} \\ \mathcal{B}_{\mathcal{I}} \end{pmatrix}$ 17 x+8+xB8 At $1 + \alpha \beta$

Now the correct expression is, from the fact that the exponentials change sign on going around the plane:

$$\begin{pmatrix} A_{I'} \\ B_{I'} \end{pmatrix} = \begin{pmatrix} O & A \\ A & O \end{pmatrix} \begin{pmatrix} A_{I} \\ B_{I} \end{pmatrix}$$

giving:
$$1 + \delta B = 0$$
, $\alpha + \delta + \alpha \beta \delta = 1$
 $B = 1$, $\gamma + \alpha \beta = 0$

Then
$$\begin{pmatrix} A_{II} \\ B_{II} \end{pmatrix} = \begin{pmatrix} O & J \\ O & I \end{pmatrix} \begin{pmatrix} A_{I} \\ B_{II} \end{pmatrix}$$

Now set AI = 0 : Then BI = 1 AI

LECTURE XXXIV 12-16-60

Recapitulation:

$$\begin{aligned}
\mu \cong (y + \lambda)^{-1/4} & \left\{ A e^{x \cdot A \omega} + B e^{-x \cdot A \omega} \right\} & I \\
\begin{pmatrix}
A I \\
B I
\end{pmatrix} = \begin{pmatrix} 1 & u \\
0 & i \end{pmatrix} \begin{pmatrix}
A I \\
B I
\end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
0 & i \end{pmatrix} \begin{pmatrix}
A I \\
B I
\end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I \end{pmatrix} & I \\
\end{bmatrix} = \begin{pmatrix} 1 & u \\
B I$$

I

Final connection formulaes $A_{I} = e^{-4\pi74}$, $B_{I} = e^{\pm 2\pi74}$ $|y+d|^{-y_4} \xrightarrow{-k(\omega)} \longrightarrow z(y+d)^{-1/4} \cos(k\omega - \pi)$ on Sz onI This is the first connection formula. Choose some other phase; $Az = e^{\pm \sqrt{\pi/4} - 6}$ $B_T = e^{\pm \sqrt{\pi/4} - 6}$ $O_{\mathcal{N}} \neq (\gamma + \lambda)^{-1/4} \cos(\lambda \omega + \frac{\pi}{4} - \theta), \quad \Theta \neq \pi_{\mathcal{Z}}$ what is this on Sz? $A_{II} = A_{I} + A_{BI} = e^{A I / 4} \left(e^{-A \theta} + e^{A \theta} \right)$ Thus on Sz: Z coze |y+ A) " e h wi ors cos 0 1y+d1 e * (y+d) - (y+d) - (x w + T - 0) on Sz On I Take 0=0: 1y+1 -1/4 e x1w1 - (y+1)-1/4 con (xw+ I) This is the second form, called the canonical form, of the connection formula. In troduce new notation: Refered to diagram a $p = + \sqrt{2m(E-V)} E > V$ $|-p| = + \sqrt{2m(V-E)} = E \langle V \rangle$

then? First: $\frac{m}{\ln p} = \frac{1}{\hbar} \int_{x}^{x} |p| dx \longrightarrow 2 \frac{m}{p} \cos\left(\frac{1}{\hbar} \int_{x_{0}}^{x} p dx\right)$ -<u>π</u> 4 second: me e the fx lpldx $\frac{\pi t}{p} \cos \left(\frac{1}{t} \int_{-\infty}^{\infty} p \, dx + \frac{\pi}{4} \right)$ without Jp with m --- actual wave function Application: Oscillator (K2) J: C' Jun e th / x2 leldx ~ ZC' Jun cos IL ydx - IT X7X2 XIGXCX The unallowed forms would be made from the second time formula so that the total solution is: $\mathcal{M} = Av + Bv_2$, however B = 0 for behaved solution Calling C'=1; we can write for a: change signs for A, B constant $\cos\left\{\frac{1}{\hbar}\int_{x_{1}}^{x}pdx-\frac{\pi}{4}\right\} = A\cos\left\{-\frac{1}{\hbar}\int_{x_{2}}^{x_{2}}pxdx+\frac{\pi}{4}\right\} + B\cos\left\{-\frac{1}{\hbar}\int_{x}^{x}pdx+\frac{\pi}{4}\right\}$ 4 + 17/2 Q

Publicant 20-30
due law 13 [Energy]
Therefore:
$$cor \varphi = cor (4+2\varphi-\psi_3)$$

 $= cos 4 cor (9-4) - surf sur (q-\phi)$
and for $B = 0$;
 $sin \left[\frac{1}{\pi}\int_{x_1}^{x_2}\varphi dx + \frac{1}{\pi}\int_{x_2}^{x_2}\varphi dx - \frac{\pi}{2}\right] = 0$
 $or - \frac{1}{\pi}\int_{x_1}^{x_2}\varphi dx - \frac{\pi}{2} = \pi\pi\pi$, $\pi = 0, 1, 2, \cdots$
and $\int_{x_1}^{x_2}\varphi dx - \frac{\pi}{2} = \pi\pi\pi$, $\pi = 0, 1, 2, \cdots$
and $\int_{x_1}^{x_2}\varphi dx = (n+\frac{1}{2})\pi\pi$
Somerfeld- Wilson integral is
 $\oint \phi dx = (n+\frac{1}{2})h$
LECTORE EXAM $I=-IA-60$
Recapitulation:
 $Zm(E-v)$ real, $\int Zm(E-v) = p$
The first connection formula gives:
 $(\overline{T}) \int \frac{\pi}{|\phi|} e^{-H_{x_1}^{x_2}} dx^{-1} \rightarrow 2 \int \frac{\pi}{|\phi|} cor \left(|H_{x_1}^{x_1}} dx^{-1}| - \frac{\pi}{4}\right)$
and the second connection formula gives:
 $(\overline{T}) \int \frac{\pi}{|\phi|} e^{+H_{x_1}^{x_1}} dx^{-1} = \int \frac{\pi}{|\phi|} cor \left(|H_{x_1}^{x_2}} dx^{-1}| - \frac{\pi}{4}\right)$

Application to Oscillator: Somerfeld Theory gives : 1/4 $\int p \, dx = \left(n + \frac{1}{2}\right) \frac{h}{2}$ which must be satisfied. Total phase change will be, from diagrams (n+1)T, where n is number of zero T (+ π Crossings. Now: $V = \pm m \omega^2 x^2$ then: $\int \sqrt{2mE - m^2 \omega^2 x^2} dx = (n + \frac{1}{2}) \pi \pi$

or $\int \frac{2E}{m\omega^2} - x^2 dx = (n+\frac{1}{2}) \frac{\pi h}{m\omega^2}$

This integral is of the form) Jaz-x2 dx or the area of semicircle :

Therefore: $\frac{\pi}{2} \frac{ZE}{m\omega^2} = (n+\frac{1}{2}) \frac{\pi \hbar}{m\omega}, or E = (n+\frac{1}{2}) \frac{\pi}{k\omega}$

which is exactly for the harmonic oscillator. For other oscillators, the approximation is very good even near the turning points which one would not expect from the setting up of the problem. This is because one may encircle both turning points with a path as large as desired as there are no singularties in the Z plane.

what is normalization? $I = 4C^2 \left(\frac{\pi}{p} dx \cos^2 \left(\frac{1}{h} \right) \right) - \frac{\pi}{4} \right)$ = 1 since rapidly varying inside. Therefore: C-2 = 4 / me dx, thus: Inside: $\mathcal{U} \stackrel{\simeq}{=} \frac{1}{\sqrt{\int_{x_1}^{x_2} \frac{m}{2\rho} dx}} \cos\left(\frac{1}{\hbar} \int_{x_1}^{x_1} - \frac{\pi}{4}\right) \cdot \int_{y_1}^{y_2} \frac{m}{2\rho} dx}$ Outside: u = 1 $e^{\frac{1}{h} |f|}$ $\frac{m}{h}$ $z \sqrt{\frac{x_2 m}{y_1 - \frac{2p}{x_2}}} dx$ $\frac{1}{h}$ Application: Penetration of Boundary. This is a classic application of this method. This method is good We can unduce that I will be of the form Twe-2W

 $A \qquad \int_{p}^{m} e^{-\frac{1}{n}\int_{x_{1}}^{x}p\,dx + iq}$ We want to choose the phase factor such that the imaginary part decays to the left of xz, Expanding : $\int \frac{\mathcal{M}}{\mathcal{P}} \left\{ \cos\left(\frac{1}{\hbar} \int_{x_2}^{x} px \, dx + q\right) + i \sin\left(\frac{1}{4} + i \cos\left(\frac{1}{\hbar} \int_{x_2}^{x} p \, dx + q - \frac{\pi}{2}\right) \right. \\ \left. \frac{\pi}{4} \right\}$ choose - TT Thus in A: real part = $\frac{1}{|p|} e^{\frac{1}{h} \int_{x}^{x_{2}} |p| dx}$ $= \int \frac{\pi}{\mu p_1} e^{W - \frac{1}{t_1} \int_{x_1}^{x_1} \frac{1}{p_1} dx}$ Then, m x < x, real part = 2 m e (th) r dx - T which goes to eta() + e-1() Incident Reflected under these conditions, the transmitted is I and the incident and reflected are e. The consideration of the maginary part will make the incident * reflected such that the transmission will be $T^{\frac{N}{2}} = \frac{1}{e^{2W} + 1}$

Consider case of no turning points: $E + \frac{s}{2}\chi^2 = 0$, $E = \pm \chi \frac{zE}{s}$ Thus in 'z" plane: Y { X $Y = \int \frac{P}{T} dz$ and we get : $T = \frac{1}{e^{-2\gamma} + 1}$, for tangent case $T = \frac{1}{2}$ LECTURE XXXVI 12-21-60 Central Field Problems: Phase Integral Method Inverse field: Trouble occors when potential vanishes. 2=0 Veff = V(r) + 12 1(2+1) 2>0 Pr S-state AZ E $\frac{1}{\pi} \int zm \left(E - V_{eff} \right) dr = (n + \frac{1}{2}) \pi$ Kramer's Rule: $\frac{l(l+l)}{n^2} \rightarrow \frac{(l+\frac{1}{2})^2}{n^2}$ and we will get precise solution.

Langer Substitution: $\mathcal{U}'' + \frac{2m}{h^2} \left(E - V - \frac{h^2}{2m} \left(\frac{l(l+1)}{2m} \right) \right) \mathcal{U} = \sigma$ To make a variable run continuously, we make the change $r = e^{\chi}$, $u = e^{\chi/\epsilon} y$ and get: $\frac{d^2y}{dx^2} + \frac{zm}{h^2} \left\{ \frac{e^{2x}E - e^{2x}V - \frac{h^2}{2m} \left(l + \frac{l}{2} \right)^2 \right\} = 0$ where x now ranges from - as to + as , which gives us an oscillator situation 1 Then the phase integral method gives : $\frac{1}{\pi} \int zm[] dx = (n + \frac{1}{2}) \pi$ L JZm (E-Vess) dr = (n+t) TT In the old grantom theory: $\frac{1}{t_{r}}\left(\int zm(E-v-\frac{t_{r}^{2}}{zm},\frac{k^{2}}{r^{2}})dr = n'\pi, \quad k = 1, 2, 3, ... \right)$ In WKB method : $\frac{1}{h} \left[Zm \left(E - V - \frac{(l+1)^2}{2m} \frac{h^2}{2m} \right) dr = \frac{(n'+1)}{2} T$ l=0, 1, 2, 3, ···

& Decay ! From previous lecture, T= e-ZW $W = \frac{1}{\hbar} \int_{0}^{h_{z}} Zm \left(Vess - E \right)^{2} dr$ E n To get particle bouncing in state, we must assome state is high enough such superposition can form packets. Now: decay probability = X = e^{-2W} unit time = 2 jⁿ dr where v= z(E-Vegs), and then, N=e-ot No, where N is the number of decays / unit time. However, this picture does not corresponden to physical reality, Really have no packets formed. We require the maginary part to decay to the JI a (kut + T))eft -> 1 Sm (kw2+ =) = 1 cos (kw2 - IZ) Ē + coa (h w = + T/4) B In B: 1 e k Wil W= k W2 (rd) Now where $k[w_2] = \int_{n}^{n_2} \int_{n}^{n_2} \int_{n}^{n} = W - k[w_1]$

or, mB; for seal part only:

$$\frac{1}{|W|} e^{\frac{1}{2}|W|} = \frac{1}{|V|} e^{W-\frac{1}{2}|W|}$$
The connection formula is then:

$$\frac{2}{|W|} e^{\frac{1}{2}|W|} = \frac{1}{|V|} e^{-\frac{1}{2}|W|}$$
For real part.

$$E is found from \frac{1}{2} \int_{V}^{A} \sqrt{2m} (E - \frac{1}{2}) t = (n + \frac{1}{2})\pi$$
Now the integinary part has $2 \frac{e^{-W}}{|V|} \cos(\frac{1}{2}|U|) + \frac{1}{2}$
However, the integinary part only blow up to the left of a. Gamow's approximation is to consider

$$E = E - \frac{1}{2} \frac{1}{2} \frac{1}{2} (\frac{1}{2} + \frac{1}{2}) = 0$$

$$Me^{-\frac{1}{2}Et/\frac{1}{2}} = e^{-\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}} \frac{1}{2} \frac{1}$$

(

which gives : $Z_{2}k = \lambda^{2}(\lambda - \lambda^{*}) + \int_{-\infty}^{-\infty} \frac{1}{2} \frac{dr}{v} e^{2w}$ making the approximation of cos Q ~ z and neglecting the tail in the parrier. One will find that we get the same answer with the packet approximation. This concludes the formal lectures. See reading period assignment.

Physics 251 a Reading Period Assignment 1960-61 All in Schiff's Quantum Mechanics, either edition (they are identical): Center of - miss and relative coordinates in wave michanier -First surrection of Sect. 16 (12 paper) Defin l'on of reattering cross-section dutoducory passage and first subsection of Sent. 18 (2 pages) Time-dependent perturbation theory and applications -

Section 29 (10 pages) Section 31 (7 pages)

. .

.

2

*

7

READING PERIOD ASSIGNMENT REDUCED MASS We are concerned with solving the Schroedinger equation for a system of two particles, viz; $= \left(-\frac{\pi^2}{2m_i}\left(\frac{J^2}{Jx_i^2} + \frac{J^2}{Jy_i^2} + \frac{J^2}{Jz_i^2}\right) - \frac{\hbar^2}{2m_2}\left(\frac{J^2}{Jx_i^2} + \frac{J^2}{Jy_2^2} + \frac{J^2}{Jz_i^2}\right)\right)$ + V (X1, y1, Z1, X2, Y2, Z2) (X1, Y1, Z1, X2, Y2, Z2) If the potential depends only on the relative coordinates, such that V= V(X,-X2, y,-y2, Z,-Z2), we find we can separate the equation into two equations, one depending on the relative coordinates X, y, & and the other on the coordinates of the center of mass, XYZ. We define these coordinates as ! (2) $X = X_1 - X_2$, $y = y_1 - y_2$, $z = z_1 - z_2$ MX = mixi + mixz, MY = miyi + mizz, MZ = mizi + mizz where M= mi + mi is the total mass of the system. We can now rewrite equation (1) as : $(3) \quad \iota \frac{d \varphi}{d t} = \left[-\frac{\hbar^2}{2m} \left(\frac{J^2}{J \chi^2} + \frac{J^2}{J \chi^2} + \frac{J^2}{J \chi^2} \right) - \frac{\hbar^2}{2\mu} \left(\frac{J^2}{J \chi^2} + \frac{J^2}{J \chi^2} + \frac{J^2}{J \chi^2} \right) \right]$ $+ V(x,y,z) \psi$ where $\mu = \frac{m_i m_c}{m_i + m_c}$ is called the reduced mass. this equation can be separated by the usual straight forward technique.

The result is :

(4) $\Psi(x, y, z, X, Y, Z, t) = u(x, y, z) U(x, Y, Z) e^{-\sum_{k=1}^{L} \frac{(E+E')t}{k}}$

 $-\frac{\hbar^2}{2\mu}\nabla^2\mu + V\mu = E\mu$ $-\frac{\hbar^2}{2M} \nabla^2 \mathcal{U} = E'\mathcal{U}$

where the 7² represent the Laplacean operator with respect to the appropriate coordinates, The first differential equation represents the usual stationary tchroedinger equation, except the mass used is the reduced wasa. The second equation describes The notion of the septem as a whole which behaves as a free particle.

READING PERIOD ASSIGNMENT TIME DEPENDENT PERTURBATION THEORY Reference: Schiff, Sections 29, 31 It is generally impossible to obtain solutions of Schroeduger's equation when the stamiltorian is time dependent, hence the need for a perturbation treatment. We take the time dependent part to be small compared to the stationary part and write . (1) H = Ho + H', Ho Un = En Un where Ho un = En un is the usual stationary "known" solution with the unperturbed Hamiltonian and H' is the time dependent perturbing part and is taken small. We must now work with the Time dependent Achroedinger equation: (z) it the = H4 We make the usual expansion in terms of the unperturbed wave functions where now the coefficients depend upon the time: (3) $\psi = \sum_{n} a_n(t) M_n e^{-\lambda E_n t/\hbar}$ fubstitution into (2) yelds: (4) Zi it dan Un e - i Ent/t + Zi an En Un e - i Ent/t = Z' an (Ho + H') Un e - r Ent/h Mang Hour = Enden and forming matrix elements,

we obtain; using In > = et and <k1 = llk : (5) $th \frac{dah}{dt} e^{-tE_{x}t/\hbar} = \sum_{n} (k|H'|n) a_{n} e^{-tE_{x}t/\hbar}$ We now define the bohr frequency as : and obtain : (7) $\frac{dan}{dt} = \frac{1}{16} \sum_{n} \langle h|H'|n \rangle e^{-\alpha hnt} an$ We now go to perturbation methods by writing H'= 1 H' and expanding an in a power series in 1; $(8) \quad a_n = a_n^{(0)} + \lambda a_n^{(1)} + \lambda^2 a_n^{(2)} + \cdots$ and take the series analytic between o and 1. We get upon equating coefficients of equal powers in A: $\frac{(9)}{dt} \quad \frac{da_{h}^{(0)}}{dt} = 0 \qquad \frac{da_{h}}{dt} = \frac{1}{xt} \sum_{n} \langle k|H'|n \rangle a_{n}^{(5)} e^{i\omega_{n}t}$ \$ = 0, 1, 2, ... The coefficients and are constant in time and represent therefore initial conditions, we take only one of the dit to be non-zero at t=0 assuming that we begin with the system in a well defined state and can write the very a important initial relation; (10) an = Spm

we now have for the first order correction : (ii) $\frac{da_k^{(i)}}{dt} = \frac{1}{ik} \langle k|H'|m \rangle e^{iW_{km}t}$, or (12) $a_{k}^{(\prime)}(t) = \frac{1}{ik} \int \langle k|H'|m \rangle e^{i\omega_{k}mt} dt$ where the lower limit is chosen to make as" initially yero (before the perturbation is applied). It the perturbation is constant except for being applied at t=0 and being turned off at t=t, that is: now we can easily perform the integration and obtain; H' H'= V (13) $a_{h}^{(1)}(t) = - \langle k | v | m \rangle \left\{ \frac{e^{iw_{x_{m}}t}}{\hbar w_{x_{m}}} \right\}$ 0 t -t-> Thus the probability of funding the system in the state & at time t is: (14) $|a_{k}^{(l)}(t)|^{2} = 4 |\langle k|V|m \rangle|^{2} \left\{ \frac{5m^{2} \pm \omega_{km} t}{\hbar^{2} \omega_{km}^{2}} \right\}$ + Sui² Wint For states Ex near the height increases as t 2 while The -21T -21T -21T breadth goes as t, so that the area (probability of Transistion) WAM goes at t. Then is the physically interesting case, that is, the case where the transitions are to neighboring states.

Thus the probability that a transition has taken place after the perturbation has been on for a Time to is proportional to t.

Transition Probability

We desire to derive a transition probability per unit time, w. It is convenient to assume Born-von Karman boundary conditions. We consider the group of final states close to the initial state Ene, assuming that the matrix element (+ 1 V / un) is a slowly varying function of k. We define a density of fund states p(th) so that p(th) dEt is the number of states in the range dEs and also assume that s(k) is a slowly varying function of k. Ance we have shown that the probability is linear function of time, we can then write " (15) $\omega = t^{-1} \sum_{n} |a_{k}^{(0)}(t)|^{2} \Rightarrow t^{-1} \int |a_{k}^{(0)}(t)|^{2} p(t_{k}) dE_{k}$

The sum becomes an integral upon letting the BVK boundary become large. Using (14), recalling That <+IVIm>, p(k) are practically independent of R:

 $\frac{U61}{t} = \frac{1}{t} \frac{4 |\langle k| V| m \rangle|^2}{h} \rho(k) \int \frac{5uc^2 lz wamt}{w^2 km} dwam$

where the major contribution to the integral will be the region around Em. Integrating, we finally have: $\frac{(17)}{k} \quad \omega = \frac{2\pi}{k} \rho(k) |\langle k|V|m \rangle|^2$

which is independent of time as expected.

Scattering Cross Section We now calculate w when the initial and final states are free particle plane waves, viz, (13) Um(a) = L-3/2 e 1korn, Ux(a) = L-3/2 e 1k.n where he, & are propagation vectors. now the number of available states in a certain energy range follows from the usual considerations; (19) $p(t) dE_t = \left(\frac{L}{2F}\right)^3 k^2 dt \quad sm \theta d\theta d\varphi$ For the free particle, $E_{\lambda} = \frac{\hbar^{2}\hbar^{2}}{2m}$, $dE_{\lambda} = \frac{2\hbar^{2}\lambda}{2m}d\lambda$ so that: (20) $p(k) = \frac{mL^3}{8\pi^3 k^2} k \mod d\theta d\varphi$ Now, assuming a perturbing potential of the form V(n), we have for the matrix element: $(z_l) \quad \langle \pm | \vee | m \rangle = L^3 \int \mathcal{V}(n) e^{-\iota K \cdot n} d^3 n$ where K = ko-k We define as the scattering cross-section : $(22) \quad \tau(0, \ell) \quad suid \ d\theta \ d\theta = \frac{mL^3}{\pi k} \omega^2$ which, upon substitution of (21), (201 and (17) becomes: (25) $\mathcal{T}(\theta, \varphi) = \left(\frac{m}{2\pi\hbar^2}\right)^2 \left[\int V(x) e^{\lambda k \cdot x} d^3x\right]^2$ Thus we see that cross - section of scattering is m part determined by the probability of Transistions upon collision.

Harmonic Perturbation

We now assume that the perturbing term is harmonically time dependent, that is : $(24) <k|H'|m\rangle = <k|V|m\rangle sun wt, ottet$ Then the first order amplitudes at Time t are; $(25) \quad A_{\lambda}^{(i)}(t) = -\frac{\langle \lambda | V | m \rangle}{Z \perp h} \begin{cases} e^{\lambda (W_{\lambda}m + \omega)t} - 1 \\ W_{\lambda}m + \omega \end{cases} \qquad e^{\lambda (W_{\lambda}m - \omega)t} - 1 \\ W_{\lambda}m - \omega \end{cases}$ We will only have an appreciable probability of finding the system in the state & if war = + w or when one of the denominators vanish providing the matrix element does not varish at the time also. The energy conservation relation subject to the uncertainty condition is then ; (26) En = Em ± tw Thus we see that the electromagnetic (possibly) perturbation is to impart to or recieve from The system The energy to which we would expect from the results of such well known experiments as the photoelectric effect. Second Order Perturbation we can readily find the second order correction from equation (9) letting s=1. $\frac{d a_n^{(2)}}{dt} = \frac{1}{i\hbar} \stackrel{<}{\underset{n}{=}} \langle h | H' | n \rangle a_n^{(1)} e^{i\omega nt}$

By substituting in (12) for an" (11), we arrive at: $(28) \quad Q_{n}^{(2)} = -\frac{1}{\hbar^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f'}{n} < k \left[H'(t'') \right]_{n} > < n \left[H'(t') \right]_{m} > e^{L(W_{nm}t' + W_{n}t'')} dt' dt''$ If we now suppose H'(t) = Y, $0 \le t' \le t$, we arrive at: $(29) \quad a_{k}^{(l)}(t) = \frac{1}{h^{2}} \underbrace{\leq}_{n} \underbrace{\langle k | V | n \rangle \langle n | V | m \rangle}_{Wnm} \left\{ \underbrace{e^{\mathcal{L}W_{km}t}}_{Wkm} - \underbrace{e^{\mathcal{L}W_{km}t}}_{Wkm} - 1 \right\}$ Comparing with (13) shows that for either wam = 0 or WAN = 0 are transitions for which the probability increases with time linearly. The first transition was zo between the initial state in and the final state k conserves energy while the second does not. It is between some intermediate state n and the final state h. The reason is That the Fourier components which are not marked in the first order transition, are strong enough in The second order. Thus the turning on of the perturbation suddenly is a mathematical artifice which is not met physically. Actually the system has been undergoing the perturbation for a long time and is usually always present.

Adiabatic and Sudden Approximations

If the Hamiltonian changes very slowly with Time, we can approximate solutions of the Achoedinger equation by means of stationary evergy eigenfunctions of the instantaneous Hamiltonian so one particular sigenfunction changes over continuously into another sigenfunction at a later time, This is the adiabatic approximation.

If the Hamiltonian changer from one form to another almost instantaneously, the wave function can be expected not to change much, although the expansion of This function in eigenfunctions of the initial and final Hamiltonian may be quite different. this is the sudden approximation. Adiabatic Approximations The appropriate Achroedunger equation is: (1) $t = H(t) \psi$ in which HIHI varies slowly with the time. The solutions at any instant are assumed known. (2) $H(t) M_{n}(t) = F_{n}(t) M_{n}(t)$ where the up are orthonormal, nondegenerate, and discrete. If we assume that the solutions at t=0 are known, we may take for The appropriate expansion for 4: (3) $\psi = \sum_{n} Q_{n}(t) U_{n}(t) \exp\left[-\frac{1}{\hbar}\int_{0}^{t} E_{n}(t') dt'\right]$ Substituting into 11: (4) it 2 (dan un + an dun - 1 an Un En) " $exp\left[-\frac{\lambda}{\hbar}\int_{0}^{t}E_{n}(t')dt'\right] = H \geq an un exp\left[-\frac{\lambda}{\hbar}\int_{0}^{t}E_{n}(t')dt'\right]$ We note that Heln = En Un so That the last Term on the 245 cancels the term an the RHS.

We now form matrix elements in the usual manner: (5) $\sum_{n} \left\{ \langle k | n \rangle \frac{da_{n}}{dt} + \langle k | \frac{\partial}{\partial t} | n \rangle a_{n} \right\} \exp \left[-\frac{\lambda}{h} \int_{0}^{t} E_{n}(t') dt' \right] = 0$ 02: $\frac{da_{h}}{dt} = -\frac{1}{n}a_{n}\left(\frac{1}{\partial t}\right) + exp\left[-\frac{1}{h}\left(\frac{\omega_{n}(t')}{\partial t'}\right)\right]$ We desire a simpler form for the matrix element < 1 1 2 / n>, Take the time derivative of (21 : (7) $\frac{\partial H}{\partial t} lln + H \frac{\partial lln}{\partial t} = \frac{\partial E_n}{\partial t} lln + E_n \frac{\partial lln}{\partial t}$ Forming matrix elements: (B) $\langle h| \frac{\partial H}{\partial t}|n\rangle + \langle k|H \frac{\partial}{\partial t}|n\rangle = E_n \left(k \left| \frac{\partial}{\partial t} \right| n \right), k \neq n$ Using the Hermitian nature of H we have: (4) $\langle h | \frac{\partial H}{\partial t} | n \rangle + Eh \langle h | \frac{\partial}{\partial t} | n \rangle = En \langle h | \frac{\partial}{\partial t} | n \rangle$ or $\langle k | \frac{\partial}{\partial t} | n \rangle = - \langle k | \frac{\partial H}{\partial t} | n \rangle$, $k \neq n$ $E_k - E_n$ We must now develop an expression for <n] == 1, we differentiate the normalization integral nitegral : $lol 0 = \frac{1}{2t} \langle n|n \rangle = \left(\frac{1}{2t} \langle n|\right)|n \rangle + \langle n|\frac{1}{2t}|n \rangle$ now the two matrix elements on the RHS are complex conjugates and must hence be pure maginary as their sum is yero, that is, In 12 (n) = 1 x (t), We now change the phase of Ma by an amount & (+1 which is permissible succe The phases of the eigenfunctions are arbitrary at each instant of Time.

Thus we form the new eigenfunction II'm = Un e $(11) \quad \langle u'| \xrightarrow{\partial}_{\partial t} | u' \rangle = \int u^{\dagger}_{n} e^{-\lambda t} \xrightarrow{\partial}_{\partial t} (u_{n} e^{\lambda t}) dt$ = ralt + r d x1+) It is easily seen that the choice (12) V(+) = - Jo 2(+') dt' will make the matrix element vanish. We now remove the perme and substitute (9) into (6) and get: (13) $\frac{da_k}{dt} = \sum_{n}^{t} \frac{a_n \langle k | \frac{dH}{dt} | n \rangle}{\hbar w_{kn}} \left[\exp\left(\lambda \int_0^t w_{kn} dt' \right) \right]$ Up to now our treatment has been completely general, we now introduce the adiabatic approximation by assuming that the quantities an, wan, un, and 2 H/St are constant in time. If we further assume that the sigstem is in the state mat t=0 we can put an = Sum. Thus, (14) $\frac{da_k}{dt} \simeq \frac{1}{\hbar w_{km}} \langle k | \frac{\partial H}{\partial t} | m \rangle \exp(i w_{km} t) h \neq m$ on: (15) $a_{k}(t) = \frac{1}{1 \hbar \omega_{km}^{2}} \langle k | \frac{\partial H}{\partial t} | m \rangle (e^{i \omega_{km} t} - i), k \neq m$ Under these approximations, we have that the probability amplitude for the state & oscillates in Time with no net change over a long period of time. If the change in H is small over a bolin period as compared with the every difference when thet is 2H is to when, then the transition is unlikely to occur,

The change in amplitude of the state to after a long time is of the order of the ration of these two energies: (16) [an] ~ (1/when) (2H/2t) ER - Em If we assume that the Hamiltonian oscillates periodically with time, then the assumption ++/st = constant is no longer valid. If we write : (17) H = Ho + V smoot where V is small compared to Ho and substitute · (14) : (18) $\frac{da_{1}}{dt} = \frac{\omega \ 2h |V|m}{cos \omega t} e^{l \omega_{1}mt}$ Integration gives; (20) $a_k (t) \approx \omega \langle k| V| m \rangle \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ w_{km} & e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ w_{km} & e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ w_{km} & e^{-1} \\ w_{km} & e^{-1} \\ w_{km} & e^{-1} \end{bmatrix} \begin{bmatrix} e^{-1} & e^{-1} \\ w_{km} & e^{-1} \\ w_{km}$ We see That for w close to Wan, transitions are very probable and these results agree with the previous perturbation treatment. Sudden Approximation Let us consider the case in which the Hamiltonian changes discontinuously from one form to another. (1) H = Ho, t <0 and H = Hi, t)0

(2) now Ho Un = En Un and H. Vm = Em Vm

We take the u's and v's to be complete orthonormal sets of eigenfunctions. The general solutions are: (3) $\Psi = \sum_{n} a_n ll_n e^{-l \epsilon_n t/\hbar}$ teo 4 = Zie bru Une e - LEmt/te t >0 where a's and b's are independent of the time. now the schroedinger equation is of first order in the time the wave function must be continuous in time at all points at t=0 even though its derivative is not. We can equate the equationa (2) at t=0 and express the b's in terms of the a's. We multiply through by Vm and integrate : (4) bru = Zi an Jun dr The appearance of final states ne that do not have the same energy as the initial state is a consequence of the non-yero Faurier components of the Hamiltonian. The sudden approximation consists in using equation (4) when the change in the Hamiltonian is short but finite in time Suppose That : (5) H=Ho, t<0 and H=H, t>to and H=He, Oitlto. now He, which we take to be constant in Time, satisfies its own Achroedunger equation : (6) HI WA = EA WK

The true solution is, in terms of these eigenfunctions ? (7) $\psi = \sum_{k} C_{k} w_{k} e^{-\iota E_{k} t/k}$ and the continuity at t=0 gives; (B) $C = \sum_{n} a_n \int w_n^* u_n dr$ now, the continuity condition at to gives ; (9) $bm = \sum Ch \int v_m^* w_h dt' \cdot e^{-\lambda (E_h - E_m)to/h}$ = Z an fun un dt fun 'wh' at . e . (Ea-Em) toft $= \underbrace{\mathbb{Z}}_{n} a_{n} \int \underbrace{\mathbb{T}}_{m}^{*'} \left[\underbrace{\mathbb{Z}}_{k} \overset{\omega_{h}}{\omega_{h}} \overset{\omega_{h}}{e} - \iota (\underline{\mathbb{E}}_{k} - \underline{\mathbb{E}}_{m}) t_{0} / \overline{\mathbb{E}}_{n} \right] \mathcal{U}_{n} d\mathcal{T} d\mathcal{T}'$ now the difference between (9) and (4) is the closeness of exp{-1 (Ex-Em) to/th} and one. In other words, we should have: (10) to << th Ex-Em for all the states of interest involved. Thus, to use relation (4) the change in the Hamiltonian should be quite a bit faster than the period of the Bohr orbit. a special case is that in which the initial and final Hamiltonians are the same, that is Ho = Hi, Vm = Um. If to is short enough to satisfy the validity criterion above, we can expand The exponential in (9) and retain only the first two terms : (11) bom =) I'm Z wh wh 1 - ito (En - Em) Un dr dt' = I I'm Z wh wh = [1 - Ito (HL - Em)] Un dr dr'

We use the closure relation, the orthogonality of Mm and Mn when n = m, Ho Mm = Em Mm, we can reduce This to: (2) but = - ito I'm (He - Ho) Un dt, m = n note that this is useful even when He is large as long as the condition on to is satisfied. On the other hand the time perterbation theory is useful when a small time dependent perturbation is added to the Mamiltonian and applied for a long time, These we have covered the two extreme cases. de an example of the adiabatic approximation, consider the linear harmonic oscillator in which the equilibrium point depends on the Time. The Hamiltonian is " (13) $H(t) = -\frac{k^2}{2m} \frac{\partial^2}{\partial x^2} + \frac{1}{2} \kappa \left[x - a(t) \right]^2$ The instantaneous eigenfunctions and eigenvalues $(IF) \quad M_n(X) = N_n \quad H_n \left[\alpha \left(X - \alpha \right) \right] e^{-\frac{1}{2} \alpha^2 \left(X - \alpha \right)^2}, \quad E_n = \left(\frac{n t}{2} \right) \frac{1}{2} \frac{1}{2$ now the time derivative of the Hamiltonian $(5) \quad \frac{\partial H}{\partial t} = -K(x-a) \frac{da}{dt}$ We use the well prown relation for the matrix elements of the harmonic ancillator, assuming the oscillator initially in its o state and find; $(6) < 1 | \frac{\partial H}{\partial t} | o \rangle = - (\frac{1}{2} \pi)^{1/2} \kappa$ (Km) 14

We now substitute into the adiabatic approximation equation, viz: (17) $a_{h}(t) = \frac{1}{\pi t \omega_{nm}^{2}} \langle k | \frac{\partial H}{\partial t} | m \rangle \left(e^{\pi \omega_{nm} t} - 1 \right)$ and find for the magnitude of the coefficient: da/dt (18) (2 th we /m) 1/2

We interpret physically by noting that the denominator is of the order of the maximum speed of a classical harmonic oscillator that has the zero point energy. Thus the adiabatic approximation is good if the equilibrium point moves alowly in comparison with the classical escillator speed.

The sudden approximations can be applied to an required to move the equilibrium point from one steady position to another is small in comparison with 1/wc.

		Vari										1			1	10.	TE	5		-	1										P	23	e	1	-		-
		Hav	m	mi	C	0	C	51	11a	TOI	-	1																									
															2									-			-	-		-	-	-	-			-	
	G	iver	n :			H	11		-	ti ² 2n	- R	dx	2	4	-	12	w	w	2 x	2												_					
																																	-				
	V	ariat	m	;		N	11		C		<u>cos</u>		11)	x_ L	-		1 X	17	a	,	6	6	the	ra	115	e	-	-					-				-
																2 (a		2									7	0	172	2						
			-		r		1 a'					(1)		2	C		0	205	5	20	d	l X.		2		4 a Π	2 (CZ	1	C	050	0	do	-			
			/			1	a							11		40		2 (1		4	1			24)	172		_	20		, 2	-	11	1		-
		/													-	4a .TT						4			66	211	0			π	- C	-	2	3	1		
		-a	-				-	2		+				<u></u> *			С	2	J	1	1			-	-	-		+	-	-		-					
												(2)			U.	1	1	7	co	03	T	xa						-			_						
																-			12.						~												
	(3)		di	e x	IJ		-	2	IT a Jo	ā	SI	M	1	Za	,	.,		0	2 JI d X ²		=	-	-	1	T 2	a	-	co:	5.	TX		-		-			
			T	u	-			tr Z	-		π	2				π×	,								_												
			1.		-		-	tr ²		• •	4a	2 2 Ja	ī	20	5	20	-										1										
0	(4)		(,	LT.	n	1x	U		2.	the	π	2		a	-	05	2 7	πχ	0	1×		3	H		ħz	Π	2										
			1							81	NO	25				_			-	_					8 7	n a	2	-		-		T					
	(5)		J.	μV	n	d	×	11			2	пи	2		a	XZ	C	05	2 11	X	d	x		1)		m	w2	1	20	3		1	32	cos	20	do	
			-										•		0	-				za											- y*	0	-				
			1	-	m	a	2	(2	(π)	3	[03	3	+	(92	-	18) 3	sm	2	0		+	6	20	4	zð	1	72							
											6				2										t				10			-					
			-	-	n	10	2	12	a)	3	5	Π ³ 48	-	-	TI	-		=		6	22	m	w2	. [-	G	-	-	12	1		-		-			
					_	a	-	(7	Ŧ]		L	48			ę	3 -					-		,	2	-	9			84	-		_	-				
			1)		az	м	wz	-	(1	172	- (0)																-									
		•	-				-					- /			-				-				-									-					
	(6)	e	,	1	H	11		-	12.	π ² na	2		+	0	22	м	wz	(Π	2_0 6T	62																
																			,			1															
	(7)		d	Ha		=		-	th 4	2 TT ma	2 3		+	2	a	- 2	nu	52	(-	172	-6 TZ)		1	- 6	2						-		*			
							,	R				2	1		42	π	_				a	2		1	3	172		1	/2	ħ	T						
						a		5	(6	-	6	-)			и ² и			ż		a.			(2 -		-)		22	and the owner of the local division of	5					
														-		-						-			-	-		-	-		-						-
																											•				1					-	J

	.)			1			12	_7			1	- 7		. (1/2				20				1	1		1		,		1	1/-			1				4
(8	3)	Hne	172		=		ħ 8	m			(-	11 3	- (π ²	-)	2	m	ω		+		Z	2	(1	72.	-6 T2)	• (11	2)	16	-	t TT	w		-		
			6																									_								-	+	-
		11		TI	-	(1	3	. 6 TZ)"	2	+		1-4	(T	2-(3T	-)	• (3	π2-6	=)'	12	1	ħ	w										,	1		
																		_					2													_	+	
		1)		11-2	1	Π2	- 6	11	12	ħ	ω		1		(ΠZ	- 6		1/2	ħ	ω		19	2	(]	12	- 6	1	2	To								
								/		-					_										(3)		_						-	+	+
		11	(3	. 8	69	6	72	Eo		1		1.1	4	Ēo			ر	d	(ff	ert	5	2	50	0	ebo	04	-	14	070		e	rro	۲.	-			-	-
	_																																				-	
		~				~	~			_	_	~	~		_	~	~		_	~		_	~	~	-	~		-	~	~	~	•	_	~	_	_	+	+
		Try		+	he		va	ri	ia																								, (2 0	the	erwi	SR	
			+	M			_				(1)		Z	C2	a	C0 9	4	π×	- 0	Lx.	1		4	02	a	(17/2	205	4	3	10			+	-	+	+	-
			/												,0			20						77		Je	3								_			-
			/										15	4	4 C	2 a	•		1. Z'	34		TZ	1)	-	3]4	- a	- C	2	H	۱							-	+
						1			×		(z)		C	н			2	-		,		и	34	2	2	-	СО	sz	Л	X					+			
5	-	a	-			0	z		^															2	3a				2	a				-			-	
	(3)		de dx	4 .	11	-		Π	30	1		2	c	05	T	x a	4	su	ι.	TX			-														+	+
			12				n				2				2						-	2					2	7	v								-	-
			d2.	MX2		=			- a	11	30	7	C	05		20	•		+		T	25	30		S	m	-	20							_			
						. 1	=			π2	-	(-	-	2	: c	os	2 1 2	TX	1		5								_								-
					_				a	25	3a'	1	-					a	a	7																	-	+
	(4)		Ju	T	и	d x	٤	11	-	ねってい	L U	2.	-	172	 a	2			(c	05	2 11	X	-	Z	e	03	4 1	TX)	d	x							-
					ħ	R	T		(^{II}	7.								2	- 1																_			-
			2	Z	m.	3	az)_	(2	00	5 4	0	-		03	e	1	d	θ																	
			11		4 th 3 1	27	T	<u> </u>	2.	1	. 3		TT 2	-	_		T 4	7		=	t	12	772												-			+
					3	in a	2	L		2	.4		2	-			4	7					az															-
	(5)		0	12.34			1.0		1			4)			2	a	ZX		.4	Π	X	d	×											-
-				u v	u	d	X		-			30			2.			w)0	X	00	54	2	a	a	~											
			-	1	4 3	12	M	w	- (20)3		(T)	Dz Oz		05	46	0	10																			
					9						/	_	0																								-	
																																						/

	ition Meth	od			page 2
		3 cora 4 0 - 2	3 coz 2 0 + 1	4	8 con 40 - 4 cos 20 - 3
		4 core 20 + 4	172		cos40 + 4 cos 20 + 3
(7)					$\frac{172}{300 + \frac{3}{8}} \int_{0}^{172} \frac{172}{300} d\theta$
	= <u>1</u> 8,4 ³	$ \frac{2\pi}{\theta^2}\cos\theta d\theta $	$+ \frac{1}{16} \int_{0}^{\pi} \frac{1}{2} \frac{1}{2}$	cos 0 20 +	上(王)3
	= (- 1/4 +	$\left(\begin{array}{c} \pi \\ + \\ 4^2 \end{array} \right) \int_{0}^{\pi} \Theta^2$	corddo +	$\frac{1}{8}\left(\frac{1}{2}\right)^3$	
	$= \frac{1}{9} \left(\frac{\pi}{2}\right)^3$	$+ \frac{1}{16} \left(\frac{15}{16} \right)$	20 000 +	(0 ² -2) S M O 0	
=	$=\frac{1}{8}\left(\frac{T}{2}\right)^3$	$-\frac{\pi}{8}\left(\frac{15}{16}\right)$	$=$ $\frac{1}{64}$ (π^2)	$3 - \frac{15\pi}{2}$	
(8),	, J <i>uVuo</i>	$l_X = \frac{4}{3}$	$m\omega^2 a^2 \frac{1}{8} (1)$	$\left - \frac{15}{2\pi^2} \right = \frac{15}{2\pi^2}$	$m w^2 a^2 (z \pi^2 - 15)$ 12 π^2
(9)	, H =	<u><u><u></u></u><u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>	μω ² α ² (2π ² -15 12π ²	T)	
(10)	$\frac{dH}{da} = -$	<u>Б² П² + 2</u> З та ³	μω ² α (211 ² -15 672	r) = 0	
	a# =	2 k ² T ⁴ . m ² w ²	(2π ² -15) ^{1/2}	$a^2 = h \pi$ $m \omega$	$\left(\begin{array}{c} 2\pi^2 \\ 2\pi^2 - 15 \end{array}\right)^{1/2}$
(11)	Hymix =	$\hbar^2 \pi^2$. Mw	/ ZΠ ² - 15 / ¹ /2	+ 711 W ² / 211	
		6m ħ π		6	2π ²) <u>μω</u> (2π ² -15)
				$\frac{2}{3} \left(\frac{2\pi^2 - 15}{2} \right)^{1/2}$	ti w z
	1) 1) 1) 11	$\left(\frac{2\pi^{2}-15}{2}\right)^{1/2}$ $(1.54) E_{0} =$	$E_0 = \frac{2}{3}$ $1.02 E_0$	$\frac{(4.74)^{1/2}}{2} = 0$	about 2%, good.
	5				

1ª		58	HE I							1																						-					1				2
1		1.2																										l													
	1.	. 1				1																																1			_
	1	1.8														-																									1
										-																															-
	-																																				-		1		
	1									-																e												100	-		_
																			-				- 5	1											-						
																				12	8															-					
1										100							1		1	1.18	-		1						1												
	1																			12	9.											1									-
										.3-																				-				1							
																			1.00															2		×					
																														1											_
																														1				-							
													-						-	*										1											
								12											. 1	1.14									-				-								_
	1				1			-												-									-				-								
				-	10				1											1	1				1				-	- 1		-		-1							-
																			~ (1																				
						-													-	1.4																					
																			1	14.2												1		-							
																			in a	250										- 1	-								-		
					1													-	-			-	-				-	-	V	1											_
													*						1	2																					
																				1.4								1											1		
												1			1					-	- 20	~									×									1	
																				5																					
	-									-										-																					
-																																									
																				1.50							-											1			-
		-																		2			-																		
										-										3																					
	-			× .,																											-				1						
							-									-			-									- 1										1			
				1	1	10	18	8		-						-	1		-		1																				
	1				-		1													1																					
								1.												1																					
							-		1											2																					
	1																			1																					1
1	2		1																														4								-
	100	x	14	8			1													1																					
			1																	•																					
		1		1																																					
					*																																				
								1														1												1							
																			1								-									1				-	
																		1								1													1	~	
																																					1.1		1)	
									,																																
			1		-												-							-																	
		-																			•																				1
V	1				R	198		1	2		-			1.3		-19	-	38	1		121		4		19	1	de.	18	e?											J	/
-	de la	1.1.		12.00		10.20	1	-			0.00		1		2.7			1.53		CAR .	1	1	2	-	1.	191		1	G			_				-	-	-		-	

1960 - 61

HARVARD UNIVERSITY

Physics 251a

Answer FIVE questions

 Use the principle of stationary phase to calculate the group velocity of de Broglie waves, and show that, for a 'well-formed' group, it agrees with the classical particle velocity (free-particle case).

Explain how one obtains from the operator corresponding to a physical variable the operator corresponding to the time derivative of the variable. For the case of a particle subject to a force $-\nabla V$, calculate the time derivatives of \overline{x} and \overline{p} . Discuss the extent to which this result (Ehrenfest's theorem) gives correspondence between the classical and wave-mechanical motions.

- 2. (a) Which of the following operators are Hermitian, and which are not?
 - (1) $x^2 p_x^2$ (2) $x p_x + p_x x$ (3) $p_x x p_x$ (4) $i(x p_y - y p_x)$ (5) $x^3 p_x x - x^2 p_x x^2 + x p_x x^3$
 - (6) $z^2 p_x$
 - (b) State reasons for the requirement that the Hamiltonian operator be Hermitian.
 - (c) Explain the general criterion for fixing the permissible behavior of the wave function at places where the potential energy is discontinuous or singular. Apply this criterion to derive the rule for continuing the wave function across a surface where the potential energy V is discontinuous.
- 3. Use the ladder method to determine the eigenvalues E_n , the normalized eigenfunctions $u_n(x)$, and the matrix elements of the operators x and $-i \frac{d}{dx}$ for the harmonic oscillator with Hamiltonian operator $-\frac{d^2}{dx^2} + x^2$

68

4. The unperturbed system has Hamiltonian

$$H_0 = H_x + H_y = -\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + x^2 + y^2$$

-2-

and energies $2n_x + 2n_y + 2$. The total Hamiltonian is

 $H = H_0 + V = H_0 + ax^2y^2$

To save you computation, it is stated that for the onedimensional problem with Hamiltonian H_x and energies 2n+1 the only nonvanishing matrix elements of x^2 are

$$(x^2)_{n,n} = n + \frac{1}{2}$$

 $(x^2)_{n, n+2} = (x^2)_{n+2,n} = \frac{1}{2}\sqrt{(n+1)(n+2)}$

- (a) Find the energy corrections $E_{00}^{(1)}$ and $E_{00}^{(2)}$ for the ground state.
- (b) Show that for the next level, with E⁽⁰⁾=4, the degeneracy is not removed in the first order, and is also not removed in the second order; but do not calculate the energy corrections.
- (c) For the level with $E^{(0)}=6$ determine the values of $E^{(1)}$ for the states into which this degenerate level splits, and also find the corresponding 'right linear combinations' of the original product functions $u_m(x)u_n(y)$.
- (a) Define the transmission coefficient T and the reflection coefficient R for the case in which V has some constant value for x < -a and also some (perhaps different) constant value for x > +a.
 - (b) In the sense of the phase-integral method, define T and R for the case in which for |x| > a one has

$$V(x) < E; \left| \frac{dV}{dx} \right| << m^{\frac{1}{2}}h^{-1}(E - V(x))^{3/2}$$
.

Explain the significance of the stated condition on $\frac{dV}{dx}$.

5.

5. (c) For the rectangular potential step,

 $V = -V_0 < 0, x < 0; V = 0, x > 0$

calculate R as function of E.

6. Given a system with unperturbed Hamiltonian H₀, and with states labelled m, n, ... having eigenvalues and eigenfunctions such that

 $H_0 u_n = E_n u_n$.

Suppose a set of states labelled with numbers k have closely spaced eigenvalues E_k covering a range that overlaps the value E_m for a state m that does not belong to the set k. For the case of a perturbation H' that is constant in time, give the time-dependent-perturbation-theory argument that leads to the formula

 $w = \frac{2\pi}{\kappa} \rho(k) \left| H_{km} \right|^2$

for the probability per unit time of transition from state m to the set k. $(\rho(k)dE_k \text{ is the number of states} k$ in the energy range dE_k near E_m .)

Final, January 1960

 $(x + np)(x - np) = x^{2} - nxp + npx + p^{2}$ (X-LP)(X+up) = X² + LXp - LPX + P² = -22×p+22px = 2. (px - 1xp) = - 2 $\left(\frac{d}{dx}+x\right)\left(\frac{d}{dx}+x\right) = \frac{d^2}{dx^2} + 1 + x\frac{d}{dx} + x^2$ dreno + x duo + (x +1) llo =0

Que man 10-24

<u>Physics 251a problems, 1960</u>

- 1. Using the same sort of argument (Fourier transformation) as was used to find the coordinate-space form of the operator \underline{p}_x , show that the mean value of $\underline{x}^n \underline{p}_x^m$ is the same when calculated with the momentum-space function \mathcal{P} as when calculated with the position-space function \mathcal{Y} . Prove this same equivalence for $\underline{p}_x^n \underline{x}^m$. Is the same true of a product arbitrarily arranged, $\underline{x}^a \underline{p}_x \underline{b} \underline{x}^c \underline{p}_x^d$...?
- 2. Given the one-dimensional normalized Gaussian wave function (for a particular instant of time, t = 0)

$$(c^{-2} = (\Delta x)^2 = \overline{x^2}; \ \overline{x} = 0)$$

carry out the Fourier transformation to obtain the momentum-space wave function $\mathcal{P}(p_x,0)$. Verify that \mathcal{P} automatically turns out to be normalized, and find from it the value of $p_y 2$.

- 3. Find a wave-function $\Upsilon(x,0)$ that makes $(\Delta x)^2 (\Delta p_x)^2$ a minimum, with \overline{x} and \overline{p}_x having given non-vanishing values. (Obtain it by suitable modification of the function given in Problem 2.)
- 4. Find the result of applying the operator $\exp(iap_x/\hbar)$ to the wave function $\mathcal{Y}(x,y,z,t)$. (Assume \mathcal{Y} is an analytic function.)
- 5. Express the commutator $[x^2, p_x^2]$ as an imaginary multiple of a symmetrized product. Express $[x^5, p_x^3]$ as an imaginary multiple of a sum of symmetrized products.

Problems

Physics 251a

- 6.
- Given the three functions 1, x, x^2 on the interval $0 \le x \le 1$,

(a) Form linear combinations, of degrees 0, 1, 2 in x, that are orthogonal to each other on this interval (with weight factor 1, or 'ordinary orthogonal' functions). (b) Carry out the corresponding construction, requiring orthogonality with the weight factor $\rho = x$.

7.

Write the wave equation of a free particle

 $\nabla^2 u + k^2 u = 0$

in cylindrical coordinates, $\rho = \sqrt{x^2 + y^2}$, $\gamma = \arctan \frac{y}{x}$, z. Separate the variables, and obtain the general single-valued product solution, for any given k, in terms of $e^{\pm iKZ}$ and Bessel functions of $\alpha\rho$, with $\alpha^2 + K^2 = k^2$. Which solution of Bessel's equation must be used? Why is the other inadmissible? Carry out the normalization of a typical product solution,

 $u = U(\rho) V(z) W(\varphi)$

by normalizing each factor; normalize V in the scale of K, U in the scale of α .

- 3.
- Multiply the product $u_{k_2}^{*}(x)u_{k_1}(x)$ of two one-dimensional

free-particle functions normalized in the scale of k by the convergence by the convergence factor $e^{-\beta|\mathbf{x}|}$, and integrate. Call the result $\delta_{C\beta}(k_1-k_2)$. Discuss its behavior for various values of k_1-k_2 and β , and show that it can be thought of as giving the Dirac δ -function in the limit $\beta \rightarrow 0$.

2.

Given the symmetrical rectangular potential well in one dimension,

V = 0, |x| > a; $V = -V_0$, |x| < a

show that no matter how small the values of the positive quantities V_0 and <u>a</u> may be, there is always one discrete bound state.

0

ven the three functions 1, x, x' on

(a) Form linear costiinations, of decreas 0, 1, 2 in x, that are orthogonal to each other on this interval (whit weight factor 1, or fordinary outhor onal) functions). (b) Carry out the corresponding construction, requirin orthogonality with the voight factor p = x.

. Write the wave equation of a free particl

 $\frac{2}{2}u + u^2 u$

in cylindrical coordinates, $\rho = \sqrt{x^2 + y^2}$, $\gamma = erc$ z. Separate the variables, and obtain the general single-valued product solution for any given k, in

terms of $e^{\pm i KZ}$ and Bessel functions of a_0 , with $a^2 \pm Which solution of Bessel's equation must be used?$ Why is the other inadmissible? Carry out the normalization of a typical product solution,

(f) M(z) V(d) = n

by normalizing each factor; normalize V in the second K, U in the scale of a.

. Multiply the product $u_{k2}^{+}(\mathbf{x})u_{k1}(\mathbf{x})$ of two one-dimen

free-wrticle functions normalized in the scale of

by the convergence factor $e^{-\beta_1 \times I}$, and integrate. Call the result $\delta_{CB}(k_1-k_2)$. Discuss its behavior for various values of k_1-k_2 and β , and show that it can be thought of as giving the Dirac 6-function in the limit $\beta \rightarrow 0$.

> Given the symmetrical rectangular potential call in one dimension.

> > V = 0, (X) ≥ a = -V₀, (X, ≪a

show that no matter how small the values of the positive quantities V_0 and <u>a</u> way be, there is alweys one discret bound state.

Problems

Physics 251a

1960

15. In the potential field of Problem 14, there are two independent wave functions (two-fold degeneracy) for any energy Σ greater than both V_e and V_r . In setting up a system for expansion of an arbitrary function, we need to pick two solutions u and v, that are orthogonal. The practical test for this is

that $\int_{-\infty}^{\infty} v^*u \, dx$ shall not give any delta function (i.e. the coefficient of the integral that would give a delta function must be zero). Show that the functions u and v defined by

u = C exp(ik_rx), x > b

$$(\frac{k_r}{r})^2 = 2m(E - V_r)$$

and

$$v = C' \exp(-ik_e x), x < -a$$

 $\frac{k}{(tr k_e)^2} = 2m(E - V_e)$

satisfy this test.

16. For convenience, write u for the product rR(r). Then for the hydrogen atom, in natural units, u satisfies

$$H_{\ell} u = E u \tag{1}$$

with

$$H_{\ell} = \frac{\ell(\ell+1)}{r^2} - \frac{2}{r} - \frac{d^2}{dr^2}$$
(2)

and, for z < 0, $u \rightarrow 0$ exponentially for $r \rightarrow \infty$, u(0) = 0. Consider the operators

$$A_{\ell} = \frac{l}{r} - \frac{1}{l} + \frac{d}{dr}$$
$$A_{\ell}^{+} = \frac{l}{r} - \frac{1}{l} - \frac{d}{dr}$$

Evaluate the products $A_{\ell}^{\dagger} A_{\ell}$ and $A_{\ell} A_{\ell}^{\dagger}$. If u satisfies Eq.(1) and the boundary conditions, find functions Au and A⁺u (with suitable subscripts on the operators) that satisfy analogous differential equations. Show that these new functions also satisfy the boundary conditions.

15. In the potential fulle of Problem 14, there are two independent wave functions (two-fold degeneracy) for any energy d greater than both $V_{\rm G}$ and $V_{\rm T}$. In solting up a system for expansion of an arbitrary function, we made to pick the solutions using used to pick the solutions to be the theory of the practical bast for this is

that — vhu dx shall not give any delte function (i coefficient of the integral that yould give a delta duction must be zaro). Nov that the functions u and v delined by

 $u = 0 \exp(ih_{r}x), x \ge b$ $(tr h_{r})^{2} = 2m(2 - V_{r})$

pus

 $v = C^{\dagger} \exp(-ik_{e}x), x$ $(tr k_{e})^{2} = 2\pi(3 - V_{e})$

satisfy this test.

16. For convenience, write a for the product rR() the hydrogen atom, in natural units, a satisfies

dato

E

and, for $1 \le 0$, $u \rightarrow v$ exponentially for Consider the operator

 $A_{2} = \frac{1}{4} - \frac{1}{2} + \frac{1}{2$

Evaluate the products A: Ay and and the boundary conditions, fir suitable subscripts on the opera differential equations. Show the satisfy the boundary conditions.

2.3

1).1

- 10. For the well of Problem 9, what is the condition on V_o and <u>a</u> for there to exist at <u>least</u> one more bound state besides the lowest one? The condition for <u>just</u> one more state besides the lowest one?
- 11. Consider the well of Problem 9 with $V_0 = 15$ Mev and <u>a</u> equal to the largest value for which there is still only one bound state. Calculate the energy of this state to the nearest Mev.
- Let the potential in a one-dimensional collision problem be given by

V = 0, |x| > a; $V = V_0$, |x| < a

Find formulas for T and R, using notation (a) For $E > V_0$, $(\hbar k)^2 = 2mE$, $(\hbar \beta)^2 = 2m(E-V_0)$

(b) For $E < V_{0}$, $(\hbar k)^{2} = 2mE$, $(\hbar Y)^{2} = 2m(V_{0}-E)$

For ka = π , plot roughly the behavior of T for values of V_o from -42 to +22.

13. An electron of energy $\mathbb{Z} = (\hbar k)^2 / 2m$ is incident from the left on the following potential distribution:

V = -35E, x < -a V = -15E, -a < x < 0V = 0, x > 0

Find the reflection coefficient as function of the quantity $\theta = 4ka$. How does its minimum value compare with its value for $\theta = 0$? (The latter is the value for a single jump from V = -35E to V = 0).

 Let V(x) be an arbitrary potential which takes constant values outside a certain region, say

 $V = V \rho$ for x < -a, and $V = V_r$ for x > +b

Apart from this the only restriction on V is that it possess no such singularities as might prevent the wave equation from having two independent single-valued solutions bounded for $-a \le x \le +b$; then for E greater than both V_g and V_r both solutions are admissible in treating one-dimensional collision problems. Under these circumstances prove: (a) The reflection coefficient is the same whether particles are incident from the right or the left. (b) The sum of the reflection and transmission coefficients is always unity.

- .0. For the well of Froblem 2, what is the condition on V and <u>a</u> for there to exist at <u>least</u> one more bound state besides the lowest one? The condition for <u>just</u> one more state besides the lowest one?
 - Consider the well of Problem 9 with V₀ = 15 jev at equal to the largest value for which there is stionly one bound state. Calculate the energy of the state to the nearest Mev.
 - 12. Let the potential in a one-dimensible given by

2.000

of the second second

Find formulas for T and R, us $(a) \quad \text{For } 3 > V_{ab} (hb)^2 + (2mS, (hb)^2 = (2m(2-V_{ab}))$

(6) For $1 < V_{co}$, (8E)² = 2mJ, (EY)² = 2m(V_{co}-3)

For ka = n, plot roughly the behavior of T for values of V_{α} from -45 to +23.

13. An electron of energy $Z = (\hbar k)^2/2m$ is incident from the following potential distribution:

V = -352, x'<-a V = -151, -a crix

1 The focat - 1

Find the reflection coefficient as function of the quantity 0 = 4ka. Now does its minimum value compare with its value for 0 = 0? (The latter is the value for a sincle jump from V = -35E to V = 0).

14. Let V(x) be an arbitrary potential * takes constant values outside a certain region, say

%part from this striction on vie possess no ouch simularities as might prevent the vave equation from having two independent single-valued solutions bounded for -a s x & +b; then for d greater than both V₂ and V₁ both solutions are admissible in treating one-dimensional collision problems. Under these circumstances prove: (a) The reflection coefficient is the same whether narcicles are incident from the right or the left. (b) The sum of the reflection and transmission coefficients is slways unity. 17. (Continuation). Show that for a fixed negative value of \mathbb{Z} , \mathscr{L} cannot be indefinitely large. From this and the results of Problem 16, find the possible negative values of \mathbb{Z} and the values of \mathscr{L} corresponding to each.

Using the A and A⁺ operators, construct and normalize the functions $u_{n,n-1}$, $u_{n,n-2}$, and $u_{n,n-3}$. Check that they are the

same as the functions rR found in class.

18. By the formula found in class, the radial factor of the wave function, normalized in the k scale, for a particle of mass m and charge z_e moving in the field of a fixed point charge Ze is

$$R_{\ell k}(\mathbf{r}) = (2k)^{\ell+1} e^{-\pi \nu/2} \left[\Gamma(\ell+1+i\nu) \right] .$$

$$\cdot (2\pi)^{-\frac{1}{2}} \left[(2\ell+1)! \right]^{-1} r^{\ell} e^{-ikr} F(\ell+1-i\nu;2\ell+2;2ikr)$$
where $\nu = zZ / k a_0$, $a_0 = \hbar^2 / m e^2$.

By the nature of continuous normalization, the amplitude of R_{lk} at large distances is independent of v. Because of the factor r¹, only l=0 gives non-vanishing probability for the particle to be at the center of force. The effect of the charge on this probability is given by the factor

 $C = |R_{0k}(0)|^2 / |R_{0k}(0)|_{\nu=0}^2$

This factor has an important bearing on the probabilities of many nuclear processes.

Calculate C in terms of v and $e^{\pi v}$.

19. For the harmonic oscillator express q^2u_n and p^2u_n as linear combinations of the u_m . Evaluate q^2 and p^2 for the state u_n , and show that these are the same values as classical theory gives for a state of vibration with energy $(n + \frac{1}{2})\hbar\omega$. How could this same conclusion be reached with less calculation?

20. Using the generating function

$$e^{-t^2+2ty} = \sum_{n=0}^{\infty} H_n(y) \frac{t^n}{n!}$$

show that $I_n(y)$ satisfies the differential equation

$$v'' - 2vv' + (\varepsilon - 1)v = 0$$

with $\epsilon = 2n + 1$.

17. (Continuetion). Chore that for a fixed negative value of 2 Reaminet be indefinitely large. Fron this and the results of Froblem 10, find the possible negative values of a and the valu of & corresponding to each.

Using the A and A* operators, construct and normalize the functions un,n-1: Un,n-2: and un,n-3. Check that they are the same as the functions rR found in class.

13. By the formula found in class, the racial factor of the wave function, normalized in the k scale, for a particle of mas m and charge ze moving in the field of a first wint charge

$$E_{x}(\mathbf{r}) = (2\mathbf{k}) \left[\frac{1}{2} e^{-\pi \nu/2} \right] \left[\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2} + 1 + i\nu \right] \right] \right]$$

$$\cdot \left[\frac{1}{2} \left[\frac{2}{2} + 1 \right] \right] - \frac{1}{2} \frac{1}{2} e^{-\frac{1}{2} i \left[\frac{2}{2} + 1 - i\nu \right] 2 \frac{1}{2} + 2 \left[\frac{2}{2} + 1 \right] \frac{1}{2} e^{-\frac{1}{2} i \left[\frac{2}{2} + 1 \right] \frac{1}{2} e^{-\frac{1}{2} i$$

By the nature of continuous normalization, the amplitur The at large distances is independent of h. Recause of the

> cicle to be at the center of force. The s on this probability is given by the factor

> > $c = |R_{0k}(0)|^2 / |R_{0k}(0)|_{0=0}^2$

This factor has an important bearing on the probabilities of many nuclear processes. Galculate C in terms of v and e^{nv}.

e . .

19. For the harmonic uscillator express q and show that these are the same values as gives for a state of vibration with energy this same conclusion be reached with less

> Using the generating function 20.

$$\mathbf{t}^{2+2\mathbf{t}_{0}} = \sum_{n=0}^{\infty} \mathbb{I}_{n}(\mathbf{v}) \xrightarrow{\mathbf{h}^{n}}_{n=0}$$

0 = v(1 = 0) + 10v(= 11v

with $e = 2\pi$

21. Put the wave equation of the two-dimensional isotropic harmonic oscillator into polar coordinates, and obtain the 'radial wave equation', including the term containing the quantum number

m from the angular factor $e^{im\Psi}$. From the indicial equation and the requirement that the series terminate, obtain the relation $I = (n+1)\hbar\omega$, and show what values of m can occur for each value of n. Show that the number of independent wave functions for each value of n is the same as found using rectangular coordinates.

22. Carry out the same analysis for the three-dimensional harmonic oscillator; here one is concerned with the quantum numbers \mathscr{L} and n, and $\mathscr{L} = (n+3/2)\hbar\omega$. Find what values of \mathscr{L} can go with each value of n, and by summing $(2\mathscr{L}+1)$ show that the degree of degeneracy is that found in class by using rectangular coordinates. (The differential-equation work in this problem is closely analogous to that of Problem 21. Try to transfer results rather than repeat work.) a reve equation of the projectionsions! isotropic harmonic oscillator into polar coordinates, and obtain the tradia wave equation', including the term containing the quantum number

In from the angular factor $e^{i\pi f}$. From the in Naisleenuation and the requirement that the series terminate, obtain the rolution $f = (n+1)\hbar w$, and show what values of a can occur for each value of n. Show that the number of independent vave functions for each value of n is the same as found using rectangular coordinates

22. Carry out the same analysis for the three-dimensional harmonic oscillator; here one is concarned with the quantum numbers \mathscr{L} and n, and $i = (n+3/2)Z_{0.6}$. Find what values of \mathscr{L} can go with each value of n, and by summing $(2\mathscr{L}+1)$ show that the derive of degeneracy is that found in class by using rectagular coordinates. (The differential-equation work in this problem is closely analogous to that of Froblem 21. Try to transfer results rather than repeat work

Problems

23. Use the variation method to estimate the ground-state energy of the harmonic oscillator with Hamiltonian

$$H = T + V = -\frac{t_1^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2 ,$$

employing in succession the two forms of trial function:

a)
$$u = Ce^{-\alpha |x|}$$

b)
$$u = C(a - |x|), |x| < a; u = 0, |x| > a$$

For each function, carry out the following steps:

a) Sketch the shape of the function.

b) Evaluate C so that $\int_{-\infty}^{\infty} u^2 dx = 1.$ c) Evaluate Tu = $-\frac{h^2}{2m} \frac{d^2u}{dx^2}$ as a function of x.

Note that where u'(x) has a discontinuity Tu contains a δ -function.

- d) Evaluate $\overline{H} = \int_{-\infty}^{\infty} u H u dx$ as a function of α or a. The δ -function contributions must not be forgotten.
- e) Calculate $E_{o est} = \overline{H}_{min}$ by choosing the optimum

value of α or a. Express each result as a 3-place decimal times $\hbar \omega$, so that the results can readily be compared with each other and with the true value, $E_0 = 0.500 \ \hbar \omega$.

f) Set an upper limit on the sum $\sum_{n=1}^{\infty} a_n^2$, for

 $u = \sum_{n=0}^{\infty} a_n u_n$, u_n being the normalized eigenfunctions of the oscillator. Note that $a_1 = 0$ because $u_1(-x) = -u_1(x)$.

<u>1960</u>

Physics 25La Problem

23. Use the variation wethod to estimate the providents energy of the hormonic cacillator with healtenian

in the two forms of trink functi

1201

e (12 -

or each function, carry c

Sanda oli

ste that vhare -fundtion.

(6

) [culat luc of substant reasons be coopered rith e $v = \sum_{n=0}^{\infty} a_n v_n b_n^n$ or of the oscillator. $v_1(-x) = \pi u_1(x)$,

1

24. The one-dimensional problem

$$\frac{d^2}{dx^2} v(x) + (E^{(0)} - x^2) v(x) = 0$$

has eigenvalues $E_n^{(o)} = 2n + 1$ and matrix elements $x_{mn} = \sqrt{\frac{m}{2}} \delta_{m,n+1} + \sqrt{\frac{n}{2}} \delta_{m+1,n}$

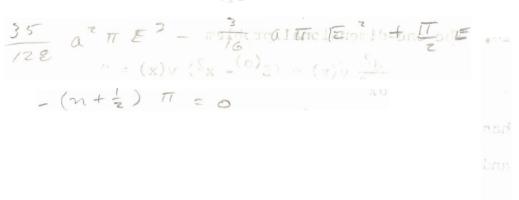
Use perturbation theory to find the terms in α and α^2 in the eigenvalues of

$$\frac{\mathrm{d}^2 \mathrm{u}}{\mathrm{dx}^2} + (\mathrm{E} - \mathrm{x}^2 - \alpha \mathrm{x}) \mathrm{u} = 0$$

Determine the eigenvalues exactly, and compare with your perturbation theory answer.

25. The unperturbed wave functions for Problem 23 are

$$v_n = \frac{H_n(x) e^{-x^2/2}}{\sqrt{2^n n!}}$$


Find the terms in α by which u_n differs from v_n . Compare the approximate u_n with the Taylor series in α for the exact solution, and thus obtain a recurrence relation for H_n and H'_n .

26. Consider the states with $E^{(o)} = 6$, in the two dimensional oscillator problem discussed in class. Using perturbation theory, with V = axy as in class, find the terms in a and a^2 in the energies. Check these results against the exact values.

27. Use the phase-integral method to find approximately the two smallest characteristic values of E for

$$\frac{d^2 u}{dx^2} + (E - |x|) u = 0$$

Compute to three decimal places, and compare with the exact values 1.019..., 2.338... Can you explain why the phaseintegral method works fairly well for these low states, even though the 'potential energy' is not a smooth function?

values 011.... - ... C

23. Suppose the potential energy is

 $V = -3.0 \times 10^{16} x^2$ (V in electron-volts, x in cm)

For electrons with E < 0, this is a potential barrier. Find the approximate transmission coefficient for electrons of energy E = -10.0 electron-volts.

29. Use the phase-integral method to find the eigenvalues of the anharmonic oscillator problem,

$$\frac{d^2u}{dx^2} + (E - x^2 - ax^4) u = 0,$$

for small values of a, correct to and including terms in a^2 . (To put the phase integral in suitable form for expansion in powers of a, introduce a new variable \forall' by setting sin $\forall' = x/x_1$, where x_1 is the positive real turning point).

30. Use perturbation theory to find the eigenvalues of the above anharmonic oscillator problem, correct to and including terms in a^2 . Compare with results of Problem 20. In what sorts of circumstances can one or the other result be presumed to be the more reliable? (Matrix elements of x^4 can be found by matrix multiplication from the known matrix x_{nm} for the unperturbed harmonic oscillator (natural units)

$$\mathbf{x}_{mn} = \sqrt{\frac{m}{2}} \delta_{m,n+1} + \sqrt{\frac{n}{2}} \delta_{m+1,n}$$

The general matrix multiplication rule

$$(AB)_{mn} = \sum_{k} A_{mk} B_{kn}$$

is probably already familiar, though we haven't quite got around to bringing it into the lectures. tticl ener

 $10^{10}
m x^2$ (0

For electrons with E- 3, this i the approximate transmission of energy 4 = -12, 3 electron-volt

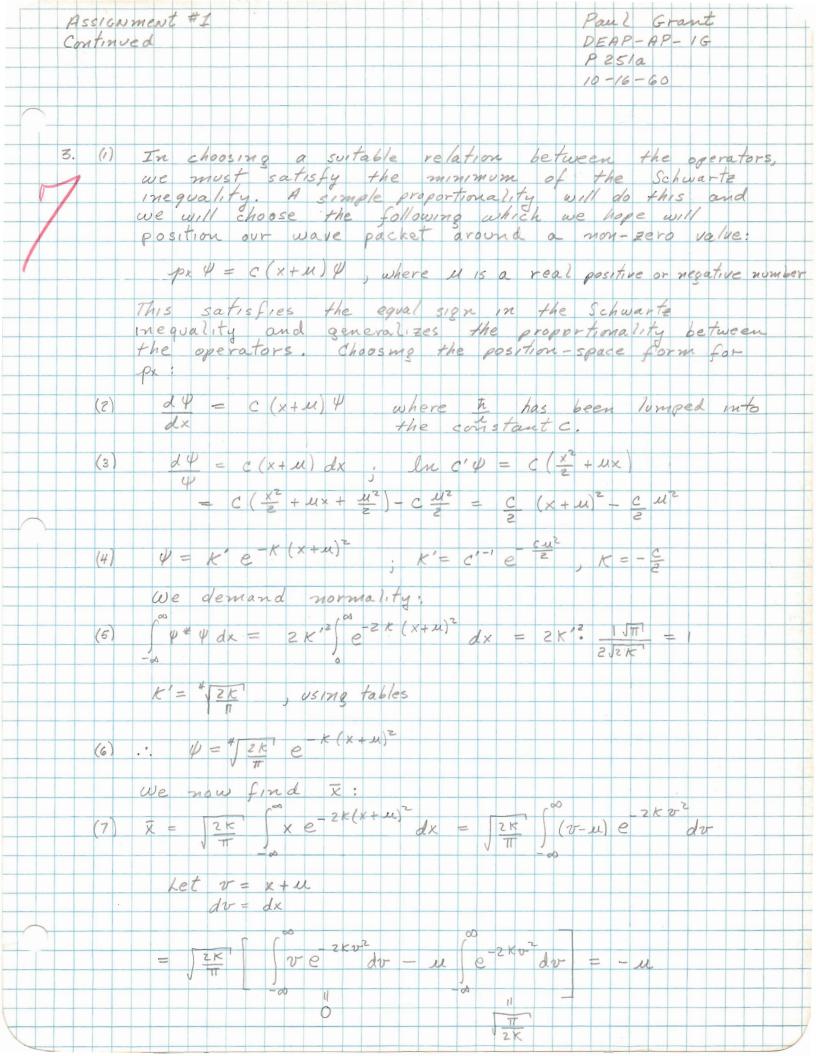
FOL I-Ic-

> for sub-(To putpowers

30. Use perturbation theory to find the digenvalues of the above an organic oscillator problem, correct to and includiterms in s4. Compare with results of include. A. In what sorts of directorstances can one or the other they be presto be the more reliable? (whitrix elements of x2 cen be for by matrix multiplication from the known matrix $v_{\rm el}$ for the unperturbed hermonic escillator (netural units)

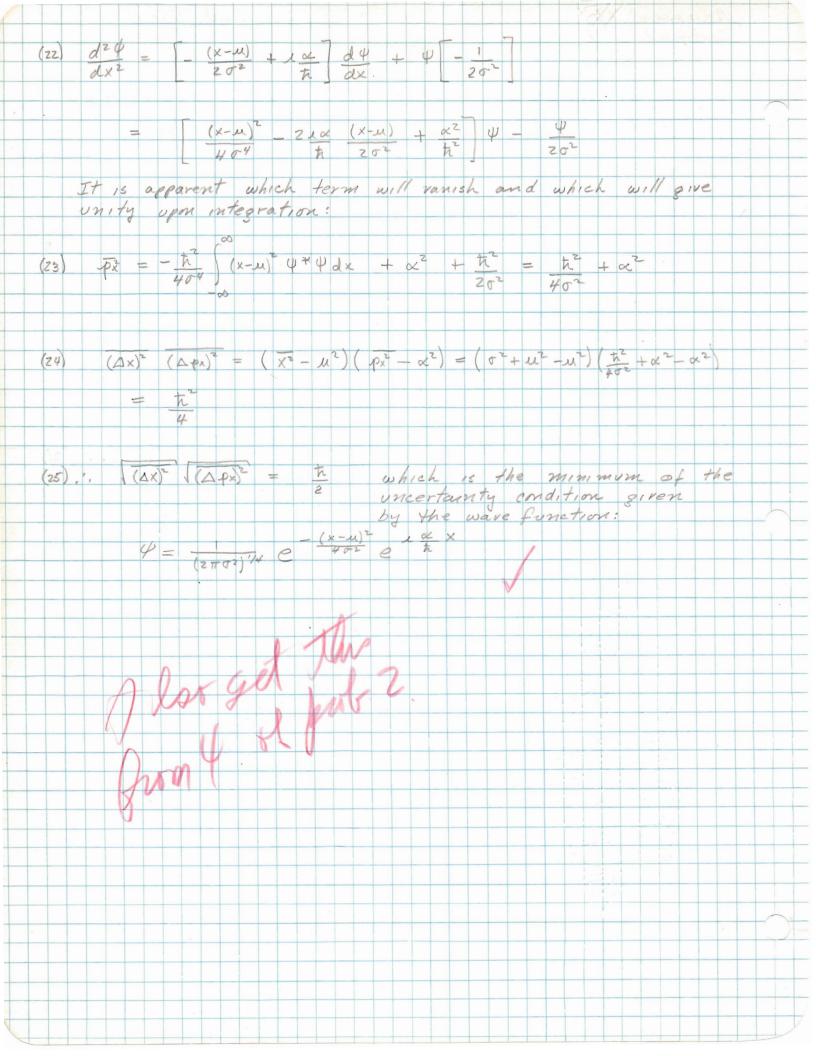
he ren

HA!


probably and to br

Problem Set #X Problem Set #	P251a 10-15-60 1. (1) We will take the following transformations between co-ordinate and momentum opace: $\psi = h^{-1/2} \int e^{\pm p \cdot x/\hbar} \varphi dpx$ $Q = h^{-1/2} \int e^{\pm p \cdot x/\hbar} \psi dx$ In co-ordinate space: $\chi \to x$ $\chi \to -\frac{\pi}{2} \stackrel{2}{=} \frac{1}{2} \int e^{\pm p \cdot x/\hbar} \psi dx$ $In co-ordinate space:$ $\chi \to -\frac{\pi}{2} \stackrel{2}{=} \frac{1}{2} \int e^{\pm p \cdot x/\hbar} \psi dx$ $\frac{1}{2} \int e^{\pm p \cdot x/\hbar} \psi dx$			
blem Set #1 $D \in PR-PR-PR-PR-PR-PR-PR-PR-PR-PR-PR-PR-PR-P$	below Set #X DEPP-AP-16 PZSIa 10-15-60 10			
m Set ## DEPP-AP-12 P251a 10-15-60 10-15-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(5		T F
Set #1 DEPP-AP-12 P2SIa 10-15-60 We will take the following transformations between co-ordinate and momentum space: $\Psi = \chi -1/2 \int e^{-\chi} px/\pi \qquad \qquad$	Set #1 DEPP-PP-16 P251a 10-15-60 We will take the following transformations between co-ordinate and momentum space: $\psi = \chi -1/2 \int e^{-\chi p \times 1/\pi} \psi d\chi$ $cl = h^{-1/2} \int e^{-\chi p \times 1/\pi} \psi d\chi$ $co-ordinate space: In momentum space: \chi \to \chir \to \chie^{\chi} \to \frac{\pi}{2} \frac{\partial}{\partial \chi}p_{\chi} \to p_{\chi}k = unll show that the operators in momentum space r = true.\overline{\chi}^{\pi} = \int \psi^{\pi} \chi^{\pi} \psi d\chi = \pi^{-1/2} \int \psi^{\pi} d\chi \cdot \int \chi^{\pi} e^{-\chi p \times 1/\pi} \psi d\chik = unll show that the operators in momentum space \overline{\chi}^{\pi} = \int \psi^{\pi} \chi^{\pi} \psi d\chi = \pi^{-1/2} \int \psi^{\pi} d\chi \cdot \int \chi^{\pi} e^{-\chi p \times 1/\pi} \psi dpx\chi^{\pi} = h^{-1/2} \int \psi^{\pi} d\chi \cdot \int (\overline{\chi} = \frac{1}{2}) e^{-\chi p \times 1/\pi} = (\overline{\chi}, \overline{2}) e^{-\chi p \times 1/\pi}\chi^{\pi} = h^{-1/2} \int \psi^{\pi} d\chi \cdot \int (\overline{\chi} = \frac{1}{2}) e^{-\chi p \times 1/\pi} = (\overline{\chi}, \overline{2}) e^{-\chi p \times 1/\pi}\chi^{\pi} = h^{-1/2} \int \psi^{\pi} d\chi \cdot \int (\overline{\chi} = \frac{1}{2}) e^{-\chi p \times 1/\pi} e^{-\chi p \times 1/\pi}\chi^{\pi} = h^{-1/2} \int \psi^{\pi} d\chi \cdot \int (\overline{\chi} = \frac{1}{2}) e^{-\chi p \times 1/\pi} e^{-\chi p \times 1/\pi}\chi^{\pi} = h^{-1/2} \int \psi^{\pi} d\chi \cdot \int (\overline{\chi} = \frac{1}{2}) e^{-\chi p \times 1/\pi} e^{-\chi p \times 1/\pi}\chi^{\pi} = h^{-1/2} \int \psi^{\pi} d\chi \cdot \int (\overline{\chi} = \frac{1}{2}) e^{-\chi p \times 1/\pi} e^{-\chi p \times 1/\pi}$		hv	
et #1 $D \in PP - PP - 1G$ $P \ge 5 \ln$ 10 - 15 - 60 10 - 10 - 10 10 - 15 - 60 10 - 10 - 10 10 - 1	et #1 $p \geq p \geq$	· · ·		s
## $D \in PP - PP - 16$ $P \ge 51a$ 10 - 15 - 60 10 - 15 - 70 10 - 15 - 60 10 - 15 - 70 10 - 15 -	#1 p_{2SIa}			we
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	Xn		2
$D \in PP - PP - 16$ $P \geq 5 la$ $10 - 15 - 60$ $take the following transformations between take and momentum space: -1/2 \int e^{\pm px \times / \hbar} (f d px) -1/2 \int e^{\pm px \times / \hbar} (f d px) Transformations space: Transformati$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mathcal{O} \in \mathcal{PP} - \mathcal{PP} - \mathcal{IG} \\ \mathcal{P} \geq 5 \ a \\ 10 - 15 - 60 \end{array} \end{array}$ $\begin{array}{c} \mathcal{I} = \mathcal{IG} \\ \mathcal{I} = \mathcal{IG} \\ \mathcal{I} = \mathcal{I} = \mathcal{IG} \\ \mathcal{I} = \mathcal{I} = \mathcal{IG} \\ \mathcal{I} = \mathcal{I} = \mathcal{I} = \mathcal{IG} \\ \mathcal{I} = \mathcal{I} = \mathcal{I} = \mathcal{I} \\ \mathcal$			~
$D \in PP - PP - 16$ $P \geq 5 la$ $10 - 15 - 60$ $10 - 15 - 60$ $10 - 15 - 60$ $12 \int e^{-x} px^{1/x} + q d px$ $12 \int e^{-x} px^{1/x} + q d px$ $2 = space: Ix momentum space: Ix + px$ $px \to qx$ $px \to qx$ $12 \int e^{-x} px^{1/x} + q d px$ $px \to qx$	$D \in PP - PP - 16$ $P \geq 5 a$ $10 - 15 - 60$ $10 - 10 - 15 - 60$ $10 - 10 - 15 - 60$ $10 - 10 - 15 - 60$ $10 - 10 - 15 - 60$ $10 - 10 - 10 - 10$ $10 - 15 - 60$ $10 - 10 - 10 - 10 - 10$ $10 - 10 - 10 - 10 - 10 - 10$ $10 - 10 - 10 - 10 - 10 - 10$ $10 - 10 -$	=		na to
$D \in PP - PP - 16$ $P \geq 51a$ $10 - 15 - 60$ $10 - 15 - 60$ and $nonentum space:$ $f = the following transformations between and momentum space: f = t p \times / k \ Q \ dp \times f = t p \times / k \ Q \ dp \times f = t p \times / k \ Q \ dp \times p \times - t t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t = t p \times / k \ Q \ dp \times p \times - t p \times / t \ Q \ dp \times p \times - t p \times / t \ Q \ dp \times p \times - t p \times / t \ Q \ dp \times p \times - t p \times - t$	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mathcal{D} \in \mathcal{P}\mathcal{P} - \mathcal{P}\mathcal{P} - \mathcal{I}\mathcal{C} \\ \mathcal{P} \geq 5 \mathrm{Ia} \\ 10 - 15 - 60 \end{array} \\ \begin{array}{c} \mathcal{P} \geq 10 \end{array} \\ 10 - 15 - 60 \end{array} \\ \begin{array}{c} \mathcal{P} \geq 10 \end{array} \\ \begin{array}{c} \mathcal{P} \simeq 10 \end{array} \\ $	5		y
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} $	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \mathcal{D} \in \mathcal{PP} - \mathcal{PP} - 1 \mathcal{E} \\ \mathcal{P} \geq 5 a \\ 10 - 15 - 60 \end{array} \end{array}$ $\begin{array}{c} \mathcal{P} \geq 5 a \\ 10 - 15 - 60 \end{array}$ $\begin{array}{c} \mathcal{P} \geq 5 a \\ 10 - 15 - 60 \end{array}$ $\begin{array}{c} \mathcal{P} \geq 5 a \\ \mathcal{P} \geq 5 \\ \mathcal{P} \geq 5 a \\ \mathcal{P} \geq 5 \\ \mathcal{P}$	q		c th:
$D \in PP - AP - 16$ $P \geq 5 a$ $10 - 15 - 60$ $10 -$	DEPP-PP-16 $P251a$ $10-15-60$ $10-10-10$ $10-15-60$ $10-10-10$ $10-15-60$ $10-10-10$ $10-15-60$ $10-10-10-10$ $10-10-10-10$ $10-10-10-10$ $10-10-10-10$ $10-10-10-10-10$ $10-10-10-10-10-10$ $10-10-10-10-10-10-10-10-10-10-10-10-10-1$	2*		lef e
DEPP-PP-16 $P251a$ $10-15-60$ $P251a$ $10-15-60$ $P251a$ $P252a$ P	$D \in PP - PP = 16$ $P \geq 5 a$ $10 - 15 - 60$ $P \geq 5 a$ $10 - 15 - 60$ $P \geq 5 a$ $P \geq 5 a$ $10 - 15 - 60$ $P \geq 5 a$	(-		Cin e
$DEPP-PP-1G$ $P251a$ $10-15-60$ $Following transformations between momentum space: \frac{1}{12} Q Qx \frac{1}{12} Qx \frac{1}{12} Qx \frac{1}{12} Qx \frac{1}{12} Qx$	$D \in PR - PR - 16$ $PZSIa$ $10 - 15 - 60$ $Following transformations between$ $momentum space:$ $The d px$ $The momentum space:$ $X \to -\overline{h} = 3$ $Px \to Px$ $Px \to Px$ $Px \to Px$ $Px \to Px$ $Px \to Px = 0$	-h		10
$D \in PR - PR - 16$ $P \geq 5 la$ $10 - 15 - 60$ $10 -$	$D \in AP - AP - 16$ $P25 Ia$ $IO - 15 - 60$ $IO - 15 - 70$ $IO - 1$	414		
DEAR-AP-16 $P2SIa$ $10-15-60$	$D \in AR - AR - 16$ $P \geq 5 a$ $10 - 15 - 60$ $10 $) P×
$D \in AR - AR - 16$ $P \geq 51a$ $10 - 15 - 60$ $10 - 15 - 70$ $10 - $	$D \in AP - AP - 16$ $P \geq 5 a$ $10 - 15 - 60$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$ $10 $	e))) ×
$DEAR-AR-16$ $P \geq 51a$ $10-15-60$	$D \in AP - AP - 16$ $P \geq 51a$ $10 - 15 - 60$ q $fransformations between px px px px - \pi i A \neq px px - \pi e px - Px px - Px$	*		- L
$D \in AR - AR - 16$ $P \geq 51a$ $10 - 15 - 60$ $10 - 15 - 70$ $10 - $	DEAR-AP-16 $P251a$ $10-15-60$	e	.e >	>
$DEAP-AP-16$ $P \geq 51a$ $10-15-60$ $4ramsformations between$ $space:$ $momentum space:$ $1-5-60$ $1-5-$	$D \in AR - AP - 16$ $P \geq 51a$ $10 - 15 - 60$ $I = 1 = 16$ $P \geq 51a$ $I = 16 = 16$ $I = 16$ I	d.		-
$D \in PP - PP - 16$ $P \geq 5 a$ $10 - 15 - 60$ $ams for mations between $ $space: $ $pace: $ $P \geq 5 a$ $ams for mations between $ $pace: $ $pace:$	$DEPR-PR-16$ $P251a$ $10-15-60$ $amsformations between$ $space:$ $p = \frac{1}{10}$			· h
$DEAP-AP-1G$ $P \geq 5 a$ $10-15-60$ $sformations between$ $ace:$	DEAP-AP-16 $P 251a$ $10-15-60$ $sformations between a a a a a a a a a a a a a a a a a a$			
$D \in AP - AP - 16$ $P \geq 5 a$ $10 - 15 - 60$ $r mations between = 1$ $r mations = 1$ $r matio$	DEAP-AP-16 $P251a$ $10-15-60$ $matrices between$ $10-15-60$ 10		3	
$D \in AP - AP - 16$ $P \geq 51a$ $10 - 15 - 60$ $ma trans between$ $ma trans between$ $10 - 15 - 60$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$ $10 - 15 - 70$	$D \in PP - PP - 1G$ $P \geq 5 a$ $10 - 15 - 60$ $ma trovs be tween 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =$	•		
$D \in AP - AP - 16$ $P \geq 51a$ $10 - 15 - 60$ $10 - 15 - 70$ $10 - $	$D \in AP - AP - 1G$ $P \geq 51a$ $10 - 15 - 60$ $I = 1 = 16$ $I = 16$			
E P P - P P - 1 E = 1	E P P - P P = 16 $2 S Ia$ $0 - 15 - 60$ $a A A A A A A A A A A A A A A A A A A A$			w
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			e
$\frac{p - p p - 1}{2} = \frac{1}{2} = \frac{1}$	$\frac{p - HP - 1G}{16} = \frac{1}{16} =$			5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			ha
$\frac{2}{2} - 1 = 1 = \frac{1}{2} = \frac{1}{2$	2- 16- 16- 16- 16- 16- 16- 16- 16- 16- 16			27
16- 16- 16- 10- 10- 10- 10- 10- 10- 10- 10	16 16 16 16 16 16 16 16 16 16			3
				sta
				2 ~ 1
				+ ,
				22

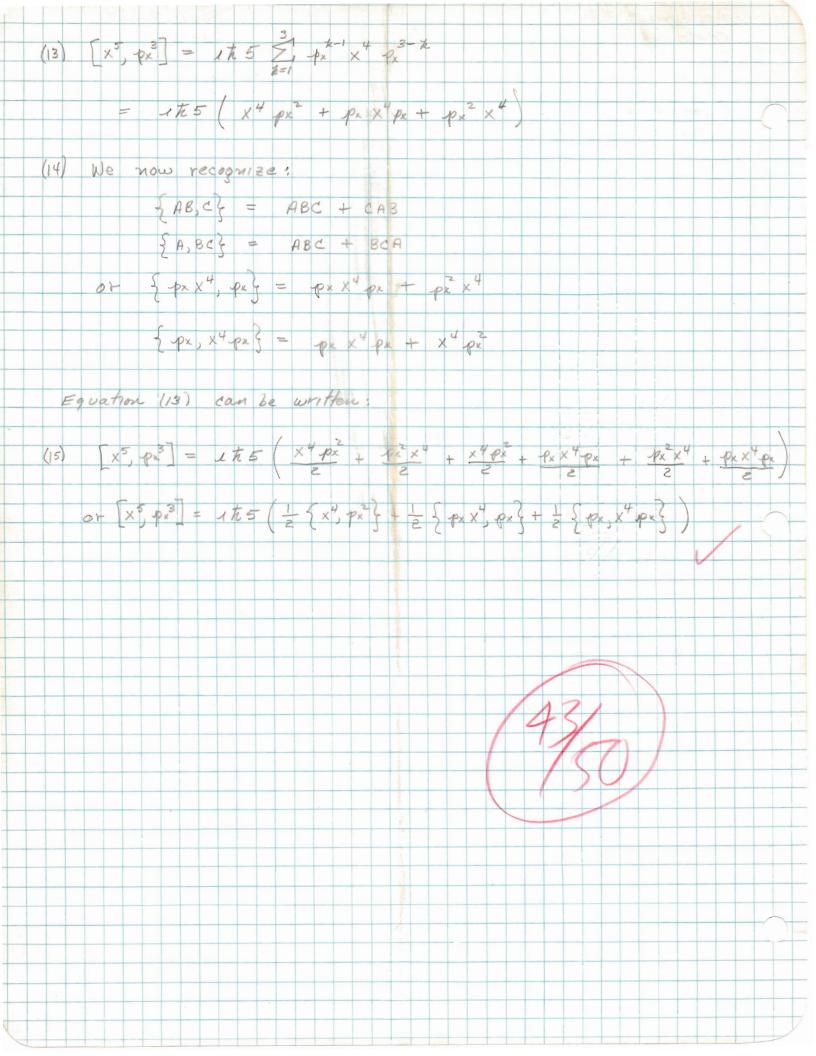
		0	((
(1)		10)	(9)	8)		5 c
		7				b
	[}]}	er	* 2	In		57 X
		px			-	t,t
	h	251		eg	_	tu I
	- 1/.	en , m		ra		tin
) 2 -	ta	px w	te	1/2	87 1
S	9	Tic				
	0 * P	m		+1		fo
/ *	d *	-		he		4
h	Px d q	40	J	-		4
-1/2	* *	r		se		X
	<i>ر</i>	-		cr.		f: (
	(co		nd		1
φ	-	nv	-			n
* 0	九九	en n (m		
7 14 1 1 *	9 6	Q.	ψ	teg) : m
X	(p)	nco	d;	gra		
	2	e: P		2 e'		h
- 1 V 		×				1/2
e	27		J	n		S e
	×					4 22
px :	n. /ħ	p*.		ti		fr.)
×/x	Ψ	the px px	×	-]	:/h	(/n
(d: m	· (-	<i>n</i> .	5 12		q
' the		<u>k</u>	Px			0
11	1 0		M	but -	d	d
101× ×	1×)		1	P×	Dx V
				Pa		P
>					d×	d
~~~~						×
			1			
P		e px	/	d		
<i>d</i> .		x/n				
		Ŷ		4		
		\$				
		lex				


Assignment#1 Paul Grant Continued DEAP-AP-IG P251a
Problem I Intrived
n General: x ⁿ px ^m ± p ^m x ⁿ Why shall the?
(12) It can be shown that (see Prob. #5):
$\begin{bmatrix} x^{n}, p_{x}^{m} \end{bmatrix} \psi = -\begin{cases} m \\ \xi_{i} (-i\pi)^{k} (m) \\ \kappa = i \end{cases} \begin{bmatrix} k \\ (n-i+i) \end{bmatrix} x^{n-k} p_{x}^{m-k} \\ \psi \\ \kappa = i \end{cases}$
(13) Multiply by 4* and integrate over all position space:
$\frac{1}{\chi^{m} p^{m}} - p^{m}_{\chi} \chi^{n} = - \sum_{k=1}^{m} (-\iota \hbar)^{k} (m) \prod_{\lambda \in I} (n-\iota + \iota) \chi^{n+k} p^{m-k}$
Therefore, we may not in general, arbitrarily arrange a M. product if that is what is meant by the question. M. If it is meant that:
$\int \psi^* (x^a p_x^b \times p_x^c) \psi dx = \int \psi^* (x^a p_x^b \times p_x^c) \psi dpx$
a momentum operator. This can be seen from the
this is free as long as the last operator in the cham is a momentum operator. This can be seen from the fact that we can continue "pushing thru" each operator past the exponential by performing the differentiation or integration by parts as required by the operator and the space one is working in.
and the space one is working in. True in general

								4
							l	
							)	
								2.
		(5)	(4)			(2)		(1)
J	w			13	Su	e la	b,	
	hi	p,		nt	e nc	le v q	9	We
	ch			eg 0 =		T	2=	2
	1.			ra		(1	h	as
	5			2 2 h 2 T	h П	b) h	- 1/2	322
	+1			- 1	- 1/2		2	177
	he			of 12 2)"	2		ſe	F
	~			14			1	t
	a			<i>co</i>	-	1	14	ha
	2016			000	00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9x ×	t:
	2			e	e		/ħ	
	re			. x	_>		Ŷ	
	2 50			14	×2/c		6	
			tio T	211	toz		1 ×	
	2			05	00			
	06			hes	5S		2222	-
	to			prth	1 1		0	
		- ' «	•	×	nx R	P.		
			2	na	X			-
			0	1.	dx			
			e	0	- )		()2	
		-			4		11	
		- 1 ~ 	205	ho	05	115;		
		-	2	ve		for	X2	
		Ve	P	les	x ) ra	m	- <i>11q</i>	
		2	2					
		5	d.			d	X	
		2	px	/		ef	= 0	
		2		-		121	2	1
		d.			h	ed		
		P×				2		
	$\checkmark$				-	•		
					x			
						•		
							)	
								-



	(13)	(j % )	(12)	th	an the	For	(11)	(10)		(9)	We	(8)	
	-	7		ere	-					=			
29	)	The		200	ak sa:	Sin 20	4		Le	×	2100		
va		× ×		15 +	me	np	V =	11	t	2	2		
2		opt		0	-ar	lic	-	2	v .	-	ta		
× 51		era		ho	y di	ity	1	2 ]	1	M	te		
+ , g n	-	tor		De	Co me		-92)	ZKT	X-J XX	2			
-		rs		ero	ns ens	we	14		u	o X ²			
		σ.		the	tan	h	e	v [†] e		e		: ( ×	
	+	x		at	nt 15	ave				2K			
the		¥		P	a	-40	<u>(</u> ×			(×			
e a l		7		the	ii,	0 M	-102			u)2			
Sc		nve			x	14	2			d×	=		
hu	-		i i	sa	to	C +	,	-		11	()		
	L		x m	me	tan	m	9	2 V		27	-		
15.72	1	at		y i	he d t	side	shi ene	21			м) ¹		re
	-		ng	oro	of Sa	2-4	rac	•		500			
2017			re L	ce	er ti	ed	2 5	<u>r</u> 4		v ² e	:		e .
nec 2 9 .		1	al	du 1	sf	7	Br	 		- 25	X ²		518
	-		, fh	re he	tor	the	no	 		0	-		n
	-		7	a	-i d		A	515		v	21		of
			true	17	×	cas	+4	T		+2.	(x		ı
+ ha. 15			e or d	h	whe	e	e	;		u 2	ł		e m
	-		- n	+	his	04	nor	K	. (	re	u²		re 7
	+	×	egi	he	chu	2	m	11	0	250			the
he			ati		va	a	az			z dz			
<u>,</u> , e,	.		ve	- 1	had rts		<u> </u>	1		- ´+.			
		-			L z		_	-		u ²			
		2					the		II JZK	-2x=2 e 0			
									7	v			
				_			_					*	


21	(20	(19	(18	(17	(14		() 5	(14		
	)	)					5)		Ori	
					lou	I		T x (		
1		Px	d d	- Px		-	0			
NO SI UN			<del>)</del>	-			t 4 d x			
1 ai 1 ai 1 ai 1 ai 1 ai 1 ai	ψ	1			= 1 P,	ed		du. du		nen ed
e				the second		la	1			
V + r 1		The second	-	-		tel		-		#
an he an h			- 00			V	С			1
1 is at n		00	-	ν Ψ			(			
(			-	+			X			
, 7 , 7		(×. 2		-			+			
N N		-	'x-				M			
d'd		()		-			)			
va nai 2 P x ²		-	()	+	-		4			
10		ψ*		-	-					
di di		ď	-		=		-			•
							v			
6	C		又大	7			i th			
F			7		-	04	~			
	a h	æ				< x	4	,		
1× e	×				-		,	n		
qı		)			- Dy			Ø		
a	29	¥			2		;	00:		
2	1	ψ					ce	517		
5	5	d,					he C.	Fi o		
8		4					re	ne		
P.n	th						-	5	/	P F
		1					the a	pa		EI
								ace		42 9 P 51
W zz	d is	-					15			- 1 a
e ,		œ								9P
10 10 10 10 10 10 10 10 10 10 10 10 10 1							10		,	-
i e							m			
							P			
							ed			
							~			
							nte			
							>			



	n	516			+	#7					-	-	-	-	-								Pau	2	0		+	-			1	
		2			C .	1	-	+-+	-			+	-					-			+ +											+
	Con	itin	ver	d	_	-			_		-	+	+	-			-						DEI			PP.	- 1	16	_			1
																							P2									
									T														10 -			0					T	T
											-	-								-		·	-		0	F		-			-	+
							-				+-	+-	+	-	-			-	+	+-	+-+								-			+
	++			-	-	+				-	-	+	-							-	1		-						-		-	+
		2		_	1	1				1	1	1	1	-					1	1			1								1	1
4.	(1	)	Ex	par	nd,	no		th	e	e	xp	ion	en	tio	2.				1													I
			1				1										1		-	T			T								T	T
1 11				P	Xr	11		a .	24	1	-	1	+	(,	0	P.	1.	1	1.	0 -	12	1	1	10	1.0	3	1					+
				E	P	- (	~	~ 1	-K/	7)	=	1	F	1-	L.	IX	+	21	- (1	AP		+ -		14	-		+ +	.	+-			+
111		2		,	+	+					+	+	+	-		-		-	1	ħ	1	5		n			-					+
	(Z	-1	In	tro	odu	1012	19	7	the	2 0	200	ere	ato	pr	P	×	->	te	9				1									4
V				1	1	L					L	L			V			1	9X	1			1									L
																						T	Г				T	T				ſ
			exe	21	10	p.	1	-	1	1	2	}	1	02	1	2	1	a	3 1	3	1											T
			-10	1	-	the	1		1	T	1	×	+	21	1	×2	T	21	1 1	13	+	1	•					-				+
		+-		-	-	T	F		+	+	9	ſ	-	-1	4		-	0.	. 4	~	++		+				-		+-			+
					, ].	7	-		-		+	-	-		-		4	1		-	-	,	-			1	-	1				+
	(3	5]	If	-	Ψ (	( X, 4	1,2	,t,		15	1	an	101	14	tic	- ,	1	t	ha	5	con	nti	200	201	0	der	-140	atu	ves			1
			of		211		220	der	-5	0	no	rl	a	4		2 11	1	Po	m	ts		C	the	ro		a	-e					
			no		512	10	1/2	-	pa	120	As		The.	15			1	-	T	T	7	T				T	T				T	Γ
					10	3	- 01		10	(n)	-		-16							-												T
			-	2 -				-	+	-	+			H	$\vdash$	-	-	+	+	+-	+	-	-			-	-		+-		-	+
		+-+	+1	a p,	- 1	11		-	1	-	11-	-		10	1	02	-	H	,	23	1. 11	1	-					-	+			+
		E	2	n	-	11	X,Y	,2,t	=) =	=	Y	+	a	4	+	2	. 4		+ -	21	ΨĨ	+	1 1 .						1			
	4	)	The	2	10	ht	4	ha	nd	5	Ide		15		rea	00	21	20	a	a	5	the	2	To	4	100						
		T	ex	0	3	1	20		0	11	11.	1	21	٢		5	1	-	1	-			1	T	4	-						T
																-	-	-		-	-	-	-					-		-	+	-
		++	0 '	<i>ia</i>	PX	113	7		-	1	+	-	0)	1	-			+	-		-				-	-		1	-		+	+
		-	e ?	ħ	-	Y	(X	14,	2,	()	=	-	Y	( X	1+4	٨,	3.	Z,	T	1	-	-	-		-		-	1		-	-	4
		+		_	-					+							1	1	1				1			1					1	
				1										9				J	J						1	_						
	7	The		2/1	ler.	F	~	11	4	he	0	po	ro	.F.	75		5	+	2	tra	ene	10.	-e	44	ie		Un	ve			T	Г
	1	0.14	N I	H			1	5 .1	-		+	P C			11	10	1	1	1	in the	4		T	E	-	4	T	1001			-	F.
		JUN	191	10	n 1		a		20	mi	15	H	n	9	T'	10		;	91	rec +1	-110	R	•	-96	10	110	n	(7)	++		-	H
		15	50	m	eri	m	25	k	En	ow	n		as	5	B	5100	ch	15	7	The	ore	m		an	1 d		15				-	H
		hel	Pf	01		in		50	1r	121	8	1	Sci	hr	oe.	dr.	20	er.	5	Equ	at	Tor	4.	fo	2	Po	art	icle	4		-	
	2	no	+10	x	1-	n	a	2	p	eri	lod	11C		00	te	nt	Tal	1.	T	Í								1	$\square$			
									4				-		1	1	J	J	5						J							E
			T				-	-	T	T						-	1	+	T			T			+	-		T		+	T	
				-					-	-				-	-	-	-	+	-	-	-	-			-							F.
		++			-				-	+	+			-	-	-	-	+	+-	+-		-	+-		-	-	-	-	++		+	-
		+	_	-				-		+	-			-	-	-	-	-	-	+	4		+	$\vdash$	-			-	+-+		+	-
		+		-					-	-	-						-	-		+		_				_	_	-	1	_	-	L
									1								1	1	L			1						1				
		T					T	T							T	T	T	T	T		T	T		T	T	T	T		T	T		
																	-	-	-													
			-	-				-	+	+			-	-	+	-	+	+	+		+	+	-		+		-	-	++		+	F
		++	-	+			-	-	+	+-		$\vdash$	4	-	-	-	-	-	+-		4	-			-		-	-	+-+		+	-
	_		_	-	-		_		-	-				-	_		-		-		-	-	-		4		-				+	
				+					1	1							1	1	1		4	-						+	$\square$		-	
									1						J		J	T	L		J					1						
							T						1	1	1	T	T	T	T		T	T			T	T				T		
				+		-		-	-	-		-	-	-	-		+	+	+		-				-			1		-		
		++		+-	+-+			-		+	++	-	-	-	+		-	-	+-	+-+	-		+-+				-					-
			-		-		-	-	-	-				-			-	-			-	-		_	-	_	-	+				
			1	1				1	1								1	1	1		1						1	1		1		
													J	J	J		ſ	T						1	ſ							
									T						T	T	T	T	T		T	T		-	T	T	T			T		1
				1					-					-	-		+	+	1		+	-	-	-	+		-				-	7
								_				-	_	-	_	_	_	+	_		_					-	-			_	-	
	-					-			_		-			-																		

(1)We now demonstrate the equation used in Problem #I. 5. We start by considering the following operation on ψ.  $p_{x}^{m} \times n \psi \rightarrow (-\lambda h) \frac{\partial m}{\partial x^{m}} (x^{n} \psi)$ Now the formula for the m the derivative of the product of two commuting functions is:  $(2) \xrightarrow{\partial m} (fg) = \sum_{k=0}^{m} (m) g(k) g(m-k)$  $m which \begin{pmatrix} m \\ k \end{pmatrix} = m \begin{pmatrix} m-1 \end{pmatrix} \cdots \begin{pmatrix} m-k+1 \end{pmatrix}$ K. and f = xn, g > 4  $(x^{n})^{(n)} = n(n-1)(n-2) \cdot (n-k+1) \times n-k = k! \binom{n}{k} \times n-k$ (3) (4) Thus  $p_{x}^{m} \chi^{n} \psi = (-i\hbar)^{m} \sum_{k=1}^{m} k! \binom{m}{k} \binom{n}{k} \chi^{n} \psi \binom{m-k}{m-k}$ Now  $(-i\hbar)^m \psi^{(m-k)} = (-i\hbar)^m \partial^{m-k} \psi$ =  $(-i\hbar)^k (-i\hbar \partial^{\mu})^{m-k} = (-i\hbar) p_x^{m-k} \psi$ (5)  $p_{x}^{m} \times \psi = \prod_{k=0}^{m} (-i\hbar)^{k} k \cdot \binom{m}{k} \binom{n}{k} \times p_{x}^{m-k} \psi$  $= \underbrace{\mathbb{Z}}_{1}(-\lambda \pi)^{k} \underbrace{\mathbb{Z}}_{0}\left(\frac{m}{k}\right) \underbrace{\binom{n}{k}}_{k} \underbrace{\mathbb{Z}}_{0} \underbrace{$ (6)  $\dots$   $\begin{bmatrix} x^n & px^m \end{bmatrix} = - \begin{bmatrix} x^{-1} & tx \end{bmatrix} \begin{bmatrix} x^n & tx \end{bmatrix}$ the condition min in must be made to end the summation at n instead of m, f m>n. Although this equation is useful in generating a series from the commutator, another form will be more helpful for forming symmeterized products.

Assignment #1	Paul Grant
Continued	DEAP-AP-16
	P251a
	10-16-60
Problem 5	
Continued	
 (7) consider the following commutator:	
 EAM, BMJ;	
Using the two identifies:	
[X, YZ] = [X, Y]Z + Y[X, Z]	
[YZ, X] = [Y, X] Z + Y [Z, X]	
 we may expand as follows:	
(B) $[A^n, B^m] = [A^n, BB^{m-1}] = [A^n, B]B^{m-1} + B[A^n, B]$	$B^{m-2} + B^2 [A^n, B] B^{m-3}$
 L. L BM- AMBI - C Ph-1 CAN R/ RM	1 - K.
 $+ \dots + B^{m-1} [A^{n}, B] = \underbrace{B^{k-1} [A^{n}, B]}_{k=1} B^{n}$	
(9) Similarly: $\begin{bmatrix} A^n, B \end{bmatrix} = \sum_{i=1}^{M} A^{-1} \begin{bmatrix} A_i B \end{bmatrix} A^{n-2}$	
$(10) \begin{bmatrix} A^{n}, B^{m} \end{bmatrix} = \underbrace{Z}_{A=1}^{m} \underbrace{B}_{K=1}^{n} A^{k-1} \begin{bmatrix} A, B \end{bmatrix} A^{n-1} B^{m-k}$	
 (1) Suppose $A \rightarrow X$ , $B \rightarrow PX$	
(II) JOROSE IT A DE TAX	
$\frac{1}{2} + hcn \left[ \frac{x}{x}, p_x^{m} \right] = t + n \sum_{k=1}^{m} p_x \frac{x}{x} + p_x^{m-k}$	
(12) $[x^2, p_x^2] = \lambda \hbar 2 \sum_{k=1}^{2} p_x^{k-1} x p_x^{2-k}$	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
 $= -i \hbar 2 \left( \times p_{\times} + p_{\times} \times \right)$	
$= 2\pi 4 - \frac{1}{2} \sum_{x, px} px$	



Assignm	ient #2				Paul Grant
Probs. 0					DEAP-AP-16
					P 251a 11-9-60
					11-9-60
	2 1		. 7	1	
<i>G. a. (1)</i>	We Cora	$\omega_i = 1$ , $\omega_z = X$	$W_{2} = X^{-}$	on the in	terval Ocx 21. us orthogonormal
	to each	h other:	awing me	ar compriseiro	us or magonormal
10	MI = U	* · · · · · · · · · · · · · · · · · · ·			
	MI = ~	), w,] ¹ /2	$(\omega_i, \omega_i) =$	o OX	
	1/2 = . ·	V2	V2 = W2 -	(M, WE) MI	
	1/3 =	V3	$v_3 = \omega_3 -$	(M, WS) M, - 1	(M2, W3) M2
	1	(22, 28) [ 16			
(2)	$(\omega_i, \omega_i) =$	$\int dx = 1$ , $\therefore$	U1=1		
(3)	(11)	$= \int x  dx = \frac{1}{2}$	6		
(4)	$(v_z, v_z) =$	$= \int_{0}^{1} \left( x^{2} - x + \right)^{2}$	$-\frac{1}{4}dk =$	×3 - ×+ ×=	
(5)	112 F	2537 (x - 11	(2)		
(6) (	$(\mathcal{U}_1, \mathcal{U}_3) =$	$= \int_0 x^2 dx =$	3 ; (U2)	$u_2) = 5232$	(x ² - 2) 0x
	= 2 /31 /	X3 - X2 / =	2531.12	= 53/6	
(7)	253 = X	3 0	- (205' 7 * -	2 3 ) - X - 3	$-x + \frac{1}{2} = x^2 + x + \frac{1}{6}$
		$=$ $\int_{0}^{1} (x^{4} - 2x^{3})$	8 11 Z \		
(8)	$(v_3, v_3)$	$= )_{0} (x^{-} - 2x^{-})$	+ 5x - 3	$x + \frac{1}{36} dx$	
	= x ⁵ -	$-\frac{x^{4}}{2} + \frac{4}{9}x^{3}$	$-\frac{1}{x^2} + \frac{x}{x}$	7 = + - +	+ + + - + + + =
	5	2 9	9 36	10 5 6	7 6 36 5(36)
(9)	113 =	6 15' (x2-x	+ + - )		
	112 =	z J3 (x - 1/2			
	M1 =	1			
			V		

C									1							-							1					1	2					2							
	Ь.	(1)								1									. 1				th	1	the		w	eig	h	F	F	ac	tor	>	pt	(x)=	x	;			
		(2)	(	w	1,0	Wo)	) =		1	6 1	o (x	) 0	(x	E		So	X	d	X	P		12												1	-				_		1
		(3)			j	1,	8	ι	52	7		V	/	-	-	-	-																-								1
		(4)					2)			1				dx		-	-	52	7											2									_		1
		(5)	-	7	52	10	2		×	-		2 3	-	-	-	-		_	_												1								-	_	
		(6)	(	(2	T2,	Va	:)	11			S	()	3	-	40	- X	2	+	419	- ×	) 0	lx	1)		-	14	-	4		.+	29	μ		4	212	-	1	1 30	-		
		(7)									1		-	+			/	/													(							24	•		
		(//	,	',		M	2	C		1								+																	_				_		-
		(8)		(.	I.	1,1	W3	)	11		52	7	5	× ³	d	x	11	2	_	Jz	1/4																		-	_	-
		(9)	(	l	12	, 0	13	).	11		6	S	(	X	4 -		2 [17]	XB	) .	dx	-	4	6	E	-15		6	-]	(1		15										
		(10)		V	13	IJ		X	2	_	-	12	-	-	6/6	. (	×	-	w N	)	1		XZ	_	010	: ×	. 4		3												-
											+	+	+	+-		+	+	+	-	-				-	-	_													_	1	-
	+	(11 )	(	v.	_		) =																				20	) J	LX.				_					_		_	-
	-			_		1)					5		+	3	00	-	-	2	5		+ -	7 00		11	-	10	0				-							-			-
	-	(12)		l	13	11		19		( )	XZ	-	010	× -	+ .	3 10	>	1	(																				_	_	-
	-			l	12	-	E	6	é (	×	-	NM	5			/	+	-															5						_	-	-
			-	1	И,		-	J	27		-		-		/		+																							_	-
			+	-							-		-			+																							_	+	
	-		-	-							-	-	-	-	-	_	-																								-
			-										1	-	-																										-
			+								-		-	-	-			_																					_	-	-
			+										1	-																									_		1
													-			-																		-							
																-							-											-							-
																															-		-								1
			-																															1						/	

Private ment #2 Private Prior Prio	-0	1 #0	Paul A +
Pisch Pick and the production for the free particle in general as: T. (1) We write the wave equation for the free particle in general as: The + k ² k = 0 (a) Now, in eqlindrical co-ordinates; P = $[x^{+}+y^{-}]^{t_{k}}$ $Q = ton-1 3/k$ , $\bar{x} = \bar{x}$ and $T^{\pm} = \frac{1}{r} \frac{1}{2\rho} \left( \frac{\rho}{2\rho} \right) + \frac{1}{r^{k}} \frac{3\bar{z}}{2\bar{z}^{k}} + \frac{3\bar{z}}{2\bar{z}^{k}}$ and $T^{\pm} = \frac{1}{r} \frac{1}{2\rho} \left( \frac{\rho}{2\rho} \right) + \frac{1}{r^{k}} \frac{3\bar{z}}{2\bar{z}^{k}} + \frac{3\bar{z}}{2\bar{z}^{k}}$ and $T^{\pm} = \frac{1}{r} \frac{1}{2\rho} \left( \frac{\rho}{2\rho} \right) + \frac{1}{r^{k}} \frac{3\bar{z}}{2\bar{z}^{k}} + \frac{3\bar{z}}{2\bar{z}^{k}}$ and $\pi^{\mu}$ have for the wave equation. $\frac{1}{r} \frac{1}{r} \left( \frac{\rho}{2\rho} \right) + \frac{1}{r^{2}} \frac{3\bar{z}}{2\bar{z}^{k}} + \frac{3\bar{z}}{2\bar{z}^{k}} + \frac{1}{2\bar{z}^{k}} + \frac{1}{2\bar{z}^{k}$			Paul Grant
7. (1) We write the wave equation for the free particle in general as:	Continu	ve al la	
7. (1) We write the wave equation for the free particle in general as:			P 25/a
general as:			11-9-60
general as:			
general as:			
general as:			
general as:	- 11		
	7. (1)		e particle in
(c) Now, in cylindrical co-ordinates; $P = \left\{ x^{n} \pm y^{n} \right\}^{n},  Q = \tan^{n} \left\{ 3/k,  x = x \right\}$ and $T^{2} = \frac{1}{p} \frac{3}{dp} \left( p \frac{3}{dp} \right) + \frac{1}{p^{n}} \frac{3^{n}}{3k} + \frac{3^{n}}{4} + 3^{n$	N	general as:	
(c) Now, in cylindrical co-ordinates; $P = [r^{+}+y^{-}]^{T_{r}}  Q = tom^{-1} 3/k,  x = x$ and $T^{2} = \frac{1}{p} \frac{3}{dp} \left(p \frac{3}{dp}\right) + \frac{1}{p^{n}} \frac{3^{+}}{3k} + \frac{3^{+}}{3k}$ and we have for the wave equation. $\frac{1}{p} \frac{4}{dp} \left(p \frac{dM}{dp}\right) + \frac{1}{p^{n}} \frac{3^{+}M}{3k} + \frac{3^{+}M}{k} = 0$ $\frac{1}{p} \frac{4}{dp} \left(p \frac{dM}{dp}\right) + \frac{1}{p^{n}} \frac{3^{+}M}{3k} + \frac{3^{+}M}{k} + \frac{4^{+}M}{k} = 0$ (3) We now argue that $M = P(p) \oplus (q) = \chi(z)$ . Substituting m the equation and dividing by $M$ : $\frac{1}{p} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}$			
(c) Now, in cylindrical co-ordinates; $P = [r^{+}+y^{-}]^{T_{r}}  Q = tom^{-1} 3/k,  x = x$ and $T^{2} = \frac{1}{p} \frac{3}{dp} \left(p \frac{3}{dp}\right) + \frac{1}{p^{n}} \frac{3^{+}}{3k} + \frac{3^{+}}{3k}$ and we have for the wave equation. $\frac{1}{p} \frac{4}{dp} \left(p \frac{dM}{dp}\right) + \frac{1}{p^{n}} \frac{3^{+}M}{3k} + \frac{3^{+}M}{k} = 0$ $\frac{1}{p} \frac{4}{dp} \left(p \frac{dM}{dp}\right) + \frac{1}{p^{n}} \frac{3^{+}M}{3k} + \frac{3^{+}M}{k} + \frac{4^{+}M}{k} = 0$ (3) We now argue that $M = P(p) \oplus (q) = \chi(z)$ . Substituting m the equation and dividing by $M$ : $\frac{1}{p} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{4^{+}}{k} = 0$ $\frac{1}{p^{p}} \frac{d}{dp} \left(p \frac{dP}{dp}\right) + \frac{1}{p^{n}} \frac{d^{n} \tilde{x}}{dq^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}}{dz^{n}} + \frac{1}{q} \frac{d^{n} \tilde{x}$		$\nabla^2 u + k^2 u = 0$	
$P = \left[ x^{2} + y^{2} \right]^{1/2}  Q = \tan^{-1} 3/k,  k = 2$ and $\forall^{2} = \frac{1}{1} \xrightarrow{2} \left[ \left( p \xrightarrow{2} \right) + \frac{1}{p^{2}} \right]^{1/2} + \frac{2^{2}}{p^{2}} + \frac{3^{2}}{p^{2}} + \frac{3^{2}}{p^{2}} \right]$ and we have for the wave equation: $\frac{1}{p} \xrightarrow{2} \left( p \xrightarrow{2} \right) + \frac{1}{p^{2}} \xrightarrow{2^{2}} \left( p \xrightarrow{2} \right) + \frac{3^{2}}{p^{2}} + $	0		
$P = \left[ x^{n} + y^{n} \right]^{1/2},  CP = \tan^{n} \frac{3}{2}  k ,  Z = Z$ and $T^{2} = \frac{1}{1-2} \frac{3}{2P} \left( P \frac{3}{2P} \right) + \frac{1}{1+2} \frac{3^{n}}{2P} + \frac{3^{n}}{2P}$ and we have for the wave equation. $\frac{1}{1-2} \frac{1}{2P} \left( P \frac{3M}{2P} \right) + \frac{1}{1+2} \frac{3^{n}M}{2P} + \frac{3^{n}M}{2$	12)	Barry an autoretrical co-ardinates.	
and $\forall^2 = \frac{1}{p} \frac{\partial}{\partial p} \left( p \frac{\partial}{\partial p} \right) + \frac{1}{p^2} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}$ and we have for the wave equation. $\frac{1}{p} \frac{d}{p} \left( p \frac{\partial M}{\partial p} \right) + \frac{1}{p^2} \frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial x^2} + \frac{\partial^2 M}{\partial x^2}$ (3) We now argue that $M = P(p) \Phi(q) \lambda(x)$ . Substituting an the equation and dividing by $M$ : $\frac{1}{p} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{p^2} \frac{\partial^2 \Phi}{\partial x^2} + \frac{1}{2} \frac{d^2 Z}{dx^2} + \frac{h^2}{h^2} = 0$ $\frac{1}{p} \frac{d}{p} \frac{d}{p} \left( p \frac{dP}{dp} \right) + \frac{1}{p^2} \frac{\partial^2 \Phi}{\partial x^2} + \frac{1}{2} \frac{d^2 Z}{dx^2}$ We now make all the time honored arguments about equations in this form and state that since it is split into two gents one divident one poind sp and the other on $\chi$ and their sume divident and the $p, q$ pert is equal to a constant and the $p, qpert is equal to a constant whose sum is \frac{h^2}{h^2}k^2 + k^2 + \frac{1}{h}k = \frac{1}{p} \frac{d}{dp} \frac{d^2 Z}{dp} + \frac{1}{p^2} \frac{d^2 \overline{\Delta}}{dp} \frac{1}{p^2} \frac{d^2 \overline{\Delta}}{dp} \frac{1}{p^2} \frac{d^2 \overline{\Delta}}{dp} \frac{1}{p^2} \frac{1}$	(4)	Now, ne cymarical co-prangales,	
and $\forall^2 = \frac{1}{p} \frac{\partial}{\partial p} \left( p \frac{\partial}{\partial p} \right) + \frac{1}{p^2} \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ and we have for the wave equation. $\frac{1}{p} \frac{\partial}{\partial p} \left( p \frac{\partial M}{\partial p} \right) + \frac{1}{p^2} \frac{\partial^2 M}{\partial y^2} + \frac{\partial^2 M}{\partial z^2} + h^2 M = 0$ (3) We now argue that $M = P(p) \Phi(q) Z(z)$ . Substituting an the equation and dividing by $M$ : $\frac{1}{p} \frac{\partial}{\partial p} \left( p \frac{\partial R}{\partial p} \right) + \frac{1}{p^2} \frac{\partial^2 \Phi}{\partial z^2} + \frac{1}{2} \frac{\partial^2 Z}{\partial z^2} + \frac{h^2}{2} = 0$ $\frac{1}{p} \frac{\partial}{\partial p} \left( p \frac{\partial R}{\partial p} \right) + \frac{1}{p^2} \frac{\partial^2 \Phi}{\partial z^2} + \frac{1}{2} \frac{\partial^2 Z}{\partial z^2}$ We now make all the time honored arguments about equations in this form and state that since it is split into two parts one dipendent one paid sp and the other on $z$ , and their sume does sum is $H^2$ . Rem the z part is ogual to a constant and the $p, qRef t = ext + R^2\frac{1}{p} \frac{\partial}{\partial z^2} + K^2 \frac{1}{z} = 0, or Z(z) = Cxe(z + Kz)\frac{1}{p^2} \frac{\partial}{\partial z^2} + K^2 \frac{1}{z} = 0, or Z(z) = Cxe(z + Kz)\frac{1}{p^2} \frac{\partial}{\partial z^2} + K^2 \frac{1}{p^2} \frac{\partial^2 \Phi}{\partial p^2} + \frac{\partial^2 \Phi}{\partial z^2} = 0$	·		
and we have for the wave equations. $ \frac{1}{p} \frac{1}{dp} \left( p \frac{\partial M}{\partial p} \right) + \frac{1}{p^2} \frac{\partial^2 M}{\partial (p^2)} + \frac{\partial^2 M}{\partial (p^2)} + \frac{1}{p^2} \frac{\partial^2 M}{\partial (p^2)}$		$P \neq L \times + y \perp q = tan y \times z = z$	
and we have for the wave equation . $ \frac{1}{p} \frac{1}{p^{2}} \left( p \frac{\partial M}{\partial p} \right) + \frac{1}{p^{2}} \frac{\partial^{2} M}{\partial p^{2}} + \frac{\partial^{2} M}{\partial p^{2}} + \frac{1}{2p^{2}} $ (3) We now argue that $M = P(p) \oplus (q) = 2(p)$ . Substituting in the equation and dividing by $M$ : $ \frac{1}{p} \frac{1}{dp} \left( p \frac{\partial P}{\partial p} \right) + \frac{1}{p^{2}} \frac{\partial^{2} \Phi}{\partial p^{2}} + \frac{1}{p^{2}} \frac{\partial^{2} E}{\partial x^{2}} + \frac{1}{p^{2}} \frac{\partial^{2}$			
and we have for the wave equation . $\frac{1}{p} \frac{1}{p} \left( p \frac{\partial w}{\partial p} \right) + \frac{1}{p^2} \frac{\partial^2 w}{\partial \psi^2} + \frac{\partial^2 w}{\partial z^2} + \frac{1}{2z^2}$ (3) We now argue that $w = P(p) \oint (\varphi) = 2(z)$ . Substituting in the equation and dividing by $w$ : $\frac{1}{p} \frac{d}{dp} \left( p \frac{dp}{dp} \right) + \frac{1}{p^2} \frac{\partial^2 \psi}{\partial \varphi^2} + \frac{1}{z} \frac{d^2 z}{dz^2} + \frac{1}{b^2} = 0$ $\frac{1}{p \rho} \frac{d}{dp} \left( \frac{dp}{dp} \right) + \frac{1}{p^2} \frac{\partial^2 \psi}{\partial \varphi^2} + \frac{1}{z} \frac{d^2 z}{dz^2}$ We now make all the time homored arguments about equations in this form and state that since it is split into two parts one digendent on p and $\varphi$ and the extent size $z$ and the $p, \varphi$ . (4) $\frac{1}{p^2} = \frac{1}{2} \frac{d^2 + k^2}{dz^2}$ $\frac{1}{p \rho} \frac{d^2 + k^2}{dz^2} + \frac{1}{p} \frac{d^2 + k^2}{dz^2}$ $\frac{1}{p \rho} \frac{d^2 + k^2}{dz^2} + \frac{1}{p} \frac{d^2 + k^2}{dz^2} + \frac{1}{p} \frac{d^2 + k^2}{dz^2}$ $\frac{1}{p \rho} \frac{d^2 + k^2}{dz^2} + \frac{1}{p} \frac{d^2 + k^2}{dz^2} + \frac{1}{p} \frac{d^2 + k^2}{dz^2}$ $\frac{1}{p \rho} \frac{d^2 + k^2}{dz^2} + \frac{1}{p} \frac{d^2 + k^2}{dz^2} + \frac{1}{p} \frac{d^2 + k^2}{dz^2}$ $\frac{1}{p \rho} \frac{d^2 + k^2}{dz^2} + \frac{1}{p} \frac$		and $\nabla^2 = + + + + + + + + +$	
$\frac{1}{p} \frac{1}{pp} \left( p \frac{du}{dp} \right) + \frac{1}{p^2} \frac{d^2u}{dy^2} + \frac{3^2u}{2z^2} + \frac{1}{p^2} \frac{u}{dy^2} = 0$ (3) We now argue that $u = P(p) \Phi(q) Z(z)$ . Substituting $u$ . the equation and dividing by $u$ : $\frac{1}{p} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{p^2} \frac{d^2\Phi}{dq^2} + \frac{1}{z} \frac{d^2\Phi}{dz^2} + \frac{1}{z^2} + \frac{1}{z^2} = 0$ $\frac{1}{p(p)} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{p^2} \frac{d^2\Phi}{dq^2} + \frac{1}{z} \frac{d^2\Phi}{dz^2} + \frac{1}{z^2} \frac{d^2\Phi}{dz^2} + \frac{1}{z^2} \frac{d^2\Phi}{dz^2} + \frac{1}{z^2} \frac{d^2\Phi}{dz^2}$ We now make all the time howered arguments about equations in this form and state that simes it is split into two parts, one dependent on p and $\Phi$ and the other on $\Xi$ , and their submet and the $p, \Phi$ part is equal to a constant and the $p, \Phi$ $p^2 + ke$ constants be such that: $\frac{1}{p^2} = \alpha^2 + k^2$ $\frac{1}{p} + \frac{1}{p} \frac{d^2\Phi}{dz^2} + \frac{1}{p^2} \frac{d^2\Phi}{dz}$		P dP ( dP ) P2 dQ2 dZ	
$\frac{1}{p} \frac{1}{pp} \left( p \frac{du}{dp} \right) + \frac{1}{p^2} \frac{d^2u}{dy^2} + \frac{3^2u}{2z^2} + \frac{1}{p^2} \frac{u}{dy^2} = 0$ (3) We now argue that $u = P(p) \Phi(q) Z(z)$ . Substituting $u$ . the equation and dividing by $u$ : $\frac{1}{p} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{p^2} \frac{d^2\Phi}{dq^2} + \frac{1}{z} \frac{d^2\Phi}{dz^2} + \frac{1}{z^2} + \frac{1}{z^2} = 0$ $\frac{1}{p(p)} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{p^2} \frac{d^2\Phi}{dq^2} + \frac{1}{z} \frac{d^2\Phi}{dz^2} + \frac{1}{z^2} \frac{d^2\Phi}{dz^2} + \frac{1}{z^2} \frac{d^2\Phi}{dz^2} + \frac{1}{z^2} \frac{d^2\Phi}{dz^2}$ We now make all the time howered arguments about equations in this form and state that simes it is split into two parts, one dependent on p and $\Phi$ and the other on $\Xi$ , and their submet and the $p, \Phi$ part is equal to a constant and the $p, \Phi$ $p^2 + ke$ constants be such that: $\frac{1}{p^2} = \alpha^2 + k^2$ $\frac{1}{p} + \frac{1}{p} \frac{d^2\Phi}{dz^2} + \frac{1}{p^2} \frac{d^2\Phi}{dz}$		and we have love the must anytime	
(3) We now argue that $u = P(p) \tilde{E}(q) \tilde{F}(z)$ . Substituting m the equation and dividing by $u$ : $\frac{1}{2} \frac{d}{dp} \left( p \frac{dp}{dp} \right) + \frac{1}{p^2} \frac{d^2 \tilde{E}}{dq^2} + \frac{1}{2} \frac{d^2 \tilde{E}}{dz^2} + \frac{1}{p^2} = 0$ $\frac{1}{p p} \frac{d}{p} \left( p \frac{dp}{dp} \right) + \frac{1}{p^2} \frac{d^2 \tilde{E}}{dq^2} + \frac{1}{2} \frac{d^2 \tilde{E}}{dz^2}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p^2} \frac{d}{p^2} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p^2} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}{z} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}$		and we have for the wave equalities.	
(3) We now argue that $u = P(p) \tilde{E}(q) \tilde{F}(z)$ . Substituting m the equation and dividing by $u$ : $\frac{1}{2} \frac{d}{dp} \left( p \frac{dp}{dp} \right) + \frac{1}{p^2} \frac{d^2 \tilde{E}}{dq^2} + \frac{1}{2} \frac{d^2 \tilde{E}}{dz^2} + \frac{1}{p^2} = 0$ $\frac{1}{p p} \frac{d}{p} \left( p \frac{dp}{dp} \right) + \frac{1}{p^2} \frac{d^2 \tilde{E}}{dq^2} + \frac{1}{2} \frac{d^2 \tilde{E}}{dz^2}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p^2} \frac{d}{p^2} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p^2} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}{z} \frac{d}{z} \frac{d}{z} \frac{d}{z}$ $\frac{1}{p \frac{d}{p}} \frac{d}{p \frac{d}{p}} \frac{d}{p \frac{d}{z}} \frac{d}{z} \frac{d}$		1 $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$ $1$	
(3) We now argue that $u = P(p) \tilde{E}(q) \tilde{F}(z)$ . Substituting m the equation and dividing by $u$ : $\frac{1}{2} \frac{d}{dr} \left( p \frac{dP}{dP} \right) + \frac{1}{p^2} \frac{d^2 \tilde{E}}{dr^2} + \frac{1}{2} \frac{d^2 \tilde{E}}{dz^2} + $		T T (P 1) + T + T + N H = 0	
The equation and dividing by $\mathcal{U}$ : $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{gr} + \frac{1}{k^2} \frac{d^3 \overline{z}}{gr}$		or or zz	
The equation and dividing by $\mathcal{U}$ : $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{r^2} \frac{d^2 \overline{\mathfrak{g}}}{dp^2} + \frac{1}{z} \frac{d^3 \overline{\mathfrak{g}}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{r^2} \frac{d^2 \overline{\mathfrak{g}}}{dp^2} + \frac{1}{z} \frac{d^3 \overline{\mathfrak{g}}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{r^2} \frac{d^2 \overline{\mathfrak{g}}}{dp^2} + \frac{1}{z} \frac{d^3 \overline{\mathfrak{g}}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{r^2} \frac{d^2 \overline{\mathfrak{g}}}{dp^2} + \frac{1}{z} \frac{d^3 \overline{\mathfrak{g}}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{r^2} \frac{d^2 \overline{\mathfrak{g}}}{dq^2} + \frac{1}{z} \frac{d^3 \overline{\mathfrak{g}}}{dq^2} + \frac{1}{q^2} \frac{d^3 \overline{\mathfrak{g}}}{dq^2} + \frac{1}{q^2} \frac{d^3 \overline{\mathfrak{g}}}{dq^2}$ $\frac{1}{pr} \frac{d}{dr} \left( p \frac{dP}{dp} \right) + \frac{1}{r^2 \overline{\mathfrak{g}}} \frac{d^2 \overline{\mathfrak{g}}}{dq^2} + \frac{1}{q^2} = 0$ $\frac{1}{pr} \frac{d}{dr} \left( p \frac{dP}{dp} \right) + \frac{1}{r^2 \overline{\mathfrak{g}}} \frac{d^2 \overline{\mathfrak{g}}}{dq^2} + \frac{1}{q^2} = 0$			
The equation and dividing by $\mathcal{U}$ : $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{dz^2} + \frac{1}{k^2} = 0$ $\frac{1}{pr} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{pr} \frac{d^2 \overline{g}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{gr} + \frac{1}{z} \frac{d^3 \overline{z}}{gr} + \frac{1}{k^2} \frac{d^3 \overline{z}}{gr}$	(3)	We now arome that us Pro 5(0) 7121	. Substituting in
$\frac{1}{p \rho} \frac{d}{d\rho} \left( \frac{\rho}{d\rho} \frac{d\rho}{\rho} \right) + \frac{1}{\rho^{2}} \frac{d^{2} \overline{g}}{d\rho^{2}} + \frac{1}{z} \frac{d^{2} \overline{z}}{dz^{2}} + \frac{h^{2}}{k} = 0$ $\frac{p \rho}{\rho \rho} \frac{d\rho}{d\rho} \left( \frac{\rho}{d\rho} \frac{d\rho}{\rho} \right) + \frac{1}{\rho^{2} \overline{g}} \frac{d^{2} \overline{g}}{d\rho^{2}} + \frac{1}{z} \frac{d^{2} \overline{z}}{dz^{2}}$ $\frac{\partial u}{\partial z^{2}} \frac{\partial u}{\partial z^{2}} \frac{d^{2} \overline{g}}{dz^{2}} + \frac{1}{k} \frac{d^{2} \overline{z}}{dz^{2}}$ $\frac{\partial u}{\partial z^{2}} \frac{\partial u}{\partial z^{2}} \frac{d^{2} \overline{g}}{d\rho^{2}} + \frac{1}{z} \frac{d^{2} \overline{g}}{dz^{2}} + \frac{1}{k} \frac{d^{2} \overline{z}}{dz^{2}} + \frac{1}{k} \frac{d^{2} \overline{z}}{dz^{2}}$ $\frac{\partial u}{\partial z^{2}} \frac{\partial u}{\partial z^{2}} \frac{\partial u}{\partial z^{2}} \frac{d^{2} \overline{z}}{d\rho^{2}} + \frac{1}{k} $		the paystine and dividing his	
We now make all the time honored arguments about equations in this form and state that since it is split into two parts one dependent on p and q and the other on $\overline{z}$ , and their sum a constant, then the $\overline{z}$ part is equal to a constant and the $p, q$ . part is equal to a constant whose sum is $k^2$ . Let the constants be such that: $p^2 = x^2 + k^2$ $p^2 = x^2 + k^2$ $p^2 = x^2 + k^2 = 0$ or $\overline{z}(\overline{z}) = \exp(\frac{z}{z} + \overline{z})$ $p^2 = dp^2 dp^2$		in equation and arriang by u	
We now make all the time honored arguments about equations in this form and state that since it is split into two parts one dependent on p and q and the other on $\overline{z}$ , and their sume a constant, then the $\overline{z}$ part is equal to a constant and the $p, q$ . part is equal to a constant whose sum is $k^2$ . Let the constants be such that: $p^2 = x^2 + k^2$ $p^2 = x^2 + k^2$ $p^2 = x^2 + k^2$ $p^2 = x^2 + k^2 = 0$ or $\overline{z}(\overline{z}) = \exp(\frac{z}{z} + \overline{z})$ $p = \frac{1}{dz^2} + k^2 \overline{z} = 0$ or $\overline{z}(\overline{z}) = \exp(\frac{z}{z} + \overline{z})$ $p = \frac{1}{dz^2} + k^2 \overline{z} = 0$ or $\overline{z}(\overline{z}) = \exp(\frac{z}{z} + \overline{z})$			2
We now make all the time honored arguments about equations in this form and state that since it is split into two parts one dependent on p and q and the other on $\overline{z}$ , and their sum a constant, then the $\overline{z}$ part is equal to a constant and the $p, q$ . part is equal to a constant whose sum is $k^2$ . Let the constants be such that: $p^2 = x^2 + k^2$ $p^2 = x^2 + k^2$ $p^2 = x^2 + k^2 = 0$ or $\overline{z}(\overline{z}) = exp(\pm i \times \overline{z})$ $p^2 = dp^2 dp^2$		$-\frac{1}{2}\left(\begin{array}{c} 0 \\ 0 \end{array}\right) + \frac{1}{2}\left(\begin{array}{c} 0$	= 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Proprint 2 dat Z dz	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		We now make all the time honored arou	ments about
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		pointime in this para and it to	that since
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		the solution of the stand state	la it is it is
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		11 15 spin into Two parts, one depend	reaction pand q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		and the other on Z, and their sum	a constant,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		then the 2 part is equal to a constant	and the p, q
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		part is equal to a constant whose	SUM 15 K.
$\frac{k^2}{p, q} = \frac{x^2 + k^2}{p, q}$ $\frac{k^2}{p, q} = \frac{x^2 + k^2}{p, q}$ $\frac{p, q}{2}$ $\frac{k^2 + k^2 + k^2 + q}{p, q} = \frac{p}{p}$ $\frac{k^2 + k^2 + k^2 + q}{p}$		Let the constants be such that;	
$\begin{array}{c} P, P \neq \\ \hline \\$			
$\begin{array}{c} P, P \neq \\ \hline \\$		$b^2 = \alpha^2 + k^2$	
$\begin{array}{c} P, P \neq 2 \\ \hline \\$			
$\frac{\pi}{2} = \frac{\pi}{2} + \frac{\pi}{2} = 0  \text{or}  \frac{\pi}{2} \frac{\pi}{2} $		P. P 2	
$(4) \qquad d^{2} \frac{1}{d^{2} \frac{1}{d^{2}}} + k^{2} \frac{1}{d^{2}} = 0 \qquad \text{or} \qquad \mathcal{Z}(\mathcal{Z}) = e^{\chi} e^{(\pm 1 k \cdot \mathcal{Z})}$			
$(4) \qquad \frac{d^{2}z}{dz^{2}} + k^{2}z = 0  \text{or}  z(z) = exp(\pm i kz)$ $\frac{d^{2}z}{dz^{2}} + k^{2}z = 0  \text{or}  z(z) = exp(\pm i kz)$			
$\frac{1}{PP} \frac{d}{dP} \left( \frac{p}{dP} \right) + \frac{1}{P^2} \frac{d^2 \overline{P}}{dP^2} + \alpha^2 = 0$		Then !	
$\frac{1}{PP} \frac{d}{dP} \left( p \frac{dP}{dP} \right) + \frac{1}{P^2 \frac{d^2 \overline{P}}{2}} \frac{d^2 \overline{P}}{dP^2} + \alpha^2 = 0$			
$\frac{1}{PP} \frac{d}{dP} \left( p \frac{dP}{dP} \right) + \frac{1}{P^2 \Phi} \frac{d^2 \overline{\Phi}}{dP^2} + \alpha^2 = 0$	(4)	$a^{2} + x^{2} = 0$ or $z(z) = exc$	( ± 1 K = )
		dzt i i i i i i i i i i i i i i i i i i i	
		J / 12 / 12 / 12 / 2	
		$\frac{1}{100} \frac{1}{100} \frac{1}$	
		rear ap reader	
$or \frac{P}{P} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{\overline{2}} \frac{d^2 \overline{\Phi}}{dq^2} + \alpha^2 p^2 = 0$			
$or \frac{p}{p} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{\overline{2}} \frac{d^2 \overline{\Phi}}{dq^2} + \alpha^2 p^2 = 0$			
$P dp \left( \frac{p}{dp} \right)^{+} \overline{2} dq^{-}$		P d / dP1 1 d2 \$ 1 222	
		P de ( de ) to	

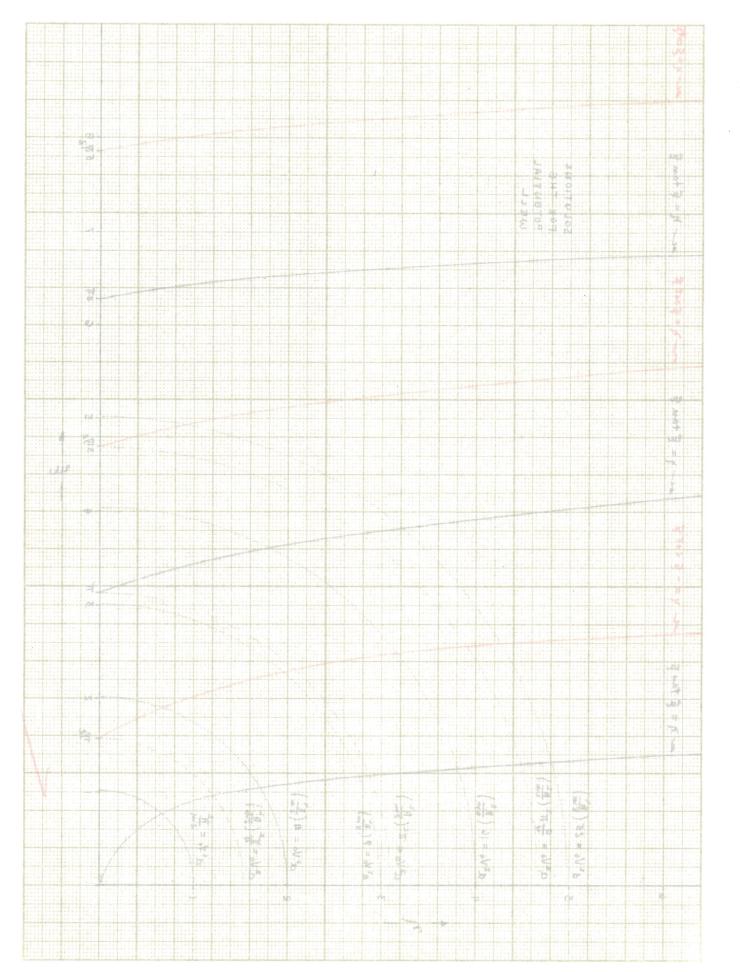
		-													
								6		((		+			(3
								,)		;)					)
						+			-		+	1	k		
×				ass		w					-1	PO	20		
		•		rs	,	h					<	e n	12		tu
		5.		er + +		12					-	nt	19	d	)e
mi	27 0	.12		e n		h			+		a	0	-	97	er
(×		1		d		+	- 1		+		5	-	1	2	2
)		(x		1 21-		h						W	h	+	_
24		)		to		a					t	± 1	at	-	9
				1 and R		5					he	14	4	n	P ;
	a	1		3e		+1			+		2	SP	4	2	P
				and		he					(	a	+	2	
		N		n n L	-ma 1	5	+				Po	te	he	P	a
		+	XX	d		3			+		1	203	4	W	n
			1	0		to t			+		n	er	4	2	d
	-			S Ji J		n h e					13	~ a:		0	
ne }	4 h			e /		10			-			na	be	-	7
	e	t	- 1	e l mi a		1 a			+			E	-	2	
			)	x (		r 1					7	e de	-	_	_
	b		n	4 ) x)		d 01						5	51	2	1
	2	+		N		10-			t		-	a 2	22	Þ	10
		o VV	( -	1º		ŧ			+		0	u:	10		k
		0	X	5 5		n			_			5	le	=	n
		1	) '	e V		21					7	2	-	(	19
	+	(	m	aaa		,			1		17	1	va	2	-
	-	-1	1+	d.		fa					- 2	ha	1	t.	t
		) ⁿ	2~	E		of	.)		-		- 17	P	re	77	he
		(		3e Be		4	E,		-		r -	11 01	d	m	
	+	XN	-	27		17			+		+	0	-	ę	9
		.)		se se		B	1		1		9	,+1	_		0
	_	Zn		2.		e : te	0		-		re	he	a		
	1.00	-1		8		81		;	:		ve n 2	0 -	f	V	AI
		m		Ur ····································		els a		/	-		-	sa			
	×	-		to no		2					1	27	5	-	
	)			7 ct		0					0	The	2	-	
	•,			10 tio		29			-	-	t		2		
				5 n		0	1		_			ar v	_		
				-		a			E	C	th	e	+		
				000		+1			1	2-	e	10	he		
				244		0		/	)	0	-	te	27		
						x		2			50	he	6		
				20 + +							a	+	2		
			-	r he				-	+			he	n		
					2				he		12	sa	_		
				S							-	n e	2		
									+		-	le	216		
		_							_		-		25		
													L T		
						-									
×1	a de la companya de l				_			_							1200

	4	-	1.000		+	+				3.1				-			341	1							-	0	2	)	1		+	-					ī.,
	ASSI					41	4		-	× .		-		-	-	-		-			-			-	-			2						-		-	-
	Cont	121	ve	a	-	-			-	-		-	-	-	-		-	-	-		-				-			P-		1	16	-		-			
		+	-	+-	-	+	+	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-						-	-				-	-
		-	-	-	-	+	-	-		-	-	+	-	-	-	+	-	-	-		-	-				_//		9-	60		-					-	
	. con	4	-		1	+-	-	-	-	-		-	-	-	-	-		-	-	-	-	-			-			-		-	-					-	-
	. con	1117	nu	ea		+	+	-	-	-	-	-	-	-	-	-	-	-	-						-		-		-	-	-	-				-	
	. ,	-		-	>>	,	,	~		> 1		1.	-	-	-	-	-		-						-					-	-	-				-	
	P	or	-	Ê	1		-	^		1	PM			-	-	-		-										-	-		-	-				-	
		7	-	1	-	-		-	F	2	1		44	1			2	m	1+	1	T		-	_	2		1	~		_		~				-	
		U	124	10	~/	-	1		JT	TX		C	03	C		-	-		4		11	-					<i>f</i> 0	Pr	-								-
		-	-	-	-	+	-		-			-				-															-						
		F	01	-	+	he		be	ha	10	Ur	-	of	-	N	2001	(x	)	0	+		+4	e		bo	un	d	121	e	5 .						1	-
							1						1		14	FTI							-						-								-
		1	VI	m1	(x	)	313		-	()	ml	- 1			12	-)	м		P		-	2		2	or	•	X	15	0								
			(								-	Г			1)	()								Ţ													
-			No	> ()	()	-	22		-	27		In	-	2	-	-		13		- 0	2		for	-	×	= 0	)										
										11				1.71	8 >	(																					
								1																													
	F	or		Х	>>	1,	)	×>	>	m	1;																										
									-		-																										
			NI	ml	(x)	)	12			2	_	5	m	(	X	-	2	Im	1+	1	Π		0	-	0		Fo	-	×	11	20						
									J	T	K			/					4																	_	
				_	_																			,								,					
	5	12	ce		w	e	de	en	an	id		+1	ha	t	+.	he		wa	ve		f	12	ic	tio	ns		be	2	b	00	na	ec	(			_	_
	e	Ve	r	1	w	rei	re		+	he		Ne	200	na	21	n	7	60-	nc	tio	Ms	-	ar	re		:/e	a	-12	1	21	01	-				_	-
	a	d.	m	13	a	61	e		517	nc	e	1	Un	11	X	3		- 0	0	0	t		х :	= 0	,	7	he	re	fo	080	e					_	_
	1.1		_	1		-	-	/										1	,						/						1					_	
	(8			( X	1	=	P	(P	)	1		J 11	ml	(X	1		w	1+1	2	a	7	10	rn	10	112	ati	on		do	Ns	te	i	T			-	
		1	0	6	e	0	le t	er	M	171	ed	-	la	te	2.										L	-											-
_		-				-	-					_											_			-				22			<u>×</u>			-+	-
		,		,	,	-			1					1		1				_		,		_	1			,			-	-		)		-	-
					-	1	K.							17	a	110	n	6	or	oct	ed	or	e	-	by	0	se	++	m	3	0	P	71	ie			-
		50	5 [[	00	Ul	ng	2	Co	na	ait	10	r	:									-			_									_		+	-
		-		-		-				-		_	_		_		_				•		-	-			-							_	-+	+	-
	(9)		M	1	1	Pa	2	12		1	1	0	1	2	_		14	2		E	Б	2	2	X	dx		100		12		-	C		C1.	(- K')	(1	
	(r)		14	1		ac		1	P	ap	a	4	a	Z	-		10		13	11	T	2		-	x2		4	0	-		-	07	M.	011	(-1())	0[d	- ol
		-		an	sp	ac	5				_		-					0	11	spi	ace						-							_		+	-
		-	111	-	V.	4.0	113	1	h	+	4	ha		1.	20	10		0	A 4	t	200	•		10			11		-		1	-	ne				-
			11	0 1	r n	-10		7	-10	1	7	1.	-	u ,	a	1	+	07	ac	01	PT S		av	1.	0.0	VIL	TH	03	02	au A	100	51	210	e	-	+	-
							th																		00	11	E		e	70	al	10				+	
		(	a	10	L		1 11	15		W	n s		S	ne	in	n		n	n	-	EG	16	1											_		-	-
		U	le	7	eo	m	_	41	, +	h	1	ho		21	272	na	11	za	Fi	n		00		F												-	-
					-																	-			-									-			
	(10	)		Va			TT T	ā *	-	10		19	-	N	2	1	0	1 cp	-	2		N	2	T	-	- 1											
				4		0	-	-	0	t				-	8	10		6				- 4	-	-1													
																													/								
	(11)		, '	ı		Б	V	_	1	-	e	in	nq				m	5	0,	±	1	±2	, ,	2.2				/									
						ala		V	211	(					,				1		,					L	/										
																																					)
											-			-							-										-	_					

			r						
									2
							-		
					)		200		
	Z		2		cp.		+		
	9			KIZ	1 (0		2		
K.				<u>A</u>	- Tm		: <		
F	) 2			K					
0	K'		esi		15	K	2		
le	K -				40	d			
ca			<u> </u>		CT	X			
5				1	47	2)			
	es	0	0		F				
the					2	_	1		
					50	+ = Jin Anz			
	') z		~ 7		es	1	11		
	- K		ern		В	С			
e/2 .K	AK		d +		)	-	la.		
K/	K#		com		he	1)	c 0		
к- е г-д	21		se		+	«)	) a		
: 5	e				2	Δ.	(p)		
- C		7			20	¢,	(0		
	_	5//			u)i	Pj			
	· · ·		erv	the	mic	Ρ(	×+. J	5	
e d K		4					5		
K /2 2) c			Is			)			
+12	7				,				
- K - Al	d				to	(e .p)			
K	<)		K						
210		2			ed				
fu :=	к.	K /2			ce				
< ).					28.0				
Al	z(	t +	K- < x	2	Z)		JI		
+1 E ,				, d	w		d		
, k					no				
00							le C ²		
Z (	5 -0			The 	Ve	P	1.30		
Je Set									
2)	3)			4)		5)	(6)		
(13	()					(1	(/		

	Assignment #2 Continued P251a 11-10-60
P	Problem 7 Continued
(17)	We will find it convenient to rearrange the integration as follows: C ² ( a da ) Jimi (a'p) Jimi (ap) pdp
	Now, the Bessel functions are not guadratically
	p = a which is a necessary though not sufficient condition for a function to be guadratically integrable. Since the Bessel function is well bounded for small p it must be for large p that the function begins to take off. Therefore it seems reasonable to
	replace the Bessel function above with its asymptotic value at large p as this will in the limit of the sum, amount to neglecting a finite quantity in the face of an infinite one. The asymptotic value
	$\frac{15 \text{ well known and is:}}{\text{Jimil}(\alpha p)} = \frac{2}{17\alpha p} \cos\left(\alpha p - 2\ln(1+1)\pi\right)$
(13)	$= \int_{T \propto p}^{Z} \cos (\alpha p + q)$ Concentrating on the second integral in (17):
	$\int_{\alpha} J_{imi}(\alpha' p) J_{imi}(\alpha p) p dp = \frac{2}{\pi J_{\alpha} \alpha'^{1}} \int_{\alpha} cos(\alpha' p + q) cos(\alpha p + q) dp$
(19)	$we  not  that :  \cos\left[(\alpha'+\alpha)\rho + 2\varphi\right] = \cos\left(\alpha'\rho+\varphi\right)\cos\left(\alpha\rho+\varphi\right) - \sin\left(\alpha'\rho+\varphi\right)\sin\left(\alpha\rho+\varphi\right)$ $\cos\left(\alpha'-\alpha'\rho + \varphi\right) = \cos\left(\alpha'\rho+\varphi\right)\cos\left(\alpha\rho+\varphi\right) + \sin\left(\alpha'\rho+\varphi\right)\sin\left(\alpha\rho+\varphi\right)$
(20)	Then $\cos(\alpha' p + \varphi) \cos(\alpha p + \varphi) = \frac{1}{2} \cos(\alpha' + \alpha)p + 2\varphi + \frac{1}{2} \cos(\alpha' - \alpha)p$ $\frac{1}{2} \left[\cos(\alpha' + \alpha)p + 2\varphi + dp = \frac{1}{4} \int \left[\exp(\alpha' + \alpha)p + 2\varphi + \exp(\alpha' + \alpha)p + 2\varphi\right] + \exp(\alpha' + \alpha)p + 2\varphi + 2\varphi + dp$
	$= \frac{1}{4} \int e^{xp \cdot x} \left[ (\alpha' + x) p + 2 \overline{\alpha} \right] dp = 0  by  Cauchy's  Theorem  since$
	the exponential is an analytic function and the path of integration encloses no singularities.

 $(21) \stackrel{!}{=} \int \cos(\alpha' - \alpha) \rho \, d\rho = \frac{1}{4} \int e^{i(\alpha' - \alpha) \rho} \, d\rho$ This integral is well known to give the Dirac Delta function, VIZ., S(x'-a).  $\int e^{\lambda(\alpha'-\alpha')\rho} d\rho = \delta(\alpha'-\alpha) = 0, \alpha' \pm \alpha$  $= ab, \alpha' = \alpha$ (22) Hence, (17) becomes:  $\frac{c^{2}}{c^{2}}\int \frac{\alpha}{\alpha} + \Delta \left( \frac{\alpha}{\alpha} - \alpha \right) d\alpha = \frac{c^{2}}{c^{2}}, \quad \alpha - \frac{\Delta \alpha}{c} < \alpha' < \alpha + \frac{\Delta \alpha}{c}$ = 0, otherwise However, we demand normality, therefore C = JZT X CV The complete solution for the wave functions of the cylindrical free particle is them: free particle is then: (23)  $\psi(p, q, z) = \frac{1}{2} \frac{\chi}{12\pi^2} e^{\pm i k \cdot z} e^{i m q \tau} J_{1m}(\alpha, p)$ with  $\int |\Psi(P, q, z)|^2 p dp dq dz = Smm' Skk' Saa'$ where dra', daa', mean in the scale of K to, x to respectively.


· Assign Continue	1 mept #2     Paul Grant       ed     DEAP-AP-1G       11-10-60
8. (1)	$\int_{\mathbb{R}} e^{-\mathcal{R}[\chi]} \mathcal{U}_{\mathbb{R}}^{*}(\chi) \mathcal{U}_{\mathbb{R}}(\chi) d\chi = 0,  \mathbb{R}, \neq \mathbb{R}_{2}$
(2)	For free particles, $u_{bz} = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}k_z x}$ , $u_{b} = \frac{1}{\sqrt{2\pi}} e^{\frac{1}{2}k_z x}$ we have: The physical begins
(3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$= -\beta^{2} \left[ \begin{array}{c} \chi^{2} - \iota \left( \overline{k_{i}} - \overline{k_{z}} \right) \chi \\ R^{2} \end{array} \right] - \left( \begin{array}{c} (k_{i} - \overline{k_{z}})^{2} + \left( \begin{array}{c} (k_{i} - \overline{k_{z}})^{2} \right) \\ H \right)^{2} \end{array} \right] + \left( \begin{array}{c} k_{i} - \overline{k_{z}} \right)^{2} \\ H \right)^{2} \end{array}$
(4)	Letting $y = x - x (k, -k)$ , $dy = dx$ , we have:
(5)	$\frac{I}{B} = \frac{1}{2\pi} e^{-\frac{4B^2}{4B^2}} e^{-\frac{4B^2}{4B^2}}$ $We now define Sc_B(k, -k_2) = \frac{1}{2\sqrt{\pi}B} e^{-\frac{(k_1 - k_2)^2}{4B^2}}$
	We note that $\delta_{CB}(k_1-k_2)$ has the form of a gaussian probability density in $k_1$ with mean $k_2$ and variance $2B^2$ and it will be convenient to consider it in this sense: * $\delta_{CB}(k_1-k_2)$
	For a gaussian probability density:
	Regardless of the values of the kz k, parameters

6		
	As the variance 2B2 becomes smaller and smaller, the gaussian	
	distribution becomes more concentrated about the mean value tez	
	which is expected. At the mean, k, = k2;	_
		-
	$S_{CB}(o) = \frac{1}{2 \sqrt{\pi} B}$ , so that one sees that the value of	
	Scp (ti-ke) becomes large here as B->0. However, since the	-
	distribution narrows, the value of Sch (hi-ke) is very small	-
	even for values of the slightly different from the because of	
	1/32 in the exponent of the exponential.	
		_
	It is clear now that in the limiting case as B-D, Sep (ki-kz)	-
	will become unbounded for the the and zero for the the	-
	or we will have the gaussian of a random variable	-
	with no variance, that is:	
	For $\beta \rightarrow 0$ ; $\beta(k_1 - k_2) = 0$ ; $k_1 \neq k_2$	
	For $\beta \rightarrow 0$ : $S(k_1 - k_2) = 0$ , $k_1 \neq k_2$ = $ob$ , $k_1 = k_2$	
		-
	However as it is the limit of a gaussian and since the	+
	Integral; (Self-t) dt - 1 dd with hand a the	-
	Toda Schuller - 1 AID NOU acpend The ME	-
	integral; p Sep(k,-ke)dk,=1 d,d not depend on the parameters, we have every reason to expect:	
		-
4.	S(k,-k)dk = 1 should hold in the	-
	-s limit B-DO.	-
	Name Sla-tol care la care to land andreal the care	-
	meaning as the prac delta function of the limits	-
	of the above integral did not include the it would	
	vanish, which is another property of the delta	
	Now Slarkel can be seen to have precisely the same meaning as the pirac delta function. If the limits of the above integral did not include the it would vanish, which is another property of the delta function. That is, the above function has the same	-
	properties as:	-
	$\int b = \int b = \int a < a < b > b$	-
	a = 0 otherwise	-
	otherwise Ad 1	-
	- At A: in it the bullem as stated	-
2	Fine but this wasn't the provem as stared.	
		_
		-
		-
		-
		-
		-
		1
		Y
4		

Assibnmen Continued				Paul Grant DEAP-AP-16
Continued				P 251a
	I I	TT		11 - 11 - 60
	V			
9. v	= 0	V=0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(E-V) \Psi = 0$
m			we are interes	sted only in those
		/	states with the bound st	E <0 that is, tates. We demand
	- a. a.		also that the	a and - a and
			that wave	propagation is only ction away from
			the well.	
(2)			r equation is	now :
	$\frac{dz\psi}{dx^2} + \frac{zm}{h^2}$	$(V_0 - E) \Psi =$	0	
(3)	Define: n=			$\int \frac{2m}{\pi^2} = \int \frac{1}{2}$
	with the	$r^2 + R^2 =$	ZmVo	L n= J
(4)	$=, \underline{\Pi I} : \frac{d^2 \psi}{dx^2}$		h2	
	$\overline{II}: \frac{dz\varphi}{dx^2} +$			
(5)	I: 4 = C, e	hx ; ]	$\pi \cdot \varphi = c_2 e$	- kx
	$\Pi : \Psi = C_3$	e1#X + C4	$e^{-i\pi k} = c_5 s_{1}$	L #X + CG COS #X
(6) F	from the contin	wity of 4	and dy at.	the boundaries:
	C5 SIN Ha +	$c_6 \cos ma = c$	ie e-ka	
	M C5 COS Ma -	HCG SM HO	$z = -z c_z e^{-za}$	
	- C5 . Sm #a +	Co cos ma	$= c_{1}e^{-ka}$	
			$ka = kc_1 e^{-ka}$	
(7)	2 CG COS HQ = 2 C5 SM HQ =	$(c_1 + c_2) e$	- ka - ka	
	Z H C5 COS HQ			
	Z K CG SM Ma	$= (c_1 + c_2) / (c_1 + c_2)$	ke-ka	

										Æ
	(11)	(10)				(9)				(8)
Als pro show	<u>(n-1)</u> 4		It how an Ther wel	$c_{6} = \frac{1}{c_{i}}$	The		These	white fur wei	If c	If C
o, vides ws hig ce	2 772		15 5 2 1 2 e foi	t = 0 t = 0 t = 0 t = 0	g v a		e t	ch ncti 11 (-a)	:5 ¥	6 #
smc s +ha h V +h	(the		abs mall nter re; In	ed , ( even	ph		wo	one ons w1+h =	= 0,	0
e m some t th c, t	) < \	11 ² 4 (-	olutel we section the term	on 1 = -	+ n ² dem	a, :	transc	row show rwith on $-\psi'(a)$	C, ₹	C, ¥
× J. what e hi the l	la az		n m criter	the Cz nme tims	instra		cen der	ld ei old e si	Ċ.~ '.	- Cz :
evels	s n		lear eke with ria of	n = an tru	ntes		ital	appr et and	-H	H
the ari t t appr	² <u>π²</u> 4		from a the that a a	E ta d f	the		equa	oxin with the	cot	tan
n en El	(h)		the or f oni nd	rom	be	n =	tions	ate eg	Ra	th a
compo ergy is those			Vo, Irst Iy on Vo	curve egu	harrou	e ta - e c	s ca	the sto val her	= - 7	= k
level always	xist i		e en s s	ation Cmu	ir of	n le	mnot	fact Inding 4 at		
of the			that. will of 7 ergy	1Ch (7)	the		ld be be st	$t = \frac{50}{4hat}$ $t = \frac{1}{4hat}$ $t = \frac{1}{4hat}$		
ram. x an.	Gura		no m a/way = & f exist	means one	roots		olved	the sm but - 4(a)		
tions, For tions, risections This d that al bax are	tiones En		atter 15 have an E. in the	that can see cs = o, f the	0 <i>4</i>			wave the with		

3 T 4 372 5
* 201



UGENE DIETXGEN

-	1	93	516	NI	me	N	t	#	2																						P	u	2	G	ra	ut	4						
	(	Con	+1	20	ie	d		-	-	-	_				-	-	_					-												- A		-	16	-	_	_			
	-				-	-	_	-	-	+	+	_		-	-	+	+	_	_	-	-	+	-	_	_		-	-	-	-				a		-	+	+	+	+	-	_	
	-							-	-	+	-	_			-	+	-			-	-	+	-	_	_		-	-	-	-	11	- /	2	-6	0	-	+	+		-	-+		
	-	-		-	+		_	-	-	+	+	-		-	1	+	+			-	+	+	+	-		-	•	-	-	-	-	-	-	-	-	-	+	+	+	+	+	-	
	-				-+	-		-	+	+	+	_			-	+	+			-	-	+	+	-	_			-	-	-				-	-	+	+	+	-	+	+		
			1	-	-			-	-		,	-			1	+-	+		0	-	11	+	+	-	~ 1		-	-	,	-	,	-	-	-		,	+	. /	-	4	+	_	
	10		(1)	-	T.t		15		4	C /	00	ar	-	Ŧ	ro	m	-		PI	OK	le	w	2	9	91	2	a	ne	x	1	he	,	3	ra	00	4	7	-hi	a1	-	+	-	
			-		fé	22-	4	a	T	+	10	a	57	4	1	72	-	1	22	10	re	+	5	T	at	e	-	+0	)	e.	X 14	T	-	7	44	e	+	01	10	w	in	3	
	1				Cr	~ 1 1	er	10	2	+	-71	10	5	7	+	h	010	a		-	-	+	-					-			-		-	-	-	-	+	+	+	+	+	-	
					+	0	2	Vo	>	,	T	TZ	1	t	n Z	1	+			-	+	+	+				-	-	-					-	-	+	+	+	+	+	+		
		-			+	~		-	1	+	4	4	1	2	m	1	+	-		-	-	t	+	-			-	-	-					-	1	-	+	+	+	+	+		
U	-									+						1	+				1	T	1						-							1	+		+				
																						T														1	1	-	T				
			(z)		F	-01	r		10	25	+		0	10		2	ne	r	e		sta	2t	e			+ h	le	C	+1	te	×10	a		15		C	YIT	-					
					e	90	a	ti	m		-	11)		,	4			Pr	06	10	in		19	).					+1							1							
						/																									1												
							77	2	1.	ħ	-		<		a	2	10		4		7	72	- (	ħ	-					/													
							4			ZM	n	/											1	S	m	'		1	1														
				-	-						_					1	4					1						L					-			-	-	_	-	-	_		
					_					-	_					-						-	-						-		-					-	+	-	+	-			
-	-	-	-	-	-	_		-	~	-	-	_	_	_	-	-	-		~	-	~	~	-	-	~	-	_	~	-	_	-	~		-	~	-	-	-	-	-	_	-	_
				-	. /	_		/	-	-	_	_		,	-	-	-				2	-	-			,	,	-	-	11		-	-	-	-	1	+	/			-	_	
	11.		(1)	7	th	e	1	a	+3	23	ST	,	Ve	a /	ve		0	F		+	ke		1	or	00	u	ct	1	a2	Vo	1	F	or	,	w	hi	1ch	R A	+		-	-	
	1			1	he	re		1	5	3	5	+1	11		02	11	4		on	le	-	6	0	22	1 d	-	5	ta	te		15		CI	ea	rl	y	,	F	ro	m	+	_	-
$\sim$	9			7	+h	6		g 1	al	ph	C .				-	+	+	-		-	-	+	-	-				-	-	-			-	-	-	-	-	+	+	+	-	-	_
	1	-			-	-		0	21	1		-		77	-2	1	T	2	1	-	-	+	+	-				-	-	-				-	-	-	-	-	+			-	-
-	-		-	-	+	-		a	V	0	-	-		4	2	(	2	m	)	-	-	+		-	-				-				-	-		-	+	+	+	+	+	-	
	-			-	-	1		-	-	-	+	-			-	-	+			-	-	+		-				-		-				-		-	-	-	+	+			
			(2)		The	e	k	10	100		-	1		n	-		k	a		-	C.	+	-	41	115		5	ta	to		0	200		4	P		P	42	20	(			
			- /		0	ra	pl	hu	- 0	11.	4	F	0.	1	-	1	4		0	p	ra	1	120	10	to	1.									-	1				-			
					5						~															P																	
								-	ka	a	-	-	1.	2		=		Г	27	n	E	1	a	-														-					
																		J		722																							
																																					1						
			(3)		a	le		F	x	-	10	>	a	10	d	-	ho	ev	e	ł	Por	0	_	0	*											-	-	-	-	_	_	-	
				_	_				_	-	-			-			-	+	2	-	-		_	_				-	-					-	-	-	-	-	-	-	-	-	
	-		_		_			-	-	-	a	11		1	L		-	N	11	-	-	+		-				-	-	-				-	-	-	+	+	-	+	-	-	
						_		-	-	-	-	-			-	U	6	. "		-	-	+		-				-	-	-			_		-	-	+	-	-			-	
+	-		(1.0)			-		T	-	-	E	1	_		1 -	2	+	-		-	-	-	,		1	1	4		11	-	-	_	E	02	1	Va	+	+	-	-		-	
	-		(4)	,		_		5	- \	1-	K= Vo	-	1		1. 6	6	+	2		E		-	- /.	, 4	4	(	π	2)	Vo		-	-	0	06	-	10	+	-	-	-	-		
	-			-	-	-		-	-	+	+	-			-	+	+	_		-	-	+	+	-									-		-	-	-	-	-	+	-	-	
	-			-	-	-	1		i	-0	2	1	15	1	-	-	4	2	75	-	22	-	0		Ma	V		-	-					-	-	-	+	+	+	+	+		
	-			-	-			-			-/	(		/		-	0			-		-		-	16	*		-	-						-	-	-		-	-	+	-	
_	-				-				-	-	+				-	-	+				-	1	-														-						
1	-		(5)	-	T	10	,	221	h	10-	M		~	in	4	1	2/	50		h	e		00	p	rn	ac	he	d		an	na	14	ti	c a	11	en	1	Би			-		
				-	+	ri	a	1	41	1		1	-	p	d - L	2		,					~0	-	0							4		~		1	1	A					
						4 4		-	1	A		~		EI	r		1	*																						_			
										7	n	-		E	+	Las	n	8	I	1		1	Z	20	n V	oa	2	-	h2	1	12	ta	n	2	м	Vo	9	-	2	2	12	2	
														-					1			L			n	•			4	7				L		n				-			
																																											)
									1	1	-			-	-						1	1											-					-	-			1	

			-									3
			(8		(7,					U		Fo
			)							le		500
					C						~	.7.
		7	-		h			-		w.		00
31		re m of	+	C				-		15	-	1
		15	91	:03				+		h	+	1
		t de t	a	s .				+				P
		0 14 22	p	9				-				r
		Fre	41	0								ob
			ca					-				le
		P P L u	2	-				-	1			ne
		Ur 05 De	-	-				-			-	
		se 1 + 1 11.	res	.6				-	-		-	
		10	50)	22				-				n
		r M	t					+		or V		0
		15 01 1 e	4	-				-				
		4	Ja:	-	1.				4			5
		th	s	-				-				11 ² 4
		e th	0	-			- 2	-	1	0		-
		e	FF		- 1			-	1	n		22
		3		1.				-	F	d		1
		lei	er 6 y	99		2.	1.2	4	<u>π</u>	9	-	12
		ne Me	c	,	-					210		ta
	<	tu	ab	a				-	~ ~	2 g		n
		w	0	60				-	7,	1	-	[
		e ti ab	, t	UT					12	t		172
	2	o h ovi	-	2						12		-
	n.	f r e	11	17			2 9			~	-	42
	0	es	Me	1			1			-	. 1	1
21		E Pe t	V	er		70					23	12
6	]	, ct he		ro		e						1.8
0		+	not	4		rr	-					1
		he t	+			or			.?			200
		0	to									4
		+	0				-	-			1/2	
		-h :			1							
		2										
		-										

0000	ASSIG	ument #	3					Paul Grant	
		ms 12-1						DEAP-AP-16	
								P251a 1	
								11-17-60	
			V .						
12.			A CONTRACTOR		a. (1)	E>Vo			
			V=Vo		α. (1)	E 7 V0			
	T	-		Π	(2)	we to	ate Schroedi	ngers equation:	
						d24	+ 2m (E.	$-V \downarrow \psi = 0$	
	V=0			v = 0					
								to the type of	
		-a	a			solutio	ms require	ed,	-
	(3)	wen	ssuma	a wale	tra	elma	Eroze lo Et	to right from I	
								that in TT .	
				IZME					
			4 = e	~ V KL A	= e	K P K	where R =	$= \left\{ \begin{array}{c} 2mE \\ \pi^2 \end{array} \right\}^{1/2}$	_
								LROJ	
	(4)	T		ill –	0.1	e tex	e kx	learly holds for	-
	(7)								
		The 12	ncident	ana	700	ms min	ea portion	ns of the wave.	
	(5)	In re	gion TT	for	E>Vo	det	ning B=	Zm (E-V.)	
								J RZ	
	٣	we 1	have	y=ce	t	Derax			
	10	-					101	1	-
	. (6)	Imposi7	ng the	USUAL BI	m	9 and	P', we obt	Taiki	
		Ap-dea	+ 80	ka co-L	Ba - Do	Ba S	C PLBQ I D	e-2,ba = e cka	
		kAetha	- ker	ha = BCE	- BI	De Ba	BCE Ba -B	De = kerha	
	(7)	9		: and D					
		d = Bt	K = 2 (2-1	s)a )	0 -1 k	a	ka B+4	(2-2R)a B-h 2(12+2B)a	
		C =	3	5	He	+ R6	28	26	
		D= B-	h er (t+B	a	kAe-1th	a-kBp	ka _ B+k e	$\frac{(2-2n)a}{+} + \frac{B-n}{2n} e^{(n+2\beta)a}$ $\frac{(n+2\beta)a}{-} + \frac{B-n}{2} e^{(n+2\beta)a}$	
		21	ß	J			2	2	
	(8)	We nou	o solve	for A	and	B In	the sam	ne way as for c	_
		and s	) and	- obta	in, af	ter te	edious but	trivial simplification	0
		A= P	12ka p	Bthizp	-ггва	- 10-6	)2 e 12Ba		
		4	IBR	1-1101 6		( P R			
									2
		B =	-L (k	$(-\beta^2)$ su	12Ba				
									)

							-	-					
	(14)		(13)	(12)					(11)	(10)		•	(9.)
			)										
	2			1			ر	l					No
		TI	R		u	00		ve	1B	A		AI'	w
	R	his	=		30	15			2	2			
	14				d 13	2	P	n	4	1)	1	1	AP
		13						ou	-				H
	E	Ĺ	-		n		MI Un Ve	,	(				
	1	1+			-			4 ta	ß				A A
	+	2	(1		76			ke	- 10				*
			B2		ec			2	e jz		-		3
		p2 he	12 × 1	- 'h	tui			0					B
	41		2		re			ur	5 22				2
		2)2 4 fo	5	5						~_		-	A .
			m	m	50			+		R		-	B
	m²		2 2	2				ra	sa	2)2			B*
	2 (3	2	ßa		w	1	11	из		5			2
	30	Bo			e		B12			m		-	
	7				m								
	-1	X			a c								
		×			9					_			
	>				3				2				
	-			-	06		_				SI		
	- 1	2			57								
		1+			4.7								
	+	×			ste								
	V				0								
	4			517	d					7		2 2 2 2 2 2 2	
	E			2	112						S		
	(E 2		-		ree						m	-	
	- Va	+		27	+					-	6	-	
	) m (1			in (	14		1				ß		
•	2 - Vo	]-		E-V								-	
		1	•								2		
	1/12 0			1/2									
				a	~		· v	nt				-	
	- 1		_	1			17				Ĩ		
				-1									
													- ANA

A.	SSIGN	ment	#3																Po	m	2	Gr	an	t				The
	ontine																						P-					
															_						T/a							
										-									11.	- 1	7-	60						
	oblen		+		+-+						-	-				-												+
	ntins				++-									-		-												
12. b	. (1)	For	E	Vo	, w	е	de	fin	e	4	11		Zn	e (v	10 - E	=)		-	ı	ß		A	11	we	2			
		do	3	mere	2/4	50	bst	f, fut	e	+1	115	J		ħ		-												
	_	in to										5,		+	+													
		B=1	¢ j	16	all	ZIN	3	+6	100	1				-	+													
					51	ni	28	a	=		ı	su	nh	28	a	,	SI	NZ	1	280	2 =	-	S	mb	22	.sa		
														_		1											_	
	(-)		ſ.	+	18	4 6	2 12	<b>C</b> 14	1 h	71	-	7 - [		-C	1 +		V 2			25	2 74	(10	-E)	21	2	7-	1	
	(2)	Τ =		+	10	4	4 22	· K2	- 1				5	-	+	-	-	-			and the local division of the	CARGO DE LA CARGO	Concession in the	No. of Concession, Name	a			
			-			/		14	+		-	-		L	-			4	5	( )	0 -	5	/			-	+	
			C								-	-1		-								,						-1
	(3)	R =	1	+									=		1	+		46	Ξ (	Vo	-E	:)	10 11	1	= \	1/2		
			L		(8.	+ 122	)-	sml	1 2	. (a	-			L		-		Vo	S	mb	1 1		1	72	=(	1/2 20	al	
										-				+		-								_	-		+	
	(4)	We h	ave	817	en		ka	. =	52	m	= ]	1/2 a		Π	-	1	a	1		Π				_			-	
				0					4	n										T	2 2	1E	]'/	2				
		( 2 m	E	2m V	-71	2	11	_		-		C				1/2						~					_	
		[ 2 m	2	h	-	0 -	C Z	ME	3/2		-	L	1-	•	Vo E	116	Π						-				-	
																											-	
	(5)	·• T	1	1	+	(	Vo	2	SL	ni	[1	-	VO W	12	211													
						/	E	)			4 (	1	- 10	2)														
				6			2		_	2	0		71	2 _	_	7	-1						10	_		2		
			=		+		nz	5	-				]"	. 2	- 11			,		n	115		OE	С	x	N .	1	
				L				+	2	/ (	1-	rc		-	-	-											-	
				0							~		71/2			7-	1											
			7	1	+	-	K ²	Sı					1	• 21	-			3		n	>	١		_			_	+-+
				L					4	( )	n -	1)				7		_										+
		ve. u	sish	to	0	lot	7	T	ver	505	5	n		fo	+	2		fr	on	r	- 4	1	to	+	2			+
																		+ .										
	n		٤1.	~~] ^{1/2} .	277			sw	21	[1-	$n_1$	1/2	zπ			E						-	Г					$\square$
	- 4			000		_			-	-	22				-	-		0			_		-					+-+
	- 3			85° 0°					+		99			-			1,79	1	-			-1	56					
	- 2		. ;	2650							99						1.3	2					76					
	- )			1500							25	-					1.03	31					97					
	0			0°							0						1	a					1					
	- 1		5-	0'	2	_			11		0	21/2	211	-		5	10,	7	_	_	-		92					
			LY	-17	211	+		SL	nh	21	F(~ 1	7	.211	+-	-	1	-	2	-			-						
	2	-	4	. 28					,	N	40	000	0	+		~	d	>				1	.0					
																										1		

			(8)	(7)		(6)
Is no Vo un the s as f				sur L		be us
crease iame e he m	-6 -5 - Graph			1-n]1/2	Let x =	sed. W
from ffect of aterial				. 217 = 0	1-n { t 217 { x	e choos
below as that chang				); z	um.] s	e the
tor pl E to es fron tone po	e for	10 10 .6	large, roaches	π <u>[</u> 1-n]	4 x -	followin
above by the c a di es from	1 Z 3 Ra = TT			1/2 = m17	= a	ng proce
between whose in xwell wa E me Schelkin real to t occurs		Datin	1 + <u>IN</u> 54	pear in , n = 1 where T	1-n ] = 211 (1-n) e 1n a x 1/2 c 4 x 1/2 2 , leadin	
has es has es has es haff equi to a co	- n = .		n n'/z · zπ	- <u>m²</u> , m		equations
ary.			<u></u>	n = 2, 3, 4;	= .092.	(5) may

(3) Clearly: In III $(4) Imgosing the dAe that the the theKi Ae that the the(5) Ri Ae that theRe that the theKi Ae the thethe the thethe the thethe the the thethe the the the the the the the the the $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(3) Clearly: In I II II (4) Imposing the a $Ae^{-1\#ia} + Be^{-1\#ia} =$ $KiAe^{-1\#ia} - \#iBe^{2\#ia} =$ (5) $M_1Ae^{-2\#ia} + W_1Be^{2}$	(6) $A = e^{i H_1 a} \int H_2 (H_2 + b) + H_2 (H_2)$
b) Clearly: In I II II 4) Imgosing the $Ae^{-\lambda \pi a} + Be^{-\pi \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} + \pi Be^{-\lambda \pi a} = \frac{\pi a}{Be^$	$A = e + H_1 a \int H_1 (H_2 + k) + H_1 (H_2)$
Clearly: In I II II Imposing the d $e^{-\lambda \pi i a} + B e^{-\lambda \pi i a} =$ $A e^{-\lambda \pi i a} - \pi B e^{-\lambda \pi i a} =$ $\pi i A e^{-\lambda \pi i a} + \pi B e^{-\lambda \pi i a}$	$A = e^{i H_1 a} \int H_1 (H_2 + k) + H_1 (H_2)$
early: In IIIIImgos mg the2Ma + Be1Ma =-1Ma - MBe2Ma =A e-2Ma + MBe2	$= e^{i H_1 a} \int H_1 (H_2 + h) + H_1 (H_2)$
$-ly: in I$ $II$ $II$ $0 \le mg + he $ $a + Be^{-1Hia} =$ $tia - HiBe^{-1Hia} =$ $e^{-2 Hia} + HiBe^{-1}$	e Mia ( Ma ( Ma + k) + Ma ( Ma
$\frac{1}{2} \frac{1}{1} \frac{1}{1} \frac{1}{1}$ $\frac{1}{1} \frac{1}{1} \frac{1}{1}$ $\frac{1}{1} \frac{1}{1} $	1 Mia ( Mi ( M2 + K) + Mi ( M2
$1n I$ $II$ $II$ $111$ $+he$ $a$ $Be^{a \pi i a} =$ $Be^{a \pi i a} =$ $Be^{a \pi i a} =$	Hia ( Hi ( H2 + k) + H1 ( H2
n I II he $dhe$ $he$ $dhe$ $he$ $dhe$ $he$ $he$ $he$ $he$ $he$ $he$ $he$	$= \int \left( \mathcal{H}_{1} \left( \mathcal{H}_{2} + \mathcal{K} \right) + \mathcal{H}_{1} \left( \mathcal{H}_{2} \right) \right)$
I II III = ia = e	( M. (M2 + K) + M2 (M2)
	( M. (Me + k) + M2 (M2
15 ( C = #: a	No (N2 + K) + N2 (N2
va E' Kr	(M2+ k) + M2(M2
) 1 Hz .C.( =	(2 + K) + K2 (K2
e -1	k) + 1/2 (1/2
3 C + D * a -	) + M2 (M2
ee	- Mil Mz
at R2 (2) (2)	2 ( N 2
a re k	Mz
+ + × = 2a	
	+龙)
e e a u	7
- 1 - 1 2 2 2 2 2 2 2	e
the x the x the i en	Ke
( X , & , = , = , = , = , = , = , = , = , = , =	a
+ h <	-[
2 ( = = !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	H1 (
B 0 1 1 1 1	(Nr
	·k)
e e	,
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	K.
	(1
<i>R</i> 2 <i>R</i> 2 <i>R</i> 2 <i>R</i> 2	12-
4 + 12 112	k)
= (	le
	ette
	a
	}

	(7)	We form	$R = \frac{ B ^2}{ B ^2}$	= BB*	since	our notatio	24 15
			(A   2	A A*			
-					d 12 10	cture and	after
		some +	ribulation	obtain:			
-		0 -	M2" (M1 - ;	k)2 - (M2-M	9 / H = - p2	Sm2 H2 a	
		IE =		Contraction of the local division of the loc	and the second se	) Sm² Hza	
			F12 (11) + 1	$R = (R_1 - I)$	Te(Tz - R	Jom read	
	(8)	Using th	e definit	times of t	Hi, Hz, h	and mai	ting the
		definiti	nc:				3
			0 =	4 ka, c	$2 = \frac{9\pi}{1000}$	=	
_					7000		
		we hav	e:				
		0 =	$(E - V_2)$ (	E-VT	ET) + 1/2	(V2-V.) em2	[1- V= ]1/2 0 4
		AC -					
			$(E - V_2)$	JE-V. +.	JE7)2 + V	2 (V2 - V1) 5m2	$\int 1 - \frac{V_2}{E} \frac{7^{1/2}}{4} \frac{\theta}{4}$
							4
	10)				A	1	
	(9)	Substitu	ing the	values o:	+ Vi and	V2 we as	rive at
		RE	100 - 75 5	m² 0			
			196 - 75	5m28 1			
			/	V			
	(10)	For the	single ju	imp from	-35E 1	to o, that is	$s_{\perp} = 0$ ,
			· *				
		$R = \frac{100}{190}$	- = .51				
	(11)	To tast	for out	enna · tra	ke dR -	0	
	()	To test	FOREXIT	and , rai	10		
		dR =	(196 - 753	m°0)75.2	cosesme -	- (100 - 75 sm2 0).	-75-2 coso suno = 0
		. do			(196 - 75	smo)2	
		Clearly	the roo	ts are !	SMO	$=0, 0=n\pi$	, n=0, 1, 2, 3,
	++-				COSO	= 0, 0 = (24	+1) The , R= 0, 1, 2, 3,
	+ +	in th	the mini	ma at	0 = (2n+1	1 17/2 by in	spection:
	(12)	i's Rmin	= 25	= .206	(		
	(13)	Ministration and Contraction of Cont	2.48				
		Rmin		V			

1	h	551	GL	m	en	t-	#3	2							*	,											P	su	2	G	ra	nt	t	3				-
	C	oni	tin	ue	d			-		-		-	-			-	-	-	-	-									PP-			- 1	G					_
		+	_					-				-	-	-	-	-	+	-	-	-	-	_							51					-	-			
																-													0		0		-					
$\frown$																																						
		()		(1)		0	4		1	-	-	_		~	_		-	-		-			. /			_							1					
	14, a	. ()		ve t,	+	11	57	1	de	rI	le	9	1	fee	0	P	ro	pe	- 71	ies	0	£	the	e 4	or	10	9	12	не	19	310	по	11		-			-
			-															1	Γ							, 2											-	
					d	24	b	+		22	n	SE	-	VG	)7	4	) =	0	,	0	12	4		2	m	.[	VC	'x)	- E	-7	Y							
IA					0	ί×'	-			ħ	6				-		_				d x	5			ħ		•			-2								
10	_		115	40			L	11x	)				24-	0	~	)			-	-	1				1	V		1.	1	_	0.1	_	/			-		_
-			4	ha	t	-	u	Je	1/-	1	sel	ha	ve	d	13	50	110	tio	a	n	e e	5 X 1	st	19	/e	V	al	Ve	Cl		50	CP	2					
				113		_			,		-	_			,		-		,	-					,		_		,		,	,				_		-
		(2)	_	the state	e	Co	m	sia	e t	~	E	-	10	-	be 1U	-	CO	1:	\$7	do	rt	+	a	MO	C	n	000		hy	Pa	oti	hes	5/2	22		-	-	-
				10	200	,																		0	-10	ar	14	1 3										-
								4.	/	11	4	2"		-		2	m	5	V	x)	- E	=7																
				_		_		41			4	2				1	h	6	-	-		-			_	_	_	_	_									
				-		-	-	Y.	. 4	4, 1	_	_	Ý,	V.	/	1	0		-								-	-	-								-	
						_																																
		(3)		I	nt	eg	ro	cti	n	03	,			Pz	Y.	1.	-	R	P2'	1	:	con	15	ta	nt	-												
$\frown$			_		-	_			1	ψ.	_	ψ,	1		_			1	- +-				_	1	_	-	-	_	-	_						_	_	+
			-		or	-	-			Ψ.	,	Ý,		15	0	ion	ns	a	nl		_						+	-	+	-		_		-			-	
									1																													
																										= c												
			-	de	2 7	er	201	m	an	t		wi	11	Ve	271	15	k 1		I	F	4	/	an	d	4	k2	1	2 4	e	1	na	lep	per t	1 d	ez	t	-	
																										21											-	
																										0												
		1.1																																4			_	
		(4)	-	We	2	ta	k	e	+	he	1	co	m	ole	×	0	m	70	13.	ati	0	0	F	(1)		KM	100	11	ng	- 7	the	z T	-	th	e			
				en	ne								ot							Y	CO						-											
						4	P "	*	100		5.	m	[	VC	()-	E	]	$\varphi^*$	*													-						
			_		_							r											)	+		_	0	-	1)	_	_	_			_	1	_	
				C	on	51	ae	ru	ng		Th	15	1	12	16		Th	e	50	an	e	S	010	011	on	ł	For	-	TH	1 e	-	sa	m	e	51	ati	e .	
		(5)		Pr	-00	cel	ea	112	19		as		6	ef	or	e	:																					
								1	1. 30	-		1.1	YK.						/	4				1	ψ	*	ψ	1				1	_			_		-
				_		_	P	° 4	1	-		P'	- 4	P	11	C	on	st	an	5	2	or	,		ψ	*	ψı	-	C	C	ms	ta	nt					
																												1										
$\langle \rangle$		(6)		Al	30	, ,	+	15	c	lea	2	7	tha	t				P,*	Ŷ.	2		2	co	ms	ta	nt												
						-												4."	4	2'										_								-
					11				_	1	+			1	11			1			11			-				-	~		L	+	-		_	-		-
			-		11	01	ur	C	or	al	10	NS		ИО	101		02	ae			TM	e	S	an	ne		en	er	89	1 N	510	ue						1
					-																	1								1						_	_	

Consider the following collision problem:	
E	
I II III VI(X) is an Vr. arbitrary potential	
VII (X) satisfying the	
in (1)	
Definitions: Rr = Zm [E-Vr]"z; ke = Zm [E-Ve]"z	
Case I. Particle incident from the left:	•
(7) I: $H = A e^{i k k x} + B e^{-i k k x}$ $T = \frac{k h}{k k} \frac{1}{ A ^2}$	
$\overline{\mathcal{U}}: \ \mathcal{Y}_{i} = e^{\mathcal{I} \mathcal{R}_{R} \times} \qquad \left\{ \begin{array}{c} R = \frac{16l^{2}}{16l^{2}} \end{array} \right.$	
Case 2. Particle incident from the right:	
(8) $I: \Psi_2 = e^{-\lambda h t x}$ $\begin{cases} T' = \frac{h t}{h t} \frac{1}{ A' ^2} \end{cases}$	
$\overline{III}: \Psi_z = A e^{-iknx} + B e^{-iknx} \left\{ R' \equiv \frac{ B' ^2}{ A' ^2} \right\}$	
We now see that 4, and 42 are independent solutions of the same schooldinger equation for the same energy and	
thus the energy possesses a two-fold degeneracy	
characteristic of this part of the spectrum. Since our wronstrian is independent of position (that is, constant);	
the wronskians at any two points should be equal.	
$(9) \qquad \qquad$	
Plugging in and solving, we find	
(10) $k_R A' = k_R A$ ; $k_R  A' ^2 = k_R A A'' = k_R \left(\frac{k_R}{\delta L}  A ^2\right)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
and the transmission coefficient is the same for incidence from the left or right.	

1			Ass	161	U W	ien	t	# 3	5				1000						1										P	au	2	0	Fra	an	t				3
			Cor	-																			×						1.1					-16					
				_	_	-								-		-		_		-									P	2	51	a							
				_		-							`	-	-	-	-	-		-			-		-				11	1-1	8	-6	0				_	_	
			0.1	-	+									-	-	+	-		-	+			-																
	<u>}</u>		106/	-									-	-	-	+	+-	-		+		-	-	-	-								-			_			-
	+	C	mti	210	JEC		-						-	+	+	+	+	+	+	+	-	+	-	-	-									- 10 - 10					
		(12)	W	le	2	101	,)	<.	e t		120	•	th	e		Sa.	a sa	0	7	Lun	2	W	ro	151	tia	us	-	15		in		PO	301	3 +	ion	2	(9	)	-
			e	×	dei	pt		no	w		be	tu	Je	er		1	th	e		con	11	Ug	at	es		a	s	nu	m	-	ea	Ua	t	on	. (	6)			
																					0	3									1								
				1					-			1		1.3.64		-	_			_		-																	
				1:	<u> </u>	T	3	с ⁽	2				Ш	4.*	-	T	E (	K2	-	-	-		-	-	-	-													_
·				-	τψ	*1	-	- 10	1					*ىل	e'	-		51	-	-	-	-	-	-	-														-
				1 3	- 4	1	-	- 4	<b>b</b>	-		1		TI	-	I	L	12	1	-		-	-	-	-	-										-			
				-	-	-									-		+		-	-					-						-						-		
				PI	108	81	ng	1	n		an	d		50	10	120	8	:																					
																							1				5												
		(13)		kr	E	3'	= -	k.	el	3	,	0	r,		_	k	r	B	11-	=	-	K.e	. / •	- 1	he	B	*)	B	3	4	in	18	11	-	k	R	1B	12	
			_	+		-	-								-	-	-	+-	je.	-	-	-	1		kr	-	/			-	2.L				P.	r			
		(14)	M	1.1	14.	1.		0				0.0		F.	~		(11)			1	21	2	-		18	12			_		D	1_	- 1	>		/	4	-	-
		(1)	101		10	19		3	0	3		= 9	y a	1 10		- (	///	e	+	+	A'	2	E		10	12		c	2	,	10			1	1				
																				1					1/1	8													
			Th	ie:	se		re	la	tio	ns		C	10	)d		al	50		ha	re		be	en		d	er	IVE	d	-	45	12	8	C	on	se.	rue	at	n	-
-	1		0.	A	1.	re	ba	6.	1, 1.	1	C	vr	re	ni	t	a	les	151	ty	_	as	5	+	h.	5	9	va	nt	A	7	15	-							
			P	ro	por	rti	on	al	- ]	-	to		th	e	-	u	ro	n	Æ	a	n.	-	-	_															
				+	+	-	-							-	-	+	+	+			+		-	-	-														
		b. 1	1)	11	10	2	(11)		110		+	he		ori	na	P	10	0	1	00	ne	er	va	to	n		01		pr	06	a 6	1.	4.						
				+	10	S	ho	w		the	it		T	+	R	2	=	1.		7	he	-	p	-06	ab	, 1,	ty	C	Ur	re	nt	-	de	u	517	2	(0	cd	()
				0	F	+	he		12	ici	de	n	t		wo	are	0	,	2010	151	-	eq.	va	L		th.	e	P	cd		01	4	+	he	(		- (		
				1	re	fle	ct	ed		wo	lve	2		pI	10:	5	+	h	2	P	cd		0	£	+	he		tra	n	52	11	110	ed	4	va	Ve	2.		
				6	No	1	01	d	7	the	at	-	re	gia	rd	1/0	S S		of		th	2	5	na	tu	re		07	4	7	th	e	P	01	en	tr	a L		
					VI	(	as n		102	3	a	5	it	13	5	0	e/1	-	be.	na )	ve	d)	-	17	U	211	(1	a	pp 1	rac	20	h	_	12	6	271	d	-	
					Vr tu	10	15	c a	- 0	S	,	0	2	ar c	e E	To	Vo	V	-	10	19	e	0	= M	00	gh T	с. +		.18	ar +	10	1	7	nei	0	đ	E	-	
					w,																																2		
					the	ere	-	w	,11	1	be	2	7	10	)	4	ra	115	n	115	51	n	-	a	en.	d		R	= /			W	2	ta	Ke	e			
				7	thi=	5	20	25	e		70		be		7	ri	V10	a l		a	nd	-	6	en	10	er	rt	ra	te		0	n	7	the	9	fo	r 24	ier	-
		,		-	_	-	-	ta la		1	<i>µ</i> ¥		1		.12	117	*/			-	-	-		-				_	_	_									
		- (	z)	+ '	5	2	- Z	m.	- L	(	ę :	Ψ		-	Ψ	Ψ	-	)	3	-	-	-			-					-						-			
		+					-												1	-			-		-					-									
		(	(4)	I	inc	id	ent	-	Cur	rei	大		4	2=	=	A	e	14	a x	2	0	or	151	de	117	ng		th	e	a	sa	re		+	>				
																				,	1	be		n	ci	de	nt		fr	on		th	ie	10	ff				
	4							+		1	,		1	2					1																_		_		
-	-		_	-	JI	13	-	n	-	(1	R.	2	AI	-	+ -	11	2.e	A	4)	V		-n ~	n	ke	10	AI		/		_									_
				-	-	-									-	-	-	-	-	-	-								-										
				-	-										-	+	-	-			-			-						-									
																		1	-																				
V																																							)
	-				1	-											_																					D	

			5.			1		5			-	1	1000	,										M	20			195	-							-		
	(5)	R	el	le	cte	d		. (	Pr	-	B	e	-1	ke	×			-					-		-							14		-				
																									-							-	1			-		
				J	-		ħ	ī	(	-	1ks	0 18	312	-	1	6	1	BIT	)		-	- 1	ħ	_	Re	12	12	1									-	-
							27	nn	1			1.			-	14			-			7	m								1.							
															,																			-		-		
	(6)	T	ra	ns	m	1+	tea	d :	:	Y	+ =	-	e	17	ent	<	1																			1		-
											-							-																				
				J	t	1	_	ħ		1	1	kn	-+	1	1 h	R	) :	=		ħ	. 1	kr																
							2	m	1	1										m	-																	
																													-									
		As wo		p	rob	ba	bil	1.+	4		cur	re	nt		a	ler	151	ty		15	C	a	V	ed	to	2	6	an	d	w	e	a	r	0				
		wo	rh	er	20		1-	n	q	or	nly		or	ie		di	201	en	51	02	r	,		we	2	n	1a	46	7	tal	ke		the	2				
		m	a	92	117	tue	de	5	a	.5	C	J	R		4/0	w	s	2	n	+1	he	Ĩ	0	pp	000	110	2	d	ire	ct	in	د	01	ß				
		Je		JE				6	T	hi	5	1	5	-	the	2	r	en:	500	2	A	'sp		th	ie	-2	21	no	15	5	10	N	2	n				l
		(5)	).																																			
				,							1																	1										
	(7)		15	il	Đ	1.	Ja	-	+	13	Tt	;		ħ		ke	A	2	=	_	h	. k	e	B	2	+	Th	-	kn									
								_	_					n	4						m																	
			_		17						,																-					/						
	(8)		-	18	515		+	The	en	-	1 1A1	-	5	-	1		-	70			R	+	T	1	- 1	3	Q	ED			V					-		
			-	11	412		-	-	ke	-	IAI							*										2								-		_
			-	+	_					-		-		-	-	-		1	1		1						1	1	2 /			1	,	,	_	-	-	_
		7	=t	•	15	0	61	110	05	5	b	y	r	no	w		to	ha	t	+	he		5	an	ne		re.	su.	14	u	100	0/0	d	be	-	-	-	
		0	6	te	21:	ne	ed.		1	6.7	e	n	151	d	02	n	3	1	a	u	a	ve		m	161	de	n	C	fr	m	e	+	he		_	-		-
		r	19	sh	t	-	56	m	ce	-	R=	= /	ę',	-	7-	7		-			_								-				_			+	-	_
					-			-		-		-	-	-	-		-	-	-		-						-		-	-		-			-	1	+	-
			-			-		-		-		-		-	-	-	-	-			_								-	-			-			1	-	-
			-		-		-	-		-		-	-		-	-	-	-	-		_															-		-
			+	+			-	-				-	-	-	-	-	-	1			-								-	-							-	-
1000			-	-	*		+			+		-		-	-	-	-	1				-		-					-		-	-	-				-	-
			+	-			-	-	-	-		-	-	-	-		-	2	-		-								· ·	-			-				-	-
			+	-				-		-		-	-		-	-	-	-			-	-					+		-	-		11	-					-
			+				-	-	-			+	-	-		-	-	1						_					-		-	-	-	-		-	-	-
			-	-	-		-		-			-	-	-		-	-	-						_					-	-	-						-	-
				-	-	-	+	-	-	-		-			-	-		-									-	-									-	-
2				-	-					-		-				-													-					-			-	-
									-	-		1			-	-											-		-							-	-	
				-				-			-																								-			1
				*																																		1
				-																																		1
																																						1
																																					1	j
				1																								1										
																													1									1
																																				_		
																																				T		
								1																														
																																					-	1
												ľ						1																			V	l
							1								1		1	da																				

												1	7			
			-										1	15		
	(4						(3			(2				. (		
	)						)			}		I	I	) U		ss I mi
			6			6	C	7				'n	'n			
	Thu		we		le	ex F	ve	En		we		TI	7			
	5 :					pro	1	TI				r :	- :			
						e s	n			u 4.						
	=		m		12	510	te	1		he						
	-					5	2 r	y *		h	υ					
						10	ai	• (X		re	8					
					-	Vo	te	, k		to gi						
	* B	×	fo	B	wa	an top	- +10	1),	í) ,	m	C'n	C,	Ae			
					1	115	r	u l		fo	Ĺ					
				8		h	eg	(x, y		2 2 2	A'			1		
					-,	es	in	6)		n I	e					
						. 6	2	H			17					
						ec	I	C,		ar	en		8			
						In ac		Ca		v	+		e			
						te	F	*		*	B	6	JK			
	ka ka					gra	ror	k te		( X ) TT .	;' (		4 ×			
						eti	m	2 12		k	er		]			
		X				no	- 00	E		')	kn			201		
	0					3 at	4	A		N	.×					
	_	•				0 Fin	6 0	*е		()	]			14		
	. ( :			Ca		vens	2	2		l, h	11					
						r 0	a	( k.n		'e )	C,					
5	- 4		e e kr			7	m	+ 1		;	/ 1 n -					
-0-1				-		-he	d	ír)		ν	er kr					
0 20 11	_			B	_	re	Y	x		ia,	Ĺ				11	D
	×				_	e	reg	B		110	A				-	EA
	!			6		nt. t	10	*		l					18	2 P. 51
4	18		e	-	F 00	he	K	e		13	4.				-6	A
27	t	~		)		-	I	x (%		n	×				0	P-
T (	t		d		TI			л-		e	- E					
ſ	, M	1	×		- þ			kn		a	3 e					
(	L		C.A.		0	se N		)×		ch	i k					
)	•		K	dx	le.	1		7			n X				X	1
		71	*		a	to					]					
		1	1		1	2										

		2012								
	(5)	It was	s shown	in lea	ture the	at !:	$C_R = \prod$	T C'é	= []	
		Simila	erly, it	may be	show	n the	at: Ce=	= Re T	= Cr glow	
						504		factored	A and	-
		leaving		consian	nu 3 n	ing n	1000 00 0	factorea	300	1
					-					
-		6	: C' ) B-	RA B*	[- ZT 6	(ke-ké	()			_
							*			17
	(6)	Consider	ring the	real p	art an	d us	ing the	(ke-ké)=	ka (ka-ka):	
										1 1
			C'. Re	Re B [ K.	- kal.	21 \$ (4	20- Ee)			
								1	the & fond	tin
		vanis	shes,	when	RR - RA	TA	ce coef	FICIENC of	The e fond	1102
	-									
12										
						1			• 1	
								1000		1.4 C
	+ +-	1.0								
								A FR		
	1									
							1 1 10	A AL		
								1011		
								1501	0	
						1		Y 10		
2.0										
						2				
						8				
					227					
		1				je				
	0									
			· · · · · · · · · · · · · · · · · · ·							

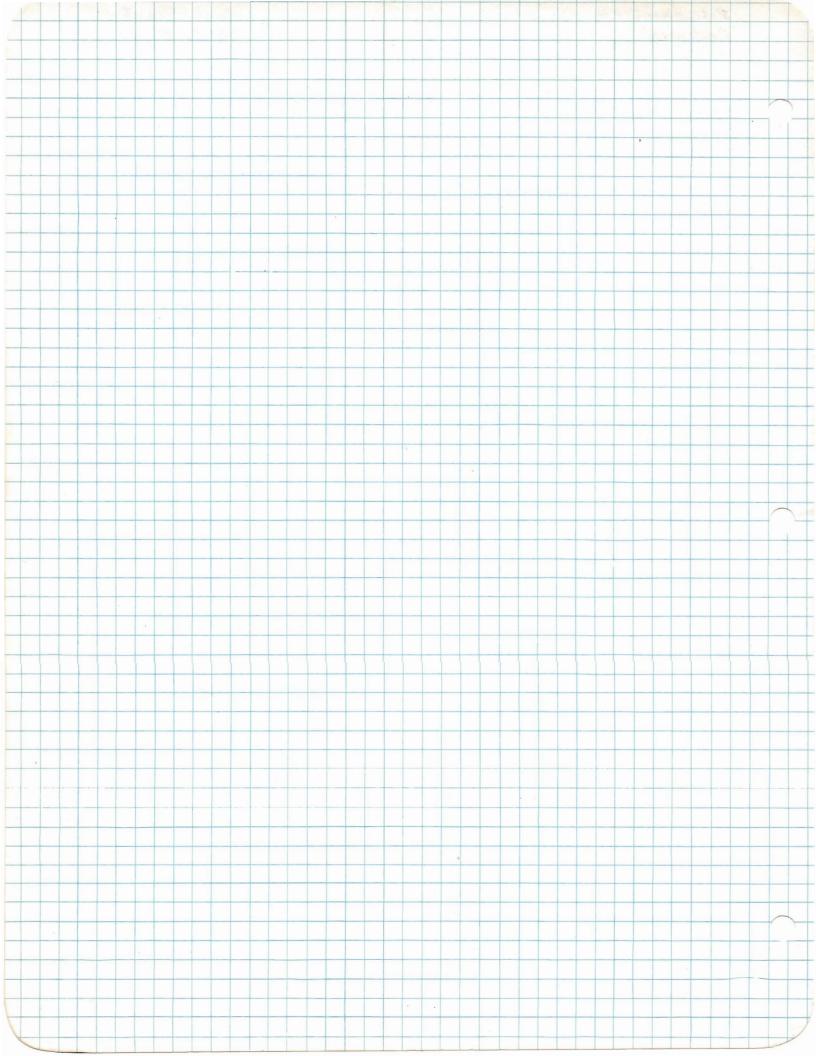
	As	516	NM	ient	#	-4						185									Paul		Fra	nt			
				16							14	1									DEAP						
			2											1			136				P 25	a					
												-									11-22		3			1	
														1													
0													48.	5	20												
7-1														1													
	16.	(1)		We		PVI	lua	to		the				1.20	F.		At	A	1	à	d As	Art					
		(* /		000			0.00					Pr	00	100			112	1.		am	- 11-						
		-		Le	ł	D.		0.0		La				20	1100												
				Le	-	12	0	pe	rai	e	m	1	a.	,	rne	n	-		-		-			1			
				Ae+	0		-	1	0	-			d	11	D'												
		-		He	He.	n	3	(.	n		E	-	an	-11	n	u	-	0	+	du					-		
		-			-	-					-		-					-		an							1
		-		-	07	2		11		0	d	11	-		1				1	du							
		-		-	S	シノ	1 -	n	+	e n		in	-	1	-	+ =	E2	-	1	ar							
											1.50					10			12		_				_		
					-	l n	di	R	+	l R'	1h	-	+	-	E 2	de	-		d2, dr	2							
																			n.c								
				=		2	(1+1		~	2	+	-		-	d2 dr	-	u		-			-					
					L		RZ	1	1			J.	- 5	4	dr											-	
				_				-		4				1	-	_									_		
							5		A	é A	2	=	-	H	2	+	22			1							
																	-										
	1. State 1.	(2)		Let	1	Ast	0	per	ate	2 0	m	. 1	1	-	12												
															-											12	
				Ale	Act	IL	4	(=	en	- 1	2	+ -	d	11	e.	n.	t	- 1l	-	del							144
						1		1.	n	2	2	6	in	1	n		A			da	/						
				#	li	2 11		el		- 4	2	111			и		м	1	1	d	u	1				1.3	
				3	N	2	2	el n		- 4	2	du	4		N	1	22		l	0	n						
		-		+	1	d	i	1	2	u				de	1												
		1			1 n	0	ii er	- 10-	nz	in			e.	d	n	-	5	211									
		+			-			-	8		-																
				=	5	l	(2-	1)	_	2	1	1	-		d	2	1 e	,									
		-		N	L	-	n	-		2/2	T	3	22	2	de	2	1	~									
					+				11		-							+						-			1
					-	-		-		e Ar	-				10-1	+	1	5		V		-					
		-			-	-		-	1.9	L L	+				12-1		L.	-	-								
		10)		5	0	+ .	-			28			_	11	-			-									
		(3)	1	L	He	- )	HQ .	-		R2 R2		=	20	HQ.	-	ne	-1		-						-		
						+					-			1		-		-	-				-	+ +			
		1.0				-					, ,	4		-	-		41			14	1		)	1	. 61		
		(4)		We	7	nou		not	ice	e	Th	at		Fr	on		The		ese	2175	of	(/ .	a	na	(Z)	, · · · ·	
			-	UP	on	-	le	T+1	ng	3	l		>	l	+1	:									-		
		-		0	-	-					+	1.40											-		-	-	
		_		He	+1 1	He	-1	-	H.	e+1	+	-	+1	E			-										
												17			-	-			-						-		
		_		A.	+1	AR.	-1	=	F	1.e	+	-	+1)	2			+		_		-+-+	-					
		_			-			_				(3		3	-								-	+ +			
					-	-																			-		
(								_		_	-								+ -				_				
										-				2													
				*											S										-		
																									1		
														-											100		
2																			1								
													A			-			-			charal.	1				

f

(5)	We can no	an into	. 1/2.00	a caust		
				$(E_n + \frac{1}{2})$	= En Une	
· · · · · · · · · · · · · · · · · · ·				En T J2/	<i>"Ши2</i> , "	
		ng wi				
		11	x			En, 1/2 are constants)
					Iz) As Une	
			-	-	Al Une ] V	
	50 A equation	le Une	15 a	func Tim	satisfying	the above differential
		1				
(6)	Ť				(4); we write	
					Une = En	Ume
					1 (1+1)= Une	
	Opera		th Asti			
			11		$E_{n} + \overline{(e_{+1})^2} A_{e+1}$	
					$= \left(E_n + \frac{1}{(l+1)^2}\right)$	/ He+1 Une
					+1 Une]	
	50 +	hat Ae	+1 Uns	15 the	second desi	red function.
(7)	We now	define	@ ≡	Ae Une	· Qt = At Mr	le; we there
0	= En [As M	ne] - He-1	[As Une]	: a q da ²	$f = En + \frac{z}{\Lambda}$	$-\frac{l(l-1)}{n^2}\int q = 0$
	$D = En \left[ A_{\mu\mu}^{\dagger} \right]$	Une] - Her	A A A +1 Une	$1: \frac{d^2}{dr^2}q$	$a^{\dagger} + \int E_n + \frac{2}{n}$	$- \frac{(l+1)(l+z)}{r^2} \int e^{t} = 0$
	by the	follown	ng iden	tifications	np these two : (n-1), (n+1)	equations into one → λ · q qt → E :
	12	2.0	2		7.0	
	are are	E+L	En + A	$-\frac{\lambda(\lambda+1)}{R^2}$		

Assibnment # 4	Paul Grant
Continued	DEAP-AP-16
	P 251 a
	11-22-60
16 Continued:	
(8) We note that this is exactly	the form of the usual
radial differential equation	for the hydrogenic case.
Instead of Taboriously copy which was given in lecture the appropriate results: For	ing the method of solution
which was given in lecture	We will merely transfer
The appropriate results: For	$E < 0, \qquad = \mathcal{R}.$
$e = \left[ \left( 2a + 4 \right) \right] - \frac{1}{2}$	$ n^{\lambda+1} e^{-\lambda/n} F_{1} + n + 2\lambda + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $
	. A C Iti Att-n; ZA+2; the
$\left[ \frac{(n-\lambda-1)!}{(2\lambda-1)!} \right] = \frac{2}{2} \frac{(n-\lambda-1)!}{2}$	
the Elailing - a	$a(a+1)$ $2^{2}$ $a(a+1)(a+2)$ 3
$w r a r (a, b, x) = 1 + 1 \cdot b$	$- \chi + \frac{a(a+1)}{1.2b(b+1)} \chi^{2} + \frac{a(a+1)(a+2)}{1.2\cdot 3\cdot 6(b+1)(b+2)} \chi^{3} + \dots$
where: $a = \lambda + 1 - n$	
b = 2A+2	
$X = \frac{2R}{N}$	
with the recursion relation:	$C_{k+1} = k+a C_k$
	(k+1)(k+b)
(9) The following properties are m	iow clearly apparent:
A -> D: E -> Une	
$1 \rightarrow l-1: \not \in \neg \ \  = \ \  \  \mathcal{U}_{n, l-1}$	
	Al Une = Une, e-1
Ae Une	
$A \rightarrow l+l : \not \equiv - \not = q^{\dagger} = ll_{R_{1}, l+1}$	
$A \rightarrow l+1 : \not \in \neg \varphi^{\dagger} = lln, l+1$	F :. Agti Une = dr. eti
Pet, Une.	
Thus we see that the oper	ators Al, Alexi acting on
the eigen function une pe	erform the function of
lowering and raising opera	tors, respectively, on the
lowering and raising opera angular momentum quantu	m number l.
(10) The boundary conditions on.	Une are U(0)=0, Une >0
as r = o. In lecture, it	was shown that unless IF.
was terminated, il would	become un bounded as enn.
If the series was termina would vanish in large r	ted at some term n', u
would vanish in large r	as e-r/n. This cutoff
condition on the recursion	equation led to the
following equation:	

		(11)		
	cu su ti th as Ti cu A	be le	5E + h	1
	st er he he he	ou su	e	1 -E
	ve di	, , 10 tn	se.	7
	o sa sk fa fa	1 da ng	ru	11
6	ff m en or or	f	; 5 , 1e	2
	e. us: e ue: une: s an itic	t, l l		l
)	on t s	he c r	to	+
2	e st	on l.	,	1 .
	ut cur 120 120 120 120 H	260 di +1	l =	+ -
	te ote ts )) =	ve ti	e@e =	n
		m	ea:	- Nor
r le r	n of in, s	15	t - 1	01
2 0 x	0 F , F !-1		, 7	n
	ei ne	den	+ n-	
× ×	ar e 10	e f	2	,
	11 +e TI 200 0) sa	m U	, 7	13
	er rn de d d d d d d d d	e o n s	w. n-	n
		ł.	3,	a =
	po J In, Fy	a 51	u	H
	lai In w 2 !	s th ne	Je ••	l+ n
	111 - 2 - 1	es		1,
	de de th	81 c w	se (	1.
	sal sa	VII fe	e ,	+ 2
	y pp. ti	ng		, 1, 2
	5 + 4 100 10 10 10 10 10 10 10 10 10 10 10 10	, re	+h	. 33
	iti, nai ece	+1. 217	a	
	for II t pe bu	1e 1e 5	t	
	- + + + + + + + + + + + +	l+	l	
	l for ge de		it	
	-> ma -> 0 erc m s li		1. Fo	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	w	5	
	-1 n l l l l l l l l l l l l l l l l l l	e	, nec	
	, <	4	) 5	
	t n n op	-		
	he			
	ta l.			
	114			
	,			
				-


ASSIGN	ment #4 Paul Gravit
Contiv	ved DEAP-AP-IG
	PZ51a
	11-22-60
17. (1)	It was shown in problem 16 from results in
	recture that for a priver fixed value at n 2
	lecture that for a given fixed value of n, l has an upper limit of n-1. That I cannot be
	indefinitely large is easily seen from:
	0
	Une ~ n l+1 e - n/n , F, { l+1-n; 2l+2; 2n } Bimpler reason
	une il c III a i i car i m S Campler have
	with iFi defined as in (B) of problem 16. and the
	As la o it clearly approaches a constant as the
 	numerator and denominator of each term cantains
	equal powers of l. However the term net will make the
	function unbounded. at any rate, the selection rule for
	l states that leve and this conclusively shows
 	that for fixed n, I cannot be indefinetely large.
(7)	Eron a true (1) (1) ( 1)
(Z)	From equations (11) and (10) of problem 16, it is obvious
 	that; for E=0:
+++	$E = \frac{1}{n^2}$
	and our selection rule gives the possible values
 	of I for each n, VIZ.,
	l = x-1, x-2, x-3,, 0.
6	
(3)	In attempting to construct various eigenfunctions
	with the relations (9) of problem 16, we run into
	the paradox of eventually polating our selection rule on a by repeated application of Adri.
	rule on I by repeated application of Agen.
-	Therefore, in analogy with the harmonic oscillator case, we stipulate that the result of trying to raise
	we stipulate that the result of trying to raise
	the function un n-1 one more step in angular momentum must be necessarily zero.
 	angular momentum must be necessarily zero.
	That is:
	An Un, n-1 = 0
(4)	This yields a simple differential equation, when the proper substitutions are made in Ait:
	proper substitutions are maide in Ait:
	$\left(\frac{d}{dr} + \frac{1}{r} - \frac{n}{r}\right) M_{n,n-1} = 0$

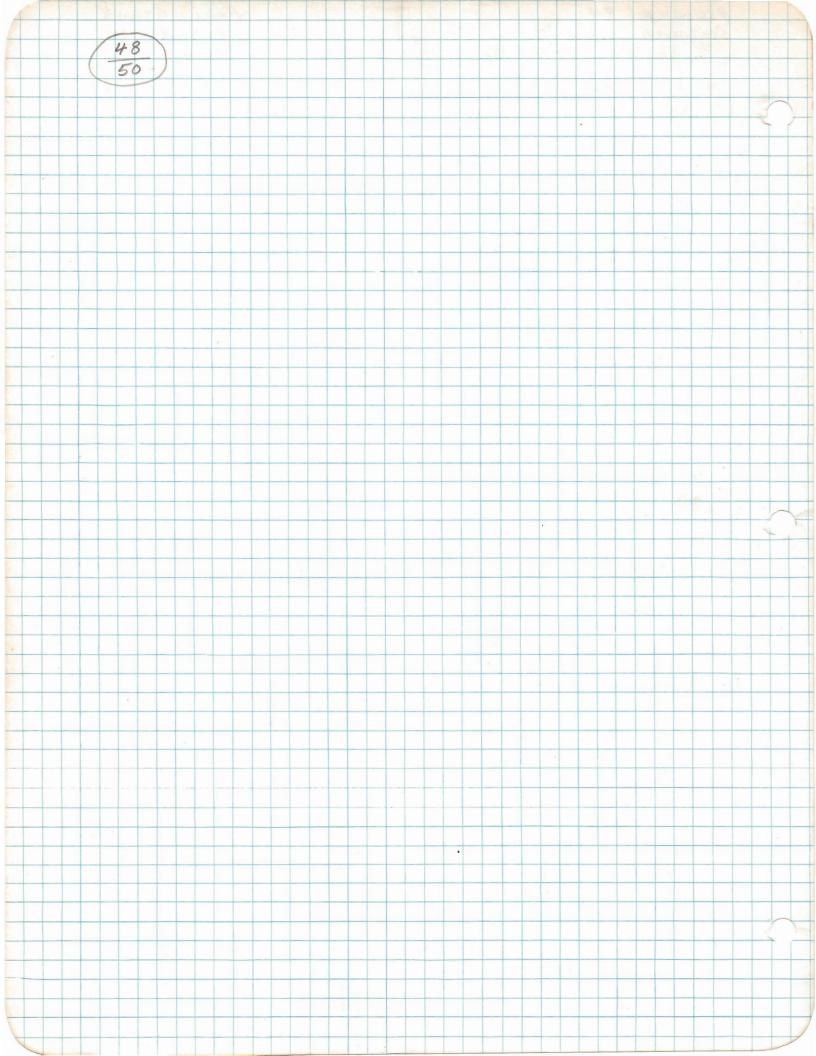
(10)			(9)			(8)	(7)	(6)			(5)
	J)JI	1	)								d
In		-	00			+		_	_	U	14
, 21			14			+		2		21.2	In,
-2	_	-	11,7			+	k	2		M-1	n-1
	· (	(z	-			+	n-1	10 r	, n, p	., 21.	
V	(	-		11 11	1	-		- 71			II
	2 n		d			-	t	na	11	1	4
	- 1		n				e b	21	=		(
-	) .		1	(		-	les	20			N
-	. (	-		-			s.	2	er		
	Zn		C			-			1)		-
)		-	(	-		-			nn		1
(2) N		-	(27			-					
-)~			2-1	-		-	0		+		dr
		-	1)2	-					la		
1/2	-1		r S	-		×		И		R	
(2:	>_		n				-	0			-
24 - 1			(n. 2 ² n					zaj		+	35
) //1		-1)	-1)	-				he	t	l	
			) e ⁻	-		-	ar	1.		nc	
Ę	22) 71-	_	20/1	-			-			2	
	the second se		ĸ	-		1		-			
		+	- 2	1 n -n/-		-					
	+	-	n	-				-			
N			я-1 (л	n		1		2			
1 (n	×	(2)	e 	n		1		(			
- 1)	1	).	21/1	e		n	(2)	21			
}	- 1		L	R/1		e	)21	)[			
r	)2		۲.	n		n/2	+1				
n (		2/14	ZN ZN			n			-		
2	2		e (71.		л			1			
r/n		)	20/5		n e			1			
			- }		- 1						
			d		1/2						
			2	-	. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						

ASSIGNMENT	#4 Paul Grant
Continued	DEAP-AP-16
	P 251a
	11-22-60
Problem 17	
Continued	
·	
(11) Now:	$\mathcal{U}n, n-3 = \mathcal{A}n-2  \mathcal{U}n, n-2$
Un, n-	$s = C \left[ \frac{n-2}{n-2} - \frac{1}{n-2} + \frac{1}{n-2} + \frac{1}{n-2} \left[ \frac{n-2}{n-2} - \frac{n}{n-2} + \frac{1}{n-2} + $
Mr, n-	$s = C \left[ \frac{n-2}{n} - \frac{1}{n} + 1$
(	
= C 2 (	$n-2)n^{n-2} - (n-2)n^{n-1} - n^{n-1} + n^n - n^{n-1} + n^n$
	$n(n-1)$ $n-2$ $n(n-1)(n-2)$ $n$ $n^2(n-1)$
	$(n-1)n^{n-2} - n^{n-1} = n/n$
+	n-1 $n-1$ $n-1$
= c \$	$(2n-3)n^{n-2} - 2(2n-3)n^{n-1} + 2n^n = 2n^n = 2n^n$
	$n(n-2)$ $n^2(n-2)$
	$\int dn = c^{2} \left( \int (2n-3)^{2} n^{2n-4} - 4(2n-3)^{2} n^{2n-3} + 4(2n-3) n^{2n-2} \right)$
(12) Un, n-3	$dn = c \qquad n(n-2) \qquad n(n-2)$
+	4 (2n-3) ² 2 ²ⁿ⁻² - 8 (2n-3) 2 ²ⁿ⁻¹ + 4 2 ²ⁿ 2 e ^{-2R/n} dr
	$\frac{4(2n-3)^2}{n^2(n-2)^2} - \frac{8(2n-3)}{n^3(n-2)^2} - \frac{2n-1}{n^4(n-2)^2} + \frac{4n^2n}{n^4(n-2)^2} \left( \frac{e^{-2n^2n}}{n^4(n-2)^2} \right)$
5/2	
$=$ $\left\{ (2n-1)^{2}\right\}$	$\frac{3}{(2n-4)!} - \frac{4(2n-3)^{2}(2n-3)!}{n(n-2)(2n-3)!} + \frac{4(2n-3)(2n-2)!}{n^{2}(n-2)!}$
(	$\left(\frac{2}{n}\right)^{2n-3}$ $\mathcal{M}\left(N-2\right)\left(\frac{2}{n}\right)^{2n-2}$ $\mathcal{M}^{2}\left(N-2\right)\left(\frac{2}{n}\right)^{2n-1}$
	->)2(2n-2)! _ B(2n-3)(2n-1)! + 4(2n)! C2
n2	$\frac{(n-z)^2}{(\frac{z}{n})^{2n-1}} = \frac{(cn-n)(n-n)(zn-n)}{(n-z)^2} + \frac{(cn-n)(zn-n)}{(\frac{z}{n})^{2n}} + \frac{(cn-n)(zn-n)}{(\frac{z}{n})^{2n}} + \frac{(cn-n)(zn-n)}{(\frac{z}{n})^{2n-1}} + (cn$
= (7)	$C^{2} \int (2n-3)^{2} (\frac{2}{n})^{4} - 4 (2n-3)^{2} (\frac{2}{n})^{3} + 4 (2n-3) (\frac{2}{n})^{2}$
- (22)	$\frac{C^{2}}{(2n)(2n-1)(2n-2)(2n-3)} - \frac{4(2n-3)^{2}(\frac{2}{n})^{3}}{n(n-2)(2n-1)(2n-2)} + \frac{4(2n-3)(\frac{2}{n})^{2}}{n^{2}(n-2)(2n)(2n-1)}$
	$(c_{M})(d_{M})(c_{M-2})(c_{M-2}) = M(M-c)(c_{M})(c_{M-1})(c_{M-1}) = M(M-c)(c_{M})(c_{M-1})$
	$\frac{(2n-3)^2}{(2n-2)^2} \left(\frac{2n}{2n}\right)^2 - \frac{8(2n-3)(\frac{2n}{2n})}{n^3(n-2)^2(2n)} + \frac{4}{n^4(n-2)^2} \right)$
~	$\frac{2(n-2)^2(2n)(2n-1)}{n^3(n-2)^2(2n)}$ $\frac{n^4(n-2)^2}{n^4(n-2)^2}$
= 12	$(2n-3)(2n)!$ 4 $\int (n-2)^2 - 2(2n-3)(n-2) + 2(n-2) + 2(2n-3) - 2(2n-1) + n(2n-1)$
the second se	
	$(2n-1)(n-2)^2 n^5 (\frac{2}{n})^{2n+1} (n-1)$

100			,	-				7	20	,	12			1		r									1											3				
	(13)		(12)		1	Ind	0	1700	4	(27	2)2	20	51	2 2	n+1	3	-	62	3	+ 2	0 %	1	162	e t	91	R2	-3	On	+	24		+4	n	3 -	- 10	N		-	_	
						('1	-1)	(61	-11	1-	61	n	(	и)		Ç			+	6 n	-	16-	22	+4	On	-	24	F.	+2	n ³	-	3 ~	2	+	n	3				
		-			1		0	2	4	12	20)	1						-					_										-			2		,		
					-	(7	1-1)	(2	7-1	)()	1-2	)2	n	+ (	22)	21+	1			-	1																100		-	
		_								1										-		_							5	×										
	(14)		1	In	n-	2	0	-	(>	1-1	) 1/z	(2	n-1	)'/2	6	1-2	) 7	2 (	2	n	1/2	· (2·	n-3	)	5	1	-		2	_	Л.	+		ZR	2			r.	20	A/m
					,				-					and the second second	the second se	-	-			2					2	-		7	n (n	-z)			N	2()	1-,2)	(27	-3)	)		
							~													-								_									-			-
				0		1				-												T			,			1			11					/	1			
		N	er	ifi	co	ctio	JU IV	en	0	+	2	le:	su c	$t_{v}$	s e	c	)s le	in H	3	0	eq	va.	TID	ns 1	120	81	0	f 	P	Vol	ble	ш	16	6	w	hic	h		_	-
						0														5		•				,														
	(15)		1	n.1	1-1		5		5	(2	n-	1) ]	7	12		1						n	e	- 1	In	, F	5	0	•	22	r .		22	2		-				
									6				*		51	(れ)	N+1	(2:	n-1)								2		9				K		,					
	*								L					12	2+	-	-	-		-	1	-								11						-				-
										11	-	2	-	(Z.		11.	11/2										_													
																			-	-	-														-				_	-
		_							~	P	-	12	-	(2	Contraction in which the	-	-	and in case of the local division in which the local division in t		11		-	A COMPANY OF THE OWNER	) ~	and in case of the local division of the loc	All and the													_	
			-									-		(2	n)	1]	1/2	+			+		£ (7	en)	-1	1/2									-	-				-
	1)							•					12	אן	+ 1/2			n		- /	rIn				,	2		/	1			1	,			/				
	(16)		<i>.</i>		1	In	, N	-1		16		5	(22	1	7'1	z	~	R	e	-			;	wh	ic	h	C	hea	ks		wi	th	-	09	va	tio	n	7).	_	-
												6			7																									
		-		_								-					-	+		-	-							-								-			_	-
	(17)		Ц	'n,	n-3	2	11			[	(22	-2	)!	]'/z		_	,	1		_	-	r	M-1	ē	n/n	, F		-	; ;	221	-2	;	2 sc n	3						
		-	_			_				1		-				Z	(2	() (	(2	n-3	3]:	,	-	-		-	-	-	_	1					-	-		-		
											(	2.)	ער	21				,									3	1 -	-	In	n -1)	24	2,	22	1	0	r/n			
										-											Zn)	ייךי	2				0			(1-	- 17		5							
																						+ 1/2																		
										1		n	(7	1-1				1]			-	-	-																	_
															1	-	(0)	. 7																						
	(18)		, '	,		Un	, 21	1-2					n	12	c	() (	221	2-1	) 1/2	. (	2/2	)~+	1/2		5	1	_	_	r	_	2	ñ	1-1	ē	n	n				-
												-						)!							1			7	(2)	-1)	)									
												-				-	-	-	-	+	-																			
									u	shi	ch	1	3	1	de	nt	1Co	al		to		ege	pa	tion	n	11	).													-
												-						-			-			-		-	-		-											
																																								)
E																						-																	_	

	$\frac{2n}{n(n-2)} + \frac{2n^2}{n^2(n-2)(2n-3)} + \frac{n^{-2}e^{-n/n}}{n^2(n-2)(2n-3)}$							
$= \left\{ 1 - \frac{2\lambda}{2\lambda} + \frac{2\lambda^2}{2\lambda^2} \right\}$	$= \left\{ 1 - \frac{2\Lambda}{n(n-2)} + \frac{2\Lambda^{2}}{n^{2}(n-2)(2n-3)} \right\}$ $= \left( (n-2) \left( \frac{2}{n} \right)^{n+1/2} - \frac{2}{n^{2}(n-2)(2n-3)} \right\}$	$(\gamma - z) (\frac{z}{z})^{n+1/2}$	$\frac{(\frac{2}{n})^{n+1/2}}{\left\{\begin{array}{c} \frac{2n}{n(n-2)} + \frac{2n^2}{n^2(n-2)(2n-3)}\right\}} n^{n-2} e^{-n/n}$	$\frac{3}{2n} + \frac{3}{2n} + \frac{2n^2}{n^2(n-2)(2n-3)} + \frac{2n^2}{n^2(n-2)(2n-3)}$	$\frac{(\frac{2}{\pi})^{n+1/2}}{\left(\frac{2}{\pi}\right)^{n+1/2}} = \frac{1}{2n^2} + \frac{2n^2}{n^2(n-2)(2n-3)} + \frac{n^2}{2n^2} = \frac{n^2}{n} + \frac{2n^2}{n^2(n-2)(2n-3)} + \frac{n^2}{2n^2} = \frac{n^2}{n} + \frac{n^2}{2n^2} + \frac{n^2}$	$\frac{2}{n} \frac{n+1/2}{n} = \frac{2n^2}{n^2(n-2)(2n-3)} \frac{n^{-2}e^{-n/n}}{n^2(n-2)(2n-3)}$	$\frac{1}{2} \frac{2n}{n(n-2)} + \frac{2n^2}{n^2(n-2)(2n-3)} + \frac{2n^2}{n^2(n-2)(2n-3)}$	$\frac{2}{\left(\frac{2}{m}\right)}m+\frac{1}{2}$



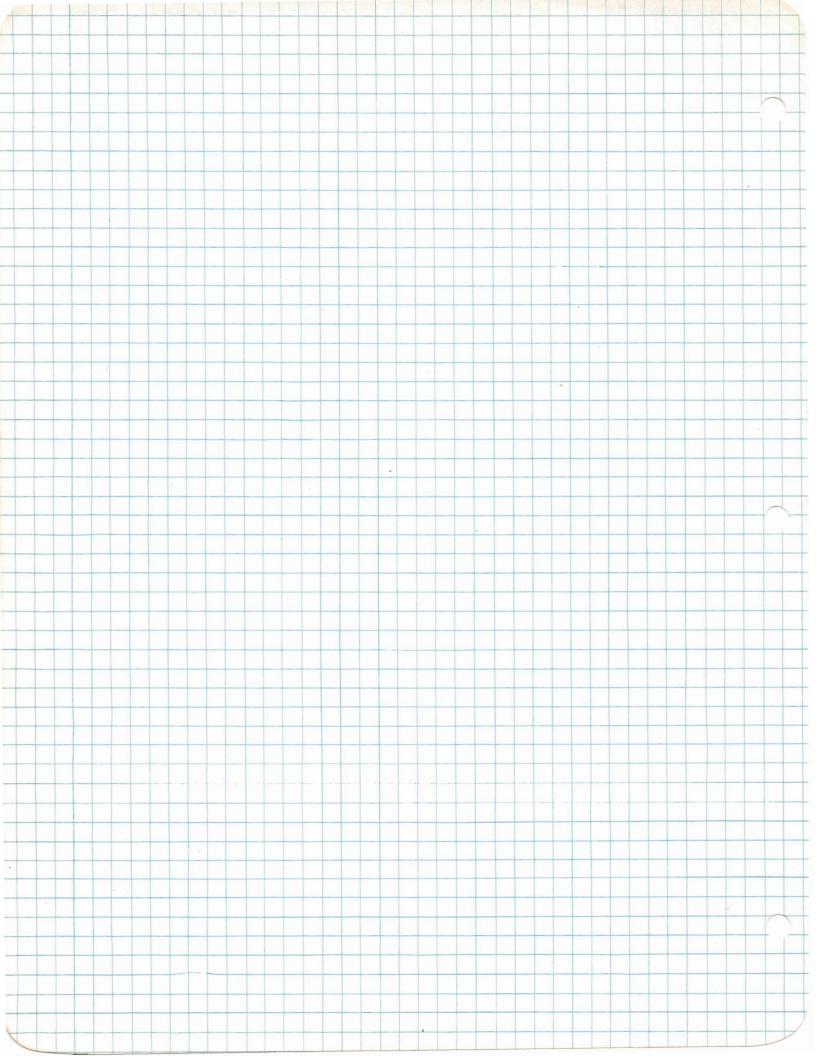

Continued $P \in R^{n} - R^{n} + 16$ $P \geq R^{n} - R^{n} + 16$ $P \geq R^{n} = R^{n} + 16$ $P \geq R^{n} = R^{n} + 16$ $P \geq R^{n} = R^{n} + 16$ $R^{n} = R^{n} + 16$	$P \ge t_{a} \qquad \qquad$	ASSIGNY	ient #4	Paul Grant
(R = 0)  In  this problem, we wish to find essentially, Reference (a) = wish to find essentially, Reference (a) = (24)3+1 e-TT'2 [1(1+1+1+T)], aA e-ka F(1+1-1); it; it; (2) It is clear that be cause of aB, it is very important that the humit be taken on a first and there a. Physically, this means we first choose our state (A=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let the coordinate of the wave (a=0) and then let	(4) In this problem, we wish to find essentially, $R_{0}(0) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) = \lim_{\substack{n \to 0 \\ n \to 0}} R_{0}(n) $	Continu	ed	DEAP-AP-1G
18. (1) In this problem, we wish to find essentially, Rox (b) = dim Ret (A) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2$	8. 0) In this problem, we wish to find escentially, Rox (0) = lim, Rox (A) where Roa(A) = (24) ²⁺¹ e ^{-#} $\pi^{2} [\Gamma(2+1+4\pi)]$ A e ^{-kha} $F(2+1-\pi)$ ; 2142, 214A (22) It is clear that be cause of $A^{2}$ , it is very important that the limit be taken of $A^{2}$ , it is very important that the limit be taken of $A^{2}$ , it is very important that the limit be taken of $A^{2}$ , it is very important that the limit be taken of $A^{2}$ , it is very important that the limit is means we first and then A. Physically, this means we first choose our state (2-0) and then let the coardinate of the wave function venish. Taking the limit in this way, we obtain: $R_{2}k(0) = 2k e^{-\pi \omega/k} [\Gamma(1+i\omega)] F(1-i\omega; 2, 0)$ $= 2k e^{-\pi \omega/k} [\Gamma(1+i\omega)]$ $Since F(1-i\omega; 2; 0) = 1$ (3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem (see Copson, $R, R, 22$ ): $\neq \Gamma(k) = \Gamma(k+1)$ ; $\Gamma(2) \Gamma(1-k) = -\frac{\pi}{sim \pi k}$ $Iet k = \pi (2+1); \Gamma(2) = (1-i\omega);Iet (k = \pi (2+1)) = TIet (k = \pi (2+1)) = TR(1-i\omega) =$			P251a
18. (1) In this problem, we wish to find essentially, Rox (b) = dim Ret (A) $\frac{1}{2} + \frac{1}{2} + \frac{1}{2$	8. (1) In this problem, we wish to find escentially, Rox (0) = lim, Rox (A) distance in the second secon			11-23-60
Roy (0) = $\frac{1}{2\pi^{2}}$ where $R_{0,k}(x) = \frac{(2k)^{k+1}}{(2\pi)^{1/2}} e^{-\pi \frac{1}{2}k} \left[ \Gamma(k+1+i\pi) \right] x^{k} e^{-ikx} F(k+1-i\pi) (k+2; 2ik)$ (2) If is clear that be cause of $R^{k}$ , it is very important that the limit be taken on $k$ first and then $\lambda$ . Physically, this means we first choose our state (k=0) and then let the coordinate of the wave forstime vanish. Taking the limit in this way, we obtain: $R_{0,k}(0) = 2k e^{-\pi \frac{1}{2}k} \left[ \Gamma(1+i\pi) \right] F(1-i\pi); 2, 0)$ $(2\pi)^{1/k}$ (3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem (see Copson, $\mathcal{P}(22)$ : $\neq \Gamma(2) = \Gamma(2+1)$ ; $\pi(2) \Gamma(1-2) = \frac{\pi}{2\pi \frac{1}{2}}$ $Iet \Xi \to i\pi^{2}: IT(i\pi) = \frac{\pi}{2\pi \frac{1}{2}}(4) Dividing: \frac{\Gamma(1-i\pi)}{2\pi \frac{1}{2}} = \frac{\pi}{2\pi \frac{1}{2}}IT(1-i\pi) \Gamma(1+i\pi) = \frac{\pi}{2\pi \frac{1}{2}}$	$R_{0x}(b) = \lim_{n \to \infty \\ n \to$			
Roy (0) = $\frac{1}{2\pi^{2}}$ where $R_{0,k}(x) = \frac{(2k)^{k+1}}{(2\pi)^{1/2}} e^{-\pi \frac{1}{2}k} \left[ \Gamma(k+1+i\pi) \right] x^{k} e^{-ikx} F(k+1-i\pi) (k+2; 2ik)$ (2) If is clear that be cause of $R^{k}$ , it is very important that the limit be taken on $k$ first and then $\lambda$ . Physically, this means we first choose our state (k=0) and then let the coordinate of the wave forstime vanish. Taking the limit in this way, we obtain: $R_{0,k}(0) = 2k e^{-\pi \frac{1}{2}k} \left[ \Gamma(1+i\pi) \right] F(1-i\pi); 2, 0)$ $(2\pi)^{1/k}$ (3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem (see Copson, $\mathcal{P}(22)$ : $\neq \Gamma(2) = \Gamma(2+1)$ ; $\pi(2) \Gamma(1-2) = \frac{\pi}{2\pi \frac{1}{2}}$ $Iet \Xi \to i\pi^{2}: IT(i\pi) = \frac{\pi}{2\pi \frac{1}{2}}(4) Dividing: \frac{\Gamma(1-i\pi)}{2\pi \frac{1}{2}} = \frac{\pi}{2\pi \frac{1}{2}}IT(1-i\pi) \Gamma(1+i\pi) = \frac{\pi}{2\pi \frac{1}{2}}$	$R_{0x}(b) = \lim_{n \to \infty \\ n \to$			
Roy (0) = $\frac{1}{2\pi^{2}}$ where $R_{0,k}(x) = \frac{(2k)^{k+1}}{(2\pi)^{1/2}} e^{-\pi \frac{1}{2}k} \left[ \Gamma(k+1+i\pi) \right] x^{k} e^{-ikx} F(k+1-i\pi) (k+2; 2ik)$ (2) If is clear that be cause of $R^{k}$ , it is very important that the limit be taken on $k$ first and then $\lambda$ . Physically, this means we first choose our state (k=0) and then let the coordinate of the wave forstime vanish. Taking the limit in this way, we obtain: $R_{0,k}(0) = 2k e^{-\pi \frac{1}{2}k} \left[ \Gamma(1+i\pi) \right] F(1-i\pi); 2, 0)$ $(2\pi)^{1/k}$ (3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem (see Copson, $\mathcal{P}(22)$ : $\neq \Gamma(2) = \Gamma(2+1)$ ; $\pi(2) \Gamma(1-2) = \frac{\pi}{2\pi \frac{1}{2}}$ $Iet \Xi \to i\pi^{2}: IT(i\pi) = \frac{\pi}{2\pi \frac{1}{2}}(4) Dividing: \frac{\Gamma(1-i\pi)}{2\pi \frac{1}{2}} = \frac{\pi}{2\pi \frac{1}{2}}IT(1-i\pi) \Gamma(1+i\pi) = \frac{\pi}{2\pi \frac{1}{2}}$	$R_{0x}(b) = \lim_{n \to \infty \\ n \to$			
$R_{0,k}(0) = \frac{1}{2\pi^{n}} R_{0,k}(\Lambda)$ $\frac{1}{2\pi^{n}} e^{-\frac{\pi}{2\pi^{n}}} \left[ \frac{\Gamma(l+1+i\pi)}{\Gamma(l+1+i\pi)} \right] \pi^{k} e^{-ik\pi} F(l+1-i\pi) \frac{1}{2} \frac{1}{2\pi^{n}} e^{-ik\pi} F(l+1-i\pi) \frac{1}{2} \frac{1}{2\pi^{n}} e^{-ik\pi} F(l+1-i\pi) \frac{1}{2} \frac{1}{2\pi^{n}} \frac{1}{2\pi^{n}} e^{-ik\pi} F(l+1-i\pi) \frac{1}{2\pi^{n}} \frac{1}{$	$R_{0x}(b) = \lim_{x \to a} R_{0x}(h)$ $\frac{1}{x \to a}$ where $R_{0x}(h) = (2\pi)^{x+1} e^{-\pi \frac{\pi}{2}/2} \left[ \Gamma(2+1+x) \right] x^{2} e^{-k\pi} \frac{\pi}{2} \left[ 2+1-x \right] \frac{1}{2} (2\pi)^{1/2} (2\pi)^{1/2} (2\pi)^{1/2} (2\pi)^{1/2} e^{-k\pi} \frac{\pi}{2} \left[ 2+1-x \right] \frac{1}{2} (2\pi)^{1/2} (2\pi)^{1/2} (2\pi)^{1/2} e^{-k\pi} \frac{\pi}{2} \left[ 2+1-x \right] \frac{1}{2} (2\pi)^{1/2} (2\pi)^{1/2} (2\pi)^{1/2} (2\pi)^{1/2} (2\pi)^{1/2} \frac{1}{2} \frac{1}{2} (2\pi)^{1/2} \frac{1}{2} \frac$	10 (1)	T this will be a l	
where $R_{ab}(x) = \frac{(2k)^{k+1}}{(2k)^{k+1}} e^{-\pi x/2} \left[ \Gamma(l+1+ix) \right] x^{k} e^{-xkx} F(l+1-ix; l+2; l+k) } \frac{(2\pi)^{1/2}}{(2\pi)^{1/2}} \frac{(2k+1)!}{(2\pi)^{1/2}} x^{k} e^{-xkx} F(l+1-ix; l+2; l+k)} \frac{(2\pi)^{1/2}}{(2\pi)^{1/2}} (2\pi$	where $Re_{k}(x) = \frac{(2k)^{k+1}}{(2k)^{k+1}} e^{-\pi \frac{\pi}{2}/k} \left[ \Gamma(l+1+i\nu) \right] x^{k} e^{-ikkx} F(l+1-i\nu) ilk2; 2ik,$ (2) It is clear that be cause of $R^{k}$ , it is very important that the limit be taken on $l$ first and there $n$ . Physically, this means we first choose our state (l=0) and then let the coordinate of the ware construction vanish. Taking the limit in this way, we obtain: $R_{0} = 2k e^{-\pi \frac{\pi}{2}/k} \left[ \Gamma(1+i\nu) \right] = \left[ (1-i\nu); 2, 0 \right]$ (3) We now consider the well - known relations between $\Gamma$ functions, derived from Ealer's limit Theorem (see Copson, $\mathcal{P}(22)$ : $\mathcal{P}(k) = \Gamma(k+1), \Gamma(k) = \Gamma(k+1)$ $P(k) = \Gamma(k+1), \Gamma(k) = \frac{\pi}{k}$ (4) Dividing: $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ (4) Dividing: $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ $\Gamma(1+i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$	10. (1	In This problem, we wish to find	essentially:
where $R_{ab}(x) = \frac{(2k)^{k+1}}{(2k)^{k+1}} e^{-\pi x/2} \left[ \Gamma(l+1+ix) \right] x^{k} e^{-xkx} F(l+1-ix; l+2; l+k) } \frac{(2\pi)^{1/2}}{(2\pi)^{1/2}} \frac{(2k+1)!}{(2\pi)^{1/2}} x^{k} e^{-xkx} F(l+1-ix; l+2; l+k)} \frac{(2\pi)^{1/2}}{(2\pi)^{1/2}} (2\pi$	where $Re_{k}(x) = \frac{(2k)^{k+1}}{(2k)^{k+1}} e^{-\pi \frac{\pi}{2}/k} \left[ \Gamma(l+1+i\nu) \right] x^{k} e^{-ikkx} F(l+1-i\nu) ilk2; 2ik,$ (2) It is clear that be cause of $R^{k}$ , it is very important that the limit be taken on $l$ first and there $n$ . Physically, this means we first choose our state (l=0) and then let the coordinate of the ware construction vanish. Taking the limit in this way, we obtain: $R_{0} = 2k e^{-\pi \frac{\pi}{2}/k} \left[ \Gamma(1+i\nu) \right] = \left[ (1-i\nu); 2, 0 \right]$ (3) We now consider the well - known relations between $\Gamma$ functions, derived from Ealer's limit Theorem (see Copson, $\mathcal{P}(22)$ : $\mathcal{P}(k) = \Gamma(k+1), \Gamma(k) = \Gamma(k+1)$ $P(k) = \Gamma(k+1), \Gamma(k) = \frac{\pi}{k}$ (4) Dividing: $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ (4) Dividing: $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ $\Gamma(1+i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$			
where $R_{ab}(x) = \frac{(2k)^{k+1}}{(2k)^{k+1}} e^{-\pi x/2} \left[ \Gamma(l+1+ix) \right] x^{k} e^{-xkx} F(l+1-ix; l+2; l+k) } \frac{(2\pi)^{1/2}}{(2\pi)^{1/2}} \frac{(2k+1)!}{(2\pi)^{1/2}} x^{k} e^{-xkx} F(l+1-ix; l+2; l+k)} \frac{(2\pi)^{1/2}}{(2\pi)^{1/2}} (2\pi$	where $Re_{k}(x) = \frac{(2k)^{k+1}}{(2k)^{k+1}} e^{-\pi \frac{\pi}{2}/k} \left[ \Gamma(l+1+i\nu) \right] x^{k} e^{-ikkx} F(l+1-i\nu) ilk2; 2ik,$ (2) It is clear that be cause of $R^{k}$ , it is very important that the limit be taken on $l$ first and there $n$ . Physically, this means we first choose our state (l=0) and then let the coordinate of the ware construction vanish. Taking the limit in this way, we obtain: $R_{0} = 2k e^{-\pi \frac{\pi}{2}/k} \left[ \Gamma(1+i\nu) \right] = \left[ (1-i\nu); 2, 0 \right]$ (3) We now consider the well - known relations between $\Gamma$ functions, derived from Ealer's limit Theorem (see Copson, $\mathcal{P}(22)$ : $\mathcal{P}(k) = \Gamma(k+1), \Gamma(k) = \Gamma(k+1)$ $P(k) = \Gamma(k+1), \Gamma(k) = \frac{\pi}{k}$ (4) Dividing: $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ (4) Dividing: $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ $\Gamma(1+i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$ $\Gamma(1-i\nu) \Gamma(1+i\nu) = \frac{\pi}{k}$		Rok (0) I Tim Kak (1)	
(21) ^{1/2} (22+1)! (2) It is clear that be cause of $n^2$ , it is very important that the limit be taken on a first and then $\Lambda$ . Physically, this means we first choose our state (2-0) and then $I \in t$ the coordinate of the wave Curretion junish. Taking the limit in this way, we abtain: $R_{0,k}(0) = 2k e^{-\pi \omega/k} \left[ \Gamma(1+\alpha \omega) \right] F(1-\alpha \upsilon; 2, 0)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/k} \left[ \Gamma(1+\alpha \omega) \right] F(1-\alpha \upsilon; 2, 0)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/k} \left[ \Gamma(1+\alpha \omega) \right]$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ (3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem $(see \ Copser, R, 9, 22):$ $\chi T(2) = \Gamma(2+1)$ , $\pi(2) \Gamma(1-2) = \frac{\pi}{sin \pi 2}$ $let \neq \rightarrow \alpha \omega: \mu \Gamma(\alpha \omega) = \Gamma(\alpha \upsilon + 1)$ $\Gamma(4\omega) \Gamma(1-\alpha \omega) = \frac{\pi}{\alpha \sin k \pi \nu}$ $(4)$ Dividing: $\frac{\Gamma(1+\alpha \nu)}{\alpha \sin k \pi \nu} = \Gamma(1+\alpha \nu)^2 = \frac{\pi}{sin k \pi \nu}$	(2) It is clear that be cause of $R^2$ , it is very important that the limit be taken on a first and then $A$ . Physically, this means we first choose our state (L=D) and then $Ict$ the coordinate of the wave Constinut jamish. Taking the limit in this way, we obtain: $R_{0} = 2k e^{-\pi \omega/z} \left[ \Gamma(1+iz) \right] = \Gamma(1-iU; z, o)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/z} \left[ \Gamma(1+iz) \right]$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/z} \left[ \Gamma(1+iz) \right]$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$			
(21) ^{1/2} (22+1)! (2) It is clear that be cause of $n^2$ , it is very important that the limit be taken on a first and then $\Lambda$ . Physically, this means we first choose our state (2-0) and then $I \in t$ the coordinate of the wave Curretion junish. Taking the limit in this way, we abtain: $R_{0,k}(0) = 2k e^{-\pi \omega/k} \left[ \Gamma(1+\alpha \omega) \right] F(1-\alpha \upsilon; 2, 0)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/k} \left[ \Gamma(1+\alpha \omega) \right] F(1-\alpha \upsilon; 2, 0)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/k} \left[ \Gamma(1+\alpha \omega) \right]$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ (3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem $(see \ Copser, R, 9, 22):$ $\chi T(2) = \Gamma(2+1)$ , $\pi(2) \Gamma(1-2) = \frac{\pi}{sin \pi 2}$ $let \neq \rightarrow \alpha \omega: \mu \Gamma(\alpha \omega) = \Gamma(\alpha \upsilon + 1)$ $\Gamma(4\omega) \Gamma(1-\alpha \omega) = \frac{\pi}{\alpha \sin k \pi \nu}$ $(4)$ Dividing: $\frac{\Gamma(1+\alpha \nu)}{\alpha \sin k \pi \nu} = \Gamma(1+\alpha \nu)^2 = \frac{\pi}{sin k \pi \nu}$	(2) It is clear that be cause of $R^2$ , it is very important that the limit be taken on a first and then $A$ . Physically, this means we first choose our state (L=D) and then $Ict$ the coordinate of the wave Constinut jamish. Taking the limit in this way, we obtain: $R_{0} = 2k e^{-\pi \omega/z} \left[ \Gamma(1+iz) \right] = \Gamma(1-iU; z, o)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/z} \left[ \Gamma(1+iz) \right]$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/z} \left[ \Gamma(1+iz) \right]$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$			
(21) ^{1/2} (22+1)! (2) It is clear that be cause of $n^2$ , it is very important that the limit be taken on a first and then $\Lambda$ . Physically, this means we first choose our state (2-0) and then $I \in t$ the coordinate of the wave Curretion junish. Taking the limit in this way, we abtain: $R_{0,k}(0) = 2k e^{-\pi \omega/k} \left[ \Gamma(1+\alpha \omega) \right] F(1-\alpha \upsilon; 2, 0)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/k} \left[ \Gamma(1+\alpha \omega) \right] F(1-\alpha \upsilon; 2, 0)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/k} \left[ \Gamma(1+\alpha \omega) \right]$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ (3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem $(see \ Copser, R, 9, 22):$ $\chi T(2) = \Gamma(2+1)$ , $\pi(2) \Gamma(1-2) = \frac{\pi}{sin \pi 2}$ $let \neq \rightarrow \alpha \omega: \mu \Gamma(\alpha \omega) = \Gamma(\alpha \upsilon + 1)$ $\Gamma(4\omega) \Gamma(1-\alpha \omega) = \frac{\pi}{\alpha \sin k \pi \nu}$ $(4)$ Dividing: $\frac{\Gamma(1+\alpha \nu)}{\alpha \sin k \pi \nu} = \Gamma(1+\alpha \nu)^2 = \frac{\pi}{sin k \pi \nu}$	(2) It is clear that be cause of $R^2$ , it is very important that the limit be taken on a first and then $A$ . Physically, this means we first choose our state (L=D) and then $Ict$ the coordinate of the wave Constinut jamish. Taking the limit in this way, we obtain: $R_{0} = 2k e^{-\pi \omega/z} \left[ \Gamma(1+iz) \right] = \Gamma(1-iU; z, o)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/z} \left[ \Gamma(1+iz) \right]$ $(2\pi)^{1/2}$ $= 2k e^{-\pi \omega/z} \left[ \Gamma(1+iz) \right]$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$		where $R_{ek}(n) = (2k)^{+} e^{-(2k)^{+}} P^{-} \Gamma(l+1) + $	12) Nº e F(2+1-10;22+2. Zik,
(2) It is clear that be cause of $R^2$ , it is very important that the limit be taken on a first and then $\lambda$ . Physically, this means we first choose our state (R=0) and then $R$ the coordinate of the wave function iamish. Taking the limit in this way, we obtain: $R_{3k}(0) = 2k e^{-\pi v/z} \left[ \Gamma(1+xv) \right] F(1-xv; z, 0)$ $= 2k e^{-\pi v/z} \left[ \Gamma(1+xv) \right]$ since F(1-xv; z; 0) = 1 (3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem (see Copson, R, 9, 22): $= \pi (z) = \Gamma(z+1)$ , $\pi(z) \Gamma(1-z) = -\pi$ $R = \pi v/z = \Gamma(xv+1)$ $\Gamma(xv) \Gamma(1-xv) = \pi$ $R = \pi v/z = \pi r(xv)$	(2) It is clear that be cause of $R^2$ , it is very important that the limit be taken on a first and then $R$ . Physically, this powers we first choose our state (2 = 0) and then let the coordinate of the wave function vanish. Taking the limit in this way, we obtain: $R_{0k}(0) = 2k e^{-\pi \omega/z} [\Gamma(1+xz)] F(1-xz); Z, 0)$ $(2\pi)'^{12}$ $= 2k e^{-\pi \omega/z} [\Gamma(1+xz)]$ $(2\pi)'^{12}$ $(2\pi)'^{12}$ $(2\pi)'^{12}$ $(2\pi)'^{12}$ $(3) We now consider the well - known relations between \Gamma functions derived from Euler's limit Theorem(see Copson, P, 2Z):Z [T(Z) = \Gamma(Z+1), \Gamma(Z) \Gamma(1-Z) = T(2\pi) \Gamma(1-xz) = T(4) Dividing: \Gamma(1-xz) = TAz = x sink Tz \Gamma(xz+1)\Gamma(1-xz) \Gamma(1+xz) = T(4) Dividing: \Gamma(1+xz) = \Gamma(1+xz)$		(21) 1/2 (20+1) 1	
that the limit be taken on & first and then A. Physically, this means we first choose our state (leo) and then let the coordinate of the wave Gunction vanish. Taking the limit in this way, we obtain: Rok (o) = $2k e^{-\pi v/r} [\Gamma(1+xv)] F(1-xv; z, o)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi v/r} [\Gamma(1+xv)]$ $= 2k e^{-\pi v/r} [\Gamma(1+xv)]$ $(2\pi)^{1/2}$ $= 2k e^{-\pi v/r} [\Gamma(1+xv)]$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1$	that the limit be taken on 2 first and then 1. Physically, this means we first choose our state (200) and then lef the coordinate of the wave Conction jamish. Taking the limit in this way, we obtain: Rok (0) = 2k e - $\pi v/z$ [ $\Gamma(1+xv)$ ] $F(1-xv; z, o)$ ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] $F(1-xv; z, o)$ ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] = $\pi v$ (see copson, $\Re 9.22$ ): : $Z \Gamma(2) = \Gamma(2+1)$ ; $\Gamma(2) \Gamma(1-2) = \frac{\pi}{sim \pi z}$ Let $z \to xv$ : $x \Gamma(xv) = \Gamma(xv+1)$ = $\frac{1}{x^{2}}$ [ $\Gamma(1-xv)$ ] = $\frac{\pi}{x^{2}}$ ( $H$ ) Dividing: $\frac{\Gamma(1-xv)}{x^{2}} = \frac{\pi}{x^{2}}$ = $\pi v$ $x sink \pi v$ $\Gamma(2v+1)$ = $\frac{\pi v}{sink \pi v}$ $\Gamma(1-xv) \Pi(1+xv) = \prod (1+xv)$ = $\frac{\pi v}{sink \pi v}$			
that the limit be taken on & first and then A. Physically, this means we first choose our state (leo) and then let the coordinate of the wave Gunction vanish. Taking the limit in this way, we obtain: Rok (o) = $2k e^{-\pi v/r} [\Gamma(1+xv)] F(1-xv; z, o)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi v/r} [\Gamma(1+xv)]$ $= 2k e^{-\pi v/r} [\Gamma(1+xv)]$ $(2\pi)^{1/2}$ $= 2k e^{-\pi v/r} [\Gamma(1+xv)]$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1$	that the limit be taken on 2 first and then 1. Physically, this means we first choose our state (200) and then lef the coordinate of the wave Conction jamish. Taking the limit in this way, we obtain: Rok (0) = 2k e - $\pi v/z$ [ $\Gamma(1+xv)$ ] $F(1-xv; z, o)$ ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] $F(1-xv; z, o)$ ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] ( $2\pi$ ) ^{1/2} = $2k e^{-\pi v/z}$ [ $\Gamma(1+xv)$ ] = $\pi v$ (see copson, $\Re 9.22$ ): : $Z \Gamma(2) = \Gamma(2+1)$ ; $\Gamma(2) \Gamma(1-2) = \frac{\pi}{sim \pi z}$ Let $z \to xv$ : $x \Gamma(xv) = \Gamma(xv+1)$ = $\frac{1}{x^{2}}$ [ $\Gamma(1-xv)$ ] = $\frac{\pi}{x^{2}}$ ( $H$ ) Dividing: $\frac{\Gamma(1-xv)}{x^{2}} = \frac{\pi}{x^{2}}$ = $\pi v$ $x sink \pi v$ $\Gamma(2v+1)$ = $\frac{\pi v}{sink \pi v}$ $\Gamma(1-xv) \Pi(1+xv) = \prod (1+xv)$ = $\frac{\pi v}{sink \pi v}$			
that the limit be taken on & first and then A. Physically, this means we first choose our state (leo) and then let the coordinate of the wave Gunction vanish. Taking the limit in this way, we obtain: Rok (o) = $2k e^{-\pi v/r} [\Gamma(1+xv)] F(1-xv; z, o)$ $(2\pi)^{1/2}$ $= 2k e^{-\pi v/r} [\Gamma(1+xv)]$ $= 2k e^{-\pi v/r} [\Gamma(1+xv)]$ $(2\pi)^{1/2}$ $= 2k e^{-\pi v/r} [\Gamma(1+xv)]$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $(2\pi)^{1$	that the limit be taken on 2 first and then 1. Physically, this means we first choose our state (202) and then lef the coordinate of the wave Conction janish. Taking the limit in this way, we obtain: Rok (o) = 2k e - $\pi o/2$ [ $(1+iv)$ ] $F(1-iv); 2, 0$ ) (2 $\pi$ ) ^{1/2} = $2k e - \pi v/2$ [ $\Gamma(1+iv)$ ] = $2k e - \pi v/2$ [ $\Gamma(1+iv)$ ] ( $2\pi$ ) ^{1/2} ( $2\pi$ ) ^{1/2}	(2)	It is place that harause at al	it is very important.
$\begin{array}{c} Physically, this means we first choose our state (l=0) and then let the coordinate of the wave function lamish. Taking the limit in this way, we obtain: \begin{array}{c} Rok(o) = 2k e^{-\pi o/z} \left[ \Gamma(1+iz) \right]  F(1-iz); Z, o) \\ \hline \\ Rok(o) = 2k e^{-\pi o/z} \left[ \Gamma(1+iz) \right] \\ = 2k e^{-\pi o/z} \left[ \Gamma(1+iz) \right] \\ \hline \\ (2\pi)^{1/z} \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	Physically, this metans we first choose our state (leo) and then let the coordinate of the wave Genetion jamish. Taking the limit in this way, we obtain: Rox(a) = $2 \neq e^{-\pi \omega/z} [\Gamma(1+z)]$ F(1-zu; Z, a). $Rox(a) = 2 \neq e^{-\pi \omega/z} [\Gamma(1+z)]$ $= 2 \neq e^{-\pi \omega/z} [\Gamma(1+z)]$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{1/z}$ $(2\pi)^{$		that the ) I have been a	n is very important
$(l=0) and then let the coordinate of the wave Construction ranish. Taking the limit in this way, we obtain: R_{0,k}(o) = 2k e^{-\pi v/z} \left[ \Gamma(1+iv) \right] = \Gamma(1-iv); z, o) = 2k e^{-\pi v/z} \left[ \Gamma(1+iv) \right] = 2k e^{-\pi v/z} \left[ \Gamma(1+iv) \right] (2\pi)'^{iz} ($	$(l=0) and then let the coordinate of the wave function vanish. Tekms the limit in this way, we obtain: R_{0,k}(o) = 2k e^{-\pi v/z} \left[ \Gamma(1+iz) \right] F(1-iz); z, o) (2\pi)'^{1/2} = 2k e^{-\pi z/z} \left[ \Gamma(1+iz) \right] (2\pi)'^{1/2} (2\pi)'^{1/2} (2\pi)'^{1/2} (2\pi)'^{1/2} (2\pi)'^{1/2} (3) We now consider the well - known relations between \Gamma \text{ functions derived from Euler's limit Theorem} (see Copson, R, Q, Z2); R = \Gamma(z+1), \Gamma(z) \Gamma(1-z) = T \int R(z) = \Gamma(z+1), \Gamma(z) \Gamma(1-z) = T R = ink Tz (4) Dividing; \Gamma(1-iz) = T R = I + ink Tz R = I + ink Tz R = I + ink Tz$		Plan The mill be taken on & f	Irsi ana Then R.
Curve tion vanish. Taking the limit in this way, we obtain: $R_{0} \ge (0) = 2k e^{-\pi v/2} \left[ \Gamma(1+xv) \right] = F(1-xv; z, 0)$ $(2\pi)^{1/2}$ $= z = e^{-\pi v/2} \left[ \Gamma(1+xv) \right]$ $(2\pi)^{1/2}$ $Since F(1-xv; z; 0) = 1$ $(3) We now consider the well - known relations between \Gamma = functions derived from Euler's limit Theorem (see Copson, R 9.22): = \Gamma(z+1) = \Gamma(2+1) = \frac{\pi}{sinh} R = r(z) = \Gamma(2+1) = \pi (zv+1) \Gamma(1-xv) = \pi (zv+1) = \pi (zv+1) = \pi (zv+1) = \pi (zv+1) = \pi R = r(zv+1) = \pi$	Gunction jamish. Taking the limit in this way, we obtain: $R_{0} \neq (0) = 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]  F(1-iv); z, 0)$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $(2\pi)^{1/z}$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $(2\pi)^{1/z}$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $(2\pi)^{1/z}$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $(2\pi)^{1/z}$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $(2\pi)^{1/z}$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $(2\pi)^{1/z}$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $(2\pi)^{1/z}$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $= 2 \neq e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $= 1 \qquad $		Physically, this means we first	choose our state
we obtain: $R_{0} \neq (0) = 2k e^{-\pi v/z} \left[ \Gamma(1+iz) \right] = F(1-iv; z, 0)$ $I(2\pi)^{1/2}$ $= 2k e^{-\pi v/z} \left[ \Gamma(1+iz) \right]$ $(2\pi)^{1/2}$ $(3)^{1/2}$ $(5ee Copson, \mathcal{P}(22)$ $(2\pi)^{1/2}$ $(1+2\pi)^{1/2}$	we obtain: $R_{0,k}(0) = 2k e^{-\pi v/z} \left[ \Gamma(1+iv) \right] = F(1-iv; z, 0)$ $= 2k e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $= 2k e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $(2\pi)^{1/z}$ $= 2k e^{-\pi v/z} \left[ \Gamma(1+iv) \right]$ $= 1$ $(3) We now consider the well - known relations between$ $\Gamma functions derived from Euler's limit Theorem (see Copson, \mathcal{P}, 2z): = 1 (see Copson, \mathcal{P}, 2z): = 1 \int \Gamma(z) = \Gamma(z+1) = \frac{\pi}{sink\pi p} (4) Dividing: \frac{\Gamma(1-iv)}{iv} = \frac{\pi}{iv} = 1 (1+iv) = \Gamma(1+iv) = \frac{\pi}{iv} = 1 (1+iv) = \Gamma(1+iv) = \frac{\pi}{iv}$		(2=0) and then let the coor	dinate of the wave
$R_{0} = 2k e^{-\pi v/2} \left[ \Gamma(1+iv) \right] = \pi$ $R_{0} = 2k e^{-\pi v/2} \left[ \Gamma(1+iv) \right] = \pi$ $= 2k e^{-\pi v/2} \left[ \Gamma(1+iv) \right]$ $= 2k e^{-\pi v/2} \left[ \Gamma(1+iv) \right]$ $= (2\pi)^{1/2}$ $= (1-iv)^{1/2}$ $= (2\pi)^{1/2}$ $= (1-iv)^{1/2}$	$R_{0} \geq (0) = 2k e^{-\pi u/2} \left[\Gamma(1+z)\right] = F(1-zv; z, 0)$ $= 2k e^{-\pi v/2} \left[\Gamma(1+zv)\right]$ $= 2k e^{-\pi v/2} \left[\Gamma(1+zv)\right]$ $= (2\pi)^{1/2}$ $= (1-zv); z; 0) = 1$ $= (2\pi)^{1/2}$ $= (2\pi)^{1/2}$ $= (1-zv); z; 0) = 1$ $= (2\pi)^{1/2}$ $= (2\pi)^{$			it in this way,
$(2\pi)^{1/2}$ $= 2 k e^{-\pi z/z}   P(1+zz)  $ $(2\pi)^{1/z}$	$(2\pi)'^{1/2}$ $= 2 \neq e^{-\pi z/z}   T(1+xz)  $ $(2\pi)'^{1/z}$		we obtain:	
$(2\pi)^{1/2}$ $= 2 k e^{-\pi z/z}   P(1+zz)  $ $(2\pi)^{1/z}$	$(2\pi)'^{1/2}$ $= 2 \neq e^{-\pi z/z}   T(1+xz)  $ $(2\pi)'^{1/z}$			
$(2\pi)^{1/2}$ $= 2 k e^{-\pi z/z}   P(1+zz)  $ $(2\pi)^{1/z}$	$(2\pi)'^{12}$ $= 2 k e^{-\pi z/z}   \overline{\Gamma}(1+xz)  $ $(2\pi)'^{12}$ $(2\pi)'^{1$		Rok(0) = 2k e [ (1+12)	F(1-10:2,0)
$= Z \not k \in -\pi \mathcal{D}/Z \left[ \mathcal{P}(1+i\mathcal{D}) \right]$ $(2\pi)^{1/Z}$ $(2\pi)^{1/Z}$ $since F(1-i\mathcal{P}; Z; 0) = 1$ $(3)  We now consider the well - known relations between \Gamma  \text{functions}  \text{derived from Euler's limit Theorem} (see \ Copson, \ \mathcal{R}, 22): \mathcal{P}(2) = \Gamma(2+1),  \Pi(2) \ \Gamma(1-2) = \frac{\pi}{sin\pi 2} let \ \mathcal{Z} \rightarrow i\mathcal{D}:  i\mathcal{P}(i\mathcal{D}) = \Gamma(i\mathcal{D}+1) \Gamma(i\mathcal{D}) \ \Gamma(1-i\mathcal{D}) = \frac{\pi}{i\mathcal{D}} (4)  Dividing:  \Gamma(1+i\mathcal{D}) = \prod(1+i\mathcal{D})^2 = \pi 2 \mathcal{P}(1-i\mathcal{D}) \ \Gamma(1+i\mathcal{D}) = \prod(1+i\mathcal{D})^2 = \pi 2$	$= 2 k e^{-\pi z/z}   T(1+z)  $ $(2\pi)^{1/z}$			
$(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $sunce F(1-sp; z; 0) = 1$ $(3) We now consider the well - known relations between$ $f' functions derived from Euler's limit Theorem$ $(see Copson, P9:22):$ $P(z) = \Gamma(z+1),  \Pi(z) \ \Gamma(1-z) = \frac{T}{sun\pi z}$ $let z \to sz:  sp \ \Gamma(zp) = \Gamma(zp+1)$ $\Gamma(zp) \ \Gamma(1-zp) = \frac{T}{zsink \pi p}$ $(4)  Dividing:  \Gamma(1+zp) = \frac{T}{zz}$ $sink \pi p \ \Gamma(zp+1)$ $\Gamma(1-zp) \ \Gamma(1+zp) = \frac{T}{zsink \pi p}$	$(2\pi)^{1/2}$ $since F(1-xp; z; o) = 1$ (3) We now consider the well - known relations between $\Gamma \text{ functions derived from Euler's limit Theorem}$ (see Copson, $\mathcal{P}9.22$ ): $\mathbb{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1),  \Gamma(\mathbb{Z}) \Gamma(1-\mathbb{Z}) = \frac{1}{\text{Sim}\pi\mathbb{Z}}$ $\text{Jet } \mathbb{Z} \to I\mathbb{D}:  I\mathbb{P}(I\mathbb{D}) = \Gamma(I\mathbb{D}+1)$ $\Gamma(I\mathbb{D}) \Gamma(1-I\mathbb{D}) = \frac{1}{\text{Sim}\pi\mathbb{D}}$ (4) Dividing: $\Gamma(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{P}(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{P}(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{P}(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{P}(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{D}(I\mathbb{D}+I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{D}(I-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{D}(I-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$			
$(2\pi)^{1/2}$ $(2\pi)^{1/2}$ $sunce F(1-sp; z; 0) = 1$ $(3) We now consider the well - known relations between$ $f' functions derived from Euler's limit Theorem$ $(see Copson, P9:22):$ $P(z) = \Gamma(z+1),  \Pi(z) \ \Gamma(1-z) = \frac{T}{sun\pi z}$ $let z \to sz:  sp \ \Gamma(zp) = \Gamma(zp+1)$ $\Gamma(zp) \ \Gamma(1-zp) = \frac{T}{zsink \pi p}$ $(4)  Dividing:  \Gamma(1+zp) = \frac{T}{zz}$ $sink \pi p \ \Gamma(zp+1)$ $\Gamma(1-zp) \ \Gamma(1+zp) = \frac{T}{zsink \pi p}$	$(2\pi)^{1/2}$ $since F(1-xp; z; o) = 1$ (3) We now consider the well - known relations between $\Gamma \text{ functions derived from Euler's limit Theorem}$ (see Copson, $\mathcal{P}9.22$ ): $\mathbb{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1),  \Gamma(\mathbb{Z}) \Gamma(1-\mathbb{Z}) = \frac{1}{\text{Sim}\pi\mathbb{Z}}$ $\text{Jet } \mathbb{Z} \to I\mathbb{D}:  I\mathbb{P}(I\mathbb{D}) = \Gamma(I\mathbb{D}+1)$ $\Gamma(I\mathbb{D}) \Gamma(1-I\mathbb{D}) = \frac{1}{\text{Sim}\pi\mathbb{D}}$ (4) Dividing: $\Gamma(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{P}(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{P}(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{P}(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{P}(1-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{D}(I\mathbb{D}+I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{D}(I-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$ $I\mathbb{D}(I-I\mathbb{D}) = \frac{1}{1\mathbb{D}}$		$= 2ke^{-\pi z/2} \Gamma(1+z)$	
(3) We now consider the well - known relations between (3) We now consider the well - known relations between (5) Trunctions derived from Euler's limit Theorem (see Copson, $\mathcal{P}$ 9.22): $\mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ , $\Pi(\mathbb{Z}) \Gamma(1-\mathbb{Z}) = \frac{\mathbb{T}}{\mathbb{S}m\mathbb{T}\mathbb{Z}}$ $\mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ , $\Pi(\mathbb{Z}) \Gamma(1-\mathbb{Z}) = \frac{\mathbb{T}}{\mathbb{S}m\mathbb{T}\mathbb{Z}}$ $\mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ , $\Pi(\mathbb{Z}) \Gamma(1-\mathbb{Z}) = \frac{\mathbb{T}}{\mathbb{T}}$ $\mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ $\mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ $\mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ $\mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ $\mathcal{P}(\mathbb{Z}) = \frac{\mathbb{T}}{\mathbb{T}}$ $\mathcal{P}(\mathbb{Z}) = \mathbb{T}$ $\mathcal{P}(\mathbb{Z}) = \mathbb{T}$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z}) = \mathbb{T}$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z}) = \mathbb{T}$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}(\mathbb{Z})$ $\mathcal{P}($	(3) We now consider the well - known relations between (3) We now consider the well - known relations between (5 functions derived from Euler's limit Theorem (see Copson, $\mathcal{P}$ 9.22): $\mathcal{P} (\mathcal{I}) = \Gamma(\mathcal{I}+1)$ ; $\Pi(\mathcal{I}) \Gamma(1-\mathcal{I}) = \frac{\mathcal{T}}{\mathcal{I}}$ $\mathcal{I}(\mathcal{I}) = \Gamma(\mathcal{I}+1)$ ; $\Pi(\mathcal{I}) \Gamma(1-\mathcal{I}) = \frac{\mathcal{T}}{\mathcal{I}}$ $\mathcal{I}(\mathcal{I}) = \mathcal{I}(\mathcal{I}+1)$ ; $\Pi(\mathcal{I}) = \Gamma(\mathcal{I}+1)$ $\mathcal{I}(\mathcal{I}) \Gamma(1-\mathcal{I}) = \frac{\mathcal{T}}{\mathcal{I}}$ (4) Dividing: $\frac{\Gamma(1-\mathcal{I})}{\mathcal{I}} = \frac{\mathcal{T}}{\mathcal{I}}$ $\mathcal{I}(1-\mathcal{I}) \Pi(1+\mathcal{I}) = \prod(1+\mathcal{I})^2 = \frac{\mathcal{T}\mathcal{I}}{\mathcal{I}}$		Contraction of the second	
(3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem (see Copson, $\mathcal{P} 9.22$ ): $\mathcal{P} \Gamma(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ , $\Pi(\mathbb{Z}) \Gamma(1-\mathbb{Z}) = \frac{1}{Sm\pi\mathbb{Z}}$ $let = \neg 12$ : $12 \Gamma(1\mathbb{Z}) = \Gamma(1\mathbb{Z}+1)$ $\Gamma(1\mathbb{Z}) \Gamma(1-1\mathbb{Z}) = \frac{11}{LSinh}$ (4) Dividing: $\Gamma(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$	(3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem (see Copson, $\mathcal{P}$ 9.22): $\mathcal{Z} \Gamma(\mathcal{Z}) = \Gamma(\mathcal{Z}+1)$ , $\Gamma(\mathcal{Z}) \Gamma(1-\mathcal{Z}) = -\frac{T}{SmT\mathcal{Z}}$ $\mathcal{Let} = \mathcal{AD}$ : $\mathcal{IZ} \Gamma(\mathcal{AD}) = \Gamma(\mathcal{AD}+1)$ $\Gamma(\mathcal{AD}) \Gamma(1-\mathcal{AD}) = -\frac{T}{\mathcal{ISINK}T\mathcal{D}}$ (4) Dividing: $\Gamma(1-\mathcal{ID}) = -\frac{T}{\mathcal{ISINK}T\mathcal{D}} \Gamma(\mathcal{AD}+1)$ $\Gamma(1-\mathcal{AD}) \Gamma(1+\mathcal{AD}) = -\frac{T}{\mathcal{ISINK}T\mathcal{D}}$ $\mathcal{I}(1-\mathcal{AD}) \Gamma(1+\mathcal{AD}) = -\frac{T}{\mathcal{ISINK}T\mathcal{D}}$			
(3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem (see Copson, $\mathcal{P} 9.22$ ): $\mathcal{P} \Gamma(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ , $\Pi(\mathbb{Z}) \Gamma(1-\mathbb{Z}) = \frac{1}{Sm\pi\mathbb{Z}}$ $let = \neg 12$ : $12 \Gamma(1\mathbb{Z}) = \Gamma(1\mathbb{Z}+1)$ $\Gamma(1\mathbb{Z}) \Gamma(1-1\mathbb{Z}) = \frac{11}{LSinh}$ (4) Dividing: $\Gamma(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$ $I^2(1-1\mathbb{Z}) = \frac{11}{L2}$	(3) We now consider the well - known relations between $\Gamma$ functions derived from Euler's limit Theorem (see Copson, $\mathcal{P}$ 9.22): $\mathcal{Z} \Gamma(\mathbb{Z}) = \Gamma(\mathbb{Z}+1)$ , $\Gamma(\mathbb{Z}) \Gamma(1-\mathbb{Z}) = -\frac{1}{Sm\pi\mathbb{Z}}$ $let \mathbb{Z} \to D\mathbb{Z}$ : $I\mathbb{Z} \Gamma(D\mathbb{Z}) = \Gamma(D\mathbb{Z}+1)$ $\Gamma(D\mathbb{Z}) \Gamma(1-D\mathbb{Z}) = -\frac{1}{Sm\pi\mathbb{Z}}$ (4) Dividing: $\Gamma(1-D\mathbb{Z}) = -\frac{1}{D}$ $I\mathbb{Z} = -\frac{1}{D}$		erena Ellera a a)	
$ \begin{array}{c} & \Gamma \\ \text{functions} \\ (\text{see Copson}, \mathcal{P}9.22): \\ & \mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) & \Gamma(\mathbb{I}-\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ & \mathcal{T}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) \\ & \mathcal{T}(\mathbb{Z}) \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T} \\ $	$\Gamma = \int \left( \int \frac{1}{2} \int 1$		struct F (IFAP) C;O/ F/	
$ \begin{array}{c} & \Gamma \\ \text{functions} \\ (\text{see Copson}, \mathcal{P}9.22): \\ & \mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) & \Gamma(\mathbb{I}-\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ & \mathcal{T}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) \\ & \mathcal{T}(\mathbb{Z}) \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T} \\ $	$\Gamma = \int \left( \int \frac{1}{2} \int 1$			
$ \begin{array}{c} & \Gamma \\ \text{functions} \\ (\text{see Copson}, \mathcal{P}9.22): \\ & \mathcal{P}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) & \Gamma(\mathbb{I}-\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ & \mathcal{T}(\mathbb{Z}) = \Gamma(\mathbb{Z}+1) \\ \text{fr}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T}(\mathbb{Z}) \\ & \mathcal{T}(\mathbb{Z}) \\ & \mathcal{T}(\mathbb{Z}) = \underbrace{T} \\ & \mathcal{T} \\ $	$\Gamma = \int \left( \int \frac{1}{2} \int 1$			
$(see Copson, \mathcal{P} q. zz):$ $\neq \Pi(z) = \Pi(z+1),  \Pi(z) \Pi(1-z) = \prod$ $sm\pi z$ $let = \neg ID:  IZ \Pi(ID) = \Pi(ID) = \prod$ $r(ID) \Pi(1-ID) = \prod$ $r(ID) \Pi(1-ID) = \prod$ $r(ID) \Pi(1-ID) = \prod$ $r(ID) \Pi(1-ID) = \prod$ $r(ID) \Pi(ID) = \prod$	$(see Copson, \mathcal{P} 9.22):$ $\neq \Gamma(\Xi) = \Gamma(\Xi+1),  \Pi(\Xi) \Gamma(1-\Xi) = \underbrace{\Pi}_{SmT\Xi}$ $Let \equiv \rightarrow ID:  ID \Gamma(ID) = \Gamma(ID+1)$ $\Gamma(ID) \Gamma(1-ID) = \underbrace{\Pi}_{ISINK} \Pi D$ $(4)  Dividing:  \Gamma(1-ID) = \underbrace{\Pi}_{ISINK} \Pi D \prod (ID) $	(3)	We now consider the well - known	relations between
$(see Copson, \mathcal{P} q. zz):$ $\neq \Pi(z) = \Pi(z+1),  \Pi(z) \Pi(1-z) = \prod$ $sm\pi z$ $let = \neg ID:  IZ \Pi(ID) = \Pi(ID) = \prod$ $r(ID) \Pi(1-ID) = \prod$ $r(ID) \Pi(1-ID) = \prod$ $r(ID) \Pi(1-ID) = \prod$ $r(ID) \Pi(1-ID) = \prod$ $r(ID) \Pi(ID) = \prod$	$(see Copson, \mathcal{P} 9.22):$ $\neq \Gamma(\Xi) = \Gamma(\Xi+1),  \Pi(\Xi) \Gamma(1-\Xi) = \underbrace{\Pi}_{SmT\Xi}$ $Let \equiv \rightarrow ID:  ID \Gamma(ID) = \Gamma(ID+1)$ $\Gamma(ID) \Gamma(1-ID) = \underbrace{\Pi}_{ISINK} \Pi D$ $(4)  Dividing:  \Gamma(1-ID) = \underbrace{\Pi}_{ISINK} \Pi D \Gamma(ID)$ $(4)  Dividing:  \Gamma(1+ID) = \underbrace{\Pi}_{ISINK} \Pi D \Gamma(ID)$ $(7(1-ID) = \underbrace{\Pi}_{ISINK} \Pi D \Gamma(ID)$		T functions derived from Euler!	s limit Theorem
$Z \Gamma(Z) = \Gamma(Z+1),  \Pi(Z) \Gamma(1-Z) = \frac{1}{5m\pi 2}$ $Let = JZ;  JZ \Gamma(JZ) = \Gamma(JZ+1)$ $\Gamma(JZ) \Gamma(1-JZ) = \frac{1}{Lsinh}$ $(4)  Dividing;  \frac{\Gamma(1-JZ)}{JZ} = \frac{1}{T}$ $LZ  LSinh TZ  \frac{1}{JZ}$ $IT (J-JZ) = \frac{1}{T}$ $LSinh TZ  \frac{1}{JZ}$ $IT (J-JZ) = \frac{1}{T}$ $LSinh TZ  \frac{1}{JZ}$	$Z \Gamma(Z) = \Gamma(Z+1),  \Pi(Z) \Gamma(1-Z) = \frac{1}{Sm\pi Z}$ $let = JZ;  JZ \Gamma(JZ) = \Gamma(JZ+1)$ $\Gamma(JZ) \Gamma(1-JZ) = \frac{1}{LSinh TZ}$ $(4)  Dividing;  \Gamma(1-JZ) = \frac{1}{JZ}$ $IZ  Z  Sinh TZ  T(JZ+1)$ $\Gamma(1-JZ) = \Gamma(1+JZ) = \frac{1}{LSinh TZ}$		(see Copson, 79.22):	
$4et \neq \pi $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$4et \neq \pi $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$Z \Gamma(Z) = \Gamma(Z+1)$ , $\Gamma(Z) \Gamma(1-Z)$	
$(4)  Dividing: \qquad \Gamma(1-\lambda z) = \qquad T \\ \lambda z \qquad \qquad$	$\frac{\Gamma(4\nu)}{\Gamma(1-4\nu)} = \frac{\pi}{2 \sin h \pi 2}$ $(4)  Dividing: \qquad \frac{\Gamma(1-4\nu)}{4\nu} = \frac{\pi}{4\nu} \qquad \frac{\pi}{2\nu}$ $i  \sin h \pi \nu  \frac{\Gamma(4\nu)}{12\nu} = \frac{\pi}{2\nu}$ $i  \sin h \pi \nu  \frac{\Gamma(4\nu)}{12\nu} = \frac{\pi}{12\nu}$ $\int \frac{\Gamma(1-4\nu)}{12\nu} \frac{\Gamma(1+4\nu)}{12\nu} = \frac{\Gamma(1+4\nu)}{12\nu} = \frac{\pi}{2\nu}$			Sm TT Z
$(4)  Dividing: \qquad \Gamma(1-\lambda z) = \qquad T \\ \lambda z \qquad \qquad$	$\frac{\Gamma(4\nu)}{\Gamma(1-4\nu)} = \frac{\pi}{2 \sin h \pi 2}$ $(4)  Dividing: \qquad \frac{\Gamma(1-4\nu)}{4\nu} = \frac{\pi}{4\nu} \qquad \frac{\pi}{2\nu}$ $i  \sin h \pi \nu  \frac{\Gamma(4\nu)}{12\nu} = \frac{\pi}{2\nu}$ $i  \sin h \pi \nu  \frac{\Gamma(4\nu)}{12\nu} = \frac{\pi}{12\nu}$ $\int \frac{\Gamma(1-4\nu)}{12\nu} \frac{\Gamma(1+4\nu)}{12\nu} = \frac{\Gamma(1+4\nu)}{12\nu} = \frac{\pi}{2\nu}$		Let = -> 12: 12 T(12) = T(12)	
$(4)  Dividing: \qquad \overline{\Gamma(1-i\nu)} = \frac{\pi}{4\nu} = \frac{\pi}{2\nu} = $	(4) Dividing: $\frac{\Gamma(1-i\nu)}{i\nu} = \frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\Gamma(1-i\nu)}{i\nu} = \frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$		FY0 & AT, IF (AP) = 1 (207	
$(4)  Dividing: \qquad \overline{\Gamma(1-i\nu)} = \frac{\pi}{4\nu} = \frac{\pi}{2\nu} = $	(4) Dividing: $\frac{\Gamma(1-i\nu)}{i\nu} = \frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\Gamma(1-i\nu)}{i\nu} = \frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$ $\frac{\pi}{i\nu}$			
(4) $Dividing:$ $\Gamma(1-i\nu) = \pi$ $i\nu$ $i\nu$ $i\nu$ $i\nu$ $i\nu$ $i\nu$ $i\nu$ $i\nu$	(4) $Dividing:$ $\Gamma(1-iz) = \pi$ $izi$ $i sink \pi z \Gamma(izi+1)$ $\Gamma(1-iz) \Gamma(1+iz) = \Gamma(1+iz)^2 = \pi z$ $sink \pi z$		$ '(4\nu) '(1-\lambda\nu) =$	1 Sinh TZ
$\frac{1}{P(1-z)} = \frac{1}{P(1+z)} = \frac{1}{2} = \frac{1}{2}$	P(1-zz) = P(1+zz) = P(1+zz) = Tz			
$\Pi(1-2\nu) \Pi(1+2\nu) = \prod(1+2\nu)^2 = \frac{\pi 2\nu}{5mh\pi 2\nu}$	$P(1-z)P(1+z) = P(1+z)^2 = \frac{\pi z}{\sinh \pi z}$	(4)		
SINATE	Sinh 112		12 LSINK TT D	$\Gamma(\lambda \mathcal{D}+1)$
SINATE	Sinh 112			
SINATE	Sinh 112		$\Gamma(1-z_{\mathcal{D}})\Gamma(1+z_{\mathcal{D}}) = \Gamma(1+z_{\mathcal{D}})^{-1} =$	=
$(5)   \Gamma (1 + iz)   = \int \overline{1} \overline{z} \int  z  = \int  $	$(5)   \Gamma(1+i\nu)   = \int \underbrace{\Pi \mathcal{D}}_{Sinh} \underbrace{\Pi \mathcal{D}}_{I}   \frac{1}{2}$			SINHTP
$(5)   \Gamma (1 + 42)   = \int \frac{\pi 2}{5 \operatorname{inh} \pi 2} \int \frac{1}{2}$	$(5) \left  \left[ \left( 1 + 42 \right) \right] \right  = \left[ \frac{112}{5inh} \right] / 2$			
		(5)	$ \Gamma(1+2)  =  T ^{2}$	
		01	L Sink TZ	

100				66 T		8		-					122			3.5	200		22								7	2.45	1			194		- 26	22				
	11)		-	R	. /	10	-	_			2 %	1 1/2	_	-	T	2/2	2	5	-		,	-	1/2	-	_		-					2000	4.3	012	-		-	-	
	(6)		/	10	R (	01		-			211	) '/2		5		-	-		-5	m	hπ	D									1	-						-	
				+	1	+																																	
				11	Roy	k (a	) [	2	=	-		5	k		2	, 6	-	77																			1		
		-		_			_								5	m	hT	72	,	_																			
	1-1		1		-		2	1	1	2			-	,	_	1	,			2					0	1		1.		_	۱					-		_	
-	(7)		2º	~	0	IR	-01		2)1		-		5	R		2	m r	-	5	11	h 71	P		11	٤	R	1	u-	n	-	TC	05	hT	P		-	-	-	
			+	+	-	+																							-										
											Ξ		10	210	_																								
								_																															
_	(0)		_	-+	-	)	P		$ \rangle$	12					_	-						0	-	πz					_							-	0	_	
	(8)		',	+	-	-	and the second s				T		1	C	_	-		-		11	Z	e	π	2	-	_		_							-	/	-	-	-
		1		+	+	1	Ro	1e	(0)	12	= 0									5	m	10	11	~									1		/				
																													-						-	~	1		
													Ŧ	4	_	ē	2 77	2	e	- 1	72				=			2	11 -					1	_	-			
				-	_	_	_					-				e	17 2	-	-	e	77 2						e	2 11	2	-	1								
				-77	2,4	-	10		46	0	-		L	.1	1.	4		- 1		0	-	0.0	4	cla	2	4	0	ł	0		+	-	_		V	V	1	-	
				+	ho	>	15	en	y no	br	0	af	Da	101	ar	7		of	51	th	(	re	5	pec	1+	70	+0	2	+	he		11			-	-	/		
2				6	or	0 0	oa	6.	h	ty		40		a		Fr	ee	F	par	ti	cle		a	+	-	th	13		po	m	t	1	al	2	11	n			
				a		. 1	re	pu	ls	IVE	2	H	2,e	7d		5	Th	15		15	U	15e	fu	12	1	n		th	e	+	he	or	y	01	2				
				e	1/2	15	tic	2		00	11	51	on	5	(	4	an	do	u	-	414	51	hi	rec rec t r r r r	3	R	11	3	).			-					_		
			_			_	-			-	-	-								-	-		-	-				-				-		-					2
8				+	-	-					-	-											-	-															
				_		_			1														-																
	_		_	+	+	_					-	-					-			-	-											-				_	_	_	
	-			+	+	-		_			-	-	-				-		-	-		-	-	+	-	-	-				-						_		
				+	+				-											-				-															
	_					_						-		-		-	-		-	-	-	-		-		-	-	-	-		-	-	-						
5		•		-					-	-	-	-		-		-		-		-	-	-				-	-												
				-	-			1																															
									1																														
					_	_					-	-		-			-			-	-	-	-	-	-	-	-	-				-		-					
			-	-	-	-				-	+	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-		-		-	-	-	-	-				
						-				-							-						-			-				-	-								
																																						_	
				-																																		_	1
											-												_												-				
			-	_	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-			-			-	-	-	-	-	-	-					-
				-			-			-	-	-	-	-	-	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				-
					-				-	-	-	-			-						-	-	-	-	-					-				-	-				-
											-																												/

13 8		A	551	61	me	ent	+ +	#4	1					1			1										P	m	2	GI	ras	rt				
					ive									-		1.3	-		2 ar			1				1		EA	100						1	B
																	- 10											25			1	1				
																		1						-				- 2								
											1	-		-				-					-	-	-		16	-							-	
							-	-		-	-		+	-	-	-	-						-	+-				-			-				-	
-							-		-	+	-		+	+-	-	-	-		-		-			-	+											
	10		10					-+		+	-		-	1	1	-	0		-			-	1	+	-		, ,		+	-					-	-
	19.		(1)		a	le.		cal	, o		01	er	-	Th.	re		101	lou	112	3	eg	, va	TID	25		th	at	4	ver	-2	5	2120	922	-	-	
					a	no	a	6	der	10	ed		n	1	ec	TUN	e	:							+				+	-	-		-			-
								-		-	-			-	-	-	-	-0												-	-				-	-
						Q	13		mu	N_	9		;	P	1	-	-	T					_	_	1				_	-	-					
-							_	N	21	n			-	_	-	-	JZ	m	iw				_	_	_				_				-	-	_	
							_	_			_		-				-					_														
						a	-	-	G	2+	JF	2	,		$a^{\dagger}$		=	Q-	1	P		Q	1	_0	1+	ai		F	2 =	6	2-	at				
															1.1										-						2	r				
						9	3			2	th	٦S	a	· +	at	2				n	t	)	22	nt	w	5	a	-a 21	+ 2							1
						-				17	nw	1	_	2		5		,		0						1	:	21		-						
																																				198
						1	2	11			57	17	11-	-				0	t	1-	-	:		+1	7	11-										19
						C		117	-				an				5	u	1	170		L		TI	,	m n	+1		-							
							-				-		-	-		-							-	-					-	-						
			(2)		110		2.0	12.01	(		c	r	0	2			0			2					-						-			22		13
			(=1		we	-	no	e	t	-01	20		9	+		ar	d		P				-	-	-				-						-	
						2		-	T	2	(	. 7	L .	-	+		- +			. *	. 2	7	-		-						-				-	-
					0	7-	=		24	nw	2	a	+	a	a.	+	a	a	+	a		T	+	+-	-				-	-	-			-		
		-				-	-	-	en		(	-	-	-	-		-					J	_		-					-	-			-	-	
						2					-		6	7	-	-	+			+			+ 2	2	-					-					-	-
					-	p	1	-		m	n	ω	10	2-	-	ac	2	-	a	a	+	- a		8	-					-	-					-
1								_			2		-										_	1					-	_					-	
-								_	-				-	-									_	_	-				-	,					-	
			(3)		L	et	-	9	2,	1	2	0	pe	ra	te	1	on		U-	n	;		ev	al	va	tiz	19	e	ach	2	sp	ere	ito	~		13
					P	ro	de	ic	t		ap	ar	6 :														-			-						
													_			_	-						_		-	-			-	1				-		1
						az	M	5n	=	a	. (	21	In	1	=	J	nT	a	1	n-1	H		5n7	52	1-1	1	Un-	z								1
																																				12
						at	2	1/2	1	0	rt,	at	11-	L	=	5.	n+	7	01	- 11	214		1	n+	11	Ja	+21	l	In+	z						
						4	10	PL I		1							1		~	-	ATI					4 -1	1.00									
						20	+	11-	3	2	F	2+	1	1		1		-		1	2	•,)	11	~												- 3
				-	-	ia		un		-	V		-	a	u	m+	1	-		(	T	1	·	n							-				-	
						at.		11	-	_	-	Int	-	t	, 1		-	-			20	. 11			-			-								
				-		10	L	MI	и	-		J M	0	-	MY	1-1		-			PC	M	-M.		-										-	1
							ł	-			-	-	-	-	-	-							-	-	-								1		1	1
			(4)					72	11	~	-		ħ	-	5	T	11		1				,	12		1	11		1	1.		1201	71	11	16	
			(T)	-			0	1	M	R	-	-	2 ~	w	3	1(	n)(	<i>n</i> -	()	M-	1-2	-	+	16	nt	1) -	un	+	J	(2)	+1)(	N+2	-1 -	un+	2 (	)
											-	-		-	10	-							-		-			_	-	-	-			-	-	1
				_					2		-		-	1	-					-			-	-						-		-		-	2	12
		÷		_				p	l	In	5	-	- 2	1 1	w		3 V	(n)	(1)-	-1)	M	2-2		-	(22	1+1	111	n	+	J (n	(+1)	(1+	2)	Un.	+2 5	-
				_							-		-	2	-		(						-	-	-				-		-		-	-	-	-
											-	_	-	-									-	-	-				-				4		-	
																															-					12
																												_								
																																			-	
																		X																1	1	
																		-																		
					-					-						1																			1	17
																																	111			1
													-	-	1	-	1		-				_	-	1	1			_	-	-		1			

1	1		1		23			1		89	120	200		2.20							85				245												5			
	(5)		We	2	n	ow		m	101	tip	14	1	60	1	(	e	Int	-	de	7		to	,	fr	nd	L	g	z		a	nd	!	p	R			-			
	-					_	_	-	_	_					4	_	_	_	'		12	,						*		-				-						
_	-		H	ou	)ev	er	- ,	1	+	6	Na	5	_	sho	w	n		21	п		le	ctu	re	-		the	at	,	th	e	_	Un	s		are	2				
			9	rt	hor	101	-20	1al			and	d	4	ve	-	ha	1d		+	ha	t	-	th	6	, a	ai	1e	f	un	ct	100	15		US.	ed	-				
			h	ler	e +	-	na	we	-	D	ee	n	-	noi	n	1a	11	Z	e a	6 .	+	11	ler	e f	-01	re	1	F	he	1-	m	14		tei	r n	15	-			
	+		1	-na	_1		re	m	ai	n		n		+1	10	+	17	n	Te	1 10	0/10	n		91	re		t	he	-	(Z·	n+	1)	М-	n		ter	ms	5.	_	
	16	)	,		a	Z	1	1	nl	az	12	5		8	+	th		1	n +	- 1	)						1										-			
					7					1						m	ω	-		Z	1				N	/														
						pZ	1		5	-14	2/2	1>		=	-	m	ħ	w	(	n	+	上)				1														
	1.1		_	,				12	_				_	,	-	-					,									,		1	1							
	(7)		I	t /	15	-	we	11	A	no	w	K	(	Se	e	an	ny	-	Fr	es.	hr	an	e	Ph	ysi	ics		Tex	t,	/	+	ha	F	/	For	r -	t	he		
	-		C	1a:	551	Ca	1		ha	112	no	110	-	03	101	110	to	r	4	+	he		21	ие	ar	r		\$17	ne	FIC	2	9	ne	rg	y	,	15	1		
	-		e t	90	al	1	to	2	7	ne	100	m	ea	n	1	p	2 10	en	TI	al	-	er	ne	100 4	Y		5	e	90	a		+	0	07	re	- 4	al	F		
			+	40		10	1a	to	e	ne	30	1	V	bro	ch.	-	15	n	a	ite	cn	51	ten	de	,	of	ta	to	e	77	10	+	15		0	nc	C			
			-	1C	-	Ĭ										-19		1 4		113			ca	10		S	a	0		10	al			,						
						7	-	=	V	-	-	1/2	Ę																											
					:																																			
	(8)		I	F	1	E :	=	(	21-	+ 1/2	-) 7	i w		1	or	-	t	his	5	00	; ci	110	to	2	,	we		ha	re	1										
	-		_			-	-	_			50		-			-	_	,		1			+					_	_											/
	-		-				7	=	-	2	m		2	1/	ZE		-	-12	5	n	+ '/	2)	nı	J				-	-										/	-
						-	~	-		-	-		-	m	ħ.	0	1-	n	- 1	(2)			+	10		50	m	0	2	.00	01	4		s	al	au	0			
							01			P						-	C			- /		)	-	1.0	-			-	,								- /		-	-
						_																																		
	(9	)	No	w		V	=	1/2	S	9	2	1		5 =		m	w	2		( }	rn	n	+1	re	10	ect	ure	2	no	te	5 .	,	+.	his		rei	lat.	in		
	-												_	-	-	-			_		15	u	lei	11 -	-k	no	wr		al	50	)									
	-			,	-	$\overline{\vee}$	-		1		. 7		2	11		11.	F	_		1	1.		11	1 0				-								-				
	-			1		V	-	-	2	n	w	4	-	-	+	12	5	4		2	(1	n +	12	. / 1	nu	S			-								-	-		
						~~		-	2	1		t	ī		21	+ /	12				- h	0	e				20	e	1+		2 4	-	6	ue						
								9				n	14	- 1					,	- (	,,	-	3	w	ne		re	501		0		d		10						
															-																									
	(10	)	1	In		e	15	101	-	4	va	y	2	na	2	• 6	e		to	,	r	ec	al	2 :		K		2	(2	2+	12	)								
												-																								1				
				02		H	1)	E	2	1	N	W	K	1	-	ħ	w	(	n	+ /	12														6	/				
	-			11-	w	_	Ħ	-	_	5	22	-		LN	-	. 2		22		-		T	(1)	12	+ '	1/2														
	-			.00	w				_	2	m	-	T	2	M	w	0	1		-		80		. /	-	10														
				K	no	wi	ne		+	ha	+		+	he		210	2 10	2e		V	2/1	,e		0	4	0		a	10	n	+0	m	1	n	ie	ch	an	ico	1	
				0	pe	ra	to	2		2	ve	s		hethe	2		cl	as	5	ICO	2	-	re	250	17	F	+	011	5	1	5		th	at	,	f	200			
				+1	he		hav	n	102	110	-	0	50	111	ate	220	;																		-					
	-										pZ	-		_		2	-	-	1		1	1		1.0		11	1						-	-	-					
	-				-					- 1 -	zm		c	2	M	w	93		-		12	h	,w	(1	14	19	-)					-	-	1		-				
-							-	2	_	-	70	1 =	1.2	(	21-	. 1/	1			-	2	-		ħ		1-	1+	11	. \			-	-	-		ſ			1	
	-			0)	~	_	7	-	-		1	- 11		l	114	-	- 4	)		0	1	1	-	m	w	L	1.T	1	-)	-			4	1	1	6	1	1		-
																+																		1	C			-		
-																																								
			1																															-	-				-	

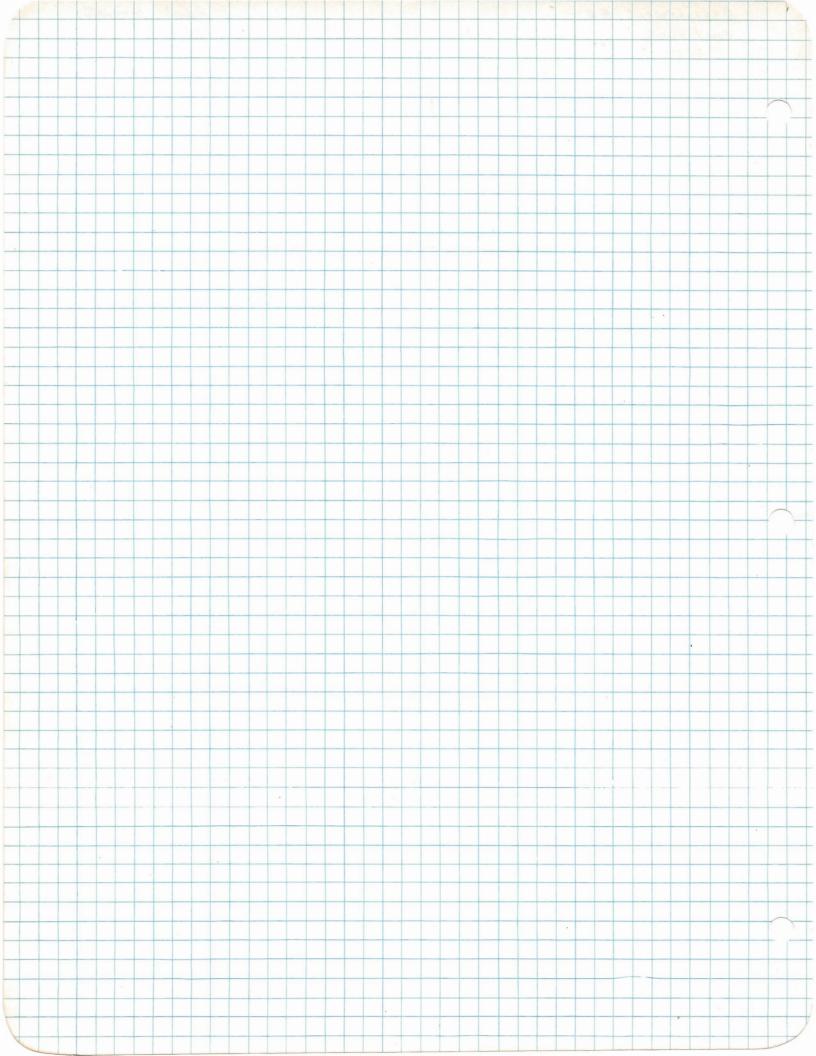
1999	100	ASSIA	SN MENT #4 Paul Frant
			inved DEAP-AP-15
			P251a
			11-23-60
-			
	2		
			$S(t,y) = e^{-t^2+2ty} = e^{y^2-(t-y)^2} = \sum_{i=1}^{\infty} Hn(y) \frac{t^2}{t^2}$
	20.	(1)	$S(t,y) = e^{-t^2+2ty} = e^{y^2-(t-y)^2} = \sum_{n=0}^{\infty} H_n(y) \frac{t^n}{n!}$
		(2)	$\frac{\partial S}{\partial t} = (-2t + 2y)e^{-t^2+2ty} = (-2t + 2y) \stackrel{as}{\equiv} Hn(y) \stackrel{m}{\equiv}$
. *	-	(-)	$\frac{\partial S}{\partial t} = (-2t + 2y)e^{-t + 2ty} = (-2t + 2y) \sum_{m=0}^{\infty} H_m(y) \frac{tm}{m!}$
			$= \underbrace{\sum_{n=0}^{\infty} H_n(y) t^{n-1}}_{n=0} = \underbrace{\sum_{n=0}^{\infty} -2H_n(y) t^{n+1}}_{n=0} + \underbrace{\sum_{n=0}^{\infty} H_n(y) t^{n}}_{n=0}$
			n=0 $(n-1)$ $n=0$ $n$ $n=0$ $n$
-		(3)	Equating coefficients of t":
	_		$H_{n+1}(y) = -2H_{n-1}(y) + 2y H_n(y)$
			n! $(n-1)!$ $n!$
			$or H_{n+1}(y) = -2n H_{n-1}(y) + 2y H_n(y)$
			$\frac{1}{2} = 2 + 2 + 2 + 2 + 2 + 2 = 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$
		(4)	$\frac{\partial S}{\partial y} = 2 t e^{-t^2 + 2t y} = 2 t \sum_{n=0}^{\infty} H_n(y) \frac{t^n}{n!} = \sum_{n=0}^{\infty} H_n(y) \frac{t^n}{n!}$
			dy ccc in in it here ni
		_	$= \underbrace{H_n(y)}_{n=0} \underbrace{H_n(y)}_{n!} \underbrace{H_n(y)}_{n!}$
		(5)	Equating coefficients : Hx (y) = · R Hn - 1 (y)
		(5)	NI (n-1)
			$or H_{n}(y) = 2n H_{n-1}(y)$
		(6)	Hn (y) = 2n Hn-1 (y) = 2n [2(n-1) Hn-2 (y)] = 4n (n-1) Hn-2 (y)
	_	(7)	Let n -> n-1 in (3):
	-		$H_{n}(y) = -Z(n-1)H_{n-2}(y) + ZyH_{n-1}(y)$
		(8)	Substituting from (5) and (6):
		(0)	
			$H_n(y) = - \frac{1}{2n} H_n'(y) + \frac{y}{n} H_n'(y)$
			zn n
			$0Y H_n''(y) - 2y H_n'(y) + 2n H_n(y) = 0$
_			which is identical with $y'' - zyy' + (\varepsilon - i)y = 0$ , with $\varepsilon = 2n + i$ .
			which is identical with V - cyv + (E-1)V = 0, with e anti-
7.1			so that the identification V -> Huly) is made and
			Huly satisfies the differential equation.

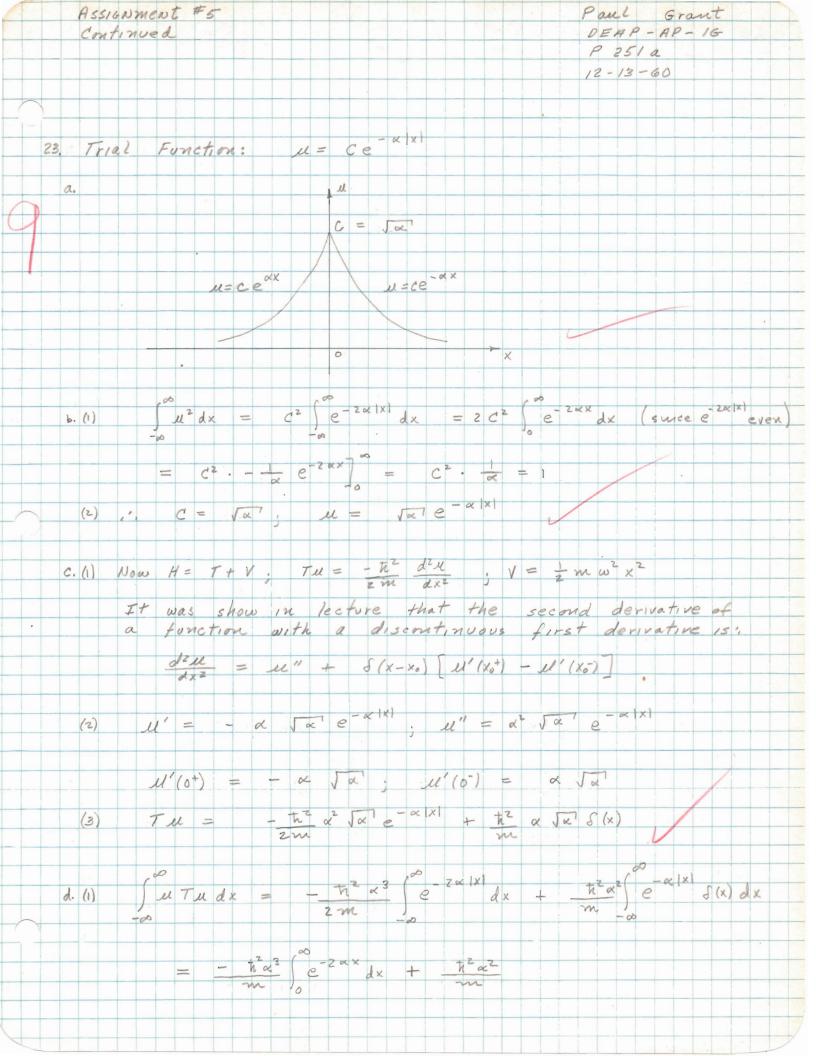



65113	ASSIGNM	next # 5	Paul Grant
	Problem.		DEAP- AP-16
	1 - 1 - 3 		P251a
			12-16-60
21.	(1) W	le use as the Schroedunger equation:	
$ \lambda $	_	$\nabla^2 u + \frac{2m}{h^2} \left[ E - V(p) \right] u = 0$	
10	w	here V(P) = 1 m w2p2 for the isotropic	harmonic
	0	scillator in two-demensional polar form.	
		(2) The Laplacian is:	
			75
	+ + + +	$\nabla^2 = \frac{1}{p} \frac{1}{p} \left( p \frac{1}{p} \right) + \frac{1}{p^2} $	0 qp2
	(7)	$\nabla^2 \mathcal{U} + \frac{2m}{\kappa^2} \left[ E - \frac{1}{2}m\omega^2 p^2 \right] \mathcal{U} = 0$	
	(=) / (	h - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	
		we now choose appropriate units:	
		ac non choise appropriate units.	
		$h = 1$ $2m = 1$ $w^2 = 4$	
		unit of energy , two; unit of (length)2 =	h_
			ma
		$\nabla^2 u + (E - p^2) u = 0$	
	1		
	(3)	$\frac{1}{p} \frac{\partial}{\partial p} \left( p \frac{\partial u}{\partial p} \right) + \frac{1}{p^2} \frac{\partial^2 u}{\partial q^2} + \left( E - p^2 \right) u = 0$	
		2 0,0 0 0,0 0 0 0,0 0,0 0,0 0,0 0,0 0,0	
		Separate variables: choose u = P(p) \$ (e)	
		$\frac{1}{PP} \frac{d}{dp} \left( p \frac{dP}{dp} \right) + \frac{1}{p^2 \Phi} \frac{d^2 \Phi}{dq^2} + \left( E - p^2 \right) = 0$	
		all	
		or $\frac{p}{p} \frac{d}{dp} \left( p \frac{dp}{dp} \right) + \frac{1}{2} \frac{d^2 \phi}{dq^2} + \left( E - p^2 \right) p^2 = 0$	
	(4)	Now that the equation is separated, we c	hoose:
		$\frac{1}{2} \frac{d^2 \overline{d}}{dt} = -m^2$	
		$\frac{1}{\overline{\Phi}} \frac{d^2 \overline{\Phi}}{d \overline{\Psi}^2} = -m^2$	
		based on traditional arguments.	
	+ + + +	The solution is: $\overline{\Phi} = C C$	
		Normalizing: $c d e = 1$ : $\overline{P} = \frac{1}{1 - e} e^{\pm im\varphi}$	
		Normalizing: $c d e = 1$ : $\overline{\Phi} = \frac{1}{\sqrt{2\pi}} e^{\pm im\varphi}$	

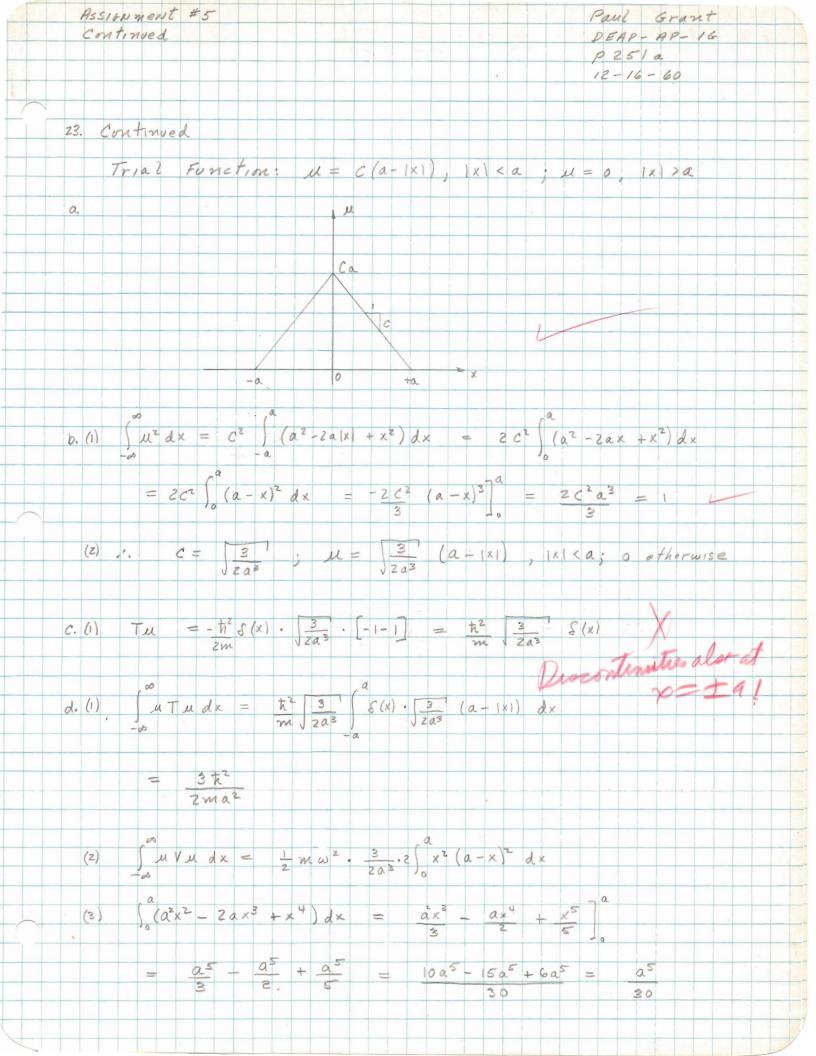
		1								-		,		1					-	-			1					-											~					1
(6)	G	-	-	2,	r	G		+	. 1 .	SA	G		+	(	E	-	3	-		2	1	22	-	) 6	-	1	0		-	-		_		-	1.4	1				-				
(7)	7	he		,	nı	d	ic I	al		e	90	1a	ti	m		15	; ;																					_						11111
		+		B	11	5 -	.,)	4	+ 2	ZB		-		01.	R+	-i)	)	11	0		+		B	2 4	- /	3	-	21	· l+	1)	lí I	0				-		+	+				1	-
				_			-	-	_	_	_				-	_				,	+	_	1		-												-	_	-					
				_	13	=		μ,	-	. (.	Q #	-1)		-	+											-	+	+		+								-	-	_				
		_	_	6	ve		01	4	6	:00	r.	se		C ,	40	50	Se		ß	1	2			50	< 1	h	7	4ha	t		G	+	E	0		wh	er		R	=0	þ.			
(8)			R	1			n ^l	. (	0-	n	2/2	2	v			w	hi	cl	h	9	10	es	:				+		+															
			_				1/																	12-	1) /	, <del>, , ,</del>	-	0		-	-		/ 1	)			-	_	_				~	-
																								(Q- 12														+						
		-	_		+	-	л	2	w		-	+		20	2	/		+	-	2.2	2	u	7	-	-	2	w	-	-	+	E	w	• •	-	л	20	J	+	-	_				-
					-		2 (5	2+	()	a	_ر	;	= (	0						-										-								+	-					
		-	-			-		ne			-			+-	+	-		-	-	-	+	_				-			+	+	-				-			+	-	_				-
(9)		w	- 11	'	+		2	2 (-	l+ n	2	-	-	2	n	1	w	-'		+	1	E	:	-	3	-	25	2	4	5	-	= 0	)						+	4					
		-	-			•	-	+	-	+	-				-				-	-	•	_				-	-	+	-	+	-			1		-	-	+	+	_				-
(10)	M	ak	e		+1	le		50	65	sti	te	,t,	on			×	P	= )	nz		-	0	n	d		PI	ro	ce	ed	2	a	s		be	fe	ore	:	_	_		_			
		-		_			+		-		-			-	+				-	-			_				+		6	+							-	_	-				-	
			4	X	W	- "		+			21	2+	1)	+	2	_	-	4	X		us	.'	+		(1		3	- 2	2	) a	2	1	0				_	_				(	-	
		+	-												+	+	_			-	+		-			+		-																
	0	970	_		6	v	, 11	+	-	[	1	2	X		-	1	1	٢	v'		-	(	25	+	3	- E	:)	w			C	>					-	+	_	_				-
									+	1					t									7	Î			-										1						
	(1)	,+	h		4	5	1	-	-	F	-	1	4	2+	3	- E			n		_		2+	2	,		2		+	+	_				_	-	+	+	-	_			_	
									1		/	(			4					1			Z		2	)	6											-						
(11)	,	10				-	-	N.	-	P	2m	N1	( (	35	22	)	P	m	q	-	2		-1	21/2		.F.	1	Z	2+	3-	E			l+	2		0	2	)	_				-
		M	72	м				142	M	1	E						-				6	-					(			4				2					/					F
(13)		Æ		1	6	42	e'	+	21	9 -	+ 2	3				-	n	1	-	0	, /	1, 1	2,	3.	. ,		+	-	-					-	-	+	-	+	-	-			-	-
		-																		-	-		-																					
	-	+		De	ef.	171	e	`,	-	2	r	11		2	n	-	+	l			+		_		-	-	+	-	-	-	-				-	-		+	-	_				-
							.".			l	1		V	ι,	n	-	2	,	n	- 4	4	7	n-	6	,			, 1	0	2	0		,	Cor	-	γ	1			2				L
		+		_			-		+					-						-	+	_			-	-		+		+	-				-	-				m				-
		7	he	en			E	Y	=	-	22	1	+ '	3		-		E		F		(	n	+	3/2	) -	ħu	U	,	L	1=	-	0,	1,2	2,	В,		• •	1					L
		-						+	+	-				-	-				-	-		•			-		+	+	-	-						-	+	1	_	_		1	1	-
																												-									V	-	_					L
		-						-	-		-					-				-						-	+			-	-	_			-	-	-	+	-	-				-
		-														-										_				-			-				-	-	_					J
		-	-			-	-	-			-				-					-	+																	+	_				/	

	:16N ment # 5	Paul Grant
Con	timued	DEAP-AP-16
		P 251a
		12-16-60
21		
21.	Continued.	
(10)	Substituting:	
Z	$\frac{\sum C_{n} (\beta + n) (\beta + n - 1) p^{n+n-2}}{\sum C_{n} (n + \beta) p^{(n+\beta)}} + C_{n} (\beta + n - 1) p^{(n+\beta)} + C_{n} (\beta + n - 1) p^{(n+$	3+n)B+n-2
71=0		
	+ (E-2) (n p B+n - m2 (n p B+n-2 } = 0	
	Setting n=0:	
		6 2 0 2
	Co (B) (B-1) p ^{B-2} - 2 Co B p ^B + Co B p ^{B-2} + (E-2) Co	p'-m cop = 0
	As this is an identity in p, the coefficient	NTS of each
	power must vanish. The indicial equation	15 formed
	from the coefficients of p13-2:	
	$\beta(\beta-1) + \beta - m^2 = 0$ , $\beta^2 = m^2$ , $\beta =$	= ± m
	We choose B = I'mi as the wave functions	must be
	bounded at p=0	
		1
	$P = p^{m_1} e^{-p^2/p} c^{n_2} p^{n_3}$	
(11)	P = p e P c p	
	$call \stackrel{n=0}{\stackrel{r=0}{\stackrel{r=0}{\stackrel{r=0}{\frac{r}{r=0}}}} = v + hen P = p^{ml}$	$=\rho^2/2$
	Call de Cript = V then F=p	e v
(12)	Substituting in (6):	
((-)		
	$dP = \rho^{1m} e^{-\rho^2/2} v' +  m  \rho^{1m(-1)} e^{-\rho^2/2} v - \rho$	m1+1 e 272 v
	dp	
		24
	$\frac{d^2P}{d^2} = p^{im(1)} e^{-p^2/2} v'' + 2p^{im(1+1)} e^{-p^2/2} v' + 2im$	1pm-e-25
	doz	
	$+ 1ml(1ml-1)pmz = -p^{2/2}r - 1mlp^{1ml} = -p^{2/2}$	
	+ 1m((1m(-1))) = r - 1m(p) e	v
	$-(1m1+1)p^{1m1}e^{-p^2/2}v + p^{1m1+2}e^{-p^2/2}$	
	$( m +i) \rho = v + \rho e$	
(13)	$v'' + \frac{v'}{p} + \frac{1ml}{p^2}v - v - 2pv' + \frac{2lml}{p}v' -$	$( m +1) v + p^2 v$
	$+  m (m(-1)) \frac{v}{p^2} -  m v + Ev - p^2v - p^2v$	m2 = 0
		p2
(14)	$v'' + \left(\frac{2 m +1}{p} - 2p\right)v' + \left(E - 2 - 2 m \right)v = 0$	
		1


ASSIG			+ #	5	1 3	241					1											ran		
· Conti	nue	d						-							-		1					- 10		
	-		-			_			1		ing							P	25	10	2			
																		12	2-1	17.	60	>		
21. 00	nt	inu	ed.	:											1									
(19) :		E	=	2	n +	2	1	2 (:	n+1)	-	(	(n+1	)7	tw		upo	n	121	tro	du	c1	20		
				×													e							
																			24					
						1. 10			20	12	(	C								5				
(20)	Un	ml	U	N	e	ru qu	p	e		1	F.	5 = (	Iml	-n)	);	2 1 71	1+3		p	2 {				
	- 4											(			1		4	,	1		2			
															-									
(1)	e	m	(U)	10)	loula.	to		the	de	0 00	0	of		lon.	0,00	rac	4	1		0.10	to	d		
			PAR	6	101	10)		21	me.	De	Lin	e	Sh	0	der	Pan	Sm	en .	1	5	D			
	1.00		Carc	10	761					UE I	pa	6	411		as	Cont	10	0	n	9	-			
	-																							
n	1	0	1	2		3	4	5	6		7	8		9					-	•				
		-	-				-				-		~		-				-	-			-	-
) M	1	0	1	2		3	4	5	6	0	7	8		9						-				
1.44						1	2	3	4		53	6		7										
							0	1	0		1	2		5 3										
t w		0	×2	+1	X	2 1	+2	×2	+ 3	3	x 2	0+4		x 2										
	-			-			-	-		-	-		ŕ	-	-		-			*				-
D		1	2	3		4	5	6	7	7	8	9		10										-
		-	-	-		-			-					1										-
Cle	ar	h.		D	-	n+	1						1							1				
~ (C	ur	9.		V								L	/							-				-
																								-
(21) I	n	+	40	+1	44	A	100	n e	10)		-Pd	tan	0	10-	-	en	en cu	ent	at.	01		11	0	-
		e	4x	on	+h	ie	10	ctu	re			inte	3	- nr							1			
		-	11				10	0.01		-														
		11-	W. =	1	1200	Val			+4		n	, = `	nr	+ 2	4		E		12	-	) t			
		NA MA	19	~	· MA	ny		01	/ n					, ,	0	1	6							-
n		0	1	2		3	4	5	6		7	8		9										-
		~		-			-	-		-	-		_	-	_									-
nr, no		00	10	20	3	0	40	50	60		70	80	9	10										-
112,110				11			31	41	51	-	52	71	8	31										-
•							22	32	42	2	61	62	7	12						1	1			-
									33		43	53 44	5	3										
double													3											-
factor		0	x2	+1	~	2 +	2	×2	+ 3	5	x2	++	Х	2					-			-		-
					1	1		1.5				11												-
		-					-		-		-			-	-		1					-		-
P		1	2	3		4	5	1	7		8	9.		10						-				-
L.		,	-			-	9	6	1		0													-
c les	22/		D -	= 24	+1			the	, ,	los	en	erac	4	IC	1	he	0	1	0	120		an l		-
ing		,	+ I	n		SC	.+	112		11		sha	1	1	6		20	Inte	-	n	2	1 - A		-
rep	re	en	ati	one	a	5	11	ph	ysic	0.00	5	Sho	001	a	De		1	/	-					-
													-				1			1				-
																			-					-
												+++			-	-								
													-					-	-				+	_
																			-	-		17	3	




	Assi	160 ment #5 H	Paul Grant
	Con	tinued	DEAP-AP-1G
			P 251a
			12-17-60
$\frown$			
1-1			
22.	(1)	We use as the Schroedinger equation:	
		$\nabla^2 u + 2m \left( E - V(a) \right) u = 0$	
		The second secon	
1/1		where $V(r) = \frac{1}{2}m\omega^2 r^2$	
1/1			
111			
17	++	(Z) The Laplacian is:	
1		22 TR 72 1 2 (22) 1 2	
		$\nabla^2 = \frac{1}{n^2} \frac{\partial}{\partial n} \left( \frac{n^2}{\partial k} \right) + \frac{1}{n^2} \frac{\partial}{\partial k} $	(sm2 do)
		y y	
		$\gamma$ + $\frac{1}{\Lambda^2 \sin^2 2\ell} \frac{\partial}{\partial q^2}$	
		×	
	(3)	We define the same emits as in examp	le 21, 30:
		$\nabla^2 \mathcal{U} + (E - \Lambda^2) \mathcal{U} = 0$	
	a	$\frac{1}{n^2} \frac{1}{\partial n^2} \left( \frac{n^2}{\partial n} \frac{\partial M}{\partial n} \right) + \frac{1}{n^2 \sin^2 \theta} \frac{\partial}{\partial \theta} \left( \sin 2 \frac{\partial M}{\partial 2^2} \right) + \frac{1}{n^2 \sin^2 \theta} \frac{\partial}{\partial \theta}$	$\frac{4}{2} + (E - r^2) \mu = 0$
		N2 22 21 21 p2 5m2 22 d2 d22 n2 5m2 22 2	¢2
1 -			
	(4)	we take the solution to be of the form	m
		M = R(n) Yem (2, a) as per lecture and	abtain
		after separation of variables, as per lectu	re the
		following radial equation:	
		Jo nowing ranked equation.	
		128 2 28 1 2 2 251471 2 2 251471 2 2 2	
		$\frac{d^2R}{dn^2} + \frac{2}{n} \frac{dR}{dn} + \left(\frac{E - n^2}{n^2} - \frac{2\left[2 + i\right]}{n^2}\right)R = 0$	
		with $Y_2^m(2, q) = Cme Pe^{imi}(coe 2)e^{imiq}$	
		$\omega_{II} \kappa = I_2 (\sigma, \tau) = (m_R \Gamma_R (correct)R)$	
		$l = 0, 1, 2, 3, \ldots$	
		$m = -l, -l+1, \dots, l-1, l$	
		And and the call the call of the	
		These are the well-known spherical harmoni	ca.
	(-)		
	(5)	At this point, we note that the radi	
		above is identical to the radial equat	ion n zi,
	1	letting m2 - 2 (2+1), except for the	factor 2 on
		dR. We thus carry over results as mu	ch as possible:
		dr azla	~
		we have $R = e^{-R^2/2} G(n) = G(n) =$	Zi Cn p B+n
			n=0


4	200																	1	12																		30	
-	(5)	51	n	de	0	ve	r	eq	011	re	0	107	~	w	av	e	f	ine	the	MS		+	0	60		50	ng	e le	_	Va	10	rea	1,					
		2	n		n	105	L	k	be	0	an		44	1 10	- 5	er	,	1	00		0	lea	2r.	3	20	17	- 1	+	15		20	t,		+4	0	-	+	+
		I V	n	ter	va	12		0	4	9		2	π.			an	PPT Q		Ve	10		4			a.			70	0 10	E		17		10	e		-	
																																				r		
		1	hu	is :	+	-	m	=	0	. 1	: 1	±	2	±	3			-	-	-							_				_			_				-
			+		-		-																					-					_					+
	(6)	Th	e.	P	>	e	qu	at	100	2	1.	s	2	00	. ت	2																						
-			+	+	+	1	-	d		/	d	PI	-	_	/-			2		224	2	10					_	_							_		-	-
-			+	+	1	P	-	do	(	P	d	p)	1		(E		10			P	2	Jr	6	- (	,		-		-						-		+	-
			_																																			
-			+	07	-	-	d	2 P		+	-	2	d	P	+	- (	E	- J	52	- :	p	_)	P	=	0		;	_	0	N.	P	.<		0			_	_
+			+	+	+	+	a						~		-		-	-	-								_		-						-		+	+
																																						+
-	(7)	Ta	ke	2	+	he	0	254	m	pi	to t	10	5	01	01	10	e	-	40	r	1	ar	ge		P	;			_				_				_	_
+			+	+-	+	d	12/	>	-	0	2	P	=	0					-		_					_	-	-	-					_			+	+
						d	p	4		~																												T
-			-	-		Tri	-	D				±	pz	12			_	12	P	t I	2/2			_		0		_	t	p	2/2	7					-	4
			+	+	+	Inc	1	P	5		e					-		do	2			11		dp	-	2	±	P	e	_		7			-		+	+
									+	2/2				02	,			- ,-					2	,														t
-				-	=		p2	e	11	16	+	e	12		2		-	>		p	e	Ŧ	P	/2		fo	7	e	ve	ĸ	10	arg	per	- ^		1	-	
-			+	+	+	50	0	t	1	00	Ks		000	200	d		fo	1	a	n	41	as	37	mo	o te	ti	C	-	501	01	tin	r.		+		1000	-	+
																											s je	, -,	2	,	25	15	И	01	al	1000	eet,	t
	(8)	Res	50	bsi	4,1	fot.	n	3	n	L	(6)	j	5	e	++	in	8		Ρ.	H	e	- /	12	4	(0	)												
-			+	+-	0	1P p	-			-/	02/2	2	, '	(0)	-	_	0	P	-10	2/2	1	10	)			_	-		_						_		+	
	-		1																																		-	
						124	2			_	2/	2	. //						- 0	2/2							2	5										
-			+	+-	0	1p	- :	=	Ć	2		4	(	p)	-	- 2	P	e			4	(p.	)	-	2	e - '		- /	- 6	)							+	+
			t							ł	p ²	e	3	p2/	2	LL	p)																					+
				_																																		T
		.'.	+	, "	1	0)	_	2		11	(0)		L	1	1	11	2)	+	1	F	-	2		m	)	1 (	)	-	0		_			_	_	_	+	+
			-	-	1			-J.			5-1		T	D			1	1	l	-		-		P	-	- 0	- /	-							-			-
																																						T
-	(9)	We	-	noi	te		the	at		+1	he		C	oe	f F	ICI	en	ts		of		2'	0	n	d	4		a	h	ie.	h	a	re		_		_	+
-		We the	2	u	100	rsi	00	si	219	00	1ai th	e	ne	Fr	ab	re	1	5	- ~	an	rd th	ad	1	2	A	re	SP	ed	TI	ve	512	1.	tia	THE	25	nd		+
		wi	-1	te		fo	r	+	he		5	0/0	tio	m	:												-				1							1
-			-	-	-	-	-	, ,	(a)			0	21	1		-	3+	x									_	_	_								-	-
-			-	-	-	-	-	20	0)	1	-	2	=0	C	N	p		-									-	_										+
																														_								T
-																																			_			
			1																																			1

ASSIGNME	ent #	5	1					1			172		50		100	Pa	ul	C	sro	int	373	1	
continued										. 10							AP		100 100	1.4			
						- 1		-	24	-				-			51						-
	-		-	1			_		_	_				_		12	- 18	8 - 1	60				
										_				_			-						
22 Contin	wed:						-											-					-
							-			-								-					-
(14) Now:		2-0	17	2		-	+		-	-		-		-		-	+		-				
(14) 10000 1	JL.	(,	1, -,	2, ,	1		-							-			-	-	-				
	with	m	= - 1	0-0	1		0			1-	-1	0		1			-	-					,
				1	- '					K	· /	R									1		
7	Thus	for	eve	ery	l		the	re		are		20	+	1	va	lve	s	of	-	ne			
				8		/																•	13
	We :	now	ca	n	50	m	ov	er	+	he	4	2055	sible	0	va	lue	25	0	f	e			
	and func	th	US	get	-	the	-	+0	tal		nur	nb	er	0	4	in	de	pe	nde	nto	vavi	9	3
	func	tions	i it	nem		for		eac	h	2	2	a	nd	1	the	5	th	ie	d	egro	ee		1
	of	dege	enero	264														-					-
										-							_						
(15) For	24	04000	,	1						-								-			1	-	-
	R									-				-	-								
	·D =	X.	172.	+1)	-	1+	5	+ 0	+	13	+ 1-	7 4	- 21	L .				-		-			
		L=0 even	( are				Ŭ		1	15			-	Т							, k		13
							21/2																
	=	3	× (44	P+1)	2	4.	5.	P	+	1	1 +	-1											
		P=	0				P=o																
																	-						
										,						_	_	-				_	
	Using	3	the	id	end	ity	1		2	n	5	2	1 (2	2	2		_					-	-
												_				_							-
· · · · · · · · · · · · · · · · · · ·	D	) =	4.	Z	2	+1/	+	2	+		-	=	_	n2	+			2			+ +		-
					2			-		-						2	•	-			+ +	1 1 1	
	=		(n+1)	(21+	-2)		1		4.	1				2	4		4/10	+	n	und	1		
				2		/	-	w	nic	20	A.	0	900	11 4	70		ina	ta	70	una			
						/			0 -0					03	- Prog	5	rec	11 ce	ng	una			
					-			-					- 0					1					. 3
(16) For 7	1 oda	l, i	ve	have																			
																						-	
J	D =	N R=1	(2)	(+1)	=	10	3 +	7 -	+ 11	+	15	+ 1	9.	+ 2	3 -	+ •			_			-	-
		e=1 odd				_		_		-	-	+	_	-	_	_				_		-	1
								24.41	_						_								-
	-	1.12	1+1 (4	60.1	) =		11	2		1	n+1												
		1	=1	Pri	T		1	PEI	-	(	2	1											12
		,																					
	= 4	( 21+	1) ( 3	7 +1 +	1)		1:	1+1	1	И	1	1211	-1)	2	nt	+ + 1	7-	17					
			2	-	-	-	(	2	1			2			- 2		-						13
								-															-
	V	(2	1+1)(	N+2,	1		uh.	ich		15	e	qua	.1	to		the	at	+	Cour	nd	m		3
			2			1	lec	tu	re		usi	ing	7	rec	tan	191	lar	c	0-0	rdi	mat	es.	
				1											1	9	-					1	-
				V																		-	1
					1																		/





1	0.00	1	0.08	20	1ª	0		1	5,2								57	121				200												6			-			
	d.	(2)		-	[]	uT	Tu	d	x	-				h		_		+		: 1	20	and the second s		1		-	-		n ^z		-	5						-		
				-	00					-				2 2	n						m	-						2	n	2		1		-						
	-																			ø				_											-	-	_			-
	-	(3)		_	1	p V	5. V	H	d	*	11		1	24	1 0.3	2.	7	ox.	ſ		e	- 2	×	×	d >	<						-				-	-	-	-	-
		(3)			-05			M	a	~	-	-	12	W			3		-0		-				0,1														- [	
														10	>																								1	
						1			2.	m	wz	æ			X	e	-	20	e X	d	×		1		2-	m	w	x		-	2 2 x)	3		(b.	1 -	tal	ble	5		-
														0																(4	202)	_	-			_	_		_	-
						1	-		W	lu	2								-							_					_	_	_	_			-	-	-	-
		-						-	4	a	2	-						-	-														1		-					-
							d	>																								/	/							
		(4)						M	Η.	n a	dx		1		H		1		2	n a	<u>ی</u> ۲	-	+		1	22	x2				/	/						_		4
-	-					-	do			_									-	4 0	24				S	24	-			1	/				-	_	_	_	_	-
	+	-		_								_	_				_	-	-		-								_							-	-		-	-
	0.	(1)			d	Ĥ		11		-		m	ω	2		+		tr	a		, I		0									-	_						-	-
						lac						2	x 1	3			-		i				0																	
																		. 7											2	~										
	-	-									-		w	to a local division of the local division of	1	_	-	m	×		;		0	×4	11		-	W		w						_				
	-	-						_											-					- 22					6	n		-		_		-				-
	-											. ,		d	11	- e	5	n	w	1															-				-	-
								1									11	2.	h																					
					_					-						-			-	12									27	1					_	2		_	-	
	-	(z)		H	241	n	11	-		IZ 2	th	-		m	w	-		+		them			NUZI			))	-		2/2	n	ω	H		. 70	/	tre	N	/	+	-
	+					-				-					4				6	-		N	5 1								-									+
	-	(3)	)	E	Fo	ort.		-	1	Fm	112		- ,	707	7 -	ā c	J		w	h	e	hi	15	a	bou	t	4	207	70	98	ea	te	22		th	an	_	+4	2	
					6													-	+	ru	e	V	al	ve	_	1	12	th	w	0	N	01	-	a	Ve	ere	1	80	od.	
-	-																	-	C	ho	IC.	e,				-								_					_	-11
	-	-							-	-	-	-			_			-	-	-		-								_							_	_	-	-
	5	(1)			Co	151	de	2		Ħ	11	1	M	He	10	1×		-		.+	6	-	, /	1	0	P.	an		120	_	10	he	re		11-		0	re		+
	1	0.7				1 - 1																			r										~~ .					
					the	2	-	tri	ve		no	rr	na.	112	ed		e	180	n	fus	ici	tio	us		ar	nd			1=0	lan	rr		2	1					_	
	-	1-1		1																																				
	-	(2)	7	he	n	-	H	-	5	-	N	V	1	an	an	1	2	l'n'	H	ll n	a	~	-		MX X	a	N.	Ξn	-							-			-	+
	-				-																																			-
		(3)	)	H	000	ere	r	:		H	- E	0	N		2	a.	r n	( E	n	- E	•)		$\geq$	2	NAL O	Z	az	i l	E	-	E									
															n					_			-		71								_	-						
	_	1			-	-	2	1	an		2		1	1	E			-	-	-	T	-	-	24	-	-		-		e				1	-	1-				
-	-	(4	)	."	-	-	no	1	an		V	-	-	EI		-	-		-		1r to	ka		TNI	5	<	E.	e	h.	FI		n	101	+	0	P	40	n VA	lue	-
	-			h	-	-	-			-					E	0	-				Fi	ne	C	srra	esp	por	rds		to	+	he	e	210	er	fu	n	ti	m		-
		(5)		3	az	i	4	.70	67 th	w	-	12	t	w							u	,	u	hi	ch	-	15		00	ld		un	11	te		th	C			
			3	n=1					-2	th	w	-	1-1	iw		1		-			Vo	ari	ati	m		f	02	ict	tion	r	L	oh	10	h	15		ve	n		_
-	-	8				-							_			1	-	-		_	A	160	0	a	1	= 0	>	5	or	-	+1	ne	5	an	ne	-	reo	So	nj	
	-	-			-	-	H		. 1	03	5	-			4	-	-	-	-	-	a	no	11	50	en	av	re	a	(	0	ill		od	d	ni	m	be	rea	2	1
	-	-				-									V						C	Je	TT			13														1
L																																								



4						53	3		14	al		~		2			15	2				ma	Z	2	2						2				2	33		1			
	d.	(4)			V	1		+	125	me	1 ²	•	- The	3 a		c. le	0		1		-	2	-	-	+	-	-	-	•			-		-5		1		_	-	-	
											+	2								4.1				T					/	1											
		(5)	-	1.		H	1	1		2	th	az		+		m	w z	a	-	+	-	-	-	+	+	-	_	V		_		_	-	_	_	_	-	_	-	-	
1											pre																														
	0	(.)	_		15						12							2				_	-	_	_		- 7					2									
	С.	(1)	+		d H ta		11		-	G 2 V	tr ² na	3	-	ł	-		10	20	-	+	=	0	+	2		3	h as	-	2		.w	2 a		_	-			-		-	
																																								-	
		(2)	-	_	a		-		30	01	2				0	2	15	-	5	30	1	t	┝	_	+	+	_	_	_	_			_	_	_	_	_		_		
					~				m	200	2		J		U.					m	u	>			1																
			_														-	_	-	-	-	_	+	_	+	-	_		_	_	_				_		-	_		_	
		(3)		1	Im	in	11			3	ħ²		n	14	5		+		n	ιw	2		53	01	t						/	ĺ									
										Z	m		J	307	ħ					20	4	_	ν	nu	υ					/											
			-				:	-	. [	-		3	5.	+	J	30	7	ħ	w	-	-	Ľ	1:	20		_	t	, w	-	1		3	- 1	īu	>	1			-	+	-
									1	-	5	30				20	1					L	4	05	30						. 5	30	1 2								_
		(4)	-	,	-	1		-		U .			_	-	13	01		ti,	-	-	-	+	5	40	2	te	10		-	V	/				-	-	_		-	+	
	-																													V		~		-							_
		(5)	_	Eo	est	-	I		13	5		Eo		11	-	-	1.1	09	6.	Eo	,	;	2	Foe	st	Eo	E	-	31	1	10	70	_	-	_			_		-	
			-	-													1	-	1	-	+	-	t	+	1															_	
	ç.	(1)	_	n	21=1	a	z n	4	-	H	-	Es	_		_		Ag	ai	n	-	E	e oc dd	2	nu	3	+		M	se	d	0	25	_	_			_	41	_	-+	-
										E	1-	E	0				(	th	er	- 15	00	12	do	nu	m	ale	ne	d	0	co	= ef	6	:10	ne	42.	3 0	011	a		-	
			-	0	AN		2					04	8									_	-																	_	
		(2)	_	~ ~ ~	21	a	22	-	4	-		2	-	-	B		,	0 8	2 4		-		1		/	-												-			
																																							_	_	
								-	-	-	-				-	-	+	+	-	+	+	+	+	+	+	-						•								+	
																					1						_														
	-				-		-	-	-	-	-	-		-	-	+		+	+	+	+	+	+	+	_	1													-		
							-	-	-	_	-	-	-	-	-			+	+		+	-	+		_				-		. –				-						
			_				-	-								-																									
																				_	_		_							_		-		-						_	
					-			-	-	-	-		-	-	-	-	-	-	-		-			-										-							
																																									_
	-	-		-		-		-	-	-	-	-	-	-	-	+		-	-	-	-		+	+				-	-	-	-	-		-	-		-			-	)
																																									-
-							-		_	-	-	-	-	-	-	-	-	-	-	_	-	_	+	-				-	-	-	-	-	-	-	-	-	-	-		-	
	-	-		-			-	-									+						+																		
			-														-			-	-		-	_				_				-						-			
	_				- Andrewski							_	_	_		_					_					-	-	-	1	-				-							

68	Assid	s N ment	# 5			Paul Grant
		inved				DERP-AP-16
						P 251 a
						12-16-60
			7 2			
24.	(1)	de v	$+ \left[ E^{(0)} - X^2 \right]$	v = o		
		dx2				
		with	ergenvalues	$E_n^{(0)} = 2n +$	1	
111						
14	_	and	matrix ele	ments:		
U -				J-m Sm, n+1 +	n' c	
		<	m(x)n =	JZ OM, N+1 +	)z 0m+1,n	
	(2)	Conside	ar:			
				×		
				$x^2 - \alpha x) \mu = 0$		
			d×2			
		As	this is a	one dimension	al stationar	y state
		pro.	blem, the	energy level: eigenvalue the	s are nor	- depenerare
		as	To Every	EIGENVALUE The	re is only e	igen fonction.
	(3)	we con	nsider the	Hamiltonian as	$H = -\frac{d^2}{d^2}$	$+x^2+\alpha x$
					an	
				he perturbing		
		perturb	ed wave f	unctions expan	nded as a	serves of the
		un per	Turbed way	e functions, w	e have:	
			M= Z Cn	Vm.		
			2			
		It wa	is shown	in lecture +	hat the fir	st and second
		order	corrections	m non-de	generate per	turbation
		theory	are given	by :		
			$f_n^{(l)} = \langle n \rangle$			
		t	n = \n			
		E	$F_{n}^{(2)} = \leq$	$E_{x}^{(0)} - E_{x}^{(0)}$	127	
			w+	$r = E_n^{(0)} - E_n^{(0)}$		
	( )					
	(4)	Applying	these equ	vations to our	problem:	
		- 11	$= \alpha \langle n \rangle$	$x   n \rangle = 0$		
		En	FAN			

A	(6)		1	E	- 12 n		M N		d	2		N#	v.	<	N			-	-	-	xla	2																		-
									2					~	100					m						72														-
						3	-	0	<2			+n		7	Jre		E	m. - 10,			2 En		Sn.	-1, 7	na	1												-		
						-	-	Ø	2	(	}	E	2 10		En	0) -1			-	E	m (0) n	+1 2 - E	(0) 71+		}														~	
			N	,	2	- {	-		n n+	1-	Z	n +	-1		+			-	1 + +	-	22	-	3	25	,	, .		x2 #	-											
-	(6)		, , ,		E	F.N.	Ŋ	-		27	( +	1		d	24										/	/														
	(7)			12			t	(	E	-	×	2	- 0	<	).	N	P	0	1					~																
				do	12			(	00			er			e						ut	107	6		lun	11		× ·		2 2					- 2		.2		-	
	(8)			0	d ,	æ	U		d	Qu		+ . d .	2		H		12	u		t o	e)	d	II Cur x	0	LUL ZE	1	t will		1222	+	d	× )	= di	e	02		x2 4			
					d :				U.		d	d the			( 0	La.	2	2	dz.	u		d	X²	0	t Ę			0	2×		dx	(	de	• )		2				
						50	10		XZ			WW V		1		dx				1	0				0	dz.	u		11		d	211	12						_	
	(9)						d2.	u									-	-		-		-				as						8								
							d i									×2				d	20	e		1	1	-	0	2)												
	(10)	2			H	ou	e	er	-		th	15	6	5	7	the		,	de	211	di	ca	2		e1	Qe	n	va	100	2	P	ori	06	le	m		as			
					t	he as		1	7a 81	90	n	va	lue	25	,	+	ra	M	5 %	er	ru	48	-	re	1a 50	11	ts		(1)		ar	1d		T	hU.	\$				
						0	~~~		E					+						E	n	+	X	-					V	/										
				14	ier Iv	es	400	re	-	-	th	le		se	0	~	d		Tr.	de	rec	=+	per	-tu re	17 k	, 2°	tion	K	+	Fre	a	tr	ne	n	t			~		
							nes		1				-																100	N 10	, 2 s		14	13	E)					_
Y						-	-	-										-				+							-										-	

	ASSI	6NMENT	# 5	211.5									Pa	42	Gi	an	t	A.
	Cont	inved										-			AP-			
															a			
													12.	- 16	- 60	0		
~																		
		•																
				1. 121	e - x2/2			·										
25.	(1)	Vn	1	TIN INI														
				12"-	พ.โก								_					
			1		/		1			_				-	,			
		Now,	IT W	1 2 5	hown	122	2/253	5 1.	hat	ti	he	eige	n fo	net	ions	0	+	
111		the.	pertu	rbed	proble	m	can	be	e	Ken	ndec	l i	n	ter	ms	OF		
$\left  \right  \right $		the	eigen	rfunc	tions	of	the	u u	mpe	rtu	rbea	2 4	000	en		2/02	19	
		The	Imes	of	the	MSU	al	exp	pan	510	n	of	a	fur	1cti	m	in	
		a se	eries	0 0	orthomo	Irma	r t	unc	tion	S.								
			11	5. 7						-								
			MR =	n	m Snn	•			+-+-								_	
		in ha	10 1	La c	nk		1.			da.	21						4	
					bation				onsi	aer	ea	e x	pan	aea	17	× 7	erms	
				1			0											
		Sn	R: =	Szes	$+\lambda$	Can	+	12 (	n (2) N to	+								
						C TO PO												
		and	1 it	was	shown	. th	at	the	fi	rst	070	ler	te	rm	n	- 7	the	1 1 1
		coe,	+ Ficien	it i	5 8140	en	by 1.											
							4											
~		- X.	Cnk	=	$\leq n$	VIR	2											
F F					Ep 10)	- E	10)											
	(z)	We	now	use t	these	resul	TS	her	e :								· · · ·	
			o (1)			1 1 1				x	f F	25	k+1		R s		7	
			nk	=	a <n< td=""><td>and the subscription of the local division o</td><td>and shares in the second of</td><td>-</td><td></td><td>~</td><td>LJ</td><td></td><td></td><td></td><td></td><td>N+1,</td><td>12 ]</td><td></td></n<>	and the subscription of the local division o	and shares in the second of	-		~	LJ					N+1,	12 ]	
					E2(0)	- En	(0)					En	(0) -	En	0)			
		+ + +				+ +				-				-				
						+			+-+-									
	(3)	Lett	ing l		above	,			+ +								1	
		~~~~	ing n		above		1.k										-	
				2			[Ja	S. a		- 1-	el s.		7)					
		Uk	1	Z 1	Snk +	d-	LVE		-	And the Party of t	2 01		1-6	Vn				
				n				Ex	-	En			5					
												1						-
		=	Up	$+ \alpha$	5 k+1			f VR	. +	-d.		2		2	Vp-			1
					Ep	- E'	0]	7 10			En	(0)	E2-1	7				1 3
						10												
									a r	-								
		1	51	2 -	of a Jat	- 0	E+1	+	ZJ	RE	UR-	1						
	_																	
									a	m								
	(4)	lln =	Un	- 2	- J <u>n+</u> z	7	2+1	+	d'a	1 z	Un-1		+ • •					
														*				
													·		-			
								$\left \right $										
											Mart works			- land		1. 1. 10		

A				- 7	1	17	1.40	24/2	12	500		1		22			2	1	1												1		-	1				2				
	(5)	-	N	(1)		+ 6 -	2	0	XAI	++	(210	Pre	C	12 20	c+	10	10	1	2			s h	1	24			-		ka/	1/-		-	211		_						-
	1.57		14.0	~~~~																15														. 4		a	E					-
		_				U.	(E)	=		1	In	(χ.	+ to	X)		11		1	H	n (X	+	212	6	2	- (X 4	2	//	2	-	1					1			-
		-	_			-	-	-	-	-				_			_			4		-	5	n	N		JT	7		-			-				1		-	7	-	+
																				8	t																		-			1
	11)	_	21				-								T		1			2	-	+	-	_	ø	-		4	_									-	-	-	4	-
	(6)	-	N	ou		, e	X	pa	nd	in	3	1	n	a	10	ay.	Or	-	se	110	25		m		2	_	1										-	+	1.5	+		-
					Un	1	E) :	-		Un	(× -	+ -	く)	8			U	n	17	()		t	x w	- 1	1/n	(x)		+	, ,	1										Ţ
-	+-+					-	-	-	-	-	-							-	+	1	+	-	-	-						-	-		-	-	-	-	-	-	1	-		-
		+	-	-	-	-				-									2	2/	-	+											e	2/2			-	+		-	-	+
	(7)		٨	100	υ	:		И.	. (;	£)	=		_	H	'n	12	E	2	e	1	2				-		-	844	Hn	18	7)	e	E	16	_		/					
		-		-	-	-	+	+	-	-	-				5	ZM	21		T	1	7	-	-	-	_			5	22	2 Y	1	JTT	7	-	-		-	+	20		+	-
											e	× 2	1/2		-					1																		-				
		e's	N	n	(2)	Y	-	-							H.	n (x)		+	+	H,	:0	()	2 2	-	-		K I	Hn	(x)	2 K	-	+	1 1	1	-		-	-	-	
		-		-	-	-	-		VZ		и)	J	Π		L	_	-	-		1	+	-	-	-				-	-	-	-		-	-	-	-	-	-	-	-	-	
																				1																						Ţ
	(8)	_		7	100	υ	1	In	13	(33	Ŧ	М.	n ((2)									X															110	ni	(4	2
					14	10	+	200	100	ar	e		an an	d			-	- 1						he)									n.							+	+	+
					eg	200	te		+	er.	Ms	\$	m	-					w	as			de	20	1	60	1+	ed		1	nf	or	tu	no	at	e/	y.	-	-	1	Y	
		-		-	P	ow	er	5	0),	F	01.0	y la	٤	n	- (シ	-	-												en 2.		un	ct	ion	5	-	the	e m	1-	-	ť	+
		-	1		a	na		(7		-									50	210	e s	>	0	re		10	ler	A TI	Ca													
	10		1			- x	2/2	,	-							1				100	X	12	-	-			-	-		1.4	1		_	2	-	Ta	2	L		-	7	-
	(9)	2					F			F	1m (x)-	- X	H	n (K1		-	+	e		1	-	-	M	+1		F	11-	1 (X,	101	Г	17	T	+	12	•	2	(n-1 (n-1)	01.5	7	+
	1.		-	J	2 '	n		1	6																			V	-	(21								0-			-	
				1					-		1					11	-	1.	1		L			1.	1		-	-	-	-	-	+	-	-	-	+		+	-	-	-	+
		-	1	02	+						tn (s						3										-															
			10			u	he	ch		15	0	2	70	cu	rs	10	n		re	1a	tr	on	• •	0	1/1	the	og	h	r	no t	-	the	e	51	m	pl	esi	t.	_	-	_	-
				-	-	I	+		15	e	550	en	tia	11	2	-	Co	m	P	05	e	d		01	6	7	two	2	01	the		-	re	ĊU	rs	100	-	+				+
64		-				Y	210	IT	on	S		W	nic	n		a	re													1						_		-			1	
2						-		1	In+	-1 ((x)	-	22	× 1-	tni	(x)	4	- 1	22	L	n	-1	(x)) :	= 0	5	-	-	1	1	-	-	-	-	-	-		-	-	-		+
1	-	-	-		+	-	-	_	Hú	/×	()	-	7	in	H	1-1	(x	.)	-	-		_			-	-	-	l	1		+		-	+	+		-					-
C							1																,					1	-					4								-
					-						no	+	17	n	+	he	1	50	201	pe		of	-	+	he	1	pr	06	10	22	1	to	6	de	FIL	e		-	-	-	-	+
		-	+	+	+	-	The	ese		-	tw	0	-7	Fro	m	-	1	ne	-	a	00	Ve		e	90	a 1	10		17	-										1	1	
																		_			1							1										_		4	F	
			_	-	-	_		_	_	-		-	-	-	-	-	+	-	-	_	1			-	-	-	+	1	-	4	70	1	1	-		-	-	-	-		+	-
		-	+	-	+	-	-			-		-	-		-	-		-	+					-		+				1		k	7)	1				•			
1					-																1									-	1	2	1	1	-		-	-	-		-	
		-	-		-	-	_		_	_			-	-	-		-	_	+					-	-	-	-	-			-	-			-	-						

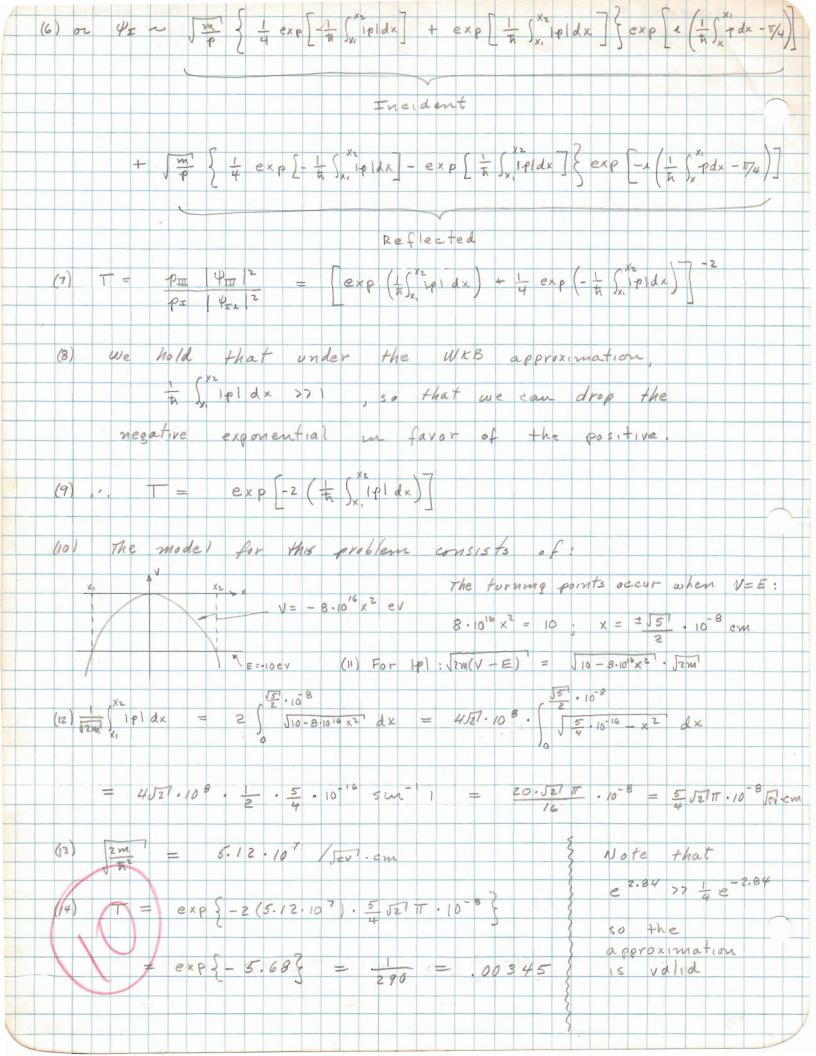
	ASS.	16NM	lent	#6			5.3		12			84		1		2 23		1	an	2	Gr	av	et			
	Prob	lems	26 -	- 30									_		-		-	L	EA	P-	AI	0-	16			
				- 18	4.1 2	18	-	200	2	85		10	-		-	5	1	1	023	510	2		10	1		
							_	1.01	-		-	-			-	_	-		1-5		60	-				
										-		-		-			-				-					
+(-									+	-		-	-									-				
	26.	1.)	110					-	4/10		1	11				-		4		-			11	-		
	60,	("	We 2-	D	arry		Ver		rne	. 11_	70	1100	012	3	+	equ	ja t	1100	15	F	sr	7	ne			
X X																	cre	570.			-	+				
			1		26		26	+	× 2	+ 4	27		1		F ,	,										
			l	-	9×5	ė	25			0		in														
																				-			1			
			<	(n)	xIm	> =	= <	nl	11	m>	=		2	1	Sm	,n-	1	+	<u>n+</u>	-	82	n, 2	41			
																			0 6					_	-	
			1	The	M7	rper	tur	bed	-	wa	ve	F	02	ret	imis	r	are	: :	+			-				
												-					-					-			-	
				03	nm	-	Un	(x)	Um	(4)			-			-								- R.	1	
				with	1	E (0)		2	12		200					-				-	-	+				
				WITH		6	-	2	()	4	W.	+ 1	/			+				-	-	+		1		
	•			E 10)		2		4			6				-								- 4-3	- 33	
				-			-		,											5	1.	1.5				
				Unn	n i		Voo		5.0	0	V	20											-		150	
									50			02									14	1			1	
											U	11									_				1.2.5	
							_					_				_					-	13				
		()					-	. /	-					,							1			-		
		(2)	Now	C	ions	ider	-	the	-	050	:111	ato	2	to	2 1	be		per	-tur	-be	d	by	:			
			VE		14.11		71	_	2	1				4		-			2	/	,	4				
			V	a ler	× 4.	100	In	e t	lec	TUR	e	1	107	es		31	Je J	F	02	t	123	1		-		
			aro	ler	0	ege	ne	rai	e	1	per	101	- 00	210	on			icor	S					1		
			Ste	0					-			2												4		
			Z	5	Lat	IVI	k B>		E.	(1)	Sa	in {	- 5	BX	(k)	=	0	:	a		1,2	. 3				
			3=1	i C								1)				1	1			
				n				= 01	m	+ 5	n	de	eno	te	5 /	th	e.	5	tate	2 11	м	no	ler	-		
			d	msi	der	atic	nu.					-										-		_	1	
						1.0.1			-			/	. 1		1	<			++			-			-	
			Noo	w <	a h		XB	>	-	0	2 <	ar y	k I	xy	1 k	B>					-	-		-	1	
			D	1		1.1		_	+	1					1	+		La			-	16		12	1000	
			Ve	fine	·,	IR	6 /			In	- W(SI	0 1e	cl		TO	2-	f w	-	IC.			3	
						<~	10 1	2		10	01	5		e	uha	pat	4	+0	P	+ 9	1	K				
						-	1-01		-	-1	71			1	. 23				V			1-				
			The	n!		1 a h	111	KB.	>	5		a	2	pq	X	41	n	nD								
			1110																							
					=a	Sv.	* (x)	Ve lo	1)	xy	U	n(x)	5	ml	1) 0	dx	dy									
	-																1.1			-						
				= 0	2 [-	2p* (.	x (x	VY	(x)) d	x.	1	Vg	+ (4	F (Vm	(3)	dy				-				
	10 A 10				1							4			1.1			-		1	_	3 98				
			-	= 0	L K.	PX	In	><	814	112	m>	-		a	4	X	In	1<	91x	m	2	-	-105			
																1	1									

		852	1	57				200	1			29			20								2									1.01	10				-
(3)	For	-	0	ur			P	ro	6/0	m			k	1	2				g te	I	11	3		-	E	(0)	-	- (6								
	an			×															cor	1			,	-	_												
	an																			ne															1		
			<1	11	17	-	E			<	())) [z`	>	-	-	<	111	3	>		-	SI		-	-	-		_	_	-			1			7	
			<	211	117				<:	zlv	2)	-	E	>		<	21	v (:	3)			Sz		-	= 0	C						_					
			<	VIV	h	>			<	3/1	/12	>			<	31	13	>-	E	12		52		-		-	_									-	
																	-	-	_	1		-	1	_		_									 	_	
		sw																	35	16	אמ	re	nt	5		12	1	a	220	pro	da	n	ce				
	w	14	n	+1	re	-	d	ef	n	ea	R	-	ne	ta	at	10	n	:	-	-	+	+	+	+	-	_	_	_							-	-	
		10>																1		-	1	_	_													_	_
		(d)										-	-					+			+	+															
		1 2 3		+		2 2	2		2		a	11	0	a	tis	f	au	ne	2		n	+	~	-	E	F	+	æ	11		r		-				_
		5 13	-	7		11			2																												
	-	<	IV	117	>	=	<	21	112	>	11	(3	IVI	3	>	-		a	20	X	10	><	Z	X	12	7		1	0								
																							-		-												
		<1																																		_	
	_	<1	11	137	>	Ξ	<	3 1	1/1	7	1	-	a	<(2/2	11	24	Z	X	117	>	=	410	2	JZ	1	_									-1	
		< 2	IV	13)	>	1	<	31	٧l	27	-	-	a	<-	21×	1	170	10	1 ×	11,	>	=		22	J	7											
	Th	US	5														+	-		+		+															
				-													-	+		-				_												-	-
(4	()			- 6	- (1)	1		0			air	521									-																
	-			- Can	- 52	1	1012	E)		al2 1	JZ E (1))		= (2				-	_															•	
			1																-	-																	
			- 4	E (1)		-	E	(1)		an	121		+		Q 2	J.	2		0 -E			C I D	3 5	27	1			2									
		-	_			ola	e J	2)		-E	(1)			-			-	-	-Ε	(1)		- Ito	25	2	-						-			-	_		
				_			-11)	,	-1	1)2			z		1		az	E	: (1.)													-			
											1			T		T		T					1														
		01	~		-	E	(1)2	+	-	a		=	0		,		E	= 4	1)	-	-	+	a	,	- 0	2						-		-			
		σr	-		E	. (1)	-		0,	-	+a	- ,	- (2						_															_	
		TR	103	5	+	he		f	ir	5+	0	ora	ler	-	1	er	- +.) r	ba	te	n		K	na	5	C	on	10	lei	ter	14					- 1	-
		٢	ev	no	ve	d	1	+	he			de	2	en	er	a	cy		ba con	m	æ		w	e		ca	n	0	tr	ea	44		t	he	-		
		F	lee	-Tu	re	ro	t	10 E	n	m	1.	th	200	th	1e	a	FT	e	-	rd F	ora	m	120	se G	-	the	0	500	201	re	ct	-					
		u	sa	ve		fu	n	=+	10	rs			E	-	-	-	-	-	_	-	-	-															J

	ASSIGNMENT #6	Paul Grant
	Continued	DERP-AP-16
		P251a
		1-6-60
in al		
	Problem 26	
	continued	
	(5) The secular equation gives the following h	10moveneous
	equations:	6
	$-E^{(1)}S_1 + \frac{\alpha}{2}\sqrt{27}S_3 = 0$	
	$-E^{(1)}S_2 + \frac{a}{2}J_2^2 S_3 = 0$	
	$\frac{a}{2}\int_{2}S_{1} + \frac{a}{2}\int_{2}S_{2} - E^{(1)}S_{3} = 0$	
	(6) From the lecture, the right linear con	
	wave functions that will assign only	me wave
	function to each of the new energy	gy levels is
	given by:	
+-+-+		
	$w_{kl} = \underbrace{\forall}_{k,B} S_{Bl}$	
	Now k= m+n = 2 which denotes the	
	level we are working with and will -	
	omitted. I indexes the roots of the	
	determinant and has the values 1, 2	, 3 which
	we now define:	
· · ·	$E_{2,1}^{(l)} = 0 = E_{1}^{(l)}$	
	$E_{2,2}^{(1)} = \pm \alpha = E_{2}^{(1)}$	
	$F_{2,3}^{(l)} = -a = F_{3}^{(l)}$	
	$(7) = E_{1}^{(1)} : \frac{\alpha}{2} \int z^{1} S_{3,1} = 0$ $S_{3,1} = 0$	
	= 0 511 = -	S _{2,1}
	2 J2 S1,1 + 2 J2 S2,1 = 0	
	$\omega_1 = \eta \left(\upsilon_1 - \upsilon_2 \right) = \frac{1}{\sqrt{21}} \left(\upsilon_1 - \upsilon_2 \right)$	
	121	
		e 11 - 254
	(8) $E_2^{(1)} = +a: -a S_{1,2} + a J_2 S_{3,2} = 0$	$\int S_{1,2} = S_{2,2}$
	$-a S_{2,2} + \frac{a}{2} J_{2}^{7} S_{3,2} = 0$	$53, 2 = 527 S_{1, 2}$
		}
	a Jel S1, 2 + a Jel S2, 2 - a S3, 2 = 0	}
	$\omega_2 = \eta \left(v_1 + v_2 + \sqrt{27} v_3 \right) = \frac{1}{2} \left(v_1 + v_2 + \sqrt{27} v_3 \right)$	+ 22 + J21 23)
-		

120100	1 2 2 2 2 3	24.72		1	100	5			1		2	22															130						
	(9)	E ?		-a	1.		5,	, 3	B	4	Sz,	3			S	3, 3	5 =	-	-	52	7 5	51,	3			30				2			
				_	-		1	1			25				1			-		-	-	-	-	-		-	-			-			
			U	72	=	-	Z	(0,	+	02	_	-	121	U	8)	-	-	+	-	-	+	+	+-	-	-	*				-	
																			1						-	1		-	1.2			-	1
	(10)	We	2	200	w	to	ake	2	fr	on	-	+	he		10	et	br	e,	-	the	?	e	90	ati	n		F	02		th	e		-
-		-20	n -	d	ege	ne	ra	fe	-	50	200	ma	d	0	rd	er		P	Del	r to	urk	ba	tia	re	-	20	rre	ec:	tio	n:	:	-	
		L	= (2)	-			1	-	.<	18	VI	L	>	18	1.V	118	1>	-	+	-	-	X	-	-	2	-		1.0		_		-	-
		E	= (2)	-			£ +	8	-	E	10)	-	-	E	(0)	-	-	-		ř		0	-	1,	6,	2							-
							_																_										
		8	l Ige	nde	exe	5	+	he	-	54	li	t	le	Ve	els	;	W.	>	IM	de	xes	5	a	11	01	the	er	2	100	- 101	0 9	1.	-
+ +-		e	1ge	en y	102	107	Tion	us		w	ho	50		e	213	en	ev	all	ve	5	d	0	21	ot	1	291	va	la,	E	1,0	•	-	-
	1	A	15	u	Je		ha	ve		P	ro p	er	- / -			che	050	en		+	the	,	0	or	rea	+		u	Jar	e	-		-
		f	1 5 ? UM em 15e	ct,	ms	s,	a	no	4	a	5		the	2		de	200	ene	ero	ree	1	4	ias		be	er	4						
		C	m	p/	e te	2/4	2	r	en	100	e a	l		m	1	7	the		f	125	+	, 0	rd	er	,	w	e		a	r			
		1	15e	,	or	din	ar	y	0	sec	or +	d	2	re	lei	r	P	er	·tu	rb	at	ion	2	2	ne	(2)	100	15		-			-
		a	no	K .	+	12	a	-	111	57		-	Th	e	-	20	rr	ee	11	m	al	7	0	+	EI				1 61	3	1.	3	-
															-		. el			×	-							1					
																															× .		
	111	0	-1	(2)			-	1	1	1	111	11	2	17	2			-	_				_	_	-	-	-	*				-	
	(11)	0 1	EI		-		W t	= 1	1	5	11	V [5	(0)	-	-	_			-		+		-	+	-	-			-		-	-
							-			0			L COM	-											1							-	5
								CC		-																							
	(12)	<	111	A.	2	H	0	2))	w	1	Xy	X	UE	0	dx	de	3		_			_		-	-							-	-
				a	((.	25 *	× u	21	-	_	14	du			a	-	0	5.	×==	×	1 -	22	d v	d	-	-		-			-	-
			= .	JZI	7)		Ĩ	0	E	d	~	29			5	27	1		2	~ ~	3	00	ara	u	0			1			-	
			=	a	2	\int	20	* (X) 27	*	(4)	×	y	2	In l	x)	VS	(4)) (1x	dy		_		-	-						-	_
								-	-										-			+	-			-		-				-	-
				a	- (1	V. 1	K	V	+	(4)	1	xu	2	In	(2)	Va	(4)	dx	du	1			-							-	
1						-							-								1	-											
			1		127	ſ	Vo	* (x)) X	2	521	x)	dx	•	1	V24	14) (1	Us	(y)) d	4	-	-	-		-					-
				0	-			-	-	-	-	-	-		-							-			+	-	+	-	-			-	-
					a	- (25.	* ()	())	× 2	Inl	(K)	dx		(2.	+ (.	4)	4	Usl	(4)	d	4		+	-	-	-					
					521)									1				a		9		4										
					0		C)				1								1	1		7								_	-
			T	-	5	27	4	<01	×1.	25	22	-1)	x s	5)	-	<	2	X	N)	24	0	X	s)	1	-	-	-	-	-				-
	-						-	-	-		-	-		-			-					-			-	-	-	-	4			-	
		A	1000	, ,	for		20	21-	va	11:	shi	m	3	2	na	tr	1×		el	em	en	cts	;	fo	2	A	the		ha	rn	ioni	C	1
		0	A Is	,110	ator	-	7	+he	2	17	ndi	ice.	5	-	ma	05	+	c	di	Ge	-	b	3	U	211	ty.		^	,			/)
			A 15	0,	n	+	5.	¥	2		Th	he	+	01	110	wi	n	3	C	ho	100	2	1	5	50	27.	15;	fa	e to	ru	4	_	-
							, ,	-	-	5 .	-	-			-				11	-	P		-	£	= 10) -	-	10	-		-	-	-
++			r	, 5	5		1, 3	5	; =) ر	-		;		n.	+ :	2	-	4	5	4		>	4	- 4	-	-	10					
									-																								
					-			-	-	-	-	-																					

43	As	SSIGN	men	it t	¥6		No.													Pa	au	26	ira	nt	5			
	Co	ntin	ved	1			12.10	1			-					1.		1		D	EA	P-	A.	P-	16	2	28	
					-			-	-		17	0	24		-		_	-		P	2	510	2					
					-		+ +					2	-	-	-		-	-		1.	- 6	5-1	61	-			-	-
	Prot	blem	26	+++	-	- 7		+	-		-		-	-			-	-		-	+						-	
		tinu			-				+	1			-	+			+				-	-		-	-			1
× .					1																							
	(13)	.".	E	z)	e	1	<01 x	117	< 2	: x	37	15	a ²															-
	_				-			6	- 1	0				*	_		-	-		_	_	_		_				
			E	+-+-	1	52'	3	2	22				-	1	sai	2	+	-		-+	+			-				
			-		-	12 1	- 4	-	-		-			-	16	-	-	+		-	+	-	++				-	
	(14)	We	>	200	w	pro	cee	d		+0		ca	leu	la	te	E	- 12	1							_			
														-	-		-		-	_		_						-
		E	=2	H		8+2	-	<2	1 V	1 the	101	-	-	-			-	-					-		-	-		-
	-							6	T	E	E			+			+	-										-
							in	•	2																			
	(15)	<21	VE	> =	=	a	Ja	/z *	X	Y	Ve	d	× c	dy														
	-	1-												-	00			0		1		a Ka	Kar		-		-	
			= .	$a \int$	12	5,*	xy	UE	d	x d	3	-		2	27	UZ -	X	4 2) e	da	e d	3		-			-	
								-	-	1.3	-		-	+			+				+	+				+ +		-
				÷ ;	asz	2 (1	1 253	+)	(y	ve		dx	dy	-4			+			+		-			1		-	12
				-													1											
		=	and		<01	XIN	><	z ()	x1s	>	+	<	2)>	1/1	.7<	OX	ls'	>				_						
				1				+						-			-	J		_	-			_				
			+	a J.	27	<11	v l'		2.1	121	0		-	+			+	-		-	-						-	
			1	2	_		~15	- /	1		2		-	-			+				+			-	-		-	
													-	2														
1.5	(16)	The		ma	tri	x c	o le:	me	nt	- 5	0	£		the	2	ha	ra	no	nic		05	cil	lato	1				
		w	111	0	1/10	·k	ie	11	th.		_		_	-			-			_	_						-	
			_			-		-	-		-	-	-	-			-		-	-	-	+		-		-	-	
		n	25	=	1	5 5	5,1	j	0,0	;	2,	2					-			-							-	
									-																1-	-		
	(17)	The	н :	E	(2)	=		20	IXI	17<	21	X 3	71	-		az					1							
			_				-	_	6	-	10					2								1	1	28		
	-		-					_						-			-			-	-	_			-		1	
			+	· a ²	.	.<11	×10-	1		2	12	-		-			-			-	-			-		1		
			,	2	1	11	10/		1 1		1			+	-	az	1.	<1	X)z	2) <	(1)	xlz	>12	-	-	3	1	
						6 -	- 2								-	2	-		-			-		-				2
																		6	-	10	'							
			=		az	+	-	22	. 1	 F	1	-		-	a	2	4	. 1		-	+						-	
				3	2			E	1		4		-	-	2										_			
			=	- 3	saz	+	0	22			4	az		-	2	-	-	30	22			-		-				
					32	4	2	52			3	2	-					10	-							•		
																												1
																							1					


	(18)	For	E	z)		110		402	p						1	(2	+	25-	_	5	1,	7-	>			123	1				1
					1	2							28.0				1									,	}		1		-
		50 be con	mes	-1	59U	are	d	ne 3	5	in	3	0 /	- Lhe	Vi	Sa	n	e		res	ho su	2+	a	2		wh	ic	h				-
		E2	,	-		_						_		-											1						
		.'.	E3) =		-	30	2				_	_			-						•	-								+
	(19)	Thus		_	100			4		4	0		16		1						1)		11	_	0)	-	_		-
		in	the	5	na.	ma	l	or	de	Y	d	10	THE	267	4,0	k		19	J	/	ev	er	+	(//92		6					-
		E =	- 6	; -	1	3a ² 16															-							_			-
		E =		o +				200							-		-														-
		E =																													+
									-			_	-							_											-
0	(20)	It wa:	wa	5	sho	wn		in		lec	ztu	120		7	-ha	+	7	the		1	or	eci	se		50	10	tio	n			T
								-																							+
		E	H					-									-			_											+
			w	,th																		-	-		-				1	-	+
						51	~	az		1	1	-	-	a 4	-	-	2 32	-	. ,	2				-						-	
	51)	The		4		th		1	0.01			Λ		12	,		-					-									+
				4									0																		-
		NE Nr	= 2 = 0	2	E	1)	- (6 +	a	-	16	-																			
		Ng	= 0		E	=	6	6 -	a	-	M	a																		,	
		nn	= 2						-			0	,			-	-			_											-
		MĘ	= -	3	E	=		6 -	-	30	s. In							-													-
1		nn	-	1																				_	-						-
A	1	The	s der	the		pe	rto	rba	tio	n		+	rea	tr	ne	nt	4	+	3	4	he		50	co	210						-
	1	on sa	der me		che	ree	5	4	017	h		+	he	T	pro	001	150		re	250	. / .	6	7	0	Y	413					+
																-		-						-							
																													- /	-	_
															-		-														-
														4																	_
																-	-	-					+	-	-						1
												-																			

		ASSI	GNMEN	t #6				13.15		13	363	12	F	Paul		Gran	rt	1	
			inved	128	2.				- 13	2 3	12 19	3 12°				9P-1			
								1.1	144					25	S 10.000 12				
							< 3 ···							1-6					
Sea Las																			
															1			-	
39	27.	(1)	we	investi	igate	the	ca	se	of	the	W	KB	me	thoo	6.				
			appl	led	to	a g	poter	etial	wi	th a	e	well	-de	Fin	ed.	-			
				imum												_			
							V						-						
				_		_		. 2	1			P	= 2	m (E-1	()			
_																			
	_							/			_							_	-
	-			E				/			_								-
		_						1			_								-
		-						Xz					-						
					χı			~~										++	
		(2)	We			4/40		time t		t		0		/	-				
		(6/	we		use	The		1151	COV	inecti	on	for	rmu	ai					
			T	m	- tr	Sy 1p	ldx		2	m		75	10	X	4	- 1-	7	-	-
				IPI (0 1	× ·			6	JP	Co		the)	pa	X	4		+++	
					-							_		0			1		
		(3)	There																
						- XI		-								-			
			1	m Ipi e	- +	Jx 1PI	dx					_	. X			_		-	-
				Ipl e				-7	2	J-p	cos	- 1 -	- (p dx	-	T		-	
										VP		4	n Jx,			4			
				X	$< X_1$							XI	< X	LX2					
					1	CX													
			A	m	0 h	Jx2	pldx	->	2	AJP		F	11	12	12 -	-	7		
				JHPI						JP	Con	L	大)	(Po		- 174	5		
					-								-	~					
				X	7 XZ	í						1	X1 <	x <	×2	A			
		(4)				. /	4	4	1									++	
	++	(11)	We	demo			7	The	tu	0 00	vare	5 0	m	×i	< ×	< XZ			
	++		be	equa	16 5													1	
	_				E F	1 (1 X		. 174	7	n		r.	1	12	x - 17	7	1	
				Ce	va	1 (th	X. P	ax -	14	=	Pt	cos		h J.	pa	x - 11	14		
					-					7			-	^					
				= A	~	5	0	X	T- /	- 9	7						X		
	++				COR		k J	X	14	T					-		1		
			8					Va			-		-						1.
			2	where	9	0 =	1 tr	(pdx		11							Parts.	
					1	4	ħ) × .	(2								
													•				1. 16		
(Since	eel +	he	two	war	esin	mus	+ fi	4	toge	the	-	A =	1 4	and		
			24 3	and and	+	4.8	x - 1	e 1						,					
			Q	= 2	TT	71=	=0,1	, z, .									1		3
				1.19	1		in the	+	-		4				20				
													1		*				
										-						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			/

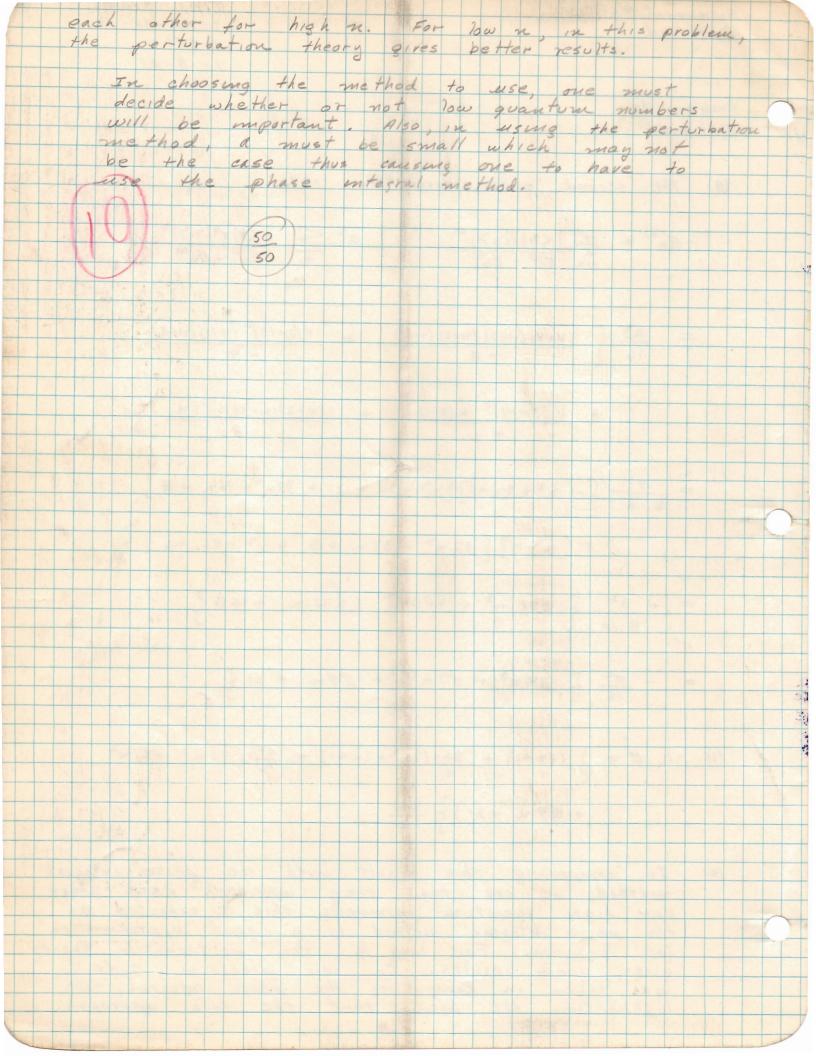
	(10)		(9)	(8)			(6)	(5)
					-			
-		2	E		E			
Par Pu	Ke	(=		S in			-	
or pp h	2	= 0			X	= -		
n' ro h ic	16	*	_					
ts xu h	1e	•	-	- 12		4	r	$\int_{x_i}^{x}$
m 15		E		×١	/	. V		12
a 0 5	-	111	-		/			o d
ti	ha:	H	_	٤x	Xz			x
fr es	5	(-			21		11
-07		3		11	V =	12 ×=		(
n n nt	sh	100	(72, 5		-	V		n
bi	00)2/	- 1.	2	×		-	+ -
e c t	un	3	-	50				12)
he		1	2	E			E	ħ
co ne re) π	E	(7)	2	-	Π
a a	+4	1.1		-				
pl to te	a	16	63.2	×		4) +h	1
e b	t			+) =		
et		,		ds		=	U	P
tengor		T		K.		ħ		11
r	C 8	ve	- 12	ſ. z		JE	m	J
nc	22	E			3	5 -		2
e t h	пе	10		-		- IX	1	m
he	ct	-		43		7	2	6
nt.	-10	1.0		(-	U I
A	n	19		E		E		1)
nt		3		_ ×	A +	3		~
the an le n	fo	e)3/	12	V	V	
10 × 10	~	rre		2) Π			
(5.	m	or		E	•	1		
. H	02	~					x 1	
10	ae	100						
		70						
a2 es								
]		F .	-					

Y

	A SSIGNW	NENT # 6	Paul Grant
	Contin	ved	DEAP - AP - 1G
	3. 3.4		P 251a
			1-8-61.
28	3	$\frac{1}{\sqrt{2}}\int \frac{1}{\sqrt{2}} p dx + 1 q $	
			$= \sqrt{2m} (E - V)$
	I		
	X	The second with	
		case of transmiss	
		a potential barrie	24.
	+ + + - +		
	(-)	1 24	1+
	(z)	The BC is a wave traveling to the r	
		of the form, choosing the phase to	
		for convenience in using the connection	formulaes
	,D	$\frac{1}{2\pi} \sim \frac{1}{p} \left\{ cos\left(\frac{1}{h}\left(\frac{p}{p}dx - \frac{\pi}{4}\right) + i sm\left(\frac{1}{h}\int_{x_2}^{x} p\right) \right\}$	
	43	$\frac{\pi}{2} \sqrt{\frac{m}{p}} \sqrt$	ax "14)
			$dx + \pi/4$
	(3)		an Triff J
	(0)		
		$T_{m}^{-1} = \frac{1}{\pi} \int_{x}^{x_{0}} p dx$	
		UP Z m cos 1	
		VIPI 2 m cor in	pdx - I.
		The sx lpldx	
		Julie The Jx Ipldx	ody + TT. 7
		Je const the Jxo	Tax 14
	(4)	Then:	
		ΨI ~ 1 mi exp{- i stpldx the mi exp}- i stpldx the mi exp{- i stpldx the mi exp}- i stpldx the mi exp{- i stpldx the mi exp{- i stpldx the mi exp}- i stpldx the mi exp{- i stpldx the mi exp}- i stpldx the mi exp}- i stpldx the mi exp{- i stpldx the mi exp}- i stpldx the mi exp}- i stpldx the mi exp- i stpldx the mi exp}- i stpldx the mi exp- i stpldx the mi exp- i stpldx the mi exp}- i stpldx the mi exp- i stpldx the mi exp}- i stpldx the mi exp-	L CX2
		Z VIPI Ch X J VIPI	h x man
N			
		$= \frac{1}{2} \int \frac{m}{1p!} e^{x}p = \frac{1}{\pi} \int \frac{x}{1p!} dx + \frac{1}{\pi} \int \frac{x}{1p!} dx = \frac{1}{2} \int \frac{m}{1p!} e^{x}p = \frac{1}{\pi} \int \frac{x}{1p!} dx = \frac{1}{2} \int \frac{m}{1p!} e^{x}p = \frac{1}{2} \int \frac{m}{1p!} e^{x$	
		Z JIPI C T JXI T XI J	
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
1.	(5)	Q I Im px 2- I Chalder and I Codx	- 174
	(-)	4= - 1 Jmi exp { - 1 (x2 ipldx} cor [+ J pdx	
\frown			
		+ Zz Jm exp & th Stipldx & coz J + p	dx + 17.7
		The state of the s	~~ /4 J

	1	935	161	m	en	t	#	6	X	11												0		F	au	1	Gr	-an	t		
		con	1000		1.		12									1	5											1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16		
							16		18			0	3	14.9	a still	-	4	-			1.00	1.2	1			51a	1	1.4		100	
				-								100		1	17	1	6									7-0				12	
	-									1																			-		
0	19 12																														
																1.20														10.1	
	29.	(1)		dZ.	u	+	1	E	-	xZ	-	a	×4		u	1	0	1									1			
					dx	12												-													
				1	1																					1 2					
			E	VI	de	nt	14		we		are	0		154	10		MA	tu	ra	7	1124	it.		00	a h		+4	at			
							4				~				3		1.0			-	000			50			1 11				
			Zm	2	1	1	mw	-= 1		Th	0	1	-	to.	+	10	2		5	+	400		V	=	×	2 +	- 1	XY	F		
			R		1	2				110	6	F		re	n I	a			-		16 /		V		14	-	~				
			1	in	1	-	in	PSE	e	11	20 1	ts	+		-				-	-	+									-	
				00	-				-	m			+		-	-										-	-	-			
				-				1	1		-		-	-	-		(2))	<.	2.1	-			1	à 10	0			t.	tia	1
			-	-				T	-				-	-	-		(=						we							rid	
			\						-		-	1	+	-																	
												1	+		-	-			m	m	m	4	n	,	Th	15	0	110	010	nn	
			-	/								/	-		-	-							_ 6 (e						1		
			-		1						1		E	-	-	-												P	nas	e-	
			-		1							-	+		-			-	m	Teg	zra		21	ne ⁻	rne	a,					
					1			-			×	2		~ >	- X	-		-	-	, X2							-	+			
			-		Kı .	-		+				2	+		-	-		-						1		-	100	, 1	1+	-	
								-					+		-	13				V	Zn	r (E	-VI	d	X	=	(11	+ 2)ħ	1	
			-					-			-	-	+	-	-	-			×	. 1	-			-	-	-	-	-		1 1 1	
			-	-				-				-	1	, X2	-			,	-	+-	1		1 -	-			-	\		-	
		(or	>	12		00	~	07	117:	5,				11	E-	A) .	d:	x	=	(2	1+ 2	L) 7	/			-		-	1940	
				-					_		_		1	Ki	-			_	-	_				-	-	-	-			-	
			,				1.4	-		-		_	-	-	-		-	_		-					-		-		-	-	
			wh	er	C	2	the	-	un	1/1	of	e	221	ero	34		13	-	Z	ħ	ces,				-	-	-		-		
	_				1			-	_			_	-	1	-			_	_	-	4		_			-	-		-		
		(3)	7	he	-	+	ur	nu	ng		po	w	ts	-	a	re	_	fo	02	rd		wh	122	2	V	= 2	-	07	-	
			-		by		+	he		100	+	5	0	£ :					-	_					-	-	-		_		
		1 10	-		-	-	_		1				_					_		-		-	-		_		1			1	
	_						ax	4	+ ×	2	-	E	-	0	1	0	5	×	4	+	X		Ea		= 0	2412	14		100		
							_	-			-		-	-	1	12		_									-				
						XZ	-		-1	+	Ĺ	1 +	40	a E	1'	-			_											12	
									-			za																	6	1	
					-				,					-														,			
					The	8	no	280	atio	re .	4.7	50/0	sti	ion		13	4	115	reg	FR	rd.	ed	a	5	17	u	21/1				
			1		3	ive		12	na	en	101	ry		dis	sta	1	ce	5.	7	has	:						1			12	
					-							× .											1								
						XI	-	+.	5 5	1+	4a	E]	12	-1	5			×	2	E	-	X				1					
								-	4.			za			2		-														
																												1.1			
		(4)	.'.	-		5	E	- X 3	0	LX	47	12	dx	8		(2	+ 1	:) .	11											
						0								-			-			G									1	18	
1		1																										1			
1	2			W	e	2	100	0	C	100	se		th	e	7	ri	9	50	16	st,	tu	tim	n		Sh	14	V =		X		
																													XXz		
			-	1.	, ,	4	-	d	-	- 1	1-	1	76	4	1	4				1		di .		e.	-1	×					
				u	1			a			. 6		2		a	-		1	an	ad		1		-		Xz					
				-															N.							1			10		1
								1					1			2			- 14									-	14		/
											-	-	-	-						-				L-			1.				

a 15 Very small, $1 + sm^2 \psi \sim 2$	s a, 15 a constant because be adjusted to keep value of a. we then the 3rd order m		$(\psi) - \frac{1}{8} a^2 X_2^4 (1 + sur^2 6)^2$
$-a x_2^2 (1 + s u^2 \psi) \int d\psi$	$-a x_2^2 (1 + s m^2 \psi) \int \frac{1}{2} \frac{d \psi}{d \psi}$ ry small,	$= a x_2^2 (1 + s m^2 \psi) \int_{-\frac{1}{2}}^{\frac{1}{2}} d\psi$ $= y s m a n^2,$ $\psi \sim 2$ $= s a constant because$	- $a x_2^2 (1 + sm^2 \psi) \int_{-a}^{1/2} d\psi$ ry small, $\psi \sim 2$ s a constant because $\int_{-a}^{1/2} d\psi$ $\psi \sim 2$ s a constant because $\int_{-a}^{1/2} d\psi$ $\psi \sim 2$ $\psi \sim 2$ $\int_{-a}^{1/2} d\psi$ $\psi \sim 2$ $\int_{-a}^{1/2} d\psi$ $\int_{-a}^{1/2} d\psi$ $\int_$
		+ sim ² 4 ~ 2 a. 15 a constant because	+ sm ² 4 n 2 a, 15 a constant because be adjusted to keep value of a. We then the 3rd order m


	ASSIGNMENT #6 Paul Grant
	continued DEAP-AP-16
	P 251a
	1-7-61
	Problem 29
	Continued:
	(9) $n = 2$: $T/4 = \frac{1}{2} \cdot T/2$
	$n = 4$: $\frac{1\cdot 3}{8} \cdot \frac{1}{72} = 3\frac{1}{716} = \frac{3}{8} \cdot \frac{1}{72}$
	$n = 6 : \frac{15}{48} \cdot \frac{17}{2} = \frac{5}{16} \cdot \frac{17}{2}$
	$n = 8$: $\frac{90}{17/2} = \frac{45}{17/2} \cdot \frac{17/2}{17/2}$
	364 182
	$n = 10$: $\frac{63}{256} \cdot 172$
-	172
	(10) $\int (1 - sm^2 \psi) d\psi = \frac{1}{2} T/2$
	T/2
	$\int (1 - sm^{+} \psi) d\psi = \frac{5}{8} \pi 7_{2}$
	$\frac{T/2}{(1-\sin^{4}\psi)(1+\sin^{2}\psi)d\psi} = \int \frac{T/2}{(1+\sin^{2}\psi-\sin^{4}\psi-\sin^{6}\psi)d\psi} d\psi$
	$= (1 + \frac{1}{2} - \frac{3}{18} - \frac{5}{16}) \pi_2 = \frac{13}{16} \cdot \pi_2$
	773
	$\int_{0}^{\frac{\pi}{2}} (1 - sm^{4}\psi)(1 + sm^{2}\psi)^{2} d\psi = \frac{5}{16} \cdot \frac{\pi}{16} - \int_{0}^{\frac{\pi}{2}} (sm^{4}\psi + sm^{6}\psi)^{2} d\psi = \frac{5}{16} \cdot \frac{\pi}{16} - \int_{0}^{\frac{\pi}{2}} (sm^{4}\psi + sm^{6}\psi)^{2} d\psi = \frac{5}{16} \cdot \frac{\pi}{16} + \frac{5}{16} + \frac{5}{16} \cdot \frac{\pi}{16} + \frac{5}{16} \cdot \frac{\pi}{16} +$
	$-sm^8 \psi - sm'^0 \psi) d\psi$
	$= \left(\frac{5}{16} - \frac{6}{16} - \frac{5}{16} + \frac{45}{182} + \frac{63}{256}\right) \cdot \frac{17}{2}$
	16 16 18 182 2561 10
	(11) We keep only terms in a?:
	$\frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{10} \cdot \frac{1}{2} \cdot \frac{1}{10} \cdot \frac{1}{2}$
	$= (n + \frac{1}{2}) =$
	$(12) \frac{1}{2} \times \frac{2}{2} + \frac{5}{16} a \times \frac{2}{2} - \frac{13}{128} a^2 \times \frac{2}{2} = (n+\frac{1}{2})$
	$\frac{3}{92} \times \frac{2}{2} + \frac{5}{8} a \times \frac{2}{2} - \frac{13}{64} a^2 \times \frac{2}{2} = 2n + 1$
(
•	

		1	1				22		1	-			1	-	11-															-						
	(13)	No	w,	-	×	12	1			21	+	4	AE	5	112	-	-1		112		E	-	10	- •	10	6 a	ZE	2				5				
				1	-						-		2	a	_	-	900	-						1. I.	-	C	a		_	-		-				
				+	1	0	6	4	a 3	E	5	1	_	E	_	-	2	E	2	-	-	2 0	2	F	3		-	-	-	-						
	+++			-	16	0	_	2	a			_		E			a	6		<u>भ</u>		60	6	L											-	
																																			-	
	(14)		Sul	s 5 7	H. 1	たち	no	2	1	n		(1	2)	,	k	ee	P	n	8		ter	m	15		+	0	a	2	:							
					+	-	2		2	2	-	3		5	- /		- 3	2	-	2	-	3)					_	_			_		_	_	_	
			E	-	a	E	-	+ 4	ca	-	E		+	00	- (a	E.	-	2	a	E	- /				_	-	-	_	8	-		-			1
		-		+	+	-																														
			-	6	13	ar	E	3	-	=		Ē	14	-	30	- 0	1 E	2	+		36	1	a	2 E	3	1		2	n	+1						
		•		6	-								_		0						64						_									
	1.0		^b	-	-	-				_	0	-															_							_		
	(15)	Ł	39	r	ev	er	\$10	r		0,	F	50	er	10	2	-												-		_	-			-	-	
		-	y =	= 0	2,)	κ.	+a	2 X	2	+ 0	13	X	3	+	2.1	4								_		-								+	+	-
			~																																	
			×	=	1	2 0		+	Az	. 4	2	+	A	8 4	13+	1																				
			0	_	-	1			0	_			0.	9							1		1 -		2			_	1			_				
			A	-	-	ai		j	Hz	5	_	-	a	I m		J	A	3	-	-	2,5	-	(2	20.7	2	- 0	10	3)	-					+	
	+++				+	-																		-	_									+		
																-	e .																			
		E	= =	×		,	5	11	(22	1+	1)									-														1	
		-		_	-	-			A				1	-	3/8	a											-	_	_		_		-			7
			A	5	+	-		5	A	2	1		+			ī										_	-	-	-	-		-	-		-	
				-	+	-													_					_			-	+			-	-	+	-		
			A	3 =	=	1	8	-	111	36	_)	a	=	-	-	17	_	d	2																	
						2	64		4	64						64	4																	1		-
	4.2			_	_	_				.)			2			-			2			7	_		- 0		30	2			_	-	n	>2		
	(16)	.'		A	Ξ	-	(27	1+	-1)		+	10 00	- 0		2	nt	- ,	-	_	-	7	. (2	21-	FI	0	c	_	+	-	20	a	-)	
				-	+	-				-	-		_										-					-			-		-			
		or	-	E	=	5	3 (ZN	+1)	+		3 4	a	(2n	2 1	2	n -	+ 12	=)	_	0	3	R	34	· n	3	+	5	12	,2				
200						<	-						4										1	6	`				1			-		6 E		
						-	11			+		11 /	1	10		to c	1										•	-1			0			-		
				-	ł	25	12	- 7	n	T		41	/4).	5	the								_				-			$\left(\right)$			-		
				-																	-										~	<i>.</i>	+			
					1														•											1			/			
4																															-	-				
				_										_																						
					-	-		-																				_		-				_		
					+	-	-			_	-																	-	-						-	
					+		-																					-								1
																									×											
											1			1	1.4	1																				
					-	-	-	-				·				-																			-	
					-	-	-	-						-	-	•	-	-	_											-						
1		_						1				-										A														

	Assignment #6 Paul Grant
	Cristinued DEAP-AP-16
	P 251 a
	1-8-61
	한 것 같은 것 같
	30. (1) An harmonic oscillator: dzu + (E-x2-ax4) u = 0
	dx ²
	where $ZM = 1$, $ZMW^2 = 1$
	unit of energy = $\frac{1}{2} \overline{k} \omega$; unit of $(\text{length})^2 = \frac{\overline{k}}{m\omega}$
	(2) Consider V= ax 4 of the perturbet of the herminer
	AS THE PERIODELION TO HAT MONTE
-	oscillator whose equation is
	$d^{2} \mathcal{U} + (E - x^{-}) \mathcal{U} = 0, E_{n}^{(0)} = 2n + 1$
1	$a = \frac{a}{dx^2} + (L + 1)a + 0$, $En = En + 1$
	and the matrix elements of the co-ordinate
	are i
	$\langle m x n\rangle = \int \frac{m}{2} Sm, n+i + \int \frac{n}{2} Sm+i, n$
X	
	$= \int \frac{m+1}{2} \delta m m - 1 + \int \frac{m}{2} \delta m m + 1$
1	V 2 U 2
A	(3) In the calculations to follow, we will wish to
	know the matrix elements of x4; we then
	proceed:
	$\left[\left[\left$
	$\langle m x^2 n\rangle = \langle m x,x n\rangle = \sum_{k} \langle m x k\rangle \langle k x n\rangle$
	$= \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \sum_$
	R (Z O, W VZ O, W) Z O, W J Z O, W Z O, W J Z O, W Z
	$= \frac{1}{2} \sum_{n=1}^{1} \sum_{j=1}^{1} \frac{1}{\sqrt{(n+1)(n+1)}} S_{n} m^{-1} S_{n} p^{-1} + \sqrt{(n+1)(n-1)(n+1)} S_{n} p^{-1} + \frac{1}{\sqrt{(n+1)(n-1)}} S_{n} p^{-1} + \frac{1}{\sqrt{(n-1)(n-1)}} S_{n} p^{-1} + \frac{1}{\sqrt{(n-1)(n-1)(n-1)}} S_{n} p^{-1} + \frac{1}{\sqrt{(n-1)(n-1)(n-1)}} S_{n} p^{-1} + \frac{1}{\sqrt{(n-1)(n-1)(n-1)}} S_{n} p^{-1} + \frac{1}{\sqrt{(n-1)(n-1)}} S_{$
	+ Jt (n+1) St, m+1 Sn, k-1 + Jt n' Sh, m+1 Sn, k+1 9
	$= \frac{1}{2} \left\{ \int (n+2)(n+1)^{2} Sm, n+2 + n Sm, n + (n+1) Sm, n \right\}$
	+ Jnin-11 Sm, n-2 5
-	
	(4) $\langle m x^2 n\rangle = \frac{1}{2} \int \sqrt{(n+2)(n+1)} Sm, n+2 + (2n+1) Sm, n$
	$+ \sqrt{n(n-1)} Sm_{2}n-2 \xi$

															/
							-								
	(, n		L		(2			-	
			St	2	1,7						, 71-				
			h + 2	n+	20						Sm				
			m,	-							5		-	-	
	3	Ş	7 8								(n-1				
	2	2	+2)				+ 2				n			4	
	h-	n-	(h				, n·				1)]				
	ш,	k,	+1)				Sm	- 2	2	7	1				
	5	S) (p)'	N	n: -		22				
)	())						n,	+	2 (
	-1	n -	+						S.		-		1		
	. (4	n (*	2 11)	+4	_				
	Jh	J	(-1						
	-	-	+						(n	Sn	_				
	4	ر .				- 7			n	-					
	, k	2,7	+2)				13	
	Sm	5	k,v							-		5		_	
1>	1)	+1)	8.									5			
2/1	h+	2 11	+2							-		4			
x	(2.	(-	, h									n-			
(k	+	+	Sw							-	-	L,-			
. >0	٤.	2)			-				-	-	Sn			
k	h+	n+	N+1							-	+	<		-	
× ²	'n,	ħ,	2)(1			-	-			+	+	2			
(m	5	S.	nt							+	L	ι) γ		a	
<	2)	1)'	r.) (-				+		a-1			4
Zh	h+1,	n +	*			-				+	-	1 (2		-	
) (-	2)(. 1) (-			-	+	- 2)		-	
	h+1	N+	(h+			+	h			+	-	(2)			
	5(JG	5	Jn (2-	JR	k	n+	n ((n ⁻ (n	2	+3)	.3)	+	En	
.>	Ę	Ę				_	•					(n			
1/2	1.70		N R	+		+	Ę					V	F		
1 * '	Z	~					4			<	+-	+	e		
~	4		4				-						Th		
<	=-						=								
5)										b) (6			7)		
(4								*	-	1			(
4															

	Assignment #6 Paul Grant
	Continued DEAP-AP-16
	P 251 a
3	1-8-61
	Problem 30
100	Continued
	(3) The second order correction is:
	$E_n^{(2)} = Z_n^{-1} \langle k V n \rangle^2 = a^2 \int ^{-1} \langle k x^4 n \rangle^2$
	IT TH THE R TH - TA
	$= \frac{a^2}{2} \int (n+4)(n+3)(n+2)(n+1) + 4(2n+3)^2(n+1)(n+2)$
	16 2 -8 -4
	+ $4(2n-1)^2 n(n-1) + (n-3)(n-2)(n-1)n$
	4 8 3
	$= \frac{\alpha^2}{16 \cdot 8} \int -\left[n^2 + 3n + 2\right] \left[n^2 + 7n + 12 + 32n^2 + 96n + 72\right]$
	$+ [n^2 - n] \int 32n^2 - 32n + 8 + n^2 - 5n + 6] $
	La allocato ta sa to s
	$= -a^{2} \int 272 n^{3} + 408 n^{2} + 472 n + 168$
	8.16
	그는 것 같은 것 같
23 11 10	$= -\frac{a^2}{16} \sum_{n=1}^{\infty} \frac{34n^3 + 51n^2}{16} + \frac{59n}{59n} + \frac{21}{21} \sum_{n=1}^{\infty} \frac{34n^3 + 51n^2}{16} + \frac{59n}{59n} + \frac{21}{59n} + \frac$
60 11	
	(9) $E = \int (2n+1) + \frac{3a}{4} (2n^2 + 2n+1) - \frac{a^2}{16} (34n^3 + 5/n^2)$
	$+59n+21)\left\{\frac{\pi\omega}{2}\right\}$
	(10) In comparing this result with the phase integral
	method we see that they approach each other
	for high quantum numbers. This is expected as
	the phase integral method is a good approximation
	for high n. For low a, the perturbation theory
	gives good results. In this problem, a kell
	(10) In comparing this result with the phase integral method, we see that they approach each other for high quantum numbers. This is expected as the phase integral method is a good approximation for high n. For low a, the perturbation theory gives good results. In this problem a kell was taken in computing the phase integral, thus
	highlighting the fact that the two approach

