

Outline of A. P. 231 - Electron Physics

I.

No. of Lect. Individual Particle Motion in Electric and Magnetic Fields 4 1. Non-relativistic motion; fields uniform in space and time A. Electric field only B. Magnetic field only C. Electric and magnetic fields E parallel to H a) E perpendicular to N; trochoidal trajectories b) c) I makes an angle O relative to H D. Applications of motion in uniform fields; cathode ray oscilloscope, 180° focussing β ray spectrometer, velocity selector, mass spectrograph 2. Relativistic motion 2 Review of special theory of relativity P. . Covariant form of Newton's equation for electric Β. and magnetic fields The momentum four vector and the relativistic kinetic C. energy D. Applications to fission, pair production, cloud chamber momentum measurements E. Longitudinal and transverse mass 3. Non-relativistic motion; inhomogeneous fields A. Inhomogeneous electric fields: electron optics 2 Earnshaw's theorem a) b) Theorem on identity of trajectories for particles with different e/m values c) "Cnell's Law" for electron optics d) The lens equation for axially symmetric fields Focal length of a short, symmetrical electrostatic lens e) 3. Inhomogeneous magnetic fields 3 a) Field gradient perpendicular to field direction b) Motion in a curving field c) Field gradient in the same direction as the field the magnetic mirror - Fermi cosmic ray acceleration mechanism 4. Applications to the magnetron and klystron 3 A. . The cylindrical 8 cavity magnetron a) D. C. magnetron - cutoff condition

b) Cavity resonance condition

c) Coupling between electronic motion and cavity oscillator

1

5

5

3

- 3. The two cavity klystron amplifier
 - a) Bunching of electron beam
 - b) Coupling of electron beam to cavity oscillations
- C. The two cavity klystron oscillator
- D. The reflex klystron

II. Electrons as Waves

III. The Fermi Dirac Statistics

- 1. General principles
 - A. Statistical mechanics derivation of the Fermi distribution
 - B. Connection of the Lagrange multipliers with the temperature and chemical potential
 - C. Low temperature integrals involving the Fermi function
 - D. Density of states for electrons from the Born Von Karman boundary conditions
 - E. Calculation of the Fermi energy and its temperature dependence
 - F. The connection with classical statistics
 - G. The connection with thermodynamics the free energy of the electrons
 - H. Energy and momentum distribution functions
- 2. Applications of the Fermi statistics
 - A. The electronic specific heat
 - B. Thermionic emission
 - a) Richardson's eqn.
 - b) Energy distribution of emitted electrons
 - c) Energy withdrawn from metal by emitted electrons
 - C. Field enhanced or Shottky Emission
 - L. High field emission the field emission microscope
 - E. Contact potential
 - a) Kinetic and thermodynamic derivations of constancy of Fermi level throughout an assembly in equilibrium
 - b) The contact difference of potential

IV. The Thomas-Fermi Approximation

- 1. The Thomas-Fermi Equation
- 2. Distribution of electrons in a neutral atom
 - L. Effective radius of an atom with z electrons
 - 3. Region of validity of Thomas.Fermi approximation

- C. Potential at nucleus due to electrons
- D. Lamb diamagnetic shielding of the nucleus
- E. Ionization energy of neutral atom
- 3. Free ions
 - A. Boundary conditions for calculation of electronic charge distribution
- 4. The electrostatic field of an impurity atom in a metal "Mott shielding"
- V. The Physics of Fully Ionized Gases

5

- 1. The Debye shielding length
- 2. Plasma oscillations
- 3. Equations of motion for charge density, and current density of a plasma in the presence of electric and magnetic fields, pressure gradients and collisions
- 4. Electromagnetic waves in a plasma
 - A. Transverse 🗉 wave
 - a) No resistivity cutoff frequency
 - b) Finite resistivity
- 5. Review of principles of controlled thermonuclear fusion
 - A. Requirements for controlled thermonuclear device
 - B. The Pinch effect
 - C. Instability of the pinch

G. B. Benedek

APPLIED PHYSICS 231 ELECTRON PHYSICS LECTURE I 2-7-61 millman "Electronics " References : " Electron Optics" myers Coslett " Theory of Loniged Gases" Apitzer Intro. to Thermonuclear Research" Simon " Project therwood " A. Bishop " Electronic Motion " Harmon Motion of Charged Particles in applied Fields: The equations of motion are: $\frac{d(mv)}{dt} = e\vec{E} + e\vec{v} \times \vec{H}$ Unita are: csu for e E emu for H (zausa) cgs for mechanical quantitier 1. Electric field homogeneous in space and constant in time : Voy, Voz at t=0 et 1 y Se X = 0J= Voy t Z = Vozt + 2 e Ez t2 mx = 0 mý = 0 $m\ddot{z} = e\mathcal{E}$

Removing the time : $Z = Voz \left(\frac{y}{v_{oy}}\right) + \frac{1}{z} \frac{e \mathcal{E}_z}{m} \left(\frac{y}{v_{oy}}\right)^2$ Completing the square: $\begin{pmatrix} z + \frac{m v_{0z}^2}{ze \varepsilon_z} \end{pmatrix} = \frac{e \varepsilon_z}{zm v_{0y}^2} \begin{bmatrix} y + \frac{m}{2} & v_{0z} & v_{0y} \end{bmatrix}^2$ (multipi) (nultipi) M Voz Voy C E z E constant in Time bat inhomogenour in space &= E(u), 2. $how \quad \nabla x \mathcal{E} = \frac{1}{c} \frac{\partial B}{\partial t} = 0$ Thus: $\int \nabla x E \cdot dA = \oint E \cdot dr = 0$ $a \qquad b \qquad \vdots \qquad \int E \cdot dr + \int E \cdot dr = 0$ $R \qquad R \qquad R$ Thus the integral is independent of the path and dependent only on scalar work quantities at P. and Pr, vez, $\int \mathcal{E} \cdot d\mathbf{r} = V_i - V_z$ or is the work done in Transporting a unit charge from P. To R.

Then: E. (11-12) = V1-V2 $\partial z \qquad \mathcal{E} = \frac{V_1 - V_2}{n_1 - n_2} = -\nabla V$ We desire a first integral of motion: $m \frac{dr}{dt} = e \mathcal{E}(n)$, $m \left(\frac{dr}{dt} \cdot dn \right) = e \mathcal{E} \cdot dn$ $\sigma m \int v d\sigma = e \int_{2}^{R} e dt = e (V_{1} - V_{2})$ or $\pm m(\overline{v_2}^2 - \overline{v_i}^2) = e(V_i - V_2)$ which in the first integral of the motion or just the conservation of motion. all equations are such that the electronic charge must be used as negative. 3. Magnetic Field Only Homogeneous: m(do) = e J × H If H is independent of Time, it can do no work. The reason is: P = F.v for The power. $\frac{e \, \nabla \times H}{c} \cdot \nabla = m \left(\nabla \cdot \frac{d \nu}{d t} \right)$ so that I is I to do. another Way: I v. dr = 0 or v. 2 - v. 2 = 0 or the square of the velocity does not change.

mechanical analogy (Top is gravitational Field spinning at high velocity) $\frac{dL}{dt} = \mathbb{R} \times L$ $\frac{dL}{dt} = \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{dL}{dt}$ $\begin{array}{cccc}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\$ $\frac{dJ_{\omega}}{dt} = \frac{m\bar{g}l}{T\omega} \times J_{\omega}$ This applies only in case of high a where the direction of the torque is along the body axis. magnetic analogy, dM = & M × H For the perpendicular velocity: $\frac{dv_1}{dt} = \frac{eH}{mc}v_1 \quad o_2 \quad \frac{dv_1}{v_1} = \frac{eH}{mc}dt$ We assume an initial velocity V_{01} . Then: $d\theta = dv_1 = \frac{eH}{mc} dt$ $v_1 = \frac{eH}{mc} dt$ $v_1 = \frac{eH}{mc} = \omega$ Thus, the particle precesses as a top. $R = \frac{v_{os}}{-\omega} = \frac{v_{os}}{eH}$

Formal folation : Given Voy, Voz ; Vox = 0 HA d vx = e H vy > 3 $\frac{dv_y}{dt} = -\frac{eH}{mc}v_x$ $\frac{dv_z}{dt} = 0 \qquad , z = v_{0z}t$ now i d(vx +1 vy) = -1 w (vx +1 vy) $(\overline{v_x} + \overline{v_y}) = (\overline{v_x} + \overline{v_y}) = e^{-\overline{v_y}}$ Put in initial conditions : (Ux + a Uy) (0) = Voy e - a w t and get: dx = Voy Amat dy = Voy con at $X = -\frac{v_{oy}}{\omega} \cos \omega t + \frac{v_{oy}}{\omega}$ $X = 0 \quad \text{when } t = 0$ $Y = \left(\frac{v_{oy}}{\omega}\right) \sin \omega t$ Eleminating Time : $\left(X - \frac{75y}{\omega}\right)^2 + y^2 = \left(\frac{75y}{\omega}\right)^2$, $R = \frac{75y}{\omega}$ Toy @ particle

LECTURE II 2-9-61

Charged Particle in Homogeneour Magnetic Field: Result:

 $\left(X - \frac{v_{oy}}{w}\right)^2 + y^2 = \left(\frac{v_{oy}}{w}\right)^2$

Voz Voz Voy

motion is helical. The gitch is .

 $p = \mathcal{V}_{07}\left(\frac{2\pi}{\omega}\right) = \left(\frac{2\pi}{\omega}\mathcal{V}_{02}\mathcal{M}\mathcal{C}\right)$

Electric and Magnetic Fields present Vogether:

a) E and H parallel

ETH

Geven; Voy, Voz Vox = 0 X=y= Z=0 initially

 $\vec{e} = \vec{J}_z \vec{e}$ $\vec{H} = \vec{J}_z \vec{H}$ Equations of mation ! $m \frac{dv_z}{dt} = e \mathcal{E}$

 $m \frac{dv_x}{dt} = e v_y H$

 $\frac{dv_4}{dt} = -\frac{ev_x}{c} \frac{H}{c}$

folutions are: = Vozt + ± e E + 2

 $x = -\frac{v_{oy}}{\omega} \cos \omega t + \frac{v_{oy}}{\omega}$ y = tog sin wt

The motion is seen to be: The fitch now mereases with & because of the E field. We define the getch as in terms of the number of cycles: - y $P = \overline{vo_{\neq}} \left(\frac{2\pi}{\omega}\right) n + \frac{1}{2} \frac{e \mathcal{E}}{m} \left(\frac{2\pi}{\omega}\right)^2 n^2$ regatively charged particle: If initial velocity in + 7, There will be turning point and particle accelerates downword b) E and H I to each other. $m \frac{d\bar{v}}{dt} = e \bar{\mathcal{E}} + e\bar{\upsilon} \chi \bar{H}$ * R = Re + Vot + N $\overline{v} = \overline{v} + \overline{v}'$ $\overline{v} = \overline{v} + \overline{v}'$ $\overline{v} = \overline{v} + \overline{v}'$ $\overline{v} = \overline{v} + \overline{v} + \overline{v} + \overline{v}' + \overline{v}'$ Thus eliminating E'S Only when E and H are +.

The vector solution to this equation is ; $\overline{U_{c}} = \underline{c(\mathcal{E} \times H)}_{H^{2}}$ Thus choosing a proper moving coordinate system with velocity ve, we can eliminate E. $m\left(\frac{dv'}{dt}\right) = ev' \times H$ Initial Conditions: A. To along y direction, 0 500 Consider first To = 0 Stationary Lysten . $\overline{U}_{e} = J_{y}\left(\frac{cE}{H}\right)$ moving System ; HO Ve Regative charge: Stationary System : Path in that of point on rem of rolling wheel. $C = 2\pi \left(\frac{v_c}{\omega}\right)$ OH

B. OL Voy L TE MCSO -y' (VE - Voy) (22-25) OH K Voy = Vy SCS: Toy = 0 We see that if proper initial velocity in chosen, particle will go three undeflected. Principle of velocity selector. C. Ve L Voy L ZVE ~ Voy = ZUE SCS (V2- Voy) 0 4 Py! Ve IT D. ZTE (Joy 2 SCS : 7 4 d) velocity component along x - direction. MCS: _____ y

2 SCS : $\Theta = \tan^{-1} \frac{\mathcal{D}_{c}}{\mathcal{D}_{ox}}$ e) pritial relocity component in 7 direction : MCS: Y $-R = \sqrt{(252)^2 + (25-252)^2}$ nothing essentially new occurs expect a shift in maximim of circle in scs: E and H not I to each other Va = Ij (Esmo)e Esmo motion in MCS same an before except that now we have 2 0 uniform acceleration along arc of belief. VE cont Motion ;

LECTURE TIL 2-11-61

Applications of the Motion of Charged Particles in Uniform Electric and Magnetic Fields.

1. motion in Uniform & fields Cathode Ray Oscilloscope.

The motion between the plater is given ling: $Z = \frac{e E_Z}{2m \overline{v_{0_X}^2}}, \quad E_Z = \frac{V_D}{d}, \quad \overline{v_{0_X}^2} = \frac{2e V_A}{m}$

 $\frac{7}{1000}; \frac{7}{5} = \tan \theta, \quad S = \frac{7(l)}{100} = \frac{1}{2m \log^2} \frac{1}{\frac{1}{100}}$

2 so that say has virtual source at center of plater.

how: $D = (L - \frac{l}{2}) \tan \theta = (L - \frac{l}{2}) \frac{e V_0 l}{m d \left(\frac{2 e V_A}{m}\right)}$

 $= (L - \frac{1}{2}) \frac{l}{2d} (\frac{V_0}{V_A})$

note that the higher VA, the less the deflection. Usually corrected by post - deflection acceleration.

2. Motion in Uniform Magnetic Field: Danyag Focussing 180° Beta Pay spectrometer. For well-defined beam $d = \frac{2v}{w}$ so we have velocity selector. However, in practice we have divergent pencil which must be forward. By law of commen: $a = \frac{v_0}{w}$ d2 = 2a2 - Za2 con (180 - 20) = za² (1+ con 20) $= 2a^{2}(1+1-\frac{4\theta^{2}}{2}) = 4a^{2}(1-\theta^{2})$ Thus d = za (1- ±02) and for small O, the diameter is only affected in the second order. Thus the spectrometer is self - focusing. One can also see this by tilting the circle through small angles, 3. Crossed E and H Fields: Thompson e/m measurement. For no deflection, $v = \frac{c E}{H}$ 18 from (Free = eE, (Fr)m = eoH and FP = Fb Procedure is to get to this critical point and them turn off electric field. Then radius of curvature is: R = VC

 $or R = \frac{v_c}{(eH_c)} = \frac{mC^2 E_c}{eH_c^2}$ $or \quad \frac{e}{m} = \frac{c^2 \mathcal{E}_c}{P \mathcal{H}^2}$ Thompson found in 1897, e = 7.7 x10 enulgin Present data: 1.758.10° enun/gm, off by 2, not bad. 4. Bainbridge mass spectrometer First me velticity selector to get particles of different more but constant velocity. velocity selector ν -----d discreet points for different masses. now: V = CEs Hs $d = \frac{zv}{\omega} = \left(\frac{zc}{H_s}\right) m \quad ar \quad d = \left(\frac{zc^2}{e}\right) m \quad m$ 5. Parallel EM Fields: Thompson's mass Apectrometer. 00000 00000 00000 00000 now : $Z = \frac{e \mathcal{E}_z L}{m \mathcal{V}_y^2} \left(L - \frac{1}{z} \right)$ recalling that now particles enter velocities.

 $\Delta = tan\theta, p = \Delta tan\theta$ $l \begin{cases} e^{\theta} \\ R \\ e^{\theta} \\ P \end{cases} = \frac{(R - R \cos \theta)}{\tan \theta} = \frac{R^2 (1 - \cos \theta)}{\ell}$ for a small. $P = \frac{R^2}{2} \left(1 - 1 + \frac{\theta^2}{2} \right) = \frac{R^2 \theta^2}{7\theta} = \frac{R^2}{7\theta} \left(\frac{1}{R} \right)^2 = \frac{1}{2}$ so we have the center as a vertical source for a small. now: X = (L - L) tan 0 = (L - L) L = (L - L) let $or \left(\frac{1}{v_{by}}\right)^2 = \left[\frac{x mc}{eH(L-\frac{2}{2}Id)}\right]^2$ Then: $z = e Ez l(L-\frac{l}{2}) , \frac{m^2 c^2 x^2}{e H (L-\frac{l}{2})^2 l^2}$ or $Z = \frac{mc^2 \mathcal{E}_Z}{\mathcal{E}_Z \mathcal{E}_Z} \mathbf{x}^2$ Thus we have a different curve from each wars whose curvature gives × m Deflection in & field dependa on velocity squared, in H field or momentum.

LECTURE IV 2-14-61 Relativistic motion of Charged Particles in Electric and Magnetic Fields. Special Relativity: It turns out that motion of electrons three potential drops of 3-4 hilovalta. Basic assumptions: 1) Tows of physics are the same in all coordinates systems that more at cristant velocity relative to each other (relativistic modriance). 2) Velocity of light is the same for all coordinate systems moving with uniform velocity relative to each other, Forenty transformation aresea from (2). fet O and & represent Two c.s. moving at constant velocity relative to each other. Then: $dn O: (dx_i)^2 + (dx_i^2)^2 + (dx_i^3)^2 = c^2 (dt_i)^2$ $\Im (2: (dx_{i}^{2})^{2} + (dx_{i}^{2})^{2} + (dx_{i}^{3})^{2} = C^{2}(dt_{i})^{2}$ This can be written as a 4 vector: $\sum_{M=1}^{r} (dx_{i}^{M})^{r} = \sum_{Y} (dx_{i}^{T})^{2} \quad (\text{length preserving})$ The Transformation connecting O and & must preserve are length in the 4 space. That is: $\begin{pmatrix} dx_i' \\ dx_i^2 \\ dx_i^3 \\ 1 c dt_i \end{pmatrix} = L_1 \begin{pmatrix} dx_2' \\ dx_2^2 \\ dx_2^3 \\ 1 c dt_i \end{pmatrix}$

now: X' = X' $\chi_1^3 = \chi_2^3$ and $X_2^2 = X_1^2 - \upsilon t$, $\left(\frac{\upsilon}{c}\right)^2 \equiv \beta^2$ $\int \left[-\left(\frac{\upsilon}{c}\right)^2\right]$ $t_2 = t_i - \frac{\nabla X_i^2}{c^2}$ JI- 32 1 now all physical lows must remain invariant under the forenty transformation, just as newton's taws are invariant under the Isalilian. Their we must formulate the physical lows as 4 demensional guantities: Examples of 4 vectors and scalars: 1) Icalar (Proper Time acalor) $(dr)^2 = -\frac{1}{c^2} \sum_{u} (dx^u)^2$ $= -\frac{1}{c^{2}} \left((dx')^{2} + (dx^{2})^{2} + (dx^{3})^{2} - c^{2} dt^{2} \right)$ If all dx's are zero (proper choice of c.s.) Then dt² = dt² [c.s moving with particle) now differentiate by t: $\left(\frac{dt}{dt}\right)^{2} = -\frac{1}{c^{2}}\left[\left(\frac{dx'}{dt}\right)^{2} + \left(\frac{dx^{2}}{dt}\right)^{2} + \left(\frac{dx^{5}}{dt}\right)^{2}\right] + 1$ $= 1 - (\frac{v}{c})^{2}$ $df = \int I - B^2 I$

@ 4 vector (World Velocity) $U_2 = \frac{d\tilde{n}}{dt} \Big|_{for space comp.} ; \quad \mathcal{L} \left(\frac{dt}{dt} \right) \\ \quad time$ $M_{Z} = \frac{\tau_{L}}{\sqrt{1 - \beta^{2}}} / \frac{1}{L = 1, 2, 3} = \frac{1}{\sqrt{1 - \beta^{2}}} / \frac{1}{T} = 4$ $\frac{M_{\pi}}{M_{\pi}} \frac{M_{\pi}}{M_{\pi}} = \frac{v^2}{1 - \beta^2} - \frac{c^2}{1 - \beta^2} = \frac{v^2 - c^2}{\left(\frac{1}{c^2}\right) \left(\frac{d^2 - v^2}{d^2 - v^2}\right)} = -c^2$ eseveralize newton's Tawa and forenty Force d (mor) = Fr (classical) d (m Uu) = Fu now at low velocities the = e En + e (oxH). We deal with the vector and scalar grotentials: $\overline{\mathcal{E}} = -\nabla \mathcal{Q} - \frac{1}{c} \frac{\partial A}{\partial t}, \quad H = \nabla x \overline{A}$ These are direct consequences of maxwells equations. V.H = 0 and VXE = - i dH $\forall x E = -\frac{1}{c} \frac{\partial}{\partial t} (\forall x A), \quad \forall x \left(E + \frac{1}{c} \frac{\partial A}{\partial t}\right) = 0$ VQ $L = -\nabla \varphi - \frac{1}{c} \frac{\partial A}{\partial t}$ Thus we write : $\overline{A} = e \left\{ -\nabla Q - \frac{1}{c} \frac{\partial A}{\partial t} + \frac{\nabla X (\nabla X A)}{c} \right\}$ $a = \overline{fx} = e \left\{ -\frac{\partial e}{\partial x} - \frac{1}{2} \frac{\partial A_x}{\partial t} + \frac{1}{2} \left(\overline{v} \cdot \frac{\partial}{\partial x} \overline{A} - (\overline{v} \cdot \overline{v}) A_x \right) \right\}$

 $how \frac{dA_x}{dt} = \left(\frac{dA_x}{dt}\right) + \overline{D} \cdot \nabla A_x$ which in the proper form of a total time derivative. Plugging in: $\overline{A_x} = e \left(\frac{-\partial q}{\partial x} + \frac{1}{c} \overline{v}, \frac{\partial \overline{A}}{\partial x} - \frac{1}{c} \left(\frac{dA_x}{dt} \right) \right)$ Introduce the notation : An = Ax Ay Az Il Vn = Vx Vy Vz ic then: $f_{x} = e \left\{ \frac{1}{c} \stackrel{}{\underset{u}{\equiv}} \underbrace{\mathcal{T}_{u}}_{\partial x} \stackrel{\frac{\partial \mathcal{H}_{u}}{\partial x}}{-\frac{1}{c}} \left(\frac{d\mathcal{H}_{x}}{dt} \right) \right\}$ which is still classical. To go to relativistic, make t - +, vo - 110, then , $\overline{A}_{p} = \underbrace{e}_{d} \left\{ \underbrace{\underbrace{f}_{u=1}^{\#}}_{u=1} \underbrace{M_{u}}_{d \times v} - \underbrace{dA_{v}}_{d \times v} \right\} = \underbrace{d}_{d \times v} \left(\underbrace{m \, u_{v}}_{d \times v} \right)$ we have time - like component that we did not have classically. Examine the space -like components: $\frac{1}{\sqrt{1-\beta^{21}}} \frac{d}{dt} \left(\frac{m H_{\perp}}{\sqrt{1-\beta^{21}}} \right) = \frac{e}{c} \frac{1}{\sqrt{1-\beta^{21}}} \left\{ \frac{1}{m} \frac{V_{\mu}}{\partial X_{\mu}} - \frac{d}{dt} A_{\mu} \right\}$ $= \frac{e}{\sqrt{1-B^2}} \left(\frac{e}{e} + \frac{v_X H}{c} \right)$ $ar \left(\frac{d}{dt} \left(\frac{mv_{\perp}}{\sqrt{1-\beta^{2}T}}\right) = e\left(\frac{\mathcal{E}_{\perp} + (v - x H)_{\perp}}{c}\right)$ which in The relativistically correct equation for the space like components.

Examine the time - like component; $\overline{4}_{4} = \underbrace{e}_{c} \left\{ \underbrace{z}_{z} \underbrace{M_{z}}_{dx} \underbrace{\partial A_{z}}_{dx+} - \underbrace{\partial A_{+}}_{dx+} \right\}$ $= \frac{1}{\sqrt{1-\beta^2}} \stackrel{e}{\leftarrow} \left\{ \begin{array}{c} \overline{v} \cdot \frac{\partial A}{\partial t} + \frac{\lambda c}{\lambda c} \frac{\partial (q\lambda)}{\partial t} - \frac{d(\lambda q)}{dt} \right\}$ $= \frac{1}{\sqrt{1-\beta^{2T}}} \stackrel{e}{\leftarrow} \begin{cases} \frac{\tau}{\sqrt{1-t}} & \frac{dA}{dt} - \sqrt{\tau} & \frac{1}{\sqrt{1-t}} \end{cases}$ $= 1\overline{v}e \cdot \left\{-\overline{v}e - \frac{1}{c}\frac{\partial A}{\partial t}\right\}$ on $\overline{4}_{4} = \underline{1} e \overline{\nu} \cdot \overline{e} = \underline{1} \quad \underline{dT} = \underline{d} \quad (m \underline{u}_{4})$ $c \sqrt{1-\beta^{21}} \quad c \sqrt{1-\beta^{21}} \quad \underline{dt} = \underline{dt} \quad (m \underline{u}_{4})$ $= \frac{1}{\sqrt{1-\beta^2 l}} \frac{d}{dt} \left(\frac{m \cdot c}{\sqrt{1-\beta^2 l}} \right)$ or $\frac{d}{dt}\left(\frac{mc^2}{J_{I-B^{2}}}\right) = \frac{dT}{dt}$, T = hinetic energyIntegrating, setting the constant of integration yerol arbitrary, but useful): $\int \pi = \frac{mc^2}{\sqrt{1-\beta^2}}$ which is the usual equation for the relativistic tanetic energy.

LECTURE I 2-16-61 We have shown: $\frac{dT}{dt} = \frac{d}{dt} \left(\frac{mc^2}{\sqrt{1-s^2}} \right)$ $\overline{T} = \frac{mc^2}{1 - \beta^2} + constant$ surce energy is relative, the constant is abitrary because only changes in ealingy are important. now, the momentum 4 vector is: $P_{\mu} = \left(\frac{m\bar{\upsilon}}{\upsilon_{I-B^{2l}}}\right), \frac{lcm}{\upsilon_{I-B^{2l}}}$ 1 TT notice That I' - mer as V-20, 17 = mc2 [1- (2)2]-1/2 now. $= me^{2} \left[(+\frac{1}{2}(\frac{v}{e})^{2} + \frac{t^{2}}{2!}(\frac{v}{e})^{4} + \cdots \right]$ $= mc^2 + \frac{1}{2}mv^2 + \dots$ Consider a fission process such that no external work in done on the system, That is AT = 0. Then ? △ mci = 1 m (vi-vi) this the mass goes over into velocity after the process is complete.

Consider pair production: O & ray -> (2) yielding z man particles. The energy of the & rang must go into the creation of the mass: $h \mathcal{D} = 2 m c^2 \left(1 + \frac{1}{2} (\frac{\omega}{c})^2 + \dots \right)$ Order of magnitude for electrons ! (mc²) electron = 9.1.10⁻²⁸.9.10²⁰ = ,51 MEV (mc²) proton = 936 MEV hote that I vay must have energy to create two particles. We need high energy acceleration to produce pair creation of heavy particles. Expression of magnitude of momentum 4 Vector: $\frac{1}{m} P_{m} P_{m} = \frac{(m\sigma)^{2}}{\sigma^{2}} - \frac{m^{2}c^{2}}{m^{2}c^{2}} = -m^{2}c^{2} = p^{2} - \frac{\pi^{2}}{c^{2}}$ We take \$\$ to be the space component of relativistic momentum, that is . $\vec{p} = m\vec{\sigma}^{7}$ $\sqrt{1-\beta^{27}}$ Then: $p^2 c^2 = p^2 - m^2 c^4$ or i $\int n^2 = p^2 c^2 + m^2 c^4$ 1) Constant magnetic Field Case: Consider velocity L H.

That is . $\frac{d}{dt}\left(\frac{mv}{S_{i}-B^{2}I}\right) = \frac{ev \times H}{c} \rightarrow \frac{ev H}{c} = \frac{d\vec{p}}{dt}$ $\frac{dt}{p} = \frac{dp}{dt} = \frac{dp}{dt} = \frac{dp}{dt}$ $\frac{dp}{p} = \frac{d\theta}{dt}, \quad \frac{dp}{dt} = \frac{p}{dt}$ $\frac{pw}{c} = \frac{evH}{c} = \frac{epwH}{c}, \quad v = pw$ $\frac{pw}{c}$ $\frac{pw}{c}$ or $p = \stackrel{e}{\leftarrow} H_p$ so that $p \sim p$ even in the relativestic case. We now relate the retativistic senetic energy to the radius of curvature, vy: $T^2 - m^2 c^4 = e^2 H^2 p^2$ We write I= MC² + AE where AE is the motional change in KE. $\frac{1}{2} = \frac{1}{eH} \left[\frac{T^2 - mc^2}{mc^4} \right]^{1/2} = \frac{\Delta E}{eH} \left[1 + \left(\frac{2mc^2}{\Delta E} \right) \right]^{1/2}$ Migh every limit, pr <u>SE</u> and becomes independent of the mass. Consider an applied field of 10 tilogavor : p (meters) AE electron proton deuterous We see that p becomes . 457 independent of .035 10 6.46 mass for high . 354 1.48 2:06 100 3.33 5.64 7.25 energies. 1000 33,33 36.3 39.0 10000

Equation of motion : Transverse and Longitudinal Mass. Consider Apace Componente : $\overline{\overline{f_1}} = \frac{d}{dt} \left(\frac{m\overline{p}}{\sqrt{1-\beta^2 l}} \right) = \frac{m}{\sqrt{1-\beta^2 l}} \frac{d\overline{v}}{dt} + \frac{m\overline{v}^2}{(1-\beta^2)^{3/2}} \frac{1}{c^2} \frac{\overline{v}}{dt}$ $\sigma_{1} \left[\frac{m}{\sqrt{1-\beta^{2}}} + \frac{m}{\sigma^{2}} \frac{\vec{v} \cdot \vec{v}}{\sqrt{1-\beta^{2}}} \right] \cdot \frac{d\vec{v}}{dt} = \vec{t}$ now the change in velocity need not be in the direction of the force in view of the fact that the wars is now a tensor mt. Case of acceleration and I in same direction: 1) ジリデ: $\begin{cases} \vec{1}_{\pm}: \quad \underline{m} \quad d\vec{v}_{\pm} \\ \overline{n} \quad dt \quad + \quad \underline{m} \quad \vec{v}^{2} \quad \vec{1}_{\pm} \vec{1}_{\pm} \cdot d\vec{v}_{\pm} \\ ()^{3/2} \end{cases} = F \quad \vec{1}_{\pm} \end{cases}$ $(which proves \quad That \quad (\frac{dv}{dt})_{\pm} \quad t_{\pm} \neq = 0$ how: $\left[\begin{array}{c} (1-(\frac{\tau}{c})^2)m + m \overline{\sigma^2} \\ \hline (1-(\frac{\tau}{c})^2)m + \frac{m \overline{\sigma^2}}{(1-\tau)^2} \end{array} \right] \frac{d\overline{\sigma}}{d\overline{t}} = \overline{\overline{t}}$ $\frac{m}{(1-(\frac{3}{2})^2)^{3/2}} \frac{d\vec{v}}{dt} = \vec{t}, \text{ then : } m^* = \frac{m}{(1-r^2)^{3/2}}$ (longitudinal moss) 2) VI Fi : dot V into original equation. Then: V. Fi =0 $\partial t := \left[\frac{m}{\sqrt{1}} + \frac{mv^2}{\sqrt{1}} \right] \vec{v} \cdot \frac{d\vec{v}}{dt} = 0 \quad or \quad \vec{v} \cdot \frac{d\vec{v}}{dt} = 0$

Thus, returning to ariginal equation, putting $\overline{v} \cdot \frac{d\overline{v}}{dt} = 0$ $\frac{d\vec{v}}{dt} = \frac{d\vec{v}}{dt} = \frac{d\vec{v}}{dt}$ and m* = m (transverse mars) Velocity after acceleration through AV: T + V = constant (conservative) then $e \Delta V = \Delta T = \left(\frac{mc^2}{\sqrt{-\beta^2 T}} - mc^2\right)$ $\beta = \frac{1}{2}$ Start from rest. 104 105 106 -AV -> Joganthmie Scale LECTURE VI 2-18-61 Cyclotron Frequency: Recal! $\frac{dv}{\sqrt{1-\beta^2}} = \frac{ev}{dt} = \frac{ev}{c}$ From analogy with non-relativistic case: $\omega = \frac{eHc}{\left(\frac{Mc^2}{\sqrt{1-\beta^2}}\right)} = \frac{eHc}{7} = \frac{eHc}{\left(mc^2 + \Delta E\right)}$

 $\sigma_{2} \quad \omega = \left(\frac{eH}{mc}\right) \frac{1}{1 + \left(\frac{\Delta E}{mcc}\right)} = \frac{\omega_{0}}{\left(1 + \frac{\Delta E}{mc^{2}}\right)}$ For large ΔE : $\omega = \omega_0$ $\left(\frac{\Delta E}{2mc^2}\right)$ In synchrotion, we synchronize the magnetic field and electric field to construct the slowing down of w. Example: H = 10 kgauas f (MC) DE (mer) electrons protons 10 1635 15.2 100 143 13.8 14 1000 2.46 10000 1.4 1,32 Thomas Precession: An axis fixed on a body whose center of more with velocity VI (+) undergoes a frequency of precession as; $\overline{\omega} = \frac{1}{2c^2} \overline{v} \times \overline{v}$ Relativistically, acceleration of a body must molde rotation as two forenty transformation cannot reduce to one, server use to apin and modification of Lande's factor. The difference between ×"4 25 " × and ×' correspond to velocity, x', x" corresponde × | ×| Z' V' 2" to acceleration. X' centered on body. × is the observing 7 coordinate system. We know: x = x

g' = g $z' = (z - v' t) \beta(v'), \beta(v') = -($

V 1- 12/2l

and $t' = \left(t - \frac{\nu' z}{c^{\prime}}\right) \beta(\nu')$ Yo connect ' and "; $X'' = (X' - v''t') \beta(v'')$ $y'' = y', \quad z'' = z'$ $t'' = \left(t' - \frac{v'' \times i}{n^2}\right) \beta(v'')$ Relate to xyz: $x'' = (x - v'' \{t - v'z\} \beta(v')) \beta(z'')$ y" = y $z^* = (z - v't)_{\beta}(v')$ $t'' = \left[\left(t - \frac{v'_{\lambda}}{c^2} \right) \beta(v') - \frac{v''_{\lambda}}{c^2} \right] \beta(v'')$ We will now show that the " coordinate systems is shew from the unprimed system or the " system in notating with respect to xyZ; We examine the origino: x'' = x'' = 0 $= v'' t \left(1 - \frac{v'^{2}}{c^{2}} \right) \beta(v')$ V" (+- V'Z) B(V') = v"+ (1 - 012)1/2 z = v't7 $fan \theta = \frac{v''}{v'} \sqrt{1 - \frac{v'^2}{c^2}}$ 70 XH Х

moving to " as reference : Take X = Z = O x"= - v"t B(v) B(v") Z" = - v't B(v') $\tan \Theta' = \frac{v''}{z^*} = \frac{v^{-''}}{v'} \beta(v'')$ X We take on 44 or an Ko" velocity I to v' is assumed to be small. 30 to find change in angle ; $\tan \theta' - \tan \theta \stackrel{\sim}{=} \theta' - \theta = \frac{\upsilon''}{\upsilon'} \int \frac{1}{\sqrt{1 - (\upsilon'')^2}} d\theta = \frac{\upsilon''}{\upsilon''} \int \frac{1}{\sqrt{1 - (\upsilon'')^2}} d\theta = \frac{\upsilon'''}{\sqrt{1 - (\upsilon'')^2}} d\theta$ - 1-1212 $= \frac{\mathcal{V}''}{\mathcal{V}'} \left[1 + \frac{1}{2} \left(\frac{\mathcal{V}''}{c} \right)^2 - \left(1 - \frac{1}{2} \left(\frac{\mathcal{V}'}{c} \right)^2 \right) \right]$ $\sigma : \Delta \theta = \frac{1}{2c^2} \frac{v''}{v'} \int v''' + v'''$ now: $v'' = \left(\frac{dv'}{dt}\right) dt$ $\sigma \frac{d\theta}{dt} = \frac{1}{2c^2} \left(\frac{dv'}{dt} \right) v'$ $\sigma z \quad \overline{\omega}' = \frac{1}{2c^2} \quad \overline{\upsilon}' \times \overline{\upsilon}'$

Spin - Orbit Coupling : $\frac{e^{\overline{E}}}{100} \qquad H_0 \qquad H_0 \qquad is a reference$ bield. $<math display="block">\frac{e^{\overline{E}}}{100} \qquad bield. \qquad bield.$ and $\vec{\mu} = \left(\frac{-e}{mc}\right) \vec{h} \vec{s}$ Recall H = Ho + Exo and from dynamics : $\left(\frac{dH}{dt}\right)_{dyn.} = J = \vec{\mu} \times H = \mu \times \left(H_0 + \vec{\epsilon} \times \vec{\nu}\right)$ mow: $\vec{\mathcal{E}} = -\left(\frac{1}{n} \frac{dq}{dn}\right) \vec{n}$ = $\vec{u} \times \left(H_0 - \left(\frac{1}{\pi} \frac{\partial \varphi}{\partial \pi} \right) \frac{\vec{r} \times m\vec{v}}{mc} \right)$ = Il × (Ho - 1 de til) From mechanica : i x H = J and U= -u.H Then ? Us.o. = - M. (-1 24 the) $oz \quad \mathcal{U}_{s,o} = -\frac{e\hbar^2}{(mc)^2} \left(\frac{1}{r} \frac{\partial q}{\partial r} \right) \vec{s} \cdot \vec{l}$ which given only 2 Times The right answer. The reason is that we have not included Thomas precession: $\left(\frac{dA}{dt}\right)_{Am} = \overline{\omega} \times \overline{A}$ $\begin{pmatrix} dA \\ dt \end{pmatrix}_{Tot} = \begin{pmatrix} dH \\ dt \end{pmatrix}_{Lm} + \begin{pmatrix} dH \\ dt \end{pmatrix}_{dyn} = \mathcal{M} \times (H_0 + \mathcal{E}_{\times \mathcal{V}}) + \mathcal{W} \times A$ WX M

or $\left(\frac{dA}{dt}\right)_{Tot} = \mathcal{U} \times \left(H_0 + \frac{\mathcal{E} \times v^-}{c} - \frac{w}{\alpha}\right)$ $N_{OW}: W = \frac{1}{2c^2} \overrightarrow{v} \times \overrightarrow{v} = -\frac{1}{2c^2} \frac{e}{m} \overrightarrow{e} \times \overrightarrow{v}$ $(m\dot{v} = -e\mathcal{E})$ = M x (Ho + ± Exor) Then: Uso = (-1/2) (1/2) et 3.1 LECTURE VIL 2-21-61 motion of Particles in Inhomogeneous Fielda : 1. Inhomogeneous Electric Fields. a) methoda of determining the field 1.) Electrolytic Tank map out eque-potential lines with probe. b) Properties of Potential: The electrostatic potential distribution set up by an arbitrary charge distribution cannot have a maximum or minimum at any point in free space (Earnshow's Theorem 1. Proof: Want to show Typhere = Vo IT = 1 SS (IV) some de da $= \frac{1}{4\pi\pi^2} \iint \nabla V \cdot d\vec{s} = \frac{1}{4\pi\pi^2} \int_{T} \nabla \cdot \nabla V dt$

We now shrink the sphere and find in the limit: $\overline{V} = V_0$ furre this in so, any assumed maximum Second Proof: If V= constant over a surface S Then V = constant inside S from The uniqueness of solutions of Japlace's equation. Juppose maximum in field then potential falls off as we leave the equipatential surface, but I must be constant inside The surface, so max or min. cannot oller. Consequences of Earnshaw's Theorem " 1. Stable alon cannot exist under Caulomba Taw. u. Changed particles cannot find equilibrium in stable lattice cannot exist under Coulendis law Ci mover in field V (K, Y, Z) Given Two particles " ez u u n K V(X, y, Z) If we start the particles from rest ("=0) at same point, the trajectories are identical: Proof: $\frac{d^{2}n}{d^{2}n} = \nabla V$ mi din = e. VV $d\left(\frac{e}{m}\right), t^2$ $m_2 \frac{d^2 n}{dt^2} = e_2 K \nabla V$ $= \frac{d^2 n}{d \left(\frac{e}{m}\right)_2 \kappa t^2}$ Condition of initial velocity = 0 very important,

c. Election Optica avalogue of Avell's faw: $\frac{V_{2}}{V_{1}}$ $\frac{V_{2}}{V_{1}}$ $\frac{V_{2}}{V_{1}}$ $\frac{V_{2}}{V_{1}}$ $\frac{V_{1}}{V_{2}}$ $\frac{V_{2}}{V_{1}}$ $\frac{V_{1}}{V_{2}}$ $\frac{V_{2}}{V_{2}}$ $\frac{V_{1}}{V_{2}}$ $AIML = \frac{V_{\parallel}}{V_{\text{Fot}}}$ assuming yero velocity at start: $\overline{\mathcal{V}_{i}}_{tot} = \sqrt{\frac{2eV_{i}}{m}}; \quad \overline{\mathcal{V}_{z}}_{tot} = \sqrt{\frac{2eV_{z}}{m}}$ $\frac{\sin i}{m} = \frac{V_{z}}{V_{i}}$ Nowever, in practice it is diffecult to construct a gotential with a simple discontinuity. The usual way to approach the problem is this inhomogeneous fields analogous to variable under of repraction. Technique very empirical. Leus Equation for Electrone moving near the axis of an axially symmetric electric field: 2 7 assume a Vaylor series expansion of V(Z, r). $V(z_{1,r}) = V_0(z) + c_1(z_{1,r} + c_2(z_{1,r}^2 + c_3(z_{1,r}^3 + c_{1,r}^2))$ We assume that we know Vo (7) and we will find that this is sufficient to determine V(7,1).

Use Taplace's Equation: $\frac{\partial^2 V}{\partial z^2} + \frac{1}{2} \frac{\partial}{\partial x} \left(n \frac{\partial V}{\partial x} \right) = 0$ Vo" + Ci"(z) ~ + Co"(z) ~ + ··· $+ \frac{d_1}{\mu} + 4 G(z) + 9 G(z) + 16 G(z) + ... = 0$ Equating terms : $\frac{1}{\lambda}$ $\begin{cases} \frac{C_i}{\lambda} = 0 \\ \frac{C_i}{\lambda} = 0 \end{cases}$, $C_i = 0$ n° $\begin{cases} \frac{\partial^{\circ} V_{\circ}(z)}{\partial z^{2}} = -4 C_{2}(z) \end{cases}$ $n' \begin{cases} c'' = -9c_3 = 0, c_3 = 0 \end{cases}$ n^{2} { $16C_{4} = -C_{2}''(z) = -\frac{1}{16} - \frac{1}{4} \frac{J^{4}V}{Jz^{4}} = \frac{1}{64} \frac{J^{4}V}{Jz^{4}}$ Therefore ! $\nabla(\mathbf{Z}, \mathbf{\Lambda}) = \nabla_{\mathbf{0}}(\mathbf{Z}) - \frac{1}{4} \left(\frac{\partial^2 V_0}{\partial \mathbf{Z}^2} \right) \mathbf{\Lambda}^2 + \frac{1}{64} \left(\frac{\partial^4 V_0}{\partial \mathbf{Z}^4} \right) \mathbf{\Lambda}^4 + \cdots$ the sign of 320 LECTURE VIII Z-23-GI Continuation of Inhomogeneous Fields: $V(z, n) = V_0(z) - \frac{1}{4} \left(\frac{\partial^2 V_0}{\partial z^2} \right) n^2 + \frac{1}{64} \left(\frac{\partial^4 V_0}{\partial z^4} \right) n^4 + \dots$

how, $m \frac{d^2 n}{dt^2} = -e \mathcal{E}_n = +e \frac{\partial V}{\partial n} = -\frac{e}{2} \left(\frac{\partial^2 V_0}{\partial z^2} \right) n$ 24 Vo"(Z) 70 ; Vo"(Z) < 0 1 From definition of derivative : $\frac{df}{dt} = \overline{v_{\overline{z}}} \frac{\partial f}{\partial \overline{z}} + \overline{v_{\overline{o}}} \frac{\partial f}{\partial \overline{o}} + \overline{v_{\overline{u}}} \frac{\partial f}{\partial \overline{z}} = \overline{v_{\overline{z}}} \frac{\partial f}{\partial \overline{z}}$ sence vo, vo are negligible. $dr = V_z \frac{dr}{dz}$ then: $V_{\overline{z}} \frac{d}{d\overline{z}} \left(v_{\overline{z}} \frac{dr}{d\overline{z}} \right) = -\frac{e}{zm} \left(\frac{2^2 V_0(\overline{z})}{\partial \overline{z}^2} \right) r$ Assume: $V_{\overline{z}} = \begin{bmatrix} 2 \in V(n, \overline{z}) \\ m \end{bmatrix} = \begin{bmatrix} 2 \in V_0(\overline{z}) \\ m \end{bmatrix}$ which is essentially the lens equation. Properties ! (1) mass and charge do not enter. thows that just & field will not determine "I'm, need I field too. (2) Homogeneous in V, that is, V -> KV gives some equation. Thus can use AC. Homogeneous in r ! if r 121 is a solution so is c r 12). This means that zero crossings of electron will be at (3) constant points.

e) Example: The Focal Length of a short Symmetrical Lense. 2. 2 Zi Vb Va Vb - 22V Vo(2) 7 We proceed to integrate the differential equation by method of successive approximations. First, consider a on RHS constant, Then resubstitute and converge on proper answer. Thus take r = r, $\left(\frac{dr}{dz}\right) = \left(\frac{dr}{dz}\right)_{Z_1}$, $\left(\frac{dr}{dz}\right)_{Z_2}$ and geti $\int V_0(z)' \frac{dz}{dz} = -\frac{\Lambda_1}{4} \int \frac{V_0''(z)}{\sqrt{V_0(z)'}} dz$ $\frac{dr}{dz}\Big|_{z_2} - \frac{dr}{dz}\Big|_{z_1} = -r_1 \int_{z_1}^{z_2} \frac{V_o'(z)}{\sqrt{V_o(z)}} dz$ = - <u>RI</u> $\int d\left(\frac{dV_0[\overline{z}]}{d\overline{z}}\right)$, suce integrand vanishes 4 \overline{Vb} - ∞ $\overline{Vv_0[\overline{z}]}$ outside \overline{z}_1 , \overline{z}_2 duryway. Integrating by parts: $\int_{-\infty}^{\infty} = \frac{1}{\sqrt{\sqrt{0}}} \frac{dV}{dZ} \Big|_{-\infty}^{\infty} + \frac{1}{2} \int_{-\infty}^{\infty} \frac{\left(\frac{dV_0}{dZ}\right) \left(\frac{dV_0}{dZ}\right) dZ}{V_0^{5/2}(Z)} dZ$

 $Then: \left(\frac{dr}{d\mathcal{X}}\right)_{z_{1}} - \left(\frac{dr}{d\mathcal{Z}}\right)_{z_{1}} = -\frac{\Lambda_{1}}{8V_{b}^{\prime/2}} \int \left(\frac{dV_{0}}{d\mathcal{Z}}\right)^{2} \frac{d\mathcal{Z}}{V_{0}^{3/2}(\mathcal{Z})}$ If beam enters A1 5 05 2. 22 parallel to 2, $\left(\frac{dr}{dz}\right)_{z_1} = 0$ and the focal length is an shown. $\begin{array}{rcl} \mbox{Them}: & \mbox{Λ} \mbox{Λ} & = & -t\mbox{$\tan Θ} & = & -\left(\frac{dr}{dz}\right)_{z_{2}} \\ & \mbox{t} \end{array}$ and we have: $\frac{1}{\varphi} = \frac{1}{8 V_b^{1/2}} \int_{-\infty}^{\infty} \left(\frac{dV}{dz}\right)^2 \frac{dz}{V_b^{3/2}(z)}$ We take 1, as the average position of the particle in the lens. see that the beam will always converge. We non-parallel Entrant Beam: $\frac{\Lambda i}{u} = \left(\frac{dr}{dz}\right)_{z_1} - \frac{\Lambda i}{z_2} = \left(\frac{dr}{dz}\right)_{z_2}$ $\frac{\partial n - \lambda_i}{\nabla} - \frac{\partial n_i}{\partial t} = -\frac{\lambda_i}{5}$ $\frac{1}{f} = \frac{1}{v} + \frac{1}{u}$ which appears the usual equation of geometrical optics. Inhomogeneous magnetic Fields : 1) Weakly hihomogeneous Magnetic Fielde : assume that field changes small over the orbit compared to the field inside the orbit. Can apply sort of perturbation method to These cases.

Field increases in density along $H(z) = \int H_0 + \left(\frac{\partial H}{\partial y}\right) y \int \hat{I}_z$ Consider only motions in X-y plane with To = To Ix P. Vdrift opposite charge drifts in to direction re descontinuity in H Initial equations of motion: $m \frac{d\vec{v}}{dt} = e\vec{v} \times \vec{H}$ Define ! $m\left(\frac{dV_x}{dt}\right) = \underbrace{e}_{S} \nabla_y \left(H_o + \frac{\partial H}{\partial y} y\right)$ Wo = eHo mc $\omega_i = \frac{e}{me} \left(\frac{\partial H}{\partial y} \right) R$ $m\left(\frac{dv_{y}}{dt}\right) = e_{v_{x}}\left(H_{6} + \frac{dH}{dy}g\right)$ $R = \frac{v_0}{w_0}$ Thus : $\frac{dV_x}{dt} = \left(\frac{\omega_0 + \omega_1 y}{R} \right) \frac{v_y}{r_y}$ dvy = (wo + wig) vx

LECTURE TK 2-25-61 Inhomogeneous magnetic. Fillds: We now write : $\frac{d}{dt}\left(\upsilon_{x}+\iota\upsilon_{y}\right) = -\iota\left(\omega_{0}+\frac{\omega_{i}y}{R}\right)\left(\upsilon_{x}+\iota\upsilon_{y}\right)$ how assume will all on that the gradient of the field is small. In the first approximation, use of for the case of homogeneous fields. That is : $y = -R(1 - \cos \omega_0 t)$ The perturbation of the inhomogeneous field in small in the y direction only. Then: d (vx + v vy) = - e { wo - w, (1 - cos wot) } (vx + v vy) $or \int \frac{d(v_x + v_y)}{(v_x + v_y)} = \ln(v_x + v_y) = -i \int [(u_b - u_i) + w_i \cos u_o t] dt$ = - (Wo - Wi) t + Wi sur Wo t $(\nabla x + i \nabla y) = (\nabla x + i \nabla y)_{o} exp \left\{ -i \left\{ (w_{o} - w_{i})t + \frac{w_{i}}{w_{o}} sin w_{o}t \right\} \right\}$ now : $\mathcal{D}x = \mathcal{D}o \cos\left[\left(\omega_0 - \omega_i\right)t + \frac{\omega_i}{\omega_0} \sin\omega_0 t\right]$ = Vo [cos (wo-wi)t cos (wi sin wot) - sin (wo-wi)t sin (wi sin wot)] (wi) sin wot using the fact that we are

Then: $V_{x} = V_{0} \left[\frac{\cos \omega_{0}t}{\cos \omega_{0}t} - (\frac{\sin \omega_{0}t}{\omega_{0}}) \frac{\omega_{i}}{\omega_{0}} \sin \omega_{0}t \right]$ $\overline{\mathcal{U}_{X}} = -\frac{1}{z} \frac{\omega_{i}}{\omega_{o}} \overline{\mathcal{U}_{o}}$ We say that the drift velocity is Vi = vd so'. $\overline{v_{d}} = -\frac{1}{z} \frac{\partial H}{\partial y} \frac{\overline{v_{o}^{2}}}{W_{o}}$ (e) H It is seen that the direction of drift is dependent on charge of particle, and inversely to magnitude. Va in directly z) Motion in Caroing Field We have a constant field H H = - Jo Ho The field must satisfy curl H = 0 We obtain: In =0, Iz 2 (nHo) =0 or $n \frac{dH_0}{dn} + H_0 = 0$, $\left(\frac{dH_0}{dn}\right)_{n_0} = -\left(\frac{H}{n}\right)_{n_0}$ Thus the field gradiant goes at in m a direction

a) We get immediately get: 2 b) (Vou) Parallel to Field fine: The ancular path Voll creater a centripetal force to push particle outword which causes drift in or out of paper depending on charge. Has effect of fictition electric field. Hx = H(A) Amo Hy = - H (1) cos 0 $m\ddot{v} = e \vec{v} \times \vec{H}$ d Vx = Vz Wo con O dvy = V= Wo AMB $= -\omega_0 \left(\nabla_x \cos\theta + \nabla_y \star m\theta \right), \quad \omega_0 = \frac{e}{mc} H(n_0)$ dV2 The proper coordinate system to go to in one in which one of The afer is always in the radial direction. However, the algebra is difficult and we will take the new ystem near if where it is nearly alway parallel to r. Carriet result is obtained.

13 X = No kin wit + X' y = no con wit + y' Vx = No W, Coswit + Vx No Vy = - Now anast + vy V2 = 03 $\frac{dv_x}{dt} = -\omega_i^2 \log \alpha m \omega_i t + \tilde{v_x}'$ $\frac{dv_y}{dt} = -\omega_i^2 r_0 \cos \omega_i t + v_y'$ We assume that the radius of the orbit must be much smaller than no. That is, the gradient of the field in small; it curves only slowly. Then: sin wit = cos 0 cos wit = sure cost = x = no an aft + x' dv' = no Wit am wit + Wo Vz' am wit Then : dog = no wi cos wit + wo Vz' cos wit dvz' = - wo Vx' sin wit - wo vy' conwit dt We now inject the assumption of y'll ro and write w,t <<1 and get: $\frac{d v_{y'}}{dt} = \Lambda_0 w_i^2 + w_0 v_{z'}$ $\frac{dv_{x'}}{dt} = 0$ d Dz' = - Wo Dy:

LECTURE X 2-29-61 The previous equation denote (almost) ordinary motion in uniform H is x' direction except for row?. This constant force Term can be represented as an equivalent electric field E: e E = m Ro Wi with wi = Vor Then the drift velocity is: $V_{\overline{D}} = \frac{c \mathcal{E}}{H} = \frac{c}{H \mathcal{E}} m \Lambda_0 \omega_i^2 = c m \overline{v_{0H}} = \overline{v_{0H}}$ e H No Wo no Voll Voll 1°' ~~ VD 2' 2p d. MHo $d = 2\pi \rho = 2\pi U_{011}^2 , \text{ since } \frac{V_0}{W_0} = \rho = \frac{V_{011}}{W_0^2 \Lambda_0}$ with $\frac{\Gamma}{\Lambda o} = \frac{V_{011}}{W_{02}} \frac{1}{\Lambda o^2} < < 1$ as per assumption. c) synthesis of (a) and (b): Jour Vou Then: (Voltate = Vol + Voii 2 ro Wo wo no ADD $= \frac{1}{\pi_0 \omega_0} \int \frac{1}{2} U_{01} + U_{01} + \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} U_{01} + \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} U_{01} + \frac{1}{2} \int \frac$ Reference : Apityer " Loninged Bases "

Plasma Confinement : when going around corner, X-section Vo ++ Vo +particles of apposite sign separate due to curvature of field as above equation have shown. 3. Motion of Charged Particles moving in Stowly Converging or Diverging Magnetic Field. $H = I_{\Lambda} H_{\Lambda}(\Lambda, z) + \widehat{1}_{z} H_{z}(\Lambda, z)$ $\frac{n}{2} \qquad Now: \forall X H = 0, \forall H = 0$ $\frac{\forall H}{2} \qquad \frac{\forall H}{2} \qquad \frac{\forall$ $\frac{1}{n}\frac{\partial}{\partial n}\left(nHn\right)+\frac{1Hz}{\partial z}=0$ $\frac{\partial}{\partial n} \left(n H_{a} \right) = -n \frac{\partial}{\partial z} H_{z}$ Assume: $H_{\overline{z}}(n,\overline{z}) = H_{\overline{z}}(\overline{z})$, $H_{R}(n,\overline{z}) = H_{n}(n)$ Then i $n H_n = -\frac{n^2}{2} \left(\frac{\partial H}{\partial z} \right); H_n = -\frac{n}{2} \left(\frac{\partial H}{\partial z} \right)$ we see that for the assumption, 2H must be constant. Adde for slow Physically, The assumption Molds for slow gradual convergence as the gradient is constant over the period of the orbit.

We then re-write the field as: $H = I_{n} \left(-\frac{R}{2} \frac{JH}{\partial Z} \right) + I_{z} H_{z}(z)$ Equations of motion . - N Ha $m\left(\frac{dv_{ii}}{dt}\right) = -e\left(\overline{v} \times H\right) = -\frac{e}{c}v_{\pm}H_{\lambda}$ V_ = rw surce in this direction we have cyclotronic motion. Then: $m\left(\frac{dv_{ii}}{dt}\right) = -\frac{e}{c} v_{t} \left(\frac{r}{z}\right) \frac{dH}{dz} = -\frac{1}{z} \frac{m v_{1}^{2}}{Hz} \frac{\partial H_{z}}{\partial z}$ magnetic moment il We will show it is invariant to Hz, Then $M\left(\frac{d\sigma_{H}}{dt}\right)$ is a constant of The motion. Definition of el : U = 1A Examine it dimensionally : $et = \frac{\pi r^2}{c} \left(\frac{e}{r}\right) = \frac{\pi r^2 e}{c t \pi} \frac{e H^2}{mc}$ Then: Then: $u = \frac{e^2}{2\pi mc^2} \cdot \pi n^2 H_2 = \frac{e^2}{2\pi mc^2} \quad flux$ \mathcal{U}_{AE} : $\mathcal{N} = \frac{\mathcal{U}_{\perp}}{\omega}$ and get : $\mathcal{U} = \frac{\mathcal{U}_{\perp}^{2}}{2H_{Z}}$ The concept of a only holds strictly for circular orbit. Thus, we must have slowly converging field; so particle maker many orbits before field changes appreciably: Conditions on time V! WTKCI or wTy71 $\int \frac{1}{\omega} \langle \langle \tau \rangle \langle \langle H_z \rangle \\ \frac{1}{\sqrt{11}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{11}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}}$ and Vn T (HH) ZL HZ $\frac{\omega}{2\pi} \frac{Hz}{2\pi} \frac{1}{2\pi} \frac{Hz}{2\pi}$ (adiabatic Invariance Condition)

The basic assumption for independence of field componente can be written: $\frac{\left(\frac{\partial H}{\partial z}\right) \mathcal{F}}{H_{z}} < < 1$ LECTURE XI 3-2-61 Recall that KE cannot be changed by static magnetic field. Then, $T = \frac{1}{2}mv_1^2 + \frac{1}{2}mv_1^2$ $\frac{dT}{dt} = 0 = \frac{d}{dt} \left(\frac{1}{2}mV_{1}^{2} \right) + \frac{d}{dt} \left(\frac{1}{2}mV_{1}^{2} \right)$ $now: \frac{d}{dt} \left(\frac{1}{2} m \mathcal{U}_{1}^{2} \right) = m \mathcal{U}_{11} \frac{d \mathcal{U}_{11}}{dt} = - m \mathcal{U}_{11} \frac{d H_{2}}{d t}$ $= -\frac{d}{dt} (M H_2)$ $-\mathcal{U}\mathcal{V}_{II}\frac{\partial Hz}{\partial z} = -\mathcal{U}\frac{\partial Hz}{\partial t} = -\frac{\partial}{\partial t}\left[\mathcal{U}\mathcal{H}_{z}\right]$ Then : -u dHz = -u (dHz) + Hz du and du = 0, there fore u in a constant dt of the motion. Consequences:) & constant as HY as rd, TriH = constant) & constant as HY as rd, TriH = constant z) $\frac{V_1^*}{H} = constant : as H^{\dagger} V_1^{\dagger} , V_2^{\dagger} = \frac{1}{M}$ 3) furre sum of velocity squares must be contant, as H & Virt. m dvir = -u (2Hz) dt = -u (2Hz) so Vil decreases to yero, then turns and goes back.

Thus net motions are ; A Don Ju -> 0 Min Before Vil -20 After V. - 70 and particle Turns. tonverging field transfers translational KE into rotational KE. _____ Dom bottle This magnetic mirror is used to contain plasmas, However, if initial velocity is great enough we can penetrate merron since field cannot converge indefinitely. We now consider these conditions. $v_{11} = v \cos \theta$, $v_{\underline{i}} = v \sin \theta$ VI VI VI $\frac{1}{2} \frac{m v_1^2}{H} = constant = \frac{1}{2} \frac{m v_1^2}{H_0}$ $\frac{V_{\perp}^{2}}{H} = \frac{V_{\perp 0}^{2}}{H_{0}}$ $\frac{W_{\perp 0}^{2}}{H_{0}} = \frac{M^{2}}{H_{0}} = \frac{1}{H_{0}}$ $\frac{W_{\perp 0}^{2}}{H_{0}} = \frac{1}{H_{0}}$ Turning point field = $H_m = \frac{H_0}{m^2 \theta}$ For $H_m < \frac{H_0}{m^2 \theta_0}$ particle emerges Hm Thus, the critical angle is: $sin^2 \theta_0 \bigg|_c = \frac{H_0}{H_m}$ $\theta_c < \theta$; reflected 0 < 0c : emergen This principle is also used for a cosmic say acceleration Theory (Fermi). If Two clouds at ionized gases we approaching each ather with

relatively velocity v. Particles will bounce back and forth picking up energy from the approaching clould until enough energy is reached that particle leaks three one of the clouds. Stability of Particle Orbits in High Energy A creteratorn: In usual cyclothon, some focusing field is needed to been particles in plane of machine. In early machines, natural inhomogeniety in magnetic fields ded this. Recall . $\rho = \frac{\Delta E}{eH} \left[1 + \frac{2mc^2}{\Delta E} \right]^{1/2}$ $T = mc^2 + \Delta E$, $w = \frac{w_0}{1 + (\frac{\Delta E}{mo^2})}$ Reference : Livingston " H.E. Accelerators " Ha Ha Radial component of H produces restoring force in 2 - direction. Restoring force in radial direction: suppose particle deflected off orbit ro to r: <u>mv² ~ mv²</u> suffers force <u>e Hz(r)v</u> <u>c</u> For stability, Hz must fall off wore slowly than to We take $H_Z(n) = H_0 \left(\frac{n}{n_0}\right)^{-h}$

Equation of motion ; $\vec{H} = \hat{I}_R H_R(z) + \hat{I}_z H_z(z)$ $\vec{v} = \vec{n} \, \vec{l}_{1} + \vec{n} \, \vec{o} \, \vec{l}_{0} + \vec{z} \, \vec{l}_{z}$ $\frac{d\vec{P}}{dt} = \frac{e\vec{v} \times H}{c}$ $\begin{pmatrix} d \rho \theta \\ d t \end{pmatrix} = -\frac{e}{c} \left(\frac{1}{2} Hz - \frac{z}{2} Hz \right)$ $\begin{pmatrix} d p \\ dt \end{pmatrix}_{n} = \frac{e}{c} n \hat{o} H_{\mathcal{E}} , \quad \begin{pmatrix} d p \\ dt \end{pmatrix}_{\mathcal{E}} = \frac{e}{c} n \hat{o} H_{n}$ $\frac{d\vec{p}}{dt} = m \left[(\vec{n} - n\vec{\theta}) I_n + \frac{1}{n} \frac{d}{dt} (\vec{n} \cdot \vec{\theta}) I_\theta + \frac{n}{2} I_a \right]$ LECTURE XII 3-4-61 Continuation of HE acceleration. $H_{F}(n) = H_{o}\left(\frac{n}{n_{o}}\right)^{-n}$ $m(\dot{n} - n \dot{\theta}^2) = \frac{e}{c} n \dot{\theta} H_Z(n)$ For unperturbed orbit : $\theta = - \frac{eH_{\ell}(n)}{mc}$, n = no, $\theta = \theta_0 = \omega_0 = \frac{eH_0}{mc}$ Assumption of no energy change for perturbed orbit: Worro = wr = &r $how, \quad \dot{n} = \frac{e}{2} \frac{H_{2}[n]}{n\theta} + n\theta^{2}$ and : $n = -w_0^2 n \left(\frac{n}{n_0}\right)^n + \left(\frac{n}{n_0}\right)^2$ $(\Lambda \dot{\theta})_{\mu=\Lambda \sigma} = -eH\Lambda_{\sigma}$ mc

Then: $\lambda = \omega \sigma^2 \Lambda \sigma \left[-\left(\frac{\Lambda}{\Lambda \sigma}\right)^{-\lambda} + \left(\frac{\Lambda \sigma}{\Lambda}\right) \right]$ Take: $n = n_0 + p$ where p is the perturbation. $\ddot{p} = \omega_0^2 N_0 \left[\frac{N_0}{N_0 + p} - \left(\frac{N_0 + p}{N_0} \right)^{-n} \right]$ $= W_0^2 N_0 \left[1 - \frac{p}{n_0} - 1 + \frac{n_1 p}{n_0} + \dots \right]$ or $\beta' = -(1-n)\omega_0^2 \beta$ radial oscillation For z_1 $m \dot{z} = \frac{e}{c} \Lambda \dot{o} H_{\Lambda}$ $\frac{\partial H_{\Lambda}}{\partial z} = \frac{\partial H_{Z}}{\partial \Lambda}, \quad H_{\Lambda} = \left(\frac{\partial H_{Z}}{\partial \Lambda}\right) z = -\frac{n H_{0} z}{\Lambda_{0}}$ Then: $\ddot{z} = -u\delta^2 n z$ z oscillation using ro = Worko For stability for both ascillation, n must have condition ? Period of oscillation greater than cyclation period. Certain values are disallowed since coupling will occur which is not shown above. Will get resonance effect. Risallowed value are n= 0, 25, 50, 75, 80, 1.0 2 1 region. Now the energy of a humanic oscillator of:

 $E = \frac{1}{2}mx^2 + \frac{1}{2}m\omega^2x^2 \qquad x = \begin{cases} z \\ z \end{cases}$ now, if X = A conwt: E = 1 mw A2 (cos 2wt + sur 2wt) $=\frac{1}{z}m\omega^{2}A^{2}$ $P = \int \frac{ZE_{\lambda}}{m\omega_{z^{2}}} = \int \frac{ZE_{\lambda}}{m(l-n)\omega_{o}^{2}}$ $Z = \int \frac{ZE_z}{m\omega_z^2} = \int \frac{ZE_z}{m(n)\omega_o^2}$

which gives use the amplitude of the oscillations de a function of n. Time change of field and relativistic motion has not been included. These effects lead to damping. Trick in to cusider now is that we is a function of Time. Consider then the equation :

 $\ddot{X} = -\omega^2(t) X$

The time change of the field in due to the acceleration of the particle. Solution of d.e.:

 $X = A(t) e^{-x \int_{-\infty}^{t} w(t') dt'}$

which gives "

 $\frac{d^{2}A}{dt^{2}} + Z_{LW} \frac{dA}{dt} + I \frac{dw}{dt} H(t) = 0$

make adiabatic approximation (field changes slowly during orbit of particle). This gets rid of deA.

Thus: $dA = -\frac{1}{z} \frac{d\omega}{\omega}$ or A(t) = constantJw(t) which would have been found riganously also for the damping. But the energy and amplitude are related: E = ± mw² A² Then : $E(t) = \frac{1}{2} \frac{m\omega^2}{\omega} constant = \int \omega(t)$

note that this is of form of QM harmonic vicillator. I is called the adiabatic invariant and is equal to (n+2/th. Problems like these were at great importance in the old quantum theory. This is related to WKB approximation:

 $\frac{d^2 \mathcal{U}}{dx^2} + \frac{k^2 (x) \mathcal{U}}{dx^2} = 0, \quad k = \sqrt{\frac{2m}{\pi^2}} \left\{ E - V(x) \right\}$ V(x) changes very little over the wavelength of the particle. The polution is: $\mathcal{M}(x) = \frac{\text{constant}}{\sqrt{h(x)!}} e^{\pm \int x(x') dx'}$

so we see that this is connected mathematically to what we have been doing.

Finally ; A ~ (1 or 1) 1 non - relativistic

 $\frac{A(t+1)}{A(0)} = \frac{H(0)}{H(t+1)}$ then amplitude Relativistically :

goes as 1 A typical oscillation amplitude ± 5% of orbit radius. Can show that limit exists on size of machine.

Breakthrough made by ! PR 88 (190 (1952) Developed alternate gradient focusing, discovered by accident. The new equation f = m $f = -(1-n_1) w^2 p$ $f = -n_1 w^2 p$ $d\theta = wo dt$ For odd sections: $\left(\frac{d^2p}{dor}\right) = -(1-2n_1)p_1$, $\frac{d^2z}{do^2} = -2n_1 \overline{z}$ $X = R\theta$ $\frac{d^2 z}{d\theta^2} = -n z, \quad \frac{d^2 p}{d\theta^2} + p - n p = 0$ $n = -\frac{\partial \ln H}{\partial \ln R} = \frac{1}{H} \frac{\partial H}{\partial R} \cdot \frac{1}{H} \frac{\partial H}{\partial R}$ $\frac{d^2 z}{dx^2} - K \overline{z} = 0 , K = \frac{dHz}{dy} \frac{1}{HzR}$ There : $\frac{d^2y}{dx^2} + ky + \frac{y}{R^2} = 0$ O for large R Two equations : one stable and one unstable.

LECTURE XIII 3-7-61 Lecturer by Lynder: accelerating Machines $\frac{d^2y}{dz^2} = -\frac{n}{p^2} \frac{y}{dz}$ $\frac{d^2 x}{d z^2} = \frac{(1-n)}{p^2} x$ These equations give stability for OLNSI. alternate Field Focusing: Consider $\frac{d^2y}{dz^2} = -k(z)y$ P 12 K(2) ~ 7 We assert: $y_f = a y_f + b y'_j$ ad -bc = 1 $y'_f = c y_f + d y'_f$ Assume : $y_f = \lambda y_I$ $y'_s = \lambda y'_I$ $\begin{vmatrix} a-\lambda & b \\ c & d-\lambda \end{vmatrix} = 0, \quad \lambda^2 - (a+d) + 1 = 0$ $\lambda = \pm (a+a) \pm \int (a+a)^2 - 4^2$ can be real or magnany (complex) Will get allowed and forbidden regions. Examine solution in constant region ? y" + Ky = 0 y = A COR JR Z + B am JR Z

We get i y = ys con JE Z + yz am JEZ y'= - y= TR sur JR = + y= cra JR = y"-Ky = 0 given hyperbolic function. The matrix which takes us across a whole period in the product of those that go across each + and - half-period. (yr) = (coch JR i tr such JR i (coc JR i tr sun JA i yr) = (VR such JR i coch JR i) - JR sun JR i coc JR i) We get: 12 (a+d) = cosh JRL cos JRL of JAL (1, alling JAL = 0 ; $\frac{1}{2}(a+d) = 1 - \frac{1}{6}\theta^{4} + \cdots$ which is less than ! and thus I can be Complex. Consider: y" + K(Z/y = 0 We assert that a solution can be written in the form ! $y = a \ \beta^{1/2}(z) \ \cos q(z) , \ q'(z) = \frac{1}{\beta(z)}$ > 7

The term " wavelength of a machine" means the number of cycles a particle makes about its equilibrium like in an arbit around the machine.

Define: $\alpha(z) = -\frac{1}{z} \frac{d}{dz} \beta(z)$ $4et: coz^{2}q + am^{2}q = I = \frac{1}{a^{2}\beta(z)} \left\{ y^{2} + (xy + \beta y')^{2} \right\}$ which in the equation of an ellepse. What This means in That the area of the ellepse is constant my y' apace even though it wabbles during a transit through the orbit. LECTURE XIV 3-9-61 In presidually results, we assumed that momentum was such that orbit was closed path. In this case, the equation must be of the structure : $\frac{d^2 x}{dz^2} + t(z) x = \frac{\Delta B}{B \rho}$ X=0 Take for polution : X = B' (Z) y (Z) Pefine a new independent variable: $\varphi = \frac{1}{2} \int_{0}^{2} \frac{dz}{\beta(z)}$ such that $\varphi(z) - \varphi(z) = z\pi$ and get $\varphi(z) = \frac{1}{\beta(z)} \int_{0}^{2} \frac{dz}{\beta(z)}$ for new equation : $\frac{d^2 \eta}{d q r^2} + z r \eta = f(\phi) = \beta^{3/2}(z) \frac{AB}{\rho B}$ Solve by Green's function: take solution for which n is periodic in 2π : $\chi(q) = \frac{\nu}{2 \sin \pi \nu} \int_{q}^{q+2\pi} f(w) \cos \left\{ \nu (\pi + q - \psi) \right\} d\psi$ If i in an integer, no orbite exerts, and we have resonance phenomena. at any other values of 2 we are OK. 2 in the number of wavelength in orbit.

another problem in that the machine must be able to accept particle with spread in momentum and heep them in the machine. In This case, the RHS becomes. $\frac{1}{r} \left(\frac{\Delta P}{P}\right)$

where p in the radius of curvature of the orbit at a point. as the p is mereased, The closed arbits expand. In most machine we can tolerate spreads in momentum of about 2%. However, all particles are not accelerated the same. Also the periode of the orbit depend upon the energy and path length. This will cause in one cause The particle will slip out of sync with the accelerating field. weak strang Socusing focusing operation

The strong points of the strong focusing machines are that they are able to accept wide variations in momentum and undergoe cyclotron saillations and still keep stable orbita.

LECTURE XV 3-11-61

Magnetron Oscillator: Converta DC to microwave !

600 mc - 60,000 me 50 cm - 1/2 cm.

DC magnetion (A.W. Hull, PR18, 31 (1921))

HO00000 HeHe We see That This acto as a switch on the electric current. Heritical V(R) ~ enr Pr $E(n) = - V_{n-c} \tilde{I}_n$ $n \ln \left(\frac{nc}{nc}\right)$ Hence: mardinection $m\left\{\frac{d^{2}r}{dt^{2}} - r\left(\frac{d\theta}{dt}\right)^{2}\right\} = \left|e \mathcal{E}(r)\right| - r\left(\frac{d\theta}{dt}\right)\frac{He}{c}\hat{I}_{r}$ In a direction, use torque equation : $\frac{d}{dt} \left\{ mn^{-} \frac{d\theta}{dt} \right\} = n \frac{dn}{dt} \left(\frac{eH}{c} \right)$ 10 This can be integrated: $\frac{d}{dt}(r^2\theta') = \frac{w_c}{z}\frac{d}{dt}r^2$ $w_c = \frac{eH}{mc}$ $\dot{\theta} = \frac{1}{n^2} \left\{ \frac{\omega_c}{2} n^2 + c \right\}, \quad \dot{\theta} = 0, \quad n = nc$ Q = 1 2 We NZ - We No 2 $\sigma \quad \dot{\theta} = \frac{w_c}{c} \int \left(\frac{n_c}{r} \right)^2 \frac{1}{c}$ Recall : $\frac{1}{2}m\left(\frac{dr}{dt}\right)^2 + \frac{1}{2}m\left(n\frac{d\theta}{dt}\right)^2 = e\left\{V(n) - Ve\right\}$ Then 1 $\frac{(dn)^2}{(dt)^2} + \frac{\omega_c n^2}{4} \left\{ 1 - \left(\frac{n_c}{n}\right)^2 \right\}^2 = \frac{2e}{m} \left\{ \frac{v(n)}{n} - \frac{v_c}{c} \right\}$

Consider the cut-off case: dr =0, r= ha Then: $\frac{\alpha e^2 \Lambda_a^2}{4} \left\{ 1 - \left(\frac{\Lambda e}{\Lambda a}\right)^2 \right\}^2 = \frac{2e}{m} \left\{ V_a - V_c \right\}$ which gives the relation between Vac and H for cut-off : $V_{AC} = \frac{e}{m} \frac{He^2}{c^2} \frac{\Lambda e^2}{B} \left\{ 1 - \left(\frac{\Lambda c}{\Lambda a}\right)^2 \right\}^2$ H < He H>H2 — H→ HC what in condition for cutoff in plane parallel Case: \mathcal{E} $d = 2 \frac{\nabla c}{\omega} = \frac{2 c \mathcal{E}}{\omega + 1} = \frac{2 c \sqrt{Ac}}{mc}$ $or \quad V_{Ac} = e Hc^2 \left(\frac{d^2}{z}\right)$ Compare with VAC = <u>eHc²</u> $\frac{1}{8} \Lambda a^2 \left\{ 1 - \left(\frac{\Lambda c}{\Lambda a} \right)^2 \right\}^2$ re = ra-d, d or d 221, then . $V_{AC} = \frac{eH_{c}^{2}}{mc^{2}} \left(\frac{1}{s}\right) n_{a}^{2} \left\{1 - \left(\frac{n_{a}-d}{n_{a}}\right)^{2}\right\}^{2}$ Consider of = Mai (2 d) 2 exanding in series = d2 which shows reduction to 2 the plane parallel case.

Oscillator: Coupling Coupling \bigwedge electron pushes against cavity field Confo field gives dead energy to electron which 15 self- defeating 2 3 4 5 6 7 8 1 To The mode If A q = phase advance, e (AQN) = 1 Then APN = ZTTN, N= 1, 2, 3, ... In TT mode, n = N/2 172 mode, n = N/4 APETT Third shifts to vert slat in time I where The period, for electron to be there, or (P+2) T Suppose $\Lambda \overline{\Gamma}$ in time for electron to make complete circuit. $2\overline{\Gamma} = 2\overline{\pi}$, $(\frac{\Lambda \overline{\Gamma}}{N}) = (p + \frac{1}{2})\overline{\Gamma}$, $\overline{\pi}$ mode \overline{W}_{avg} , $(\frac{\Lambda \overline{\Gamma}}{N}) = (p + \frac{1}{2})\overline{\Gamma}$, $\overline{\pi}$ mode he general: $\left(\frac{kT}{N}\right) = \left(p + \frac{n}{N}\right)T$ k = (Np + n)

 $(Np+n)\overline{7} = \overline{Z}\overline{R} = (Np+n)\frac{1}{favy}$ p, n integer N=8 $\frac{2\pi}{E} \frac{1}{\frac{\pi}{2}}$ 211 $\frac{2\pi}{\left(\frac{d\theta}{dt}\right)_{ave_{\lambda}}} =$ Vavg (<u>na+nc</u>) z on $(Np+n)\frac{1}{favy} = \frac{2\pi}{c VAc}$ 211 -ZC VAC H (na-no) (MATRE) H (1a2 - R22) $V_{AC} = \frac{\pi}{(Np+n)c} \frac{Aa^2}{Aa^2} \left\{ 1 - \left(\frac{Ac}{\pi a}\right)^2 \right\}$ p=0 fundamental カニこ critical DC mode corve 7=3 TT mode n = 4f~ 2800 MC/ac mil 3000 - +--> 2000 1000 Reference: B.S.T.J., Fish, et al 25 167 (1946)

LECTURE XVI 3-14-61 Wave Picture of Clectrons De Broglies Approach: light: E = hz, $p = \frac{hz}{c} = \frac{k}{d}$ Jook at momentum 4-vector; $\mathcal{P} = \left(\frac{mv}{\sqrt{1-\beta^2}}, \frac{1}{\sqrt{1-\beta^2}}\right)$ Fight Particles $\begin{array}{ll} h\nu & h\nu = T \\ h/\lambda & p = h/\lambda \end{array}$ E P $P = \left(\frac{h}{d} \frac{1}{2k}; \frac{hz}{c}\right) = \left(\frac{h}{k}; \frac{hz}{c}\right)$ where k = 1 In associated with the particle is a wave; $e^{-2\pi \lambda} \left(\frac{1}{k} \cdot \lambda - \nu t \right) = e^{-2\pi \lambda} \left(\frac{1}{\lambda} \cdot \lambda - \nu t \right)$ Now: $V_{phase} = z d = (hz) \left(\frac{1}{h}\right) = \frac{T}{P}$ $= \frac{mc^2}{\sqrt{1-\beta^2}} = \frac{c^2}{\frac{v_{particle}}{\sqrt{1-\beta^2}}}$ so we cannot use the phase velocity of the wave as the velocity of the particle. Try group velocity. Form a packet: 4.+42 = e-21TA (2, x - vit) - 2TTA (2x - 24t) + e $= e^{-2\pi i \left\{ \left(\frac{h_{1}+h_{2}}{2} \right) \times - \left(\frac{\nu_{1}+\nu_{2}}{2} \right) t \right\} \left\{ \frac{2\pi i \left[\frac{h_{1}+h_{1}}{2} \right] \times + \frac{\nu_{1}-\nu_{1}}{2} t \right\} \left\{ e^{-2\pi i \left[\frac{h_{1}-h_{1}}{2} \right] \times + \frac{\nu_{1}-\nu_{1}}{2} t \right] \right\}}$

 $or \quad \psi_i + \psi_z = 2 \cos 2\pi \left\{ \left(\frac{h_z - h_i}{z} \right) x + \left(\frac{y_i - y_z}{z} \right) t \right\} e^{\frac{1}{2} \frac{\xi}{z}}$ Group Velocity XIIXII (h-h)x = (H-D)t (constant point on envelope) $\frac{dx}{dt} = \frac{z_2 - z_1}{z_1 - z_2} = \frac{dz}{dt} = z_g$ We must know the relation between I and k, I = I(4) which in the dispersion relation. Uphare = 21 $v_{\text{group}} = \frac{dv}{dk} = \frac{dv}{d(\frac{1}{d})}$ Wand dr : what is vgroup for particle ? $\frac{dz}{dk} = \frac{d(hz)}{d(hz)} = \frac{dT}{dp} =$ $\begin{pmatrix} dT \\ \overline{d\beta} \end{pmatrix} \qquad , \beta = \begin{pmatrix} \overline{v} \\ \overline{c} \end{pmatrix}$ $\left(\frac{dP}{dB}\right)$ $\overline{v_g} = \frac{d}{d\beta} \frac{mc^2}{\sqrt{1-\beta^2}}$ d (mcB) llee: T² = p² c² + m² c^d and find TdT = c2pdp with result $\overline{v_s} = \frac{dT}{dp} = \frac{c^2 p}{T} = \frac{m \overline{v} c^2}{\sqrt{1-\beta^2}} \frac{1}{mc^2}$ VI-B21 which in the velocity of the = V particle

 $P = \frac{h}{l} = \frac{mv}{\sqrt{1-\beta^2}}$ Therefore : Dovision and Germer: Experimental evidence of electron wave properties three electron diffraction. 3-16-61 LECTURE XVII Fermi statistics for Electrons ma metal: We hold that the free electron wave functions are modulated by the cell-periodic atomic wave functions; $\psi = u_{h}(n) e^{-\lambda \left(\frac{k \cdot n}{k} - \frac{E}{k}t\right)}, \quad k = \frac{2T}{\lambda}$ Malal = Ma (A+R) , R = translation vector Recall : Vg = dw which leads to Vg = 1/ VhE from $\omega = E/\hbar$. Thus we must have $E = E/\hbar$ or a dispersion relation between E and \hbar . For free electron: $E = \frac{1}{2}mv^2 = \frac{1}{2m}(mv)^2 = \frac{1}{2m}(\frac{h}{4})^2$ $\frac{thm}{E} = \frac{(t_1 k)^2}{2m}$ allowed values of k are determined by boundary conditions. Because of spin, there are two electron per state. E 4

Tite question of concern in how do electrons fill up These states? If use Boltzmann statistics, get all electron in lower level at T=0. No every level for No states E, E, We have no electron to put into No states. How can they be arranged? ZNS Z. Ze 1111 ... 11 21 . . 21 21 ... 21 111111 0000 NS (NS-NS) The number of possible ways to arrange these in given by the binomial factor ; De (ns) = Ns! (Ns-Ns)! (ns)! ; number of filled states around Es now we ask for probability of n. in Ne, ne in Nz, etc $\mathcal{Q}\left(n_{i}, n_{z}, \dots, n_{s}, \dots\right) = \frac{1}{s} \frac{N_{s}}{(N_{s} - N_{s})!} \frac{N_{s}}{(N_{s})!}$ $\ln \Omega = \sum_{s} \ln N_{s}! - \ln (N_{s} - n_{s})! - \ln N_{s}!$ Using Atinling's approximation: In N! = N lu N - N lu 2 = Z No lu No - (No-no) lu (No-no) - no lu no We now want to maximize with respect to us : $\frac{\partial \ln \Omega}{\partial n_s} = \ln \left[\frac{(N_s - n_s)}{m_s} \right]$

This is not yero as There are constrainte on The problem because the number of electrons is constant and so is the total energy. $\sum_{s} N_{s} = N, \qquad \sum_{s} N_{s} F_{s} = E_{tot}$ $\frac{2}{5}\left(\frac{d\ln R}{dn_{5}}\right)\delta n_{5} + \frac{2}{5}\left[\alpha - \beta E_{5}\right]\delta n_{5} = 0$ vaince SIZ = Z (dlusz) Sus $\sum_{s} \left\{ ln\left(\frac{Ns-ns}{ns}\right) + \alpha - \beta E_{s} \right\} S_{n} = 0$ $ln\left(\frac{N_{5}-n_{5}}{n_{5}}\right) = \left(\beta E_{5} - \alpha\right), \frac{N_{5}-n_{5}}{n_{5}} = e^{\beta E_{5}-\alpha}$ and get ! $\left(\frac{n_s}{N_s}\right) = \frac{1}{\begin{bmatrix} BE_s - \alpha \\ e & \pm i \end{bmatrix}} = f_o(E_s) \left\{ Fermi Function \right\}$ What are & B? Use statistical mechanics and thermodynamics : S = klu R max potential the = TdS = dE + PdV + udN $dS = \left(\frac{\partial S}{\partial E}\right)_{V,N} dE + \left(\frac{\partial S}{\partial V}\right) dV + \left(\frac{\partial S}{\partial N}\right) dN$ $\left(\frac{\partial S}{\partial E}\right)_{V,N} = \frac{1}{T}$; $\left(\frac{\partial \ln \Omega \max}{\partial E}\right)_{V,N} = \frac{1}{kT}$ d lu Rmax = Zi (BEs - x) fris = Zi BEs SHS = BSE (Slu remax) = (3 = the SE (V,N) = (3 = the

which gives ! $f_0 = \frac{1}{e^{\frac{E-J}{\lambda T}} + 1}$ J=xkT T)0 1 1/2 - -E LECTURE XVIII 3-18-61 Continuation of Fermi Function: These junction appear frequently in integrale of the type: $I = \int f_{o}(E) q(E) dE$ Lemma on integrale involving fo (E): $T = \int_{0}^{\infty} f_{0}\left(\frac{\partial Q}{\partial E}\right) dE = f_{0}Q\left[-\int_{0}^{\infty} Q(E)\left(\frac{\partial f_{0}}{\partial E}\right) dE$ now , $q = \int_{0}^{E} g(E') dE'$ E=0, fo=1, q=0 Thus, for q's which go to infinity less repidly E = 00, q-200, fo -> 0 exponentially $T = -\int_{0}^{\infty} \varphi(E)\left(\frac{\partial f_{0}}{\partial E}\right) dE$ -> q(J) as T->0 - 250 dE AE

 $\frac{\partial f_0}{\partial E} = \frac{-1}{\pi T} \frac{E - J}{\pi T}$ $\int \frac{E - J}{\pi T} + 1 \frac{1}{2}$ It is reasonable to use a series expansion of Q(E) about I because of avove graph. $I = \int_{0}^{\infty} \left[\varphi(J) + \left(\frac{\partial \varphi}{\partial \varepsilon}\right)_{J} (\varepsilon - J) + \dots \right] \frac{e^{\frac{|\varepsilon - J|}{|T|^{2}}}}{\left\{ e^{\frac{|\varepsilon - J|}{|T|^{2}} + 1} \right\}^{2}} \frac{d\varepsilon}{d\tau}$ Put X = E-J $T = \int \left\{ q(0) + \left(\frac{\partial q}{\partial x}\right)_0 x + q'(0) \frac{x^2}{z} + \frac{\partial q}{\partial x} \frac{e^x dx}{(e^x + 1)^2} \right\}$ -3 If AT << J da usual in most metale, lower limit -> -> note e^{\times} = ($(e^{\times}+i)^2$ $(e^{\times}+i)(e^{\times}+i)$ which in an even function, Then odd terms in series $T = \int \frac{\varphi(0) e^{-x} dx}{(e^{-x} + 1)^2} + \frac{1}{2} \int \frac{\varphi''(0) x^2 e^{-x}}{(e^{-x} + 1)^2} dx$ $= q(0) + \frac{\pi^2}{6} q''(0) + \cdots O(q'')$ doing original notation , $T = \varphi(\mathcal{J}) + \frac{\pi^2}{\omega} (\mathcal{A}T)^2 \frac{\partial^2 \varphi(\mathcal{I})}{\partial \mathcal{E}^2}$ $= \int_{0}^{\overline{J}} g(E') dE' + \frac{\pi}{6} (\pi)^{2} \left(\frac{\partial g}{\partial E}\right) + \frac{7\pi^{4}}{360} (\pi)^{4} \left(\frac{\partial g}{\partial E^{3}}\right) + \dots$

Calculation of Deusity of States : e(hin-wt) Recall Block function : In (n) = Ma(n) e Use BVK Boundary Conditions: 4n(n) = 4n(n+L)Will get as usual; hxLx = ZH NI Kyly = ZITNZ LZLZ = ZTTNA $dn = dn_1 dn_2 dn_3 = \frac{L_X L_Y L_Z}{(2\pi)^3} \left(dl_X dl_y dh_3 \right) = \frac{V}{8\pi^5} dk$ = $\rho(k) dk = \frac{V}{4\pi^3} dk (uncluding spin)$ We want relation between p(th) dth and N(E) dE : te constant E surface In general, would get $N(E) dE = \int \frac{dS}{|\nabla_{\mu} E|} dE$ For metals use effective mass approximation: $E = \frac{\hbar^2 k^2}{2m^4},$ Constant E surfaces are spheres, $dk = 4\pi \lambda^2 d\lambda = 4\pi \lambda [hdk]$ Then $dE = \frac{\hbar^2}{m^2} \neq dt$. Now use $\hbar = \left(\frac{2mt}{\hbar^2}\right)^{1/2}$ and get : $N(E) dE = \frac{V}{2\pi^2} \left(\frac{2m}{\pi^2}\right)^{3/2} \int E dE$ fo (E) N (E) J E.

Calculation of Fermi Energy: The total number of electrons is : $N = \int_{\delta}^{\infty} n(E) dE = \int N(E) f_{0}(E) dE$ $= \frac{V}{2\pi^2} \left(\frac{2m^4}{h^2}\right)^{3/2} \int \mathcal{E} \left[\int \mathcal{E} \left[\int \mathcal{E} \right] d\mathcal{E} \right]$ ξ = J^{3/2} + π² (2T)². ½ J^{-1/2} +... } Consider first T=0: $N = \frac{V}{3\pi^2} \left(\frac{2m^*}{\pi^2}\right)^{3/2} J(0)$ $J(0) = (3\pi^2)^{2/3} \left(\frac{N}{V}\right)^{2/3} \left(\frac{\pi^2}{2}\right)$ metal J101 JOI OK M. P. K ev 4.76 41 55,400 150 3.15 36,000 NA -100 Rb 1,84 21,000 390 Cu 82, 500 1083 7.1 It is seen that 1272 is such that higher order terms can be dropped. now ansides: $N = \frac{z}{3} \left(\frac{V}{2\sigma^2}\right) \left(\frac{2m^*}{\pi^2}\right)^{3/2} J^{3/2}(\tau) + \frac{\pi^2}{6} (\chi\tau)^2 \frac{V}{4\pi^2} \left(\frac{2m^*}{\pi^2}\right)^{3/2} \frac{1}{\sqrt{7(\tau)}}$ Using definition of $\mathcal{J}(0)$; $\mathcal{J}(T) = \mathcal{J}(0)$ $\begin{bmatrix} 1 + \frac{1}{2} T^2 (\frac{AT}{\mathcal{J}(T)})^2 \end{bmatrix}^{2/3}$ Then 1 $\mathcal{J}(T) = \mathcal{J}(0) \left[1 - \frac{T^2}{12} \left(\frac{\Lambda T}{\mathcal{J}(0)} \right)^2 \right]$

LECTURE XVIX 3-21-61 Transition to Boltzmann Statistics: Fermi: $N_s = \frac{N_s}{e^{\frac{E-3}{AT}} + 1} = \frac{N_s}{e^{\frac{BE_s - \alpha}{AT}} + 1}$ Boltymann: No = No e - E/AT N Z No e - E/AT Fermi to Boltzmann; e >>1 then NS = e e cc1, low density of electrons, h_{AW} , $h_{S} = e = N e^{-E_{S}/RT}$ $N_{S} = E = N e^{-E_{S}/RT}$ $Z = N e^{-E_{S}/RT}$ Thus $e^{\alpha} = \frac{2!}{N} N s e^{-E_s/aT}$ \overline{ZZ} () Free Electrone Case: No in given by dennity of states for quasi-free electrone : $e^{-\alpha} = \frac{V}{2\pi^2} (\pi^2)^{3/2} \int_{0}^{\infty} \left(\frac{2\pi i}{\hbar^2}\right)^{3/2} \frac{\sqrt{E}}{(\pi^2)^{3/2}} e^{-\frac{E}{\hbar^2}} dE$ $= \left(\frac{V}{N}\right) \frac{1}{2\pi^2} \left(\frac{2m^* hT}{\pi^2}\right)^{3/2} \int \sqrt[\infty]{x^2 e^{-x}} dx$ $e^{-\alpha} = 2\left(\frac{V}{N}\right) \left(\frac{2\pi m^* kT}{h^2}\right)^{3/2} > 7$ is the criteria for the Boltymanne limit. Take the de Broglie wavelength : $d = \frac{h}{p} = \frac{h}{\sqrt{2mE^2}}$

now En 3 ht (approximately) $d = \frac{h}{\sqrt{2mE}} = \frac{h}{\sqrt{3mkT'}}$ Then $e^{-\alpha} = \left(\frac{2\pi}{3}\right)^{3/2} \frac{V}{N} \left(\frac{1}{A}\right)^3 \gamma 1$ Er Degeneration of Fermi to Boltzmann as temperature increases. Relation of Fermi Distribution to Thermodynamics and Statistical mechanics. Recall; S= K lu Rmax ln & = Z { Ns ln Ns - ns ln ns - (Ns - ns) In (Ns-ns) $= \sum_{s} \left\{ N_{s} ln \underline{N_{s}} - n_{s} ln \underline{N_{s}} \right\}$ Using $\frac{N_{5}}{N_{5}} = \frac{1}{\frac{E_{5}-Y}{AF}+1}$; $\frac{E_{5}-Y}{A_{5}} = \frac{N_{5}}{N_{5}} = 1$ $\frac{1}{N_{s}} = \frac{N_{s}}{N_{s}} = \frac{N_{s}}{N_{s}} \ln \left(\frac{N_{s}}{N_{s}} - 1 \right)$ $= \sum \lambda_{s} \left(\frac{E_{s} - J}{\lambda T} \right) = \frac{E - NJ}{\lambda T}$ $\frac{N_{s}}{s} N_{s} \ln \frac{N_{s}}{N_{s} - m_{s}} = \sum_{N_{s}} - N_{s} \ln \left(1 - \frac{m_{s}}{N_{s}} \right)$ $= - \sum_{i} N_{s} \ln \frac{e^{(i)}}{e^{(i)} + i} = \sum_{i} N_{s} \ln \left(1 + e^{-(i)} \right)$

Then : $\ln \Omega_{\max} = \sum_{s}^{r} N_{s} \ln \left(1 + e^{-\frac{|E_{s}-J|}{\hbar T}}\right) + \left(\frac{E - NJ}{\hbar T}\right)$ and : $S = h(E - NJ) + h \sum N_s ln(1 + e^{-\frac{(E_s - J)}{nT}})$ Now: E = Z, NSE $e^{\frac{E_S-J}{hT}} + 1$ Then The Helmholty Free Energy: $F = (E - TS) = NJ - \chi T = NS ln Ns (1 + e^{-(E_S - J)})$ not similar to classical $F = -hT \ln 2$ where $\overline{Z} = \overline{Z}^{T} N_{S}^{T} e^{-E_{S}}/hT$ Distribution Functions ! (1) n (E) dE (Energy Distribution Furction) = number of particles with energy between E and E+dE = N(E) fo(E) dE For free particle: $n(E) = \frac{V}{2\pi^2} \left(\frac{2m^2}{\hbar^2} \right)^{3/2} \frac{\int E^2}{E^{E-1}/k\tau} e^{\frac{E}{E} - \frac{1}{k\tau}} + 1$ n(E) 4 Can show at $T=0, E=\frac{3}{5}$ (because of exclusion) while classically or T20 E=C, when T=0

LECTURE XX 3-28-61 Destribution Functions; 1) Energy Distribution $n(E) dE = \frac{V}{2\pi^2} \left(\frac{2m^*}{k^2}\right)^{3/2} \sqrt{E^2}$ 2) Momentum Distribution Function: $E = \frac{p^2}{zw^*}$ nielde = nipldp $\mathcal{K}(p) = \mathcal{K}(E) \frac{dE}{dp} = \frac{V}{2\pi^2} \left(\frac{2m^4}{\pi^2}\right)^{3/2} \frac{\mathcal{P} \frac{\mathcal{P}}{2m^4}}{\sqrt{2m^4}} \frac{1}{p^{\frac{2}{2m^4}} - \frac{1}{2\pi^2}}$ $\frac{\nabla}{T^2 h^3} \frac{p^2}{\int e^{\frac{p^2}{2m^2} - 1} + 1}$ n(p) RE D Pistibution in Momentum space : Px, p+dpx, etc. 3) Pennity of electron on momentum space $= \frac{n(p) dp}{4\pi p^2 dp}$ number of electrons in der deg dez = n(p) der deg dez $n(p_{x}p_{y}p_{z}) = \frac{V}{4\pi^{3}k^{3}} = \frac{p_{x}^{2}+p_{y}^{2}+p_{z}^{2}}{2m^{2}} - 1 + 1$

4) How many electron have momentum letween

$$p_{\mu}$$
 and $p_{\nu}cdp_{\mu}$ equiling of p_{3}, p_{ℓ} ?
 $\pi(p_{\ell}) dp_{\ell} = \frac{-v dp_{\ell}}{4p_{2}^{2} h_{\ell}^{2}} \int_{0}^{p} dp_{3} dp_{2} \frac{1}{\left[e^{-\frac{p_{3}^{2}}{2mhT}}e^{-\frac{p_{4}^{2}}{2mhT}}+1\right]}$
 $\pi(p_{\ell}) dp_{\ell} = \frac{-v dp_{\ell}}{4p_{2}^{2} h_{\ell}^{2}} \int_{0}^{p} \frac{dp_{3}^{2} dp_{2}}{2mhT} \frac{1}{e^{-\frac{p_{3}^{2}}}+1} \frac{p_{2}^{2}}{2mhT}}{\frac{p_{4}^{2}}{2mhT}}$
 $\pi(p_{\ell}) = \frac{v(2myT)}{(2m^{2}h^{2})} \int_{0}^{p} \frac{df dh}{e^{f(\frac{p_{4}}{2}+1)}}$
 $\pi(p_{\ell}) = \frac{2m^{4}kT}{2m^{4}t} - \frac{J}{\pi^{2}}$
 $\pi(p_{\ell}) = \frac{2m^{4}kT}{2m^{4}} \frac{2\pi}{2m} \int_{0}^{\infty} \frac{p dp}{e^{-p_{\ell}^{2}}}$
 $\pi(p_{\ell}) = \frac{2m^{4}kT}{2m^{2}h^{2}} \int_{0}^{\infty} \frac{p dp}{e^{-p_{\ell}^{2}}}$
 $\pi(p_{\ell}) = \frac{v(m^{4}hT)}{2\pi} \ln\left(1+e^{-h}\right)$
 $\pi(p_{\ell}) = \frac{v(m^{4}hT)}{2\pi^{2}h^{2}} \ln\left(1+e^{-h}\right)$
 $\pi(p_{\ell}) = \frac{v(m^{4}hT)}{2\pi^{2}h^{2}} \ln\left(1+e^{-h}\right)$
 $\pi(p_{\ell}) = \frac{m^{4}v}{2\pi^{2}h^{2}} \ln\left(1+e^{-h}\right)$
 $\pi(p_{\ell}) = \frac{m^{4}v}{2\pi^{2}h^{2}} \ln\left(1+e^{-h}\right)$
 $\pi(p_{\ell}) = \frac{m^{4}v}{2\pi^{2}h^{2}}$

b) px >7 5, use lu(1+e-x) ~ e-x $n(p_x) = \frac{mhTV}{2\pi^2 h^3} e \frac{-p_x^2}{2\pi} + \frac{j}{2\pi}$ n (pr) To go from n(px) to n(vx): n(px) dpx $= u(v_x) dv_x$ a Boltzmann Tail $\sigma n(vx) = men(px)$ px applications of Fermi Statistics a) Calculate Electronic Apecific Heat $C_V = \left(\frac{dQ}{dT}\right) = \left(\frac{dE}{dT}\right)_V$ since $\overline{dQ} = dE + PdV$ We have for lattice vibration contribution : Cr = 3NhT, with N atorum Classically for electrons, CV = 3 Nn hT, ao Total specific heat should be: $\dot{c}_{v} = 3N(1+\frac{m}{2})k$ where n in the number of conduction electron per atom. WIE) (Elevention = (3/2 LT) Nu (LT) $= \frac{3}{2} \frac{(4T)^2}{T} Nn$ with Cr = 3 kT 1 Nn $= (3N nk) (\frac{kT}{2}) = 3Nk (\frac{T}{2})$

LECTURE XXI 3-30-61 Electronic frecific Reat. $T_{otal} energy: E_{r} = \int_{0}^{\infty} n(E) E dE = \int_{0}^{\infty} N(E) E f_{o}(E) dE$ $= \left[\int_{0}^{T} E N(E) dE \right] + \frac{\pi^{2}}{6} \left(hT \right)^{2} \left(\frac{\partial \{EN(E)\}}{\partial E} \right) + \cdots \right]$ where $N = \frac{V}{2\pi^2} \left(\frac{2m^2}{\hbar^2}\right)^{3/2} \int E^2$, N in Total # of electron $W(E) = \frac{3}{2} N \sqrt{E^{1}}$ because: $\int N(E) dE = N \stackrel{?}{=} \frac{3N}{2 \pi^{3/2}(0)} \int \overline{SE} dE = N$ Then we can write $E N(E) = \frac{3}{2} N \left(\frac{E}{J(d)}\right)^{3/2}$ and $\int E N(E) dE = \frac{3}{5} N J(0)$ or $E(0) = \frac{3}{5} \times J(0)$ or m general, for $T \neq 0$; $E_A = \frac{3}{5} N J(0) \left(\frac{J(T)}{J(0)}\right)^{5/2}$ so the average energy of an electron at T=0 in 3/5 J(0), where classically it would be zero. $\begin{array}{c} how: \left(\begin{array}{c} d\left(EN(E) \right) \\ dE \end{array} \right) = \begin{array}{c} = \begin{array}{c} q \\ = \end{array} \begin{array}{c} N \\ \overline{J^{3/2}(0)} \end{array} = \begin{array}{c} = \begin{array}{c} q \\ \overline{J^{3/2}(0)} \end{array} = \begin{array}{c} = \begin{array}{c} q \\ \overline{J^{1/2}} \end{array} \left(\begin{array}{c} E \\ \overline{J^{1/2}} \end{array} \right) \\ E = \end{array} \end{array}$ $E_{\tau}(\tau) = \frac{3}{5} N J(0) \left(\frac{J(\tau)}{J(0)}\right)^{5/2} + \frac{T^{2}}{6} \left(\frac{1}{2} T(\tau)^{2} + \frac{1}{4} \frac{1}{J(0)} \left(\frac{J(\tau)}{J(0)}\right)^{1/2}$

Recalling: $\frac{J(r)}{J(0)} = 1 - \frac{T^2}{12} \frac{(kT)^2}{T^2(0)}$ which gives, keeping to order T2: $E_{T}(T) = \frac{3}{5} N Y(0) \left[1 - \frac{\pi^{2}}{12} \left(\frac{\Lambda T}{J(0)} \right)^{2} \right]^{6/2} + \frac{\pi^{2}}{6} \left(\frac{\Lambda T}{4} \right)^{2} \frac{9}{10} N$ $E_{r}(T) = \frac{3}{5} N J(0) \left[1 + \frac{5\pi^{2}}{12} \left(\frac{hT}{J(0)} \right)^{2} \right]$ or : Thus) $C_{V} = \left(\frac{\partial E}{\partial T}\right)_{V} = \frac{3}{5} N J(0) \frac{5\pi^{2}}{12} Z \left(\frac{hT}{J(0)}\right) \frac{k}{J(0)}$ $= \frac{\pi^2}{2} N_{\rm h} \left(\frac{hT}{\pi(0)} \right)$ $or \qquad Cv = \frac{\pi^2}{2} N \not k \left(\frac{T}{T_{\rm F}/c} \right)$ C_{ν} (lattice) = Not $\left(\frac{T}{\Theta}\right)^{3}$ meanment : Cr (elections) 2 Nh (T) so that it low temperatures can see in due to electron. However, at high temphature. Cv (lattice) ~ 3Nh and Cv (electer) ~ T so could measure gradual mercane in slope to get Cv (electron) b) Thermionic Emission inside of outside se that enough Tail exists so emission takes place. Qu

no. of electron striking surface in Trine dt and area IA = n(px) (vz dt) dA () h dA Define Reflection coefficient = r(px) = probability that particle with rumentum que will be reflected. Then, number of electronic escaping = $\frac{m(\mu_x)}{V} \frac{\mu_x}{m} (1 - n(p_x)) d_y x dt dA$ $p_x = \sum_{m(J+q_n)}$ Except for tanneling, we must have $\frac{p^{n}}{2m}$) $J + q_{w}$ LECTURE XXII 4-11-61 Thermionic Emmission : The current density in Then: For $\frac{px^2}{2m}$ $\gamma \left(J + q_w \right)$, $\frac{q_w}{\lambda t}$ $\gamma 1$ Then: $\frac{V}{V}(px) = \frac{1}{2\pi^2} \left(\frac{m+\frac{h}{h}}{t^3}\right) e^{-\frac{1}{2}\frac{h}{h}} e^{\frac{1}{2mt}\frac{h}{h}}$ We use an average r/px/ so we can remove it from the integral.

 $J = (1-r) \frac{e}{mt} \frac{1}{2\pi^2} \frac{mt}{t_1^3} e^{-\frac{p_x^2}{p_x}} \int p_x e^{-\frac{p_x^2}{2mt}t_1} dp_x$ Pamme (ZmthT) $\frac{zet}{\sqrt{zm^* kT}}, \quad ymin = \frac{zm^* (J+9w)}{zm^* kT}$ $J = (I-r) \stackrel{e}{\longrightarrow} \frac{4(m^{t}xr)^{2}}{2\pi^{2}} \stackrel{g}{\longrightarrow} \frac{4}{2} \frac{1}{\pi^{2}} \frac{1}{2} \frac{1}{\pi^{3}} \int \frac{g}{g} \frac{g}{g} \frac{g}{dy}$ $-\frac{1}{2}e^{-y^2} = \frac{1}{2}e^{-\frac{1}{2}+\frac{q_w}{x_1}}$ Therefore '. $J = (1-n) e^{m*} (kT)^2 e^{-\frac{p_w}{nT}}$ $ZT t_3$ or $J = A(1-r) T^2 e^{-\frac{qw}{hT}}$ where A = 120 any/cm² (K°)2 Called Dushman - Richardson equation. To show strong exponential dependence, examine: lu (J) VS (using lu (I) = lu (A(1-1)) - qui $Q_W = 4.54 eV$ $Q_W = 52,600 eK$ T_{L} Tungsten: For T = 1000 e -32.6T = 2000 e -26.3logio J .2 .4 .6 ,8

Experimental Determination ; evacuated heater Conditions : 1) all emitted electron much be drown away from surface - no space charge 2) not too beg voltage - field emmission 3) High varieur with no residual gas. 4) Interpretation a) include effect of thermal expansion on clu b) polycrystalline emitter gives an overage Pu c) Difference between surface area measured geometrically and actual case. Typical Values: qu (ev) AR 4.20 4.89 Ag Ba 2,31 4.41 Co 1.93 CS 2,22 K 4.54 W What is distribution of electrons outside metal? Energy Pistribution in the Emitted Electrons; number of electrons in velocity range 1201 Tribing surface $= \frac{1}{4\pi^{3}h^{3}} \left\{ \begin{array}{c} \frac{v_{x_{1}}}{2} dv_{x_{1}} dv_{x_{2}} dv_{x_{1}} \\ \frac{1}{2} m \left(\frac{1}{v_{x_{1}}^{2}} + \frac{1}{v_{y_{2}}^{2}} + \frac{1}{v_{z_{1}}^{2}} \right) \\ e \end{array} \right\}$ 1 m Vai > J+ qw vyo = Vij Vzu = Vzi 1/2 m Vxi - (7+ 9w) = ± m Vxo

now the distribution outside is. V (Vio) Vio dVio digo dVio damy the above relations : $\frac{N}{V}(v_{xo}) = \frac{1}{4\pi^{3}\pi^{3}} \begin{cases} \frac{1}{2} \frac{1}{w(v_{xo}^{2} + v_{yo}^{2} + v_{zo}^{2}) + qw}{\pi t} \\ e \frac{1}{2} \frac{1}{w(v_{xo}^{2} + v_{yo}^{2} + v_{zo}^{2}) + qw}{\pi t} \end{cases}$ no. outside = N (vxo) vxo dvxo dvyo dvzo moving away = V (vxo) vxo dvxo dvyo dvzo 0 < Vx 0 (00 - 00 < Vy0 < 00 - 20 × 2020 × 0 $\overline{E}_{Am} = \int \frac{1}{2}m \left(\overline{vx^2} + \overline{vy^2} + \overline{vz^2} \right) \left(\frac{dv}{dt} \right) dv_x dv_y dv_z$ S (dr) dv dvy dv2 $\int_{0}^{\infty} vx dv x \int_{0}^{\infty} \int_{0}^{\infty} dv x = \frac{1}{2} u \left(vx^{2} + vy^{2} + vz^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vz^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2} \right) e^{-\frac{1}{2} m \left(vx^{2} + vy^{2} + vy^{2} + vy^{2}$ LECTURE XXIII 4-13-61 Evaluate Exin by putting: 1/2 mox ~ X, etc. and get Frin = 2 pT which is energy that electron takes from metal and results in a cooling process. But extra digree of friedom from tox term. of effective massa is included: 1 m* Vx2 - (J+qw) = = = m Vio m* Uy. = m Uyo mt Vz1 = m Vz0

Then distribution becomes : $\mathcal{V}(\tau_0) = \frac{\left(\frac{m}{m^*}\right)^3}{\frac{1}{2}m\left[\frac{v_{xo}^2 + \frac{m}{m^*}\frac{v_{yo}^2 + \frac{m}{m^*}\frac{v_{zo}^2}{2}\right] - \varphi_W}{hT}} + 1$ Field Enhanced Emission: Achatthy Effect (towering of Gw by field strength) 1 and 1 a field met potential outsude Qui = Quio - A Qui What is the p.E. of an electron vs x an electron approaches metal surface? à For classical approach to hold, eV >> 4w, find that X > 10 A° now the total field is: 4W V $eV_{TOT} = \frac{-e^2}{4x} - eEx$ minimize to get Xo ! $X_0 = \frac{1}{2} \int_{E}^{e^{-1}}$

 $\therefore \Delta q_{W} = -e^{2} - eE \int e^{2} = -e^{3/2} \int e^{2}$ $4^{1/2} \int e^{2} = 2 \int e^{2} = -e^{3/2} \int e^{2}$ and $q_w = q_{w_o} - e^{3/2} JE^{1}$ and $\overline{J} = \overline{J_0} \ e^{\frac{2k}{\hbar}} \overline{E^1} \qquad ln \ \overline{\underline{J}}$ Platting ln $\left(\frac{J}{J_o}\right) = \frac{e^{3/2}\sqrt{E}}{kT}$ Typical Values. E = 10 3 v/cm Xo = 10-5 cm A@ = .01 er High Field Emission : Cold Emission Reference: Good & Muller, Hand. der Phys., Vol XXI J E E Turneling accurs due to Thineso of barrier. Consider me - dimensional case; Energy paramenter is; $W = E - \left(\frac{p_y^2 + h_z^2}{2m}\right)$ Probability that electron with "x directed every" in given by WKB approximation it : $D(W) = \exp \left\{ -\int_{X_1}^{X_2} \frac{B_{11}}{R^2} (V(X) - W) dX \right\}$ now $D(W) = e \times p \int_{0}^{W} \frac{1}{h^{2}/9m} dx$ $-lup(w) = \frac{2}{3} \int \frac{\partial w}{w^2} \frac{|w|^3/2}{eF}; \quad D(w) = e^{-4 \sqrt{2m}|w|^3/2}} \frac{-4 \sqrt{2m}|w|^3/2}{eF};$

LECTURE XX18 4-15-61 Recall: $|\overline{J}| = \mathbb{P}W$ and: $E = E_0 + \frac{Px^2}{ZM^{\frac{1}{2}}} + \left(\frac{Py^2}{ZM^{\frac{1}{2}}}\right)$ W and we found: D(W) = exp { - 4 J2m1W137 } now the emission current is : $J = e.2 \left(\int \frac{N(p_x p_y p_z)}{V} \frac{p_x}{2v} dp_x dp_y dp_z D(w) \right)$ $\frac{P_{x} d_{y} p_{x}}{w^{2}} = dW; \quad J_{0} = e \int dW D(w) \int \int \frac{W}{V} (p^{2} P_{3} P_{-}) dP_{3} dP_{2}$ where $T = \frac{1}{4\pi^3 h^3} \iint \frac{dp_{\#} dp_{Z}}{e^{\frac{E-J}{AT}} + 1}$ $= \frac{1}{4\pi^{3}t^{3}} \int \frac{d\varphi_{9} dp_{2}}{\frac{w-7}{2\tau}} \frac{(\frac{1}{2}+p_{2})}{\frac{w-7}{2\tau}} + 1$ since $E = W + \frac{p_1^2 + p_2^2}{2m^4}$ Charage too py = p con 0 . Then: $I = 2\pi \int \frac{\rho d\rho}{e^{\frac{W-J}{h\tau}} e^{\frac{D^2}{2m^{\nabla}hT}} + 1} = 2\pi \int \frac{\rho d\rho e^{-\frac{D^2}{2m^{\nabla}hT}}}{e^{\frac{W-J}{h\tau}} + e^{\frac{D^2}{2m^{\nabla}hT}} + 1}$ $= 2\pi m^{\frac{1}{2}} h \left(e^{\frac{W-1}{hT}} + e^{\frac{p^2}{2m^2 h^{\frac{1}{2}}}} \right)$ on I = 27 m / ti ln [1+e - (N-7/)];

and: $J = e^{M^* kT} \int dW \mathcal{D}(W) \ln\left[1 + e^{-\left(\frac{W-J}{\lambda T}\right)}\right]$ We drave two cases: -17/KWK00 or -1E0/2W<-171 $\int \ln\left(1+e^{-\frac{(w-3)}{2\pi}}\right)$ $-131 \langle W \langle +\infty : lu() \rightarrow -(\frac{W-J}{ut}) \\ e$ an - (W-J) - 171 - (W-7) - 171 w $-1E_{0}(W < -131; du()) \rightarrow -(\frac{W-7}{\pi})$ However, P(W) behave no strongly below I that most of contribution in from around y. Physically, above I, not many available electrons, Below I; wall in Too thick. Therefore: Expand IW/3/2 around I: $|W|^{3/2} = |J|^{3/2} - \frac{3}{2} |J|^{1/2} (W - J) + \cdots$ 1=-111 $1, p(w) = e^{-c} + \frac{(w-7)}{a}$ where $c = \frac{4}{3} \frac{\int z_{um} e_{[J]^3}}{\operatorname{treF}}$, $d = \frac{\operatorname{treF}}{Z(2m^{4}|J|)^{1/2}}$ Then: $J = \underbrace{em^* 4T}_{7 \pi^2 h^3} \underbrace{(-1) e^{-c}}_{h \tau} \left((W-J) dW e^{-(W-J)}_{a} \right)$ Change variables: X = - (W-J) $J = em^{*}(-x)e^{-x}(-dx)$ $\frac{1}{2\pi^{2}t^{3}}\int_{-\infty}^{0}(-x)e^{-x}(-dx)$ or $J = \frac{e^3 F^2}{8Th Pw} = \frac{4}{3} \frac{J Z m^2 Pw^3}{h e F}$

First done by Fowler and nordham Proc. Roy. Loc A 119 173 (1928) Plat $ln\left(\frac{\pm}{F^2}\right) = C - \frac{1}{F} \frac{4}{3} \int Zm^{\infty} q_{w}^{3}$ -5-log 10 I -6-Experiment done by: Dyke and Trolon PR 89 799, (1953) 2.5 3.0 3.5 10⁴ Field at though Typ: $V(n) = Q\left(\frac{1}{n_2} - \frac{1}{n}\right)$ $V(A \rightarrow c) = Q\left(\frac{1}{n_2} - \frac{1}{n_1}\right)$ Q $V(\Lambda) = \left(\frac{1}{\Lambda_2} - \frac{1}{\Lambda}\right) V_{AC}$ $\frac{\partial V}{\partial n} = -\frac{1}{n^2} \quad V_{AC}$ $\frac{1}{(n^2 - 1)} \quad \frac{V_{AC}}{(n^2)} \rightarrow \frac{V_{AC}}{(n^2)}$ $\left(\frac{1}{n_2}-\frac{1}{n_1}\right)$ For VAC ~ 100 V, V~ 10-5 E~ 107 v/cm Typ radius F: v/cm qu Jamp/cm2 2.10-5 cm 2.6.107 4.5 107 2.10 m 6.4.107 4.5

LECTURE XXV 4-18-61 Fermi - Thomas Itatistical Model of atom ; We assume that the electrons are moving in some potential ; $\frac{1}{2m} = \frac{1}{2m} = \frac{1}{2m} \frac{1}{2m} = \frac{1}{2m} \frac{1}{2m} \frac{1}{2m} = \frac{1}{2m} \frac{$ Variation of potential in small over one de Broglie wovelength. that is, in a small volume, electrons are distributed as if they were free, i. $-eq(n) + \frac{p_0^2}{zm} = -eq_0$ and she state density in given by: $n(n) = \frac{g_{T}}{3} \left(\frac{2m}{h^{2}}\right)^{3/2} \frac{3/2}{J_{0}(n)}, J_{0} = \frac{p_{0}^{2}}{2m}$ $Then: \frac{p_{0}^{2}}{2m} = \left(\frac{3}{8\pi}\right)^{2/3} \frac{h^{2}}{2m} N(n)^{2/3}$ From por = e (q(n) - 90) and the fact that The for the negative , thus so denotes the boundary of the atom. We now write : $\left(\frac{3}{8\pi}\right)^{2/3} \frac{h^2}{2m} n(n)^{2/3} = e \left\{ \frac{\varphi(n) - \varphi_0}{\varphi_0} \right\}$ From Poisson's Equation , $\nabla^{2} \{q(n) - q_{0}\} = -4\pi p = 4\pi e n(n)$ We will thive for self- consistency in potential.

Therefore ', $\nabla^2 \left\{ q(n) - q_0 \right\} = 4\pi e \left(\frac{8\pi}{3} \right) \left(\frac{2m}{h^2} \right)^{3/2} \left\{ e \left(q(n) - e \right)^{3/2} \right\}$ This in the Ilbomas - Fermi equation a) Ristribution of charge in neutral atom, no at so, and 90 = 0. Boundary Conditions : Write 9(12) = Ze X(12) as no qo ze, X(n) -> 1 as ras, rq(n) = 0, or X(n) = 0 because at a nucleus is completely shielded. now. $\nabla^2 q(n) = \frac{1}{n^2} \frac{1}{3n} \left[\frac{1}{n^2} \frac{1}{3n} \left(\frac{1}{n} \chi(n) \right) \right]$ $= \frac{1}{n^2} \frac{\partial}{\partial n} \left[n^2 \left(\frac{Ze}{n} \chi' - \frac{Ze}{n^2} \chi \right) \right]$ $= \frac{2e\chi^{*}}{4}$ $= \frac{\pm e \lambda}{\lambda}$ Then: $\frac{2e \chi''}{\lambda} = \frac{32\pi^2}{3} e^{5/2} \left\{ \frac{2e}{\lambda} \chi \right\}^{3/2} \left(\frac{2m}{h^2} \right)^{5/2}$ Make the substitutions n = bx $b = \left(\frac{3\pi}{4}\right)^{2/3} \left(\frac{\pi}{2me^2}\right)^{\frac{1}{2^{1/3}}}$ and get: $\chi'^{/2} \frac{d^2 \chi}{dx^2} = \chi^{3/2}$, $\chi(0) = 1$, $\chi(\infty) = 0$ prumerically integrated by Bush and Caldwell PR 38, 1898 (1931) X 0,1 ,2 .417 .500 1.00 3.90 10 30 7 1 .882 ,793 .650 .607 .125 ,110 .0244 .0027 .125 , 110 , 0244 , 0022 X

Therefore: $n(x) = \frac{8\pi}{3} \left(\frac{2me^2 \chi}{b} \right)^{3/2} \int \chi(x) \frac{1}{\chi}$ Calculation of the Effective Radius of atom : Define rest as radues where half of electrons lie within: $\int_{1}^{Ress} dr 4\pi r^{2} u(r) = \frac{Z}{Z}$ lae n=bx: 4TI (constant) $\int b dx b^2 x^2 \left(\frac{7}{b}\right)^{3/2} \left(\frac{\chi(u)}{x}\right)^{3/2}$ $= \frac{Z}{Z} = \operatorname{conat} \int \frac{1}{Z} \frac{Z^2}{Z} \left(\frac{\chi(x)}{x} \right)^{3/2} dx x^2$ $const. \int \frac{\chi_{eff}}{\chi^2 dx} \left(\frac{\chi_{eff}}{\chi}\right)^{3/2} = I$ Xeff is same for all down $N_{eff} = X_{eff} = \frac{A}{Z'^3} =$ 1.33 Bohr units 7/3 Bohr unit = ,5292 Å de 2 marcases, reff decreases, seems paradopial, but is not suce 1/2 of electrone involved. Comparison with Hartree- Fock results, Rubidium 4 11 22 (4(1)) on HF or n(A) 7-Bohr units

LECTURE XXVI 4-20-61 Calculation of Potential at n=0; pet up by electrons: $\varphi(n) = \frac{ze}{2} \chi(n)$ Recall : X'' X" = X 3/2, so we cannot expand around yers in the usual manner, From the fact that X - 1 as X - 0, then: X"=> (as x->0 1. $\chi = \frac{4}{3} \chi^{3/2} + B \chi + c \chi = 0$ $\chi = 1, \quad \chi \to 0, \quad C = 1$ From Table: $\frac{\partial \chi}{\partial x} = -1.59$ $\chi \rightarrow 0$... B = 1.59 $\chi(x) = \frac{4}{3}\chi^{3/2} - 1.59\chi + 1$ ×-20 Thus: X = 0 X" > 00 X' -2 -1.59 X-ZI what about of (1) } $\varphi(\Lambda) = \frac{ze}{2} - \frac{ze}{4} (1.59 \times) + \frac{4}{3} \times \frac{3/2}{2} \frac{ze}{4}$ N=bx 1 $q(n) = \frac{Ze}{n} - \frac{Ze(1.59)}{1} + \frac{4}{3} \frac{x^{3/2} Ze}{bx}$ $e V_{e10} = -\frac{1.59}{2e^2}$ $b = \left(\frac{3\pi}{4}\right)^{\frac{2}{3}} \frac{\pi}{1} = \frac{.885}{2^{\frac{1}{3}}} \left(\frac{\pi}{1}\right)^{\frac{2}{3}}$

In atomic units : the = 1 boks unit = , 5292 Å = 1 atomic unit of length me = 1 atomic unit of energy = 2 nydbergs 1 rydberg = 13.605 er $eV(0) = -1.80 = 7^{4/3}$ atomic units = -3.60 = $7^{4/3}$ Rydbergs Comparison with Hartree Treatment : Dickenson, PRBO, 563 (1950) Foldy, PR83, 393 (1951) $e V(0) = -7.4 Z^{1.4}$ rydberge (Hartice) = -3.60 Z^{1.33} (FT) Criteria of validity for F-T Model application: Z^{2/3} >>1 Faile at two pointe: O near nucleurs E large distance from atom become statistics cannot be applied. Calculation of Plagmaquetic Shielding of Muclaus thielding in due to electrons. Consider spherical distribution of charge in a magnetic field; $\int armour precessions;$ $\omega_{L} = \frac{e}{2mc}$ $dA = r dr d\theta$ $\frac{da}{dt} = dt = c n(n) dA (v-dt)$

Use Brot-favat law; dHz = idlxn cr3 $= \frac{2\pi r sm\theta}{c r^3} dt = \frac{2\pi sm^2 \theta}{c r} dt$ Then : $H_z = -\frac{1}{2} \int \frac{2\pi \sin^2\theta}{cn} e^{n(n)n^2} dn d\theta \sin\theta e H$ using V= rwpmo $H_z = -\frac{I_z}{6} \left(\frac{e}{mc^2} \right) H \left(\frac{e n(n)}{n} + \pi n^2 dn \right)$ $eV(0) = \int_{0}^{\infty} p(n) d\sigma$ i. Hnucleus = H(1-J), where : $\sigma = \frac{1}{6} \frac{e}{mc^2} \int_{0}^{\infty} \frac{p(n)}{n} dt^{n} = \frac{1}{6} \frac{e}{mc^2} V(0)$ Jamb, PR60, 817 (1941) J = .159.10 + 7 4/3 For 24/3 ~ 50, 5 ~ 6.10-4, must be taken into account when measuring nuclear magnetic moment, Sonization Energy of a neutral atom 3(4) IE = KE + PE DI! $IE = \int \frac{3}{4} J(n|n|n) dr - \int \frac{2e}{2} \beta n(n| dr' + \frac{1}{2} [en(n) dr' [p(n(n))] dr'}{n(n-1)} dr'$ electron bound. KE To muclius election repulsion of each other

If we use Virial Theorem for coulombic field : $\overline{T} = -\frac{1}{2}V$ we need only to calculate T: $T = \frac{3}{5} \int J(n) u(n) dt$ eq(n) $q(n) = \frac{Ze}{n} \chi(n)$ $T = \frac{32\pi^2}{5} e \left(\frac{2me}{\hbar^2}\right)^{3/2} b^{1/2} (Ze)^{5/2} \int_{\Lambda} \frac{\pi^{5/2}}{\chi^{1/2}} dx$ since $n(n) = \frac{BTT}{3} \left(\frac{zme}{k^2}\right)^{3/2} q(n)$ Milne bas shown: $\int \frac{\chi^{5/2}}{\chi^{1/2}} dx = -\frac{5}{7} \frac{\chi^{10}}{\chi^{10}} \left(\frac{d\chi}{dx} \right)_{\chi=0}$ LECTURE XXVII 4-22-61 Recall: $\int \frac{\chi^{5/2}}{\chi^{1/2}} dx = -\frac{5}{7} \chi(0) \left(\frac{d\chi}{d\chi}\right)_0$ $T = \frac{8\sqrt{21}}{\pi} \left(.885\right)^{1/2} \left(1.59\right) \frac{1}{2}^{7/3} = .77 \frac{7}{2}^{7/3} atomic units$ = 1.54 Z 7/3 Rydbergs First done by G. allard, J. Physe & Rad. 9 (225) (1948) Now E=T+V, T= - =V 1. E= -1.54 Z 7/3 now the inigation energy on the T-F model to remove all the electrons: (IE) exp: = 1.13 Z7/5 Ryd. 2 (IE) am N Z 2.4 (IE) TF = 1.54 Z7/3 (JE) TF

Proof of milne's Theorem: $\int_{0}^{\infty} \frac{\chi^{5/2}}{\chi^{1/2}} dx = I = \frac{4}{2} \int_{0}^{\infty} \chi^{5/2} d(x^{1/2})$ $= \frac{1}{2} \chi^{6/2} \chi^{1/2} \Big|_{0}^{\infty} - 2 \frac{5}{2} \int \chi^{1/2} \left(\frac{d \chi}{d \chi} \right) \chi^{3/2} d \chi$ $= -5 \int x \left(\frac{\chi^{3/2}}{x'/r}\right) \left(\frac{d\chi}{dx}\right) dx = -5 \int x \chi'' \chi' dx$ $= -\frac{5}{2} \int x \frac{d}{dx} \left(\frac{dx}{dx} \right)^2 dx = -\frac{5}{2} \int x \frac{d}{dx} \left(\frac{dx}{dx} \right)^2$ $= -\frac{5}{2} \left[\times \left(\frac{d\chi}{dx} \right)^2 \right] - \int_0^\infty \left(\frac{d\chi}{dx} \right)^2 dx \right]$ or $I = \frac{5}{2} \int \left(\frac{d\chi}{dx}\right)^2 dx$ We can also write I and $I = \int \frac{\chi^{3/2}}{\chi^{1/2}} \chi \, d\chi = \int \left(\frac{d^2\chi}{d\chi^2}\right) \chi \, d\chi = \int \chi \, \frac{d}{d\chi} \left(\frac{d\chi}{d\chi}\right) d\chi$ $\sigma = \left[\frac{\chi d}{dx} - \frac{d\chi}{dx} \right] = \chi \frac{d\chi}{dx} - \int \frac{d\chi}{dx} \frac{d\chi}{dx} dx$ Then: $I = -\chi(0) \left(\frac{d\chi}{dx}\right) - \frac{2}{5}I$ $I = \int_{a}^{\infty} \frac{\chi^{5/2}}{\chi^{1/2}} dx = -\frac{5}{7} \chi(0) \left(\frac{d\chi}{d\chi}\right)$ or References: N.H. March, advances in Physica 6 (1957)

Electronic Charge Distribution in atoms ! Jonezed atoms : Fernie - Thomas Model: e no lo = total energy of most inergetic electron. : there now exists a finite radius no outride on q(n) which elections connat be found. Recall: $\nabla^{2} \left\{ q(n) - q_{0}^{2} = \frac{32\pi^{2}}{3} \left(\frac{2me}{h^{2}} \right)^{3/2} e \left\{ q(n) - q_{0}^{2} \right\}^{3/2}$ Let ze X(n) = Q(n)-Go and get: $\chi^{1/2} \frac{d^2 \chi}{d^{\chi^2}} = \chi^{3/2} \qquad ; \qquad \chi \to 0, \chi \to 1$ What is B.C. at a? Better yet what is BC at ro? Z charges on nucleus; (Z-3) electrons = net + charge + 3/el We nurst have: • $\int n(r) dr = 3$ and $\nabla^2 \left\{ \varphi(n) - \varphi_0 \right\} = -4\pi p = -4\pi |e|m|n|$ Then : $-\frac{1}{4\pi e}\int_{0}^{\pi e} \nabla^{2} \left\{ q(n) - q_{0} \right\} dr = 3 = -\frac{1}{4\pi e} \int ds \cdot \nabla \frac{z_{e}}{n} \chi(r_{e})$ and; $y = -\frac{1}{4\pi e} \frac{4\pi n^2}{\pi e} \frac{Ze}{\pi o} \left(\frac{\partial \chi}{\partial n}\right)_{\lambda o}$ $-\frac{3}{z} = \left(\frac{\partial \chi}{\partial x}\right)_{\Lambda_0} = \left(\frac{\partial \chi}{\partial x}\right)_{\chi_0} \times 0$ or : which makes the BC at ro.

Can associate certain unionized degree of ionization with each slope. Xo X LECTURE XXVIIL 4-29-61 Electrostatic Field of an Sorriged Impurity atom in 0°K Jo fince we want charge neutrality: 72 Q = - 4TTA =0 and n+ (1) = n- (1) at all points. $\mathcal{N}_{-}(r) = \left(\frac{\partial T}{3}\right) \left(\frac{Zm}{h^{2}}\right)^{3/2} \int_{0}^{3/2}$ now consider a Cu hast lattice with Al (3 valence elections), 2 electrons and 2 positive charges in vicinity of impurity. 3= excers no. of valence electrons donated by impurity. $\mathcal{N}_{-}(\Lambda) = \frac{\mathcal{B}T}{3} \left(\frac{\mathcal{Z}M}{h^2}\right) \left(\mathcal{J}_{6} + \mathcal{C}\left(\mathcal{A}\right)\right)^{3/2}$ $\frac{3e}{eq(n)}$ $\mathcal{N}_{+}(n) = \frac{\mathcal{B}T}{3} \left(\frac{2m}{h^{2}}\right) \left(\frac{1}{3}\right)^{3/2}$ 4=0 loes not nucleide + core now use Paissona equation: J'Q(L) = 4TT |el (n-11) - n+(L)) $\overline{Vq} = \frac{32\pi^2/e!}{3} \left(\frac{2m}{h^2}\right)^{3/2} \left[\left(\frac{J_0 + eq(n)}{h^2}\right)^{3/2} - \frac{J_0^{3/2}}{h^2} \right]$

Boundary Conditions: Q -> 3e , ~ > 0 n p(n) - o an n -> 0 Now assume r in such that $e \varphi(r) \ge J_0$, then: $\int = \int_0^{3/2} \left(1 + \frac{e \varphi(r)}{J_0}\right)^{3/2} - \int_0^{3/2}$ $= \frac{3}{2} e \varphi(n) \int_0^{1/2}$ Then: $\nabla^2 \varphi(n) = \frac{32\pi^2}{3} e^2 \left(\frac{2m}{\mu^2}\right)^{3/2} \varphi(n) \int_0^{1/2}$ where $\int_{0}^{1/2} = \left(\frac{3}{\theta T} N_{0}\right)^{1/3} \frac{1}{\left(\frac{2m}{h^{2}}\right)^{1/2}}$, $N_{0} = N_{-} = N_{+}$ with $\left(\frac{2m}{h^{2}}\right)^{1/2}$, no impurities added $\nabla^2 \mathcal{Q}(n) = 16 \#^2 e^2 \left(\frac{2m}{h^2}\right) \left(\frac{3}{8\pi} N_0\right)^{1/3} \mathcal{Q}(n)$ or $\nabla^2 \mathcal{Q}(n) = \frac{4}{\left(\frac{\hbar^2}{me^2}\right)} \left(\frac{3\pi}{\pi}\right)^{1/3} \mathcal{Q} = \frac{\mathcal{Q}}{\Lambda^2}$ $\lambda^2 = \frac{a_0}{4} \left(\frac{\pi}{3n_0}\right)^{1/3} ; \quad d_0 = \frac{-\hbar^2}{me^2}$ the solution is: $q(r) = \frac{3e}{r} e^{-r/\lambda}$ d is moth philding Length : $\lambda = .55 \, \text{A}^\circ \, \text{Cu}$ = .58 Å Az .58 Å Au The following should hold ; $\int (n - n_+) dt = 3 = \int_{-\infty}^{\infty} \frac{1}{4\pi e} \nabla^2 \varphi(n) + \pi n^2 dn$ $= \frac{3e}{e} \int_{-\infty}^{\infty} \sqrt{\frac{e^{-\lambda/\lambda}}{\lambda}} \sqrt{\frac{e^{-\lambda/\lambda}}{\lambda^2}} dx = \frac{3e}{\lambda^2} \int_{-\infty}^{\infty} \sqrt{\frac{e^{-\lambda/\lambda}}{\lambda^2}} dx = \frac{3e}$ so holds even though not good at n=0

Region of Validity of folution : We must shave ! $\frac{e \varphi(n)}{z} \quad (1) \quad X = \frac{n}{d}$ $\frac{e \varphi(n)}{I_0} = \frac{e^2}{n} \frac{e^2}{X} \frac{e^2}{\left(\frac{B}{BT} n_0\right)^{2/3}} \left(\frac{h^2}{Zm}\right) = \left(\frac{32}{T^2}\right) \left(\frac{h^3}{a_0^3}\right) \frac{e^{-X}}{X}$ Choose arbitrarily: @P(ro) = 2 ; for r (ro, assumption Jo Jailo Then $\frac{e^{-\chi_0}}{\chi_0} = .0617$; in $\chi_0 = 2 = \frac{n}{d}$ to can consider good for a post 2 d 0 = d + 1 + d + 1 = 0 = 2 = 10 The Physics of Fully Soringed Gases Plasma Densities: metal 10²³/cc yas 10¹²-10¹³/cc We have considered in the course, very low density electron systems (ballistic) and high density systems (metals). Now we do intermediate, 1) Abielding Respecties of a Plasma: Ahielding length depends on temperature.

LECTURE XXIX 5-2-61 Physics of Fully Joninged Gases: 1) Debige shielding Length : We proceed much an in the Thomas - Fermi treatment of the atom. We suppose a gas of electrons which obega MB statistica. Presence of impurity 4=0 n+ = n- in apperturbed -e \$(n) problem and Q=0 We take for the density in the presence of impurity: n-(n) = no e e & (n)/nT imperturbed density. Consider : For equilibrium exchange e P. between (1) and (2), requires a matching of normalization constants or (N/ = density. now, I of electrons between it and du velocities is . $n(u) = \left(\frac{N}{V}\right) \left(\frac{m}{2\pi \kappa T}\right)^{1/2} e^{-\frac{1}{2} \frac{m m}{kT}}$ number of electrons / see going from $1 \rightarrow z = \int \mathcal{U}_{i} \mathcal{H}_{i} \mathcal{U}_{i} d\mathcal{U}_{i}$ $= \left(\frac{N}{v}\right)_{i} \left(\frac{2u}{2\pi h T}\right)_{i}^{1/2} \int \mathcal{U}_{i} e^{-\frac{1}{2} t} \frac{u \mathcal{U}_{i}^{2}}{\pi T} d\mathcal{U}_{i}$ $\int \frac{2eQ}{m}$ humber of electrons / see going form $z \rightarrow i = \int_{0}^{-\infty} dh N(H_{c}) dh$ $= \left(\frac{N}{\sqrt{2}}\right) \left(\frac{m}{2\pi\pi\tau}\right)^{1/2} \int_{0}^{-\infty} dh e^{-\frac{1}{2}mM_{c}^{2}/\pi\tau} dh$

 $= \left(\frac{N}{V}\right)_{z} \frac{\int_{0}^{\infty} y e^{-y^{2}} dy}{\int_{0}^{\infty} y e^{-y^{2}} dy} = \left(\frac{N}{V}\right)_{z} e^{-y^{2}} dy$ e en phi which proves our assertion n-121 = no e We have for Poisson's equation : $\nabla^2 Q(n) = 4\pi \rho = -4\pi e (n_+ - n_-)$ = - 4TTe { Z S(n) + no - n-} where (no - n-12) = no - no e @ (2)/417 assume: equil 221, then : (no - 2.12)) = - 20 e Q(2) ET Then: $\nabla^2 \varphi(n) = \frac{4\pi N_0 e^2}{\hbar T} \varphi(n) - 4\pi e^2 S(n)$ $= \frac{\varphi(n)}{\sqrt{2}} - 4\pi e \frac{Z}{\delta(n)}$ where $d_0^2 = \frac{kT}{4\pi \eta_0 e^2}$ and the solution is asserted to be: $\varphi(n) = \frac{7e}{n} e^{-n/dp}$ which is actually a shielded coulomb potential where to in the debye shielding length.

to can be expressed in terms of the mean square of the thermal velocity. $J_{D}^{2} = \left(\frac{kT}{4\pi N_{0}e^{2}}\right) = \frac{m \langle v^{2} \rangle}{12\pi N_{0}e^{2}}$ Compare with I mott ; $d = \frac{k^2 \#}{mer} \left(\frac{\pi}{3N_0}\right)^{1/3} = \left(\frac{B}{3} \frac{J_0}{3}\right)^{1/3} = \left(\frac{B}{3} \frac{J_0}{3}\right)^{1/3}$ or \$ Jo > KT 2) Plasma Oscillation Frequency: d > We displace the negative charges with respect to The positive charges The energy density of the displacement is : now 1 $W = \frac{E^2}{8\pi} V$ now: $E = 4\pi\sigma = \frac{4\pi a}{A} = \frac{4\pi e n_0 A \times A}{A}$ $W(x) = (4\pi)^2 e^2 No^2 x^2 Ad$ The force due to diplocement in ; $\overline{\mathcal{H}} = -\left(\frac{\partial W}{\partial x}\right) = M \frac{d^2 x}{dt^2} = -4\pi e^2 M^2 \times A d$ This can be written ! $d^{2}x = -\omega_{p}^{2}x$ so that: $u_p^2 = \frac{4\pi e^2 n_0}{m}$ for absolute yero and all wavelengths

fore arders of Magnitude : do ~ 10⁻³ cm, no = 10¹²/cc, kT ~ 3 ev or 36,000 °K Zp = 9.10 10/2 ~ 2.7.10 cps now for T=0 we have dispersion of the plasma waves and the relation is stated to be; $\sum_{n=1}^{\infty} \frac{1}{\left(\omega - k \cdot v_{n}\right)^{2}} = \frac{m}{4\pi e^{2}} = \int \frac{n(v) dv}{\left(\omega - k \cdot n\right)^{2}}$ The longwovelength waves will have the plasma oscillation frequency and collective motion while The short wovelength will not and individual motion must be considered. at what values of wave length can plasma oscillation be used ? when $k^2 \langle v^2 \rangle = \omega_p^2$; $k^2 \langle v^2 \rangle = 3\omega_p^2$ $k^2 = \frac{3wp}{\langle v^2 \rangle} = \frac{1}{dv}$ to dividing point in about the debye length. To worry about collective actions, see if any electrons with energy around two are around ' $\frac{J}{\pi w_{p}} = \frac{h^{2}}{2m} \left(\frac{3}{8\pi}\right)^{2/3} no^{2/3} = \frac{a_{0}}{7s} \frac{35/6}{4^{7/6}} < 1$ $\frac{h}{2\pi} \frac{2\sqrt{\pi^{2}}}{\sqrt{m}} e h^{4/2}$ As = radius of Wigner Sety Cell. oscillation are not usually excited. This plasma

LECTURE XXX 5-4-61 Propagation of Electromagnetic Waves in a Plasma : $\begin{array}{rcl} & \mathcal{M}a \neq well's & \mathcal{E}guations \\ & \nabla \cdot \vec{E} &= 4\pi\rho \\ & \nabla \cdot \vec{B} &= 0 \end{array}$ $\nabla x \vec{E} = -\frac{1}{C} \frac{\partial \vec{B}}{\partial t}$ $\nabla x \vec{B} = \frac{4\pi \vec{J}}{C} + \frac{1}{C} \frac{\partial \vec{E}}{\partial t}$ now: $p = e(n_{e} - n_{e})$: $n_{e} = # of ions/cc$ ne = # of electron/cc y = charge on eace3 = charge on each ion j = e(3 no vi - ne ve) : vi = average velocity of ion at point r, time t. Ve = same for electron and $\vec{v} = \frac{N_a W_a \vec{v_a} + Ne Me \vec{v_e}}{N_a M_a + Ne Me}$ with $U\overline{v} = \overline{p}(n,t)$; U = reduced wasa. maxwell' Wave Equation ; $\forall x (\forall x E) = -\frac{1}{c} \frac{d}{dt} (\forall x B) = -\frac{1}{c} \frac{4\pi}{c} \frac{d}{dt} - \frac{1}{c^2} \frac{d^2 E}{dt^2}$ $= \nabla (\nabla \cdot E) - \nabla^2 E$ $\frac{1}{4\pi\rho}$ or $\nabla^2 E - \frac{1}{C^2} \frac{\partial^2 E}{\partial t^2} = 4\pi \nabla p + \frac{4\pi}{C^2} \frac{\partial J}{\partial t}$ For no por J, E=E, e (tin-wt), w=ck Relations between p, J, V, E, H called equations of Let f(n, w, t) |dn| |dw| = no of (electron) with relocitiesbetween w & w+dwat position between r, r+ dr at t.

We write the Boltymann Equation ! $\left(\frac{df}{dt}\right)_{field} = \left(\frac{df}{dt}\right)_{collision}$ From definition of total derivative : $\begin{pmatrix} \frac{dF}{dt} \end{pmatrix}_{\text{pield}} = \frac{\partial f}{\partial t} + (\nabla_{A}f) \cdot \frac{d\bar{u}}{dt} + (\nabla_{W}f) \cdot \frac{d\bar{w}}{dt}$ tince m dw = 7, then: $\left(\frac{df}{dt}\right)_{\text{fills}} = \frac{\partial f}{\partial t} + (\nabla_{\text{ref}}) \cdot \frac{d\vec{c}}{dt} + (\nabla_{\text{wf}}) \cdot J_{\text{ref}}$ Now the density of electrons at n and t is : $n(n,t) = \int f(n,w,t) |dw|$ $-\infty$ $\frac{v(n,t)}{\int_{-\infty}^{\infty} f(n,w,t) |dw|} = \frac{\int_{-\infty}^{\infty} w f(n,w,t) |dw|}{\int_{-\infty}^{\infty} f(n,w,t) |dw|} + \frac{\int_{-\infty}^{\infty} w f(n,t) - \int_{-\infty}^{\infty} w f(n,t) |dw|}{\int_{-\infty}^{\infty} f(n,w,t) |dw|}$ othen : We now have to look for time rate of change of wear momentum : $m n v(n,t) = \int m f(n,w,t) w dw$ mulitiply Boltymann equation by new and integrate ; $\int_{-\infty}^{\infty} \left[m \overline{w} \frac{df}{dt} + m \overline{w} \overline{v}_{h} f \cdot \overline{w} + \overline{w} \overline{v}_{w} f \cdot \overline{f} \right] dw = \int_{-\infty}^{\infty} u w \left(\frac{df}{dt} \right) dw$ (3)

Consider @: m J w (df wx + df wy + df wz) dw. = $m \left[\frac{\partial}{\partial x} \int \vec{w} f w_x dw + \frac{\partial}{\partial y} \int \vec{w} f w_y dw + \frac{\partial}{\partial z} \int w f w_z dw \right]$ $= \mathcal{M}\left(\frac{\partial}{\partial x} \mathcal{N} \mathcal{W} + \frac{\partial}{\partial y} \mathcal{N} \mathcal{W} + \frac{1}{\partial z} \mathcal{N} \mathcal{W} \right)$ Consider @ = J V Vwf . 7 dw Adentity: $\nabla_w \cdot (f \overline{f} \overline{w}) = (\nabla_w \cdot f \overline{f}) \overline{w} + (f \overline{f} \overline{u} \cdot \nabla_w) \overline{w}$ now. $\nabla w \cdot f \overline{f} = \frac{1}{\partial u x} f \overline{F} x + \frac{1}{\partial u y} f \overline{F} y + \cdots = \overline{f} \cdot \overline{f} u f$ Ance $\overline{H} = W \times H$ or $\overline{F} \times undependent of W \times, etc.$ Then; $\nabla w \cdot (f \overrightarrow{F} \cdot \overrightarrow{w}) = (\overrightarrow{F} \cdot \nabla w f) \overrightarrow{w} + (f \overrightarrow{F} \cdot \nabla w) \overrightarrow{w}$ $= (\vec{f}, \vec{f}_{w}f)\vec{w} + f\vec{f}$ Integrating Tw. (f \$ w) by Gauss' Theorem gives a since f = 0 faster them w = 0 on the surface of integration, Then 3 becauses; $-\int f \vec{F} \left[dw \right] = n(n,t) \vec{F}$ Thus the Boltymann equation becomes : $\frac{\partial}{\partial t} \left(m nh, tl v(n, tl) + m \sum_{\substack{i=1\\j \in J_{i}, i, i}} m \frac{\partial}{\partial x_{j}} \vec{w} w_{j} - n(n, t) \vec{f}_{i} = \left(m w \left(\frac{\partial f}{\partial t} \right) dw \right)$ We split up the motion ruto average motion and ruotion about this average. $W = \vec{v}(a,t) + \vec{u}(a,t) = \vec{v} + \vec{u}$ $\vec{v} = \langle w \rangle = \int w f dw$, $\langle u \rangle = 0$ $\int f dw$, $\langle u \rangle = 0$

Then the middle term becomes ! $\sum_{j \neq j} m n \langle \overline{w} w_j \rangle = \sum_{j \neq j} \frac{1}{\sqrt{2}} m n \left((v + u) (v_j + u_j) \right)$ $= \sum_{j \neq j} \frac{1}{j} m n \left[\frac{1}{2} \frac{1}{2} + \left(\frac{1}{2} \frac{1}{2} \right) \right]$ desume isotropy: < U Ux > = < Ux Ux > + < Uy Ux > + < Uz Ux) = < Ux² > = ± < U² > $= \langle \mathcal{U}_{x}^{2} \rangle = \frac{1}{3} \langle \mathcal{U}^{2} \rangle$ Then: Z dxg mn < u ug > = Z dxg (fmn (Ug ?)) $= \nabla \left(\frac{1}{3} \min\{u^2\} \right) = \nabla (nkT) = \nabla p; p = pressure$ because: 1/2 m <u2> = 3/2 kT and p=nkT now: $m \not\equiv \frac{\partial}{\partial x_j} (n v v \bar{y}) = m \vec{v} (\bar{v} \cdot n \vec{v}) + (n \vec{v} \cdot v) \vec{v}$ Finally : $nm\frac{\partial v}{\partial t} + nm(v \cdot \nabla)\vec{v} + \nabla p(n,t) + m\vec{v}(\frac{in}{\partial t} + \nabla \cdot n\vec{v})$ $= n \overline{f} + \int dw m w \left(\frac{df}{dt}\right) dt$ LECTURE XXXI 5-6-61 Reading Period assignment ! A. J. Dekker, Ch. 12 & 14 amasa Bishop " Project Sherwood", g.p. 1-64. Recall : $nm\left(\frac{1}{2t}+\vec{v}\cdot\vec{v}\right)\vec{v} + \vec{v}p(n,t) + m\vec{v}\left(\frac{1}{2t}+\vec{v}\cdot\vec{v}\right)$ $= \frac{d}{dt}$ $= \frac{1}{3} + \int dw m w \left(\frac{Jf}{St}\right) coll$

 $now: \vec{T} = q \left(\vec{E} + \vec{z} \times \vec{B}\right)$ Then: nm $\frac{d\vec{v}}{dt} = ng(\vec{E} + \vec{v} \times \vec{B}) - \nabla_n p + P$ where P in momentum transferred by collections Tinearize equations of motion: Assumptions: 1) neglect terms quadratic m v : 0. 10 - 0 -) Charge neutrality Me 22 - Npe = 0 3) Pressure in scalar: isotropy about center of mass. Equation A in for ions and we can write another as & for elections, (A) + (B) gwen on LHS ; N, M, $\frac{\partial V_i}{\partial t}$ + Ne Me $\frac{\partial v_e}{\partial t}$ Recall ! 7 = M. M. V. + Ne Me Ve n, m, t ne me and $\frac{dn}{dt} + \nabla \cdot (n\vec{v}) = 0$ We can neglect terms in in since They include velocity and then give theme quadratic in v. Thua: $\mu\left(\frac{\partial v}{\partial t}\right) = \frac{\partial xB}{c} - \nabla p + P_{L} + P_{C}$ where j= nizievi - neeve; P= pit pe since overall collision momentum transfer between ions and electrons is some : Pe + Pe = 0 now consider Q-B: We can write. <u>dt</u> = nige <u>dvi</u> - ne e <u>dve</u> We consistently neglect terms of order me and ze V pr er pe me consistently neglect terms of order me

Then we get : $\frac{J_1}{J_1} = \frac{Nee^2}{me} E + \frac{Nee^2}{me} \frac{J_2}{c} \times \frac{B}{me} + \frac{e}{me} \nabla P_e - e P_e}{me}$ note: $v_e \simeq \left(v - \frac{1}{ene}\right)$ nu mu di + ne me Ve - nu ge du - ne e de Z de M e ne neme Thus we have, $\frac{Me}{Nee^2} \left(\frac{\partial \vec{j}}{\partial t}\right) \equiv \vec{E} + \frac{\vec{v} \times \vec{B}}{c} + \frac{1}{Nee} \vec{V} \cdot \vec{R} + \frac{1}{Nee} \vec{V} \cdot \vec{R} - \vec{P} \cdot \vec{R}$ thould be able to see Pe = |Pe | I and Then we can write $\frac{Pe}{nee} = 2\vec{j}$ which is actually the resistivity or damping application to E.M. Wave Propagation model: (1) Consider only E field (2) neglect pressure gradient (3) at first, assume n=0 or plasma has infinite conductivity. Thus we have: $\frac{\partial \vec{J}}{\partial t} = \frac{nee^2}{me}\vec{E}$ with: $\nabla^2 E = \frac{1}{C^2} \frac{\partial^2 E}{\partial t^2} + \frac{4\pi}{C^2} \frac{\partial F}{\partial t} + \frac{4\pi}{C^2} \frac{\partial F}{\partial t}$ $or \left(\frac{\nabla^2 - 4\pi ne e^2}{m_0 c^2} - \frac{1}{e^2} \frac{\partial^2}{\partial t^2} \right) \vec{E} = 4\pi \vec{F} p$

(4) now consider only transverse wave, Ance longitudinal will change density. Can see from, $\nabla \cdot \vec{E} = 4\pi\rho$ $\vec{E} = 4\pi\rho$ $\lambda(\hbar x - \omega t)$ $\vec{E} = 4\pi\rho$ $\vec{E} = 4\pi\rho$ $\lambda(\hbar x - \omega t)$ $\vec{E} = 4\pi\rho$ $\lambda(\hbar x - \omega t)$ $\vec{E} = 4\pi\rho$ $\lambda(\hbar x - \omega t)$ dosuming: E = 1y Ey e (Ax-wt) ? $\left(-\frac{1}{k^2} - \frac{\omega_p^2}{d^2} + \frac{\omega^2}{d^2}\right) = 0$ $on \quad (ch)^2 = (wp^2 - w^2)$ $oz \qquad \psi^2 = -\left(\frac{\omega_p^2 - \omega^2}{2}\right)$ For phase velocity ; $\frac{\omega}{k} = C \left[1 + \frac{\omega_p^2}{\omega^2 \pi \omega_p^2} \right]$ $v_{ph} = \frac{c}{\sqrt{1 - \left(\frac{w_p}{\omega}\right)^2}}$ or For w > wp, get propagation For $\omega < \omega p$: $k = \chi \omega p \sqrt{1 - (\omega)^2}$ and $\vec{E} = I_y E_y e^{-x w_p} \int (1 - I_w)^2 e^{-x w_p} e^{-x w_p}$ = Iy Ey e " e " so damping occurs and we have a penetration depth: $\lambda = \frac{d}{\omega_p \left[1 - \left(\frac{\omega}{\omega_p}\right)^{2^{\prime}}\right]}$ For wewp, the material current and displacement current buch each other out.

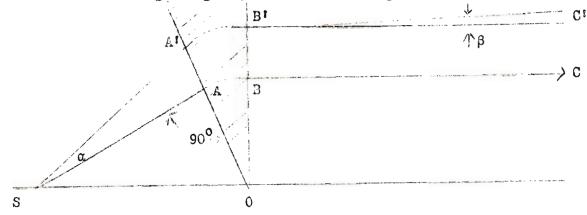
If we include damping, we get skin death, $d = c \int \frac{m}{2\pi\omega}$ References : spitzer's little book.

and Sunday and a starting on	man and the	
		0
	Rept and a stranger	
	<i>x</i>	
		-
		-
		~

Applied Physics 231

March, 1961

Problems


Due: 2 1/2 weeks i.e. March 15 Z/

I. Imagine 3 electrons fixed at the corners of an equilateral triangle 10⁻⁷ cm. on a side. If the electrons are suddenly released and allowed to fly apart under their mutual repulsion, what will be the final velocity of each? Express the final kinetic energy of each electron in electron-volts.

- 2. (a) Find the radius of curvature of the path of an electron whose kinetic energy is 25 electron volts, moving in a plane perpendicular to the earth's magnetic field. The strength of the earth's field may be taken as 0.7 gauss.
 - (b) If the radius of the outermost ion orbit in a cycletron is 50 cm., and the magnetic field at that position is 15000 gauss, what is the final energy in million electron volts (MEV) of doubly charged helium ions accelerated in this machine? Mass of helium ion = 6.66×10^{-24} gm.

3. The stationary coordinate system shown is located in a region in which there is a uniform electric field, E, in the negative y direction, of 900 volts/cm., and a uniform magnetic field B of 75 gauss directed downward perpendicular to the paper. An electron leaves the origin moving the positive y direction with a velocity of 9 x 10^8 cm/sec. By transferring the problem to a suitably moving coordinate system and then back again trace the trajectory of the electron in the x, y plane in sufficient detail to satisfy yourself that your analysis of the motion is complete. In particular locate the points x_1 and x_2 where the electron crosses the x axis for the first and second time after it leaves the origin. Show that any electron leaving the origin, no matter what its initial speed and direction, must pass through the point $x = x_2$, y = 0.

4. A uniform magnetic field B, perpendicular to the paper, extends through the shaded sector in the figure below. S is a source of electrons of velocity v so that an electron entering the field at A moves along an arc AB the center of which is at 0. Thus BC is parallel to S0. Show that an electron of the same velocity moving initially along OA¹, which differs from OA by the small angle α, will emerge from the field moving along B¹C¹ which is almost parallel to BC.

That is, show that β is of the order a^2 , for small a. (a corollary to this result is that parallel trajectories entering the sector from the right (and with the sign of H reversed) would be approximately focused at S). Combining both results one obtains the basic principle of the magnetic sector spectrograph, which is that electrons of suitable velocity leaving S, below, will be refocused at P, on SO extended, to the first order:

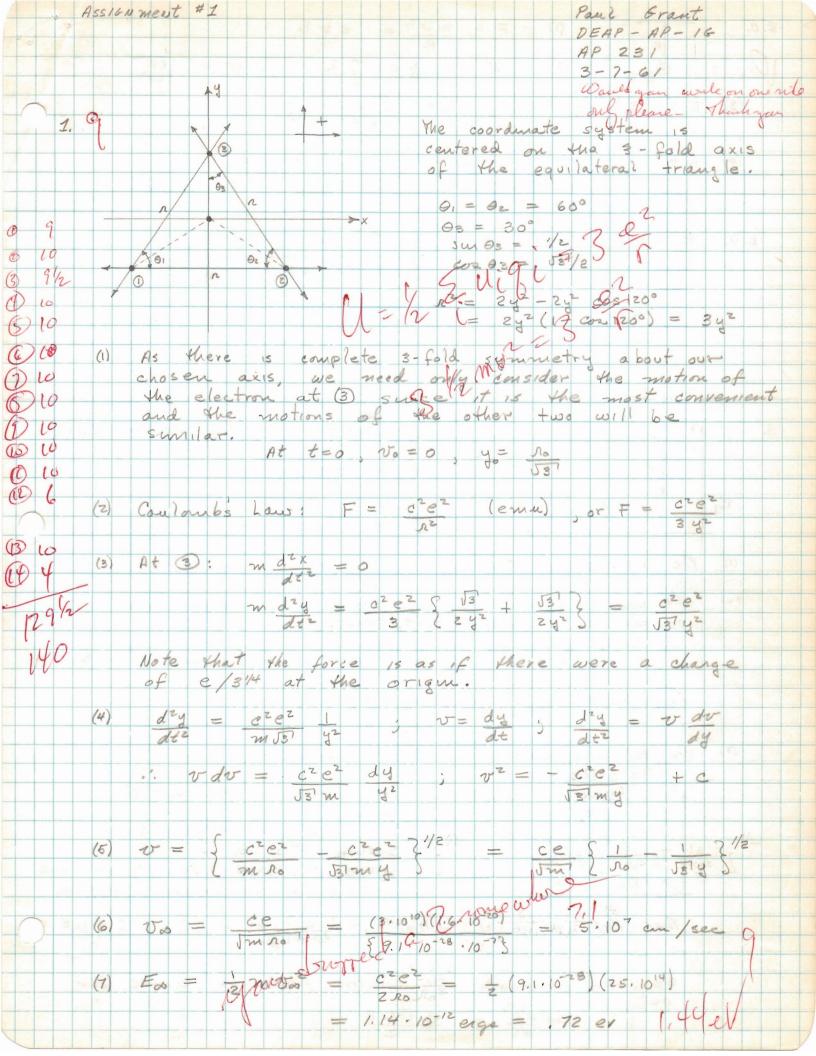
there is no restriction on Θ or \emptyset_{\circ}

- 5. The velocity analyzer used in some magnetic spectrographs consists of two slits S_1 and S_2 , separated by a region of uniform electric and magnetic field strength. E,B, and the line S_1S_2 are mutually perpendicular. Ions of velocity Ec/B can travel without deflection along the line S_1S_2 . Moreover, by a suitable choice of E and B a <u>focusing</u> property can be achieved for ions of a particular e/m. Such ions leaving S_1 at any small angle with the line S_1S_2 will pass through S_2 , if they have the correct speed Ec/B. Find the condition for focusing. Let d be the distance between the slits.
- 6. Compute the focal length of a symmetrical electrostatic lens in which the potential distribution along the axis is given by the following formula:

 $V = V_0 (1 + a * az/b) \text{ for } -b < z < 0$ $V = V_0 (1 + a - az/b) \text{ for } 0 < z < b$ $V = V_0 \text{ for } z < -b \text{ and } z > b$

7. Between two cylindrical electrodes (radii 1 cm. and 2 cm. repectively) exists a potential difference of 500 volts. Calculate the tangential speed an electron must have to describe a circular orbit with radius 1.5 cm. midway between the electrodes. Show that the electrons starting at a point A with small deviations from the tangential

-3-

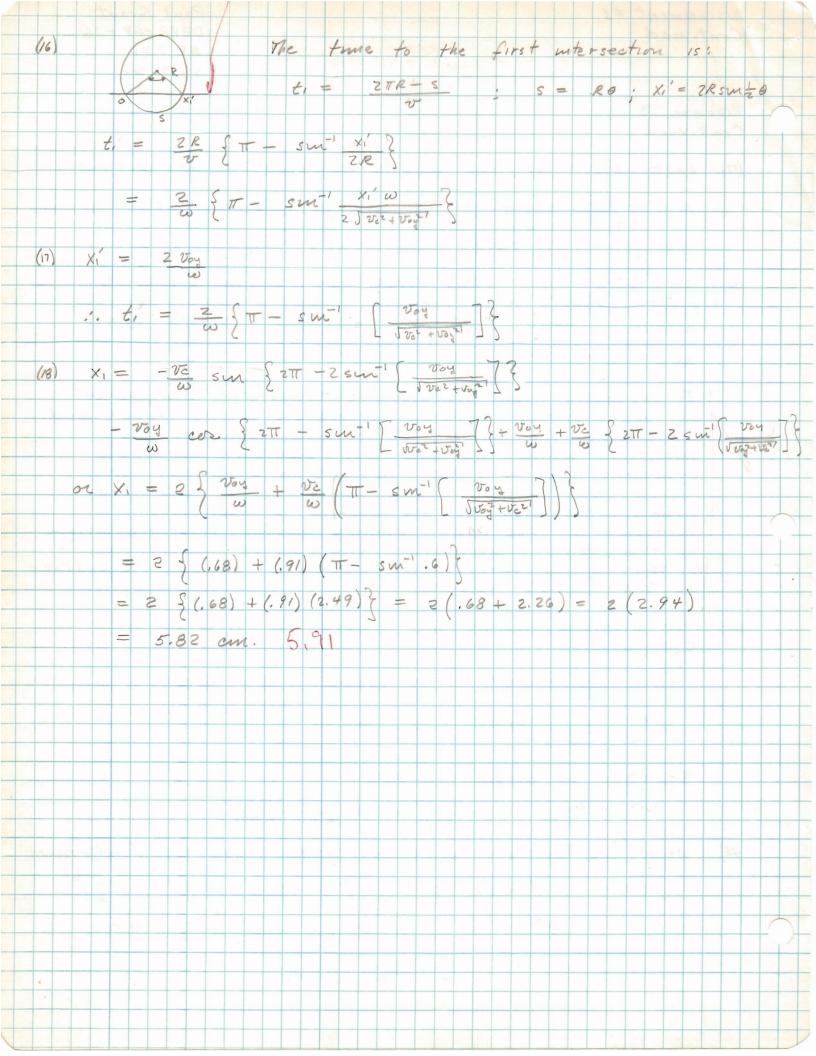

direction are refocused at a point B, 127° from A ($127^{\circ} = \pi/\sqrt{2}$ radians). There is no magnetic field.

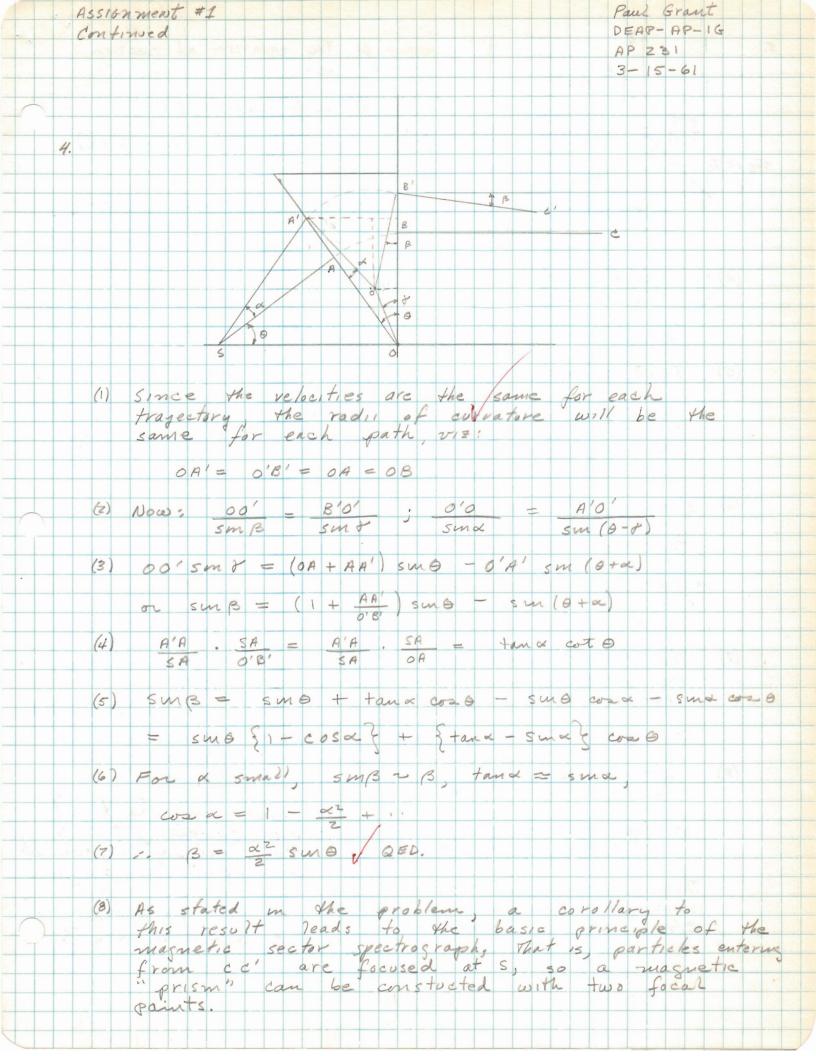
- 8. Work out an approximate numerical relation between the energy of an electron expressed in MEV and the corresponding value of Br in gauss-cm., for the extreme relativistic case, $(1 \beta^2)^{+1/2} \ll 1$. Find the energy above which the value of Br given by this approximate formula is in error by less than 1%. What is the orbit diameter in a synchrotron designed to produce one-billion-volt electrons if the magnetic field at the crbit reaches a final value of 10,000 gauss?
- 9. Start with the parametric equations of motion (i.e. x = x(t), y = y(t)) for a + charged particle in the field configuration of problem 4. Show that:
 - 1) If the particle has zero initial velocity, then the trajectory has cusps at $x = \frac{2\pi v_c}{\omega}$.
 - 2) If the particle has initial velocity $0 < v_0 = \frac{1}{2\pi v_0} x < v_1 = \frac{1}{2\pi v_0}$ that the trajectory has zero slope $(\frac{dy}{dx} = 0)$ at $x = \frac{n}{2} (\frac{2\pi v_0}{\omega}) = x_n$, n = 0,1,2...
 - 3) If $v_c < v_0 \hat{l}_x < 2v_c$, $(\frac{dy}{dx}) = 0$ at x_n . 4) If $v_0 \hat{l}_x = v_0 \hat{l}_x$, that $(\frac{dy}{dx}) = \infty$ at x_{2n+1} .
 - 5) If $v_0 l_x v_c l_x$; the orbit loops over to form a curve with two vertical tangents symmetrically located around $x_{2n} + l_x$.
 - 6) If $v_0 x$ is negative that the trajectory loops as well, and has vertical tangents symmetric about x_{2n} .
- 10. Use the Thomas precession to show that (to order $\left(\frac{\mathbf{v}}{\mathbf{c}}\right)^2$) the cyclotron resonance frequency is equal to the electron spin resonance frequency for an electron moving in a uniform magnetic field.

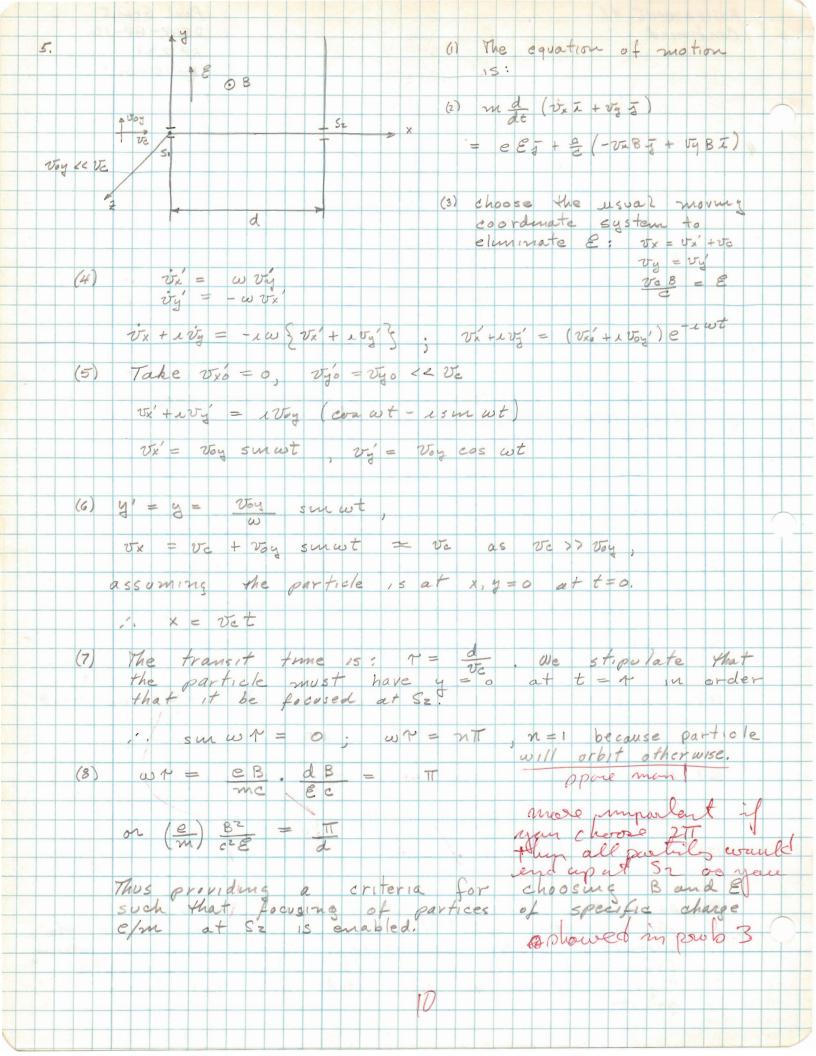
-4-

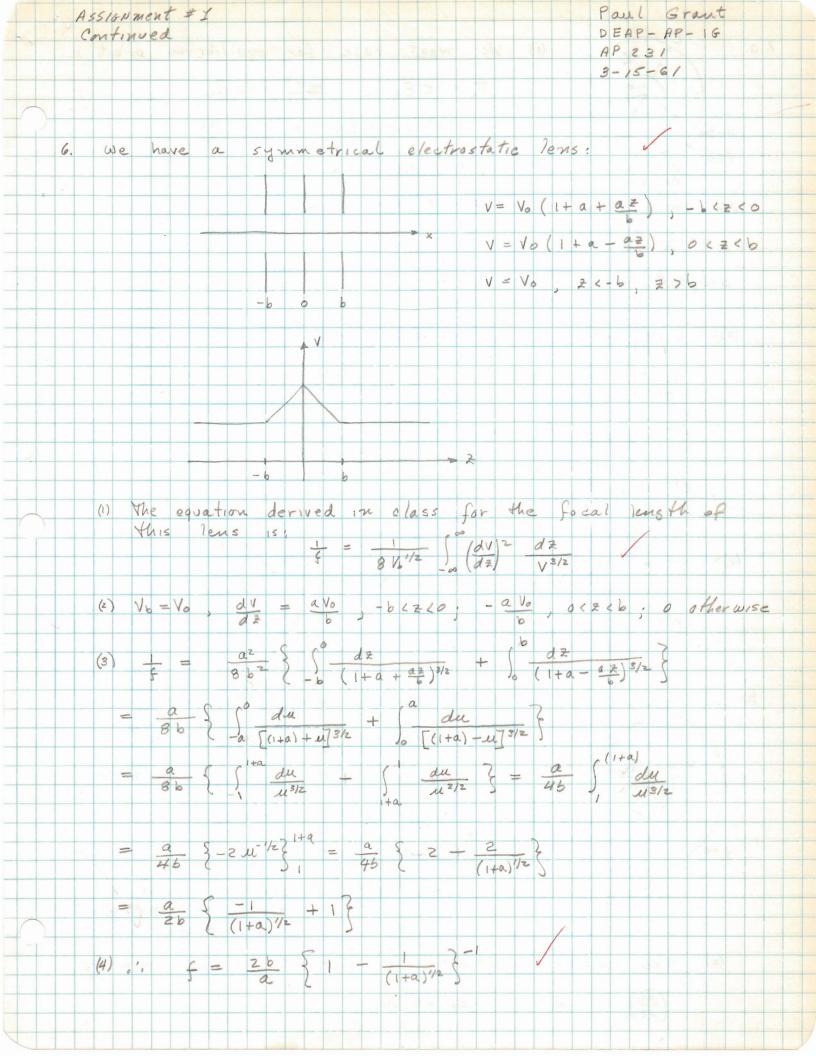
- 11. Show that the Lorentz transformation preserves length in 4 dimensional space.
- 12. Obtain the relativistically correct trajectory, for a particle starting from rest in perpendicularly crossed electric and magnetic fields.
- 13. Show that in a synchrotron the rotation frequency of the charged particle approaches a constant value as the energy increases.
- 14. Show that $U_{\sqrt{2}}^{-} A_{\sqrt{2}}^{-}$ transform like components of a 4 vector under a Lorentz transformation while $v_{\sqrt{2}}$ does not.

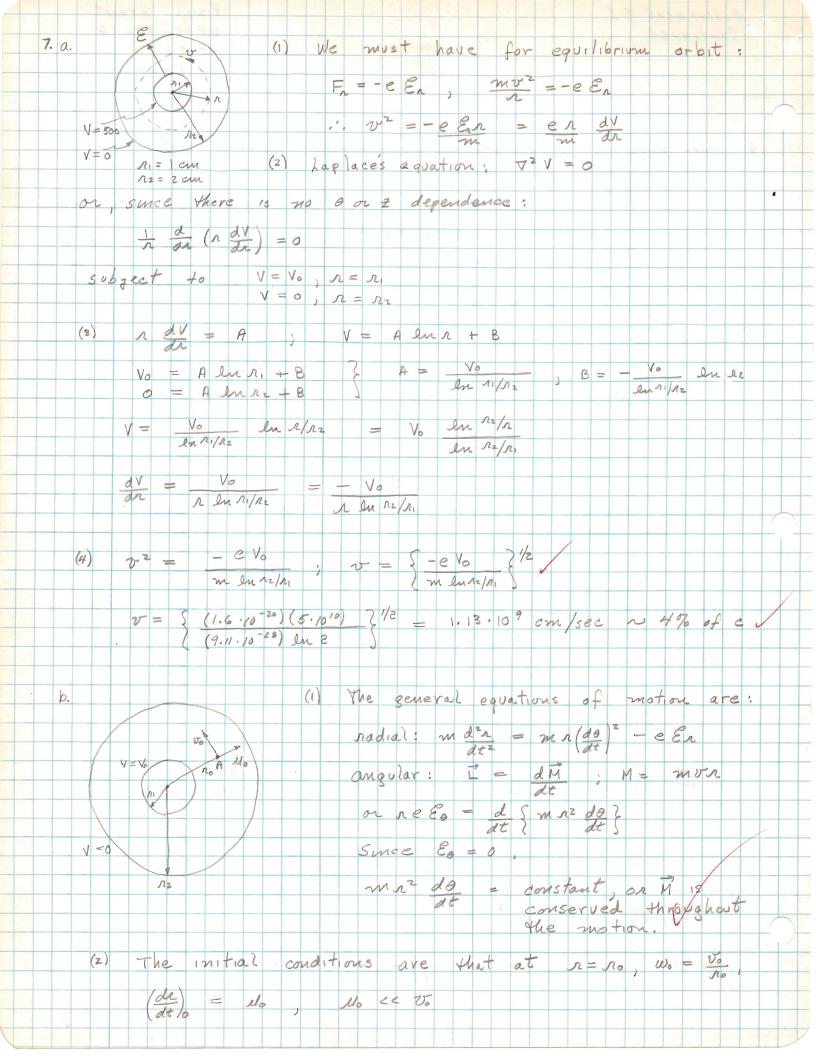
9 00

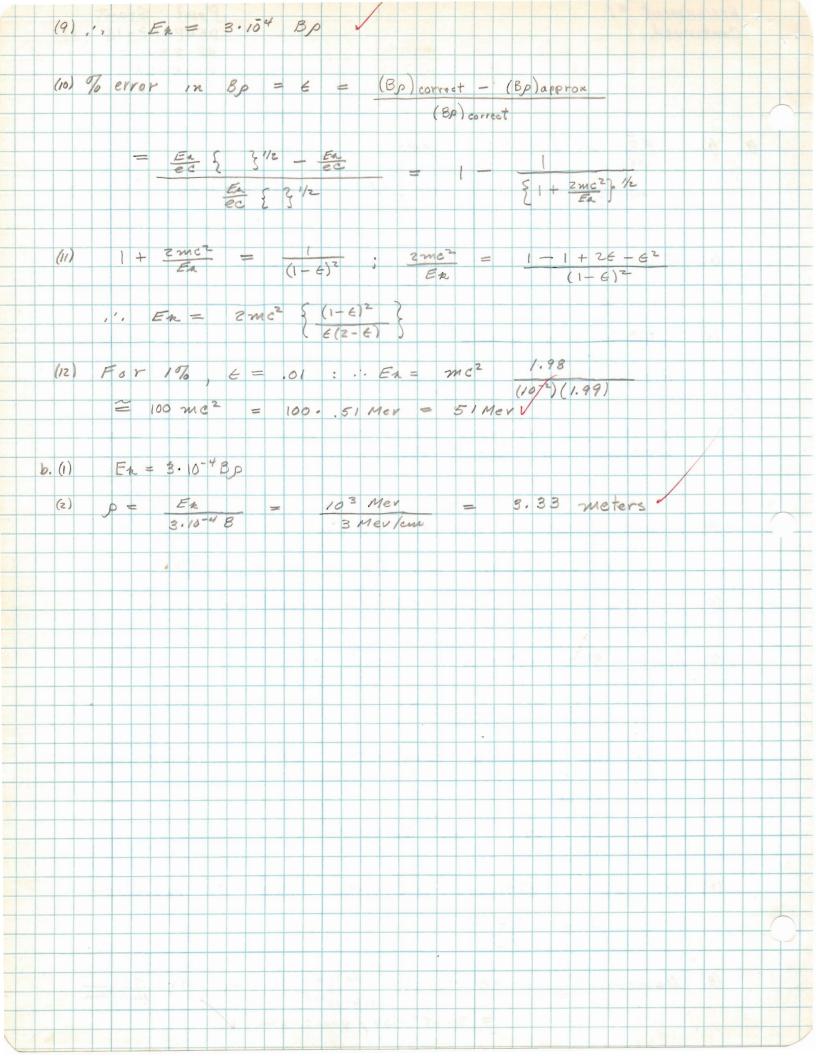



						3.				U	2.
								Ь.		N	a. 7
· 		(3)		(1) (2)	Vo			(1)	(4)	(3)	
					y A		-			1	
		a	-	th	2	4		E	R	E	-
1) 2	2	le yr	· .	e ve			-		H	-	-
e et		5		e or	,	e		10			R
	8	et	v	egi con di			43		5		> V
10		-		n n ne	-		3,•	- 1		0	F
	1.	SA /	Te s	e	B		10	-		E IZ	
	Ec.	-	2	n :/: 2			3-6	and the owner where the		-	
/u m	e var	N		of			e e	² R	10-2 (0-2	B	(1)
	×	20 V	E C	m	-		ng	~		R	
-	1 2	ine e	eu .	not etc ste	×		3			1	F
	of	3		in			V			;	1)
			n	e e		3					
th	me	-0		15			ě	5		R	
	, <i>t</i> .	rd		; le		e k			-12		R
Ū		7		y th	Us	3	1		- 25		
	an wh Pa	the M		7	e	=	Me			5	= e 2
	d v ler rti	-		d d tra th	ę				-		
Fic	then e cli	Po		v t n	ΞS	75	Ą	and the second second		ΛE	
	n: v e	sit	du	= fe t	10 U	30	/	1,5	=		VR
f,		10-		222	11	m	-		2		B
el	1 S	n				en			24	1	
d	4				1/5			. <	/ e	5	
	He ne							5.10	m		1
25	+ + + + + + + + + + + + + + + + + + + +	H		e to		9.10		2		1	7
	v		5 n	-		,10		2	/		
a	ela vi		re			ab				J	1
60	n				2	5/			-	n	ZE
re	typ		e	no		len					= 1
	2		1	v			-				-
an	ys	15	- 6	m		- ">			1		
d	te		3	00		sti					
	m		0	5		1/0					
	e		ł	2014		m	1	1		-	
				A L	000 000	NO CAN	New Survey			1	
				5		ナアイム					


	ASSIGN	Ime	ut	#1																			Pa	ru	2	G	ira	n	t			
	Contin										-	-	1	-		1				5		4			P-				1.00		20	
					2.	2	-		-			-			-		-	-	-				Al	0	2:	31						
			-	-		-	-			-	-			-	-	-	-	-	-	-			3.		7-	61	'	-				-
					0	1	-		-	-	1.24		-			+	-	-	+	-			- 1	+		+	21 12	1 27	223		2	+
	Probles	1	2		9	1/2	-			-					+		-	-	+	+			-	-	+	+	+	+				-
	Contin					1	+						+	+	1		-	+	+	1			-			+	+	+				
																									-	1'			à.		12	T
1	(4) I	n	the	2	mo	vn	24	C.	5.	,	2	50'	4	1	Voy	-	i	Fa														
											-	-		+	0	-	+		-	-			_		1.	Voy		-	-			
		M	07	4	=		0	Ux	1	3	-	l	-	+		-	+	PF	8	+			00		T	+	8	B			142	
		m		-			-				-	- (- (w	-	-	et	C	+			-	-	+		-	-	12	-	×'	
		YH	d	ux t		-	2	-	9	-				+	+	+	+		-	-					1	+	+	1	1			
																								1								
		- 1	-	d	_ (· Ux	+	12	ry') :	=	1	w	(25.	× -	+ -	10	y')					~		-	1		1		
	1			dt		-	-				-	-		-	-		+							-		-			-			-
		12	x +		TI		1	- 1		27	1)	0	1 a	, t		-	1		-		25		-	ew	t	+	-	3	-		-	-
S		10	2 +	. 20	3	1-	(-	U z	+1	Ung)	e	-	+	-	-	(-0	6	+1	-00	3/	e		-	+						
		5	-	Ve	C	00	wit	t	_	1	20	2	SU	n	w	t	+	1	. 50	24	c	~	wt	-	-	to	4	su	nw	t		T
																				0							8					
		2	Jx'	5	-	• (Ve	co	20	wt		+ '	Vou	4	52	nc	ot	5)	_	-				-		-	-	2		1		
			- /	-			-			-	4	-		_	-	-	+	4	-				-	+	_	+		+	-			
		2	53	-		T	04	C	ez.	w	2	-	- 0	C	5	in	w	2	+	+			-+-	+		+	+					+
			x'	=	-	. (U	C	54	nc	ot		_	25	4	co	20	wt		+	5	05)	1	-	+	+					t
														e	0							w		1			N.					T
			y'	=		V.	by	SU	M	w	t	-	+	Ve	-	con	2 4	ot	-	-	1	TC W					-				-	1
			-			l	w			_				w	_		-					w			1	-	4		1		12	
		1	×′		Joy	12		1	1.1	1,	V	2	2		~	51	VE	12		100	4/2	-2	0	2	-5		+	+	-1	254	2	+
			X	T	w		+	(SP	T	a	5)		-	-	(1	w	1	+	10	5)	7	21	m	2	an	5	la	~	20	2	+
		-	+ 5	1-	Voy	2+	- (.	ve	12	2	C	2	- 5	u	st	-	to	ani	-12	Toy	2											T
			C							0			-								-							4		-		
		-	-	(Joy	.)2.	+1	(Ve	=)2	-	· j	X	29	Ja	t	on	-	0	f	21	re	le.			-	_	-	1				
						_								+	_		+			-			+		-	-	-	-		-	-	-
).J.			1	19		-		lia				-	1	5)	7	5	-		9.	10	8	cm,	150	c	-	+	1	1			+
		- 150	+ 00	S	-		V	-	an	12	-		+					-						- 1								T
			×	1		1										2	Te	-		3	. 3	.10	10	=	1	2,	10	8	in	/se	C	T
		1		V				_			××	1	-	-						- Ite		10	2				_	1	0			1
			-	1	N		/							-	_		1		_				-10	>>/	3		1 e			-	-	-
				-	Y		-		~					+		4	U	5	-	-	-		28	and the state of the		A REPORT OF TAXABLE	and the second second	-	1			-
		N	-				-						+	+	-		+	-	-	(9.	11.	10	28	2	3.	10)	-				t
		+ ch	arge	0				1	-	-		13	5.	1	0	0	-	-	-1.	32	-	10	9	15	ec	3		1	1			T
											3															2	1	X	52		,	T
Y.	· 150	SPS	1	-	6.8	8 .	10	1	2	(.	Vou	2)	=		4.	6.	10	-	; ;	We w	= -	- 9	1.	10	1	12	4	-	8.3	- 10	-1	1
	0	0		-									~						-						-	-		-	-			+
	-1.	(VI	- 1	0.	10-1	2	1	1.1	-	9	1	51)	2	-		2	2	-1	-	_	2	11	4		-1	22	-	1		-1	+
	1	(~ _	6	.0.	10	1 1	l	A	-	1. 1	. 16)	-		10		111	0			- (11		. 10)	-				+
							-		5		-		-	+	-+	1	-		-	1.							1					V
							-			-		-		-			-		-	-	1 de la			-	-	-	-	-	1			1


(
10)
×
-42
+
2
y
+
2 2
] 2 }
1/2
2
ic v v v v
the car
5-1
ω
y +
+ 00
y .
+
-1
Joy De Ve
-
2
202
200
1


	As.	16 Ament #1		E	Paul Grant
		ntimued.			EAP-AP-16
		The second second	Dr.O. Class	1 (() * * * * * * * * * * * * * * * * *	4P 231
					3-7-61
1. Sector	1 23				
	Pr	blem 3			
F. T		itimued:			
đ					
	(12)	Look again a	at the par	ametric equations a	of motion:
		X = - (2 51	nut - voy	coswt) - voy +	Vet
1					
		y = y' = (voy	- smut + 2	cos wt) - UC	
	(13)	we note th	at when 1	the orbit is compli	eting its
		first cycle	it is cro	ssing the x-axi	s for the
		second time	. That is	the orbit is compliant is complexing the $x - axis at t = T = 3$	-T, y=0
					(y) ' -
		and Xz = 2	$\pi - = (0)$	o.28) (9.1·10 ⁻¹) = 5.7	cun
		I It is easily	seen that	X2 13 completely	independent
		of the miti	al velocity	regardless of its T is independent	s speed and
1	_/	direction. The	e period	TI is independent	of any
		velocities whi	le the onl	y non = varishing 7 in the x equation	ferm in
	V	equations (12)	15 Vet	in the x equation	or. OF
		course the 1	nitial veloc	ity must lie in	the x-y
		plane. The	crue of th	e matter is that	the
		particle m	the Macs	always passes the	ry the origin
		of the Macs	, completing	ny one period, ci	prrespinding
	_	To the second	intersection	in with the x-ax	is, regaraless
		of the untra	Velocity.		
	(14	Feb alashana	untra a	change the sign	- P
	(17	For electron	motion, we	- change the sign	of w
		every where:			
		X = -NE SI	n wit - vou	cos ust + voy +	oct
		w	W	cosust + voy +	
		y = voy	smust - 2	Je con wit + ve	
				w	
		Equation of	circle in	MCS:	
-					
		(x'- 204)	+ (y'- 20)	$= \left(\frac{v_{oy}}{\omega}\right)^2 + \left(\frac{v_{e}}{\omega}\right)^2$	
		~			
	(15)	When the par	-tiele cuts	the x-axis for	the first time:
					E12 175 2
		y'=0; (x'.	- 2 x 204 -	$+\left(\frac{v_{oy}}{w}\right)^2 = \left(\frac{v_{oy}}{w}\right)^2 + \left(\frac{v_{oy}}{w}\right)^2$	$\frac{r_{e}}{r_{e}}^{2} - \left(\frac{v_{e}}{\omega}\right)^{2}$
		. X'	- 2x - 4	= 0; x'(x'-2)	$\left(\frac{\partial y}{\partial y}\right) = 0$
T	_				
	_	×′=	x' = z	- 10 y	



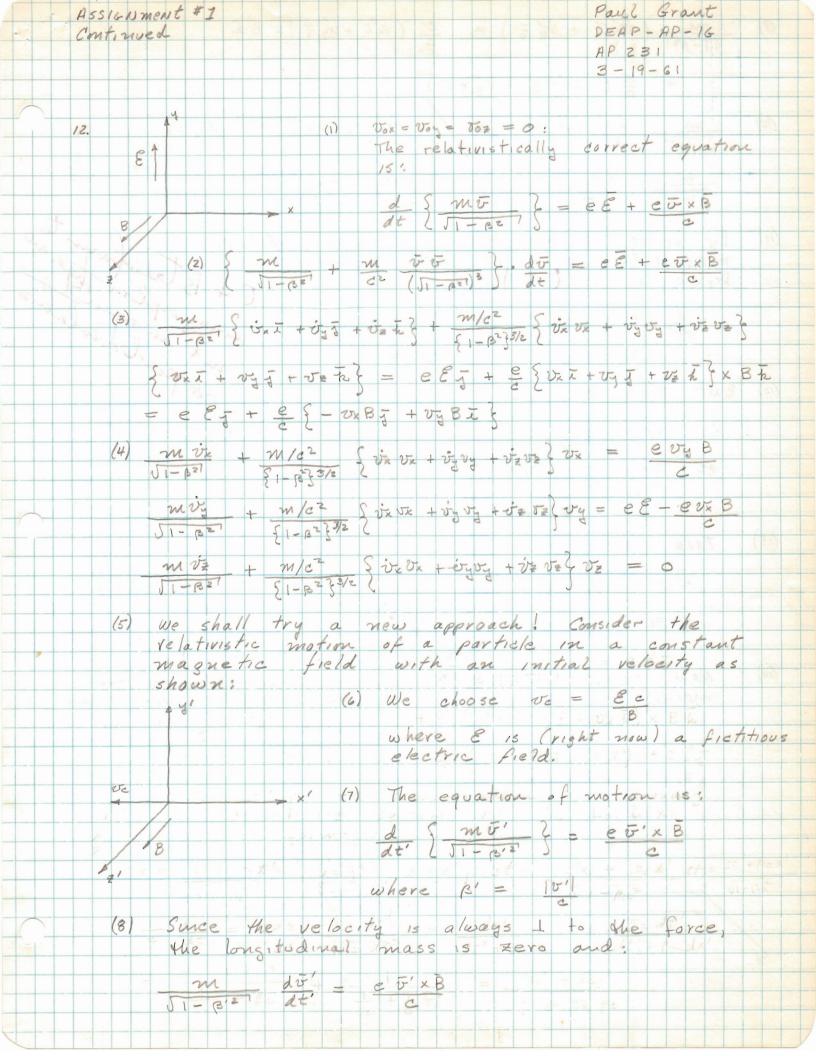
	- A	55	IAN	in	10	nt	#	1						1													P	re	2	6	Fr	a	nz	+			
						d			2		-	-		-	37	2.3	2			R. 5.	1		. 2		-			EA	1000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-				Z	1	
																	19		1	1.1			1				AF	2 2	23	1							
							1.4	3.2	and a	N K	1	0	5.		N.		1		10				λ. f -	- 85		_	3 -	- 1:	5-	- 6	1	8	-	-	-	-	
and a		-	18	-		8.		200			2	_		2.1	2	2	Ċ.,			1. A.	4	3	~		2.1		-		-	ž., 5				15	1	-	
		_																	1.14								-	-	-		-	-	-		-		
ent.	7.		Con	e t	12	ue	d :		-				_	4	1						-	_					-	_	_	2	-	1	-	-	· .		
1					_							_														-	/	_	_		+		-	_	-	-	
		6. ((3)		I	4	wa	3	3	sho	w	r		17	2	P	ai	-t		la	1		Cho	rt		th	e	-	ve	10	2	14	4			-	
			_	1	ne	ce	po	ar	4		fo	٢		a		S	to	261	e		or	b	+		3	4	rd	epa	ene	Le	n	Ť	-	0	3		
				1	t5		po	sit	in	1	4	m	9	the	2	-	-11	ela	z.		F	ro	n		09	va	1-+1	on	-	a.	9	1:		-		1	
		-		-	C	_	_	n	10	Ta 2		-				-		-									-	-	+	+	-	-	-		-		
с. С				+	C	2 =	:	-	21		-							-							-	/	>	+	+	+		-+-		-		-	
		/	(4)	_	-			-										4										4	-	+	16	0	-	-			
			- /		R	in	:e		an	5	UTa	2 1	1	2	ne	m	11	110		1	/3	4	6	100	201	er	ve	, ck	1	42	7 11 0	-	21	-			
			-	-	12	19	n la	17	1	no	sui	la	-	2	10	ne	th	tur	N	n	00		c	1		-70	000 0	-	1	0		. 3	m	5	-		
				+		dr.	1	= 1	2		e			M	1	C	m	57	an	t		•	М	6		m	Uo	Ro		-		con	15	to	ut		
						de	-				1)					Y										
						•.		m	n	2	do	-	=	7	mi	50	Ro																				
	5		-								at																	-	-		_	_	_	X		81	
				_	_			12						2			2										_	_	-		_	_				1	
		((5)	,	· ·	r	n	a - J	2		2		M	2	0	No	5	. ?	n	2	-	-	2	n z	52	_	_			+	-	-	_		-	103	
				+				25	-				-	m	n	4	-	-						~	2		-	-	_	-			_		1.1.0	12	
\frown				+	_		d	22			-		15	2	1.	2	-	-	750	2		_					-	-	_	+	-	-	_			-	
				+	0	6	d	tt	5	3	-	_	00	2	3	-	-	-	20							-	-	+	+		-	-	-	-			
							15														10		£	ore	·e	1	5	0	lus	an	5	1	u				
							2c7) e	67						~	(e		· ·					-	-	d							
				+	C		s cur r	1									-								-+	-	-	+	-	+	-						
		1	6)	+	1	12	2			11	d	lu																				+			-	190	
					5	dt	2			M	d	In																									
															~							,															
					. 1		Ju	de	e	-	2	50	2	2	1.	dr	_	-	- 1	25	2		dr	-		-						2	4		-	3	
															J	n	3				2		n									43	3.		1	1	
																												_	_	_	_	_			_		
				0	n		n' 2		ina ina		-	20	5	•	-		U	02	l	n	2	~	$+ \langle$	2			_	,	-						-	-	
							5	-				S	R	2		-		-	-							_	-	-	-	-	-	-	0. V. 1.	-		-	
		-	-	-	-		117	2				0.5	-2	-		22	2	1	-		,		1			-		-		-		-	1	-		1	
		-	-+-	+	-		No	+	-		-	U	0	-	-	00	-	er	in	0	-+	- (-			-	-		-		-				-		
				+	-		-	-					-					-								-	-		+-	-	+	+	-	-			
				-	-		C	-	-	50	2-	L	2	5.7	-	en	1	20		-	_	<i>_</i> .				u	1	1	. 7	-	-+-		+				
			-	+		+	T		-	2		T	0	9			1			,	-	56	NE		-	M	0		- 6	0		-					
				+																									+								
				,* ',		1	11	2	1		-	2	Voz	s.	0	-	1	75-	2	Que	n		+	Vo	2	t	i	502	e	1	se	2		1			
\frown						1	2						S	R	-			00						2													
																										1											
			1					-						*				(r		1	An	12						2			•		-			
					0	2	x	12	=	-	j	25		=		Va	0 2	1	\$ 1	-	(N	-)	-	- 12	2 0	m	no	- (-						1	
							_										-		4						_				2			-	-		2		
	-			-	-		-									-	-	-					2		-		_	-	-	-		-			i i	-	
																											1					1			_		

-

						(10)		(9)	(8)							17)
						. ' ,							Nou	Ло 	Ло	Nou
			.1		N.			0	1.				، د			0
	e		100		ow er)	0 11.	dp dt			2	1+ 				4
	9 =		U 5		05	0	11		d	-						ra
			e		th	1	-		PIt						17	ns
	2		g.	5	ie		AS		3)						5	fe
	T	4	= 22	T	C	1	21	Мо	,	C					<	~
			_		P	10	vo		+(-						Y
					ar	- <i>r</i>	F.	, .	r				C			the
					+,	0	3	+ =	57							
	F	0		52	c / e	S		-0	27 2	+	-					co
	he				0	: n			50		+					2-0
	ut					n			She	(20	-			1		ird
	fi				cro	Jz			0	>)	-					lu
	1:				0 5	1 4				T	-				100	at
	t s :				se	νο	-				+				4	e
	c				8	.t			• ,	10	1			1	125	5
	ro: Ø										-					95
	550		~		Ло				P							ter
	т Т,		00	-					B							ne
	752		r 2 -	-	4				2	To						
					at				41			· ·				to
	»r		a p vo	v					A	()	-					,
	(2		pr t		th				cos	20/	-					
	for 70		οx	-	2				_ 5		+					10
2	20		12	+					27 7	0	2	2 0		0		
	s n		па						50 .	no	P			0,		110
	1		_+						t	,) 3		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	a		a
	3	/	10	Th					+		5	~	2	t		
		/	ĸ						B					+ -		
-		/							50		12		121	= 0		
									u s	2	Z					~
									27 2							
		~		7				-	50 00							
)					_		1	143					1		
															12	

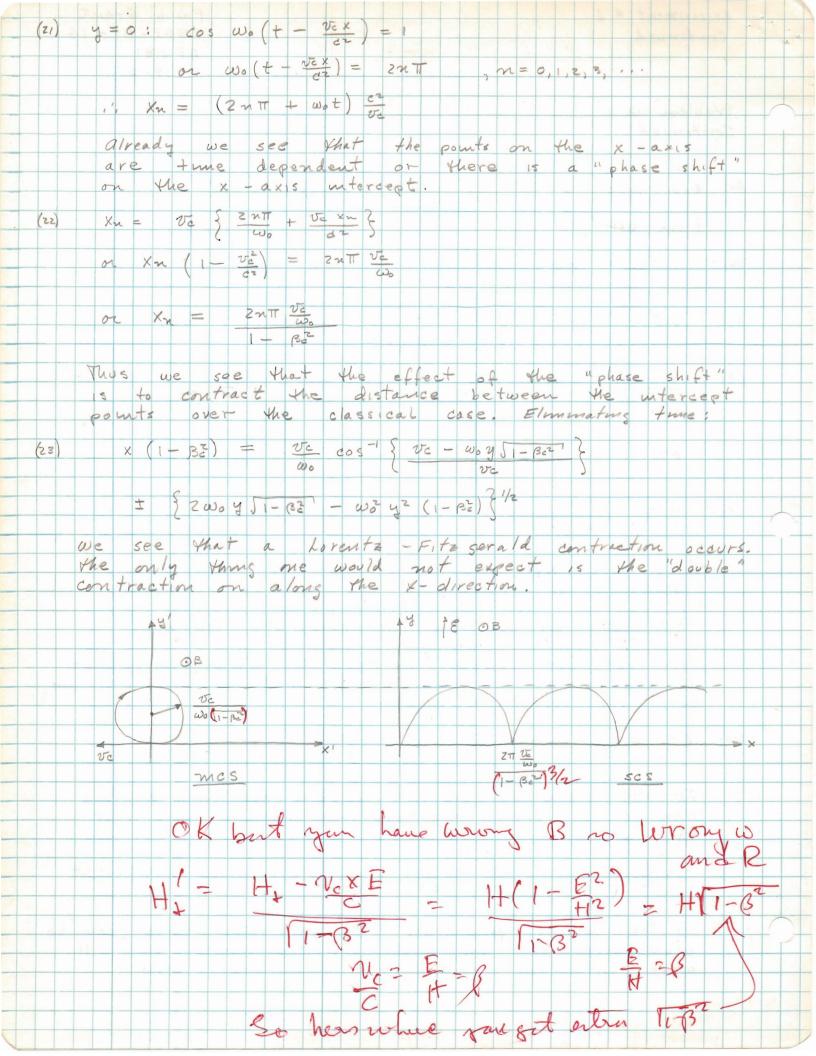
Assign Contin	ment #1				Paul Grant
Contin	nvea				DEAP-AP-1G AP 231
					3-15-61
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 2. and 12 1.5		N N N N N N N N N N N N N N N N N N N
8. (1)	dip .	= evx B	(emu))	
	dt				
		19 di	0 =	$\frac{d\rho}{p}$, $\frac{d\rho}{dt} = -\frac{1}{2}$	pw
		0 dip		P at	
(2)	JIB:	dp =	evB =	pw = epwB	
	i. P	= epe	>		
(3)	M12 =	p2 c2 +	m²cť		
			mcz		
	Also :	T =	JI-B27		
		1			
	Let us :	split up	this tot	al KE mto rest	KE and
	Motima	L KE, C	alled Ex		
	τ.	$= mc^{2} +$	EK		
	×				
(4) ,	'- m264 -	+ Zmc Ea	$+E_{R}^{e}=$	ezp2B2c2 + m204	
	Eh	$(2mc^2 + E)$	$e = e^2 e^2$	$B^2 p^2 = E_2^2 \left(1 + \right)$	ZMCZ)
					and the second sec
(5)	· BA	$= E_k$	2 + 2 ma	2 2 1/2 (exact exp	ression)
	+ + + + + + + + + + + + + + + + + + + +	EC	(R		
(6)	Now: 1	$T = mc^2$	+ ER =	mez	
				JI- B27	
	02 -	ER =	1-327	l	
		mc-	1-13-1		
	In th	he extre	me rela	trustic case:	JI-102 121
	or	1 51-B27 >:	1		
	· 1 2	FR 701	or E.	a >> mc2	
	2	исг			
(7)	, _	the and	rema vale	truistic case, 15) the masses
(/)	.'. In	THE EXT	cme rela	CITATION CASE, O	DELOMES :
	Br	$ = E_{x} $			
		ec			
(8)	Dumeric	cally .	ec = (1.	6.10-20)(3.1010) =	300 ev
	maneric	9		1.6.10-12	gauss: cm
			= 3.1041	lev/gauss.cm V	

4			A	551	GA	m	ien	t.	#	Z									1											P	m	2	G	ra	nt	1.				
							ed				21			-		1			1		87	0				1.0			2						- 16		24			
			_	2																	19.9	1						1				21								
	-				1	-				-				193		20		S.		-				5	16	ŝ.				3	-	15	-	61		1	-	-	-	
	-		_			_							- 6-	·		-			-	-	-										- N.								-	
				_		2.8	-					y'		1	2.8	-				-	0	1			An ang				-			-						-		
1	1	9	a.					4			- 1	9				-	-	(1)	-	1	De	-	4	ka		~			1				1.							
	-	1.	Q.v												,			(1)	1		Th		Ta	ne	10+	a	f	05		ve		CP L	na v	30	5	g				
	1								E		/	-	->	Tie	×					-	1 10	e	E	90	ia ([0	n.		37		m	01	10	~	4	2.1			33	
	-									P	21			-						7	m	d	T	U		2	Ē		t	9	. Ū	FX	B			(6	25.	u	1)	
														->	x							a	t			0				-		C	-	-	3				-	
					B	1																		,																
					/	/												(2)	00	Ve	1	po:	st	, la	te	2	a	-	m	100	in	ig	_	co	-0	rd	m	ate	2	
	-				-											-		-	4	SY	st	en	64		PO	51	TLO	n	-	R	127	N	-	+2	16 7	<u>t</u> †	- 7	-	-	-
	-				£										_	-		-	-		-			Ve	210) CI	ty	1	v	: =	= 7	Ja	+ 1	51	- 4					-
	-			(3)		,		2	м	d	25'				1	0		1	a	1	E	+ 7	= 1 }	×	R		-							-						
	-				e	1				d	t		-	Ű	F	C	~	-	F		10		C	~	<u>v</u>	-														
						5	n	ice			R	1		3		w	0		ca	n	C	che	00:	se		-	v.			50	ch		4	ha	t	5				
											_																	Í												
							g	V	e i	KE	3	-	:	-	E	9		,	6	sh	10	h	2	no	cke	25	-	00	-	a	5	1	5	ho	wo	ĸ.				
	-								Ċ							0		ſ	-																				_	
										4	or	,				-		-	5	-	-														2				-	
	-					, * .		2	n	5	v It	-	~		8-	0	-	XE	2		-														-				-	
	+								_	-			-				0		-	-	-									_				123	-				-	
	-	1				or			N	e l	12	Tx	T	+	v	4	T	+	v=	k)	1)	4	7	1	v.	1-	+	U.		+	Vz	13)	×-	B	k			
	1															9.			-				C	7	``				- 4	0										
							:=		9	2	z	Vx	é B	T		-	2.	11	8.	ī (-				2	52	-	-	0									-		
																		1	1													2								
	_					or			~	n	ΰ×	1	U	-	-	8	E	3 2	Try	1				V	×	1	-	- 0	S	υz	-			_			0 E	3		
																						5		2	21	1	· .			~~	1		6	20 :		-	FE mi	-	-	
		-							2	n	v.	9	=	-		C	B	U	×		-	/		.0	y		H	0	U	υx)	~	-	20	1990				
		-		(4)			-	d		1 -		-		25	1)	-			10		115	2.	+ 1	25	:)	_														
				(1)				d		-	12	7	~	6	3 /			1	10			~	1 10	-	3/										2	1.33		•		
	-		-							y									む	N	v	2.	+ 2	51										1.4	1.5	2				
									-	. 0									Vo	x ·	= 1	Te .	+	Voi	1															
									-	20	a								2	ay	1	20	4					1							X	20			1	4
	_	÷.					21	-	-		-		* ×	1				-	V	OR	2	v	0 Z	-	5		V	Y	10	=	20	りえ		_		5				
	-	-			-		υ	1	N Voz		Ve	×,				-		-		-	-	-		, J.										-	3	1		- 43		-
	-	-		-	-			2	-07					, ¹ 1	-	1	25	. 1		75	1) ;	-	1	75		- 7	Te	+	1	75-	1	K	L	wi	1				
	+	-			-											1					9			ļ	10	K	6	5	ſ	~		4			3	No.				
				V	1		(1)	6x	-	2	e)	C	05	a	t	_	+1	(v	ox	-7	Je) 5	u	i u	st		+.	1	Vo	1	ea	se	ut	-						
							_	1	To	1	5	m	w	と		8						-								σ			~	-	N. P.	A.	_			
										5													-												-		1.4	_	-	
					_	or			U×	1	X			(vo	× -	V	2)	C	05	0	st	-	-	00	Y	S	ш	w	t		-				-	-			
-	-	-				-				-1				1		- 5	-			-		1				-					4			-	-		-			
E	-	-	2			-		-	U	y	1	=		(U	ox	- V	0		su	1 0	st		+	2	100	1	6	05	w	5		-	12	8		Sec.	-	X	-
	-	1	14-	1	-				71	14		-	1	15-	2	-				+-	-		1		12.0								-	4			26	1		
	-	-							U	z		-		1	F				-	1	1				1															
																					1																			
-	- to -	-			-			danser Marin								da			-	Acarian		-							and the second second								100.00		and the second second	-


1	1-		4	1	-	6	2	15		9		13		,											,						- 12	1		-	-	2	-	-		
	(5)		C					1.4	0	10														-		= 0											2			
				×	1	I		1	Vo	×	-2	Tc)	-	5	m	u	t	-	+		250	by		co	5	wit	+	1	-	2	Tou	1								
		-	5		1								下)						1							u			+			ōx	- 2)	-)						-
												w				~	0			-		w		2	m	a	-			-		and the local division in which the	J	-						
		-	_	R	1	-	-	2	Toi	e t						. 1		-	-	-	-		+	-	-													9		
	(6))		X	-	=	2	Te	t	+	>	e'																			•									
				4	3	2		3'	-			-	-					-	-	-	-	-	-		-														-	_
						6	2																			~														
		8.1		>	<	1		Ve	t	-	-	12	Tox	-7	E)	-	5	20	14	t	-	t	7	w		Co	05	a	ot		-	2	Ey v							
				L	1	11		-	. (2	ax .	- 2	E)		co	S	w	t		+	-	Vo	1	5	m	w	t	+		(2	Tox	-	Vo)	-					
								2	_		a											w							1	_		w								
					×.	2		0	07			-				-		-		-	-	+	+	-	-	-			AY				×		TT UZ			×		-
	(7)		(Ċr	ns	10	lei	~		Vo	y	,	200	z	11	0		-														/								
	-				X	=	-	2	TC-	t	+		100	×	- 27	E)	-	54	1	wt	-	-	-	-	-		-			_	_		200	~	= 0	0		-		-
		-										-		0	U							25	_	25	- 1															
					Y		2	-	-	10	OX	-	ve		co	25	a	t	-	+	0	00	x -	00			ر		Z	9	0						-			
									1					12	Ta ve	- 1	15			u	1													2						
			~													2	0%	2 -	VC							2 4				5 (7	Jos		20)					1	1
-						-	10	ō×	-7	e)	2	+	2	w	(0	ο×	- υ	E)	SP	-	- 4	U ²	y2	3/	1	vo	x -	- 7	d											_
						>	2	-		2	To		0.0	-1	5	(v.	a x	- 00).	-w	y	2	+	+	~	2 2	2.00	(v	ōx	- 25	5) (1	_	w2	42	2	1/2			-
										-	w				2		2	Tox	- 2	Je		- 2			-	-		¥ -			w				~	0				
	(3)		1	a	20	V	lox.	-	0	,		-	×	V		2	Te D		co	5	.15	3	ve	+ 0	Ny	2	+	5	-	- 2	wz	Te .	1 -	- 0	50	yz	-21	12		-
	-				-											0	0				(-		ve	-)		5	-				v	-		-	2			
		-		wh	er	r	4	1	0			-	X	. :	2		Ve		C	05	1	1	-	=		2	πν	r	vo			21	1	0	1.	2.	3	, ··		-
				Co	02	d	9	al	30		be		de			bo	1 ce	;	E	nd	len	iz		th	e	2	ve	rti	ca	ì)	ta	us	er	nt	5	!			
b	(1)	_	7	6	ke		0		1	10-	×	1	50	,					-	-	-	-	-	+																
			-																							_		Y	N IS	E J	-	N	2TU	(U)	-		*	×		-
	(2)			d	x t		=	-	2	C	-	-	(2	ox	-	Ve)	CC	S	w	C	-	-	-			-		U	/		1		/		1			-	
				d	y		()		17	50	c .	- 2	te)	5	n	2 0	w7	-																					
				d	t			-				-							-	·	-	-	-		-					_						-			-	-
	(3)			d		_	-						-2				-						-	0															~	
			_	a	X			-		Ve	-	+	(Ve	×	-2	E)	C	05	w	t	-	-		-															-	
						΄.		S	n	e	wi	t	5	0	- 1		w	t	1	2	11		5	n	15	0,	1,	г,	3,		•			2.5						2
	(4)		×	_	21		-	+	1	25		. 7	ta)					4	-	1.008	14			-	24 77	- 21	1			V	1	7 40	27	-			A .			-
			X	-	0	el	-		_	00	× ·		a)	-	54	r	w	-	3		X	N	=	0		20	5	3	R.	XN	-(-	2 11	2	=)	2	1=	0,1	,2,	•	
														-					11																		-			
						-	-	_													-					_	10					-		-						Y

	AS	518	-717	Me	ENT	ti	#1	1							1				22		-	23		29					Pa	ul		G	-70	en	大			
	Con																		XL	3.1									DE									
																					2.8								AP									
	-		_		-	-		-	_	_	_		-						_			_		_	-			_	3-	. 1	5-	- 6	1					
		÷	_	-		-	_			_	_		_						1		-	-	_				-	-		+	+	-	-	-	-	-	-	
	-	~	1	-	1	4	-	+	-	_	-	-	-	_	_				- 54			_	-	-		4	y	+		T	24	-	-		1	-	-	
	9.	Con	Ti	nı	red	+	-	+	+	-	-	4.4		-		_					-	-	-	-			-	-		+	+	-	+	+	+	2	×	
	^	. (1)	-	T	te	+	V		/	20		,	22	1	_					-	-			-	-	-	+	+	-	+	+		-	+				
	C	, (1)	+	1a	ne	1		C	-	00	2 %	-	60	6										-				1		+	+	1		+		+		
		(2)	+	0	4		-	/	1 15	a K	_	200)	5	'n	1 a	it			-	0							1			/				1			
				0	14 1x			-	and the second division of the second divisio	Contraction of the	. (1	A DECEMBER OF	Concession of the local division of the loca	CALCULA DE LA COLONIA	The owner where	C CLONET	-second of				-							TU	CONTRACTOR .	24	TUE				-	×		
																					1							-	3		~					-		
			w	hic	h		le	20	2s		to			Xr	. =	-	NIN	-(211	Ve	-)	4	25		be	fo	re		122	-	Ъ.	_	_	-				
				_		_	_			_			_							~					_	-	4	y	_	-		1-	_	~	-	-		
	d.	(1)	_	T	aki	e	2	Vox	2 3	=	2	Ve	*												-		1	-	1	×			94	-		-	2	
		(2)	-	-	du	1		-	+	2	Ve		54	n	w	ŧ	-					_		-		-	-	+	A	-		-	A	1	+	+	-	
		(2)		-	du	×	10	-	-	21	1	1	-	-	-		- 1				=	-	~	•		-			1	1			1		10	-		-
		-	-	-		-	+	-	+	00	2 (1	-	00	30				_							-	1	4	112	E	-	-				-	×	
		(3)		1.		(1+	co	25	w	t)	8	0				C	05	wi	t	= .	-1	:	6	vt			(2	1+1		T		n	=0,	1,	2,		
1																							3)		3.8				-
		(4)	A	100	ver	er	,	1	th	15		15	a	150		th	he	3	er	oe	5	6	> A		50	in	a	+	5	0	ce	ve		ch	ed	k,	/	
4																														1		_		2,5	2	V	-	
					Li									-		-		7	in	n			10	t	9	-	-	22	00		,	0	K.	100	-		-	
			_	0	712	21+1,)7	-+-	1	+	Co	20	wT	5			6	27	(22	1+1)	17	_	_	-	_	-	-	-		+	-	-	1	222		-		
		(5)			,	_	-	1	200		()	TT	27	1		15		1	22	. +1	1	1	2-11	ve	1		-	-	-	+	-	-	-	-		-		
+ -		(=)	• •		n	-	+	(28	17	- 17	11		2		-		_	6 0	2	/	(c	2	1		-	+	-				0		-	35		
					-	+	+		-													_					-		-									
	e.	(1)		T	ake	2	2	Jox	c'	>>	20	<u>.</u>	4			50	x	J	2	20	ċ	+	5	Vo	×		-											
																																-	4					
		(z)		4	1y		=		(2	Ve	+	8	Vo	×	-	Ve	-)	5	M	ev	t									_					-		
				0	(x	-	_			Te		+(2-	52	+	8	Jox	-	近)	-	:05	a	t		_		_	_	_	-4			3					
					_		1	-				1													1		-	_	- 75		-	-	_			+		-
		(3)		25	C	+	(2	G.	+ .	80	Tox	1	Co	2	w	6	1995	0)	0	20	5	w	E	=	-	750	+	e.	250	×	-	1	-			
			-	-	n	_	+		_		+	5	250	4	5 2	50×	+	(5	25	×)2	2	1/2			-		-		-	0			1					
				21	m	0	oc	-	-		-								250		2								+		-							
1 m		(4)		X	=	U	c Z	+-	+	•	(2	c	+	8 25	ox)	5	in	u	ot												-		-	-			
													u	>							_					(12	21	13								
				-	2	-	Ve	-	C	05	-1	_	-	Te		_		-	-		20	C	SU	ox	+	({	Ubx)	3	6		2	14	-	-	13	-	-
		_	_		_		w					-	UC	+	80	Jox	2					1.1			w				-	+	-					-		
		1-1	_		112-	-	_		-	-	11	1	_		6.0	_	-	C	25		-	0	-					+		-		-	2	-	-	-		
		(5)	-		We		5	ee		7	na	T		wr	les		-	d	Vox		-	0		7	we	- 9	e	0	2			>		3		1		
	- 1				V		=	1-	221	+1) -	T	U	7					1	P	er						-		-				-	-				
					~	-		Le			-		u	2			as	-		-1		-	1										X			5)		
Ter'																						4719 	2					1								-		
		1.2		-	The	2	5	yr	no	ne	tr	y	of	24	+	he		ve	rt	ica	2		ta	no	e	uts	5	K	car	1	2	e						
	33			2	The be	sf	25	S	ho	w	n	*	1	oy		a	1	1.50	du	29	ra	m					-	1			1						-	
-	34	-	12	2	-	1		-	-	_	×.,	-	100		2		26	12	-	4		-	See.				-	-	1.	-	-	2	-	-	-		-	
			44	- 14		4	-	-	-	_			20	3.8		1	-	100	1			_					-	-	-	-		-					-	
				_			-										-	1								_					29.	1000						

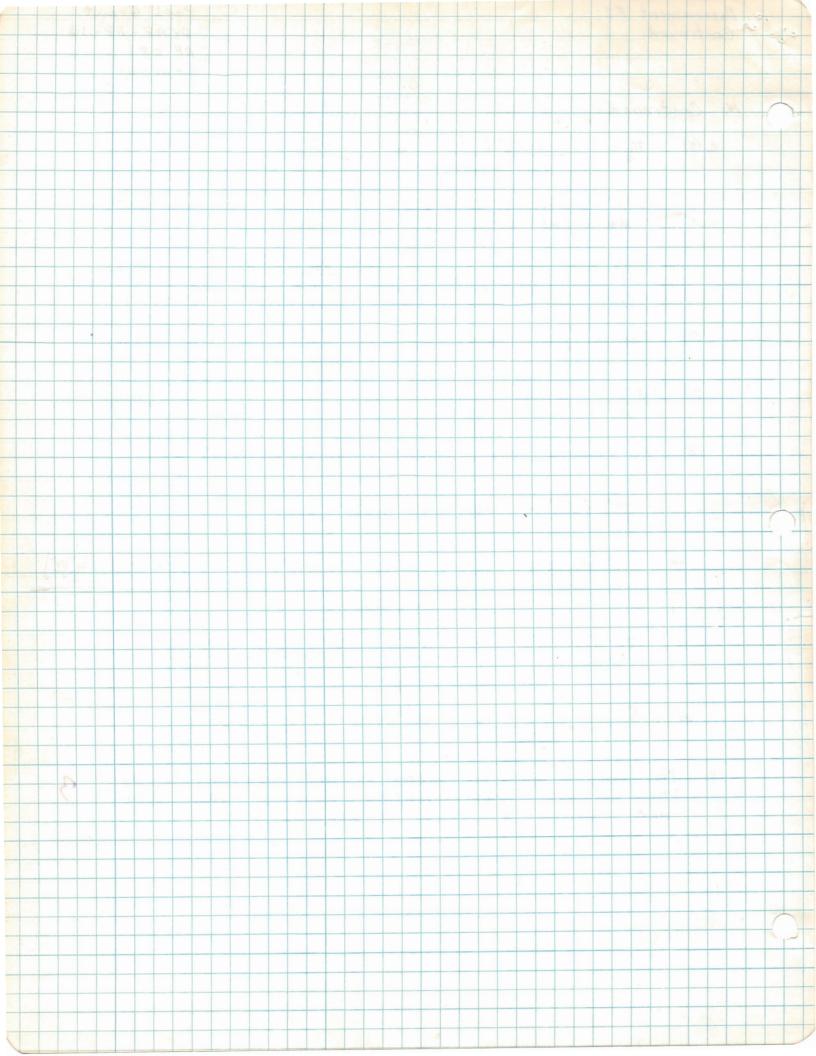
	sinz 4 cos	X	
	(2n+i) (7)		
	$SU_{0X} = 1$ ± 0 $SU_{0X} = 0$		TUE
the value of extremum a positioned the sign	about the old of the secon	, where there , there is r one. In or d term the	the cost term 111 cause the shtly from -1 to e was only me now two symetrically der to determine at goes with each to the sine corve goes with the be rower, so
f. (1) 20x <0:	$\frac{dy}{dx} = -(1)$	Tox + Oc) sunwt - (Box + De) cos w	
		$\frac{\omega t}{20 \times + 25}$	
	X + VC		
$X_n = 2nT$ $(4) V_{\sigma \times} < 0 ; 0$	$ \overline{v} = 0, , ', \text{ when } $ $ \overline{v}_{c}, n = 0, 1, 2, 3 $ $ \overline{v}_{c} = 0 $	5,	$s wt = 1 wt = 2nT$ $- , s wwt = \pm \{vox + vox vz\}^{k}$ $vox + vz$
4	Vox + ve	that above,	
X= ZATU W		proper sign	of the second term.


-	ASSI	GN	mei	ut	#	1																	P	au	2	0	57	a	it				
	Con-				5		25	20)			12		1	12	10	24	1		1			2.5			AP.						5	N	
			-	2 h	2 3.9	1	14	25		N			13.8	S.M.			5.	· seal		1=	5 3.				23			0					
			14.00	10	4.5	3		34	1		12		31			-	1.	- 3	10			de.			19.			1					
			33 3	2.6	13.0	2				-	1	1.5			- 54	a.y				5	1	1.				-	4	2					
	2 34	3.1	4 4		-	1			5	20		1. 5	1		-	8							-			5		3.					
	10.	(1)		d	P		=	e	T	×	3																						
2	5			d	ip +			-		C																				-	3)		
									_																								
		(2)		de	_	5	1	mz	F		2		-			2	n			d	デ			24	w)	1	5	,	RZ	2.1	3/2		
				de	F	C	F	-	2.	F	1 (5	1	- 1	10 2	2		lt					2	5	1	P	5			
									0	2																							
		1.	, -	2	5	. 0	10		-	=	-	n	-		0	lv		+		2	n	62				T	1	17.	di	F)			
				CZ		.6	dt				Reported	and the second second	102	7	6	Lt				5.		82	23	12		0	1		di	E/			
													1							51		2	2										
			-	e	v	×	8																										
						C																				1							
		(3)		Su	ne	e		V	×	B		L	F				\overline{v}		do		1	0			1	1	\overline{v}	1	di	5			
					-)				dt					7				1	di	C	1		
			a	nd																						-		6.4	1				
				1		-	m				d	v		IJ		e	1	J-X-C	B														
					-		1-	B	2	7	-0	tt				-		C		-					3		1	. X					
						0	1	1																									
		(4)		Ta	ke	2		万.	LĒ	3 :	:									5			0	=		15		1			4	-	
															Ĩ			0	-	du						5-						1	
																	2	3	- VP			\overline{v}	w	-		di	5						
												-														de	-						
																												-					
		(5)		1.		n	22	r u	0		-	-	e	2 2	- B	5		a) 2 :	= 2	B	JI-	-B2	7	22	2	B	. 5	1-	2	5 22	20	/
							1-	THE OWNER AND A		7				C	and the Person succession	and a	'			21	NC					M	C	4		2	22	2	
						0	1	(2					-														-						
	-	(6)		Con	151	de	r	7	the		P	rec	es	510	n	-	of		an	- 6	2 /e	to	-02	2	or	61	+		1220	c /1	ode	ma	
					m					ce									_	der		-			ies		-		the			-	
				1				V					ron							re						to	-		e		12 34		
		0	-		AB	11.				- 5	ne	eli	all	ole			Th	e	a	ngo	, la	-	Z	100	na				-		ati	ne	
		-	r	8 x .							15 :	3	2.							9.										1			
		1					R	_					_																				
		2)	1-	1			- 4	Adt	1	(7)	d	At	1=	1	ū	X	3	+	u	T	XA	1		73			13					
				4	10	P -	1.	at		1		d	t					1	.2	-		3		21		1	_	1	: 12		13		
				1	10	1	11	10	1	1	:	-	- 1	-	em		A	X	B	+	_	-	i	· X	2	X	A			1	-	1	
	-					1					(A)	-	-	-	m	C	i	1			Z	C						1	1	-		13	
				2		1				(8) (ve		ta	ke		as		+	7	the	1	dir	ec	tio	x	0	4	d	A	dt	• •	
			er	- Kil	100	1.			6	1		6	12.0												-	2		1	0				
		of		5	1/	2						0	A	1	= 3	E	B		SV	nt	1 +		C	2	d	5)5	mi	75	A		-	
	07	-bi	t	1	V			1		1	J.	- 6	lt	1	(- 7	nc	-	-			-	2	5	d	S	/		2				
			-		/			11					=	5	2 8	3	-	-	1	v	- 1/0	me	B	18	A	5	in	1 \$	~			2	
				7	-			- J	+					2	max	2		6	-9		C	me	-	2					-			10	
			30	tu	1	-						12	= ,	e	2 8	3:	S	1	_	5	2	R	A	5	in	E					-		
									1	9				-	N	C	5			20		2							1				
	(9)		1, 8	dA	su	18	1-		10	æ	=	1	d	A				R	2	d	A	=	4	de		A	5	in	8		di	1	
			1.	-	19		1 d	A		1		-	A	sm	8		1	23	4	d	t			dt					10	54		1	
			C		Sm	to				4 3	1	Re.			1X	2						_		/									
	(10)	1	Defu				A	a	19				WS	-		9	B		51	-	2	12	0		wi	his	1	1	5	5	ee	21	
			-		1 .			0	lt	'			10		TUR	2	MC	th.	L	10	12/1	tro	20	1	eso				to		22		
										1		1	0	1	Ud	6			-	10	10	10	-	-	- 50	100		-	10	2	92		/
				-	-			-		_	-	-	-			_					_		-	-		-	-	-		_			-

					25			1	1			1			2														1											1
	11.	(1)		GI	Ver	11	.0	an	1	ar	6	t	ar	y		di	re	c	ho	n	1	87	L	1	ve	loc	it	40	2	1+		15	-	a	10	au	is		-	
				Po	SS	6	e ri	no	to	a	P	er	to	m	CI	P	le	-	a	213		1	of	2	×	he	an	54	01	rn n	na	n	to	5						
				To	5-	er	i	3	pa	ra	22	2			to		+1	he		d	ite	0	tion	n		0	4		v	e 10	ci	ty								
				We		a	55	0-	m	e		00	r		50	15	te	m			ha	5		be	e 2	z	•	50		Pr	2	pa	er	e	d	;	1	-	5	1
	-	(z)				AY			y Y	(7	he	1	e	gu	a	FLO	ns		0	¢		tr	an	5.	10	~~	na	ti	021		
																				ire			1								-			1	•					
			-		+			/			->	XI		-	-		-	-	-	1	×'	1		- 1	dx	-		BI	100	dt)			8	-	_	-	-		
								17	1			*	×							a	1					1					-									
		4	4	-	/					-	v								-	1	1	-	-	1								1		-			-			-
				1	1			B		(-2			-		-				-		y														_					
																		-		()	00	de	')	=		2	5	(c	dt)	-	B	d	X	3					
				-			_											-	-	+	-	+	-	+	-	+			5	1-	. /	32	-		1				1	-
		(3)		a	le		de	· f	m	e		M	he		0	11	4	er	en	t.	ai)	e	le	m	en	t	t	04	1	2	en	15	+	k					-
				13	n	4	-	51	oa	60			VI	a		¥	he			Py	21	200	30	re	a	n	Þ	he	ar	er	n		r	12	+ :					
				(d.																					+	+	+	1	-	+	+	+	+	-					1	+
													-																											
		(4)		No	w		1.	n	1	the	2		w	10	21	219	3	~	SA	51	er	ec	•	-	-	-	-	-	-	-	-	-	+	2		_			-	-
				6	15'	5	1,	F	(dx	1)2		+10	ly	1)2	+	- (di	z')	2	-	(c d	12')2		1			1	1									
			-																								/		2		1		2	-				-	5	
No	3	19		=	1	(0	dx)	-	2	-	and the second second	1.		-	1		+	B	- (C	25	1	•	+	+	(0	(4)	F	+	6	13		1	-	_		-	T	H
		2.2		_					2						· .					-	2			2																
				-		(0	c d	2)	-	+	2	ß					X			ß	-	(d	x)	~	-		+	-	-	+	+	-	+		-				-	
							_						1-	- (22					•										-										
	-	-		-		(d)	,)2	1	1-	BZ		_	1	1	4)	2	(1	-	07	2)	-	-	-	1	-	2			11	-	2	-	+	_						
		-			-	a	-/	(-	/		(0			-		-	15	1	-	4	-	(ay			+1	a	Z)	-		+					_		
						4	12		1	0	2			Ì				1	,		2				1	1	2													
1				-		dx				2													-		(d			-	-	-	-	+	+	-		-	_			-
		(5)		Ve ve re	ius	,	¥	he		7e	ng	t	k	2	2f	3	a		V	ec	to	r		in	1	4-	- 5	pa	de	2	,	15		m	va	ri	an	t		
				0	nd	er		4	the	e		L	0	re	m-	tz		+	ro	an	5	ov	n	na	_+	0	· .	-	A	1+0	10	ug	k	-	+	he	2	-		
	1		× *	re	=10	17	10	-	5	as	P	er	-C	ee	t	14	4	1	g.	er	re	ra	X		a	s	CT a	102	4.	pr	t	ne	-	01	le		/	1		
				a	k is	5	1	tr	a	ns	f	or	n	ea	ti	n	-		15		0	2/	w	24	5		P	0	39	ik	le		0	9		V				
				_	1		~	-	-						-			-	-	-	-	-	-			-		-	-	-	-				0	-				1
										$\mathbf{r}^{(i)}$																														
				_												-								-											_			-		
			-				_		-	-		-			- 1	- 4 		-		-	-		-	+	-	1	-			3		+	+		10	-		-	-	-
																		4								14			1											
				-					4					7		33				-			-			-		-		-	-		-	+			_	-		
	1		2			-	15		-			-	-	-	1	10				10	-	-	-	-		-	12	-	-	-	1.7%				10	-		-		
	1	32-44																												4										7

	A.M.		(14)		(13)		(12)	(11)		(10)	(9)
								B			1
		A	No		or Ta	1.		y a efi	51.	200	n 57-
	2	J	a ovu	x' y'	ke		d dt'	- B VI 571	-B'	1	r21
	y _C		ng		V	V×	(rtu	-		. (
		1	501		/ =	+	Vx Vx	ie			3
			at		:	12	+				:× 5
	>		03e - 7	W We w	- 2	rý	12	of	The	- 10	5 -
	×		V		Te	8	540 130	4			+ 2
		~	we eli		5	-	11	the	C		żź
		_ X .	2		in	J					150
		1	c. ty		c u	10	-1 (v,	56)
			m	,	ot	e	W	2 10			H
			510 V	+	/			-			
			de c		1	wt				E.	eju
				200	0	<i>+ 1</i> =	*	5			21/21
	d d	So IN	a 1-2	-		1		L		1	(
2	x'	· · · · · · · · · · · · · · · · · · ·	~ 1				<	me		j'	σ×
	1				/	1	1	fo		-	ī
	6	To Jo W		}		Ve	wt	ren	-		+2
	d ×	1-					-	end	-		1 33
	-	- ß		6	_	ce		, er		E I	الم
	Po t	μ ²	о-с мі . (с.	<')		2 0		+ rt		51-) × (
	(se	3		2 2		vt		he		a	82
	e dt Be	e ×	du 15	. (.		- +	e m	, 4 E	121	2	k
	;)	5	x	¹ -			d vir vir vir	vel V		2	
				V2 3			R	he	Yo ix	1	
		22	1)2				ty ty	+ 1	5	
				1		54	p w	42	4		
		2		(14	le le	mo	10		
				250		st	1	lo	14		
			e ion	.) ²		,	NO	ST	en		
							li	N.	B		
					~~~~		Į.	ton			
							N	90			
										-	

A				AS	516	Nn	nen	,t	#	1																					Pa	u	2	6	ire	an	t		1	
	-		1		my																-			20			4	1 24				_					16			
-																			3	12	-				-			-			A									
		+	-	-	-				-	I.	, ê	1	Ş.		2542	-			-		6	-		1.3	1.5			2	0	-	3.	- 1	9.	- 6	1	-	-	-	-	
-	1		-	0	1.1	-		-		-				14 - 1 1			_					4		2.1			-	-		+	-	-	-	_	-	-	-	-	+	+
+	ſ	4			obl nt							_			_			-				-	-	-		_	_		-	-	-						-			
	+	+		con	nti	121	ve	a	1							5					_							+	+	+	+	+	14	a. 1.	1		+			
				+																																				
			(1	5)	N	0 00	)	no	ote	· ·.		B'	2	11		2	×	2 -	- 2.	12	199	5			V	N		IJ	P	2			8		1	5				
	_			_														C	2						C	2		_	1	_	_	_					-			
	_		_	_	f	rov	n	(	15)											-								-	-	-	-		_	-			-	-		
-	-	_	1		+	-	-	-					-		_	12	7						_	_			_		-	+	-	-	_	_	-	-	-	-		-
-	-	-	(I	c)	-	٢.	-	W		=	a	Ja	J	1 -	- [	0e	-				1		_					-	+	+	-	-	-			54	+			-
	-	-	+	+	+	-	+-	-																					-	+										
			0	7)		a	t	-	=		Wo	,	51	- (	302	۲.		ť	4	-	Bo	X		1	- /-	le	0	(+	-	. '	Ve	XZ	)		2	0				
														,				-		1-6		-	-					1								-		-	-	
																			0	1-6												-					_		-	
		_	(1	8)	-	X	( -	-	COLUMN TWO IS NOT	ACCORDING TO A		-	2		-					-		52	~	4	00	(t		2	CX	-)	-	-			-	-	-	-		
-	-		-			1 1	5	-	P?						ω	0	51	- [	2	/			-	_		_		-	-	+	-	+	-			2	-		-	+
-	+	-	+	+	+	-	-	-										-	-				-	-				-	+	+	+	-	-							
	+			+	-	0	2	-	X	-	:	2	Ve	t		_	2	Te		5	u	_	w	5	(t		- 1	Ve	X		+							10	5	
				+			-		-					-		1	0	Je No										C	2											
																C												. 2												
	_		(	9)		4	-	-		-	v b J	e	R		7	3	1	-	C	02	- (	Wo	(	t	-	Ve	×	) (		-	-	-	_	~		_	-	-	_	
		_	-	+	-		-	-		u	60	1-	- (2	6		C							_		_				-	+	-	-		5	-	-				-
-	+	-	+	-	1				-	10			4.0			211	10	24	107	fr,	0		PO	10	+	0	2.0	-	P.	-	+	4	10	-		-				
	+	-	+	+	+1	ES	e	+	a	4		A	ne )	~	-0	10-	-11	1.5	+,	c		- 4	10	tio	n		-0	If	50	100	0	1	-1	00	-					
1			-				1																																	
					V	e	11	9	C	_	,	w	re		se.	e	4	ha	+		we		h	av	e		th	e	ł	el	at	111	IST	10						
	_			_					-																											2 0	-			
-	-		-	-	e	90	at	100	1:	s	f	01	-		W	10-	F 10	n		m	-	C	24	05	se	d	-	e	0	m	d	-	В	- 0	-10	.ld	- 5			-
	+				m	-	¥	he	11	>	< 4	1 F	1-		5	y.	ST	cu.	-		1+	Ne	o Te	-		Yu.	ar		as		C	-	1	~	20	2	u	91		-
+	-		+	+	-5	er		-	Th	6		C	ia	55	10	~ 0		r	05	01								1		5					)	-				
			(2	0)	1	t		t	1	0	١.		×	< .	-	-	ve	-	50	n		wo	ve	×										1	1					
														-			w	þ					C	2												2				
								11			-	2/2	ſ		1															-		_	_		0				-	
-	_			-	I	F	0	The	2		\$10	Pe	2	0	F		the	e		RH	5	0	f	Y	m	5 1	e	90	at	in	и	-	15		(	es	5			
-			25		4	nan an	n +	1	1		at	51	X	Ľ	0	2.	Y	ne	-	e	90	va	Te	m	مرکس	n	as	90	nl	7	1	ne	2	7	100	T	;			
	-	(	d'	t	Y	na	17	1	at	200	×	-1	0.	6	-	-			-				-	-	~	-	r. 3.	2	-	T	-									
		-	X	20	143	5	30	l	R	HS	R	-	-		ve			No	Ve		V	- /	100	17	2	2	1			02		a	2	2	20	5	ht			
	-	- 5	5	-	143	, (	d	x	(	1	1	x = a	1	1	w	0		(	22	1		1(	C	X	1	-	it	1		-	-	3	11			4				
			3.	- 1	17	1	~	1																			-	_			-	4				- 1				
1		1	1	1	0	n	. 4	he		h	117	ra	2	7	Co	n	de	tio	ns			1	he	11	Pa	ro	m	et	er		+	n	ne	1	C	an	11	be	-	-
-	-		1	-	e	10	m	m	at	tec	L	2	60	+		n	ot	-	m	ICI	h	1	Di	11		be	2	sa	m	ea	2.		w	e	1	wi	11		-	
-			1	-	4	00	FK	5	-u	214	h		41	re		T	an	ra	m	e	tr	1C	1	e	90	Ja	ti	m	5.	+	-	0	VE	ER	:			-		
		-			-			-								- 2	1	1	1			5							-								-			
					3		1		12	1.	01		5-	->	1	5			2			-		- 2.	1			2												
					-								-	0		1	2					-					-								1					V




Assign ment	#1			Paul Grant
Continued				DEAP-AP-16
		N N 20		AP 231
				3-20-61
13. [ ()]- It wa	haven	120 250 4	lem 8 that the	C. II was
			relativistically m	
1 chavas	od part	icle in	a magnetic fi	e)d:
Bp	= Ek	51 + 27	ncz 2 1/2 (ema) Ea	
	ecj	5	En S	
		-1/		-14
where	B 15	the perpention	dicular field to	the
- ПОТ	can of	The partic		
(2) Noce:				
T :		= mc	22 + ER: JI-B21 =	: 2010
	J1-B	,2 /		mc2 + Ep
(3) Also	Para	VLB:		
	, for			
d y	0 = 2	n dv	= ez-B (emm	
d y	- JT-	B21 dt		
Now	ac =	rw, as	shown in proble	em 10.
Jal The serie	$\omega = \epsilon$	213 JI-R	z = eB ( -r	ne
The first the	WITCH I AN	M	m	+ ER
The Park of the		~911 0 M	C 2 1	71/2
(4) Finalla	j :2-2, w =	me En	$p \left( \frac{m^2 c^4}{m^2 c^4 + 2m c^2 E_{TR}} + E \right)$	. Ex + 2mc2 3/2
	L.		P ( mc + cmc = th + E	Er En J
		1/Er		S. (. mc2 )2]
5+25m	mc2BR+ER2/	En + 2mcz	En En	(Ea + mc2)
		Eh + ZMC2	- + M22 4	
			Eh.	
	e S	1-1-10-110	221/2/	
or w:	= 47		-mez) (er	nu)
(5) AS E	En - o	w ->	c (where p	15 the
		1		
vadiu:	s of the	e particle	orbit, so that	t for high
evere	gies, th	re freque	wersely proportion	dependent of
radi	energy	and u	wersely proportion	nal to the
radi				

14, a. (1)	Consider	the world	d velocity	4- vector 3	
	M70 =	= 250 VI-B21	-   z = 1, 2, 3	<u>J</u> <u>L</u> <u>C</u>	7
(2)	Thus th	he (world	velocity)2 15	$\frac{c^2}{1-\beta^2} = \frac{1-\beta^2}{1+\beta^2}$	under the
b. (1)	a 4-v Take as	componen	ts of a 4	- vector, the	transforms as (M potentials
	which wo	Ax, Ay, Az, 1 ould trans, Av - BP	form as:	$A_2' = A_2$	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
	assumin	is that	the coor 50 that	dinate syst their axe x direction	$\mu p' = \mu \left( \frac{\varphi - \beta A_x}{\sqrt{1 - \beta 2}} \right)$ $\overline{\xi} = \frac{1}{\beta 2} \frac{1}$
(2)	2051	$)^{2} = \beta_{x}^{\prime 2} + \beta_{x}^{\prime 2} + z \beta \varphi_{Ax} +$			$+(1-\beta^{2})(A_{yy}^{2}+A_{z}^{2})$
	= A There fore		2 - Q2 1 es formany	- BZ No promes A g and	nothing try this for you get name reduct
e. (1)	Consider :	Ay	y'	A particle m with velocity	noves in the' system
(2)	X =	$\frac{x' + \beta(ct')}{\sqrt{1 - \beta^2}}$	, y = y'	z=z', ct:	= (ct') + Bx'
(3)	dx = d	x' + B(cdt') $\sqrt{1-B^2}$	; dy = d	y'; dz=dz';	$cdt = (cdt') + \beta dx'$
(4)	$\frac{dk}{dt} = c$	$c \begin{cases} dx' + \beta \\ cdt' +$	$\frac{(c dt')}{B dx'}$ $\frac{B dx'}{B dx'}$ $\frac{B dx'}{B dx'}$ $\frac{B dx'}{B dx'}$	$= c \qquad S \qquad dx' \\ (cdt'+bd) \\ \frac{2}{5} = \frac{\tau x'}{1+5}$	$+ B (dt'c) ?$ $\times' Cdt' + B dx' $ $+ M = vx$ $uvx'$ $a^{2}$

	ASSIGN W	newt #1				Paul Grant
	Continu	ied				DEAP-AP-16
						AP 231 3-20-61
		i dining a sure .				
	14. Con	tinued:				
	C. (5)	Jy =	c dy's		V	
		d	e dt' +	Bdx'	$\frac{1}{2y'} + \frac{B}{c} \frac{dx'}{dy'}$	
		dx'	dx' dt'	- 27'	ry - agi	
×	1.5	d'y'	$\frac{dx'}{dt'}\frac{dt'}{dy'}$	= 24' 24'		
	1	7	V.		- 25' JI-B2	-
		· 27 =	1 + E	3 Ux' Us'	1+ 42%'	
			0			
	(6)	Sumilar	12: UZ	= 07	JI- B21	•
				1	+ 11.0x'	
	(7)	d (ct)	= C			
		dt				
	(8)	We pro	pose the	4-vector	: 25= (25, 25g	V2, LC)
			`			
	,	·	ひょ)~=	$\sqrt{2x^2} + \sqrt{2y^2}$	+ 22 - 22	
		2)=1		d		
		- Uxi +	2uvx' + i	a2 + vy2	$(1 - \beta^2) + \overline{\sigma_2}^{\prime 2} (1 - \beta^2)$	- c2 (1 + 200 + 100)
						Co Ct /
					Uve ) Z	
	1	2×2 (1			+ 252(1-B2) +	- M2-02
				(1+ 00	×	
	5	3 (1	- (3 °)	( 2×1	+ 1/4 + 25/2	e ² )
				~		
	(9)	The leng	the of the	his rector	15 not invari on and it 4-vector,	ant under 3
		not +	cute tra	true	4-vector,	THIS OUCD

£



Applied Physics 231 Doc Sat 5-6-61

Problem Set II

 a) By carrying the Fermi statistics to the classical limit, obtain the Maxwell Boltzmann energy distribution for a classical gas

i.e. 
$$n(E) = \frac{N}{V} \sqrt{\frac{4E}{(kT)^3}} e^{-E/kT}$$

- b) From the result in (a), obtain the distribution function for
  - (1) momentum
  - (2) a component of momentum
  - (3) speed
  - (4) a component of the speed
- c) Sketch the form of all these distributions and compare with the Fermi statistics.
- 2. Determine the average energy and average speed of a particle obeying the classical statistics.
- 3. a) Gas molecules obeying the classical statistics are confined to a large container which has a small hole of area A. Ubtain an expression for the number of molecules emerging per second from the hole.
  - b) What is the energy distribution of the emergent molecules? What is their average energy and speed? Compare these with the average energy and speed of the molecules inside the box.
- 4. Obtain expressions for the momentum, and energy of the average electron, and the electron at the Fermi level, as a function of temperature using the Fermi statistics.
- 5. Determine the pressure exerted by a free electron gas at  $T = 0^{\circ}K$ . Calculate this pressure in atmospheres for an electron gas of the same density as the t in sodium. Show how the pressure is modified for  $T \neq 0$ .
- 6. For an electron gas with the same density as the conduction electrons in Na, what is the temperature which must be exceeded in order that the statistics go over to the Maxwell Boltzman case.

- 7. Calculate the wavelength of an electron at the Fermi surface in metallic lithium. Compare this number with the lattice spacing.
- 8. Derive an expression for the total potential energy of a cloud of electrons imagined to be at rest and distributed throughout a spherical volume of radiums <u>a</u> with a uniform density of <u>n</u> electrons/cm³. In other words calculate the work done in assembling such a cloud, the electrons being originally infinitely far apart. Now let the cloud fly apart and consider the kinetic energy ultimately acquired by each electron, which will depend on the position it occupied in the cloud. Derive an energy-distribution function F(E) so the F(E) dE is the fraction of the total number of electrons having final energies between E and E + dE. What fraction of the electrons have final energies less than half the maximum energy? relative to Emin, A cylindrical diode has a tungsten cathode of diameter 0.4 mm. surrounded 9. by an anode 1 cm. in diameter. Calculate the current flow to the anode, per cm, length, under each of the following conditions. The cathode temperature is 2000°K in each case and the thermionic constants for tungsten may be taken as  $A = 60 \text{ amp/cm}^2 (^{\circ}k)^2$

$$\frac{e\emptyset}{k} = 52500 \text{ deg.}$$

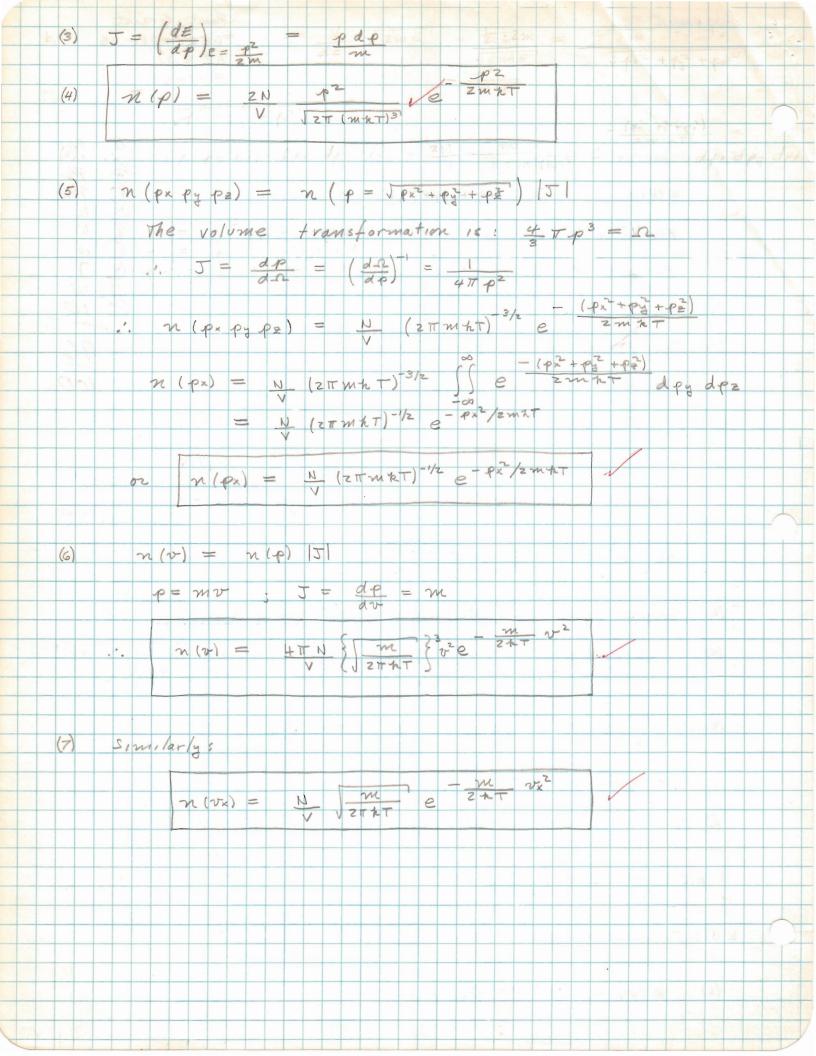
- a) Anode 0.5 volts negative with respect to cathode.
- b) Anode 300 volts positive (neglect space charge).
- c) Anode 5000 volts positive.

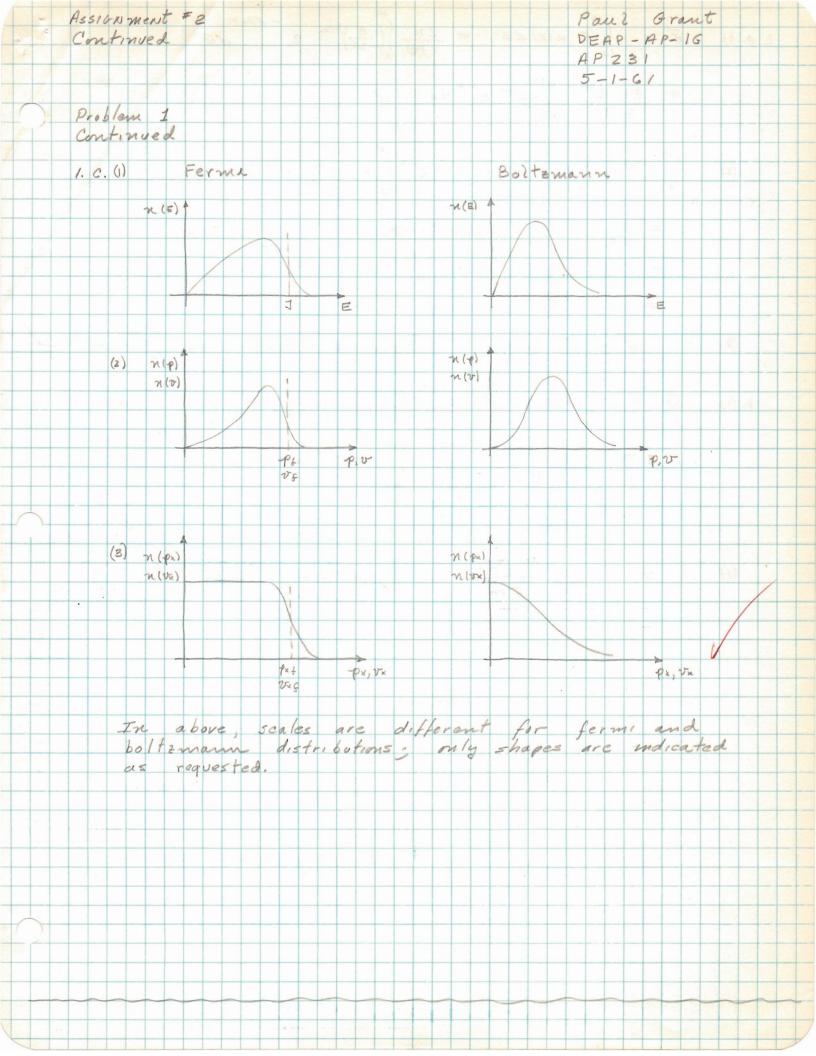
e 9

-2-

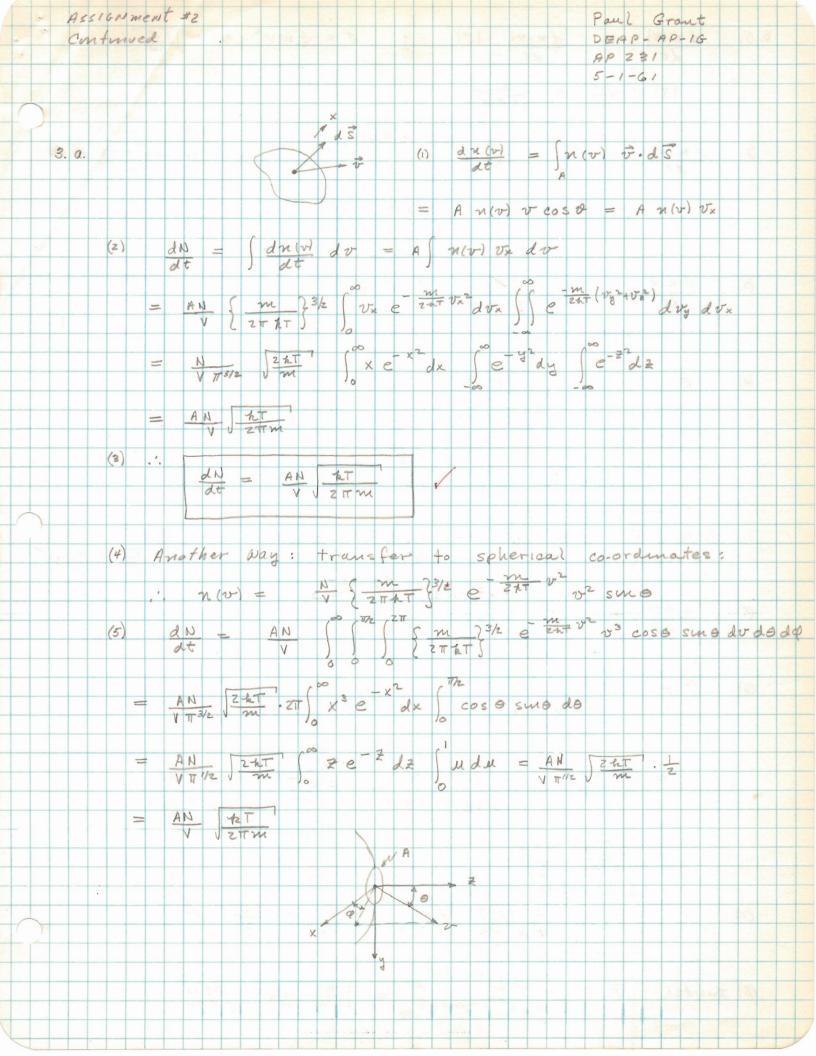
Problem 10

thow that for an assembly of electrons in Calculate the variation of an


- lithius. Compare this number with the lattice spacing. 3. Berive an expression for the total potential energy of a cloud of electrons imagined to be at rest and distributed throughout a spherical volume of rediurs g with a uniform density of <u>n</u> electrons/cm³. In other words calculate the work done in assembling such a cloud, the electrons being originally infinitely far spart. Now let the cloud fly apart and consider the linetic energy ultimately of a sequired by each electron, which will depend on the position it occuried in the cloud. Derive an energy-distribution function F(3) so the P(3) Cl is the fraction of the total number of electrons having final energies between is and 3 + 43. What fraction of the electrons have final energies between is and 3 + 43. What fraction of the electrons
  - ), cylindrical diode has a twigsten callede of diameter 0.4 mm, surrounded by an anede 1 calin diameter. Calculate the current flow to the anode, per cm, length, under each of the following conditions. The cathode temperature is  $2000^{\circ}$  fin each care and the thermionic constants for tungsten may be taken as  $k = 50 \text{ cmp/cm}^2(^{\circ}k)^2$


$$e \frac{\delta}{h} = 52500 \text{ de}$$

a) anode 0.5 volts negative with respect to cathode.


- b) Anodo 300 volts positive (neglect space charge)
  - c) Anode 2000 volts positive.

4		•		As	516	w:	mer	ut	#	2																					Pa	ere		G	ran	nt				
	2																						1	20	1		1		-					-+	P.	_	16		27	
																	1				-													61			1		X	
	(							12	12										-		1	14	2		73								~	2	2					
7	-		1.	0.	(1)		De	Lv	no	10	S		fr	ma		)	ec	t	ave			-					_		-	+		_				9	9	10		
144	1				4						1	11								200																CEC		10/24	12	
			4																-								_	2.0	1 2	1.			-	1.3	<u>}</u>	E S	$\hat{\boldsymbol{D}}$	9/	2	
		1		_			F	For	-	fr	ee	C	ele	ct,	or	4	3	as	11	313	N	(E)	U	100	271	2	(	TA	2)3	14	1	E	1	2.6		C	5	10		
	2						1	Fe	17	n,	e.	+	0	VI	~					-			1	0	- 00	-	7	21	;		4	×	-	- 2	J	16	2	70		
			-				1	un	th			fo	(E	) =			2	E	127	e	a		200													a	2	10	1.00	
					(2)		In	1.03	+	te i	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	15		of	14	di	30	10	ete		70	Ve	2/3	2	2	E	_ (			-			2	1		-	-	91	•	
				2	1		1			1									1					-		-	7	ls		-	_			*		_	-	10	- 0	
														10	(E,			e	B	Es .	-00	+	1			_	-	NS	-						1		1	00		
								8.	2+	22	na	m				N	5		-	-	-	NI.	0,	0	E									1	1					
	-		34 74							1	~						N				. 7	a No	1	Us	e	-E	s/h	T					1			E	ha	T		
			14	-		-		In		¥	he		lu	nı	t,	e	-	×	22	1:			fa	(1	5)	1	1	0-13	Ese	2	-	=	1	N	e	. 29	- F	Es /r	T	
The second	+	7		_							~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									E	sta	-				/	/						6	5	N	se	2	5/1		
							0	2		e		=	-	*	MW	~	Ne	5 (	0		_	-			U				.7.	-	5			1	5					
124					(3)		C	2.1			1	ac	4		1.		0		t.					0	- 04			1. (	~	1) /	E		-	E	47	- /	E			
		-																																						
					(4)	1			n	(E	)	dE	11.5	11		1	1	NC	E)	e	-		-E	d	E	_		j	a	fo	nd vz	n	25	de	by	1	1	+0		
	-	-	-		-		-		~									)	0 1	4 (1	51)	e			d	E					80						Q			
					(5)		,		5	N	E'	) e	- /	= /	hT	de	E'	-	1		V	- 2	-	( -	zn	1*	1T	)	5/2	ſ	5	×1	e	1	× o	l×				
								X	_	4.1	77	1	72	n a	h	-	3				2	4 -		`		n	-	/		10	2		39	<u>^</u>	-	10				
	-	-	_					1	14	177	2	(-	5	K	2					-	-				-				<	-	-	-				-				
		-		_	(6)		. >			n	(E	) 0	LE	1	=	_	2	NV	-	1	F		1	E	Tz	e	2	E	H.T	c	2 g	ŧ	1				-			
						-		1						-				Condition of		E	KT		-		1					/	/		1							
				-		nli	Flo	E	=	-	Z	NV	-	) 7	E	£T)	3	E	2	-		d	E		-						-									
	_	>		6	(1)		T	F	-	_ /		-						-		P	2			K	X	+	Pa	2 +	P	2	-		1		-1 2m	-				
-		-			0.1		1 21		e.	f	10	0	3	as		-				2	n	T		-			27	n	2 n W	* (	1	2	-		_			2		
		-		1	(2)		5	n	14	)	No.	2	n	10	E	·H	E	202	i.	172	13	1-	-	5.4	20	- la	E		14	X	-	1		12	)	5			1	
			-			1				56				-				212		T	R		10	- 11		9		-	2 1		-			4						-
Y	-		-			-			-					-						V	-		17	1.1	-		-	-		-			-						-	1



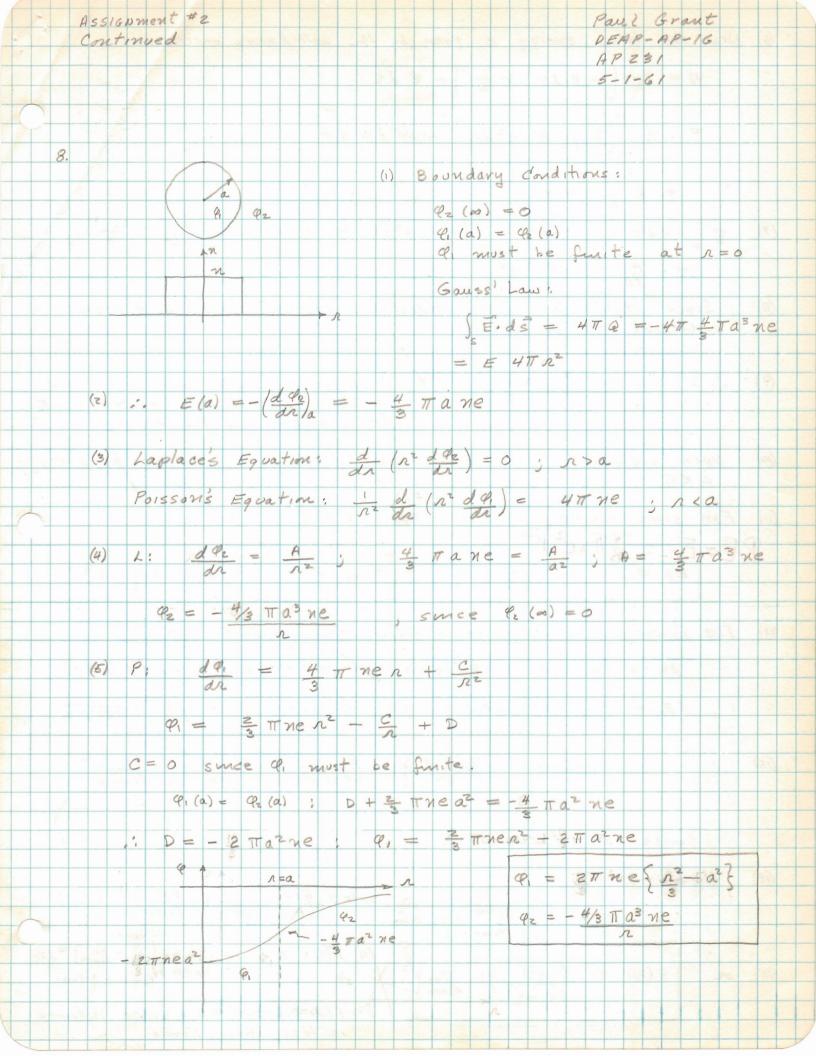


						2.
	b.					a.
(2)	(1)	(3)		(z)		(1)
.'	7	1.0		(	17	Ē
	5		N N	•	-	h
$\overline{v}$		=	<b>E</b>		2	-
1	a	1E		+	N.	
	-		S	-	K	10
	) 0 4		- (1	-	T	8 E
1	2	1.1	2	_		
N m	N TT		-) .	_	5	n l
	Π		u		20	E)
	0		(n		×	d
ET			-2	-	Jz	E
J -			) (-	-	e	
2h"	-		n-	-	× -	N
	_		4)	-	d	-
			. ,	-	×	ZN
				-	-	1
5	200			70		00
/p.		i-t		-		Er
art			(°			(T)
10	<u>ج</u>	e		8		3/2
le						
						e
						- 0
1	33					=/1
8 T	/2					T
kT M	e					IE
			d×			
	ZkT			1.2		
1	- 2	5-				
	.2					
2)	dz			1.0		2 2
	-			2		
		=				
		NY				5
		/				1
		-				

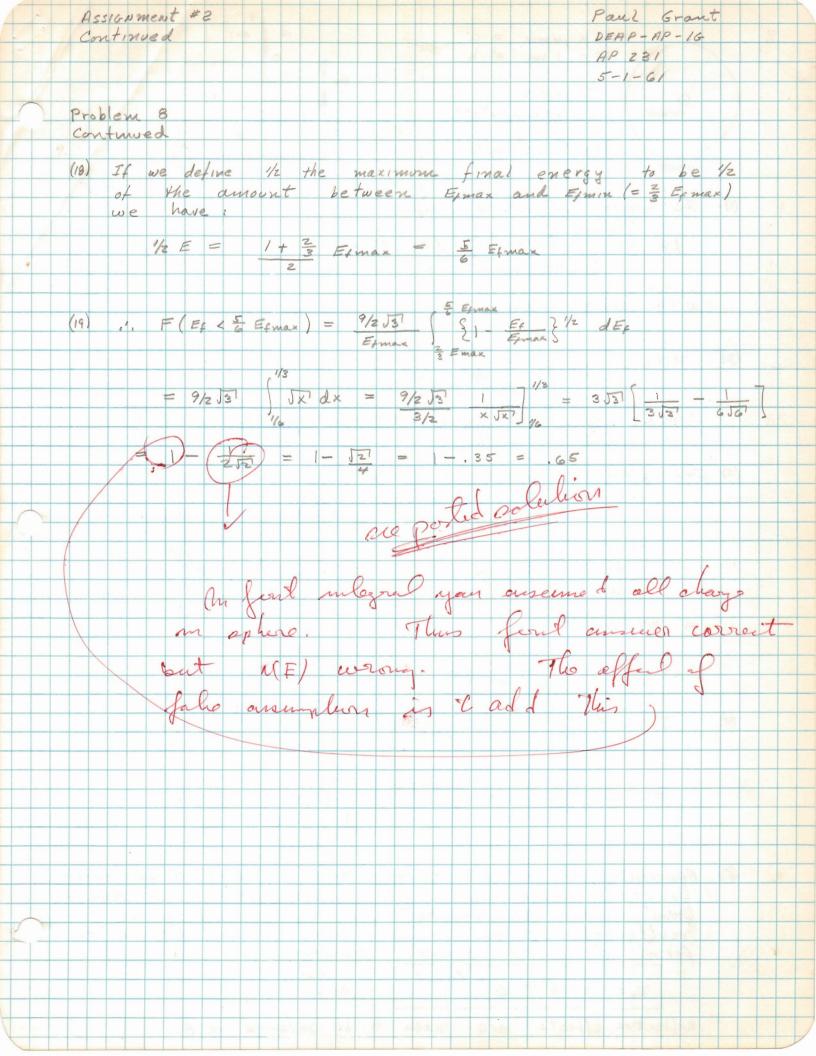


ь.	(1)		d	n	U (E	=)		1			d	n (	2)		1.	51			;			E	1	12	m	v	2.,	v			52	En	-					-	1
					(t   J	1	× .	di	5		H	di		E	T																								
	(2)	-	d	n	(E) t	)		1		AN			-	n	-	23	Z	e	-	E	4T	5	28	- 7	3/2	-	1	1	271	- 17	72	ив	c	05	5 0	do	dq		
				d	t			=		-	-			-			-		331	2	E		-	и ,		V	2 E	m	) 0	0									
											_						-	-								-													
	(3)		0		n (E lt	=)	-	=		A	NV	. {	27	К Т M	(1	T)3	3	1/2	1	4	e	-	E/A	F															
	(4)			Ē		-				00	E	0	dn	臣士	2 0	d E							1	00	E2	e	-E	AKT	d	E		-	W.						
	(- <i>t</i>								J	0			n (1 dt	<u>;)</u>	d	E		-		- lanan				9	E				-		•	17							
						-			(k (h	7) T)	Ni Cr		Se		N X	e	-2	d	1 22		]]		č	2 .	kΤ									2					
			. '			E	-	1]		2 %	T		V	/		-			-	c.	ted	l,	cho	m	npo	re	d	u	517	-k	a deal	and al	T			4	-		
	1-)				n (*					-		1)	]					a e 3/2					ho			V	N		c 10	15	Sj		Eo			43	V		
<u>8</u> 1	(5)	<u> </u>	0		n ( dt		10	-	•	2	V	N	2	2	TT	KT.	S		V		e							-		4				1913			-		
	(6)		Ū	-	1		-	Se	60	5	d	n d n10		a dz	12-			3			)0	200	4 2 ³	e		the me	2	d 72	v								-		
							Γ.	2	o k	-	0	C	\$	24		-	22	dz			),				-	(	0	2.4			d	2							
	•						1-		n	-		)	50			0	R.s	d	Z		=		2	L'A	'n		500	72	e	M	dz	-			1				
					Ŧ		2	Jz	λT	7	3	3	-1	-																									
	(7)			, .			2	7	1		1	3	52	Th	T		/		j	2			Vo Va		-	1	377		L	/									
	(8)	In	510	le	:		v	-	1		Sa	D V	-3	'e	m	2h		2d	0	N		J=	kT M	7	511	E)	W	T.	82 17 V	E									
			+				-				Se	20 1	52	e		721	ni D	0	22			v						V	n *				•						)

	2		A	551	GN	me	eN	t	# 2												-									P	au	2	G	ra	n	t					
-	2				tin													9								19	198			D	EA	P	-A	-	10				6		
		1									-				-	-			1	-			5.		-						P										
	1						<u> </u>		-	-	-	-	-	-	-	-	-		2	-	-	-	-	-	-	-	-	_	-	3	5-	1 -	61	,	-	-				-	
1	7		-	-	-						-		-	-	-	-	-	-	+	-		-	-		-		-			-	1		-	8	2	37					-
1. 1.90	Ċ											1	-0														_0														
		4.		(1)			Ē	•	-			Je	E	- 1	)(E	10	fo (	'E)	d	E		-		1	-	(	ł	E I	N(I	E)	fo	(E)	d	E							
			_	_	_	-	_	-		_	•		10				1.2								1	1	>							-	200	1	58		(8)		
-			_	_	-	-	-			-	-		0	N	E)	70	(=)	as	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	6				-
		1		(2)	-		11	E)	-	E	-	V	π2		12	m	13	3/2	JE	7	-	-	-		-	-				-		-	-	-		33	-				
												27	11 2		_	h a	)		VE																						
		-					-							•	C				2	2/	3	+2					1	5/2					2	1			ы. ж		10		
				_		5	su	10	e :			] (0	) :	=	2	3	172	-	+ )		-	th ²		;	(-	22	2	-16	1	-	-	3π		212	-		du				
			_	-		-	-		-	-	-	-	-	-	-	-	-	-	+-	-	-	-	-	-	-	-		-		_		~	3/	2	-	-	-	-	-		
						-	NO	E)	5			3	N		JE	2/2		-	-	-	-									-							2				
												2			J	3																									
									-			-	2		0	00		12	1																						
	_		- (	(2)		'.	-	E	1144	-	-	2	3	12		0	E	16	fo	(E	)	d E		-	-	-						-	-	-					-		
6	1	2.5	_			+	-			-	-	-			-		-	-	+	-	-	-	-		-	-		-				-		-		-			-	-	-
						-	2		2	3	3/2		5	1	E	3/2	de	1	+	E G	2	(h	T)2	1.	312	E."	2)	-	- '	711	4	14:	T)4	1.	00/10	F	3/2	+		3	
									2	J	0		L	0						4	-			1	2		13		100	60	>			(	8		1	5		5	
				_		_	_				-		-		-	-		-	-	_		-					-			2			-								
-	-		-	-	-	-		_	3			5	2	1	5/2	+	-	T	2	12	-	2 .	1/2			7	TT	4	(	et	4 7	7	3/2	+	2	7	1				
	-				-	-	-	2	2 .	33/	2	5	NID	9	-	+		4	-	(R	1)	C					17	0	- \	Pla 1	0			+	• •	5					
												Í,	_	1.5	10					~				11-			_									0					
						=	2		. Iu	nth	Jo	(	70	)	12	+	_		31	2 20		- I	-)	12	(4	π)	6	+		i i								-			
		_	_	-		+	_				-	`	-	-	-	-	-	-			-							-				-	-	-		-		-	4		-
			-	(4)		ZI	4	10	as	-	C	60	wn		121		200	t.	140		-	ho	+	,	-			-	1	-	T	2	(%	T)	2	-	V	/			
						- /		a	W. 0		20	200	Un	-			100					Pro		•		10	0		,		13	-	-	(T)							
											6		C			2				33	5/2			_	2	0						-	1								
						10	1	E	11		75	J	03	1.		12	-	17	-)	2		+	N I W	3 7	-	3	-	17	- (	107	-)2	5'	2	(k	T)"		+		13		
-		-	-	-	-	-	-																								-	5	-	-							-
									=		3	- ]	. 5	1	-	5	-	ΠZ	(.	hT Jo	2	ł .	+	3	πz		(%	T)	2	+											
1											5		1	-		5		12	1	20	-	2		8	Jo								14.2	13	2.2	3	81		38		
		-	_	10		1	-			0	,		-		1				4		-							1			1.	-		7				-			
			(	(5)	-	K	ee	P	n	3	+0	1	90	ac	dn	ati	C	7	er	m	3	17	2	T		;	ta	ik.	ine	2	R	I	<	Jo	1	14					
						1.2						-				~	-	-	-	-		-		-		/					1.1	1	-	1.1	8.	23	7-1				
				1					E	1	=		3/6	J	2	31	+	+	5	π ² 2	(	127	=1	2 {																	
													9			4	1		1	2	(	9	0)									2	1	-	49	1	1		2.4		
					*	_	_					10	0			>		1		-							00									-					
-	-	_	~	(6)		-	P		0			)0	1	þ	NG	p) .	-0(	P)	d.	P	-	V		1	1			P	N	(9)	f	04	p) (	dp	200	10					
			-			-	-				-	(	00	NC-	(9)	fa	(0	) d	10		-			(	V		0							1	-						
							-		-				0		-	1			1	-				1	11	1	00										1			-	
			-	2			-														-	1)		-	1		5	P	×	(-p)	0	tp	-			1					
L			-	-	-	-			-																1.1															14	1
		-	_	_		_																								-	-									-	


.(7)	)	Fn	m	Le	ect	ure			n	(p)	)		1	V 2 th	1.00		e	P	p2 ma	r	244	Ŧ	+	1										
		1	10 -	8	3	π	212	-25	2/3	th	2 12																							
(8	3)	Defi Als							J		m :	1.0	1	=		ħ	5	3	π 2	1	1 2	1/3		T	V		11	3 4	ZMGO					
(9	)			p	-		13 12 50	-	ſ		e	10 ³ 1	d 2 2x	P	4	+	1															-		
		or		ē	U				J_3/2	J	0	z m C		-	24/2	-1	+	75	2m	El	d	E						1 64						
			1		-				2		-	-						dE				17	M1	1	3/z	5-	227	П	-2	(40-	2	~		
(10	>)	P	÷		NIS CE		Jo 1 Jo	-	4	.0						-			-		-		-+	-	(J (J)		-			-	-	2		
		U		28 :					0												_													
		10	0	3 N	- ]2	niz	Jé	/2	51		12	- (	1 m	T)	2	+	TI	- (	17	E D	)2 (	5					4		1		A)			
(1)						p.	-	3	5	W 8		1/2	-	5	1	+	-	2 12	( -	Do	)2	3			9									
(12	.)	The	en =	erg	y .	ot	an 5)	e dE	lect	ro	1. 0	at	¥1	e	fe	TE	ne f	) . (I	eve E) e	e l dE	14		1 : 5	3/2	S	N N	3/2	+	π	- (1:	т)-	7-11	12 2	
	3)		ep	mg	90	ad	rat	he	te	er v	15		ĸ	7	;	-		(	1 T			2			4	<u> </u>	2 8	( 1	IN LID	22	-7	-13		
()4	4)	S	inc	e	夜 T	- <	< <	T	,	w	e		ca	n		e	21	te		1	1	/	-	Jel To C		72	1.	~	17	12	2	4		
		. * .			3	02	1-		2	RITS I	<u>;</u> ).	5				Ps	1)	13	m	3,	11	P	50	2	1 1	24	- (-	Pfi	20	1	S			

	1 × 1	_		510	-				#	2																						el					11			1
*		-	20	nt	121	UE	ed.																							A	P	9 P 2	31			6				
				22		1	<u>e</u>		10	6						1		3	11 A		× 8 :			and and a						4)		1-	6	1						
				_																	1										5	1	-							
		5.									. 1	ŝ			(1)		TI	re		pr	e	551	re		6	J	d	lef	12	1+	ion	<u>د</u>	-1	S	+	-he	, ide		-	+
			2			-	0	Y	T		N	3													(1) -				u	ni		4	m	ie	55.J	ИС	, Ide	2200		
		ar E		2			P	-	/	1	100			1	,							8	_										-	1		2				
	1			(z)	_	F	>	8	-1	A	)0	P		dr	elt	-	ć	20	0	0	21	2			1									10	2 4	22	+0	21		
	_		_	(3)		_	d	nl.	(q		1	-	A-	n	P	)	P	C	05	9		1	1	N	1	2 17	m	'nT	)-3	1/2	PZ	e	2	17	22	Tanà	+ <i>p</i> T	<u> </u>		1
										14					- )	- 3/	2								pz	*	-							_						
					-				M	V		(21	TW	12	()		8	p	0	05	9	e	2		C m	. 12					_				1				0	
	_			(4)		P			_	2	TN	1	(2	π2	n h	T)	-3/2		ſ	p	4	0	1 m	2 207	T	dy	2	(	TV	205	20		su	10	0	10				
										m			-		-				0					1		_		),	2											
1			1	95	1	-		Z	T N.V	1		2	m	1 T			0	X	+ (		22	dz		ſ	u	2	du			2										
52	2.4			-					-															-1							_					1				
			1		=	-		V	N -	1/2	.3	m		3		57	1		-	2-3	NV	-	1e	Th.	j	S. S. Kr	th										e			
					-					_						-								-	-7			0		_										
				(5)		P	Fei	m	e	-	Di	rac	1			ni	(P)	1	= -4	π	3 t	13	-	0(-	p2 p2 22	5	-	5)/4	27	+	1		0-je 	(2.	eci	tur	د)			
		-	-		T	-	_								d					-							-													
-	1			(6)		1	ρ.	-	-	4	1/ The	n	-		ſ		1	4	-	P		_		_			-			-	-									
			1						2	5 11	10		-		0	6	01	2	m		-	T					-	-				1			30	- 54				
				14 - 	¢j.		Ha	w	ng		di	VIO	de	R		by		V		to		8	2+	-	P	ar	Fic	le	•	de	m	51-	ty.		_					
				(7)		F	21.			-	1	(	22	n.	R.T	5	12		10	0	Z	4	12	-	-						_									
	31		1			1	5 ·				66		TT	充	3	·			0	e		72	-	1/hT	+	1								-						
		1	E)	, Ú	and a	F j	)	÷.	2	N CE	1				-	-	t.	:)	12		00	5							-	_			- 22							
							~	-	P	N.	-	3	27	1)3	12	(	KT	)57	2	ſ	12	M	3/	2 0	14				8 ¹		-									
					~	-		2.	~		1. Contraction of the second s	3	11	h						10		0	-	7/	LT -	- 1				_						5				
	P				- JA	G	2	2	1		14		,					·	4					-				-							4	25		15		
	1	2		(8)		W	he	en	-	e	2	7	hT	I	2	-	V	T	3/2		(2	m	ti 3	7)3	12	7	7	1	;	1	>	11		N	K	T				-
		2		1.26														-		1.5		n					100	24	1	as		,t	1	sh	00	22				
E		,	1		_			_							-	2	1.5	ind the					-	-	1	-				_	-		-						-	


(17)	(16)		(15)	(14)	(13)	(11)	(0)		(9)
A13	Te	+ He	Fro.	 	(	F			Con.
		3	m		BTT			0	sid
2	9	π# 60			-z) ²				er
Na			ect	(				P4	a
	The other designation of the local division of the local divisiono	(ZT) (E)	bre	(1.9 (217) ;		37	c tu J.)"	pz mer	lese
	a ti z n 3 TT		3	2	1.9				me
3.,	r)		I	10-1	the man			7/7/7	ra
18	3/2			5		_			te
	ter	2/2			(3 h m	+	J.		
2	-	J .,		m	-				nas
	_			) 3/	H		T	-	e
h	-	; ; E		2	(			->	2
	n 12	-3/2		10	6.6				
2	4	Y		0	63	_			-
2.	T	ro		h.		5/3	-}	52	9
ħ	: 11 ² 24			3	- 54			>	2 4
1				z d	1/2	3		F	2
-5	1/2	alv cr		IE E			5/2	,4	1
5/2	- (		-25		-			dq	
• (	kT	-		1	6			0	
6.05	-)2	>>-	3 (E		per				
5.10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	kτ j	;') 0	4.	- 10			5	
39		5	lE	2	at				
		ал 3	* +	· 10	ne on	:	2 k	15	
	R	H	) H W	5 5	ι.			(2	
NV 4	25		2		(1				
2,9	500	3 (1	(kT		10+1			Jo	
5			)2		8			5,	
2	,,) ( t		4		I			/2	
(c) 4 c	511	Cas	8	22	me				
x to		200 J	)		s)				
re c	15	wer							
	T	0			. 10				
		Les a			10				
	)								•
									1

	1		AS	SIL	5-10	me	wit	+ #	#2																					P	al	22		Gi	a	et	-			1
-	*			n																														7P						
5								2												-				1				1	ai.			2			1		(3)		3	-
						-	<u>8</u>		-			-		_	_		2000	1	_					_						5	-	1-	61	2				-	-	-
-	5				1	1								R. D.		1				-			-	_			_				-	1		1			123			-
	1				-													-															-	3.5						-
		6.		(1)		F	ro	m	<	or	06	les	m	I		a	nd		2.	ect	tur	e	2	X	he		cr	ite	eri	a		10	~							
-					_	t.h	ie	m	ti	a	ns	17	100	r		fr	m	-	F	D	7	6	1	ME	3	1	5	\$										_		
			÷																								-						-	24		_	43.	-		-
-	-	-			_		e	- 4		IJ	ī	TN	- (	3	2 71	th	21	)		_	>	>	1	_						_				-		-		1	-	+
	1			_	-													-			-	-				_				-	-							-		-+
			. 1	(z)	-		2	m	k	T		>	7		4	2/3	(	N	12	3	,		7	-	>	>	S	1/3	Π	ħ	2	11	10	2/	3	175				
1								T	tr	-			-				l	V	1		1					1		m	R		-	(-	$\nabla$ )					-		
	_	-		10	_		1		A	1						.14		-	_			1			-										_			_	-	-
	_	-		(3)	_		S	2	d	ef	m	e	0	the	2	A	Art	est	0	1d		te	m	per	rat	UY	e	a	S	5	_				3	-		-	-	-
	-							-	-		-	-			-	-			-	-		-							_	-		-			1	1	1			1
							T	. 6	1	5	+/:	3 .7	- 1	i i		1	N	2	3						- 1			γ.						2.3	1. 12.					1
											-	m	k			1	V	1					1																	
1.00																								1								2		-	5			_		
	_	*		(4)			11	2/	2		-			1.1	4			12				1		3	./	-	54			1	_			-	-	10	_		-	-
	-	_		(4)		(	V	2/	- ·	6	8	5.5	• 1	0	j		w	h		4	8	10	11		28)	11	20	. 10	- 16	5	11		3.5	5 . 1	0		123			-
						_				-		-									_	(7		10	1	(1.	50	10	,	-		5	100 100 100		-					-
ť.			×		1		21	3	N		_	1		_	11	21	_		P			Z	. 1	0-1																
						-	17	T			2	5/	3 TI					1	ð.										-		14		à							
		1																			0	1												1	-					-
	_			(5)		-		=	2 (	8.	5)	(3	5)	*	10		-	2	30,	00	3	K				-					-			×						-
	-		-						0		-	-		4	ł		-					_		_			_			_	_	-	-	-		-		-		+
	-					_	1	1	7	ron	al		10	57	\$		20	ne	5									-					12		-33	-				
												-											21		17					-										
				(6)		A	lse			su	ic	e		) •	0	11		5	3 11	2	27	- {	43	-	h	-			5				-	37						
	_						_	-		_								-			•	7							<u> </u>			1					_		-	
	-					_		T	-	~		-	1	16	1	13	1	-	-	-			-	-	2		1			1		5	10	-				-		-
	-		-	-		-	-		-	-	-	1	(-9	T	)	1	2	0				- 5	-	Fo	~	9	va		_	40	-	01	1.		V	<u>-</u>				-
								-		-		-			-	-																								1
			1						21.55						82.4				1										,			3	5							
				(7)			T		>	>		(.	16	)'	3		3	15	-	Constant of	-		1		з.	66		04	-	(	2.	83	)			-	-			-
					3		-					6	97	/		,		80	6'1	07	4														-		-			-
	-	_	145	_					~	2	-	51	50	0 1	0	r			1				_		1			-		-	-	-		-	-					-
				_							-	,0,	20	0	- 1	-													_											
				(8)		A	d	00	all	4		ue		5	hou	10	2	0	40	05	0		2	b	Her	05	hor	1d	1	70	un	100	era	te	re		a	000	te	1
				~ /		10	>		tu	de	5		¥	ha	+		al	001	ie	1	Sec.	1.3		1	100			-		1			31	3						
							1			T	(+	hr	es	ho	ld	)	H	-	3	00	00	00	0	K	-	37	2,2	341	2	2	5	-		-					-	
	-	_		_			-				-	-			-			-		_	-						-					-		1						-
	1									-		-	-	-		-	1			-							-	-				-								+
9	-	-		-		-	-					-			-			-		-		-				-			-											>

4							-	2																									1.10	1.20				-
	7.	(1)		De Bi	ros	he	Re	10.1	ter	a:				=		h		1		5-	h	E																-
					2.3			1.												-		-	-	2/2									1					
-		(2)	-	AF	-	-		K	m	Jo	7		*		J	0	1		2	31	72	27	3	73	2	the	4											+
	6		_					_	_					-								-		-		1				100	1997	2						
		(3)		Ar	= 3	-		h			5	3 17	2	N.	14	3		-												-	2							
+			+		+	-	-	V			2	511		V	)	-					-			-	-						2	-	- 4					
		0	2	_		d F		-	S	e	3π		2	11	3		[																				-	
		0	د ا			A F			5	0)	) (	24		5																								
							-										}																					
		(4)	-	For		4,	+6	115	m			N			4	7	. 1	02	2	st	m	5	lac				4.7	7.1	02	2	ele	ect	ron	s)	lee			
				255									na		do	Ла	te	5	d	in		e/	ec	Tro	R	(	M	577	4	50	ne	3/	2					
-			+	a =	=	3.	46	Â		( C	RC	)														_								-		i.		
		(5)				8 (:	21	4)			- 23		_	~			10	- 27	-	1			2	41					-		14	1		(d)				
-		(3)			-	3 (	4.	7)	_	. 10			10	=	1.2	· ·	10				18		0														1	
			-	-	λ	F	II		2.0	· · ·	10	-7	C	м		11		26	Å	-				-						4	-				-	-	-	
			-																													-		-		_		
							-	2	PU I		1 1				1								-				· ·								_	_		
		(6)	K	mo	th	er	N	lay	÷			λF	. 19	4		h	-	~										-			1							
				FI	-	_						_			-				6	ev		li li		7.6	1	0 7	. 12	0	re			5				-	-	
				FI							-				59					2									18	-					_		-	
				- 24	2	h ²		-	-	2	9	./	. 10	10	28	_	-	-		5	. 4	• /	0	1						1								
					2		-		Г				-									_	8		1 .					7				0	-	/	1	
			-		1	AF	11			2.7	41	10	12		11	4	].	31	6.	10	- 14		H	J	31.	6	• /	10	16	d	-	5.0	52	A	L			
			+	1													~			<u></u>				Χ.	¢.,	J.												
					1		-	F		1	1	68	-						1						G			_	2									
				T	ner	e	-	m	. +	4	4	0	6	2		cm		de	~0	6/		0	~~	01	~			1		412		100			_	+		
				_	ne	-	e	le	ct.	rov	c				a	to	n		in	2	21	th	110	200				a	23		1	4						-
														1.5	1	3.4		20	2		1		1 1.					-			- 							
			-	-	-	-	-																						_							_		



			2			1210								~		-															1			1	2				
	(6)	No	w	+	he	1.10	to	Fa	2	e	ne	rg	y	1:	5	3	ive	n	6	2	th	e	w	ell	- k	no	w	6	exo	pre	ess	10	K						*
			1	W	2		2	ſ	p	ę	d	r	4	-	12	1	0	. 9	e,	de	6	0,	n	2	j.			-14	d	12	2	þ							
		-						T	•								4	0	0	1	_	2					_	-		-								-	
				-		12		ſſ	T o	p	3	P,	dr	2	e		51	n	2l	d	22	d	ø	1	-	a2	8	n	-d	n								-	4
-		-		_				00	0	T	5		2	£.,	1	14	a		-		1	2					- -		-			_	1				8		
		-			+		12	S	0	4	2 0	ls		23	-	58	W.	, k	1	2	d	1							-			1							
	(7)	1	_ 1		p q											1	2	5	a	)	22	de		0	-	12	17 2	ne	2	1	n	5		22	23	) ] "	2		
		2		7			11			10		12	-	-	)0	6-	100			1.								3	4	V	15			3		0			
				ţ	-	-	4.	-	(2	Π	ne		a	5			-	-	-	-	+	-					_	-	-	-	-				-				
	(8)		S	in	ce	71	91	he	re		a	re	C	21	0	C	n	ed	10	to	rs	12	pi	res	07	ot	;	th	er	e	15	2	10	-50	rfo	ce	2.0	5	
		03	1-	NT	tes	ra	2	3.1	+0		be		7	ta	ke	x.		-	1	/		-						~	_		_								
	(9)		,			1	N			4	:		To	10	2	0	5	1	/	,		1			11		1	1	2						^		11		
	(7)	2	P &		- 8	V	N	5		T's	= (	E		ne	)	a			, (	wh 59	ST	h	15		the	e d	to	ta	nc	e	en	er s	44	the	07	9 ce	the	k	
																			- 14	do	ne	-	a	554	en	26	lin	19	+	he		54	sta	en	6.				
	(10)	6	Ip	on	-	ex	PI	100	112	15		th	e		cl	00	d	,	c	ve		12	120	ke	2	e	m	. 50	eri	va	tu	ne	1	6	F	en	ierg	24	4
				K	E	. 5	h	(	KE	14	-	K	E)	e	H	(	P	E),	-	(P	E)	f		0,0	_	E	5	-	0	PE	-) e		/					0	
	(11)	F	or		50	me	0.	a	261	tra	ary	1	el	eci	tro	n		( 8	E	a	-	+	e	q		,	th	en	2		1.3	-						1	
	Pi	B	11	F	5	1		ちを	TA	AÉ	2	p2	-		-	-	-		1	-	-	-				-	-	_	-	-		-	1	-	1.0	-	-	-	4
	11	2		E	F	1	1	2	2 17	n	e	- 5	a	2	-	R	- 2			E	Ff 2	na x	1	2	TT	ne	a	- ;	Eţ	2011	ĸ	H	4/2	TT	ne	202			
			_						_										-	-	-					-	_		-	-	3	5	-			-	_	-	
	(12)	Th	ie	7	02	ив	er	6	t	e	le	etr	m	5	13	n	a	6	lıf	4e	ren	t	al		VC	3/0	122	e		15	4								
			_		dN		11		3	. 0	lx	dy	d	2	W	124	- 4	T	21	nz	d	1	IJ		N	(n)	d	2	-		47	Tr	1 n	(.	rd	In,		-	
																				-												1/2							
				d	E	: :	1	-	- The	5	11 7	ne		n	en		;	- 1-	n		J	3'	2	2	πο	ne	a		-	Ep	: 5		•	52	πν	20	-		
	1.0		,			_			1.10	VA					1	T	.1	1	5		6	Ee		Ξ.	21/1	27	1/2-	2 5	1	C			EG		211	2	11/2		
	(13)							N	N	(E	F	1	-		-	J X	5 02	e	3	-	2	177	102	22	5	2012		6	2	-2	2		Efn	ax	(	max	5		
																1		-		-		2		-					-	-	×			-			Y		
				50	n	ce	10	0	IN	11	-	N	(E)	d	E					1.5						6	7			24	0		1				$\wedge$		
	(14)	-	N		5 :			1		-									-									_								/			
		1	N	0 d	8	1		2	F(	Es	)	11				Eş			~			-	_	9.	3	az		- {	1.		Ef	_	21	2					
					3	14							-	SEAN	erman et inc	N	(Ef	0	E	-	-	19		4 n	- 21	az	e	- (	-	£	- 4 2	te.	) Efm	ax	-			1	-
							3						-	-				_	1-		(16)								9	20	31				EF	.J'	12 de	Eç	
	(15)	on			F	- (1	Ef)		-	9	12	J3 ma	1	. 3	1-	E	F ma	-{	12	X		1			- )	1/3		-	Ej	e mo	ax					Em		31	
										-	- f.	ma	×					5			17														1/2	Ef	no	×	
						/																14	5	les	55	Y	tha	n	1	Ef.	mi	x.	100			-			



9. TD = 4 mm = a OD = 1 mm = b OD														1		1						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9.					= a						H	1	OUT	1						2	
(1) The number of particles escaping is in anode $R = 60^{\circ} amp for re^{\circ}$ anode $\frac{2\pi}{m} = 5^{\circ} 2500^{\circ} re^{\circ}$ anode $\frac{2\pi}{m} = 5^{\circ} 2500^{\circ} re^{\circ}$ anode $\frac{2\pi}{m} = 5^{\circ} 2500^{\circ} re^{\circ}$ $dn = \int_{0}^{\infty} \frac{\pi}{2} (\frac{2\pi}{m}) \frac{\pi}{m} dqn dt dR$ $dn = \int_{0}^{\infty} \frac{\pi}{2} (\frac{2\pi}{m}) \frac{\pi}{m} dqn dt dR$ (1) The number of particles escaping is i $dn = \int_{0}^{\infty} \frac{\pi}{2} (\frac{2\pi}{m}) \frac{\pi}{m} dqn dt dR$ $(2) n(q) = \frac{1}{\sqrt{\pi^{2}} \frac{\pi^{2}}{2^{\circ}}} \frac{\pi}{\sqrt{\pi^{2}} \frac{\pi}{\sqrt{\pi^{2}}}} \frac{\pi}{\sqrt{\pi^{2}}} \frac{\pi}{\sqrt{\pi^{2}$			0	D = 1	cm	= 6		200			T		09		-							-
$ \begin{array}{c} \begin{array}{c} \hline \\ \hline $				T- 20	a of				-		6w											
$\frac{2\pi}{h_{c}} = 5^{2} 5^{2} 5^{2} 0^{2} k$ anode $\frac{2\pi}{h_{c}} = 5^{2} 5^{2} 5^{2} 0^{2} k$ (1) The number of particles escapes, is: $\frac{dn}{dn} = \int_{0}^{\infty} \frac{\pi(k_{c})}{(k_{c})} f_{m} den dt d\theta$ $\frac{dn}{h} = \int_{0}^{\infty} \frac{\pi(k_{c})}{(k_{c})} f_{m} f_{m} d\theta$ $\frac{dn}{h} = \int_{0}^{\infty} \pi(k_{$		Cathe	ode /	4 = 6	o amo	1cm2 1	02				A		-								1	5
(i) The number of particles ascapues is: (i) The number of particles ascapues is: $dn = \int_{-\infty}^{\infty} \frac{m(ex)}{m(x)} \frac{4n}{m} den dt dh$ $fh = \int_{-\infty}^{\infty} \frac{m(x)}{m(x)} \frac{4n}{m} den dt dh$ $fh = \int_{-\infty}^{\infty} \frac{4n}{m(x)} \frac{4n}$											J						1.					
(i) The number of particles ascapues is: (i) The number of particles ascapues is: $dn = \int_{-\infty}^{\infty} \frac{m(ex)}{m(x)} \frac{4n}{m} den dt dh$ $fh = \int_{-\infty}^{\infty} \frac{m(x)}{m(x)} \frac{4n}{m} den dt dh$ $fh = \int_{-\infty}^{\infty} \frac{4n}{m(x)} \frac{4n}$				qui =	525	00 °K	<				+	1				R		- 3			2	
$dx = \int_{\infty}^{\infty} \frac{\pi(q_{1})}{q_{1}} \frac{\pi_{1}}{q_{2}} dq_{2} dt dR$ $= \int_{\infty}^{\infty} \frac{\pi(q_{1})}{q_{1}} \frac{\pi_{1}}{q_{2}} dq_{2} dt dR$ $= \frac{1}{\sqrt{1 + \frac{1}{2}} \frac{1}{q_{2}}} \frac{1}{q_{2}} \frac{1}{q_{2}$		anoae	2				-	5.78	8 3.5	18.17	-	599. 1	100	-		-	26					
$dx = \int_{\infty}^{\infty} \frac{\pi(q_{1})}{q_{1}} \frac{\pi_{1}}{q_{2}} dq_{2} dt dR$ $= \int_{\infty}^{\infty} \frac{\pi(q_{1})}{q_{1}} \frac{\pi_{1}}{q_{2}} dq_{2} dt dR$ $= \frac{1}{\sqrt{1 + \frac{1}{2}} \frac{1}{q_{2}}} \frac{1}{q_{2}} \frac{1}{q_{2}$		(1) The	numbe	r at	oari	tules	DE	10.01	arr	10					+							
$\frac{1}{16} = \frac{1}{166} 1$			710 110	00			× .								100	0.13						
$\frac{1}{16} = \frac{1}{166} 1$		dn	! =	2	r (pr)	- <u>P</u>	2 a	len	d	t d.	A					5	3.4					
(2) $\mathcal{M}(p) = \frac{V}{4\pi^{3}\pi^{2}} = \frac{e^{\frac{\pi}{2}\pi\pi} - JAT}{4\pi^{2}\pi^{3}} = \frac{JAT}{2\pi\pi^{2}} = \frac{JAT}{2}$ Since $\frac{qn}{2}$ $\exists + q_{M}$ $n(q) = \frac{V}{4\pi^{2}\pi^{3}} = \frac{q^{2}}{2m^{3}\pi^{2}}$ (3) $Irr. C_{d}$ lindrical coordinates $i = p^{2} + q^{2}_{M} = p^{2}_{R}$ $i = \frac{m}{2} + q^{2}_{M} = \frac{q^{2}}{2m^{3}\pi^{2}} = p^{2}_{R}$ $i = \frac{m}{2} + \frac{q^{2}}{2m^{3}\pi^{2}} = \frac{q^{2}}{2m^{3}\pi^{2}} = p^{2}_{R}$ $i = \frac{q^{2}}{2m^{3}\pi^{2}} + \frac{q^{2}}{2m^{3}\pi^{2}} = \frac{q^{2}}{2m^{3}\pi^{2}} = p^{2}_{R}$ $i = \frac{q^{2}}{2m^{3}\pi^{2}} + \frac{q^{2}}{2m^{3}\pi^{2}} = \frac{q^{2}}{2m^{3}\pi^$			_	1			2		_									-				
(2) $\mathcal{M}(p) = \frac{V}{4\pi^{3}\pi^{2}} = \frac{e^{\frac{\pi}{2}\pi\pi} - JAT}{4\pi^{2}\pi^{3}} = \frac{JAT}{2\pi\pi^{2}} = \frac{JAT}{2}$ Since $\frac{qn}{2}$ $\exists + q_{M}$ $n(q) = \frac{V}{4\pi^{2}\pi^{3}} = \frac{q^{2}}{2m^{3}\pi^{2}}$ (3) $Irr. C_{d}$ lindrical coordinates $i = p^{2} + q^{2}_{M} = p^{2}_{R}$ $i = \frac{m}{2} + q^{2}_{M} = \frac{q^{2}}{2m^{3}\pi^{2}} = p^{2}_{R}$ $i = \frac{m}{2} + \frac{q^{2}}{2m^{3}\pi^{2}} = \frac{q^{2}}{2m^{3}\pi^{2}} = p^{2}_{R}$ $i = \frac{q^{2}}{2m^{3}\pi^{2}} + \frac{q^{2}}{2m^{3}\pi^{2}} = \frac{q^{2}}{2m^{3}\pi^{2}} = p^{2}_{R}$ $i = \frac{q^{2}}{2m^{3}\pi^{2}} + \frac{q^{2}}{2m^{3}\pi^{2}} = \frac{q^{2}}{2m^{3}\pi^$		mith					-				-					-					-	
$(3)  \text{In } (c_{p}) = \sqrt{1 + e_{w}},  m(p) = \sqrt{1 + e_{w}^{2}} = e^{2}$ $(3)  \text{In } (c_{p}) = \sqrt{1 + e_{w}},  m(p) = \sqrt{1 + e_{w}^{2}} = e^{2}$ $(3)  \text{In } (c_{p}) = \sqrt{1 + e_{w}},  p_{w}^{2} + e_{w}^{2} = e^{2}$ $(3)  \text{In } (p) = \sqrt{1 + e_{w}^{2}},  e^{2/kT} = e^{-\frac{2}{2mkT}},  p_{w}^{2} + e^{2}$ $(3)  \text{In } (p) = \sqrt{1 + e^{2}},  e^{2/kT} = e^{-\frac{2}{2mkT}},  p_{w}^{2} + e^{2}$ $(4)  e^{2} - \frac{2}{2mkT},  d_{p,w}^{2} = d_{p,w}^{2} + e^{2},  d_{p,w}^{2} = e^{2},  d_{p,w}^{2}$ $(4)  e^{2} - \frac{2}{2mkT},  d_{p,w}^{2} = 2\pi \sqrt{2mkT},  e^{2/kT} = e^{-\frac{2}{2mkT}},  d_{p,w}^{2} = e^{2},  d_{p,w}^{2} = e^$		WIT	- cns	rye	ane	-lr	-	1							1.5	1.7		-	12	Cert :		
$(3)  \text{In } (c_{p}) = \sqrt{1 + e_{w}},  m(p) = \sqrt{1 + e_{w}^{2}} = e^{2}$ $(3)  \text{In } (c_{p}) = \sqrt{1 + e_{w}},  m(p) = \sqrt{1 + e_{w}^{2}} = e^{2}$ $(3)  \text{In } (c_{p}) = \sqrt{1 + e_{w}},  p_{w}^{2} + e_{w}^{2} = e^{2}$ $(3)  \text{In } (p) = \sqrt{1 + e_{w}^{2}},  e^{2/kT} = e^{-\frac{2}{2mkT}},  p_{w}^{2} + e^{2}$ $(3)  \text{In } (p) = \sqrt{1 + e^{2}},  e^{2/kT} = e^{-\frac{2}{2mkT}},  p_{w}^{2} + e^{2}$ $(4)  e^{2} - \frac{2}{2mkT},  d_{p,w}^{2} = d_{p,w}^{2} + e^{2},  d_{p,w}^{2} = e^{2},  d_{p,w}^{2}$ $(4)  e^{2} - \frac{2}{2mkT},  d_{p,w}^{2} = 2\pi \sqrt{2mkT},  e^{2/kT} = e^{-\frac{2}{2mkT}},  d_{p,w}^{2} = e^{2},  d_{p,w}^{2} = e^$																						3
$(3)  \text{In } (c_{p}) = \sqrt{1 + e_{w}},  m(p) = \sqrt{1 + e_{w}^{2}} = e^{2}$ $(3)  \text{In } (c_{p}) = \sqrt{1 + e_{w}},  m(p) = \sqrt{1 + e_{w}^{2}} = e^{2}$ $(3)  \text{In } (c_{p}) = \sqrt{1 + e_{w}},  p_{w}^{2} + e_{w}^{2} = e^{2}$ $(3)  \text{In } (p) = \sqrt{1 + e_{w}^{2}},  e^{2/kT} = e^{-\frac{2}{2mkT}},  p_{w}^{2} + e^{2}$ $(3)  \text{In } (p) = \sqrt{1 + e^{2}},  e^{2/kT} = e^{-\frac{2}{2mkT}},  p_{w}^{2} + e^{2}$ $(4)  e^{2} - \frac{2}{2mkT},  d_{p,w}^{2} = d_{p,w}^{2} + e^{2},  d_{p,w}^{2} = e^{2},  d_{p,w}^{2}$ $(4)  e^{2} - \frac{2}{2mkT},  d_{p,w}^{2} = 2\pi \sqrt{2mkT},  e^{2/kT} = e^{-\frac{2}{2mkT}},  d_{p,w}^{2} = e^{2},  d_{p,w}^{2} = e^$		(2) n(1	e) =	V 11 TT 3 :			2	74.	T												12	
Since $\frac{qh}{2m} > J + q_{W}$ , $n(q) = \frac{V}{4\pi^{2}k^{3}}$ $e^{-\frac{qh}{2m}kT}$ (3) In Columbrial coordinates : $p_{1}^{2} + q_{2}^{2} = p_{1}^{2}$ .'. $m(q) = \frac{V}{q\pi^{2}k^{2}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $p_{1}^{2}$ $\frac{q\pi^{2}k^{2}}{q\pi^{2}k^{2}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $p_{2}^{2}$ $\frac{q\pi^{2}k^{2}}{q\pi^{2}k^{2}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $p_{2}^{2}$ $e^{-\frac{qh}{2mkT}}$ $d_{p_{2}} d_{9} = 2\pi J 2mkT$ $e^{-\frac{qh}{2}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-\frac{qh}{2mkT}}$ $e^{-$				7/1		e 2m	XT -	VIR	+	1					_	-	02		-	1.1	-	
(3) In Conductor Coordinates : $p_{x}^{2} + p_{y}^{2} = p_{x}^{2}$ (3) In Conductor Coordinates : $p_{x}^{2} + p_{y}^{2} = p_{x}^{2}$ (4) $p_{y}^{2} + p_{z}^{2}$ (7) $p_{y}^{2} - p_{z}^{2}$ (8) $p_{y}^{2} + p_{z}^{2}$ (9) $-p_{z}^{2}$ (9) $-p_{z}^{2}$ (10) $-p_{z}^{2}$ (10) $-p_{z}^{2}$ (11) $p_{z}^{2} + p_{z}^{2}$ (11) $p_{z}^{2} + p_{z}^{2}$ (11) $p_{z}^{2} + p_{z}^{2}$ (11) $p_{z}^{2} + p_{z}^{2}$ (12) $-p_{z}^{2}$ (13) $p_{z}^{2} + p_{z}^{2}$ (14) $p_{z}^{2} + p_{z}^{2}$ (15) $p_{z}^{2} + p_{z}^{2}$ (16) $p_{z}^{2} + p_{z}^{2}$ (17) $p_{z}^{2} + p_{z}^{2}$ (17) $p_{z}^{2} + p_{z}^{2}$ (17) $p_{z}^{2} + p_{z}^{2}$ (17) $p_{z}^{2} + p_{z}^{2} + p_{z}^{2}$ (17) $p_{z}^{2} + p_{z}^{2} + p_{z}^{$		C tan	0	pr.	5 4	+ 0.	, .		201.0	2) =	1	1	0	=/kT	0	-		kT	-	-	-	
(4) $J = \frac{1}{2m} \sqrt{\frac{2}{2m}} \frac{1}{2m} \frac{1}{2m}$		2		Zm		I TW	Ì		nig		41	~2克3	E		E	2						
(4) $J = \frac{1}{2m} \sqrt{\frac{2}{2m}} \frac{1}{2m} \frac{1}{2m}$															1	Q.	1	5				
$(4)  \int e^{2\pi i \pi \pi} dp = d\theta = 2\pi \int 2\pi i \pi \pi \pi \pi i = 2\pi \int e^{2\pi i \pi \pi} dp = d\theta = 2\pi \int 2\pi i \pi \pi \pi \pi i = 2\pi \int e^{2\pi i \pi \pi} dp = d\theta = 2\pi \int 2\pi \pi \pi \pi \pi i = 2\pi \int 2\pi \pi \pi \pi \pi i = 2\pi i \pi \pi \pi i = 2\pi \pi i = 2\pi \pi \pi i = 2\pi \pi \pi i = 2$		(3) In (	of lund	rical	Coor	dina	tes	<u>(</u>		Px -	+ C	1 1	F	2	1		1					
$(4)  \int e^{2\pi i \pi \pi} dp = d\theta = 2\pi \int 2\pi i \pi \pi \pi \pi i = 2\pi \int e^{2\pi i \pi \pi} dp = d\theta = 2\pi \int 2\pi \pi \pi \pi \pi i = 2\pi \int e^{2\pi i \pi \pi \pi} dp = d\theta = 2\pi \int 2\pi \pi \pi \pi \pi i = 2\pi \int 2\pi \pi \pi \pi \pi i = 2\pi \pi i = 2\pi \pi i = 2\pi \pi i = 2\pi \pi i = 2\pi \pi i = 2\pi \pi i = 2\pi \pi i = 2\pi \pi \pi i = 2\pi \pi \pi i = 2\pi \pi i $					1		2 -	J	/hT		- P.	2	-	Pa				-				
$ \begin{array}{c} \left( \begin{array}{c} 2T \right)^{\circ} - \frac{p_{0}^{2}}{2m^{NT}} dp_{2} d\theta = 2T \int 2m^{NT} \int e^{-\frac{p_{0}^{2}}{2m^{NT}}} \\ e^{-\frac{p_{0}^{2}}{2m^{NT}}} dp_{2} d\theta = 2T \int 2m^{NT} \int e^{-\frac{p_{0}^{2}}{2m^{NT}}} \\ = 2T \int 2m^{T} \frac{p_{0}^{2}}{2m^{T}} \frac{1}{2m^{T}} \\ \frac{p_{0}^{2}}{2m^{T}} \frac{p_{0}^{2}}{2m^{T}} \frac{p_{0}^{2}}{2m^{T}} \\ \frac{p_{0}^{2}}{2m^{T}} \\ \frac{p_{0}^{2}}{2m^{T}} \\ \frac{p_{0}^{2}}{2m^{T}} \frac{p_{0}^{2}}{2m^{T}} \\ \frac{p_{0}^{2}}{2m^{T}} \frac{p_{0}^{2}}{2m^{T}} \\ \frac{p_{0}^{2}}{2m^{T}} \frac{p_{0}^{2}}{2m^{T}} \\ \frac{p_{0}^{2}}{2m^{T}} \frac{p_{0}^{2}}{2m^{T}} \\ \frac{p_{0}^{2}}{2m$				n (p)		4772	方言	e		e	22	NAT	e	CMN		P	2 01			1		-
= 2T J zmT kT $= 2T J zmT kT$ $(4) J = d(ne) = e J t T e J kT e J kT e zmnT den$ $(4) J = d(ne) = e J t T e J kT e J kT e zmnT den$ $= e J t d R t z J zmT e J kT e J kT e zmnT den$ $= e J t d R t z J zmT e J kT e J kT e Z e Z d R$ $= e J t T f z e J e Z e Z d R$ $= e J t T f z e J e Z e Z d R$ $= e J t T f z e Z e Z d R$ $= e J t T f z e Z e Z d R$ $= e J t T f z e Z e Z d R$ $= e J t f e Z e Z e Z e Z e Z e Z e Z e Z e Z e$			27 10	- Pi	2			34	2					1	_	7	-					•
= 2T J zmT kT $= 2T J zmT kT$ $(4) J = d(ne) = e J t T e J kT e J kT e zmnT den$ $(4) J = d(ne) = e J t T e J kT e J kT e zmnT den$ $= e J t d R t z J zmT e J kT e J kT e zmnT den$ $= e J t d R t z J zmT e J kT e J kT e Z e Z d R$ $= e J t T f z e J e Z e Z d R$ $= e J t T f z e J e Z e Z d R$ $= e J t T f z e Z e Z d R$ $= e J t T f z e Z e Z d R$ $= e J t T f z e Z e Z d R$ $= e J t f e Z e Z e Z e Z e Z e Z e Z e Z e Z e$		2. 2		6 20	nrt	dpz	do	-	=	2	π	zmh	T		6		上云			1		
(4) $J = \frac{1}{2m\pi} = \frac{1}{2m\pi$		a stand of B	0 -05	by second	10000	5 00	-			207.	A.	Y		1-0	-			6	-	1		
(4) $J = \frac{1}{2m\pi} = \frac{1}{2m\pi$		= :	ZT JZZ	MITAT			V				-			++	-			-		-	-	
(4) $J = d(ne) = e \frac{hT}{h^3} \frac{J}{2mT} e^{-\frac{hT}{h^3}} \frac{g}{h^3} \frac{J}{2mT} e^{-\frac{hT}{h^3}} \frac{g}{h^3} e^{-\frac{hT}{2mNT}} \frac{dpn}{dpn}$ $= e \frac{hT}{h^3} \frac{hT}{2mT} \frac{g}{2mhT} \frac{g}{h^3} e^{-\frac{hT}{h^3}} \frac{g}{e^{-\frac{hT}{h^3}}} $							1. 2.1					12 ×		1.	1.10	1		-	-	1-	-	
(4) $J = d(ne) = e \frac{hT}{h^3} \frac{J}{2mT} e^{-\frac{hT}{h^3}} \frac{g}{h^3} \frac{J}{2mT} e^{-\frac{hT}{h^3}} \frac{g}{h^3} e^{-\frac{hT}{2mNT}} \frac{dpn}{dpn}$ $= e \frac{hT}{h^3} \frac{hT}{2mT} \frac{g}{2mhT} \frac{g}{h^3} e^{-\frac{hT}{h^3}} \frac{g}{e^{-\frac{hT}{h^3}}} $			ne	Pr) =	V	2m ti	TT	_ <	2 0	KT 6	2	zmiti	T,	de	+	~	1		1			
(5) Apparently, this integral is intractable or leads to an error function, hence, as a first approximation, we take from lecture the equation for the parallel plates, multiplied by the circumference of the cathode to form a linear current density.				1.4		ZITY	1		_							3		X				
(5) Apparently, this integral is intractable or leads to an error function, hence, as a first approximation, we take from lecture the equation for the parallel plates, multiplied by the circumference of the cathode to form a linear current density.		14		d (ne)	777	e	The	-1	7	14.7	0	2	5.2 17	- Pr zmy	T		4	-				
(5) Apparently, this integral is intractable or leads to an error function, hence, as a first approximation, we take from lecture the equation for the parallel plates, multiplied by the circumference of the cathode to form a linear current density.		G1 3		dt dA	8	h3	VZN	A TT	P		1	pr	e		0	P	2					
(5) Apparently, this integral is intractable or leads to an error function, hence, as a first approximation, we take from recture the equation for the parallel plates, multiplied by the circum ference of the cathode to form a linear current density:									*		pa											
(5) Apparently, this integral is intractable or leads to an error function, hence, as a first approximation, we take from recture the equation for the parallel plates, multiplied by the circum ference of the cathode to form a linear current density:			0	47	-		3/2	-	INT	(		-	22						1			
(5) Apparently, this integral is intractable or leads to an error function, hence, as a first approximation, we take from recture the equation for the parallel plates, multiplied by the circum ference of the cathode to form a linear current density:			= 5	3 200	TT 2	Smp	15	e			Z	e	0	22				-				
(5) Apparently, this integral is intractable or leads to an error function, hence, as a first approximation, we take from recture the equation for the parallel plates, multiplied by the circumperance of the cathode to form a linear current density:										Jen	A-7171	= 0	-									
5) Apparently, this integral is intractable or leads to an error function, hence, as a first approximation, we take from recture the equation for the parallel plates, multiplied by the circumperance of the cathode to form a linear current density:																						
function, hence, as a first approximation, we take from recture the equation for the parallel plates, multiplied by the circumference of the cathode to form a linear current density:		(5) Appa	rently	, this	int	estal	15	1	ntr	ac to	ble	0	~	lead	5	to	a	r	err	07		
from lecture the equation for the parallel plates, multiplied by the circumperence of the cathode to form a linear current density:		fun	ction	, he	uce	, as	a	- +	2123	t	app	rox	ma	tion	e,	a	re	ta	ke			
form a imear current density:		from	14 2	ture	the	eg	val	tion	-	for	Y	he	Pa	rall	el	P	lai	tes	,	4		
$= \frac{\varphi_{w}}{h}$		- Carro	na la	lin	py	The	Urre	nt	nn f	do.	ne a		1-	me		a7	no	ae	1	0		
		For	a				Qu 1	T	7	Action		9 .										
To= TaATe (No field)			To=	TTa A	TZ	e	1 mp			(N	of	reld)										
Reflection effects are taken to be contained in A.		0-11-					1	40	- 1	2		1								-		
Reflection effects are taken to be contained in A.		Ketle	- a care	effect	1	are	Ta	acu	- 70	b	9 0	mad	meg		K H	,					-	-

Assidument # 2 Continued Continued Problem 9 Continued: = 151 = 2000° t: I_0 = (2.14)(410° (60)(2.10)) = -26.3 (6) at T = 2000° t: I_0 = (2.14)(410° (60)(2.10)) = -26.3 (6) at T = 2000° t: I_0 = (2.14)(410° (60)(2.10)) = -26.3 (7) at T = 2000° t: I_0 = (2.14)(410° (60)(2.10)) = -26.3 (8) at T = 2000° t: I_0 = (2.14)(410° (60)(2.10)) = -26.3 (9) at T = 2000° t: I_0 = (2.14)(410° (60)(2.10)) = -26.3 (9) at T = 2000° t: I_0 = (2.14)(410° (60)(2.10)) = -26.3 (9) at T = 2000° t: I_0 = (2.14)(410° (60)(2.10)) = -26.3 (9) I = (2.14) (2.10° (2.10° (2.10)) = -26.4 (9) I = (2.14) (2.10° (2.10° (2.10)) = -26.4 (10) I = (10) II = 10 e^{-4V/4} (10) e^{-4.9} = 5.5 10° = -26.4 (10) e^{-4.9} = -26.4 (10) e^{-4.9} = -26.9 (10) I = (10, 2.4) (.55 10° ] = -26.4 (10) e^{-4.9} = -26.9 (10) I = (10, 2.4) (.55 10° ] = -26.4 (10) e^{-4.9} = -26.9 (10) We arrive that N. I. (2.10° maxil: angoved (10) We arrive that N. I. (2.10° maxil: angoved (10) We arrive that N. I. (2.10° maxil: angoved (10) We arrive the tables of currents of decomposed (10) We arrive the tables of tables (10) We arrive the tables of currents of decomposed (10) We arrive the tables of tables of tables (10) We arrive the tables of tables of tables (10) We arrive the tables of tables of tables (10) We arrive the tables of tables (10) We arrive the tables of tables (10) We arrive tables of
Problem 9 Continued: $= \frac{ S }{ e^{2\alpha_{1}} } = \frac{ S  \cdot 2 \cdot 10^{2} \cdot 10^{2}}{(2 \cdot 10^{2})^{2} (20)^{2} \cdot 10^{2}} = \frac{26 \cdot 3}{(2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2}} = \frac{26 \cdot 3}{(2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2}} = \frac{128 \cdot 1 \cdot 10^{-7}}{(2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2}} = \frac{128 \cdot 1 \cdot 10^{-7}}{(2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2}} = \frac{128 \cdot 1 \cdot 10^{-7}}{(2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2}} = \frac{128 \cdot 1 \cdot 10^{-7}}{(2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2}} = \frac{128 \cdot 1 \cdot 10^{-7}}{(2 \cdot 10^{2})^{2} (2 \cdot 10^{2})^{2}} = \frac{128 \cdot 10^{2}}{(2 \cdot$
Problem 9 Contraved: (a) $\therefore$ at $T = 200^{2}C$ : $I_{0} = (3.14)(4.10^{4})(60)(2.10^{3})^{2} e^{-26.3}$ $= 151 = 15(2.2.10^{3})(2.10^{3})(2.05^{3})^{3}$ = 124  manp low ( $2.2.10^{3})(2.2.10^{3})(2.05^{3})^{3}$ = 1/2  manp low ( $2.2.10^{3})(2.2.10^{3})(2.05^{3})^{3}$ = 1/2  manp low ( $2.2.10^{3})(2.2.10^{3})(2.05^{3})^{3}$ = 1/2  manp low ( $2.2.10^{3})(2.05^{3})^{2}$ = 1/2  manp low ( $2.2.10^{3}$ )( $2.00^{3}$ , $2.10^{3}$ = 1/2  manp low ( $2.2.10^{3}$ )( $2.00^{3}$ , $2.10^{3}$ = 1/2  manp low ( $2.2.10^{3}$ )( $1.2.10^{3}$ , $2.10^{3}$ ) $= 120$ $R_{1}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{1}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ $R_{2}$ R
Constructed : Constructed : Const
(a) at $T = 200^{\circ} t$ : $T_{0} = (1.14)(4.10^{\circ} 4(60)(2.10^{\circ}))^{\circ} e^{-26.3}$ $= \frac{(51)}{e^{26.6}} = \frac{(51 \cdot 2 \cdot 10^{\circ} + 10^{\circ})}{(22 \cdot 10^{\circ})} = 12.4 \cdot 10^{\circ} = 3 \text{ amp}/em}$ $= \frac{12.4}{e^{26.6}} = \frac{(22 \cdot 10^{\circ} 4(22 \cdot 10^{\circ}))}{(22 \cdot 10^{\circ})} = 12.4 \cdot 10^{\circ} = 3 \text{ amp}/em}$ $= \frac{12.4}{e^{26.6}} = \frac{12.4}{(22 \cdot 10^{\circ})} = \frac{100}{44} = \frac{120}{44} = 120$
(6) : at $T = 200^{\circ}C$ : $T_{0} = (3.14)(4.16^{\circ})(60)(2.10^{3})^{\circ} e$ $= 151 = (5.1+2.10^{\circ} 10^{2}) = (2.4.16^{\circ})(2.10^{3})^{\circ} e$ $= 12.4 \text{ perp}(e^{20}) = (2.4.16^{\circ})(2.2.16^{\circ})(2.2.16^{\circ}) = (2.4.16^{\circ})^{\circ} a_{m}e/e^{m}$ $= 12.4 \text{ perp}(e^{20}) = (2.4.16^{\circ})(2.2.16^{\circ}) = (2.4.16^{\circ}) = e^{4}$ $= 12.4 \text{ perp}(e^{20}) = (2.4.16^{\circ})(2.2.16^{\circ}) = (2.4.16^{\circ}) = e^{4}$ $= 12.4 \text{ perp}(e^{20}) = (2.4.16^{\circ})(2.2.16^{\circ}) = (2.4.16^{\circ}) = e^{4}$ $= 12.4 \text{ perp}(e^{20}) = (2.4.16^{\circ})(2.2.16^{\circ}) = (2.4.16^{\circ}) = e^{4}$ $= 12.4 \text{ perp}(e^{20}) = (2.4.16^{\circ})(2.4.16^{\circ})(2.16^{\circ})(2.16^{\circ}) = e^{4}$ $= 12.4 \text{ perp}(e^{20}) = (2.4.16^{\circ})(2.4.16^{\circ})(2.16^{\circ})(2.16^{\circ}) = e^{4}$ $= 12.4 \text{ perp}(e^{20}) = (2.4.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^{\circ})(2.16^$
$= \frac{12}{4} \frac{1}{4} \frac$
$= \frac{12}{4} \frac{1}{4} \frac$
$= \frac{12 \text{ H}}{12 \text{ H}} \frac{1}{12 \text{ mmp}} \frac{1}{12 \text{ m}} \frac{1}{12 \text{ H}} \frac{1}{12 \text{ mmp}} \frac{1}{12 \text{ m}} \frac{1}{12 \text{ H}} \frac{1}{1$
a. $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \begin{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg $ \bigg  \bigg  \bigg \\ \end{array} \\ \end{array} \\ \end{array} \\ \bigg  \bigg  \bigg \\ \bigg  \bigg  \bigg \\ \bigg  \bigg \\ \bigg  \bigg  \bigg \\ \bigg  \bigg \\ \bigg  \bigg  \bigg \\ \bigg  \bigg  \bigg \\ \bigg  \bigg  \bigg \\ \bigg  \bigg  \bigg  \bigg \\ \bigg  \bigg  \bigg  \bigg \\ \bigg  \bigg  \bigg  \bigg  \bigg \\ \bigg  \bigg  \bigg  \bigg  \bigg \\ \bigg  \bigg  \bigg  \bigg  \bigg  \bigg  \bigg  \bigg  \bigg \\ \bigg  \bigg  \bigg  \bigg  \bigg  \bigg  \bigg  \bigg  \bigg  \bigg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccc} & & & & & & & & & & & & & & & & & $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Retarding Potential = 2.9 (a) $(4) e^{-2.9} = 5.5 \cdot 10^{-2}$ (b) $(1) = (1, 2, 4) (.55 \cdot 10^{-7}) = 6.8 \mu amp / 4mc^{1/2}$ (c) $(1) = (1, 2, 4) (.55 \cdot 10^{-7}) = 6.8 \mu amp / 4mc^{1/2}$ (c) $(1) = (1, 2, 4) (.55 \cdot 10^{-7}) = 6.8 \mu amp / 4mc^{1/2}$ (d) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (e) $(1) = 24 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (f) $(1) = 5 \cdot 10^{-7}) = 6.8 \mu amp / 4mc^{1/2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(1) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 400 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.00 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.00 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.00 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.00 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.00 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.00 \mu e^{-2.9} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.5 \cdot 10^{-2} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.5 \cdot 10^{-2} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.5 \cdot 10^{-2} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.5 \cdot 10^{-2} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.5 \cdot 10^{-2} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.5 \cdot 10^{-2} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.5 \cdot 10^{-2} = 5.5 \cdot 10^{-2}$ (g) $(2) = 5.5 \cdot 10^{-2} = 5.5 \cdot $
$(4) e^{-c \cdot 7} = 5.5 \cdot 10^{-2}$ $(5)  \therefore  I = (1/2 4) (.55 \cdot 10^{-1}) = 6.8 \mu \text{ amp fine}$ $b. c. \qquad \qquad$
(5) $\therefore$ I = $(1, 2, H)(.55 \cdot 10^{-1}) = 6.8 \mu amp / 2me / 2$
b. c. b. c. V (i) We argue that x ₀ is very small compared $i \to x_0$ $i \to x_0$
to the radius of curvature of the cathode, $q_{W_0}$ for parallel $q_{W_0}$ plates can be taken from recovers $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = C I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = C I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = $
to the radius of curvature of the cathode, $q_{W_0}$ for parallel $q_{W_0}$ plates can be taken from recovers $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = C I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = C I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = I_0 C$ $I = $
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$J = T_{0} C = \frac{1}{2} T_{0} T_{0} T_{0} C = \frac{1}{2} T_{0} T_{0} T_{0} C = \frac{1}{2} T_{0} T_{0} C = \frac{1}{2} T_{0} T_{0} T_{0} C = \frac{1}{2} T_{0} T_{0} T_{0} C = \frac{1}{2} T_{0} T_{0} T_{0} T_{0} C = \frac{1}{2} T_{0} T_{0} T_{0} T_{0} T_{0} C = \frac{1}{2} T_{0} $
$I = I_0 e_{TT}; E is at n = a$ $I = I_0 e_{TT}; E is at n = a$ $Acceleratives Potential + an (n dn) = 0; v(a) = Va; v(b) = Va$ $Acceleratives Potential + an (n dn) = 0; v(a) = Va; v(b) = Va$ $Case = (3) = dV = c e_{T}; V = c ln n + c ln d$ $= c ln n + va = c ln e_{T}; Va = c ln e_{T}; E(a) = c va - Vb$ $e_{T} a/b = an a/b; E(a) = -2AV/a = 2AV/a$ $e_{T} a/b = an a/b; E(a) = -2AV/a = 2AV/a$ $e_{T} a/b = an a/b; E(a) = -2AV/a = 2AV/a$ $e_{T} a/b = an a/b; I = an a/b; I = an a/b = an a/b$
$\begin{array}{ccccc}  & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) & (1) $
$\begin{array}{cccc}                                  $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
b. (5) $\Delta V = \frac{300}{300} \pm 1 \text{ statuo2t}$ : $\ln \frac{5}{2} = \ln 25 \pm 3.22$ $\therefore E(a) = \frac{2.25}{3.22} \pm 15.5 \text{ sty/cm}$ ; $kT = 1.38 \cdot 10^{-6} \cdot 2000 = 2.76 \cdot 10^{13} \text{ ergs}$
b. (5) $\Delta V = \frac{300}{300} \pm 1 \text{ statuolt}$ : $\ln \frac{b}{a} = \ln 25 \pm 3.22$ $\therefore E(a) = \frac{2.25}{3.22} \pm 15.5 \text{ stu/cm}$ ; $ET = 1.38 \cdot 10^{16} \cdot 2000 = 2.76 \cdot 10^{13} \text{ crgs}$
$\frac{300}{1.5} = \frac{2.25}{3.22} = 15.5 \text{ sty/cm} \text{ sty/cm} \text{ sty/cm} = 1.38 \cdot 10^{-6} \cdot 2000 = 2.76 \cdot 10^{-3} \text{ ergs}$
$\int e^{3} E_{2}^{1} = \begin{cases} (4.8)^{3} \cdot 10^{-30} \cdot 15.5^{-1/2} = 41.3 \cdot 10^{-15} \text{ ergs} = 41.13 \cdot 10^{-14} \text{ ergs} \end{cases}$
$C_{1}(7)  \Delta N = \frac{5000}{300} = 16.6 \text{ style} \cdot C^{161} = 1.85;  T = \frac{230  \mu  amp/cmp}{Tunneling correct is of the order e^{-104}, so is negligible.}$
Tunneling corrent is of the order e 104 so is negligible.

1	10.	(1)	We Used	sha 2 u	11	choo lect	se ure	an to	11.	lus	tra	tive	te	mp d equ	101	517	mil	arexa	to	thurse :	e o	ие	
			Ved				/=-0		(2)	1	he	flox	d	ensi	1. yof	9	par	ticle	5	acros	5		
		V=0		5 23	Q.	0 = V	X	1	d dt	N. dA	=5	พ (บ.)	V,x	d v	11	411	373	555 0-052	U. et	ix doix 12 moit. n.	2 + + +	dv= 1	
		(3)	_			2 b		f								8		) to	9	15 :			
				Jz dA								2	00       	-	-00	1.		1.02	200	rz + e 9.	1+1		
		(4)	Und			dit	ions	ot	4	the	ern			9311	ibri	10 20	, -	dNI dt di		di dt	COLUMN TRADE		
			2.	ſ	01	ix di		<u> </u>	- 1		1 1	50		et.	dvz,	x 22 2	- 72 -	e 95	÷				
		(5)	Fro	m	cons					1		3	24	2	12 1X	2	MZ	VEX	+	et			
		(6)	- '.	d J	08	1010			-		2	14	+ 1					0 e	び~× 主加(1	d 2 Ex	24552) T	+e90 - ;	
		(7)	SI	en gn: ites	5	e of	mte the The	refe	nd hn	2 uts	15 Gr.	ode with	L' 0 = + (4,	0	re han	ug u	ig	chi the	ung 4 2 5 2 5	e y ign	the of	the	
				-[2		1/2×+	272	+ 173	1	+	-	- 60				$= \frac{1}{2}$	12	20	1.49	) + e	Qo -	1-2 N	
-			1	11	L	21-	24		6	-	1												

The seneralization of potential with steps approximating arbitrary proof by o mmediate. the (8) 15

## Midterm Examination Applied Physics 231

March 23, 1961

- In a synchrotron, the radius p of the particle's equilibrium orbit is kept constant by changing the magnetic field H at p.
  - a) Calculate relativistically the angular velocity  $\omega$  for a particle in a synchrotron as a function of its relativistic kinetic energy T.
  - b) Show that your formula gives the correct result in the limit of both high and low velocities,
  - c) Obtain an expression for H as a function of the relativistic kinetic energy of the particle.
- A charged particle enters a magnetic mirror moving with relativistic velocity v.
  - a) Show that the equation of motion for the component of momentum  $(p_{||})$  along the axis of the mirror (z axis) is given by

$$\frac{d\mathbf{p}_{||}}{d\mathbf{t}} = -\frac{M}{\left(\sqrt{1 - \left(\frac{\mathbf{v}}{\mathbf{c}}\right)^2}\right)} \frac{\partial H}{\partial z}$$

where

$$M = \frac{P_1}{2mH} = magnetic moment.$$

b) Using the equation of motion, show that M is an adiabatic invariant.
c) If p is the total momentum of the particle show that reflection occurs when H = H_r where

$$H_r = \frac{p^2}{2mM}$$

m = mass of particle.

1	65	
2	10	
3		
4		0.000
5		
6		
7		100
8		
9		
10		
	*	

## HARVARD UNIVERSITY FACULTY OF ARTS and SCIENCES Examination Book

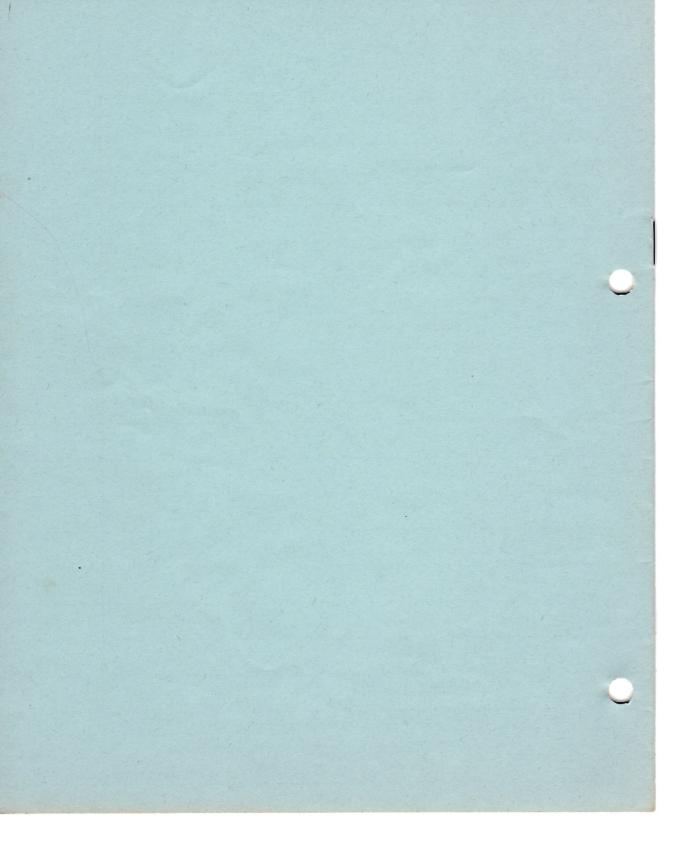
Name Paul Grant
Date 3-23-61
Date
Subject
Section

## DO NOT REMOVE PAGES FROM BOOK DO NOT REMOVE BOOK FROM ROOM

16.5

J. L. Hammett Co., Cambridge, Mass.

e)  $\frac{d\bar{p}}{dr} = \theta$ ,  $\frac{dp}{dt} = p\omega$ = pv, = pvp (3) P P = eH, P = eH(4)  $T^2 = p^2 c^2 + m^2 c^4$  $T^2 = \left(\frac{e+1}{p}\right)^2 + m^2 c^4$ (5)  $\frac{dv}{dt} = evH$ (6) since v constants !  $\omega = \omega_0 \sqrt{1 - \beta^2}, \quad \omega_0 = \frac{eH}{mc} \frac{1}{C}$   $T = \frac{mc^2}{\sqrt{1 - \beta^2}}, \quad \sqrt{1 - \beta^2} = \frac{1}{mc^2} \frac{1}{mc^2}$ w= <u>wo mc²</u> ∈ elimate H (b) (1)  $w = w_0 \int_{1-B^2} for v c c \beta^2 \rightarrow 0$ and  $w = \omega_0$  (1) 6) For JI-B2 << 1, T~ pc  $\sim eH$ ,  $\omega = \omega o me^{-} a vac$  $<math>1 \omega = \omega o p me^{-} = pc$  eH  $p \omega = g$ 


(c) Please see (D(a) 0  $\frac{eH}{P} = \int T^2 m^2 c 4$  $\sigma H = \frac{P}{e} \int T^2 - m^2 c^4$ . .....

px  $\overline{\mathbf{c}}$ 2 BU VI on one The Un > 2 3 (1) Take H = Ha (32) In + Hz (1,2) Is asume  $H_{\mathcal{R}}(n,z) = H_{\mathcal{R}}(n)$   $H_{\mathcal{Z}}(n,z) = H_{\mathcal{Z}}(z)$ (2) div- H = 0  $\frac{1}{n}\frac{\partial}{\partial n}\left(n+n\right)+\frac{\partial Hz}{\partial z}=0$ on I Ha (n) + 2 Ha + 2 Ht = 0 (3) Curl H = 0 1a 10 12 5 56 56 Ha O Hz = Io (2H= - 2Ha) = 0.

(a) 
$$d \overline{P}_{H} = \underline{e} \overline{\nabla_{L} \times H} = \underline{e} \overline{\nabla_{L} \times H}$$
  
 $\frac{1}{\sqrt{1-p^{2}}} = \frac{1}{\sqrt{1-p^{2}}} \frac{1}{\sqrt{1-p^{2}}}$   
 $\frac{1}{\sqrt{n}} \frac{d}{dn} (n + h_{A}) = -\frac{d + h_{A}}{2\overline{\sigma}}$   
 $\frac{d}{dn} (n + h_{A}) = -\frac{1}{2} \frac{H_{A}}{2\overline{\sigma}} n$   
 $\frac{d}{dn} = -\frac{1}{2} \frac{\partial H_{B}}{\partial \overline{\sigma}} n$   
 $\frac{d}{dn} = -\frac{1}{2} \frac{\partial H_{B}}{\partial \overline{\sigma}} n \cdot \frac{e}{c} \cdot \frac{D_{I}}{\sqrt{1-p^{2}}}$   
(b)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{2} \frac{e}{2\pi a} n^{2} \sqrt{1-p^{2}} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{c} \frac{eH}{2\pi a} n^{2} \sqrt{1-p^{2}} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{c} \frac{eH}{2\pi a} n^{2} \sqrt{1-p^{2}} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{c} \frac{eH}{2\pi a} \sqrt{1-p^{2}} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{c} \frac{eH}{2\pi a} \sqrt{1-p^{2}} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{c} \frac{eH}{2\pi a} \sqrt{1-p^{2}} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{c} \frac{eH}{2\pi a} \sqrt{1-p^{2}} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{c} \frac{eH}{2\pi a} \sqrt{1-p^{2}} \frac{1}{2} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{c} \frac{eH}{2\pi a} \sqrt{1-p^{2}} \frac{1}{2} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{e}{c} \frac{eH}{2\pi a} \sqrt{1-p^{2}} \frac{1}{2} \frac{1}{2} \frac{H}{2\overline{\sigma}}$   
(c)  $\frac{dp_{H}}{dt} = -\frac{1}{2} \frac{1}{2} \frac{e}{2\pi a} \sqrt{1-p^{2}} \frac{1}{2} \frac$ 

(9): den = - P2 JI-B2 JH we define M = PI (b) (1) dT = 0 mince no energy dt is gained in may. feeld (2) T = mo2 (3) T2 = p202 + m202  $T \frac{dT}{dt} = \vec{p} \cdot d\vec{p} = 0$ or  $\vec{p} \cdot d\vec{p} = 0$ or PII de + P+ de = 0 (4)  $p_{II}\left(-MJ_{I-B^2}\frac{\partial H}{\partial z}\right)+\frac{1}{2}\frac{d}{dt}\left(p_{I}^2\right)=0$  $(5) \frac{d}{dt} (p_1) = \frac{d}{dt} (2mHM) L$ = 2m dH + 2m dM (6) By definition of derivative:  $\frac{dH}{dt} = \frac{2H}{2t} + \frac{2H}{22} = \frac{mv_{u}}{2} = \frac{mv_{u}}{v_{1-\beta^{2}}}$ cit time dependence

(7) ...  $\frac{dH}{dt} = \frac{P_{ii}}{m_{ii}} \int \frac{\partial H}{\partial z}$ (8) substituting in (4) 2m dM = 0 in dM = 0 and deep not change with time.  $(\mathcal{C})$ > pn 20 Ap PL  $M = P_{\perp}^{2}$ Zmith since dM =0 PIO = PI at any point implies  $\frac{5m\theta_0}{H_0} = \frac{p^2}{H} = \frac{p^2}{2mH}$ 1. Sund Ge = p² Ho = Ho Zun H refecto when Ha = Im ()



Final Examination Applied Physics 231 June 5, 1961

ANSWER 5 OF THE FOLLOWING QUESTIONS

1. Define and discuss briefly each of the following terms:

- a) Mott shielding length
- b) Magnetic mirror
- c) Thomas precession
- d) Diamagnetic (Lamb) shielding
- e) Betatron oscillations in particle accelerators
- f) The Fermi function
- g) " Cutoff" in a magnetron

Derive the dimensionless Fermi-Thomas equation for an atom making clear the physical ideas on which the equation is based. (10)

Remember:

 $\zeta(r) = \left(\frac{3}{8\pi}\right)^{2/3} \frac{h^2}{2m} (m(r))^{2/3}$ 

3. Derive expressions for the following two parameters of

 a fully ionized plasma:
 a) The Debye length
 b) The plasma oscillation frequency
 Explain physically the significance of each of these
 parameters.
 (4)

16

4. a) Show that the temperature (T) dependence of the Fermi energy ( $\zeta$ ) for an assembly of electrons with a density of states  $n(\epsilon)$  is given by:

$$\mathcal{Z}(T) - \mathcal{Z}(0) = -\frac{\pi^2}{6} \left( kT \right)^2 \left[ \frac{1}{m(\epsilon)} \frac{\partial m(\epsilon)}{\partial \epsilon} \right]_{\mathcal{Z}(0)}$$

b) Show that the internal energy (E) of the assembly is given at temperature (T) by:

$$E(T) - E(0) = + \frac{\pi^2}{6} (kT)^2 \left[ m(\epsilon) \right]_{5(0)}$$

- Consider an electron moving in a circular orbit of radius (r), with velocity (v), around a nucleus.
  - a) Obtain an expression for the orbital magnetic moment in terms of r and v. (2)
  - b) Show that the action of a magnetic field (H) on the magnetic moment (M) produces a precession of the plane of the orbit around the field with the Larmor frequency:  $\omega_L = eH/2mc$
  - c) Let the electron orbit be in a plane normal to the applied field. Calculate the change in velocity produced by <u>changing</u> the magnetic field from zero to (H). Show that this result is identical with that calculated from the Larmor precession. Hint:  $\Box = \frac{1}{2H}$

$$\nabla x E = -\frac{1}{2} \frac{\partial H}{\partial t}$$

- In connection with the use of nuclear fusion as a source of controlled power:
  - a) Discuss briefly:
    - 1) The process of fusion
    - 2) Advantages of fusion reactors (5)
    - 3) Basic requirements for controlled fusion
  - b) Discuss briefly the central ideas involved in the three major proposals for plasma confinement:

(5)

- 1) The mirror machine
- 2) The pinch
- 3) The stellerator



(1)AP 231 - FINAL EXAMS thing 1960; Answer 5 of the following: Define and diamon briefley the following terms: a) Debye shielding length b) Plasma sacillation prequency c) minor machine d) Purch effect e) stellarator f) Magnetic Pressure 3 an electron is accelerated through a potential difference AV. Obtain a relativistically carrect expression for the de Broglie 1 wavelength in terms of DV. show that a how the magnetic field 3 in a cyclotron must vary with a so that the particles have radial stability, and atability about the median plane. (s is the radial distance from the center of the magnet gap.). Obtain the distribution function in ve  $(\mathcal{A})$ for those electrons which have been Thermionically emitted from a metal surface. The x direction is normal to the metal surface.). a) Obtain an expression or equation for the pressure exerted by The "free" electrons in (5) () a metal at T=0. b) abtain an equation for the Bulk modules: B = V (aP/dV)_T at T=0 Recall from Thermodynamics that P= - (JF) and F = E - TS.

2 ( Using the Fermi - Thomas wethod, obtain an expression for the potential & as a function of the distance & from the center of an impurity atom in a metal, Discuss briefly the physical significance of the result." 

AP 231 FINAL EXAM 1959 O Perive an expression for the electrostatic potential around a positive con in an ionized gas, From the form of the potential distribution obtain the debye shielding distance I. Explain physically why i is temperature dependent. @ Let metal A and metal & be two plates of a parallel plate capacitor. also let these two plates be connected to one another this a large resistance R. thow that by changing The distance d between the plater as d = do (1+ & cos wt) (rall that a sinusoidal valtage Valt! will be developed across the resistor, which is proportional to the contact difference of potential VAB : 19, show that VR = RW CVAB R SUN WT where i is the capacity of the unperturbed condenser. a) Consider a plane bisecting the north - South magnetic apir of the earth as 3 is shown below: ro Vol assume that the strength of the earths

(2) magnetec field falle off linearly with 3 radius a un this plane, Let a charged particle be projected autward along a radius oector the the center of the earth in this plane with which gives approximately the time required for the particle to travel around the planet and return to ite starting positione. Casame: Vor / (eH/me) << ro, and that the particle starts at No. b) Consider next a particle moving in the same field with a velocity component along the field lines as well, as shown below Ao Uol neglect the agemethal drift in the equatorial plane, and assume that in its motion along the field lines the particle sees a field whose gradient along the field direction is a constant, Determine how long it takes to travel from the equatorial plane to the north gale and back. ( assume the total distance travelled in · . this trip is TRO). 3) Discuss qualitatively the trajectory of ioninged particles liberated by an explosion at ro.

3 a) the the Fermi - Thomas model to (4) calculate the kinetic energy of the electrons in a free atom. he your calculations, include the shielding of the nucleus by the electrons, ic, use the solution X(1) of the Ferni - Thomas equation to determine the form of the electronic charge distribution. b) From your result in (a) determine the total conjution energy of an atom. Hinto: 1. n(n) = BIT (2me) 3/2 3/2 (n) 2. It can be aboun that  $\int \frac{\chi^{5/2}}{\chi^{1/2}} dx = \frac{5}{7} \left(\frac{\partial \chi}{\partial \chi}\right)_0$ a) Derive the Child - Tangmuis law relating 5 the potential I to the distance x a in a plane parallel diode under condition of space charge limited current. assume yero initial velocity for electrons emitted from the cathode. b) Obtain the expression for the Time required for an election to travel from cathode to glate. a) starting from the Fermi function to and the density of states N(E) = (V/202) (2m/102)^{3/2} JET, Obtain 6 expression for: 1. The energy distribution function n(E) 2. The momentum distribution function n (p) 3. The momentum component distribution function n(PK) b) clains the result you obtained in a (3) derive the Dushman - Richardson equation for Thermionic encission