

HARVARD UNIVERSITY

Physics 251b

ANSWER FIVE QUESTIONS

1. Describe the Schrödinger and Heisenberg 'pictures' and the mathematical relation between them, using the notation Ψ , A, B, ... for Schrödinger state function and operators and \not{P} , \mathcal{Q} , \mathcal{B} , ... for Heisenberg state function and operators.

Formulate the transformation from the Schrödinger picture to the interaction picture, and explain the meaning of the interaction picture.

2. For a case in which there is elastic scattering only, the statement of the 'optical theorem' is

$$\sigma = \int |f|^2 d\Omega = \frac{4\pi}{k} \operatorname{Im} [f(0)]$$

State the theorem for the general case in which inelastic scattering and absorption occur in addition to the elastic scattering.

For the case of elastic scattering only, suppose that all you remember about the partial wave formula is that it has the form

$$f(\theta) = \sum_{\boldsymbol{\ell}} F(\boldsymbol{\ell}) \ (e^{2i\delta_{\boldsymbol{\ell}}} - 1) \ P_{\boldsymbol{\ell}}(\cos\theta).$$

By applying the optical theorem, determine the coefficients $F(\ell)$.

3. For a single electron in a central field, we can take as 'orbital' wave functions $f(r)Y_{\ell}^{u}(\theta, \varphi)$; these are eigenfunctions of L^{2} , L_{z} with the eigenvalues $\ell(\ell+1)\hbar^{2}$, un. The Y_{ℓ}^{u} are normalized:

$$\int |Y^{\rm u}_{\ell}|^2 \, \mathrm{d}\Omega = 1$$

As the spin wave functions we can take

$$\begin{pmatrix} 1\\0 \end{pmatrix}$$
 and $\begin{pmatrix} 0\\1 \end{pmatrix}$

which are normalized eigenfunctions of S^2 , S_z with eigenvalues $\frac{1}{2}(\frac{1}{2} + 1)K^2$, $\frac{1}{2}K$ and $\frac{1}{2}(\frac{1}{2} + 1)K^2$, $-\frac{1}{2}K$, respectively.

Any wave function can be expressed as a combination of products of orbital and spin functions. A function of the form

 $f(r) \begin{pmatrix} a & Y_{\ell}^{u} \\ b & Y_{\ell}^{u+1} \end{pmatrix}$

is an eigenfunction of L^2 , $J_z = (L + S)_z$ with eigenvalues $\ell(\ell + 1)K^2$, mf = $(u + \frac{1}{2})K$. Find a and b so that this function is a normalized $(|a|^2 + |b|^2 = 1)$ eigenfunction of

 $J^2 = |\vec{L} + \vec{S}|^2$ with eigenvalue $j(j + 1)K^2$, $j = \ell + \frac{1}{2}$. Also find the a and b that give the function for $j = \ell - \frac{1}{2}$.

4. A system with angular momentum quantum number j = 3/2is in the eigenstate of J_z with eigenvalue mh = 3/2h. Find the probabilities that a measurement of J_z : for an axis 0z!at angle θ with 0z will give the various values m'h, m' = 3/2, $\frac{1}{2}$, $-\frac{1}{2}$, -3/2. Check consistency of your answer for the values $\theta = 0$ and $\theta = \pi$.

5. In Dirac's discussion of the connection between bosons and oscillators he considers a symmetric operator

$$U_{\mathbf{T}} = \sum_{\mathbf{r}} U_{\mathbf{r}}$$

which is a sum of one-particle operators $U_r(\equiv U(q_r))$, and expresses it in terms of matrix elements of $U(\equiv U(q))$ between one-particle states and the operators η (more commonly written a^+) and $\bar{\eta}$ (commonly a). State this expression for U_T . How is it written in terms of the 'operator wave functions'

$$\Psi = \sum_{i} a_{i} u_{i}(q)$$

and

$$\psi^+ = \sum_{i} a_i^+ u_i^*(q) \quad ?$$

From the relation of a⁺ to the appearance (emission, creation) of a boson and of a to its disappearance (absorption, destruction), show how the probabilities for emission and absorption of photons depend on the number of photons present in a given state.

6. State all of the selection rules for electric dipole radiation from an atom with Russell-Saunders coupling. Which of these rules are rigorously valid, and which are only approximate? Under what conditions are there appreciable deviations from the approximate rules? How do the rules for a one-electron system differ from the rules for a many-electron system?

The terms that can arise from the configuration $(1s)^2(2p)^2$ are:

$(2p)^2$ ¹s, $(2p)^2$ ³P, $(2p)^2$ ¹D

What terms arise from $(1s)^2 2s 2p$? From $(1s)^2 2s 3s$? What transitions among all of these terms (of the three configurations) are allowed by the selection rules? For the cases with terms that are triplets, what transitions are allowed between the individual energy levels?

Final, May 1961

.

•

PHYSICS 251 B QUANTUM MECHANICS LECTURE I 2-6-61 Time Dependent Perturbation Theory. Siven: it +4 = H4 = (Ho + Hi) 4 knowing Holln = Enlln, with Un e - 1 Ent/h and with $4 = \sum_{n} a_n(t) M_n e^{-iEnt/\hbar}$ We find ou substitution : it an = Z Hang e (Ex-Ene)t/h an with and = Sum , a = a'' + a'' + a'' + a'' + ... it and = HEM e (Ex-Ena)t/t or $a_{k}^{(i)} = \frac{1}{\sqrt{k}} \int_{0}^{T} \frac{H_{km}}{\mu} e^{-L(E_{k} - E_{m})t'/k} dt'$ assuming that H" is turned on at Time states & application : together The probability per unit Time of transition to the state & from state m is; ZTT / HKms (2 p(K)) This is all me Schiff.

application to scattering: m det all values of k are We assume It turned on at Time of collision. Atom subjected to Black Body Radiation. another application ! H"= c(+). 0" CHI A desame that perturbation goes to yero at Time T Probability of Transition mark depender on magnitude of proper frequency components in H'''. We examine these components through Fourier transformer : $F(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(w) e^{-\omega t} dw$ $\overline{A}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} F(t) e^{-\lambda \omega t} dt$ with SIF(4)12 dt = SIHall2 dw (Parseval's Equation) If FAI is real, 7+ "loo) = 7+(-w), then: $\int |F(t)|^2 dt = 2 \int |F(w)|^2 dw$ If F(t) is electric field strength IF(t)/2 is intensity (per unit Time) then 2/F(w)/2 in intensity per unit frequency.

What we then get for the a's: $a_{\mu}^{(1)} = \frac{1}{2\pi} \int_{0}^{T} V_{\mu m} e^{-x(E_{\mu}-E_{m})t'/\hbar} dt', \quad W_{\mu m} = \frac{E_{\mu}-E_{m}}{\hbar}$ or, using the transforms: $a_{k}^{(i)} = \frac{i}{\pi \hbar} \int 2\pi i \, \gamma_{km} (\omega_{km})$ Thus the transition pashability funit time of k - m $= \frac{\left|a_{+}^{(i)}\right|^2}{T} = \frac{2\pi}{\hbar^2 T} \left|V_{\pm m}\left(\omega_{\pm m}\right)\right|^2$ We now consider an incident radiation field as a function of position and time, but use the position as the center of the atom as the wavelength is much longer than the dimensions of the atom. That is " E(t) now V is the product of E and the polarization of or: $V = \vec{E} \cdot \vec{p} = \vec{E} \cdot \vec{\Sigma} \cdot \vec{C}_a \cdot \vec{R}_a$ The intensity is $\frac{e}{4\pi} E^2$ per unit time $\alpha \qquad \mathcal{I}(\omega) = \frac{c}{4\pi} \cdot \mathcal{I}[\mathcal{E}(\omega)]^2$ We know assume the indication to be collimated and polarized. Then: $\frac{\left|a_{k}^{(i)}\right|^{2}}{T} = \frac{T}{t_{i}^{2}} \cdot \frac{4T}{C} \left(\left(P_{ii}E\right)_{km}\right)^{2} \left\{\frac{c}{4\pi} \cdot \frac{z}{L}\left[\frac{\mathcal{E}(\omega_{km})}{T}\right]^{2}\right\}$ I (WAM)

now the energy per unit frequency per unit $\frac{\mathcal{I}(\omega)}{c} = \mathcal{U}(\omega)$ Then: $\frac{|a_{k}^{(i)}|^{2}}{T} = \frac{4\pi^{2}}{k^{2}} \left| \left(p_{H} E \right)_{km} \right|^{2} \left| \left(w_{km} \right) \right|^{2}$ For the isotropic case where the radiation is in random directions. Thus we have for pile is p² cos²0 with cos²0 = 1/3 in any given direction. Thus: $\frac{P_{k+m}}{T} = \frac{|a_{k}^{(i)}|^{2}}{T} = \frac{4\pi^{2}}{3\pi^{2}} \left| \vec{p}_{km} \right|^{2} \rho\left(\omega_{km}\right)$ making the change in notation U->p for the isotropic case. The Einstein Transistion coefficient is: BAM = $\frac{4\pi^2}{3\pi^2} |P_{PM}|^2$ Important: note that absorption and emission are equally probable. LECTURE I 2-8-61 Recapitulation: For isotropic radiation. Prome = 277 | prm 2 (2 kml) T Sh2 b Bpm evergy / anit volume & writrouge of 2 The Einstein B coefficients is for absorption or stimulated emission.

Spontaneous Emission: - m if system originally in the there is probability of transition to k. none of external field presente, lecay (d Pram ~ Arm, the Einstein A coefficient. method of relating A and B, make up ficticious field assuming he per deque of freedom. Consider a box of whit volume, I cm on each side. This gues for the density of states: D' = 2 h 2 $\frac{4\pi 2^2}{c^3}$ polarization The volume of the box in k space wi shx shy shx = $8\pi^3$. The number in the space is in $\frac{dk}{\Delta \bar{k}} = \frac{dk}{8\pi^3} = \frac{4\pi \bar{k}^2 dk}{8\pi^3}$ = $4\pi \bar{\nu}^2 d\bar{\nu}$ $= 4\pi p^2 dp$ now s' is the "dummy" radiation density. We then get for the spontaneous emmission rate: $\left(\frac{dP_{k+m}}{dt}\right)_{spont} = \frac{2\pi}{3\hbar^2} \cdot \frac{9\pi hz^3}{c^3} \left| \vec{P}_{km} \right|^2$ We now calculate the spontaneous radiation, $\left(\frac{dE}{dt}\right)_{spont} = h \mathcal{D} \left(\frac{dP}{dt}\right)_{spont} = \frac{4(2\pi)^4 \mathcal{D}^4 e^2 \left[\overline{R_{km}}\right]^2}{3 e^3}$

prome e RAM If atom acted as a classical barmonic saillator: (ZTZ)^Z Apr = atm Then: $\left(\frac{dE}{dt}\right)_{spont} = \frac{Ze^2}{3c^3} \cdot Z\left[\bar{a}_{Am}\right]^2$ now classically: $\left(\frac{dE}{dt} \right)_{nad} = \frac{2e^2}{3e^3} \left| \overline{\alpha} \right|^2 , \quad \alpha \Rightarrow \alpha \quad \text{in this case}$ $\overline{\alpha^2 \cos^2 \omega t} = \frac{1}{2} \alpha^2$ Classically, we would have Fourier series a = Z ar con (rwt + Er) $= \int_{t=-\infty}^{\infty} |a_{t}| e^{\lambda (t w t + \epsilon_{t})}$ Thus |ar = 2 |ar | Thus the me arm corresponds exactly to The classical Fourier coefficient at with p = m-k, vey: an an ap=m-k. We desire that a relation be obtained between XAm ~ Xm-h. The proper chaice led to the development of matrix wechanics.

Transformation Theory The model is the one-dimensional Sturm - Liouville system, postulating orthonormality and other usual properties. Choose a complete orthonormal set; eln 19), that is: (1) Ilm Un dq = Smn (orthonormal) (2) Va(q) = Z an Un(q), an = I Un Va da (complete) We could just as well write : $4a(q) = \underset{n}{\overset{}{\underset{}}} U_n(q) dn$ anouther way of stating completeness : (3) $\leq \mathcal{U}_n(q) \mathcal{U}_n^*(q') = S(q-q')$ The Parseval equation: (4) $\int |4a|^2 dq = \frac{2}{n} |an|^2$ which is also a statement of completeness. We also expand another function the same as (2): (z') $\psi_b(q) = \sum_n U_n(q) b_n, \ b_n = \int U_n^*(q) \psi_b dq.$ which then gives for the uner product or overlap integral: (5) $\int \psi_b^* \psi_a dq = \sum_n b_n^* a_n$ Thus we have two languages or representations: one depending on q and the other on n. We then call the win's Transformation functions.

LECTURE III Z-10-61 Recapitulation ! (1) / Mn Mm dg = Smn (z) $\psi_a = \sum_n Un An$, $An = \int Un^* \psi_a dg$ (3) E'_{n} $M_{n}(q)$ $M_{n}^{*}(q') = S(q-q')$ $(4) \int \psi_b^* \psi_a \, dg = \sum_n b_n^* a_n$ The transformation function are chosen to satisfy : (0) Elln = Elln, E is a list of a complete set of goest possibility of degeneracy: For one H, we could have En = Ent, = ... Entf-1 for f-fold degeneracy. Can choose a different operator to redefine basis functions. Can do this continuously until complete set in formed (operators). Usually H is chosen first. If for A and B we have Un which are eigenfunction of both and form a complete set of functions, then [A, B] = 0 For example, consider: 4 = 2. an Mu $\underline{B} \Psi = \sum_{n}^{t} a_{n} \underline{B} \, \mathcal{U}_{n} = \sum_{n}^{t} a_{n} \, \overline{B}_{n} \, \mathcal{U}_{n}$ then : and: AB = Z an Bn A Un = Z an Bn An Hu or: BAY = Zi an An Bn Un, thus BA = AB

now, for hydrogenic cases, consider the operators H and L' with ligenvalues in and l(l+1). also, consider the operator defined by $L_{\overline{z}} \rightarrow \frac{1}{2} \frac{1}{2q}$. Example: n=3 $\begin{cases} l=z \\ l=1 \\ l=0 \\ m=0 \end{cases}$ m=0Perac notation: $(6) \rightarrow \xi \mathcal{U}_{\xi'} = \xi' \mathcal{U}_{\xi'}$ (7) $\mathcal{U}_{\xi'}(q') \longrightarrow (q'|\xi') \text{ or } \langle q'|\xi' \rangle$ (8) and $\mathcal{U}_{\mathbb{P}^{1}}(q^{\prime}) \longrightarrow (\mathbb{P}^{\prime}|q^{\prime})$ or $\langle \mathbb{P}^{\prime}|q^{\prime} \rangle$ These are just numerical quantities because we have a particular eigenvalue E' at a specific coordinate q'. E' is the label and q' is the argument. In this notation, () and (3) became : $(9) \begin{cases} (1) \rightarrow \int (E'|q') dq' (q'|E'') = \int (E',E'') \\ (3) \rightarrow \sum_{g'} (q'|E') (g'|q'') = \int (q'-q'') \\ E' \end{cases}$ and : (10) 'ta (q') -> (q')a), if we always consider one state 4 (q') -> (q') (11) $a_{\xi'} \rightarrow (\xi'|a)$ or $C_{\xi'} = (\xi'|)$ The translation rule becomes: $(12) \quad (q'|a) = \sum_{\xi'} (q'|\xi')(\xi'|a)$

(12) and $\int (E'|q') dq'(q'|a) = (E'|a)$ Thus we see that the fluency property enables the elimination of the acquiment from the notation. Now our expansion becomes in the Dirac notation becomes (from (41): (13) $\int |\psi_a|^2 dq' = \sum_{e'} |q_{e'}|^2$ or $\int (a|q') dq'(q'|a) = \sum_{e'} (a|e')(e'|a) = (a|a|)$ = 1 for normalization. (Parseval's equation) (14) $\int (b|q') dq'(q'|a) = \leq (b|\epsilon')(\epsilon'|a) = (b|a)$ for the overlap integral. Proof of (4) and (5) from orthonormality and completeness: $\int (b|q') dq'(q'|a) = \int \int (b|q') dq' \int (q'-q'') dq''(q''|a)$ $Z_{2}(q' | \epsilon')(\epsilon' | q'')$ $= \underbrace{\underset{g'}{\underset{g'}{\underset{b|g'}{\atopb|g'}{\underset{b|g'}{\underset{b|g'}{\underset{b|g'}{\atop{b|g'}{b|g'}{\atop{b|g'}{\atop{b|g'}{b|g'}{\atop{b|g'}{b|g$ This is a common trick that it used often.

LECTURE IV 2-13-61 Recapitulation ; Wave function: (q' [E'); complex conjugate ; (E'/q') argument label Case when q" has been measured and we want to get the probability of q': $\Psi_{q'}(q') = (q' | q'') = S(q' - q'')$ which is not quadratically integrable and represents a continuous spectrum. Now, Pic normalized in the scale of q and we can write 1 5 4q" (q') 4q" (q') dq' = S(q"-q") $\int (q'' |q'| dq' (q' |q'') = (q'' |q'') - f$) S (q''-q') S (q'-q") dq' _____ different representations ; We can use (q'|)(position) (p'1) (momentum) (21) (eigenvalue) It is after convenient to represent these quantities independent of Their representation, such a representation would be vectors; Louild regression Ax, Ay, Az or terms of basis Ax, Ay, Az or basis Az, An, Az, but can z z represent abstractly as . A Could represent vector as in

We can Transform between coordinate system using: $(\xi'|) = \stackrel{<}{\underset{\chi'}{\pm}} (\xi'|\eta')(\eta'|)$ or $A_{\mathbf{x}} = (\hat{\mathbf{e}}_{\mathbf{x}}, \hat{\mathbf{e}}_{\mathbf{g}}) A_{\mathbf{g}} + (\hat{\mathbf{e}}_{\mathbf{x}}, \hat{\mathbf{e}}_{\mathbf{x}}) A_{\mathbf{x}} + \cdots$ If space has infinite number of dimension it is called a Hilbert space. The most common aquilal used to represent states are capital quek rypulols & I. We define an inner product as: (I, I) = a number and $(I, \overline{\Phi}) = (\overline{\Phi}, \overline{\Psi})^*$ The states can be superposed and the more products are linear, ory: $(15) \quad \left(\overline{\Psi}, c, \overline{\Psi}, + c_{2} \overline{\Psi}\right) = c_{1} \left(\overline{\Psi}, \overline{\Psi}\right) + c_{2} \left(\overline{\Psi}, \overline{\Psi}\right)$ or $(c_1 \not + c_2 \not + c_2 \not = c_i^* (\not + c_2 \not + c_2^* (\not + c_2 \not + c_2 \not + c_2^* (\not + c_2
 + c_2 \not + c_2 \not + c_2
 + c_2 \not + c_2
 + c_2$ In Dirac'a 1st and Ind editions (DIZ); the representation of the uner product is q4, or qata In D3\$4; the uner product is ; (b) (a) or (b)a) = a number bra ket baa (c) hat Recall: If we apply an operater to a state we get another state: EI = another state. If the other state in a number time the first state, it is an eigenvalue equation.

(6) that is $\xi \, \overline{\Psi}_{\xi'} = \xi' \, \overline{\Psi}_{\xi'} \longrightarrow \xi \, |\xi'\rangle = \xi' \, |\xi'\rangle$ If we have such a function that in a solution to the eigenfunction equation, we can expand in terms of this function : (17) $\overline{\Phi} = \underline{Z}, \underline{\Psi}_{\xi'}(\underline{\varepsilon}'|)$ where $(\underline{\varepsilon}'|) = (\underline{\Psi}_{\xi'}, \underline{\Phi})$ In the Dirac notation ! $(11) \qquad 1 \rangle = \underbrace{\geq}_{E'} | \underline{\epsilon}' \rangle \langle \underline{\epsilon}' | \rangle$ self-defining Operators : (2) Recall: \$19) = En Um (q) An , An = f Un # 4 dg (18) $F \psi = \underset{n}{\not E} F \ell \ell n$ or F & = Zulla Ca (19) where $Cm = \int \mathcal{U}_{n}^{*} F \neq dq = 2 \int \mathcal{U}_{n}^{*} F \mathcal{U}_{n} dn dq.$ and we define the matrix element as : Selm Ella dg = Fun , i. Cm = Z. Fun an he Derac notation: $\left(\frac{\varepsilon}{\varepsilon}\right) = \sum_{\varepsilon} \left(\frac{\varepsilon}{\varepsilon}\right) \left(\frac{\varepsilon}{\varepsilon}\right) \left(\frac{\varepsilon}{\varepsilon}\right) \left(\frac{\varepsilon}{\varepsilon}\right) \left(\frac{\varepsilon}{\varepsilon}\right) \left(\frac{\varepsilon}{\varepsilon}\right)$ (20) (21) $(\mathcal{E}'| \mathcal{E}|\mathcal{E}'') = \int (\mathcal{E}'|q') \mathcal{E}(q'|\mathcal{E}'') dq'$ (hybrid notation, not acceptable) We have (q'|(E4)) = F(q'|(4))but really want; $(12) \quad (q^{i} | (E4)) = = = [q^{i} | q^{i} | E| q^{ii}) (q^{ii} | (4))$

How do we represent xe -x'2/2 = x'e -x'/2 as a sum of matrix elements ? This delta function. Ducac defined a matrix delenent such that: (23) $(x'|X_{g}|x'') = x_{g}' S(x_{i}'-x_{i}'') \cdots S(x_{f}'-x_{f}'')$ For the QM momentum operator ; (Z=) $(x' | p_{1}|x'') = \frac{\pi}{2} \delta(x_{1}' - x_{1}'') \cdots \delta'(x_{2}' - x_{3}'') \cdots \delta(x_{3}' - x_{5}'')$ $= -\frac{3}{2x_{1}''} \delta(x_{3}' - x_{5}'')$ This has all been formally justified in The theory of distributions. now, going back to (22): $(x'|(x_{4}\psi)) = \int (x'|x_{4}|x'') dx''(x''|(\psi)) = x_{4}''(x'|(x))$ $(x'|(p_1 4)) = \int (x'|p_3)x'' dx''(x''|(p)) = \frac{t_1}{x} \frac{\partial}{\partial x'_3} (x'|(p))$ The beaty of This is that it puts operators into matrix form so that matrix algebra can be used. Now; $(\underline{\varepsilon}'|F|\underline{\varepsilon}'') = \int (\underline{\varepsilon}'|q') dq' (q'|E|q'') dq'' (q''|\underline{\varepsilon}'')$ which abeys fluency. NOTE : round brackets mean numbers. We can now make the following identifications. (E'1) : one column matrix " wave function" (1E'): one now matrix "cc of wave function " (E'IFIE") : square Hermitian matrix (E'ly') : rectangular anitary matrix $\begin{array}{ccc} S_{1} & \left(\varepsilon' | \eta' \right) \left(\eta' | \varepsilon'' \right) = \left(\varepsilon' | \varepsilon'' \right) = & S & \left(\varepsilon', \varepsilon'' \right) \\ \eta' & \cdots & \cdots & \cdots & \cdots \\ \end{array}$

LECTURE I 2-15-61 Recapitulation ; $(26) \Psi(n) \longrightarrow (n'1) < n'1>$ P(p) → (p'1) <p'1> the wave function in bra-ket natation. Recall that wave functions are expressed in terms of Fourier integrale of each other; $(27) \quad \Psi(n) = \frac{1}{h^{3/2}} \int e^{u p \cdot n/k} \varphi(p) \, dp$ q(p) = 1/2 Se - 1 p. (/k 4(2) dr or, in the new notation : (z8) $(n'1) = \int (n'1p') dp'(p'1)$ $(p'|) = \int (p'|n') dr'(n'|)$ (29) $(a'|p') = \frac{1}{h^{3/2}} e^{ap'n'/t}$ $(p'|n') = (n'|p') = \frac{1}{2^{3/2}} e^{-\lambda p' n'/\hbar}$ We require athonormality, (p'|n')dn'(n'|p'') = (p'|p'') = S(p'-p'')(30) $= \frac{1}{h^3} \int e^{-\frac{1}{2} (\mu'' - p') \cdot n'/h} dn' = \frac{1}{(2\pi)^3} \int e^{-\frac{1}{2} s' \cdot (p'' - p')} ds'$ = S(p'-p''), when r' = t s'

Operators (Observables): Consider $\langle \xi' | (\xi \in 4) \rangle = \sum_{\xi''} \langle \xi' | \xi | \xi'' \rangle \langle \xi'' | (E4) \rangle$ $= \sum_{\xi'' \in I''} \langle \xi' | G | \xi'' \rangle \langle \xi'' | F | \xi''' \rangle \langle \xi''' | (\varphi) \rangle$ $= \underbrace{\mathcal{Z}}_{\mathcal{F}''} \langle \mathcal{E}' | GF | \mathcal{E}''' \rangle \langle \mathcal{E}''' | (\psi) \rangle$ these we have the general rule for matrix multiplication : $\langle \xi' | GF | \xi'' \rangle = \sum_{\xi'''} \langle \xi' | G | \xi''' \rangle \langle \xi''' | F | \xi'' \rangle$ Suppose we are working in the 7 representation. $\langle \chi' | GF | \chi'' \rangle = \sum_{\chi'''} \langle \chi' | G | \chi''' \rangle \langle \chi''' | F | \chi'' \rangle$ $= \frac{2}{4''} \sum_{g' \in g'' \in g''} \langle \gamma | g' \rangle \langle g' | G | g'' \rangle \langle g'' | F | g'' \rangle \langle g'' | \eta'' \rangle$ $= \sum_{\mu''} \langle \eta' | \varepsilon' \rangle \langle \varepsilon' | GF| \varepsilon'' \rangle \langle \varepsilon'' | \gamma'' \rangle$ there it makes no difference whether we first multiply in & representation and transform to n or first multiply in n last after transforming from E.

all observables can be repeacented as square matrices. Introduce the notation: F, 6 matrices in E-rep F', 6' matrices in 2-rep 5 = matrix of < E' 14'> 5' = matrix of <2'(E') $how I = 5' S \xrightarrow{} S \xrightarrow{}$ $= S(\eta', n'')$ Thus: F' = S'FSor $\langle n'|F|n'' \rangle = \sum_{\xi' \xi'} \langle n'|\xi' \rangle \langle \xi'|F|\xi'' \rangle \langle \xi''|n'' \rangle$ now define GF = A and form: 5^{-1} GF = A S $\sigma s^{-1} G S S^{-1} F S = s^{-1} A S$ or we have G'F' = A'It is also possible to show that all algebraic forms in one representation transform to the some algebraic form in another representation by extension of above. Dirac's method quer a method of calculating matrix elements. $\langle n'|F|n'' \rangle = \int k_n''Fk_n''dr$ but the dirac notation is independent of the coordinate varesentation.

Itatistical Interpretation: (E')a) " is a probability density that that a measurement of E given E' If the eigenvalues are cutimous and denoted by E' and the descreets by E', (E'la) 2 dE, dE, = probability that Eh will be found to have values En and Ex in d E' & for system in state a] In general: [(E'|z')]² d'Eginne {= probability, if n all discrete x probability, if any n continuous which is for system in eigenstate with eigenvalue y'. actually eigenstation of continuous spectrum are not physically realizable. all of above depends on the postulate (oth low) is that a measurement gives one of the eigenvalues. The diagonala of matrices are the expectation values of the diservable, (a) Enla) = Expectation of En = En = (En)

LECTURE VI 2-17-61 Statistical piterpretation; (E' (a) is a probability amplitude and (a | Ex | a) = Expectation (Ex) From ordinary atatistical theory on expectation values: $\mathcal{E}_{\mathcal{F}_{\mathcal{A}}}\left(\underline{\mathcal{E}}_{\mathcal{L}}\right) = \underbrace{\mathbb{Z}}_{\underline{\mathcal{E}}'}\left[\underline{\mathcal{E}}'\left|a\right|\right|^{2} = \underbrace{\mathbb{Z}}_{\underline{\mathcal{E}}'}\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}_{\mathcal{A}}'\left(\underline{\mathcal{E}}'\left|a\right|\right) \\ \underline{\mathcal{E}}' = \underbrace{\mathbb{Z}}_{\underline{\mathcal{E}}'}\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}_{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}_{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}_{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}_{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}'\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}'\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}''\left(a|\underline{\mathcal{E}}''\right)\underline{\mathcal{E}}'$ Recall : $\left(\frac{\varepsilon'}{\varepsilon_n} | \frac{\varepsilon'}{\varepsilon_n} \right) = \frac{\varepsilon_n}{\varepsilon_n} \left(\frac{\varepsilon'}{\varepsilon'} | \frac{\varepsilon'}{\varepsilon'} \right) = \frac{\varepsilon_n}{\varepsilon_n} \left(\frac{\varepsilon'}{\varepsilon'} | \frac{\varepsilon'}{\varepsilon'} \right) = \frac{\varepsilon_n}{\varepsilon_n} \left(\frac{\varepsilon'}{\varepsilon'} | \frac{\varepsilon'}{\varepsilon'} \right)$ Then ! Expa (Ex) = Z (a/2') E' (z'/a) - $= \underbrace{\sum_{n=1}^{\infty} (a/e^{i}) \underbrace{\sum_{n=1}^{\infty} S(\frac{1}{2}, \frac{1}{2}^{m}) (\frac{1}{2}^{m}/a)}_{\frac{1}{2}^{i} \frac{1}{2}^{m}} = \underbrace{\sum_{n=1}^{\infty} (a/e^{i}) (\frac{1}{2}^{n}/\frac{1}{2} \frac{1}{2}^{m}/\frac{1}{2}^{m}/\frac{1}{2}^{m}/\frac{1}{2}^{m}/\frac{1}{2}^{m}}_{\frac{1}{2}^{i} \frac{1}{2}^{m}}$ $= (a | \xi_{\mu} | a)$ This is the usual statistical interpretation of The Theory, but is not most general. Take (q'IE') which means that we have completely determined &' and now want to find q'. Completely determined states are called pure states. A pure state is also denoted by I or IE'' also. If we want to use wave function, however, we must use the argument, For a mixed state, we cannot write the wave function, we only give a list of probabilities we' for states 18's Z. wg' = 1. This situation corresponde better with Ephysical reality. We suppose that some of the possible values of measurements are no (descrete), he (continuous).

Consider an election which bas two spin directions. The a priori probability of each spin is 1/2, up or down, where the spin up and spin down are pure states. Then, for the pure state, the Prob of no in (dré) is: 1 (y' 1 %') 2 dy' ... on { wa /(n'la) 2 + wb / (n'lb) 2 + ... } dui ... or for the mited state. This does not wear we are representing a mixed state by a expanded wave function as a mixed state cannot be represented by wave functions. The word mixing is sometimes used colloqually as the mixing of states which does not apply here. This mixing benette from the part that all the observables are not measured. If we tried to represent a miped state by We have merely supperposed pure states resulting in another pure state. $(q'|) = \sum_{z'} [w_{z'}](q'|z')$ which represents a pure state and not a mixed state. Forming the probability : $|(q|)|^{2} = \sum_{\xi'} w_{\xi'} |(q'|\xi')|^{2} + \sum_{\xi'' \neq \xi} w_{\xi'} w_{\xi''} (q'|\xi') (\xi''|q')$ now the nined state, as above does not have the cross- product terms which assere from using wave function. One way to fix this is to nuclude a phase factor on the expansion e " ge'. Then, averaging over the place factors will remove the cross-product. The phase factor must be unspecified ver the states. This lack of information about phase characterizer the miles state (see Von neumann).

Density matrix (Example: polarized beam on unpolorized tagget) Definition for mixed states " $(q'|P|q'') = \sum_{i} w_{i}(q'|z')(z'|q'') = \sum_{i} w_{i}(q_{i}|q_{i})\psi_{i}(q'')$ which gives a matrix whose diagonal gives The probability, This can be written, per Derac; P = Z Wa la) (a) (a) (a) (a) (a) an operator Analogous to scalar product and dyadic : A·B = Z A.B. AB = A1B2 usually used in conjuction with other vectors. now: Prob. of en dq' = (q'/P/q") dq' Prob of y' = (n' | Pl y') Therefore, we can write Exp(F) = TR (PF) some operator Exp (M) = Z Wg' [Exp (M+1] expectancy of Mh if it Exp (M) = Z' Wg' [Exp (M+1]] E' belonged to a pure state E'. From definition. = { [q" |P|q' | dq' (q' | mx 1 q") dq" = Trace (mx P) = Trace (Pyx) , thus proving the above statement.

LECTURE VII 2-20-61 $Exp\left(F\right) = T_{R}PF$, $T_{R}P = 1$ P = Z w = (21) (21) $\langle n'|P|n'' \rangle = \sum_{\xi'} \langle n'|\xi' \rangle \langle \sigma_{\xi'} \langle \xi'|n'' \rangle$ mote that the w's are eigenvalues of P/8"> = @g" /8"> Pure state: $(\chi' | P | \chi'') = (\chi' | \varepsilon') (\varepsilon' | \chi'')$ $(n'|P^2|z'') = \sum_{n''} (n'|P|n''')(n''(P|z''))$ $= \sum_{n'''} (n' | \epsilon') (\epsilon' | n''') (n'' | \epsilon') (\epsilon' | n''')$ = $(\chi' | \xi') (\xi' | \chi'') = (\chi' | P | \chi'')$ Therefore: P² = P is implied. This property is called idempotent and The operator is called a projection operator. Examples: Dyadie : 22. A = 2Ax = Ax In ald - fashioned notation ! Prin = Cm Cn or Wa du ant + Wb bu bu t 111 and $(x' | P | x'') = \psi(x') \psi^*(x'')$

Some Von neumanne arguments:

1. no Hidden Parameter argument (Von neumann) Quantum mechanica is monsistent with hidden parameters which would remove uncertainty. V.V. did not prove hidden parameters do not exist in universe, but that if quantum mechanics is strictly true, the concept of hidden parometers cannot exist. Pure Alate: Classical Physics : - huder every dynamical variable of system V. N. 's proof does not indicate how when prepared - mechanical determinism, weigthing that happens henseforth in completely much error would determined. have to occur in QM To indicate hidden parameters Classical Physics :- Sibbs miled state " ensemble of states and systems However, still assume that If hidden parameters existed, it would dynamical variables could in principle be measured. A pure state would be an be possible to form a pure state from ensembles of systems all in the same state. Thus we see Two definitions for pure states. mixed states. Von recumarin's theorem proves this untrue. These definitions are not identical in Q.M. It is possible to have sibb's ensemble of systems in same state, however, that of Answine dynamical voriables of system does not exist. A micked state in CM can only be formed from Gibb's exacuble of systeme of different state. This QM contain probabilities of two types, that of statistical mechanics and That of Born interpretation. V.N.'s argument is that : $df P^2 = P \quad and \quad P = \omega \, \mathcal{Q} + (1 - \omega) R.$ and a pure state cannot be Then Q = R = P formed as composed of mixed states.

The act of measurement causes the state of the abject to be miged. We have object with autably prepared instrument compled by mitable Hamiltonian; after a certain time we decouple and observe instrument, whereupon, we find a particular 4, (p) corresponding to a particular 4, 101 q(p) b(q) -> Z win qu (p) qn (q), when brought fogther, Hamiltonian n we have no knowledge at phone factor. (e(p) - original state of instrument, 4/g) - original state of object Degenerate mixture; x states: $(\chi' | P | \chi'') = \sum_{k=1}^{n} \frac{1}{n} (\chi' | \xi^{(k)}) (\xi^{(k)} | \chi'')$ Probabilities of differeneut states assumed equal (reason for in term). fuspon we have sets 12 (2) / J (7) > That span the same manifold, now there are certain states that can be written: $17 = \underbrace{\mathbb{Z}}_{1=1}^{n} | \underbrace{\mathbb{E}}^{(n)} \rangle \langle \underbrace{\mathbb{E}}^{(n)} | \rangle \quad (\text{but not all})$ any let that spans the same manifold would yield a similar expansion: (> = 2 [\$ (1) X 3 (1)] > n dimensions y=1 (\$ 4 the Hilbert space of the Hilbert space. $\text{Then}: \qquad (n'|P|n'') = \sum_{j=1}^{m} \frac{1}{n} (n'') (j'') (j'') (j'') (n'') ($ The relation between the two sets is " $(J^{(4)}) = \sum_{k=1}^{n} |\xi^{(k)}| \langle \xi^{(k)} | J^{(4)} \rangle$ with: $\frac{1}{x=1} < J^{(4)} | \frac{p}{2} | \frac{1}{x} > \langle \frac{p}{4} | \frac{1}{y} \rangle = S_{f} e$

Therefore : $\sum_{k=1}^{n} \frac{1}{k} (2' | \xi^{(h)}) S_{ke} (\xi^{(e)} | \gamma'')$ (z' | P | z") = $= \sum_{k,l} \sum_{k=1}^{l} \frac{1}{n} \left(\frac{n'}{2} \right) \left(\frac{g^{(k)}}{2} \right)$ which yields of the same as before. What this says is that for example, states composed of spen, it makes no difference if half the spiin are up and some down, or if half to left and half to right. a similar analogy holds in unpolarized light being considered as composed of polarized light independent of the scheme of polarization, that is at right sugles, or in opposite cucular direction. LECTURE VIII z - 2.4 - 61lime Dependence; In non-relativistic QM, Time is not an observable but merely a parameter. Analytic measurements determine quantities but destroy The system, called retrospective. Those putting system in another eigenstate are called predictive. get I', this means that we get I' at Time to again (no time lapse). If we measure E at t > to may not get & again. We indicate the preparedness of the aysten at to by E, to? means ((E(tol))) The usual base of Time is O, hence (E', o) indicates initial prepareduess.

We denote a frozen " state by 18', + > which means that this state gives &' at any Time t. That is, $\xi | \xi', t \rangle = \xi' | \xi', t \rangle$ at time t also we require for "prozen" state: Constant $\langle \chi', t | \overline{z}', t \rangle =$ 26 we change all states by share factor e + +(+), they cance in the inner products that at Time t we have i 12, t) + = constant det = 12, t> 12',07 = physical ket or physical state Constant sets have little physical significance and are available primarily for expansion purposes. now for the physical states 15', 07, we hold that all superposition properties are independent of time. Consider: $|(a|, o) = c_1|\xi', o) + c_2|\xi'', o) + \dots$ which is independent of time (the c's are Time independent, so superposition is cheld as a physical postulate) (Rirac, pp 109-110). now we postulate: [E', 0) = T(t) E', 0 %, T is linear and describes the course of events as time progresses. I cannot be shown to be an observable.

Consider The bra LE', 01, Then : $\langle \xi', 0 \rangle = \langle \xi', 0 | T^{\dagger}$ is the definition of Tt. We require as another postulate ; < E, 0 1 E, 0) = 1 independent of t >0 Using this, we have immediately $T^{\dagger}T = 1$ which shows that it might be unitary (we need $TT^{\dagger} = 1$ for sure groop). We will postulate that T is unitary. now write : 18,0) ++ At = (T + AT) 18,0% $= (T + \Delta T) T^{\dagger} | \xi', o \rangle_{t}$ now assume TT^t=1: (not necessary) from $T^{\dagger}[\vec{E}_{0}]_{\dagger} = [\vec{E}_{0}]_{0}$. now we can write : $|\xi'_{,0}\rangle_{t+\Delta t} - |\xi'_{,0}\rangle_{t} = \Delta T T^{\dagger} |\xi'_{,0}\rangle_{t}$ now: $(1 + \Delta T T^{\dagger})$ as unitary since rigin of Then: $(1 + \Delta T T^{\dagger})(1 + \Delta T T^{\dagger})^{\dagger} = 1$ $or \quad \Delta T T^{\dagger} + T (\Delta T)^{\dagger} + \Delta T T^{\dagger} T (\Delta T)^{\dagger} = 0$ now divide by At und let At -> 0 and get: $\frac{d}{dt} \left[\frac{g}{2}, 0 \right]_{t} = \frac{dT}{dt} T^{\dagger} \left[\frac{g}{2}, 0 \right]_{t} \quad \text{and} ;$ $\frac{dT}{dt}T^{\dagger} + \left(\frac{dT}{dt}T^{\dagger}\right)^{\dagger} = 0$ which shows that dT T is anti-Hermitean.

We then write $\frac{dT}{dt}^{+} = \iota \left(-\frac{H}{K} \right)$ as a definition where H is a Hermitean operator. Then we have ; (1) $H | \xi', 0 \rangle = i \hbar \frac{d}{dt} | \xi', 0 \rangle$ and for physical cases, we postulate that H is the Hamiltonian. Then this describes the behaviour of the state as time move along. LECTURE TX 2-27-61 Can show that SE", 0 [T + T | E', 0 ? in nifficient to show that I'T is unitary so separate assumption in not necessary. We had shown that : (1) $th = \frac{d}{dt} [\xi, 0] = H[\xi', 0]$ where H is some Hemitean operator and in 18,074 t is a label, not an argument; The Time at a. If we write 14, t > this means that state is freshly prepared every instant. Then ! (2) $at \frac{d}{dt} \langle n', t | s', o \rangle_t = \langle n', t | H | s' o \rangle_t$ If z' = X { coordinate rep. 12', t? is a constant. n' = p: momention rep. now : (3) $th \frac{d}{dt} \langle \gamma', t | \xi', 0 \rangle_t = \sum_{3''} \langle \gamma', t | H | \gamma'', t \rangle \langle \gamma'', t | \xi', 0 \rangle_t$. which in the Achroedinger equation. 18',07, is called a physical ket and is Time dependent.

We can expand any het do : $(4) | 1 \rangle = \leq | 15', 0 \rangle \langle 5', 0 | \rangle$ independent of time per assumption for inner products, ... numbers Then we write (3) as ? (5) $i\hbar \frac{d}{dt} \langle \chi', t| \rangle = \leq \langle \chi', t| H| \chi'', t \rangle \langle \chi'', t| \rangle$ This is tehroedinger equation in the 2' representation Consider it independent of Time and The expression; (6) $\langle \gamma'_{j}t|e^{-\iota Ht/\hbar}|g'_{j}t\rangle$ (6) $|\xi'_{j}t\rangle = constant$ het Take Time derivative : (6) $\langle \gamma'_{j}t| = constant$ bra $i\hbar \frac{\partial}{\partial t} \langle \chi', t| e^{-iHt/\hbar} | \overline{z}', t \rangle = \langle \chi', t| H e^{-iHt/\hbar} | \overline{z}', t \rangle$ $= \sum_{\lambda''} (\lambda', t) H(\lambda'', t) < \lambda'', t) e^{-\mu t/\hbar} [\xi', t]$ $\begin{aligned} & \text{now}; \text{ to satisfy the boundary conditions}: \\ & \left[\langle z'_i, t | e^{-z H t / k} | \overline{z}'_i, t \rangle_t \right]_{t=0} = \left[\langle z'_i, t | \overline{z}'_i, o \rangle \right]_{t=0} \end{aligned}$ Therefore : (7) $\langle \chi', t | \xi', o \rangle = \langle \chi', t | e^{-\lambda H t / \hbar} | \xi', \xi \rangle$ This is formal solution to tchoedinger equation. The $(7)^{*} \langle \xi', 0|\chi', t \rangle = \langle \xi', t | e^{-\mu t/t} | \chi', t \rangle$ time dependence is removed from 1 2:03 and put in an operator. Consider a Hermitear operator which in an observable: $\langle \chi'_{,0} | \chi | \xi'_{,0} \rangle = \sum_{\chi'' \leq \eta'} \langle \chi'_{,0} | \chi''_{,t} \rangle \langle \chi''_{,t} | \chi | \xi''_{,t} \rangle \langle \xi''_{,t} | \xi''_{,0} \rangle$

Then '. $\leq <_{2',t} | e^{\mu + t/\hbar} | z'', t > <_{2'',t} | \alpha | \xi'', t >$ <2:01 ~ 18:07 = < 8",+ 1 e - 1 Ht/t (5',+) ori <2',0 x [E',07 = <2',t | e"Ht/h x e"+Ht/h [E',t] (8) This "in the matrix elemente between plugsical states on the schroeduger picture. The operator is independent of time lexcept explicitly). The state vectors are time dependent. The RHS of (2) is the Hierenberg picture : state vectors independent of time, operators have dynamical dependence on Time. The LHS is the phroedinger picture. In other notation : e uHta/t x(0) e -uHta/t $(9) \quad \propto (t) =$ in Schroedinger Hierenberg For no explicit time dependence ; $(10) \quad \frac{d}{dt} \quad \alpha(t) = \frac{\alpha}{k} \left[H, \alpha(t) \right]$ From last term ! $(11) \quad \left(\frac{d}{dt} \propto (0)\right) = \frac{1}{\hbar} \left[H, \propto (0)\right]$ In a representation with H diagonal ; Hom = En Sum Then; from (8); Xnm(t) = C · (En - Em)t/to Xnm(0) (12) which in the original assertion of Hiesenberg for time dependence of matrix elements, h Schroedinger, we separate 4 - function, rather than operator.

manipulating (9) some more: $\alpha(t) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \left(\frac{\lambda t}{\hbar}\right)^{h+l} \frac{(-i)^l}{\hbar! l!} + \frac{1}{k! \alpha(0)} \frac{H^k}{H^k}$ Consider the n-fold commutator : $\begin{bmatrix} H, \{H, \dots, \{H, \alpha(0)\} \end{bmatrix} \stackrel{(\dots)}{=} = \underbrace{=}_{h+d=n} \frac{(-i)^{k} N_{i}^{l}}{h! l!} H^{k} \alpha(0) H^{l}$ as can be found three deduction : Then : $\alpha(H) = \underbrace{\underbrace{\exists}}_{n \in \mathbb{N}} \underbrace{(\underline{xt})^n}_{h} \underbrace{\prod}_{n \in \mathbb{N}} \begin{bmatrix} H, [H, \dots, [H, \alpha(o)]] \\ \dots \end{bmatrix}$ and finally : (13) $\alpha(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} \left(\frac{d^n}{dt^n} \alpha(0) \right)$ (max taurun teries) note on notation : F: Achroedunger state vector (Time dependent) F: Hierenberg state vector (constant) Then ; $(\underline{Y}_a, \alpha(0) \, \underline{Y}_b) = (\overline{\Phi}_a, \alpha(t) \, \underline{\Phi}_b)$ (14) erHt/h x (0) e-+Ht/h and : (15) F = e-2Ht/t I (16) it + + = H +

LECTURE X 3-1-61 In the Achoedinger representation : (12) 1t 3 2 2 = H 2 , (2a, x 10) 2) The state vector contains the time. In the Hesenberg representation ; $\frac{\partial}{\partial t} \overline{\Phi} = 0$, $(\overline{\Phi}a, \alpha(t) \overline{\Phi}b)$ x(t) in The Hesenberg operator, & in constant in time. The connecting relation is ; $\alpha(t) = e^{\lambda H t/\hbar} \alpha(0) e^{-\lambda H t/\hbar}$ In = e-++t/t & where H is time independent. now consider : $(17) \quad H = H_0 + V$ where Ho is Time undependent but V is Time dependent a possible form for VIOI could be; V(0) = · · · · + f(p,q) e wt (not dynamically Time dep.) and still be a tobrochinger operator, This could possibly be an external EM field. In the most general type of physical theory time dependence does not occur. V(0) above has the time dependence introduced by an external system. now ; (12) at $\frac{d}{dt} = (H_0 + V_{(0)}) \frac{d}{dt}$

(19) The = e - 1 Hot/th Th' We are making a (19) The = e - 1 Hot/th We are making a Take (12)' fines e 1 Hot/th We are making a mixed regulation to a mixed regulation to a Called interaction representation (20) it it is a m' = e to the viol e toth it I carries Time dependence of unperturbed Hamiltonian. This is called the interaction picture. (Zi) (Ta, ×10) Th) = (Th' e Hot/h ×10) e Hot/h Th') Dirac claims to switch from sch. rep. to thes. rep., Collision Theory : Scattering cross - section : $\nabla = d\Omega = \nabla = \frac{1}{2} \left(\theta, \varphi \right) d\Omega = \frac{1}{2} \left(\theta, \varphi$ methoda : 1. Exact solution } elastic 2. Partial Waves 2. Partial vaves 3. Born Approximation inelastic 4. Time Rependent Perturbation Theory Rutherford Scattering ! can be solved in This system. It seems that if accidental degenerate states accur in our sigsten, the problem is solvable in another sigstem : accidental degeneracy because E undependent of I. 4 = R(n) @ (0) e 2mg Spherical: 1, 0, 4 4= F(E)G(z)e 2000 ₹= 1+2, n = 1-2, q Parabolic : ₹= × (1+ coal), n = × (1- coal)

We find for the case E>0: F(E) -> e * F, (m; - 1h3) G(2) - entric , F. (--; iky) For scattering we want a wave function of the form of the incoming plane wave plus the spherical wave from the scattering center. 4 ~ e t + f(0) e the This would be good if coulomb-fuld did not fall off so sapidly, f(0) is the acattering coefficient. We find that ; $f(\theta) \sim \frac{1}{\eta}$, $\eta = \eta - \Xi = \Lambda (1 - \cos \theta) = 2\Lambda \pi m^2 \theta$ Then: f(0) x 1 Zram20 However, there is really a creeping plane factor in the asymptotic expansion. Then, flo) x e-izlog(-itn) Z J d - 2 = |f(0)|² d − 2 which will eventually give the Rutherford seculta.

LECTURE XI 3-3-61 function of asymptotic form: 4 r ette + f(0) etter (Martie scattering) f (0) = acattering amplitude. We take V an: V = constant, ~ Z l When can we use static V? Adiabatic assume V limited to range 10, V=0, N750 To For adiabatic, To all natural frequencies of system, That is, the speed of the particle that collider with the system is much less than the speed of the particles which makes up the system. Can use static V for anti-adiabatic scattering where opposite of above is true. UN Upart on system Newever, There will be quite a bit of inelastic acattering. Thus static V is good only for elastic scattering. scattering The method of Partial Waves: We can take solution of form Ye^m (6, 9) gela) or Pe (cos 6) ge (1) for appendial symmetry and build up solution for scattering. We consider potential V(1), with V=0, 1710. Then The solution in written 1 $\psi = \Xi Be Pelcozo) \frac{Ue(n)}{n}$

where Ve(a) satisfies: $\mathcal{D}e'' + \left(\frac{k^2}{k^2} - \frac{2mV}{k^2}\right)$ $\frac{l(l+1)}{\Lambda^2} \quad \nabla_e = 0$ with Velol = 0 This is the most general form for an axially symmetric scattering potential. now for the free particle ; Pfree = Z. Ce Pa the where the satisfies: $Me' + \left[\frac{h^2}{h^2} - \frac{l(l+i)}{n^2}\right] Me = 0$ with $M_{e}(0) = 0$ For N7Ro, KN >7l, we have ! V"+1" v=0, "+1"=0 which gives immediately; ile a pin (kn + te) where the is an important quantity which must make lelo) =0, now, for ve we get, Ver sur (kr + te + Se) a phase shift Se controls the condition velo? = 0. These phase shifts are very hard to find and usually connot be found generally. The problem here in To determine the scattering in terms of the phases. Choose; Ce such that: Zi Ce Re Me ~ e ikt We now equate & for large r to initial equation; 2 be le sin (ka + Ee+fe) = Z. Ce le sur (ha + Ee) + Si de la cina

since: f(0) = Z ae Pe (cord) Expand smes as exponentials; equating coefficients of similiar exponentials; $\frac{P_e e^{-i\hbar t}}{r} + \frac{B_e e^{-i(\epsilon_e + \delta_e)}}{z_i} = + \frac{C_e e^{-i\epsilon_e}}{z_i}$ or Be = CeerSe $\frac{P_e e^{+\lambda h \lambda}}{\lambda} : Ce e^{\lambda de} \frac{e^{\lambda (\epsilon_e + \delta_e)}}{2\iota} = \frac{Ce}{2\iota} e^{\lambda \epsilon_e} + \alpha e$ or $d_{\ell} = \frac{(e^{z_{\ell}d_{\ell}}-1)}{z_{\ell}} C_{\ell}e^{d} = C_{\ell}e^{-1(t_{\ell}+t_{\ell})} a_{\ell}m\delta_{\ell}$ Then; f = Z Ce e (te+de) som be Pe (cos 6) Now: $T = \int T(\theta) d\Omega = \int |f|^2 d\Omega = \int |f|^2 d[\cos\theta] d\theta$ $= 4\pi \sum_{l=1}^{\infty} \frac{|c_{l}|^{2}}{z_{l}+1} sm^{2} \delta_{l}$ We must now determine Ce : For large 2, we want : $\sum_{k} C_{k} P_{k}(\mu) \frac{\mu_{k}}{n} = e^{i \hbar n \mu}, \quad \mu = con \theta$ Multiply by some Pe'(u) and integrate: $Ce \frac{u_e}{n} \frac{z}{2l+1} = \int e^{ikn\mu} P_e(\mu) d\mu$ hetegrate by parts : $C_{\ell} \frac{M_{\ell}}{n} = \frac{2\ell+1}{2} \frac{1}{\lambda h n} \left[e^{\lambda h n M} P_{\ell}(M) \right]^{\ell}$ - Zl+1 1 Seukru Pé (u) du

This process can be seperted indefinitely until we sur out of l's. since 2>> 10, we write ue = on (22+6e). Then: Ce Am (ta+6e) = Zl+1 [e-cha - (-1)e e-cha] $= \int \frac{2l+l}{k} \operatorname{contr} l \operatorname{even} \\ \frac{2l+l}{k} \operatorname{contr} l \operatorname{odd} \\ \frac{2l+l}{k}$ We could have: $le = \frac{2l+l}{k}$, le = 0, levenCe = <u>Zl+1</u>, E = 1772, lodd Conventionally ; we use : $\dot{C}e = \frac{2l+1}{k} l$, $Ee = -\frac{l\pi}{2}$ Then, finally: f = i s (2l+1) e se and se Pe and $T = \frac{4\pi}{k^2} \leq (2l+1) \text{ and } \delta l$ LECTURE XII 3-6-61 Recal: f = 1/2 (2d+1) e sur de Pe (con 0) $\sigma = \frac{4\pi}{\pi^2} \frac{S}{S} (2l+1) am^2 Se$ Usually see this result in Tercus in Bessel functions: $(7^2 + h^2)_{\mathcal{H}} = 0$ in appendial coordinate has extracore , $Y_{\mathfrak{h}}^{\mathfrak{m}} = J_{\mathfrak{h}+\frac{1}{2}}(h, \Lambda)$ $\overline{f_{\mathfrak{h}}}^{\mathfrak{m}}$

now: e the coal = Z As Jet's (he) Palcoal) Je (tha) and: Al Jet'/2 (he) = Zi+1 fe it acord Re (cord) dicord) JAN? Z fe la (cord) dicord) $= \frac{z \ell + 1}{z} \int e^{z \ell \pi u} P_{\ell}(u) du$ Could find the Ar by expanding for small pr. Result is : $e^{ikn\cos\theta} = \sum_{l=0}^{\infty} (2l+1)_{l} \frac{\pi}{2kn} \int_{l+1}^{\pi} (kn) P_{l} (coa\theta)$ Recall V=0, RZRO and consider the case kro ELI. VILL Only case where particle sees V in when l=0 otherwise contripetal barrer potential in Free particle for autrice range of u (long d) V and heeps particle from approaching. No Scattering length potential So = ka, df So << 1, we have : $\sigma = \frac{4\pi}{k^2} \cdot 1 \cdot (ka)^2$ $\sigma = 4\pi a^2$ (spherical cross-section of rodues a).

It phase in The: Resonance, So = TTTZ feathing length no is infinite. $\nabla = \frac{4\pi}{k^2} = \frac{\lambda^2}{\pi}$ We see that in this care nature of potential in unimportant, that in, wavelength I in much longer than extent of V. Or, the energy is much less than V, ELLV. Thus we have $\sigma \sim \frac{1}{E}$ Case of So = TT, with A0 scattering length = 0. means no scattering, which in paradoxial because one would expect show particles to be more scattered. Called the Ramshauer Effect. This occurs only in certain atoms, Consider Potential Well: Consider to rocal, means only So counts, So (1) Mow: k'= [2m(E-v)] Comt'n, rero som (kr+fo), r7ro r < Ro u at ro: tan k'ro = tan (k ro + fo) u' k' k Equate

fince the potential is small, we can take a series expansion of each side ; $N_0 + \frac{1}{3} + \frac{1}{N_0^3} + \dots = N_0 + \frac{1}{2} + \frac{1}{3} + \frac{1}{N_0^3} + \dots$ Then , So = 1/3 to (1/2 - 1/2) 1/3 now: k'-k2 ~ V, and So & k V (volume) then: To= V² (volume)² note That I does not have to be small, just That k'no <<1. For light and EM waves: $k = \frac{2\pi}{l}$, $k' = \frac{2\pi}{l}$, $k' = \frac{2\pi}{l}$, $k' = \frac{2\pi}{l}$ $T = \frac{4\pi}{k^2} \cdot \frac{1}{9} k^2 \left(\frac{k^2}{k^2} n^2 - \frac{1}{k^2} \right)^2 \Lambda_0^2$ or J & (volume)² (Rayligh scattering) Another Case: large rigid sphere, where particles cannot get in ! particles comments $ha \ll 1$ $ha \ll 1$ $F \xrightarrow{V=0}$ $F \xrightarrow{V=0}$ Ehrenfest particle particle waves waves $ha \ll 1$ $ha \iff 1$ $ha \implies 1$ $ha \implies 1$ $ha \iff 1$

3-8-61 LECTURE XITT Born approximation : We can treat a wider class of cases with This Than with plane wave method. Can do inelastic cases, method is really Achoedinger stationary perturbation theory where we are concerned now with ward functions rather Them energy. Problem is to find correct combination of meident waves and scattered waves ! We proceed in a general method : Scatterer: coordinate q; with H(q), etm(q) and H(q) um(q) = Wm Um(q) Particle ! initially the, K.E. i T = (the ho) Hamiltonian Interaction (V(R,q) Case of Center of Force ; V(R) Aerume ; only one state of scatterer , such that | elm (q) (² = S(q) which maken that $|lm(q)|^2 = S(q)$ which maken the scatterer is a point. We do This after general development. We take for the augestucked wave function ! u⁽⁰⁾ = e^{ikon} Un (g) where n is the initial state Then the surpertubed Schroedinger equation is; $\left\{-\frac{\hbar}{2m}\nabla^{2}+H(q)-\left(W_{n}+T\right)\int \mathcal{U}^{(0)}=0\right\}$ now: u= u(0) + u(") + u (2) + ... Then, to the first order : $2 - \frac{\pi^2}{2m} \nabla^2 + H(q) - (W_n + T) \left\{ \mathcal{U}^{(1)} = - V(r, q) \mathcal{U}^{(0)} \right\}$

In general, to at order : $\begin{cases} g \mu^{(\alpha)} = -V(\pi, q) \mu^{(\alpha-1)} \end{cases}$ NB: Total energy does not change; only Wn and T change if Wn+T is constant. We take 11 (2) to be expanded in terms of scatterer functions: $\mathcal{U}^{(\alpha)} = \sum_{m} \mathcal{U}_{m}^{(\alpha)}(n) \, \ell l m (q)$ Call: $\frac{2m}{k^2}(Wn - Wm + T) = Knm$ Then: $\sum_{m} \left\{ \nabla^2 + k_{nm}^2 \right\} = \sum_{m} V(\lambda, q) \sum_{m} U_m(q) = \frac{2m}{R^2} V(\lambda, q) \sum_{m} U_m(q)$ M (m-1) multiply by Mm (q): $\left(\nabla^2 + k_{nm}^2\right) \nabla_m^{(\alpha)} = \frac{2m}{\hbar^2} \int ll_m^{\ast}(q) V(n,q) u^{(\alpha-1)} dq$ This corresponds to the electrodynamic equation for the relarded potential: $\left(\nabla^2 + \frac{1}{h^2}\right)v = \beta$, $2\sigma = e^{-\frac{1}{2}het}v(n)$ which gives : $\left(\nabla^2 - \frac{1}{c^2}\frac{\partial^2}{\partial t^2}\right)\omega = p$ $w = -\int \frac{p\{n'; t-\frac{|n-n|\}}{c}}{4\pi |n-n'|} dr'$ Then the result for acattering: $v = -\frac{1}{4\pi} \int dr' p(n') \frac{e^{ik[n-n']}}{[n-n']}$ which contain the seem function of the

The physical picture is somewhat like this: 1 11-11 A We can then write | 1-1' |= 1 - 1'. I Then 's in The first order ; $v_m^{(l)}(n) \sim -e^{i\hbar mn} \frac{m}{n} \left(dn' e^{i(\hbar n - n \hbar m)n'} \right)$ ·) dq elm (q) V (1', q) Un (q) M'' + M'' ~ e Mulq) + e ton fu Mulq) + Z etknin A min n fin Mm (q) This is coherent elastic scattering for the first Two terms. The last term includes intoherent, inelastic scattering. 3-10-61 LECTURE XIV Recall : U'm (n) = - ectumn m (dr'e (tho-time) n') dq um (q) V(n',q) Un (q) with knn = knm n, n = r, ho = ko e, Fixed Center: 1 state: Elastic scatterings Symmetric V $v^{(1)}(n) \sim - \frac{e^{ikn}}{n} \frac{m}{2\pi \hbar^2} \int dr' e^{-i(\hbar \sigma - \hbar) \cdot n} V(n')$ 5(0)

Coulomb feattering: $V(n') = \frac{Ze^2}{n'}$ now: $\left(\frac{1}{n}\right)_{k,ko} = \frac{1}{(2\pi)^3} \int \frac{e^{\lambda(k_0-k)\cdot n}}{n} dn$ $f(e) = -me^{2}(2\pi)^{2}\left(\frac{1}{r}\right)_{k,k_{0}}$ $\sigma(\theta) d\mathcal{R} = |f|^2 d\mathcal{R} = \left(\frac{4\pi^2 m Ze^2}{\hbar^2}\right)^2 \left(\frac{1}{\Lambda}\right)_{k, k_0} \left|^2 d\mathcal{R}\right|^2$ Define: $k_0 - k' = \overline{q}^2$ \overline{r} $\cos \vartheta = \mathcal{U}$ Then: $\left(\frac{1}{n}\right)_{k,k0} = \frac{1}{(2\pi)^2} \int_{0}^{\infty} n dn \int d\mu e^{iq n \mu}$ $= \frac{1}{2\pi^2 q} \int_0^\infty dr \, xm \, qr$ This integral does not exist nor converge but it is summable. The trouble is large values of r, however, waves are never scattered at This distance. We then use an Abelian integral : (I) k, ho = it Zim Je x n gr de du joe - la - 19/2 de $dm \frac{1}{\alpha - \iota q} = km \frac{\alpha + \iota q}{\alpha^2 + q^2} = \frac{q}{\alpha^2 + q^2}$ and Then : $\sigma(\theta) d \Omega = \left(\frac{4\pi^2 m Z e^2}{\pi^2}\right)^2 \left(\frac{1}{2\pi^2 / k - \sqrt{1^2}}\right)^2 d \Omega$

to 1ho-kl = 2k sm & = 2mv sm @ z = th z which is the classical result for Rutherford scattering. Optical Theorem: I Theorem : Two Types of cross-section : $\begin{aligned}
\overline{\nabla}_{ee} &= \int \left| fer \right|^2 d\Omega \\
& m = n \\
\overline{\nabla}_{tot} \\
& \overline{\nabla}_{nm} &= \frac{\nabla_{nm}}{\nabla} \int \left| fnm \right|^2 d\Omega \\
& \overline{\nabla}_{abs}
\end{aligned}$ The theorem in that Stot can be written : Vtot = 4TT hu {fer(0)} Proof ! The asymptotic wave function is : 4 ~ elk # Mn (q) + fer elka Mn (q) + 2. fri e eknin 2 win 2 Morent part moberent part Recall i $q = \frac{t}{zmin} \left(\frac{\psi t}{\psi t} - \frac{\psi t}{\psi t} \right) d$ which is the probability current for one particle with the coordinater known. However, it contains the scatterer, so must use joint probability techniques and integrate over scatterer coordinates : $f = \int \frac{\pi}{2m} \left(\psi^{\dagger} \nabla \psi - \psi \nabla \psi^{\dagger} \right) dq = \ln \int \frac{\pi}{m} \psi^{\dagger} \nabla \psi dq$

claing a your' tow argument: SJ. n nº dr = - v Tabs velocity Thus : SE Vum | fum | dr Jin rd a = 2 of Jum + Re v { { coro + f(0) e exa(1-coro) + $\cos \theta f^{\dagger}(\theta) e^{-i\lambda_{R}(1-\cos\theta)} + \frac{|f|^{2}}{n^{2}} \int n^{2} d\Omega$ In differentiating en , we do not differentiate σtot = - Re (2π f(θ) (1+ con θ) e the (1- con θ) n d (con θ) Define: hr (1- coa 0) = J $\sigma_{tot} = -Re \int_{a}^{2\pi} \frac{2\pi}{b} f \cdot \left(2 - \frac{J}{b}\right) e^{-\frac{J}{d}} dS$ = 4TT Pm flot no interference 2 0 = 0 destructive interference.

LECTURE XV 3-13-61 Augular momentum Orbital angular momentum of a particle : $\overline{M} = r \times p$; $M_{\times} = y p_z - z p_y$ Poes This commute with the Hamiltonian components p2, VIA1 ? $[m_x, v(n)] = y[p_z, v] - z[p_y, v]$ $= y \frac{1}{2} V'(n) \frac{z}{2} - y \frac{1}{2} V'(n) \frac{z}{2} = 0$ prince $\frac{\partial r}{\partial z} = \frac{\partial}{\partial z} \left\{ x^2 + y^2 + 2^2 \right\}^{1/2} = \frac{z}{r}$ In the central field case. [mi, H] = 0 How about: [Mx, My] = [ypz-zpy, zpx-xpz] = [ypz, Zpx] - ... = E ypx - E xpy = $t_{R} M_{Z}$, $\cdot \cdot \Sigma M_{X}, M_{Y} = t_{R} M_{Z}$ In general: [My, Mk] = it Eyke Me where . Eykl = { 0 unless 111 all different 1 for 123, 231, 312 -1 for 132, 321, 213 Consider: M2 = Mx2 + My2 + M17 $[M_x, M^2] = [M_x, M_y] M_y + M_y [M_x, M_y] + \cdots$ = it Mz My + it My Mz - ··· = 0 $\therefore \quad \left[\mathcal{M}_{x}, \mathcal{M}^{2} \right] = 0$, so we now have two operation that commute with H; very, Mx, M2

Examine These in spherical coordinates: Now $M_x = \frac{h}{dx} \left(\frac{1}{dx} - \frac{1}{dy} \right)$ $\frac{1}{4x} = \frac{\partial r}{\partial x} \frac{\partial}{\partial r} + \frac{\partial \theta}{\partial x} \frac{\partial}{\partial x} + \frac{\partial \theta}{\partial y} \frac{\partial}{\partial y} + \frac{\partial \theta}{\partial y} \frac{\partial}{\partial y}$ Thus: $\frac{1}{\partial x} = \frac{x}{n} \frac{1}{\partial x} + \frac{\cos \theta \cos \theta}{n} \frac{1}{\partial \theta} - \frac{\sin \theta}{n \cos \theta} \frac{1}{\partial \theta}$ $\frac{\partial}{\partial y} = \frac{y}{r} \frac{\partial}{\partial r} + \frac{\cos \theta}{r} \frac{\partial \theta}{\partial \theta} + \frac{\cos \theta}{r} \frac{\partial}{\partial \theta}$ $\frac{1}{2} = \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{2$

 $M_x = \frac{t_1}{2} \left\{ - \sin q \frac{\partial}{\partial \theta} - \cot \theta \cos q \frac{\partial}{\partial \varphi} \right\}$ My = the flow of the - cate and the $M_{z} = \frac{\pi}{4} \frac{1}{40}$

now we form M?: $\mathcal{M}^2 = -t^2 \left\{ \frac{\partial^2}{\partial \theta^2} + \cot \theta \frac{\partial}{\partial \theta} + \csc^2 \theta \frac{\partial^2}{\partial \theta^2} \right\}$ $= -\frac{\pi^2}{n^2} \int \nabla^2 - \frac{1}{n^2} \frac{d}{dx} \left(\frac{n^2}{dx} \right) \left(\frac{1}{n^2} \frac{d}{dx} \right)$

Recall for the central field problem: $H = -\frac{\hbar^2}{2m} \nabla^2 + v(r)$

where we can now write: $H = -\frac{\hbar^2}{2mn^2} \frac{\partial}{\partial n} \left(n^2 \frac{\partial}{\partial n} \right) + V(n) + \frac{m^2}{2mn^2}$ 2mn2

how we already know the scult for the central field problem . Hu = Eu : $\mathcal{U} = \bigvee_{\varrho}^{m}(\varrho, q) R(n)$ which gives for the R equation eyon reparation of variables; $\frac{-\hbar^2}{2mn^2} \frac{d}{dn} \left(n^2 \frac{dR}{dn} \right) + \left(V - E + \frac{\hbar^2 l(l+1)}{2mn^2} \right) R = 0$ We see that the l(l+1) must be the orginvalues of Me and we can write the sigenvalue of mation $M^{z} Y_{e}^{m} = t^{z} l(l+i) Y_{e}^{m}$ $M_{z} Y_{e}^{m} = t_{e} m Y_{e}^{m}$ or $M^{2'} = \pi^{2} l(l+1)$ $M_{2}' = \pi m$, m = -l, -l+1, ... + lwe have generated a set of commuting observables that aperate on simultaneous eigenfunctions. Consider in the abstract, the operators defined sey: [My, Ma] = it Eyhe Me Take as sigenvalues " Mi, Miz, & where I is a set of other commuting observables. We will inooke ladder method: Define; M+ = Mx + x My m+ = m- = mx - 1 My

Let's see these commute: $\mathcal{M}_{+}\mathcal{M}_{-} = \mathcal{M}_{x}^{2} + \mathcal{M}_{y}^{2} + \mathcal{M}_{z} = \mathcal{M}_{-}^{2} - \mathcal{M}_{z}^{2} + \mathcal{M}_{z}$ $\mathfrak{M}_{-}\mathfrak{M}_{+} = \mathfrak{M}_{2}^{2} - \mathfrak{m}_{2}^{2} - \mathfrak{k} \mathfrak{M}_{z}$ $[m_{-}, m_{z}] = t_{k} m_{-}$ $[m_{\pm}, \delta] = 0$ which gwe: MZM+ = M+ (MZ + th) Mz M- = M- (Mz - th) now take the normalized bit of commiting observables (m, m'z, t') and operate with mªm+ : $m^2 m_+ | m^2, m_2, s'7 = m_+ m^2 | m^2, m_2, s'7$ $= m^{2} m_{+} | m^{2}, m^{2}, s' \rangle$ new unnormalized segentete of m2'. now try Mz M+ ; $m_{z} m_{+} (m^{2}, m^{2}, s') = m_{+} (m_{z} + t_{h}) (m^{2}, m^{2}, s')$ $= (M_{2}' + k) M_{+} | M_{2}', M_{2}', \delta' \rangle$ also eigenhet of Mz We now normalize by forming to uner product: <m', m'z, &' 1 m- m+ m', m'z, &' > $= \langle | \mathfrak{M}^2 - \mathfrak{M}_2 - \mathfrak{h} \mathfrak{M}_2 | \rangle = \mathfrak{M}^2 - \mathfrak{M}_2 - \mathfrak{h} \mathfrak{M}_2$ Thus: M+ (m2', m2, 8') = {m2'-m2-tr m2 3' 1mi, m2+th +'> M- 1m2, M2, 8' = {m2 - m2 + th m2 } 1m2, m2 - th, 2' >

now: M-(+) = Som2' - M2 - to M2 2 m2', m2, +'> $= \{ \{ \{ M_{2}^{\prime} + m_{2}^{\prime} + m_{2}^{\prime} + m_{2}^{\prime} \} + m_{2}^{\prime} \{ M_{2}^{\prime} + m_{2}^{\prime} \} \} + m_{2}^{\prime} \{ M_{2}^{\prime} \} + m_$ Thus showing that choice of + sign for square roots is consistent. LECTURE XVI 3-15-61 Recap: M+ = Mx + 1 My $m_{+}|m^{2}, m_{\bar{z}}, t'\rangle = \{m^{2} - m^{2}_{\bar{z}} - t, m^{2}_{\bar{z}} \}|m^{2}, m^{2}_{\bar{z}} + t, t'\rangle$ (+) $M - (M', M'_2, r') = \{ M'_1 - M'_2 + t_1 M'_2 \} (M'_1, M'_2 - t_1) \}$ (-) This problem is much like the ladder method of triating the harmonic ascillator where we had to restrict the eigenvalues to a certain range to heep out negative values. note: Imize = Jmil because Mi - ME = Mix + Miny now: < [Mx Mx]? must be positive, which proves the above inequality. We that stipulate a M+ (m2, (m2)max, 8') =0 Apply M- and get: M2- (M2)max - th (M2)max = 0 Similarly: M2' - (m2) rune + the (m2)min = 0 Thus: $(M_{\chi})_{max} = -t_{\chi} \pm \int 4M_{\chi}^{2} + t_{\chi}^{2}$ $(M_{\tilde{z}})_{mm} = t_{\tilde{t}} \pm 5$

must choose + for max, and - for min. Thus ; $(M_2)_{max} = - (M_2)_{mm}$ now the number of steps taken from max to nim is Twice from a to mad or min : 2 (m2) max = -2 (m2) mm = 27 th Possible values of y are 0, 2, 1, 3, 2, ... $m^{2'} = (2t)^{2} + t(2t) = -2(2+i)t^{2}$ Thus : th' M'z = -1, -4+1, ", 1-1, 1 or Miz = mth We can then change the notation, dropping V, of The eigenhet to: 1 ym ?. Then: (1) (Mx+2mg) 13m) = to [17-m)(y+m+1) [17, m+1) from 2(2+1) - m2 - m (2) (Mx - 1 my) 1 ym) = th { (j+m) (j-m+1) } 1 j, m-1) O ther notations: M2 4j,m = j(j+1)klym M2 4j,m = mt 4jm 4, m = <0, 4/1m) (11) ... (Mx + 1 My) 4jm = th {(q-m)(q+m+i)}" 4j,m+i (2') (mux - 1 mg) 4gm = th { (\$+m](\$-m+i]} 4gm-1 We can represent these operators in matrix form as follows,

(3) $(j'm'|mx+amy|jm) = t_{1} \{(j-m)(j+m+i)\}^{2} S_{1j'} S_{mm+1}$ (3) and (4) are adjoints of each atter. note that 4 j.m are eigenfunctions of any variables. Thus, we form: 1(4)) = Z 1gm) < gm/(4)) We can write, following Dirac ; $(M_{x} + M_{y})|(\psi)) = |(M_{x} + M_{y})\psi)$ $= \sum_{1}^{m} t_{i} \left\{ (j'-m')(j'+m'+i) \right\}^{n} |j',m+i) \langle j'm'|(\psi) \rangle$ Then " $\langle Jm | ((m_x + m_y) \psi) \rangle = t_h \{ (J - m + i) | J + m | \}^{1/2} \langle J, m - i \rangle (\psi) \rangle$ (5) $((m_x + m_y) +)_{(jm)} = t_k \int (j - m + i) (j + m)^{2/2} + (j, m - i)$ (6) $((M_x - M_y)\psi)(gm) = t_h \left\{(1 + m + 1)(1 - m)\right\}^{1/2} \mathcal{H}(1, m + 1)$ Much confusion exists between equation (5) and (6) and (1') and (2'). The difference is that in (1'), (2') I'm are labels, in (5', (6), I'm are arguments.

LECTURE XVII 3-17-61 Consider two dynamically independent systems: M., Mr with the commutation rules: [mis, min] = it Egge mie [mig, Mix] = it Egte Mie [Min, Mie] =0 now suppose $\overline{M} = \overline{M_1 + M_2}, M_2 = M_{12} + M_{22}$ with $[M_2, M_2] = i \hbar \epsilon_3 \lambda e M e$ and that M. Mr have eigenvalues and eigenstates such that : $\mathcal{M}_{i}^{z} = \mathcal{J}_{i} \left(\mathcal{J}_{i} + i \right) \mathfrak{h}^{z}$, $\mathcal{M}_{iz} = \mathcal{M}_{i} \mathfrak{h}$ $M_z^{2'} = J_z(J_z+i) t_z^2$; $M_{zz} = m_z t_z$ This is one possible set of commuting operators. Another set: $\mathcal{M}_{i}^{2\prime} = \mathcal{F}_{i}(\mathcal{F}_{i}+\iota)\hbar^{2}$, $\mathcal{M}_{2}^{2\prime} = \mathcal{F}_{i}(\mathcal{F}_{2}+\iota)\hbar^{2}$ $\mathcal{M}^2 = \mathcal{J}(\mathcal{J}+1)\mathfrak{h}^2 \quad ; \quad \mathcal{M}\mathcal{J} = \mathfrak{m}\mathfrak{h}$ but now cannot include Miz or Miz . . 200 Thus one set can be described by The quantum numbers 1, 1, m, mr and the other by 11, 12, 1, m. suppose we label states of the first kind, Then eigenhet is : (J. M.) (J. m.) = (J. J. m. mz > The hets for the other system can be found by expansion in terms of the first.

(Ji Ja mi ma) will be used as the basis ! (j, j2, j, m) = Zi J, j2 m, m2) (j, j2m, m2 lf, j2 Jm) How does one find these coefficients? Called Clebset - Gordon coefficients. The sum in really over m, + m2 = m since MZ = MIZ + MZZ Can we show that list of I is ! 1 = Jitte, Jitte-1, ... 1 fittel 3i+12-1 3i+12 lines Take 1i = 3 if m=mi+mz 1z = 3/2We can go to wave X X X functions: fym = Z Pmi Xmz (- 1 m) mit Mz=m x x x m fit fr fitte-1 available products 1 2 ··· オレーチン ··· -アレキア ··· - オレーチン · ~ Zyz+1 ···· Zyz+1 ···· 1 1 \$1, \$2, \$1+\$2, \$1+\$2)> = [\$1, \$2, \$1, \$2) parteuler particular } apply M- = Mx - a My to step down above ket. Plat of available products . for remaining after applications Example: Take y = 2, 7==1 (fin) (fin) = Um, (fin) = Umr (fin) = for total system.

available Wave functions : UZ u. U. No Vo 11-1 V-1 11-2 3 m =2 1 0 -1 - 2 -3 1227 M2 Vo 12 2-1 11, 0-1 llo U. 11-2 J-1 11-12-1 U. Vi M. V. 11000 11-150 Un Vo Mov, M-1 0, ll-zV, now: Q33 = U2 Vi Operate with M- on Q33 : 56.1 Q3,2 = 54.1 M. V. + 52.1 UzVo We similarly generate \$31 ! 5.2 931 = J2 (J3.2 Movi + J2.1 M. V. + J' (J4.1 M. Vo + JT.2 M2 Va) $Q_{31} = \sqrt{\frac{2}{30}} \, ll_2 \, \overline{U_2} + \sqrt{\frac{16}{30}} \, ll_1 \, \overline{U_0} + \frac{12}{\sqrt{30}} \, ll_0 \, \overline{U_1}$ or $Q_{31} = \int_{15}^{1} \mathcal{U}_{2} \mathcal{V}_{1} + \int_{15}^{8} \mathcal{U}_{1} \mathcal{A}_{0} + \int_{15}^{6} \mathcal{U}_{0} \mathcal{V}_{1}$ which we can set is normalized. The others 93,0 etc., can be found in a similar manner. Mow: $4zz = \sqrt{\frac{1}{3}} \mathcal{U}_i \mathcal{V}_i - \sqrt{\frac{z}{3}} \mathcal{U}_z \mathcal{V}_o$ Can find using <u>m-</u> Py, m = {(++m)(+-m+)}/2 Pz, m-921, 920, etc.

LECTURE XVIII 3-20-61 Ance we have $l_{3,z} = \int_{-\frac{1}{3}}^{-1} l_{z} v_{0} + \int_{-\frac{3}{3}}^{-2} l_{i} v_{i}$ we can write using orthogonality; $Q_{22} = \int_{-\frac{1}{3}}^{\frac{2}{3}} M_2 v_0 - \int_{-\frac{1}{3}}^{\frac{1}{3}} M_1 v_1$ and using the ladder operator: Q21 = J²/₆ U2 U1 + J¹/₆ U. V0 - J³/₆ U0 U. etc. We now more on to Pil. €1,1 = a M2 0-, + b M, Vo + C Mo V. where a, b, c must be such that q, i are othogonal to 92,1 and 93,1, or the coefficient match as " $\int \frac{1}{15} \qquad \int \frac{8}{15} \qquad \int \frac{6}{15}$ JZI JII - JZI a Ame all q's are orthogonal and normalized The rows are orthogonal and so are the columns. $\alpha^{z} = 1 - \frac{1}{15} - \frac{2}{6} = \frac{15 - 1 - 5}{15}$ $b^2 = 1 - \frac{8}{15} - \frac{1}{6} = \frac{30 - 16 - 5}{30}$ $c^2 = \frac{30 - 12 - 15}{30}$ We can choose signs by insepertine and find $a = \int \frac{18}{30}^{1}$, $b = -\int \frac{7}{30}^{1}$, $c = \int \frac{37}{30}^{1}$ then: Q1,1 = Jo 112 V-1 - Jo 11. Vo + J Mal. and the rest can be found with the ladder

toppose, though, we have available j=7, j=c/ and we want the state for j=4, m=0 or 940. There is a simpler way. Use fact that $\frac{m_+}{\pi}$ west annihilate φ_{ii} : $m_+ = \int (f^{-m_i})(f^{+m_+i})$ $\frac{\mathcal{M}_{+}}{\hbar} \left\{ \begin{array}{c} \mathcal{M}_{1,1} = \mathcal{R} \mathcal{M}_{2} \mathcal{T}_{-1} + b \mathcal{M}_{1} \mathcal{T}_{0} + c \mathcal{M}_{0} \mathcal{T}_{1} \\ \end{array} \right.$ $0 = a \mathcal{U}_{2} \cdot \sqrt{21} \mathcal{V}_{0} + b \left(\mathcal{U}_{1} \sqrt{12} \mathcal{V}_{1} + \sqrt{14} \mathcal{U}_{2} \mathcal{V}_{0} \right)$ + c J 2.3 U, U, The coefficients must equal to zero: $\int z^2 a + \int q^2 b = 0 \qquad , \quad \int z^2 b + \int b^2 c = 0$ $a = -\sqrt{2}b$, $c = -\sqrt{\frac{1}{3}}b$ to by using M+ we can find the initial 9 of each group. Suppose we wanted 97,0. Even with initial 9, it in Tedeoux to find. Take 1, anything such that 1, 3 fr = 1. Try to find formula for ly, m. dre fact that l'a are eigenfunction of some operators. The values of ly, m are: ly, m = A ll m+1 V-1 + B ll m Vo + C ll m-1. UT now 1 m² = m1 + m2 = m² + m² + 2 m12 m22 + Z Mix Max + Z Miy May $\sigma_{1} = m_{1}^{2} + m_{2}^{2} + 2 m_{12} m_{22} + m_{1+} m_{2-} + m_{1-} m_{2+}$ Now apply $\frac{m^2}{\hbar^2}$ onto $q_{j_1,m}$: $m_+ = \sqrt{(j-m)(j+m+1)}$ $m_{-} = \int (y+m)(y-m+i)^{2}$

since quin is an experifunction of M2, its application results m. $j_1(j_1+1) q_{j_1,m} = A \left\{ f_1(j_1+1) + 2 - 2(m+1) \right\} M_{m+1} U_{-1}$ + $\int (q_1 + m + 1) (q_1 - m) \int z^2 M_m T_0 + B \int \int (q_1 + m + 1) \int z^2 M_{m+1} T_{-1}$ + [1. (1,+1)+2] Um Vo + (1,+m) (1,-m+1) J2 Um-, Vi + c g [(j, -m+1) (j, +m) Jz Um Jo + [j, (j, +1) + z + z (m-1)] Um-1 J) Equating coefficients : $M_{m+1} U_{-1} : -2mA + \sqrt{2(j_1-m)(j_1+m+1)} B = 0$ Mm Vo: ~ A + ~ B + ~ C = 0 $\mathcal{M}_{m-1}\mathcal{D}_{1}$ $\mathcal{J}_{2}(\mathcal{J}_{1}+\mathcal{M})(\mathcal{J}_{1}-\mathcal{M}+1) \mathcal{B} + \mathcal{Z}\mathcal{M}\mathcal{C} = 0$ The middle equation is seen to be not needed. Take B = 2m : A = JZ(gr-m)(gr+m+1) $c = - \sqrt{z(j; \pm m)(j; -m \pm i)}$ Since there are proportionalities, we can make equalities by taking the sum of squares of A and C: 41. (1+1) - 4m² + 4m² = 41. (1+1) Jz=1 (1,1; m, , W2) 1,1; J,m) Tables : y mz -1 0 11-1 (1 + m.) (7 - m+1) m (11-m) (71+m+1) 30 21 (1.+1) 27. (9.+1) 71+1

LECTURE XIX 3-20-61 Infinitesimal Transformations, Transformation: shift of coordinates or : shift of state with respect to coordinates. Here we take transformation as shifting coordinate system with respect to state. We will examine connection with angular momentum. standard reference in Pauli's Quantumechanik. Also see Rose, Edwards, and Pirac on augular momentum. also new book by Powell and Crasimann. Two different types of infinitesimal transformation in rectangular coordinate system; se.n P Translation ! 2' Rotation : Au x' Consider a scalar wave function at P: 4(P) = 4(X, Y, Z)

= \$ (x', y', z') which in a different function but has the same value at P is 4(x, y, 2). The rule to get 4 (x', y', Z') no !

 $\Psi'(x', y', z') = \Psi_2 X(x', y', z'), Y(x', y', z'), z(x', y', z')$

Definition: $\varphi'(x, y, z) - \varphi(x, y, z) = S \varphi(x, y, z)$ What is \$? Consider anall enough to work out to pirat order in St or SQ. Consider Translation along X: $x' = x - \delta x$ or x = x' + dx $\begin{array}{cccc} s_{X} & \bullet P & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & &$ Then: $\Psi'(x', y', z') = \Psi(x' + Sx, y', z')$ and $\delta \psi = \delta x \frac{\partial \psi}{\partial x}$ Luppose we had more particles in aystem. x, = x,' + 8x etc. for the rest of particles; y. = yi 21 = 2. Then: $S \psi = S \times \Xi = \frac{\partial \psi}{\partial x_a} = S \times T \times \psi$ Call Px = to Tx : Then Px = Z Pax = Z to dxa on the linear momentum. Therefore, $S \psi = S \times \cdot \frac{1}{2} F$ SU= Sx· · Px U For u. St translation, SU = St. - (u. F) 4 where $\vec{P} = \sum_{a} \vec{Pa} = \sum_{a} \frac{\pi}{Va} Va$ forpose we have a Hamiltonian whose potential function depends only on the relative position of the particles: $H = \sum_{a} \frac{p_{a}}{zm_{a}} + V(r_{1} - r_{2}, r_{1} - r_{3}, ...)$

We now note the important fact that : [H, P] = 0If we had a term such an V(r,), I would not commute with the translation operator, since P commuter with H, P is a constant of the motion, since the Hamiltonian in invariant under The infinitesimal translation. Infinitesimal Rotation: Consider rotation around 2 apris: y' s p y = x' - y S q x = x' - y S q x' = y' + x S q z = z'For x', y', z': $\delta \psi = \psi \left(x' - \gamma \delta \varphi, y' + x \delta \varphi, z' \right) - \psi \left(x', y', z' \right)$ Ance we are working in the first order in SQ, we can drop primer : $S\psi = \delta\varphi \cdot x \frac{\partial\psi}{\partial y} - \delta\varphi \cdot y \frac{\partial\psi}{\partial x} = S\varphi \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}\right)\psi$ Rz Then we see: S' = Sq. Rz 4 = Sq. 1 Mz 4 In general: SU = SU - (ii. mi)U For several particles: $\overline{M} = \sum_{\alpha} \overline{M}_{\alpha} = \sum_{\alpha} \overline{N}_{\alpha} \times p_{\alpha}$ now suppose a Hamiltonian of the form: $H = \sum_{a} \frac{p_{a}}{zm} + \sum_{a} V_{a}(sia) + V(|r_{i} - r_{z}|, |r_{i} - r_{s}|, ...)$ Then it can be shown: [H, m] = 0 hence, Mi is a constant of the motion; and is Thus conserved.

For preparation for opin, consider vector wave functions. We call this wave function A. For $\hat{i} \cdot \bar{A}$ we have scalar. Then: Por $\hat{i} \cdot \bar{A}$ we have scalar. Then: \hat{A} \hat{F} \hat{S} $\hat{x} \cdot \bar{A} = S \mathcal{Q} \cdot \left(\chi \frac{\partial}{\partial y} - y \frac{\partial}{\partial \chi} \right) \hat{i} \cdot \bar{A}$ \hat{I} \hat{I} now: SAx = Ax' {x(x',y',z'), y(x',y',z'), z(x',y',z')} - Ax(x,y,z) Then we could write ; $SAx = SQ. \frac{1}{h} J_{Z}Ax + SQ. \frac{1}{h} (S_{Z}A)_{X}$ It will them that SZ is the spin angular momentum, It can be shown geometrically that: $A_{x'}(P) = A_{x}(P) + S \varphi A_{y}(P)$ $A_{y'}(P) = A_{y}(P) - S \varphi A_{x}(P)$ Then: SAX = SQ 1 22 Ax + SQ Ay and : $\frac{1}{h} (S_{\Xi} A)_{X} = A_{Y}$ $\frac{\lambda}{\pm} \left(S \neq A \right)_{y} = -A_{x}$ $\frac{1}{\pi} \left(Sz A \right) z = 0$ These in vector - moting notation ! $S_{\mathcal{Z}} = \frac{T}{L} \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & \delta \end{pmatrix}$

We finally can write for The general rotation : $S\vec{A} = Jq \cdot \frac{1}{\hbar} (\hat{u} \cdot \hat{m})\vec{A}$ where now: $\tilde{m} = L + S$ $\frac{dl_{10}}{5x = \frac{\pi}{2}} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} ; \quad Sy = \frac{\pi}{2} \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$ $N_{0}w_{1} = -h^{2} \begin{pmatrix} 0 & 0 & 0 \\ 0 & -i & 0 \\ 0 & 0 & -i \end{pmatrix}; \quad S_{2}^{-} = -h^{2} \begin{pmatrix} -i & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -i \end{pmatrix}$ $S_{2}^{2} = -t_{1}^{2} \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\forall hen: S^2 = h^2 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ Thus the eigenvalues of 5° are z to2 LECTURE XX 3-24-61 Recapitulation : $\begin{array}{c} 8 \\ A_{y} \\ A_{z} \\ A_{z} \end{array} = \frac{1}{\pi} S \varphi \left(\hat{\mu} \cdot \mathcal{M} \right) \begin{pmatrix} A_{x} \\ A_{y} \\ A_{z} \\ A_{z} \\ \end{array}$ where $\widetilde{m} = \widetilde{J} + \widetilde{S}$, and \widetilde{F} is the augular momentum operator and \widetilde{S} in the spin operator Consider rotation around the z-axis and The constant in space or for fixed point P. $\begin{pmatrix} A'_{x} \\ A''_{y} \\ A''_{z} \end{pmatrix} = \begin{bmatrix} 1 + Sq \cdot R_{z} \end{bmatrix} \begin{pmatrix} A_{x} \\ A_{y} \\ A_{z} \end{pmatrix}$ Rotation about $O \not\equiv A_{z}$

where $R_2 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Mow: BxRy = (000 000), can find [Rx, Ry] =- RZ on [Sx, Sy] = it Sz so the spin operator commute as augular momentum operators as would be expected since they are generated by infinitesimal rotations, rotations, However, one userally says that infiniterimal rotations commute in the first order . $[1 + Sq R_z][1 + Sq R_q] = 1 + Sq R_z + Sq R_z + (Sq)^2 R_y R_z$ now take rotation by finite & around OF or, we repeat the rotation "Se" of times, vig: $\begin{pmatrix} Ax' \\ Ay' \\ Ay' \\ Az' \\ Az' \\ \delta\varrho \to o \\ \end{pmatrix} = \mathcal{J}_{im} \begin{bmatrix} I + \delta \varrho Rz \end{bmatrix}^{\frac{\varrho}{\delta \varphi}} \begin{pmatrix} Ax \\ Az \\ Rz \\ Rz \\ \end{pmatrix}$ the the binomial Theorem : $I + \frac{\varphi}{S\varphi} \cdot S \mathscr{C} R_{\overline{z}} + \frac{\varphi}{S \mathscr{C}} \left(\frac{\varphi}{S \varphi} - l \right) \left(S \mathscr{C} \right)^{2} R_{\overline{z}}^{2} + \dots$ note that Lim [I + SPR=] \$ is The definition of C as the series shows also. Thus: $\begin{pmatrix}
A_{x}' \\
A_{y}' \\
A_{z}'
\end{pmatrix} = e \begin{pmatrix}
A_{x} \\
A_{y} \\
A_{z}
\end{pmatrix}$ Recall $St^2 + S_2^2 + S_2^2 = S^2 = 1.(1+1) t^2$ gives The eigenvalue y = 1 and for Sz, m= - 4, 0, + 4.

 $R_{z}^{2} = \begin{pmatrix} -100\\ 0&-10\\ 0&00 \end{pmatrix}, R_{z}^{3} = \begin{pmatrix} 0&-10\\ 1&0 \end{pmatrix} = -R_{z}$ Thus we would find: RZ = - RZ, etc, or we have found all the powers of RZ : From: $e^{qR_2} = 1 + e^{R_2} + \frac{e^2R_2^2}{c_1^2} + \frac{e^3R_2^3}{3_1^2} + \cdots$ Then: $e^{QR_z} = 1 + R_z \left(Q - \frac{Q^3}{3!} + \frac{Q^5}{5!} + \dots \right)$

 $+ R_{z}^{2} \left(\frac{\varphi^{2}}{z_{l}} - \frac{\varphi^{4}}{4} + \frac{\varphi^{6}}{6} \right)$

= 1 + Rz sur q + Rz (1 - con q)

and for	nally	-			
	d	1			
Ax		core le	en q	0	(Ax
Az	-	-sin l	on 4	0	Ay
(A2)		0	0	1	Az /

or the usual result.

What diagonalizes RZ? At eigenvalue are 1,0,-1 for RZ. Then 1 R= $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ = $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ = $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ = $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ eigenvector by trial.

For Sz: Eigenvectors Eigenvalues th $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ 0 - t.

be direc notation:
$$\begin{pmatrix} A_{k} \\ A_{2} \\ B_{2} \end{pmatrix} = \begin{pmatrix} \langle \hat{x} \rangle \rangle \\ \langle \hat{x} \rangle \rangle$$

and any let can be written:
 $1 \rangle = \sum_{\substack{n \neq k}} 12 \rangle \langle \hat{x} | \Sigma$
We can write the vector congenents:
 $\begin{pmatrix} A_{k} \\ A_{3} \\ A_{4} \end{pmatrix} = a \begin{pmatrix} \frac{1}{12} \\ \frac{1}{12} \end{pmatrix} + b \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} \frac{1}{12} \\ \frac{1}{12} \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{12} \\ 0 \end{pmatrix} + c \begin{pmatrix} \frac{1}{12} \\ \frac{1}{12} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{12} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{12} \\ \frac{1}{12} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{12} \\ 0 \end{pmatrix} + c \begin{pmatrix} \frac{1}{12} \\ \frac{1}{12} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{12} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{12} \\ \frac{1}{12} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{12} \\ 0 \end{pmatrix} + c \begin{pmatrix} \frac{1}{12} \\ \frac{1}{12} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{12} \\ 0 \end{pmatrix} \end{pmatrix} \begin{pmatrix} \frac{1}{12} \\ 0 \end{pmatrix} \begin{pmatrix} \frac{1}{1$

Then we can form the ladder operators: $\mathcal{A}_{+} = \mathcal{A}_{\times} + \mathcal{A}_{y} = \begin{pmatrix} 0 & -\sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} t_{1} \\ 0 & 0 & 0 \end{pmatrix}$ LECTURE XXT 3-27-61 Electron fin We need to define a new two component quantity called a spinor. The representation of these quantities in described by square matrices. point. If we can locate a particle in de volume, we may be able to which direction the April polo, $\Box dx \qquad \operatorname{Probability} \quad \operatorname{and} \quad \operatorname{cspin} \operatorname{app} (\operatorname{ms} = \pm)'' = |\Psi(\sigma, t/z)|^2 dz$ ": " spin down [245 = - 2] = [4(5, - 1/2)] 2 dr note that we include the dicrete variable of = = with the continuous variable r. However, we could define a new wave function in r for each spin, such that, "up" = 1f(n)1² dr "down" = 1g(n)1² dr and these form a two-component wave function (917) We must have : {(1512 + 1912) dr = 1 If we have usual functions util, v(1) and orthonormal, we can write :

$$f = \alpha u , \quad S = \beta v \quad so \quad \text{that} \quad |x|^2 + (\beta|^2 = 1)$$

We can construct using apin eigenvalues:

$$\begin{pmatrix} f(n) \\ g(n) \end{pmatrix} = f(n) \begin{pmatrix} 1 \\ o \end{pmatrix} + g(n) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

and for arbitrary function:

$$\begin{pmatrix} a \\ b \end{pmatrix} = a \begin{pmatrix} i \\ o \end{pmatrix} + b \begin{pmatrix} 0 \\ e \end{pmatrix}$$

$$\begin{cases} Sz \quad \Psi_{+1/2} = \frac{1}{z} t_1 \quad \Psi_{+1/z} \end{cases}$$

(b)
$$\psi_{\pm 1/2} = \begin{pmatrix} i \\ o \end{pmatrix}, \quad \psi_{\pm 1/2} = \begin{pmatrix} i \\ i \end{pmatrix}, \quad \xi_{\pm 1/2} = -\frac{i}{2} t_{\pm} \psi_{\pm 1/2}$$

and the operator is written $S_Z = t_{\pm} \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$
Recall: $M_{\pm} = t_{\pm} \sqrt{(3 \pm m)} (3 \pm m + i) + \psi_{\pm} m \pm i$

and
$$S_x = \frac{\pi}{2} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
; $S_y = \frac{\pi}{2} \begin{pmatrix} 0 \\ -\lambda \\ \lambda \\ 0 \end{pmatrix} = \frac{\pi}{2} \nabla_y$
= $\frac{\pi}{2} \nabla_x$

$$S_{z} = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \frac{\hbar}{2} t_{z}$$

The Je = 1 Ealm Jm + She I

where the matrices
$$\nabla h$$
 are the Pauli spin matrices.
Note $\nabla_k^2 = 1$, $h = x_3 y_1^2$.
Also, all these matrices anti commute:
 $\nabla_h \nabla_e + \nabla_e \nabla_h = 2 \delta_{he} I$

and :

also,
$$[\sigma_n, \sigma_2] = 2i tilm \sigma_m$$

 $[S_k, S_2] = it tilm S_m$

now ma a magnetie field, we can define a magnetic moment: $\vec{S} = \frac{t}{2}\vec{B}$, $\vec{u} = \frac{e}{mc}\vec{S} = \frac{et}{zmc}\vec{d}$ will appear in the Hamiltonian. Suppose we cotate Se around ii ; $\psi' = \left[1 + \frac{1}{\pi} \left(\hat{u} \cdot \vec{S}\right) \delta e\right] \psi$ $= \left[1 + \frac{1}{2} \left(\hat{a} \cdot \vec{\sigma} \right) S e \right] \psi$ For a finite rotation q ! $\psi' = \lim_{\delta q \to 0} \left[1 + \frac{1}{2} \left(\hat{\mu} \cdot \vec{\sigma} \right) \delta q \right] \frac{\psi}{\delta q} \psi$ $= e^{i\frac{\varphi}{2}(\hat{u}\cdot\hat{\sigma})}\psi$ $how: \hat{\mathcal{U}} \cdot \vec{\nabla} = \begin{pmatrix} \mathcal{U}_{\mathcal{Z}} & \mathcal{U}_{\mathcal{X}} - \mathcal{U}_{\mathcal{U}} \\ \mathcal{U}_{\mathcal{X}} + \mathcal{U}_{\mathcal{U}} & -\mathcal{U}_{\mathcal{Z}} \end{pmatrix}$ and $(\hat{u}\cdot \hat{\sigma})^{\nu} = (\mathcal{U}_{\times} \tilde{\tau}_{\times} + \mathcal{U}_{y} \tilde{\tau}_{y} + \mathcal{U}_{z} \tilde{\tau}_{\star}) (\mathcal{U}_{\times} \tilde{\tau}_{\times} + \mathcal{U}_{y} \tilde{\tau}_{y} + \mathcal{U}_{z} \tilde{\tau}_{\star})$ $e^{\frac{\varphi}{2} \cdot (\vec{u} \cdot \vec{\sigma})} = coz \frac{\varphi}{2} + \iota (\vec{u} \cdot \vec{\sigma}) sm \frac{\varphi}{2}$ $= \begin{pmatrix} \cos \frac{\varphi}{2} + \omega \, d_{\overline{z}} \, \sin \frac{\varphi}{2} \\ (\lambda \, d_{\overline{x}} + \, d_{\overline{y}}) \, \sin \frac{\varphi}{2} \\ (\lambda \, d_{\overline{x}} - \, d_{\overline{y}}) \, \sin \frac{\varphi}{2} \\ \cos \frac{\varphi}{2} - \lambda \, d_{\overline{z}} \, \sin \frac{\varphi}{2} \end{pmatrix}$ Rotate around x by 180° Example : = q $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ if \mathcal{F} $\psi' = \iota \forall \iota \psi \equiv \begin{pmatrix} 0 \\ \iota \end{pmatrix}$

Now take q = 17/2 dround & axis $\psi' = \begin{pmatrix} \sqrt{2} & \sqrt{2} \\ 2 & 2 \\ \sqrt{2} & 2 \\ \sqrt{2} & \sqrt{2} \\ \chi \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ 2 \\ \sqrt{2} \\ 2 \\ \chi \end{pmatrix}$ which gues probability 's for left or right For q= 2TT around x-axis; (-1 0) so that we get negative of (0-1) identity. Thus our rotation matrix in double-valued. However, probabilities are still the same. There are then two matrices per potation. Quaternions: 1, e, j, ke with properties 2² = j² = h² = -1 Hanriltona method of rotation was to sandwich the vector between two quaternions. (cos 2 - 1 Mx - J My - A Mz) (Ax 1 + Ay 1 + Ask) (cos 2 + 1 Mx + 1 My + 1 Mz) now this representation in isomorphic to the Pauli matrices; 10x - 1 1 Ty -> J 1 Jz - k must whatile difference in meaning which is similar to defference between policedunger and Departures to Times Heesenberg representations.

LECTURE XXII 3-29-61

Suppose we know & (total augular momentum) which is in a state such that we know a component along an axis.

I in fixed along to. Probability for in along 2, given mo along to in the initial preparation of the 0 state, u: (Em, Emo)

now : $|\langle m|m_0\rangle|^2$: $|m_0\rangle = \sum_{m} |m\rangle \langle m|m_0\rangle$ Can do same with rotation operator: $\lim_{\delta \to 0} \left[\frac{1}{2} + \delta \theta + \frac{1}{\hbar} m_y \right]^{\frac{\theta}{\delta \theta}} \psi_{m0} = \psi_m$

Take f=1: rf(r) Yimo

(010) = co2 @

 $\langle 1|0\rangle = \langle -1|0\rangle = -\underline{Am\theta}$

Then M_0 $0 \rightarrow \begin{cases} 1 & \frac{4m^2\theta}{2} \\ 0 & \cos^2\theta \\ -1 & \frac{4m^2\theta}{2} \end{cases}$

for m=0: rf(n) cor 00 = f(n) Zo

 $= f(n) (con \theta, z - sm \theta, x)$

 $f(x) = \begin{cases} \overline{x} & 0\\ \underline{x+xy} & 1\\ \overline{yz'} & 1\\ \underline{x-xy} & -1 \end{cases}$

$$m_{0} = l : f(\alpha) \cdot \frac{x_{0} + x_{0}}{(z^{2})} = f(\alpha) \times \frac{\alpha + \alpha + x_{0}}{(z^{2})} + 2 \operatorname{sma}_{(z^{2})}$$

$$x = \alpha + x_{0} = \alpha (x + x_{0}) + b(x - x_{0})$$

$$a + b = c = \alpha = , a - b = 1$$

$$m_{0} \qquad \begin{cases} m_{1} \quad (1 + c - \alpha)^{2} = c = \alpha + \frac{\alpha}{2} \\ 0 \quad \sin^{2} \alpha = 2 \operatorname{sm}^{2} \frac{\alpha}{2} \quad \cos^{2} \alpha = \frac{\alpha}{2} \\ -1 \quad (1 - \alpha - \alpha)^{2} = - \operatorname{sm}^{2} \frac{\alpha}{2} \\ -1 \quad (1 - \alpha - \alpha)^{2} = - \operatorname{sm}^{2} \frac{\alpha}{2} \\ \end{cases}$$

$$m_{0} = \frac{1}{2} \quad [m_{0} > - \frac{1}{2} - \frac$$

$$\begin{aligned} \overline{Z}d_{M} \quad g=1: \\ m=1: \quad - \underbrace{d_{max}}{2} \quad \overline{J^{2}} \quad \langle 0|M_{0} \rangle + (c_{nax} - m_{0}) \langle 1|m_{0} \rangle = 0 \\ m=-i: \quad (-c_{nax} - m_{0}) \langle 1|m_{0} \rangle - \underbrace{a_{max}}{2} \quad \overline{J^{2}} \langle 0|M_{0} \rangle = 0 \\ \langle 1|m_{0} \rangle = \underbrace{Smx}}{\overline{J^{2}} (c_{nax} - m_{0})} \quad \langle 0|M_{0} \rangle \\ \langle 2|m_{0} \rangle = \underbrace{d_{max}}{\overline{J^{2}} (c_{nax} - m_{0})} \quad \langle 0|M_{0} \rangle \\ \langle 2|m_{0} \rangle = \underbrace{d_{max}}{\overline{J^{2}} (c_{nax} - m_{0})} \quad \langle 0|M_{0} \rangle \\ \langle 2|m_{0} \rangle = \underbrace{d_{max}}{\overline{J^{2}} (c_{nax} - m_{0})} \quad \langle 0|M_{0} \rangle \\ \langle 2|m_{0} \rangle = \underbrace{d_{max}}{\overline{J^{2}} (c_{nax} - m_{0})} \quad \langle 0|M_{0} \rangle \\ \langle 2|m_{0} \rangle = \underbrace{d_{max}}{\overline{J^{2}} (c_{nax} - m_{0})} \quad \langle 0|M_{0} \rangle \\ \langle 2|m_{0} \rangle = \underbrace{d_{max}}{\overline{J^{2}} (c_{nax} - m_{0})} \quad \langle 0|M_{0} \rangle \\ \langle 2|m_{0} \rangle = \underbrace{d_{max}}{\overline{J^{2}} (c_{nax} - m_{0})} \quad \langle 0|M_{0} \rangle \\ \langle 1|m_{0} \rangle = \underbrace{d_{max}}{\overline{J^{2}} (c_{nax} - m_{0})} \quad \langle 1|m_{0} + c_{nax} \rangle^{2} \\ \langle 1|m_{0} \rangle = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)^{2}} \\ \langle 0|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} + c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} + c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{max}}{\overline{J^{2}} (m_{0} - c_{nax} \times)} \\ \langle 1|m_{0} \rangle |^{2} = \underbrace{d_{m$$

(

~

LECTURE XXTT 3-31-61 Systems Containing Elementary Particles We take the state described by 4(1, 12, ... 10) in which : (4 (1, 1, ... IN) du ... du = probability of finding 1 in du, 2 in du, etc. Prob. of I'm dre = dr, SIt(n, ... no) I' dre ... dro With spins, we have to include reference to orientation in wave function argument, viz; ri, mis ~ ri, Si . Then; state is; 4 (N., Si ; Rej Sz ; ...)

For two particle system: 4 (凡士; 凡之之) 中(ハ之;ハマ-之) 中(ハ, 士; ハ2 主) 4 LAI -== 1 R2 -==) One can think of there as elemente of a

 $\begin{pmatrix} f \\ 3 \\ h \\ \end{pmatrix} : |f(n_1, n_2)|^2 dn, dn_2 = Rrob. 1 m dn; and$ has mos = 1/2and 2 m dra and lian 11/25 = 1/2

Can have Brob. 1 m dr, , 2 m drz $= \sum_{s_1=\frac{1}{2},-\frac{1}{2}} \sum_{s_2=\frac{1}{2},-\frac{1}{2}} |\Psi(\Lambda_1, s_1, \Lambda_2, s_2)|^2 d_{I_1} d_{I_2} d_{I_2}$

Prob. In dri and with $\frac{1}{2} = dri \sum_{s_1} \int dr_2 |\psi(r_1, \frac{1}{2}; r_2, s_2)|^2$ Recall: J' = Z' Z' The Jdrz (4" R. 4 - 4 R. 4")

We now consider particles which are identical; Now in danical plugico, there are several ways to tell particle apart. O measure or detect difference in intrimic properties 2 Trace pather. now in QM, O is still possible. However, if O is not available, & can never be because of encertainty principle when particles are closely interacting, like in Helium or any atom. Now, if all particles are identical we have for the Hamiltonian (which must involve each particle the same way); H (M, PI, Si; Rz, Pz, Sz; ...) = H (R2, B2, S2; 1, p, Si; ...), otc. Define the operator Piz that exchanges the particles, such that . $P_{12}H = HP_{12}$ or $[P_{12}, H] = 0$ or, define the general germitation operator ; $PH = HP \quad or \quad [P,H] = 0$ Consider 3 particles : P's operate such that ; (identity operator) } even By ensing 1, 2, 3 -> 1, 2, 3 P's can form (Piz) } odd } even 2,1,3 alteryunelice 1,3,2 or agrimetic wave fuction. 3,2,1 Z. (Pevon - Podd) + 3,1,7 for antiguneri 2,3,1 For n particles, there are always n. operators. with 1/2 odd and 1/2 even.

We can even include perturbations because they treat each particle the same. The operators do not commete with each other. the operators not only could commute with H but also with other quantities. now, we have ; $H\Psi = E\Psi$ $PH\Psi = EP\Psi = HP\Psi$ so that P4 in also an eigenfunction. If 4 in non-degenerate P4 is just a multiple of 4, that is : P3+4= c4, applying P3h again we get 4= c24, c= ±1 Af C in +1, I is symmetric; C=1, 4 antisymmetric Can show by P34 = P24 Pis Pic Pis P24, that P34 in same as Piz. Particles which are antisymmetric are called Fermions, symmetric particles are called Bosons. LECTURE XXIV 4-10-61 Recall : $\left[P,H\right] = 0$ H4 = E4 $HP\Psi = EP\Psi$ of degenerate, get linear combination: Pt= = E py by

of we add perturbation to H, the result still commuter with P. The effect of time on the permutation is will ance P commuter with all H, even H Time dependent: $P \frac{\partial \psi_i}{\partial t} = \sum_{j=1}^{f} P_{ij} \frac{\partial \psi_j}{\partial t}$ Example: Apen Function, spin 1/2 Define: Sa: 1/2 2 eigenbalues eigenfunction b: -1/2 } For two electrons, define ab = a(1) b(2) Then, aa 1 $\sqrt{\frac{1}{2}}(ab+ba)$ 0 66 -1 These are all symmetric with s=1 and 15 called the Triple state. For anti-signimetric: VI (ab-ba) \$0 colled singlet For 3 particles (not electrons) Ms aaa 3/2 to (aab + aba + baa) 1/2 - 1/z is (abb + bab + bba) 666 -3/z These are symmetric; impossible to make antisymmetric. corresponds to 5= 3/2. If we look for combination. orthogonal to above combinations, we get: Ms $\frac{1}{2}$ $\frac{1}{\sqrt{21}} (aab - baa) = \mu \zeta s = \frac{1}{2}$ - $\frac{1}{\sqrt{21}} (abb - bba)$ which are wither symmetric or antisymmetric.

If we look further : Ms $v = \frac{1}{\sqrt{67}} \left(aab - 2 aba + baa \right)$ $-\frac{1}{\sqrt{67}} \left(abb - 2 bab + bba \right)$ 1/2 -1/2 $\zeta = 1/2$ If we apply the permitation Piz to u ; $P_{12} \mathcal{M} = \frac{1}{\sqrt{21}} \left(aab - aba \right) = \frac{1}{2} \mathcal{M} + \frac{\sqrt{31}}{2} \mathcal{V}$ and $P_{12}v = \sqrt{31}u - \frac{1}{2}v$ Can show , Pis u = - u Pis v = v it and v are said to be the basis of the group. That in, if: $P_{12}(Au + Bv) = (au + Bv)$ Here $\begin{pmatrix} a \\ B \end{pmatrix} = \begin{pmatrix} - & - \\ - & - \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix}$ exists For supermetric basis, representation is writy. For antisymmetric wave function, half of regressentation is +1, other half is -1. For 4 particles : Ms aaaa 2 t (aaab + aaba + abaa + baaa) ± (abbb + babb + bbab + bbba) -1 6666 -2 to (aabb + abab + abba + bbaa + baab + baba) Ó symmetric ! S = 2± (aaab + aaba * abaa * baaa) For Ms=1! Mi = $\frac{1}{2}(--+)$ 271 = Look for WI = orthogonal combinature

Piz Mi = eli P23 11 = 01 Piz Vi = Wi Pz3 Vi = UI Piz Wi = Vi Pz3 WI = WI Can find for mis = 0; No = to (aabb - bbaa) $v_0 = \frac{1}{\sqrt{2}} (abab - baba)$ $w_0 = \frac{1}{\sqrt{2}} (baab - abba)$ We need two more to get 16, these are singleto $X_0 = \frac{1}{2} \left[(aabb + bbaa) - (baab + abba) \right]$ $y_0 = \frac{1}{\sqrt{12^7}} \left[(aabb + bbaa) - 2 (abab + baba) + (baab + abba) \right]$ However, in nature, only staten with symmetric or antisymmetric wave functions exist. If we take a particle with spin 1: a b c a 6 c +1 0 -1 Then for three particles, there are 27 function : 3 aaa 3 aaa 1 symmetric S=3, 1 -3 ccc $\int 2 rowed S=Z$, 1 antisymetric S=0Then, the autisquelies must have the four; a(1)6(1) c(1) If wave function can be written a(z)6(2) 6(2) as products of individual states a(3) 6(3) C(3) then determinant forms antisymetric wave function.

LECTURE XXV 4-12-61

Consider two electrons and write an elusymmetric wave function between them Yun = 4, (n,) 40 (n2) Vanti = C & 4. (1,) 42 (12) - 4. (12) 42 (11) 5 Consider the point operator F which acts only on the coordinates : er is an example, Consider F ! F is symmetric : (F)un = \$ \$\$ "(1) 4" (12) F \$, (1) \$ (12) dr. dr. (F) anti = 1012 4;*(ri) 4;*(ri) F 4; (ri) 4; (ri) dr. dr. - 1012 5 4;*(ri) 4;*(ri) F 4; (ri) 4; (ri) dr. dr. + 2 terms Only need antisignmenting when possible wave functions of two electrons overlap. Ance F is symmetric : (F)anti = z | c | 2) 4, *(r.) F 4, (r.) K (r.) 42 (r.) dr. dr. - 21012 (4,*(r,) 42*(r) F 4, (r) 42(n) dr, dr. exchange integral If no overlap, exchange integral in zero, thup C = 52. Then, if wave function do not overlap, can use either symmetry or antisymmetry combinations. Example: Consider the Collision of Identical Particles. Classical Treatment in center of man system; $T_{obs}(\theta) = T_{cole}(\theta) + T_{cole}(\pi - \theta)$

In the laboratory coordinate system: Consider all Treatment of Apinless a- particles which are symmetric : 4 particles in nucleas. Using c. of. m. coordinates; $\psi(\Lambda_1, \Lambda_2)$: $R = r_1 + r_2$; $r = r_1 - r_2$ Then the wave function of the particle and scatterer is: 4 - e + e + {f(0) + f(1-0)} e the Then: $\sigma(0) = |f(0) + f(\pi - 0)|^2 = |f(0)|^2 + |f(\pi - 0)|^2$ + Z Re 2 f* (0) f (11-0) 2 interference terms note that interference term in lypically QM. also dependo ou phase. However, at high energy collisions, wove gachete form, and fluctuation from Rutherford scattering are so rapid that they smear out to classical result. Tow energys, plane waves, produce deviations from Ratherford result. Electron, polarized, so that spins are Example: in some direction. The spin function in symmetric \$11) \$12) Hus must be antisymmetric in coordinates, Then : 0-(0) = 112 + (12 - 2 le (---)

Example: Electrons, unpolarized, 4 gossibilitien ; XX To (XB-BX) $\frac{1}{121}(\alpha\beta+\beta\alpha)$ antisymmetric BB Symmetric de coardinates: 3/4 4 antiquetric agrumetric $\sigma(0) = ||^2 + ||^2 - Re(-)$ Inditional case is unpolarized electrons. LECTURE XXVI 4-14-61 Theory of many - electron atoms : Take for unperturbed problem a common central field VII which is screened from The usual couloub field. Recall the shell structure of atom: 15 Zs Zp 35 3p 3d 45 4p 4d 4f If one takes this model, a high legree of degeneracy occurs. For historgen i (15)²(25)²(27)² For perturbation, Carbon hain one: H. = $\sum_{elections} \left(-\frac{2e}{r} + V(h)\right) + \sum_{electionstatic} \frac{e^2}{Rej}$ Anoller ones: H2 = spin - orbit coupling and interactions H3 = spin - spin interaction

Can also have It term for external magnetic field. Waves functions are antisymmetric since no two can accept the same point. Example: Two Electrons ! Possibilitien for spins: $\alpha(1) \alpha(z)$ S = 1 singlet symmetric $\propto(1)\beta(2) + \beta(1)\alpha(2)$ B(1) B(2) S=0, triplet x(1) (3(2) - B(1) x(2) antionmetric all right to be symmetric in spin as have not considered arbital functions. Possibilities for orbitals ! { autisymmetric $\frac{\mathcal{M}(1)\mathcal{V}(z)}{\sqrt{z}} - \frac{\mathcal{M}(z)\mathcal{V}(1)}{\sqrt{z}}$ 2 sommetric u(1) v(2) + u(2/ v(1) Thes, we must combine with spins to form completely antisymmetric wave functions. We find the average value of H. ; First term vanishes; $S=1! \quad \left(\frac{e^2}{\Lambda_{12}}\right) = e^2 \int \left|\mathcal{M}(i)\right|^2 \left|\mathcal{V}(z)\right|^2 \frac{1}{\Lambda_{12}} dx_1 dx_2$ e) M(1) v-(2) 12 M(2) v-(1) dr, dr2 Exchange integral : also almost always + for simple for SEO atomic case. Thus can see triplet state lies lowest. note difference between states and terms; Consider Carbon: (15)2 (25)2 (29)2

The term values of Carbon are; 'S, 3P, 'D. the states are (15/2 (25)2 (2p)2. The terms aplit into levels; upor introduction of magnetic fielda. 2P -> 3P2, 3P, 3Po one level -> 3 levels This should show large effect due to some interaction. and compling being more large than their magnetic field interaction. Dirac and Van Vleck assume strong interaction efist: Form: $(\vec{F_1} \cdot \vec{F_2}) \vec{O_{1X}} = \vec{O_{2X}} - i \vec{O_{2Y}} \vec{O_{1Z}} + i \vec{V_{2Z}} \vec{O_{1Y}}$ also form: Jix (J. Jz) = Jix + 1 Jiy Jzz - 1 Jiz Jzy using 3 = the of and Jy Sk = Sik + 1 Give Se We can see that : $\left[1+\left(\overline{\sigma_{i}},\overline{\sigma_{z}}\right)\right]\overline{\sigma_{ix}} = \overline{\sigma_{zx}}\left[1+\left(\overline{\sigma_{i}},\overline{\sigma_{z}}\right)\right]$ Piz Thus we can write : Piz Jzx Piz = Jix or Piz Jzx Piz 4 = Jix 4 Actually Pirac calle [1+101. Bil] = Oir, de don't have Pir yet, Form: $(O_{12}^{-})^2 = \int [1 + (\overline{T_1} - \overline{T_2})]^2 = (1 + \overline{T_{23}} - \overline{T_{23}})^2$ $= 1 + 2 (\overline{J_1} \cdot \overline{J_2}) + (\overline{J_1} \cdot \overline{J_2}) (\overline{J_1} \cdot \overline{J_2})$ now . Ty Ty Ty Ty Ten = (Sga + 2 Egal Tie) (Sgh + 1 Egam Tm) = Siz - 2 (F. . dx)

 $(0_{12})^2 = 4$ Then define , $P_{12} = \frac{1}{2} \left\{ 1 + (\overline{J_1} \cdot \overline{J_2}) \right\}$ Recall: Piz $\Psi = -\Psi$ $P_{iz} \stackrel{\alpha}{=} P_{iz} \stackrel{\alpha}{=} - \psi$ Then Piz &= - Piz 4 and $P_{12}^{*} \Psi = -\frac{1}{2} \left\{ 1 + (\vec{F}_{1}, \vec{F}_{2}) \right\} \Psi$ which shows the apparent spin interaction. 4-17-61 LECTURE XXVII One can justify neglecting closed shells and treat just outer electrons because they have no The operator o opplied to a product autisymmetric wave function which can be written as a determinant: 0 = 0, + 02 + 11. $\psi_{2}(i) = \psi_{2}(z) = \psi_{2}(3) \cdot \cdot \cdot$ 43(1) 43(2) 43(3) Or applies to first column, Or to second etc: We want to write result as sum, 4. (1) . . O : --- = Z. Ox Pa(th) { cofactor of Ya(th) }

O means single - particle operator : (04)(1) (04;)(z) · · · · 4. (1) 4. (2)'. Z. --- = $\psi_{2}(1) = \psi_{2}(2) + \cdots + \psi_{n}(2) + \cdots + \psi_{n}(2)$ + (042)(1) (042)(2) 11 + , Can talk of 1's 2's electrons because we can apply operator to states of 1's 2's. apply operator to states of 1, 25. If closed shells: 1st m rows are fixed. If we apply operator Mz, will get all ms + me for closed shells which will add up to zero and will get only contribution from unclosed shells. fame for Mx and My. Suppose we have ', 415+ 11 HIS+ (21 \$15+ (3) 415+ (4) 415- (2) 415- (1) 415- (3) 415- (4) 425 (1) this (2) 425 (3) 425 (4) 420 (1) 42p (2) 42p (4) 42p (3) Use Saplace expansion to find 6 determinantial products. products, Closed shell has no current : closed shell is isotropic, so current must be isotropic assume current (inotropic): current would be outword thus depleting inside of charge, violating conservation of charge. . Consider excited Carbon (neglect filled shells) 2p 3p Mr. me. Ms; (Z) ll 21 ml, M31 (1) We ms -(+ M31 mez M52 (1) M31 Maz Msz (2) 0

3 P 'D For li=1 5. = 1/2 $l_{2} = 1$ $S_{2} = 1/2$ IP 3P 'S 3 S 2= 2,1,0 } 5= 1,0 Can write { M, (1) To (2) + Mo (1) U, (2) } ~ (1) ~ (2) Can form such terms, after finding by Clebub-yordan coefficients, and anti-symmeterize by forming determinants, Equivalent Electrona : l=me Consider : N & (2 p)² rumber Mec MSI Mez MSZ + 1t t 4 0 t -1 4 + 0 1 + 0 4 + + -(0 + -1 -1 1 15 What are possibilities combination of me and ms of to get antrymmetric wave functions? Can form 3 terms; 1 p , sp , 'S Me=2 Me=2 Me=2 Me=2 Me=2 Me=2 0 0 0 Operate on these Terms with H = Zi e2 - Zi Vo (1) to get splitting into usual if May - Zi Vo (1) levela.

LECTURE XXVIII 4-19-61 Apin - Orbit Interaction : magnetic momenteme = gyromagnetic ratio = u augular momentume M For Orbit: <u>II = e</u> <u>m</u> zmc (for circular orbit) $\int_{a}^{e} \mu = \frac{A}{c} = \frac{\pi a^{2} e^{2t}}{c}$ $\mathcal{M} = \mathcal{M} \mathcal{Z} \mathcal{H} a \mathcal{Z} \mathcal{A}$, $\mathcal{M} = \frac{e}{\mathcal{M}} \mathcal{Z} \mathcal{M} \mathcal{C}$ For spin, in in Twice as large ; e Inferr precession twice as fast as arbit. Total precession in struggle between spin and orbit. For electron ; charge -e, and spin: $\vec{u} = - et \vec{r}$ The Hamiltonian in magnetic field is ? $H_{spin} - \mathcal{H} = -(\vec{u} \cdot \vec{\mathcal{H}}) = \frac{e\hbar}{zmc} (\vec{\mathcal{F}} \cdot \vec{\mathcal{H}})$ We want to talk about 50 splitting of levels like 3P2,0 Consider fixed electron and moving nucleus, +Ze c stationery Electron sees ON magnetic field H: NI=EV - ZeV H= E = = Zer

In actual case: $+ ze -e \qquad on M' = \vec{e} \times \vec{v}$ This suggests that we take for Hs-0 ! $H_{so} = \frac{e\hbar}{zmc} \vec{F} \cdot \left(\vec{z} \times \frac{\vec{v}}{c}\right)$ Now the force on the electron in -e E = - TV Then ! $H_{so} = \frac{e\hbar}{ezmc} \overrightarrow{r} \cdot (\overrightarrow{r} \vee x \overrightarrow{v}) = \frac{\hbar}{zmc^2} \overrightarrow{r} \cdot (\overrightarrow{r} \vee x \overrightarrow{p})$ now: $\nabla V = \frac{n}{n} \frac{dV}{dr}$ for central field. $H_{50} = \frac{t}{zm^2 d^2} - \frac{1}{n} \frac{dV}{dr} = (\vec{r} \times \vec{p})$ th I Therefore, There is coupling between spin and augular orbital momentum. However, this Hamiltonian given twice the splitting observed. The factor '= needed because of Moman effect. Called Thoman factor but comes from different effect than this coupling. In several, we write for gyromagnetic ratio: S zme ! Thomas factor in & not always the Precessional augular velocity: Top: 00 Classically: Iwsmon = L

now the magnitude of the precession angular velocity in: <u>No</u> For difference in everyy: to the me We write the precession frequency as a vector: \vec{W}' relative to $= \frac{e}{mc} \vec{E} \times \frac{\vec{v}}{c} = \frac{1}{c^2} (\vec{v} \times \vec{a})$ local system or electron However, local system is precessing ; $\vec{w}_{\tau} = \vec{w}''_{f} \log a = \frac{1}{2c^2} (\vec{a} \times \vec{v})$ Aum of both gives ici (i xa) e We now make a simple proof of Thomas precession, actually thomas precession is a lower order effect then addition of velocities. We consider case where FIA L= laboratory system. Because of acceleration, consider two systems; actually one at two different times: 4 a At A $S \xrightarrow{X_L, X_S} (X_{S'} as seen by S \notin S')$ $A \xrightarrow{T} tm = \underbrace{t_1 + t_L}_{Z_S + 2S'} = \underbrace{t_1 + \frac{1}{S}}_{T_S}$ from view of S. L

Consider system s' moving with velocity à At coinciding with Is axis; hight signal in sent from 5 and reflected, giving tm = t, + & from point of view of S. From point of view of 2, second mirror appears to move a distance I v. Thus I seen ; $t = t_i + \frac{l}{c} + \frac{lv}{\sigma c}$ Thus I says that althor s and s' coincide at some time, the times differ at some other point to de ast va at or When separating locenty contraction from rotation, we get Thomas precession. Locenty contraction squarber angles. If we use infinitestmal rotation operators $\left[\frac{M_{\star}}{\pi},\frac{M_{2}}{\pi}\right] = -\frac{M_{2}}{\pi}$ If one of axies is time, Thomas preserving in result of commutator of forenty rotation.

LECTURE XXIX 4-21-61 Apin · orbit coupling : Undisturbed · configuration (n, m, m, n, ...) (l, l, l, l, ...) (Me., Mer, ... Msi, Msi, Msi, ...) Electrostatic coupling splits and gives terms: L, S; (Mi, Ms) Spin - orbit compling splits further; and gives levels: 2, 5, T (M) Finally, upon introduction of magnetic field; get states; L, S, J, M. Electrostatic coupling >> spin orbit coupling. Called Russell - faunders coupling. What are syin of es and so coupling? Electrostatice : ~ a , a = Bohr arbet Consider for a moment some elementary atomic units: Bohr rodius: $ao = \frac{t^2}{me^2}$ for larger each Compton 2 : $t = \frac{t^2}{mc^2}$ for by about Classical election roduce; $e^2/mc^2 = ro$ smaller $\frac{t'_2}{137} = x$ Typical optical wavelengths are langer than any above. n er a x mor Electrostatic : $\sim et \cdot v (2)e$ $mc \cdot c (ao/(2))^2;$ $\left(\frac{v}{c}\right) v \propto (z)$ Spin - orbit : for atom with outer electrons 2 in effective donnée number : $\sim \underbrace{e^{2}}_{do} \left(\frac{\hbar/mc}{a_{0}} \right) \propto (2)^{4} \sim (2)^{4} \propto (2)^{$

Therefore, the ratio of so to es coupling: Rateo 50 ~ (2)" 22 for so swall if 7 in small, light atom. For heavy atom, it will be begger and so could be larger than es. If so 2) es, we get so-called 1-1 coupling, must reverse process outlined above; li, 12, ... This case is very rare, succe Z narely 50 reacher its full value 71, 82 for heavy alower because 6 85 of screening. (1,12"), 5, (M) For visible light, it can be shown In 10 a since the lightery constant is 10 Times too large for visible spectra. felection Rules : Électric dipole Transistiona, Electric quadrapole, etc. and Magnetic dipole, etc. mucleon transition are much more fine and complex. Fabelled Er, Er, Mr, etc. We limit to electric dipole transitions in atoms: Intensity (Ez) ~ (a)² Intensity (Ei) or En is leas interse Thore Er by many orders of magnitude. The dijole matrix elements can be written: J 4 Ze lava 4 II dira (Sportaneous emmission)

The magnetic dipole moment is written ! The Internitys are : $\frac{(M_i)}{(E_i)} = \left(\frac{e t_i}{zmc}\right)^2 \cdots \left(\frac{v}{c}\right)^2 \cdots \left(\frac{a}{t}\right)^2$ so Mi in less intense than E. We write for the dipole moment (electric): P= e Zona : <F|P|1> LECTURE XXX 4-24-61 The intense Transitions are the electric dipole transitions; and are of the order of 10° greater than the electric guadrapple. Selections are obtained three angular momentum symmetry properties. Consider definition of orbital augular momentum: Zy = Eghl Xnpe [Zy, Xm] = Egge Xn [Pe, Xm] = etilguen Xk -et Sem now for total: I = Z. La [M1, Xam] = it Eguna Xaa [27, Xam] = eti Eynel Xax suce [My, Mm] = it Egmt Mk Now the augular momentum operator in the generator of infiniterimal rotation, and this results can be expressed by the commutation of these operators with vectors.

Therefore, if $\vec{p} = e \not = \lambda a$, then; [My, Pk] = eti Egne Re Recall ladder operators : define similar quantities $P_+ = P_X + \mu P_y$, $P_- = P_X - \mu R_y$ $\left[P_{+}, M_{\mp}\right] = -\hbar P_{+}$ ence P+ (M2+th) = M2P+ and: P- (M= - th) = M= P. Auppose a state < m2, m2, r), then: $\langle J, M, \delta' | P_+ | J', H', \delta'' \rangle = 0$ unless ζ allowed $M = M'+1 \int \Delta M = +1$ Example 7 0 5'=2 J=1 _____ = allowed under F+ For P-: < J, M, 8'1 P. 1 J, M', 8" > = unless Allowed M=MLI JAM=-1 For PZ: <J,M, 8' | Pz | J', M', 8"> = inless & allowed M=H' J AM=0 Observe in Z direction ; <f|Px + 1 Py 12 = constant e wit Px & doswt Py & - Amot for P-

Zeeman Effect Observation 11 Z σ π σ 11 × What about selection rules for 5's Can be extracted from commutation laws but very tedious. Consider: PJMJ' Px Pj'M's drider ... and some for Py and Pz. Write coordinates in Terms of spherical harmonics: $X = C_{\mathcal{I}} \left(Y_{i}^{l} + Y_{i}^{-l} \right)$ $y = C_{\mathcal{N}}(Y_{i}^{*} - Y_{i}^{*})$ $z = C' \Lambda Y_1^o$ Thus we see that P* acta like a wave function with J=1, i. J &JMr' P+ 4J'M'p" dr. dr. 5 1 5' From previous discussion on Clebul - Tordan orthogonyation methods, can only step by one, when forming products of wave functions: Herefore. $\Delta J = \pm 1,0$ not $0 \rightarrow 0$ are the proper allection rules. Here are all the rigoarous selection rules in angular momentum.

Consider some examples in The lighter atoms where we have R-S coupling ! 3 Po, 1, 2 S=1, L=1 Ance electic dride contains no spin coordinates all ed transitions must be between same spins. Thus all triplets go to tripleto, singlete to singleto. However, in heavier atom, Hy zet green line between singlet and triplet. In He, people thought two different substances existed because two separate spectra. Thus the selection rules are: $\Delta S = 0$, $\Delta L = \pm 1,0$ These break down when no RS coupling, re, 50 coupling too strong. For one election case, me es: f(n) Ye' × Ye g(n) n2 de d-2 Recall recurrence formulae: (2+1) Peter - (21+1) cos o Pa + 2 Per, =0 from which we can see : Dl = ±1 as the famores selections rule.

LECTURE XXXI 4-26-61

Recall : 5-0 caupling small. L, S, l AJ = ±1,0 (dipole) J=0→0 forbidden (all 1-quantum radiation transmitazione) Recell: initial state J: 4 depole operator D: J=1 Thus: 4= D 4. I not allowed for any J=0 J=1 J=0) one quantum emission llovally have intermediate states for multiphoton emission. However do not have this in Achroedinger scheme. Another find of selection rule arises from inversion of axes if Hamiltonian is invariant under this operation, that is ? [H, P] = 0 which leads to, if H4 = E4, HP4 = EP4 fuce $PP \psi = \psi$, for nondegenerate state, then = $p\psi = c\psi$; $c^2 = i$, $p\psi = \pm \psi$ or: $P \psi(x, y, z) = \psi(-x, -y, -z) = + \psi(x, y, z)$ even - 4 (x,y,2) odd For degenerate states, will get splitting of degeneracy. [H,P]=0 still holds under magnetic field because "I vectors are vectors of solation and direction of rotation in not changed by inversion, hat the for E fields. When zernon splitting scrars into nondegenerate states, will get states of some parity since they combine and coelesce when magnetic field is removed. The rule is that The same parity goes with all of the lerms of the configuration.

That is : parity of configuration = parity of Z la The selection sule in that the parity changes Stor D & dr, dr. either the parity changes --+ of the integral is inversion + --does not change yero. felection rule in called Japorte's rule. Interaction of Electron with Electromagnetic Field $\mathcal{R} = \nabla x \vec{A}$, $\vec{E} = -\nabla q - \frac{1}{c} \frac{d\vec{A}}{dt}$ $\vec{F} = e\vec{E} + e\left[\vec{v} \times \vec{k}\right]$ At = Eque dAs Fy = e Ey + e Eyhl Elmn Uk JAm Eght Eemn = Smy Such - Smith Sng $F_{1} = e \mathcal{E}_{1} + \frac{e}{c} v_{k} \frac{\partial A_{k}}{\partial x_{1}} - \frac{e}{c} v_{k} \frac{\partial A_{4}}{\partial x_{k}}$ or $F_1 = -e \frac{\partial e}{\partial x_1} + \frac{e}{c} v_x \frac{\partial A_x}{\partial x_2} - \frac{e}{c} v_x \frac{\partial A_1}{\partial x_1} - \frac{e}{c} \frac{\partial A_1}{\partial t}$ or $F_{j} = -e \frac{\partial \varphi}{\partial x_{j}} + \frac{e}{c} \overline{v_{k}} \frac{\partial A_{k}}{\partial x_{j}} - \frac{e}{c} \frac{dA_{1}}{dt} = m \overline{v_{j}}$ or $\frac{d}{dt} \left(m v_{j} + \frac{e}{c} A_{j} \right) = -e \frac{\partial \varphi}{\partial x_{j}} + \frac{e}{c} v_{n} \frac{\partial A_{k}}{\partial x_{j}}$ now E = ± moz + eq so we call month + e Ay = for (dynamical momentum) and write $\vec{r} = \frac{1}{m}(\vec{p} - \vec{e}, \vec{A})$

Thus, one is tempted to take for the Hamiltonian ; $H = \frac{1}{zm} \left[\vec{p} - \vec{e} \vec{A} \right] + eq$ from the definition of the total energy. Thus, from Hamiltonians equations : $\dot{x}_{y} = \frac{\partial H}{\partial p_{y}} = \frac{1}{m} \left(p_{y} - \frac{e}{c} H_{y} \right)$ $P_{3} = -\frac{\partial H}{\partial x_{3}} = -e\frac{\partial e}{\partial x_{3}} - \frac{1}{m}\left(P_{k} - \frac{e}{c}A_{k}\right)\left(-\frac{e}{c}\frac{\partial A_{h}}{\partial x_{3}}\right)$ which gues previous equation for pj. now, for aM Hamiltonian, use for dynamical momentum th 2 = ph (1) $i\hbar \frac{\partial \psi}{\partial t} = \frac{1}{zm} \left(\frac{\hbar}{a} \frac{\partial}{\partial x_{h}} - \frac{e}{e}A_{h}\right) \left(\frac{\hbar}{a} \frac{\partial}{\partial x_{h}} - \frac{e}{e}A_{h}\right) \psi + e \varphi \psi$ $= -\frac{\hbar^2}{2m} \sqrt{\frac{2}{\psi}} + \frac{1e\hbar}{2me} \left(\frac{1}{\partial x_L} A_R + A_R \frac{1}{\partial x_L} \right) \psi + \frac{e^2}{2mc^2} \left[\vec{A} \right]^2 \psi + e \varphi \psi$ sympterized and Hermitean LECTURE XXXIL 4-28-61 One symmetry type not covered is Uramer's degeneracy or time - reversal symmetry. magnetic Field Continued: Recall above equation; Sauge Invairance , gauge term comes from attempte to set up unified field theory in terms of length transformations.

We have E and If in terms of I and A but phenomena (beam experiments) can be explained using only E and F. $\vec{\mathcal{E}} = -\nabla \varphi - \frac{1}{c} \frac{\partial A}{\partial t}$ A = VXA Consider some function & (X,Y,Z,t) $\varphi' = \varphi - \frac{1}{2} \frac{\partial A}{\partial t}, \quad \vec{A}' = \vec{A} + \nabla A$ Then A = VXA = VXA $\vec{e} = -\nabla \varphi' - \perp \frac{\partial \vec{A}'}{\partial t}$ Therefore different potentials give the same fields. The transformation is called a gauge transformation. The gauge transformation for the wave function must be: $\psi' = \psi e^{\frac{1e}{Hc}} d$ which is 4 modified by a phase factor, These three equation make up the gauge transformation, we then get for The Time derivative and the gradient in the schroedinger equation: $\frac{\pi}{2} \nabla - \frac{e}{e} A$ - the off - eq I (sinctic momentium) actual mo' of particle m KE Thus if we add an arbitrary potential energy, we change Total energy, but not pinetic energy. Similar to elementary physics experiments illustrating my difference in energy. However, angular momentum would not be conserved in a magnetic field (one of those lesser prown facto of physica . Bolim & A harovor have shown that interference effects depends on potential.

Pipes))))))) 11))) v o change und charge up same along to high potential and turn off while still in pipe both paths from tune integral ordinary BAA We have not changed group velocity, however total energy has so that e-Et/The in different for each pipe and waves energe at different phases. fame thing can happen around a magnetic field. 11111 Time integral of I gives change

9 in phase. 1 4 4 1 This box almost been observed experimentally and can be aboun that it must exist to make grantum theory consistent. Yake equation (1) of last lecture : 4* (1) - 4 (1)* and get: the divergence of a current density, which is gauge invariant;

it it you = V. of - the (UNDU-UNUM) + ret i unu of the first Probability Density: p = 4"4 Probability current , J = - th (4+ V4 - 4V4+) - C A V + W Pont use any old gauge , use gauge to fit paoblem. Con choose to minimize last term of J, Vake a circular gauge ((=) (=A) ; this term is responsible for scattering of soft this term mustbe considered next time describe gauge.

LECTURE XXXIII 5-1-61 Uniform Magnetic Field: Recall: $\overline{T} \times \overline{T}$ $(\overline{p} - \underline{e}, \overline{H}) \times \overline{T}$ Augular momentum is not conserved except in the case when the electron is injected into a circular orbit centered about the nuclear. However, there is a condidate for angular momentum that is conserved which is given by infinitesimal rotations. That is, look for conservation of ix p. However, p in not gauge invariant. We want the Hamiltonian to rewain invariant under an infinitesimal rolation these conserving i x p, a way to do this is to choose if in the g direction with a circular potential A about the zaxis whose strength goes as r. Then (rxp)z in conserved and the Hamiltonian remains invariant. $|\vec{A}| = CR$; $|\vec{A} \cdot d\vec{s}| = CR \cdot ZTR = ZC(area)$ = P(area)Take: $\vec{A} = -\frac{1}{2} \left[\vec{x} \times \vec{y} \right]$ or $A_y = \frac{1}{2} \left[\vec{z} \times \vec{y} \right]$ $\vec{A} = \vec{k} \cdot \vec{A} = \nabla \times \vec{A}$ $\mathcal{A} \quad \delta_{M3} = \epsilon_{MNS} \quad \frac{\partial A_S}{\partial X_N} = \frac{1}{2} \epsilon_{MNS} \frac{\partial}{\partial X_N} \epsilon_{S3k} \times \mathcal{A} \quad \mathcal{$ Skn Tehe interaction terms are ' $-\frac{e}{zmc}\left(\vec{A}\cdot\vec{p}+\vec{p}\cdot\vec{A}\right)+\frac{e^{2}}{zmc^{2}}|\vec{A}|^{2}$ negligible in any field that has ever been produced.

check relative magnitudes: $\frac{-e}{4mc}\left\{ \left[\mathcal{H} \times \vec{\mathcal{I}} \right] \cdot \vec{p} + \vec{p} \left[\mathcal{H} \times \vec{\mathcal{I}} \right] \right\}$ all right $\vec{n} \cdot \vec{z} = \vec{p} \cdot [\vec{n} \times \vec{n}]$ to commute ×-product succe Now $: \vec{r} \times \vec{p} = \vec{L} : \vec{f} \cdot \vec{H}$ and we get : different components are involved - e A.Z Take I - to so we get : et H mc now er Alt 2 er Hi the zmbr mer mer miet and the ratio of the Two terms is; <u>h³ eH</u> m² c e⁴ <u>h³ eH</u> m² c e⁴ now if this ratio is about 1: $e \mathcal{H} = \frac{m^2 c e^4}{t^3} = \frac{m c^2}{t} \cdot \left(\frac{e^2}{t c}\right)^2$ or $\mathcal{H} = \frac{e}{\left(\frac{\pi}{mc}\right)^2} \frac{e^2}{\pi c} = \frac{e}{a_0^2} \frac{1}{\alpha} ; \alpha = \frac{1}{137}$ Thus the field must be of the order of 137 times the field at the Bohr radeus of the Hatom. On : Af - 137 25 volta > 10° gouss suce do E=25 volta so last term can be neglected as far as everyy level calculation in concerned, but not susceptibility

Instead of one electron, we write the total interaction everyy, including opin, we have; $-\frac{e}{z_{mc}}\left(\overrightarrow{n_{t}},\overrightarrow{J}\right)-\frac{e}{mc}\left(\overrightarrow{n_{t}},\overrightarrow{J}\right)$ \overrightarrow{r} totalAnce I = I to and I = Sh : $-\frac{e\hbar}{zmc}\vec{\mathcal{H}}\cdot(\vec{\mathcal{L}}+z\vec{S}) = -\frac{e\hbar}{zmc}\vec{\mathcal{H}}\cdot(\vec{J}+\vec{S})$ anomalous Zeeman Effect; Zeeman splitting is spin-orbit coupling (splitting) $\overline{\mathcal{H}} = \overline{p} \, \mathcal{H}$ and we write ; using first order perturbation theory : $\Delta E = -et \mathcal{H} \left(M + \langle S_z \rangle \right)$ Qualitative argument: M J L M J L M J L Precession due to L-S Coupling In semiclassical picture The Time average (SZ? would be ! $\langle S_z \rangle = \frac{\vec{S} \cdot \vec{J}}{|\vec{J}|^2} M$ Thus we anticipate : $\Delta E = -e t \mathcal{H} \left(1 + \frac{s \cdot J}{|\vec{J}|^2} \right) M$ Fande "g" factor How do we do this in QM? Consider: $S_{z} | \vec{J} |^{2} = S_{z} (J_{x}^{2} + J_{y}^{2} + J_{z}^{2})$

Do algebra to get S.J part . $S_{z} |\overline{J}|^{2} = J_{z} (S_{x} J_{x} + S_{y} J_{y} + S_{z} J_{z})$ + $(S_z J_x - J_z S_x) J_x + (S_z J_y - J_z S_y) J_y$ and recall 5 and 3 commute. Define a new vector \vec{r} which bar the properties: $[J_{R}, 8e] = 1 \in \mathbb{A} \in \mathbb{M}$, $(\vec{J} \cdot \vec{s}) = 0$ which corresponds to we the one electron atere : $\left[l_m, X_n \right] = l \in m_{15} X_5, \left(l \cdot \overline{r}^2 \right) = 0$ selection rule: Al = ±1 However: $\Delta L = \pm 1, 0; (\vec{L} \cdot \vec{Z}, \vec{z}) \neq 0$ LECTURE XXXIV 5-3-61 Reading Reriod assignment: Radiation depter in Dirac: Concern yourself with second quantitization which will be needed for relativitie treatment of QM. Deals with wave functions as operators which can create and annihilate particles, hence quantization (second). magnetic Field " Recall : DE = - et of < Jz + Sz) diagonal We consider I and S To be well enough complet to form a J.

For classical vectors " $\left[\vec{J} \times \left[\vec{S} \times \vec{J}\right]\right]_{z} = S_{z} \left(\vec{J} \cdot \vec{J}\right) - \left(\vec{J} \cdot \vec{S}\right) J_{z}$ In QM, must watch commutation: call $\vec{F} = [\vec{S} \times \vec{f}]$ Recall the commutation rule: [Jn, Yr] = 1 Enns 85 $\Delta J = \pm 1$; $(J, \vec{s}) = 0$; $\Delta J = 0$ not allowed; \vec{s} has no diagonal In one particle system : [ln, Xn] = 1 Enrs Xs $\Delta l = \pm l$; $\Delta l \neq 0$ ance $(\vec{l} \cdot \vec{r}) = 0$ which gues split $\Delta E = -\frac{e\pi H}{z\mu c} \left\{ 1 + \frac{(\vec{J} \cdot \vec{S})}{|\vec{J}|^2} \right\} M$ levels which are en HS apart fande g Fund: IJI': J-S=I which leads to: J(J+1) + S(S+1) - Z(J,S) = L(L+1)Thus find: g = 3J(J+1) + S(S+1) - 2(L+1) Z J (J+1)J=L, S=0 ; ... g=1 For singlet level ! $z = g = \frac{3}{2} \quad J = z$ For Triplet P: 3p $g = \frac{3}{2}$ 5=1

Consider Electrostatic interaction with the openopbit coupling $H' = \frac{1}{a} - \frac{h}{4\mu^2 c^2} \overline{J_a} \cdot \left[\overline{p} \times \nabla V \right]$ where V = V(n); $\nabla V = \frac{1}{n} \frac{dV}{dr}$, then: $H' = \sum_{\alpha} \frac{h}{4\mu^2 C^2} \overline{a} \cdot (\overline{x} \times \overline{p}) \frac{1}{n} \frac{dV}{dn}$ $= \underbrace{z_{\mu}}_{a} \underbrace{\frac{h}{Z\mu^{2}c^{2}}}_{a} \underbrace{\frac{dV}{dr}}_{c} \left(\underbrace{\overline{s}_{a}}_{a} \cdot \underbrace{\overline{l}_{a}}_{a} \right)$ where all the s'a are lightly coupled together by apparent electrostatic interaction to form S: We change under from a to i Then we write ; H'= Z a. (S. . l.) 2 2 2 53 3 5 52 5 52 = E a (Suclex + Sugley + Suz lez) now Take diagonal; as in teeman effect: $(S_{1Z}) = \frac{S_{1} \cdot S}{S(S+1)} \quad S_{Z} \quad j \quad (l_{1Z}) = \frac{l_{1} \cdot L}{d_{log}} \quad L_{Z} \quad L_{Z}$ Thus, for the constances of L and S : (H') drag = A [L.S] where $A = \sum_{i=1}^{n} a_{i} \frac{\overline{s_{i}} \cdot \overline{s}}{\overline{s(s+i)}} \frac{l_{i} \cdot \overline{l}}{c(1+i)}$ Airie L+S=J: L(2+1)+2(IS) + S(S+1) = J(J+1) (H^*) deag = A J(J+i) - L(L+i) - S(S+i)2

Compare Aplitting : $(H')_{J_{5}J} - (H')_{J_{-1},J_{-1}} = A \int \frac{J(J_{+1}) - (J_{-1})J}{Z} = A J$ Called Lande interval rule.

	1.1.2	-
		-

READING NOTES FROM DIRAC'S P. of QM

I. The Principle of Superposition A. The need for a quantum theory. 1. Classical electrodynamics cannot explain remarkable stability of atoms and molacules 2. Frequencies of atomic spectra not in harmonic relationship but follow Ritz combination low. 3. Anomalies in the theory of specific heats. 4. Wave - particle duality of light, and of matter, which illustrates the madeguacy of the concepts of classical mechanics to supply us with a description of atomic events. 5. On the matter of the act of measurement destarbing the quantities about which information is desired: It in usually assumed that, by being careful, we may cut down The disturbance accompanying our observation to any descred extent. The concepts of big and small are then purely relative and refer to the gentleners of our means of observation as well as to the object being described. In order to give an absolute meaning to size such as its required for any of the ultimate structure of matter, we have to assume that there is a limit to the fineness of our powers of observation and the smallness of the accompanying disturbance; a limit which is mherent in the nature of things and can never be surpassed by improved technique or increased skill on the part of the observer. 6. Cousality applies my to a system which is left undisturbed, such as classical systems where measurement does not disturb the system. Causal relations are used in Q.M. between the probabilities.

B. The polarization of light. 1. a new set of laws of nature are needed, the most funamental of which is The Principle of Superposition. 2. When photons we polarized obliquely to the optic axis of a tourmaline crystal, it is found that a fraction suit & go thru. 3. The result of an experiment using one photon at a time will be that sometimes the photon will pass three The Tournaline retaining its completes quanta or atherwise be absorbed completely. One never finds part of a photon, the emerging photon is polarized 1 to the optic axis of the crystal. avestions of how it changes its polarization 4. and whether as not the photon passes three or not are outside the realin of science. We assume that the state of ablique 5. polarization can be thought of as a superposition of I and Il states, each weighted in a manner to prodive the correct angle of polaryation. Then, This weight of the I state could be thought as related to the probability of passing The photon, 6. The effect of making the observation is to farce the photon to jump completely into one or the other states, the particular state being governed by propability laws. C. Interference of photons. 1. When a beam of light is incident on some find of interferometer, it gets split up into two components which are made to interfere. 2. When the incident beam is one photon, it must go partly into each of The

components into which the original beam was split. Thus we can say that the Translational state of the photon is a superposition of the Two states in which it should split. 3. We know that fractions of schotons never occur, completely into either of the two component states, in analogy with the polarization case. In this manner, the photon cannot be made to interfere with itself. The above shenomena is also associated with 4 maller. Superposition and Indeterminacy 1. We must extend the idea of "physical D. picture" to include any way of looking at The fundamental laws of nature which makes Their self-consistency obvious. 2. The complication of indeterminacy in nature is affect by the simplification of the general principle of superposition of states. 3. Definition of state ; the state of an atomic system must be specified by fewer data than classically needed because of indeterminacy. The state of a single photon is given by its translational state together with its polaingation state. A state of a system may be defined as an undisturbed motion that is restricted by as many conditions or data as are theoretically possible without mutual interference or contradiction. These conditions could be those imposed by some suitable preparation of the system. The General Principle of Superposition of 4. Quantum mechanics requires us to assume that between the states of any one dynamical system there exist peculiar relationships such that whenever the system is definitely in one state we can

consider it as being partly in each of two or more other states. 5. One cannot in the classical sense picture a system being partly in each of two states and see the equivalence of this to the system being completely in some other state. state. 6. When a state is formed by the superposition of two other states, it will have projecties some what vaguely intermediate between the two states. If we say that an abservation on a certain 7. state A leads to the certain usult a, and on a state B to b, Then The result of an observation on a state formed by the a and sometimes b according to some probability low, and the result well never be different from a or b. The intermediate character of the state formed by superposition Thus expresses itself through the probability of a particular result for an observation being intermediate between the corresponding probabilities for the original states, not Through the results itself being intermediate between the corresponding results for the original states. This is a drastic departure from the classical ideas of superposition. 8. The assumption of superposition relationships between the states leads to a mathematical theory in which the equations for the unknowns are linear, but is different from the classical case in that the superposition principle of quartum mechanics demands indeterminancy in the results.

E. Mathematical Formulation of the principle. 1. The principle of superposition suggests an additive process arring the states of a dignamical system. We now associate mathematical quantities with these states that abey rules of the additive process. We shall take these quantities to be vectors in an infinitely - demensioned space (vectors added to vectors give vectors). We denote the vector associated with 2, a state by 17 and call it a pet. The het associated with the state A is denoted (A). 3. From superposition : $c_1 | A \rangle + c_2 | B \rangle = | R \rangle$ where C, Cz are complex numbers. In general, $\int |x \rangle dx = |Q\rangle$ a set of het vectors are called independent if no one of them can be expressed as a sum of the others H. The assumption is implicit that each state of a dynamical system at a particular time corresponde to a ket vector, the correspondence being such that if a state results from the superposition of certain other states, its corresponding het vector is expressible linearly in terms of the corresponding het vectors of the other states, and conversely, 5. a set of states will be called independent if no one of Them is expressible linearly 6. Since the superposition of the same state should yield the same state; $C_1|A\rangle + C_2|A\rangle = (C_1 + C_2)|A\rangle$ Thus a state is specified by the direction of a bet and not its magnitude.

7. If the set vector corresponding to a state in multiplied by any complex mumber, not zero, the resulting set will correspond to the same state. There is no distinction between IA) and -IA). This clearly is not classical as the superposition of the same tate of a vibrating string leads to a state with higher escillations. 8. Note that it and and are complete numbers only two real numbers characterize the new state as only the vatio of c, to cr is important. From two different states, a Two fold infinity of new states is obtained. This is in accordance with the polarization and interference examples. Bra and Net Vectors. 1. When we have a set of vectors in a mathematical theory, we can construct the dual vectors (for example, I and I vectors in solid state theory). 2. These new vectors are called bras and denoted by 21, or, for a particular state B, By (B) 3. The scalar product of a bra and a det by (B) is denoted by <BIA7 and is a number. any complete bracket expression deviates a 4. number and any incomplete trachet expression denotes a vector, a bra vector is defined when its scalar product with every set vector is given. 5. 6. also; {<BI + <B'|} IA> = <BLA> + <B'|A>

{c < BI}IA> = c < BIA>

thus the scalar perduct of bras and beta satisfy the distributive law of multiplication

7. We make the important assumption that: There is a one - to - one correspondence between the bras and pets, such that the bra corresponding to the set IA> + 1A'> in the sum of the bran corresponding to IA? and IA'?, and the bra corresponding to c/A) is a times the bra corresponding to IA?, E being the complex conjugate of c. 8. The bra corresponding to IAS is written (AI. 9. The bra and het vectors are imaginary quantities as each can be multiplied by complex numbers without having their natures changed. However, they cannot be separated into real and imaginary parts. The usual method of doing This cannot be done surce bras and kets cannot be added. However, the relationship between a bra and a bet is such that it is reasonable to say that all is the imaginary conjugate of the other. This is a definition. 10. Any physical state can be specified by the direction of a bra as well as a ket. 11. Given any two kets IA? and IB? we can form a number LBIAS. We can also form The number (AIB). We assume that the following is true: <BIA> = (AIB>. If IAT=1BY, it is obvious that CATAT is real and we assume that it is greater than zero. 12. If the scalar product of a bra and het is yero, we say that they are orthogonal 13. We define the length of the bra 1A? or the ket IAT as the square roat of the positive number (AIA). If this number is unity, The vectors are normalized 14. The vectors are still not completely determined as one can multiply it by the phase factor end without changing its lingth or direction.

I. Principle of Superposition Failure of classical mechanics to explain experimental evidence of atomic physics Simit to experimental accuracy due to absolute size of atomic systems and disturbance of system when performing measurements Obliquely polarised photon will be completely possed or completely absorbed. Can be chaught at as superposition of + and 11 states, and Beam of photons incident or interferometer splits into two beams. Single shoton thought of an superposition of these Two states, an attempt observation forces photon to one state or the other at observation forces photon into either one of the two states according to probability laws Principle of superposition asserts that whenever a system is definitely in one state, it may be considered to be partly in each of two or more other States. The superposition of identical states yields the same state: Intermediate character Ket vectors ! 1> Superposition of states correspondento linear combination of conceptuality teta, a bet denoting the state of the system of state formed by superportion is manifested as an intermediate publicity for one of the particular Cr IA) + Ca IA) = (CitCa) IA) resulta, Bra vectors : <1 Defined as duals of heta. The scalar product of a bia and ket, <BIA> is a number . Bras and hete are complex imaginaries of each other . (< B | A) = (A | B) of 201 A7 =0, 1A7 = 187, then 14> and 18> are arthogonal. Also, if <ALA>=1, the vectors are normalized.

II. Dynamical Variables and Observables A. Inear Operators 1. If we have a bet IF's which is a linear function of a het IAS, we may think of IFY being formed by the application of a linear operator on IMY, very; IFY = × IA> very; IF) = × IA) 2. finilarly <FI = <A/x, thus setting the convention for the order of operator and vector, 3. The algebra of linear operators is defined by their operations on vectors of the Hilbert space (bus and kets) and is identical to regular algebra except that the law of multiplicative commutation is not obeyed. 4. As a special kind of operator, consider IA>(B) and multiply it on the left by IP7: IA>(BIP>, which is a number timen the pet 1A>, so the application of The linear operators IA>LBI onto a set is to yield a contant times the het IA). a similar manipulation holds for bras. 5. We assume that the plupical significance of linear operators is that they represent The dynamical variables of a system at a given time, just as vectors in the Hilbert space represent states of the system at a given time. Dynamical variables are the variables in terms of which classical mechanics is built. B. Conjugate Relations 1. Take the set which is the complex imaginary of ZPIX, this het depends antilinearly on <PI and Thus linearly on IP?. We define I as The adjoint of x and these ZIPT is the complex imaginary of <Plx.

B. 2. It is obvious that <BIRIPS = <PIRIAS by considering <BIA> = TAIBT and putting IA> = ~ IP>. 3. also $\langle B|\overline{z}|P\rangle = \langle P|\overline{z}|B\rangle = \langle B|\alpha|P\rangle$ from which we upper a = a , so that The adjoint of the adjoint is equal to the original linear operator, or it is reasonable to say that taking the adjoint is equivalent to Taking The complex conjugate. 4. If a linear operator equals its adjoint, a = a, it is called self-adjoint or Hermitean and corresponden to a real dynamical variable. 5. Define: <AI = <PIX , <BI = <QIB so that: IA> = ZIP> and IB> = BIQ> and recall (BIA) = TAIB>, then , (QIBZIP) = <PIQBIQ) = <QIZBIP) which implies Ba = aB. This can be easily generalized to FBZ ... = ABT ... and $\overline{IA} \times BI = IB \times AI$ General Rule, The conjugate complex or 6. the conjugate imaginary of any product of bia vectors, bet vectors, oud linear operators is obtained by taking the conjugate complex (conjugate imaginary) of each factor and reversing their order. Theorem , If & is a real linear operator 7, and Em IPY = 0 for a particular het IP), ma providine integer, then & |P) = 0. Proff: Consider m=2, Then <PI EZ/P>=0. Because if (AIA) = 0, IA) = 0, we then have EIP) = 0 and we have the proof for m=2. For m>2, form E^{m.2}/P) = 10> or EMIPT = EZIAT = 0, and, from the proof for m= 2, \$107 =0 or \$m-1/P7 =0 and upon repetition we can grove the general case, and arrive eventually at 2 1P7=0

C. Eigenvalues and Eigenvectors. 1. Consider the following effect of the linear operator & : $\alpha(P) = \alpha(P)$ where I is known; IP?, a are unknown. That is, the effect of the linear operator is merely to lengther the vector in the Hilbert space. also, we could have the equation Lala = 6 (al. 2. If this equation is satisfied a is called an eigenvalue of the dynamical variable and IPT is an eigenhet of the dynamical variable. 3. If degeneracy is present, we could have several eigenvectors belonging to the same eigenvalue, all of which are independent. a linear combination of the degenerate eigenvectors is another eigenvector belonging to the same eigenvalue. 4. We shall find that Hermitean operators will correspond to observable quantities and will therefore limit ourselves to there. a Hermitian operator will be called & 5. Some important resulte : (1) The sigenvalues are all real numbers. Form <PIEIP7 = a <PIP7 from EIP) = a IP) Now 2PIEIP7 = <PIEIP7 and is thus real. also 2PIPS is real, therefore a us real. The eigenvalues associated to the (ii) eigenbias are just the same as these associated with the eigenteta. and The conjugate imaginary of any eigenhet is an eigenbra belonging to the same regenvalue, and conversely. This makes it possible to call the state corresponding to any sigenvector an sigenstate of The dynamical variable E.

C. 6. notation: We denote the eigenvalues of the deprantical variable & by E', E", etc. and IE' as the eigenhet belonging to The eigenvalue E'. If the eigenbets beloriging to E' are degenerate, we label them by 12'17, 12'27, 12'37, etc. 7. Theorem: Two eigenvectors of a real dynamical variable belonging to different eigenvalues are orthogonal. Proof: Cousider: \$18'7 = E'1E'? and; \$18"7 = \$"18"7 Form < E' | E = E' < E' | and multiply by IE"]. 1811818"7 = 8'2818"7 Ainilarly : < 21/2/2"> = 2"21 2"? Therefore: (E"-E') < 2' 1 E" 7 = 0 or $\langle \mathcal{E}' | \mathcal{E}'' \rangle = 0$, $\mathcal{E}' \neq \mathcal{E}''$, $\mathcal{Q} \in \mathcal{D}$. 8. Theorem: If E/E'? = E' 1E'? , Then any reasonably behaved function of the dynamical variable, say \$(E), satisfier $\phi\left(\underline{\varepsilon}\right)/\underline{\varepsilon}' = \phi\left(\underline{\varepsilon}'\right)/\underline{\varepsilon}' \gamma_{\cdot}$ Proof: of \$ (E) is well behaved, it can be expanded in a Taylor series point c, very: \$18) = 2 an (E-c)". It is necessary to consider only the nth term (E-c)" which can be expanded by the binomial theorem in powers of E such that if we can prove En/E'? = E'n/E'? The above Theorem is obviously true. Consider: $\xi^{n} | \xi' \rangle = \xi^{n-1} \xi | \xi' \rangle = \xi' \xi^{n-1} | \xi' \rangle$ = $\xi^{1^{2}} \xi^{n-2} | \xi' \rangle = \dots = \xi^{(n)} | \xi' \rangle, so$ the theorem is proved. D. Observables 1. We now develop a physical interpretation for the mathematics based on the fact that any observable we measure must result in a real number and Thus must be represented by a real dynamical variable.

D. Z. All the dynamical variables of use in Quantum Mechanics must be Hermitean operatora. 3, assumptions : (1) If the dynamical system is in an eigenstate of the Hermiteen operator &, belonging to the sigenvalue E', then a measurement of & will certainly give as a result the number E'; and conversely, (ie). If we have two or more eigenstates (degenerate) belonging to the same eigenvalue F', then any state formed by superposition of three eigenstates will also be an ligenstate of E. 4. From This we can infer that the set of ligenvalues of a real dynamical variable (Hermitean operator) are the possible results of the measurements of the dynamical variable. 5. If a certain & is measured with the system in a particular state, the states into which the measurement causes The system to jump into states upon which the original state is dependent (Principle of Superposition) and These states are all eigenstates of the system. We define a complete set of states to be such that any ne state dependa upon the set of eigenstates of the system -The eigenstates of & form a complete set. 6. If the system is not originally in an eigenstate, a measurement will cause it to jump into an eigenstate which will be the observation of the measurement. Subsequent neasurements will yield the same eigenstate. 7. a real dynamical variable whose eigenstates do not form a complete set is a quantity that cannot be measured.

The condition that & be an observable is that the eigenbets of E can be used to express any arbitrary bet. that D. 8. vo'. $|P\rangle = ||\xi'_c\rangle d\xi' + \leq |\xi^A d\rangle$ where the I is over the range of continuous eigenvalues and the sum is over selected sigenvalues in the continuous range plus any discrete range autride the continuous range, the c and d being labely used to distinguish the eigenvalues when they are equal. Evidently the eigendets above must cautain ther own multiplicative constants explicitly. 9. Sometimes a quantity can be considered an observable although it cannot be proved because of the difficulty of finding the eigenvalues and eigenstates of the system. E. Functions of Observables 1. Perac defines a function of an operator in terms of the sigenvalue equation; f(E) IE' > = f(E') IE' > immediately without resort to power series. 2. It is aborious from the proof given

before that $\overline{f(\epsilon)} | \epsilon' > = \overline{f(\epsilon')} | \epsilon' >$ since & is real if & is an observable. 3, also, the following is evident from The above expansion: $\langle \varepsilon^{*}|f(\varepsilon)|P\rangle = \overline{f}(\varepsilon^{*}) \langle \varepsilon^{*}|P\rangle = \int \overline{f}(\varepsilon^{*}) \langle \varepsilon^{*}|\varepsilon\rangle d\varepsilon'$

 $+ \sum_{n} \bar{f}(\bar{z}^{n}) \langle \bar{z}^{n} | \bar{z}^{n} d \rangle = \int \bar{f}(\bar{z}^{n}) \langle \bar{z}^{n} | \bar{z}^{n} \rangle + f(\bar{z}^{n}) \langle \bar{z}^{n} | \bar{z}^{n} \rangle$

However, <\[" | F(E) | P) = <\[" | F(E) | P' from which we unfer F(E) = F(E) which should be as E in a real linear operator.

E. 4. If flE' is real, it follows that f (E) is an observable. 5. We are able to give a meaning to any function of an abservable, provided only that the domain of existence of the function of a real variable f(x) includes all the eigenvalues of the abservable. also, the function must be single - valued to that the inverse exists, that is, so that I is a function of f(E). 6. all of the above statements apply equally well to functions of an observable operating on bras as well as sets. F. The General Physical Interpretation 1. Theorem: If the measurement of the observable & for the system in the state corresponding to 1x is made a large number of times, the average of all the results obtained will be <x [] x), provided 1x7 is normalized. If 1x7 is not normalized, then (x) E | x > is proportional to the mean value of E. 2. The observable & will have a defined value for a state if it is an eigenvalue of the state. Otherwise, we can only talk about its average value. If the observable in E, we can talk about mean values of f(E), veg, <x | f(E) | ×>. Consider the function Sza where a = Pa which is The probability of & having the value a. If a in not an eigenvalue of E, Sga times any eigenhet of E in yero, since the result of the must be one of its eigenvalues. 4. If the possible results of a measurement of I form a continuous range, then

we can only talk about & having a value in the range a and a + da. We denote the required function to give as This probability be X(E). Then Ra) da = <x | X(E) | x >. Itatements (3) and (4) imply: SEa ET = 0 unless E = a (discrete) and X(E) 12'7 = 0 unless 2 is in da (continues) 5. Continuous eigenstates are not realizable in practice. G. Commutability and Compatibility 1. If a state is simultaneously an eigenstate of two observables, that is, \$ /A7 = E' /A7 2/A> = 3'1A> then it is easily shown that \$3-7 E=0 or that The observables commute, This idea of armultaneous sigenstates can be extended to more than two observables in general. 2. It can be shown that if a set of observables do commute, there exists no many simultaneous eigenstates that they form a complete set. 3. We also can define f(E, Z, J) where E, Z, I are commutting abservables such $That: f(\xi, \chi, J, ...) / \xi' , J' ... \chi = f(\xi', \eta', J' ...)$ 17, 2', J', ... >. 4. We can also generalize the definition for a state to have a given value for an observable to: Pabe... = <x) Sza Syb Sze ... 1x> 5. The importance of This section lies in The fact that's one can give a meaning to several commuting observables having values at the same time. The observations are then said to be compatible. Thus any two or more commuting observables can be counted as one observable, the resulting measurement giving tor or more numbers. Example: Energy, angular momentum and linear momentum in H- case.

III. Representations A. Basic Vectors: We have been working with bra and het vectors in Hilbert space which represent the various states of a dynamical system. To solve practicle problems and to advance the Theory, we must introduce a representation in which to work. This is analogous to The coordinate componente of an ordinary vector m 3-dimensional space. This is usually done by choosing a siptem of basis vectors and taking the components of a general vector on the scalar man of the vector with each one of the basis vectors. There we take as basic vector in Hilbert space a set (complete) of breas (basic bras) and the representation (components) of a general bet an the scalar product of This het with each of the bras in term. The representatives may be either numbers as they would be if both the basic bras and the general set represented eigenstates of the same dynamical variable, or, they could be functions of the labels of the basic bras as they would be if the bras were the eigenbras of the displacement dynamical variable and the het was an eigenhit belonging. to the Hamiltonian operator. Theorem: If E., E., ... En are any set of commuting observables, we can set up an arthogonal representation in which the basic bas are simultaneous eigenbras of E., E., ... En. an example of a set of commuting observables are H, LZ, LZ of the central field problem. There is only one simultaneous eigenbet for each set of eigenvalues for This problem. The Theorem, however, can be extended to the degenerate case.

If the eigenvectors forming the basis vectors form a complete orthogonal set, we can normalize them to writ length. This is only possible if the eigenvalues That label Them are of a discreet nature. If the eigenvalues are continuous, the basis vectors will be af infinite length, this brings us to the S function.

B. the S Function: The S function performs essentially The same operation in an integral that The Kronecher delta performa in a sum. It only has meaning when used in a sum.

C. Properties of the Basic Vectors: If we have given the observable E which forma by stalf a commuting set, and has diacrete sigenvalues E', then we have a complete set of orthonormal basis vectors with the following properties: < [1] = Sq'en Recalling the function that the showeder I performe ma sum, we can construct:

 $\sum_{g''} |g''\rangle \delta_{g''g'} = |g'\rangle = \sum_{g''} |g''\rangle \langle g''|g''\rangle$

hence we can think of $\leq 15' \times 5''$ as the unit operator, if we apply the unit operator on an arbitrary set 1P7 we have; 1P7 = = 15'7<5'1P7

thes giving the important result that any arbitrary but can be expanded in terms of the basic sets.

D. The Representation of Finear Operators: If we have the observable ?, forming a complete committing set with itself, and another operator &, in general not commuting with \$, we can form The number : < " 1 × 1 × 1 × 1 × We see that this can be arranged according to its eigenbalues in an infinite square matrix. If we have & real, then < E"1x1E'7 = /E'1x1E"? and the matrix is Mermitian. If x = E, The matrix is abviously diagonal. If we consider the matrix of the product of two operators, we have: $\langle \xi'' | \alpha \beta | \xi' \rangle = \langle \xi'' | \alpha \xi' | \xi''' \rangle \langle \xi''' | \beta | \xi' \rangle$ $= \sum_{g'''} (\xi''|z| \xi''') (\xi''|p| \xi')$ The notion of matrices is even continued to the case where E", E' are continuous eigenvalues using integration and the pirac of function. all materices of linear operators are subject to The same algebraic laws as the linear operators Themselves. The extension of This idea to bear (basic) as now matrices and basic heto as columns is obvious. These will be unit column and rows. The elements of the rows and columns of and bro or het will be the componente of the vectors.

a second a s	
Consider a second and the second second and the second second second second second second second second second	
77	
the second se	
And second a	

PURE AND MIXED STATES Kemble, p. 320

We hold that we can prepare an eusemble of identical agreems such that their statistical properties can be described by a quantum mechanical wave function or a vector in the Hilbert space. It necessarily follows that it is possible to write the systems of two or more ensembles into a single superensemble. the constituent ensembles are said to represent pure states since their statistical properties are given by a wave function los point m Hilbert space). If the constituent ensembles are all in the same state, the resulting superensemble is also a pure state. However, if the ensembles differ the resulting superensemble represente a mixed state. All information that can be known about the constituent ensembles in assumed to be known, hence this is why they are said to be pure states. all the systems in the pure state ensembles are in the same state which is another reason why they are pure state ensembles. Let us take two pure state ensembles A and B with NA systems in A and NB systems in B. The quantities :

 $\omega_A = \frac{N_A}{N_A + N_B} \quad j \quad \omega_B = \frac{N_B}{N_A + N_B}$

are the weights of A and B in any superensemble composed of them. Let WA be the probabilities of an event in A and WB be the probability of the same event in B. Since The system's of A and B are independent of each ather, The probability of the event in The superensemble is the sum of the probabilities of the events in the sub-ensembles;

WA+B = WAWA + WBWB

The expectation value of a dynamical variable a in a pure state ensemble is (E' | x | E'). The expectation value of This same dynamical variable in the superensemble follows the usual statistical laws governing probability distributions and averages. Therefore, it follows that in general : $\mathcal{E}_{xp}(x) = \overline{x} = \sum_{\overline{z}'} \omega_{\overline{z}'} \langle \overline{z}' | x | \overline{z}' \rangle$ This was shown in lecture. It was also shown that a mixed state cannot be represented by a wave function. Further Thoughts on Quantum Statistical mechanics: We begin with the Born interpretation of the Achoedinger wave function, namely, that. [4: (g] is a probability density function for the configuration of the system. We consider that I' labels the state to which the subensemble belongs and that the state of the sub-cusemble is represented by the det 1317 which we assume to be expressible in terms of a complete set of basic hets 12'. Although q is the configuration space of The sub-ensemble we denote the probability distribution function in one dimension for simplicity. In probability theory, we can talk about the probability of 4 4 PZ obtaining a value less then a given value. In this case, The probability of the sub-onfiguration less than q' $P(q : q') = \int_{-\infty}^{q'} |q_{r'}(q)|^2 dq$

By defining the unit step function u(q-q') 1 g' q Then: $P(q \perp q') = \int_{-\infty}^{\infty} \psi_{q'}^*(q) \, \mathcal{U}(q - q') \, \psi_{q'}(q) \, dq$ = < \\[' | m (q-q') | \\[' ? now, The probability for the suger-ensemble formed by a collection of the above subensembles to have a configuration q 1 q' is the sum of the weighted probabilities of each sub-ensemble to have a configuration q 1 q'. another way to say this is to say that the probability of the sub-ensembles to have the same configuration is the sum of their probabilities (wieghted and independent) as follows from statistical independence. That is: $P_{\tau}(q : q') = \sum_{g'} \omega_{g'} \langle g' | u(q - q') | g' \rangle = I$ Espand 18'? in terms of a complete set of mitable basis functions 12'?: $|\xi'\rangle = \sum_{3'} |3'\rangle \langle 3'|\xi'\rangle$ and $\langle \xi'| = \sum_{3''} \langle \xi'|3''\rangle \langle 3''|$ Then : $\sum_{3'h'' \xi'} < n' |\xi' > \omega_{\xi'} < \xi' | u'' > < u'' | u | (q - g') | z' >$ $P_{T}\left(q < q'\right) =$ $= \sum_{i=1}^{n} \langle \gamma_{i}'| \left\{ \sum_{i=1}^{n} w_{i}' |\xi'\rangle \langle \xi'| \right\} u (q - q') |\gamma'\rangle = T_{n} \left\{ p_{u} | q - q' \right\}$

We thus define as the density matrix operator : $p = \underbrace{\Xi'}_{\xi'} \, \omega_{\xi'} \, |\, \xi' \rangle \langle \xi' |$ On closer inspection, what we have really done is to find the expectation value of the unit step function. Thus we can generally'e immediately to the expectation value of any dynamical variable; $\overline{\alpha} = \mathcal{E}_{AP} \left[\alpha \right] = T_{A} \left[\rho \alpha \right] = T_{A} \left(\alpha \rho \right)$ We should expect to find Tr p = 1 and indeed this is the case upon setting x = 1; $T_{\mathcal{R},\mathcal{P}} = \sum_{\substack{3'\\3'}} \langle n'| \left\{ \underbrace{\exists}_{\xi'} \ w_{\xi'} | \xi' \rangle \langle \xi'| \xi | \chi' \right\}$

RESUME OF CLASSICAL MECHANICS We shall show that the following holds in expressing newton's second law for a simple non-relativistic system. (1) $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_n} = \frac{\partial L}{\partial \dot{q}_n} = 0$ ($L = 1, 2, 3, \dots, f$) where $L(q_{i}, q_{i}) = T - V$ and is called the Jagrangian of the system. The que are generalized coordinates and stand for a coordinate in the configuration space of the system. If the qu are cartesian components, then: $(z) L = \pm \sum_{i=1}^{r} M_{i} q_{i}^{2} - V$ and if q = x (one dimensional): (3) $M\dot{x} = -\frac{\partial V}{\partial x} = F_x$ if V is a conservative force field. It is easy to see that the following relations hold: (4) $p_{\mu} = \frac{\partial L}{\partial q_{\mu}}$ $\dot{p}_{\mu} = \frac{\partial L}{\partial q_{\mu}}$ These are the fagrangian equations of motion. We can form 25 first order differential equations by defining the so-called Hamiltonian: (5) H (pr, qu) = Z pr qu - L (qu, qu)

If we take the total differential of the Hamiltonian junction : (6) dH = Z { $\frac{\partial H}{\partial p_{1}} dp_{2} + \frac{\partial H}{\partial q_{2}} dq_{2}$ $= \sum_{n} \left\{ \left[\dot{q}_{n} - \frac{\partial L}{\partial q_{n}} \right] dq_{n} + \left[\frac{\partial}{\partial q_{n}} \left(p_{n} \dot{q}_{n} \right) - \frac{\partial L}{\partial q_{n}} \right] dq_{n} \right\}$ pe des $= \sum_{n=1}^{l} \left\{ \left[\dot{q}_{n} dp_{i} + p_{i} d\dot{q}_{n} \right] - \left[\frac{\partial L}{\partial q_{i}} dq_{i} + \frac{\partial L}{\partial \dot{q}_{n}} d\dot{q}_{i} \right] \right\}$ using the fact that : <u>d L (qu, qu) dpi = { dL dqu + dL dqu } dpi dqu dqu dqu + dqu dqu dqu dqu }</u> = <u>dL</u> dýr dýr From the Jagrangian equation $p_{I} = \frac{\partial L}{\partial q_{I}}$: dH = = { dH dp + dH dq } = Z qu depu - pu dqu } using fi = 24. We see immediately, (7) $q_{1} = \frac{\partial H}{\partial p_{1}}$ $p_{2} = -\frac{\partial H}{\partial q_{2}}$ which are called the Hamiltonian equations For simple, conservative, non-relativistic systems, we can write the Hamiltonian $(8) \quad H = T + V = 2 \frac{p_{\perp}^2}{r \cdot z \cdot m_{\perp}} + V$

Physics 2516: Final Exams 1957-1958 (a. Prove that the quantum number of for the total angular momentum can have only integral or half - integral values, b. Show further that if the system is composed of spinless particles the half integral values cannot occur. Z State the asymptotic form of the wave function as used in 3-0 problems of scattering by a fixed center of force In terms of the acattering amplitude, state the formula for the differential casessection, and from it derive two different expression for the total cross-section. Use Time - dependent perturbation theory to 3 obtain the first order probability for transition between Two discrete states Explain how this result is used to establish the formula for the Einstein B coefficient in terms of the matrix element. Ð a system has y = 1. measurement of the augular momentum component m'to along the I' axis has given the value m'=1. The component with along the 2 action is now measured. Calculate the probabilities for The different values of m as functions of The angle & between The Z and Z' agis, and check against results naturally expected for 0=0, TZ, T. (Take 02' in the x2 plane, Work in representation with MZ = who diagonal. Find one-column meetrix (m/m'=1) as eigenvector of operator M2').

.

5 Two partial systems have angular momentum quantum numbers j. = jz = 2 and wave functions um, Vm2. Find the wave function of the combined systems for 2=1, m=0. (Use fact that This is an eigenfunction of the operator IM. + M2 12; express This operator in terms of ji, tz, mi, mi, and ladder operators.). What is meant by an antisymmetric wave 6 function ? thow how to autisymmeterize an arbitrary function, and give the special formula that results when the given function is a product of single-electron functions. Describe the way two widely segurated every levels arise from the configuration 1525 of the helium atom. @ Explain the meaning of " pure state", and "nifed state", giving formulas for probabilities and for expectation values. Define the statistical matrix, and show how it is used to calculate expectation values. State and prove an important Theorem about any mixed state in which all the weights are equal. 1954-1955 O Write the Schroedenger equation for an electron in an electromagnetic field, Explain what is meant by gauge invariance; write a general gauge transformation of the patentials and the corresponding transformation of the wave function &. Derive the form of the probability current vector; show that it is a galege-invariant quantity.

•

2 Phane Integral " fort year 3 State the asymptotic form of the wave function as used in 3-D scattering problems; identify the quantity "scattering anglitude" state two different formulas for the total cross-section in terms of the scattering amplitude. apply both formulas in the case of a scattering amplitude given in terms of phase shifts, +10) = (12) - Z (2+2) (e 22 de - 1) Pe (cos 6) and show they give the same result. a system with y = 3/2 has been found to Ð have magnetic quantum number in with respect to the 2 axis. Find the probabilities of the various results m', if a new measurement is made using the x-axis instead of the 2-axis : (a) For m= = : (b) for m = 1/2. Two systems treated separately have angular 5 momentum quantum numbers f. = fz = 32; write Um, for the wave function of the first system. This for Those of the second. What values are possible for the resultant quantum numbers 1, m of the two systems taken together ? Determine all the wave functions 4, m in terms of the products Um. Vmz. (For this case with 1, = 12, symmetry is of particular assistance in compiling and checking the results.).

.

.

Discuss the use of antisymmetric wave function for electrons ; (a) in connection with Paulis exclusion (b) with particular attention to the location of the terms of the normal helium atom (He I), and the dependence of the every of a term on its multiplicity. 1953-1954 O) Questions covered last semester on not covered now, C (Compute all the normalized wave functions 9, m in terms of the normalized product functions Yme Km2 for fi=1, f2=1. @ Tabulate the possible values of me and Ms and determine the spectral Terms that exist for the configuration (nd)2. O Explain the meaning of " pure state " and "mised states", giving formulas for probabilition and for expectation values, same as O in 1957-1958.

Physics 251b Problems, 1961

Due 15th

1. Apply the transformation function $(\vec{r}^{\dagger} | \vec{p}^{\dagger})$ to calculate $(\vec{p}^{\dagger} | x | \vec{p}^{u})$ from $(\vec{r}^{\dagger} | x | \vec{r}^{u}) = x^{\dagger} \delta(\vec{r}^{\dagger} - \vec{r}^{u})$.

2. Show that the trace (sum of diagonal elements) of the matrix of an observable is independent of representation, $i_{a}e_{a}$, that

$$\sum_{\boldsymbol{\xi}^{1}} (\boldsymbol{\xi}^{1} | \boldsymbol{F} | \boldsymbol{\xi}^{1}) = \sum_{\boldsymbol{\gamma}^{1}} (\boldsymbol{\gamma}^{1} | \boldsymbol{F} | \boldsymbol{\gamma}^{1});$$

and that this sum is equal to the sum of the characteristic values F', weighted by their degeneracies (multiplicities).

3. Show that if F anticommutes with one of the complete set of observables ξ , i.e., if $F_{\xi_1} + \xi_1 F = 0$, with $\xi = (\xi_1, \dots, \xi_1, \dots, \xi_f)$ then

$$(\mathfrak{Z}^{1}|\mathbf{F}|\boldsymbol{\xi}^{"}) = 0$$
 unless $\boldsymbol{\xi}_{\mathbf{i}}^{I} = -\boldsymbol{\xi}_{\mathbf{i}}^{"}$

4. Consider a set of m states Φ_{ak} , $k = 1, \ldots$ m and a set of m states Φ_{ak} , $k = 1, \ldots$ m related to the first set by a unitary transformation,

$$\Phi_{rak} = \sum_{j=1}^{\infty} \Phi_{\xi a j} (\xi a j) \eta^{ak}$$

Consider also a set of n states Φ_{fbk} , $k = 1, \ldots n$, and another set of n states $\Phi_{\eta \text{bk}}$, $k = 1, \ldots n$, related to it by a unitary transformation. Show that

$$\sum_{i=1}^{m} \sum_{j=1}^{n} \left| \left(\sum_{s}^{e} ai \left| F \right| \sum_{s}^{e} bj \right) \right|^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} \left| \left(\gamma^{ai} \left| F \right| \gamma^{bj} \right) \right|^{2}$$

('Principle of Spectroscopic Stability')

Physics 251b Problem 111

stirn (1)p) to calculate

he trace (fum of disgonal elaurnts) of the matrix is independent of representation, i.e., that

 $\sum_{i=1}^{n} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \sum_{i=1}^{n} \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right) = \sum_{i=1}^{n} \left(\frac{$

n is equal to the ted by their degen

f / antion-mutes w

O whiless of =

 Gensidar a set of m states of m stateh & _{nin} k = 1, ... w unitary transfelletten,

Consider also a set of n states $\frac{1}{2}$ bk, $k = 1, \dots, n$, and snother set of n states $\frac{1}{2}$ bk, n, related to it by a unitary transformation. Show that

 $\sum_{i=1}^{m} \sum_{j=1}^{n} |(i a^{i}[r]_{i} b^{j})|^{2} = \sum_{i=1}^{m} \sum_{j=1}^{n} |a^{i}[r]_{i} b^{j}|^{2}$

('Principle of Spectroscopic Stability')

	5	1	As	SIGA	U m	en	t	#	1						3			-										P	au	2		Gr	a	nt	-		4	
				bler					1	7.	1			2	30		100	15		1	6.3	1	N.		2	24.			EA									1
	_	_	4	5		2		-	34	12	100		2	1.9	1	÷		ski			8.5	Y _R 5	2	1	1.	14	-		2					81		3.12		_
-	1	1	2	-2 5	+	-	-	-		_	-		-					-	-	~	-	_				_		11	3 -	12	? -	6	1	33		1	-	-
	0	-			-	-										-	-		-		-					_		-	-	-	-			-		-	+(-
Ĺ .		1.		(1)	6	100	n	;		<	n	1×	1	л"	>		=	×	/	51	n	1- ,	2")		u	11	th		X	he							
	_																								ns								en	d				
-	\triangleleft	_	_	_	-					<	P	1.	n'	>						-															-	P		
)	-	(3)	-	,1					,	_	-	1	-	-	-	1		01							,		_	_	L				1.	-	- +	
	-	-		(2)	-	U.	su 1)-	19	21	4	e +	105	Y	00	es	4-	0	4		+1	ve	no U	J	L	a	n	d.		m	a	Tr	12		e	1e1	ne	nt	-
					+	d	n	+1	n	uo	25	10	n.	01	2 6	en	V	al	UE	3		r pr	u	le		Co	an	er	A	or	1	n	7	La v	e e	+		
							a																						1									
	_	_	_		-	-										he						,		1 1			11 \					. 1		5		_	_	-
	-	+	-	+	+	<	< p	1	X	P	"7	>	=	-))	<	P	11	21	d	2 4	<r< td=""><td>1</td><td>X I</td><td>r</td><td>~ 2</td><td>d</td><td>r"</td><td><.</td><td>л"</td><td>1-</td><td>ę ″</td><td>2</td><td>-</td><td>+</td><td></td><td>-</td></r<>	1	X I	r	~ 2	d	r"	<.	л"	1-	ę ″	2	-	+		-
				+	+																														•	-	-	-
						=		1	×	12	p	1	2'	> 0	er'	8	1.	n' -	- ,	r")	dr	"	<	2"	1-0	p"	>						8	1			
		_		_	-		Ĩ	3																					1			11		1		_	_	
	-	_	_	-						/										P				n										_	X	-		-
	-	-		4	on	6	a	n	12		t	et	6	X	21	0	n	t.	P	21	n	_	1	d	V	10	ty	1	de la	21]]			`	+	-	-
				(3)																													ct	ir	0			
														v			-																					
	_	_	_		-		4	(n)		-	>	<	n	1	>	-	;		4	0 (1	2)	2	-	19/2		e	- 4	P.	1/2	2	Q	(P) 0	14	2	_		-
		-	-	_	+		91	P)	-	~	<	1	1	>		:		9	11) .	e	-'	h	2	C		-		-	4	(n) 2	in	-			-
	-	+			+		<r< td=""><td>1</td><td>></td><td>U</td><td></td><td>1</td><td><</td><td>r'</td><td>10</td><td>1></td><td>d</td><td>p'</td><td><-</td><td>p'1</td><td>></td><td></td><td></td><td></td><td>~</td><td>1r</td><td>10</td><td>1)</td><td>-</td><td></td><td>e</td><td>20</td><td>1. p</td><td>1</td><td>Ŕ,</td><td>h</td><td>3/2</td><td>-</td></r<>	1	>	U		1	<	r'	10	1>	d	p'	<-	p'1	>				~	1r	10	1)	-		e	20	1. p	1	Ŕ,	h	3/2	-
		_	_	_	-		$\leq $	p'	>	5	_	J	<	P	1	217	> 0	ln	<	\mathcal{N}'	17		; -	٢.	<	1	, .	n'	>:	=	e	-1	P	a	/ n	· h	-3/2	
	+	-	-	-	-	-				_	_	_		_				_									-	•	-	-	-			-	8.1	-	-	
	+	+	+	-	+	-	<	PI	1-1	"	>	-		(<	p	11	21)	J	n.'	25	21	P	">													-	
														~									1															
						2	-	3			e	1	(1	-	P)•,	n'I	R	0	la	/							_	_									
	-	-	-+	_	-					~													31	_/		_	_	-	_	-	_	_	-	-	201	+	-	-
	+	+	-	-	1	e	t	:	-	r		2	n	2	-	,		d	n	-	2	n	de	>	,	-		-	-	+				-	14	+		-
		1			, '		<	<	01	p	11	>	5		-	1	10	(e	1	(1	//	P).	S	d	51							-				
									ì	,					(2	:π))																				
	-	+	_	_	-	11.	w		110	10	_					10	1	79.0	+			_	0		U.		0		24	_	S	-	<u>(</u>		st,			-
	+	+	+			Nº M	2. 7 1	0 1	YN.	15		15		a	4	ae	+1	n	11	m		07	4	7	ne	-	D	11	ac	-	D	-	tu	na	571	on	- ,	-
	+	-	-	-	4	rne	C Y I	ef	or	5 5																			-	+					-	-		-
									2.	P'	P	"	7 :	-		8	(1	011	-	p)		e		S	(p	1-	P	")	2								
																												`									1.2	
		+	-	(4)	. '.		4	4	21	хI	P	"	2	=		X	-	9	(-	p'-	P	11)				_	_	_		_	_	_	-		_	-	
-	-	-	-		-																	-		1	1			-		-	-		-	-			-	 -
	-	-	-		-												_						1	-													-	1
																							-												-			
																-																					-	
																																						4

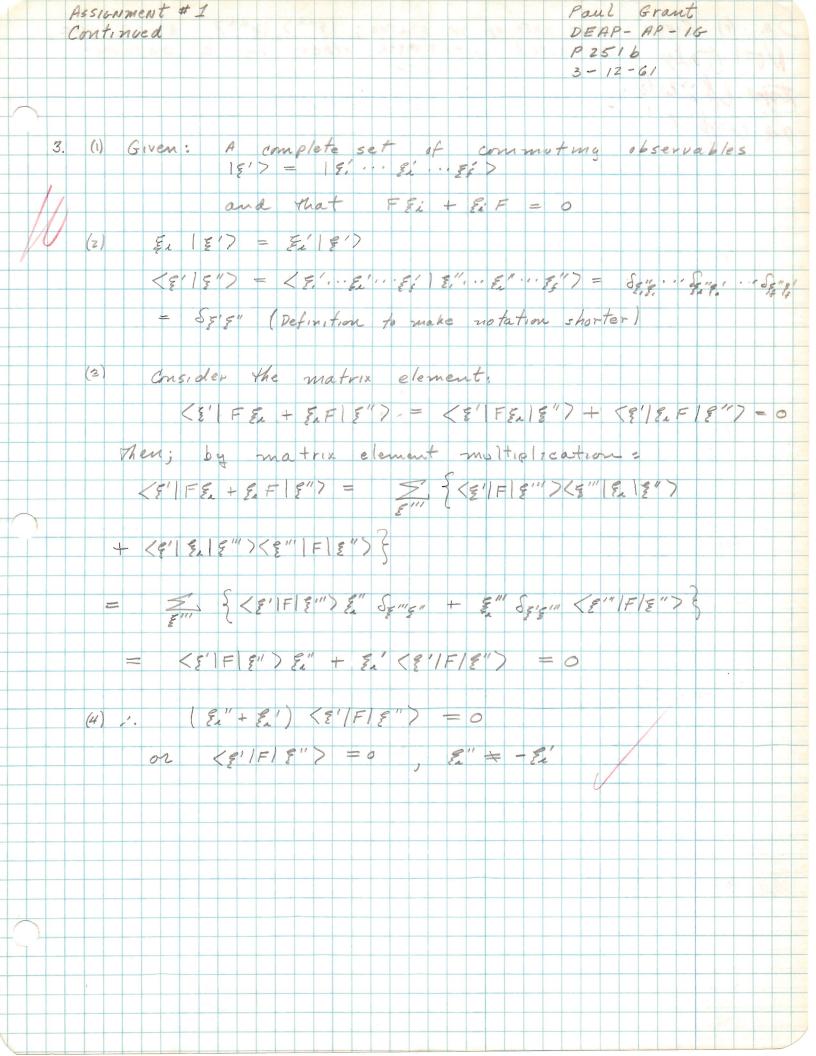
2. (1) We are given the matrix elements $\langle g' | F | g'' \rangle$ of the observable F. Consider the transformation of the trace of the F matrix to some new representation, say that of 12', defined by the transformation functions $\langle \chi' | g' \rangle$ and $\langle g' | \chi' \rangle$; and that $\delta \chi' \chi'' = \langle \chi' | \chi'' \rangle$: $T_{R}F = \sum_{i} \langle g' | F | g' \rangle = \sum_{i} \langle g' | \chi' \rangle \langle \chi' | F | \chi'' \rangle \langle \chi'' | g' \rangle$

 $\frac{1}{2'n''} \int \frac{1}{n'} \frac{1}{|F|n''} = \frac{1}{n'} \int \frac{1}{n'} \frac{1}{|F|n''}$

so that the trace is invariant under an orthonormal transformation.

(2) Since F is an observable we can find its eigenvalues via the eigenvalue equations

 $F/F'N_{F'}$ = $F'/F'N_{F'}$, $\langle F'M_{F'}|F'N_{F'}$ = 1


where IF' nF') is an eigenket of F, the nF' indicating the index of degeneracin associated with the eigenvalue F'. Now, the observable F can always be brought onto diagonal form by a principle axis transformation, which here would mean the use of the transformation function <\[ilF'm_{F'}]. Therefore, using the methods above: 35'

 $T_{A} F = \sum_{i} \langle g' | F | g' \rangle = \sum_{i} \langle F' n_{F'} | F | F' n_{F'} \rangle$

where gr' indicates the degree of degeneracy associated with the eigenvalue F', Now:

 $T_{R}F = \sum_{F'} \sum_{F'} \langle F' \mathcal{M}_{F'} | F' \mathcal{M}_{F'} \rangle F' = \sum_{F'} \sum_{F'} F'$

= $\sum_{F'} g_{F'} F'$, Q E D.

n.								
		t	, ((
					>1=		D.	
			na		5	06	E	
			FI	2	b b	2	G	
			1			lei)	
			20.	12	at P1		2	
	¥		V	64	Im a			
			>	<,	F	he	4	
			63	¥)			en	C
			12	n ^p	My XNH		-	1
h	4		F) F	/
n p		-	21	ar	m	8=	a	8
>	-+		'n) (7		an ti	Cone	2
h) a	a c		<	t	67	chi	1.	
ha bk	f		2=1	une br	Kee N) m	n Ny=1	
tel.			10.0	F]<		t m.	1	
ea ;	he		m = 1	P	ap	U S	4 M 1	
X st	¥ ta			at	-	144		
> te	11		-	V War	ap F		1	
ta	no		- ware - Markey a		North Mark	And Andrew Property of the second	2	
5	a . 1	ise le		ap 5]	20	12	>)	
n	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10	12	We be	X		04	
m 1=1 ,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	213	4 >	n <	bs	100	n	
	=		Z 6.	<			F	1
= h	ns	5)	=1	, 7	F		14	
) ts	era tion az	bu	× 1			&a	'n	
se w	fat	311 m	na		NUt UN		<	
no	m X	+++++++++++++++++++++++++++++++++++++++	<		M SET	6	=1	
l l	ore	t	-1		-	2	2 Mile	
1	- fo	ha pli	T Mr	m p=1	n	5	M =1	
1	an = 1	-			MP MA	M M H H	11/2	
te	tr Wr		_		-	1	,	
bl		7	m	=1		U	. ,	
A	2)	8)	4) -	- 1			5)	
(1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	((3	(4	1			0	
m								
t								

Physics 251b

Problems, 1961

5. Show that when the method of partial waves is used, the formula

$$\sigma = \frac{4\pi}{k} \operatorname{Im} \left(f(0) \right)$$

gives the same result as was obtained in lecture by integrating the differential cross-section.

6. Show that f(0) is purely real in the first-order Born approximation, for a static force-field V(r). Obtain the result

$$G^{r} = \frac{m^{2}}{\pi \hbar^{4}} \iint d\vec{r} d\vec{r}' V(r)V(r') \cdot \frac{\sin^{2}k|\vec{r}-\vec{r}'|}{k^{2}|\vec{r}-\vec{r}'|^{2}}$$

(a) by integrating the differential cross-section of the first-order Born approximation; Average over all directions of scattering

(b) by using the second order of the Born approximation to calculate Im(f(0)). Average over all directions of meidence.

7. For the case

 $V = 0, r > r_0; V = V_0, r < r_0$

 $|V_0| \ll E, kr_0 \ll |$

calculate the total cross-section (a) by the method of partial waves; (b) by the Born approximation.

Average = $\frac{1}{4\pi}\int dR_0$ σ same for all directions since V(n) spherically symmetric.

internet and

Phraics 251b

Problems, 1961

5. Show that when the method of partial waves is used, the formula

and the second sec

$$\sigma = \frac{\Delta \pi}{k} \operatorname{Im} \left(f(0) \right)$$

gives the same result as was obtained in lecture by integrating the differential cross-section,

C. Show that f(0) is purely real in the first-order Born approximation, for a static force-field V(r). Obtain the result

$$\omega = \frac{m^2}{m_h^4} \int d\vec{r} d\vec{r}' v(r) v(r'), \quad \frac{84n^2k}{k^2} \frac{\vec{r} - \vec{r}'}{\vec{r} + 2}$$

% (a) by integrating the differential cross-section of the first-order Born approximation; 22

(b) by using the second order of the Born approximation
to calculate Im (f(0)).
7. For the case

 $V = 0, x > x_0; V = V_0, x < x_0$

VolaE, krock

calculate the total cross-section (a) by the method of partial waves; (b) by the Born approximation.

1 2 2	As	SIGN	me	nt	+ +	# 2	2				1				-						3			P	au	2	C	ire	2 est	+				1
		blem																			1.4	2	24		EF				1 A A A A A A A A A A A A A A A A A A A					
																1	2		-	1.	8				24							33		
			100							2												-		3	- 2	4	-6	1	-					
														•																				
2																																		
1	5. 1	levie	w	04	-	+1	he	M	eH	ind		of	7	Par	tia	1	W	ave	25	:						1			-					
	10)	Y.	2 P	K	ed	'k	Z	+	3	f (7	12)	6	21	RIA	-	:	4	1 -	2	4	(7)	+	f	(20)	4) 'ree	12	.)				
	1/2)	Co	ns	1d	er		the	2	P	ote	in	tia	,2	4	re	12		04		A	2	30	207	Hei	-et		to	7	be				
			Co SF ra	he	110	all	4	5	yn	im	et	-ic			V	n)		0	ma	d	-	42	hat		t	1	all	0	11	-		9	2	
	-		ra	pid	In		w	th	Q	r		SI	JC	h	,	the	at	-	a	+		50	me		di	sto	an	ee		n	0			
			V	= (5 4	-	40	r	n	2	10			U)e		cen	n	A	her	~	w	rat	e	4	le	4	250	422	20	to 7	4ª	_	
V			w	are	2		of	-	G1		as		0	2		201	n	6.	20	2+	ion	e	of		th	e	4	va	ve	0			_	
			f	02	ict	-10	13		of		+	he		ce	n	tra	.2		F	ie/	1d		pr	261	le 2	n	1							
			Y.	-		2	-	Be	P.	e (co	\$ 29)	2	26	2)																		
																		-											2					
			wh	er	e		T	Te	(0)	5	0			2	se"	+			R	-	-	2	mV	-	-	2(1+1	1	2	e	-	0		
																			_				1				200		-			13		
	(3)	Fo	2	4	ere	el	(z)		a	5	in	11	la	2	e	×P	a	15	102	1	h	070	1.5%						-		-	1	
																								_								-		
			9fr	ee	(Z) •	-		2		× (Pe	Pe	: (cos	22		y	6					_										
_																																	1	
			wh	er	e	_	4	le (1] =	0	,	ele	+	(1	12		e/len	+1)) 11	le	=	0	;	k	-=	-	3	m	E	-			1	
							_																							-			-	
	(4)	F	(20)		Co	an		be		22	Pa	n	d e	d		n	r	4	he	_	Le	se	nd	re	- 1	01	-th	105	en	a	1	-	
			F	UN	ct	10	15	4			-	-		_			T	_	_	_	_	-	_	-	-				_	_				
				0					-1	-		0	,				1	_	_				-	-			-		-	-		-		
				f (22)	=	=	-	le	a	e	K	. ((105	20	2	-		_	_		-+-			-		_		-	-	-	-		
					-	1	0	0	,	-	2)		- 1	2			-				0	1		1	110			_	-	-	-	1	-	-
	(5)				2	-	Rd	2 te	CO	5 2	1-1	2	26-	1	2	-	2	e	C	2	Te	(:05	(2	r	-			1	~ 1	-	-		-
			-							-	-	-				3.	1									-			-			-		-
			_		-	57	T	Pe	1.	me	20		e	12	N		2								-				-	-	-			-
			+		45	e	de	1.2	(c		·			n											-		-			-	-		-	
	11		-				-	-		-	1			0				,		11			au	-	-			5	1			S. J.	-	-
	16		Fo	n		R			1		R.	n	22	X	_	a	no	2	-	the	2	w	av	e	0	90	ar	ion	5	-	-	123		+
			DI	ec	on	re	- 1			-					-				-					-							-			1
					75	#	4	12	- 25		-	2	1		-	250	-	~		-	51	n	14	0	+	En	4	50	1	+		- 2-		
					11"			R2 h2	1		-	0	A (-	1			1			1	1V	0	-	60)	U R						
				1	nd	. 7		n	M	-	6		- 1	-	-	ue		-		2	in		R		-	6.2						1		-
		1.	lar.	2		the	0	0	ha	SP		C	1	Lan	5		6		C			100		h	00	-			0	0	6	-		-
		wh te	2	2	10	k	-	00	11.	10	1	75-	11)	-	0		1	02		0			The	- 31	-		5	-		-	1 C		
					cat		-		The second		1	3.0	10			-				+			1		-						-			
	17)	2	5	B	٩	Pr	5	e	12	~	+6	e+	de)_	0	-1	(*	···	+ 0	62.	+ +	2)	-										
\bigcirc	(1			2	Ĩ			4	T				-		21	n	-							7						-				
										1.)							3		5				
		=		21	10	2 e	Pa	5	e	(k	·A	+ 6	e l	12	-	e	-11	the	r t	- 63	2)	-	1	3							E			T
				1				(T					i	22	n								7										
						-	1			0			ch.	n																				
				+		2	2	a	2 1	e	-	-	-	-																				
								a				1	6.00				,			m														V
																						and the second se	and the Property of the Proper	And in case of the local division of the loc			and the second s	and the second division of	and the second division of the second divisio	- Andrewski States	survey of the local division of the local di	and the owner of the	And in case of the local division of the loc	

(8)	- 1				1	1		1															75		1									
(0)	Equat													2												120								
)e									-		-													-		-					
		E	30 c Ce 2.1	2.	(Ee L	+ 64		11		C	2	e	LE	2	+	-	ae																-	
	or		Ce	-	e	(41	+	2 81	2)	1	-	C	l	e'	160	2 .	ta	e											7.3			3		
	or	-	ae		-	(Ce	e	LÉ.	e (e	128.	e -	- 1)		H	0	1	e	e la	L	+ •	Se)	~	un	n	5.	2	1				
													2.0												,						1			
(9)	Now	:			Z	ь (e 1	Pe (CO	52	a)	3	in	e (h.	·n n	+	Ee)		1		e	1	R -		00:							
	122	Y	he	1	m	it	d	1		n	2.	ло																						
	Usi	ng		the	2	01	- th	03	or	a	2,	ty		01													< 5	;						
	C.e		22		-	SI	n	(h	.~	+	El)	1	2			(- 1	21	t,	r M	P	21	u)	d	u								
	1																-1			-							-						-	
(0)	-1	2 17	enn	R	e (s	e) d	u	H			-	1 Ks	2	L	e	· AA	u	Pe	Lu,) [-1													
	_	-	th A		(P	pei	kna	ĸ	Pa	10)	du		4						,														
			thA	-	.1				136	fer		au	-																					1
	= -	· h /	2 [e	in	n	Pe	(1)]	1	-		1		-	1 th	-	[9 4 9	hr	u f	?e' ('u)	1	-								1	-
				-						_					-									_	•									+
л. Э.	-	I.h.	1) (0,41	n n n		2	(4)	d	u	5					_				_	_											-	+
	Cons													Po	1-1	()	-	1-	1) 4	Pe	(4	1	,		P	(,)	-	1		P'	(±1) =	0	
			e																										-			· e		
	• v	-1	U			Te (.u)	a.	u		_		1	t.	2	L	e		re	r	e	<i>m</i> }	>_,	-		eh	2	E		- (-1)	e		7
(11)	Ce	50	n (h-n	+ 1	ER))	IJ				22			5	e	c'h.	2_	(-	.1) ^e	e	- 2	hi	-7										
_			_		5	-						2.4			Ĺ									1									-	-
		3	2L	+1	2	-	SW							do						_							_							
			4		~	2	0.	2																										_
		0	le .	V			l+ 1e				,			ve				1																
				1)			e+			ر		l	0	do	2	,	Es	2 =	= 1	1/2													-	
	Ther	A 1		C	, =		2.	l+	1	1	I)	e					E	2	1	-	- Q	17/2	, 0,								-		5	
								R										-								- 1 - 2 - 2		-						_
(iz)																																		
34-4			-		+	-	-	-	-	-	-	-								-					-				-		1		-	-

	Assignment#2 Paul Grant
	Continued DEAP-AP-1G
	P 251b
	3-24-61
	Problem 5
	Continued:
	$\frac{1}{2} - \frac{1}{2} - \frac{1}$
	$(12) .'. f(0) = \underbrace{\sum_{i=1}^{n} \frac{22+i}{k}}_{k} (1)^{2} e^{-(\delta k - 2\pi/2)} \operatorname{sun Sl} P_{2} (\cos 2\theta) $
	$= \frac{1}{12} \sum_{n=1}^{\infty} (22+1) e^{2St} sur St Pe(cospe)$
	(i3) $T = \int f(2\theta) d R = \int f(2\theta) sinze dze de$
	$= 2\pi \int f^{*}(2) f(2) \sin 2 d2 = 2\pi \int f^{*}(u) f(u) du$
	458 - 150
	$(14) f^{+}(u) f(u) = \frac{1}{k^{2}} 5^{2}, (22+1)(22+1) e^{-i\delta l} e^{-i\delta l} sm \delta l sm \delta l'$
	· P2 (41) P2'(11)
+++	· <i>FR</i> (<i>M</i>) <i>FR</i> (<i>M</i>)
	M_{am} $\int P_{a}/\mu P_{a}/\mu d\mu = 2$ Sig
	Now $\int Pe(u) Pa'(u) du = \frac{2}{2e+1}$ See'
	$\frac{15}{15} : T = \frac{4\pi}{k^2} \sum_{k} (2k+1) \sin^2 S_k$
	16 Now this same result can be had using the formula.
_	
	(17) f(0) = 1 Z. (22+1) ende such & Pa(1)
+-+-	
	(13) Sm f (0) = In { 1 2 (20+1) (con se + 1 sm Se) sm de }
	(z e
	$= \frac{1}{k} \sum_{\alpha} (2l+1) sm^2 \delta l$
	(19), $S = 4\pi \sum_{k=1}^{n} (2k+1) \operatorname{sm}^2 ik$, as before.
Y	

6.	Re	View	of	Born	Appi	pxima	tion :	

(1)	 Sea	the	rer	1	H	191	1mm	19) =	Wm	Man (2)	

- Mm (q) are the scatterer eigenfunctions, Mm its a eigenvalues, and H(q) its Hamiltonian.
- (2) Particle: assumed traveling with incident energy $T = \frac{\hbar^2 k_0^2}{2mc}$ $w_0 = e^{\frac{1}{2} \frac{1}{k_0} \frac{1}{2mc}}$
 - $i', H_0 w_0 = T w_0 \qquad \sigma_2 \quad \nabla^2 w_0 + k_0^2 w_0 = 0$ $o_1 : \sum_{j \neq 1}^{2} \frac{1}{j_1^2} + \frac{1}{j_2^2} + k_0^2 + w_0 = 0 \qquad w_0 = e^{-k_0 \times 1} \frac{1}{k_0} \frac{1}{j_1^2} \frac{1}{j_1^2}$
 - $= e^{\frac{1}{2}k_{0}\cdot R} \quad ; \quad k_{0}^{2} = h_{0x} + h_{0y} + k_{0z}^{2}$
- (3) Interaction Perturbation : V(1,g)
- (4) The unperturbed wave function for the total system is taken as the product of the separate system wave functions;
 - state of the scatterer,
- (5) The total unperturbed wave equation is:
 - $\int -\frac{\pi^{2}}{2m} \nabla^{2} + H(q) (W_{1} + T) \int \mathcal{U}^{(0)} = 0$
- (o) We make the usual perturbation expansion of the complete wave function:
 - We consider the perturbation V(2,2) as a first
 - order effect
- (7) Then, to the first order:
 - $\frac{2}{2m} \frac{\hbar^2}{2m} \nabla^2 + H(g) (W_{2} + T) \frac{2}{3} \mu^{(1)} = -V(a, q) \mu^{(0)}$
 - or, to the oth order :
 - $\frac{2}{2} \frac{\pi^{2}}{2m} + H(g) (w_{m} + T) + U(w) = -V(r, g) u(w-v)$
- (8) Consider the M(4) expanded in terms of the scatter wave functions:
 - $\mathcal{U}^{(\alpha)} = \sum \mathcal{V}_{m}^{(\alpha)}(h) \mathcal{U}_{m}(g)$
 - Note that every is conserved; viz, Wm + T = constant

-2.	As	signment :	45				F	aul G	raut
		timued						EAP-A	
					4.2		0 0 0	2516	
-							3	-24-6	1 2
1									
1		plem 6							
1	Con	tinued	+-+-+-						
	(9)	Del t	. 27	ne (ul.	- 111 . +T) = Kin			
1		sefuntion	1	h2 wh	- win i i	/ = RNW			
		Then:							
			Z. S	72 + -	Enm To	(a) (I) um (g	$) = \frac{2m}{2}$	V(A,g) Z	J Jun (A) Mm (g)
			m		J	0	h	° ru	
			, , ,	1	× 1				
	(10)	Usus to	ie ort	honorma	alitz of	the Un	ir s		
		5 72 .	+ 12 2	- J (x) (R)	= 2 m	- 2, 7 (a-1)	(ā) (el mi (a) V(n,a) the les de
		L		S me	tr	m		a	an graf
	(1)	Define	the h	RHS of	(10) as	h(r), the	45		
		-2	127	(0) (=)					
		∑	T Rum 1	5 25 (1)	$= h(\bar{x})$	-			
	(1Z)	11/2 2 2		140	en la francis	Harange 1	ka uta	al Equ	rier V
+ +-	(14)	tranclar	STRUCT	and v	the nee	through f.	Greenie P.	in tene	
		F(E, K,	J) = - F	$(\bar{\rho}) =$	(SS e-	(Ex+Ny+J2.	f(x,y,z)	dxdyo	lz
						1 the party of the second		220	
		=	err	元 f(元)。					
		C /		10	(altex.	+ ~ 3 + 3 2)	(5, 7)	15 12 1	7
		f (x,y,z	:) =	8773 15			- (2, 1, 2) - C	nz an a	1 4 1 9 6 - 1 4
		or f		1 5	erpin	E(A) da			
				813 1					
		Transfo	rums	(11) :	1 - 2 P d	1 10 1		1	
			-		17		(-)		
		U	$(k)(\bar{p}) =$	- k	(2,2,2)	7	- h (P)		
					2+3=-7		p2 - 127	1246	- 4 <u>2</u>
		.'. V ^{(x}	$(\bar{n}) =$	-1 (eipit -	h(P) do		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
				8113)	「アマード」	nim ap			
		1 1 C 1 2							
		= -1	e	2.p. (n-n p2 - 2.	dp h	(え) ま			19 19 21 10 10
1		81		pz - env	n				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	10	(alp.	(n-n')	13	277 77 00	0 × p. (x-x')	2	1 10 110	12
+++	(13)	2	(n-n')	d = =	5000	p2 - 12m	dp p2 su	ngato	20
4			Ann Trop						
T		=-277	e	アーデーティー	ose pide	d (coa q'		100 m	
		. 0	o p	2 - knm					
		1177	000		1				
		$=$ 4π	T) 5	12 - LATA	1pdp				
			o p	- Anna					
								and the same starts	

	()	14)	A Property]	~ ~	, n	17	2	P -	17/2	2-,	n')	م	6	1	0		d	-		11	2		1	p	0	2	-	and the owner where the	01.	and statements	Color Street	-	-	and the second	2						2							
						1))(1.	12 - h			+			P	1/2		_																2 B				
				,	4				5					in 2m	/]		-)	2	Í					1		Ĩ			_		2 p 0 +	Inte	-7	11	dg) +	1		50	m	م بر	<i>ī</i> .	-J. h	F1/	h	0	25		1	
			3		2		D				4		R	1				R	\								(2)				C	0	ł.		7		7		0	Ţ		(2								
1.			ŕ							5	>	e J	а.) о н	15		21	c 7. 1	lp n-	えり												J.																			
										=	1	π	(с Т	os	k	11	-	15	in		1)									_	0		- 1	(c	05	Y	11	-	. ,			, te	. 1))						
	(13	5)	<i>.</i> ',			ſ	~	e	2	Γp T	· 1	たいろう	n	•)	0	13	0							71	-	CO	2	hu	ml.	<i>ī</i> -	· <i>ī</i> .'		•	4	1 TI n-	۲ ⊼'	1			.0	z T	r 2		:05 n			n 13	2-7	21	
	()	16)	L	00	2V	e			w	ع		7	Ph	ro	w			20	. 1	-		4	he		2	mie	1400	ł	11	1. 10	ł	he e	e xo	20	sa	za er	+	te	re 2	. 0	e /	pa	r	+		o F	-	7		
			4	-h	e	5	,	e	51	- -	()	ī-,	ī')			_			=						e	2	e 7 1 J	En 2-	m T	17	-3															-				
	01	7)		25					(ol.									te									× .				en 1		1 л	2	ñ	1														
					u	, h		re		-	-			-		-			+		_		-	+	_		1)	+	-	15	J	元'	1	+	+	_	(n)	9)	М	'n	(q)	a	19					
	(1)	8)		Vo				F 10'	~~	V	(7 a)	19	2) 43		a f	le	pe	n 0 +	ds he		c	m u·	ly		0	M		え	,		U	ve		h	a v	e	;	Ar	a	n		41	le					•		
						1	_	īn)		7			27	h		V				_		-1)	+	-						11	-11						k	4		ī.	-7	,1							
		*		ar	nd			2	T III	04)	()	ē)		=				14	22	- h	-)	d	ī.	1	11	n',) -	υ-	ld. n	.,	'ī')		e	~		2 -				1							
																								-																										

12	A	55	16	NZ	uer	ut	Ŧ	12				200				1	20				100			60			1	P	au	2	(r	au	+				1
					red	100 C				1	*			1		2 de	23		MR.	5			3										- 1				5	
									1.7	-									-					1		1			-		6							
																															- 4							
					1							1																-	-		4	p. r						
	P	cal				6																												1		+		
					ed																													1				
		an	11	Pro	eu				+	+	-	-				~						-				-											-	
	0	$\langle 0 \rangle$		T	ĸ	+4	-	~	120	+		rd	04		R.	10-0								4											-			
	u.	(1)									- 1	- 1									DRI	m	a	100	~	5										+	-	
					vn	(d-1	0,	5)	1		05	. 10)	15)	-	-	0	1	ko.	ī	-	+	-		-	-			_								3	
			-																			-	-													-		
					vn	1);	=)	_	_	-	_	2	m			<u> </u>	1	- 1	115	1)	-	to	. 1	1	01	17	arts.	12	-ñ	1		-				-	-	
		. 4	0		In		121			-		47	- #	2)	0	n		(22	/	e	-		-	- 1	-	-	11		-						-	-	
						-	-		-		-	-14	10		_							-	-		1		- 00	- 1										
		(z)		111		-+		-			-	4	.6.	t		1/	in')		C.	1/	-		11	•			~ /	11			+	2					
		1-1		0	e	4	#3.	2 U L	n	1	1	T	Ja	1		V C	- 4 7	4.	1	+a	115	-	0	11	1.1	1	af		C 1	7	a	1	()	irg	2			
	-		_	1	1	1	50	1	th	a	1		PA	e		Co	n	FI	p c	TI	au	1	20	-	Th	15		n	=51	or	L	15				-		
				2	eg,	119	16	10	*		Ine	ere	A	ore	2	6	ve	-	h	av	e	Y	ne	2	5	17	va	T	1 on	12						5	1	
						+	-	+				-																		_	-					N.	4	
				- ,	\overline{n}'			-	ñ		2								_			1)	-	-	11					10	1-					-		1
																		-				1/	16 -	- 1	- 1	-	-	r	-	Л	· re			-		-		
								N	-	-		-	-				1	-	-			+						-		-							-	
				4	103	1	1		-	-	-	-	-					41		-	,				-	1		_		1			1			-		
			-	N	63	rle	CT	In	3	1	12 .	x	-	X	m		7	ne	2	-	de	221	a	11	na	10	2	1	w	he	re		17			-		-
				C	on	,TI	ri	bui	re5	5	- 1	es	55		Y	ha	n		u		th	e	-	ex	pa	ne	n	tu	26	:			34			-	6.4-	
					. 11		,		-	_	2 20		-		24	ens	n-	1			11	•)	_	L	12	-	7.1	6.5	2).	n'					-	-		
		-		V	~ (1) m	(n)	-	-	-	4 7	- 22		e	0			1	dr	1	V (A	2	ŧ	3			-									-		
-							-			-	7 11	R	-		10			1		_																+		
		20)			1				,	2		_	_		-			0				-	_		-	-	_	_	-	_		_	-		_	-	-	-
		(3)		7	he		1	ot	a	6.1	w	av	e		15		01	2	¥	he		fo	27	m	:				_	_	_					-	12 1	
							10		-	-	(1)						it.	· n		-		_			1	-	-	et.	n						-	-	9.8	
			4	-	r	-	u		+	М		_	=			e			r	ln	(8)	1	+	-	te	55	5	2	- '	L	In	(8)		-	-	-	-	
																																		_		-	-	
			50		we	-	S	ee	2	Y	ha	t		4	he	-	el	as	+1	6	5	ca	27	He	ru	uz		a	n	-P	41	tre	de	-	15	5	-	
				C						_	_	_		_	1		-		, .		1	The		E).	n	,	_									-	-	-
				te	<u> </u>	20)		-			27	n T +	2]	dr	1	V	n',	e	2												-13	Ş4.,			-	
														_															_							-		
						~	21	_	1	211	1	π	(*	,			7	-	1					_				2	To	-4	1	n.	205	20		-		-
			18	-	-	47	t	2			1			di	Ľ	r	6	d	(0	05	24/	d	9	'	V (2']	e											-
			-			4 H	R		1	0	0		0					-1										_					•	_	-		-	-
			-			2			00				7	10	1		ſ		ı	12	a -	21-	R	и	1		_		_					54		-		
			1	-	n fut		2			d	n	n	6	V	(1	1)]	ć	2	2			-	0	11								1.3	a kai				-
									8	_				_			-1				_																	-
					-			2	n	_		()	0	,				,					-	-	1								13	T				-
				-		+	21	5	7	T			a	h	N	/	V (n'	1	51	n	K	0 1	-h	.1/	2'												-
						N.	(RO	R	-1	_	0		_									-	-		_			-			1		ų.		-	2	
										_		,	-										-		_		_								-			
			E	ve	ry	P	hn	25	4	n	+	he		12	te	gr	ar	rd		15	K	ea	2	,	42	her	re	fo	re		P	ie			_		-	
			V	nt	eg	ro	νl	-	15	_	re	al			a	nd	-	+	he	re.	for	e	-	ç.	el		15		TE	ea	2.			1				
1										_																							~					
		(4)		i.	-		1		- 14	6	_			Tro-	The					17	10 -	下	-	=	2	k	2	m	1/2	2								
								_	1	2	_		4																									
							+	2		ko																									-			
																																						V
									-																													

4	1-1	-	7	~	1		5	10	2	1		1	B			-				1	-	0					4	2	1		-			123					+
	(5)	.'.	1	+.	ez (2	100	1	T	2	m z) .	dr	n	212	V	n	1	-	-	-	27	-	-	-	-	-		-		-		1		2			
								1	1		0	-	0	-	-	-	-	-	-	1	-	22	10.1	1 5	in	12	22	3	-	-	-		-						
		2										1	00							-	1		/		- 1										-				-
		1.		fei	()	5)	1)		-	27	n			d	2'.	n'	2	VC-	n')			/													1	iq.			
		-																_	_	_		/	-		_									1		3		(
		u	Uh	10	h		15	0	164	10	USI	y		rea	<i>i l</i> .	-	-	-	-	-	V	-	-	-	-	-	-	-	-	-	-			-	-			-	
															-	-	-			-	-	-		-			-		+	-	-	-	-		10	- 24		-	
	(6)		Con	15	d	er	2			fe	2 -	-		-	2	m			0	1-	1	112	1)	e	٢	the	- 1	h)	ñ	1							-	-	1
				-					ĺ				0		41	Th	6				-		- 1	-															
		_	. (fel		-		-	5-2	m	2			di	5 "	V	In	")	e	i	(h)	0-7	5).	R															
																-	-	-	-	-	-	-					-	-	-	-	-						-	_	-
			14	el	(2)	12	¥	4	7	m	-		(1	di	1	15	1	11	()	VC	2")	-	20	-1	ko	k).(R'	-R'	")								-
		-	. ,						47	re h	-4)		and	-			(-1				C	-											-				
	1-2																														-								
	(7)	N	ore	>	a	ve	re	25	e	6	on	er	۰	a	11	-	d	Ira	ec	t.	m	2	10	F		n	CI.	de	no	e						<i>.</i>	_	_	-
														× .		~	.)	2'-	え	~	-	-	7	h,	3	C	a		Ъ	0	0	lo	10		112	c-e			-
8	(7)								1	i	_	-	1	2	-						-										-						uce	2	+-
																-k	0							ar		e	90	i Va	al.	en	+	d	ue	-	TO	V	(r)		
			_													C		1	T	. /	·r'-	5")																
1			Th	05	-	we	-	C	ms	\$10	ler	-	a		411	-)	e	-6		-	-)	15	2.	_	-	-	-		-						_	_	-
														_								-					-		-	-			_					-	+
8				=		211			e'	. h	0	r'-	Ē	4	000	10	co	5 1	e j		T. T	- (1	. 14	sn	r	to	IR	1	ñ"	1	1						1	
						471	1	3		1										3					,	ko:	IT	1-	元"	1									
	(8)		_	_		C	1 (<u> </u>	1.0	12		1				-		m	2	(ŕ.		10		11.		11			-		ч	1-	, .	- 11			_	+-
	(0)	0		_)	13	rez	(0)	las	0	e J	2		-	V	2	T	4)	Ja	R'	dr		V (n)	V (-	n"	-	50	h	Ko 15	[n	-> 10	11 1			-	-
		•		í	T														-		-	-					1	-	-		10	10		Si					-
	5			-	e	- 1	R	n	- 19		e	0		d	(0	00	2)																					
									-1	-	eh	17	-7	-11	M	,				C I	-	-1	h 1.	ī'	-7	11	и	Δ											-
	11	-	No	w	5		-	-	-	2						du	1 2		-	-	6						-	de	1	-					-			_	-
4								/	1											-1	-							-										-	+
			=		S		SL			え															I.														
								_	k1	入'	ーズ	"[-
			B	,+						11	-		_		41				-			1	- 1			-	15	1	-	1	[]								+
8			P.	~		S	m	ce	-	th	e		50	a	T	ev	w	S	-	15	(2 10	st	10	1.		17	01	1	19	61		1						+
			T	u	s :																											1							-
1										6	0												2	,	, -	,	,	1				/							
2	(9)		T	, 1	-		N T	n2 ti	+		5	di	ñ' e	In	11	V (-	r')	V	(<i>n</i> '	()	-	-	2.		-	and the second second	No. of Concession, name	and the second	-	>				1.4				_	-
							11	h		-	-							-	-	-	-	F	21	N	-	N	1		-		\bigvee		_						-
												-		-	-							-							-		-								
																-	_																					-	T
																																			-				1
	-		-			-		_	-	_		_	_	_	_																							-	-
													-	-		-																							2
U				_		_			_																										_		-	-	

1	ASSIG	Nme	ut#	S														P	eul	G	rav	t			
	Cont	the second se									- 1							D	EAI	2-,	AP-	- 1G			
						2 20	2243	1.29		18			12	1.00	3.4			-	251		198		1		
			-					2		-			1		_		_	3	-24	1-6	1		-	-	_
			_						_	-		-			_		_								_
		lem							-				-		-					+		1.7	-	-	
	Con	tinu	ed	++	+-+					+		_	-		-			-							-
	,									+			-		-			-		-			-		-
	b. (1)	Rec	271	C	10 00 0					Car	-	10	10 -	40			1 +	+	-1-1	e ,					
	0, (1)	NEC	a.c.	5	row		CCT	ore	-	501		e	a p	110	-	5	car	161	- con	9 ,					
		4 -	~	er	*Z	Min	(a)	+		fe	2	211	R	· 11-	1 19	2)				1					-
		1										r			0									-	
		Now	pr	00	eed		10	the	e	se	con	nd	0	rde	r :	1									
			1	1													_								
					10)		(1)		12)	-													-		-
		14 -	-	M		+ 11	0)	+ 1	u T	-			-					-		-					
		,12			5	25 (2	10)						-		-										-
		M12	-	-	ni	Um.	(n)	M	mig				+							-					
	(2)	From		2011	-+	-	(18)		-	-		-			-					-					
		22	(2) (R	1 =		- 2. 411	m	ſ	di'	V	(ni	1 2	(i) n (~!]	e	RI	R-R	1						. all	
1						411	h)								12-	えい								
			(1)											-	0 "		1 k	IN	- 7."	1		_			
		25	(1) (Л	2) =	-	- Z 41	m - 72	- }	di	1	V(A	2")	er	Roi	<i>J</i> ₆	e		_		_					
						41	n	/	-	-			-			1	え -	R"	1	_		_			
	(5)		(2) -	1-			.2	(0	1-,	1-	11 11	1 - 1)	11/	011)	r	to r	4	ik	12-	R11	ek	えーえ	1	
	(3)	· . · ·	Un	(α)	6	117	2 7 24	.)	10	tr	an	~ V	(2.)	4()	···)	e		6	To	7/1		e		-	
_					+ +	7 11	n		-	+			+		-		-		56 -			176.	-56-1		
	(4)	Mak	ms	4	10	SAA	ne			1 200	ot	im	-	al	out	+	15		1	a	5	m			-
	0.0	a. (2)	~	0	have	2 :	u	220	PER	1	1000	-	me			(50			0.	Ū	-			
											~								- 11		1		1-4-5	100}	
		Vn ⁽²⁾	(ā)	E	4	e 1x.	n.	-	mz		d	i'd	7"	Va) V (.	n")	er	RO	10	0		e	pr ve	-	
						r		4	12 tr	-)	1				_							IR	-5"1		
					_										(k	0· 70	11 - 7	. I	.)	24	151	- 2"			
	(5)		f (28)	U	m	2 2 74		dr	'dr'	V	(r') V (n")	e				-	6	2 -	-	101		1	
					411	<i>n</i> .				-			-		-			-		1r'	- ~	- 1			
	(6)	Nam	0	0.00	70	-		4			4	tour	01					-		2	4	0	Ran	0	
	(0)	Now	+ t	m	0	6 1	1	inc		De	4	ier	2.1		bar	e			= i	20	ine	2			
		aire	CII	an	a	> 4	ne	u	n cro	cen			alve	-	-	x.2		no			1 -	- 11	1		
		f	(0)	= _	m2		11	di'	dr	ie V	1(2) V	(n")	e	e ko	• ()	."-	R'	e	r k	12	-~"	1		
		1			4 17 2	h)) -													した	- 7	"			
-																							_		1
	(7)	AV																			alent	t de	re to	VL	R)):
			1	0	-1	Ten (7-	R"		_		1	-	C	-ul	Lo la	1-5	112	+	_		_			
			411		e	Teo. (d.	R	=	2) e	-				de						-
								-					-	-1	_			-							-
		=	S	m 1	ro 12	- 7'	1	-		510	n	2 JA	1-7	11		-	su			12	-	151	11		
						- 1"		-				R'-)	SU	n ce		1100		1 101			
				RO	144						RI	J	R					1							
	and an address				A CONTRACTOR OFFICE				and the second		and the second se						11								

4				-			1	2	1	91			73								1										3									1
	(8)	,		(210)	1		m	2		P	(1-	1	1 - 17	V	1/0		110	11)				11	E1		1			1	k _	2'.	-5		4				
	(0)	- E	*	3	(C		-	4	TT 2	to	i.).	10	m	a	n.		in		111				67	II	1	元"	12		e										
																															2			Ť.						
	(9)		1								1	T	-		_	21.		-	-			-	0	-	-	-				_		_		-	. et	1 -	<u>.</u>			
	CI		1	100	e	4	1	J	3	-	4	R	ð	ru	+	- (0)	,		T	her	e	fo	re	9 1	-				-	-	-	-	1 S. 1			2	-	1	
																																			/	x				
			_	σ	=		-	m	4		\int	0	tī	10	n	1	Y (.	n')	V	(r')	0	in	22	k	12	1-	え"	1					1				4	_	
-			-	-		_		11 74								-		+	+	-	-	-		p	2	ī.	-	元"	12	-	_		/					_		-
																			1		-										T	/							-	
			_								_																	1			V									
			-	-	_	_	_		-	_	-	_	_	_	_		-	-	-	-	-	-		-	-	-		_	-	_	-	_	_	_				_	-	
			-		-						-						-	+	+	-	-				-			_	+		-	-							+	
								-																																
2					*					_								-	-						-															-
			-		-						-	-					-	-	-				-	-		-	-		-	-		-						-	-	+
																												1												
			_	_						_	_	_	_				-		-	_	-	_		_	_			_	_	_		_	_	_						_
	+	-	-	-	-	_	-		-	-	-	-	-	_			-	-	-	-	-	-		-	-	-	-	_	-	-		-	-	-			_		+	+-
-																																								
			_	_				_																																
-			-	_	_	_	_	_	_	-	-	_				-	-	-	+	-	-	-	-	-	-	-			-	_	_	_		_				_		+
					-	~						_		_		-	-	-	+	+		-				-										-	-			+
	-									_						-	-	-	-	-	-	-		-	-	-				_	_			-				-		
			-		_						-						-	-	-	-	-	-							_											+
		-	_	-			_			_							-	-	-	-	-	-	-	-		-	-		_	_									-	-
					-							-		5		-	-	-	+	-	+	-				-	-			-	-		_						+	
																	-	-	-	-	-	-	-	-		-					-									
-	-			_												-	-	-	+	+	-	-	-	-	-	-	-						-	-					-	-
							-															-				-														
			-														-	-	+	-	-	-	-			-	-													
1/10	35-																																1.5				5			
			_												_	-	-	-	-	-	-	-	-	-	-	-		-		-	_					-		-	-	1
															_	-	-	-		-	-				-															
																																		7						
				_								-						-	-	-		-								_								_		-
-				-			-										-	+	-	-	-	-		-	-	-	-				-	*				-	-			1
V	1		-	-				-		-	_								-	-		-		-		-	-							-		-				

	ASSIG	Nment	#2					101	13		1					Pa	12	Gr	an	t		
	Conti	nued	1 2 200		1 312			1	1	350	1			1.3					P-			
	3	1	i base	1	12	and .	in the	12	1	11			12 4	19	145	PZ						
den an an	1	1	2.7		-	and it			1-8		12			-		3-	24	-61	a fe		1	
	11	/	3	1.49				1.1					_	· · ·				-	1			
	14	211					8 ×-		-	\square						-		2				
7.			Ė				-			\vdash	111			-	1	-	-					
							-	G	iven	8	1 Vo	14	< E	1	"re	No	1		-			
			+ + +			+-+	-				1 =	. [2 m	E			-	_	-		-	
	Ve	0							-			J	ħ	5			-	-	1			
			Ло				R									-			-			
																					1.3	
	a. (1)	We	have	fro	m	pro	ble	m	5 :		0	=	41	- 2	1 (22+	1) 4	sne	52	G. 1		
		The	pro	blem	15	th	rere	= fo	re	7	40	fin	nd	Se		_						
	()															_			_			
	(2)	For	R < RO	1	2" ()	2) +	2	E W	- (1	= -	- V	0)-		R(R+1)	5	vin) =	0	-		-	
			0 > 0		0-11/	0)	5	22	n r		_	010-	+1)				-				1	
		For	10 2 10	0 1	0 (10/ 1	5		AL		-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2	5 00	n	= 0	>		1.	-	671	
		where	2 20	1) =	RR				2 10) =	0		-					-	-			
																_						
	(3)	for and	IVol.	έE	a	nd	k	No	62	1	,	+1	1e	par	tic	e	a	t	ne	eo		
		and	Ac	r	No	< n	<	1		see	- 5	Pr	m	ipal	12	th	e	ce	intr	ipe	tar	
		pote	ntial	0	und	de	205	-	not		a	ppr	000	:h	7	he	S	ca'	tter	-er		
		Both	- of	e	qua	tion	5	(z)	b	eci	ou	e	th	e 5	an	re	a	nd	+1	e	12	
_			e																			
	2.1	zero	a	nd.	15 '	neg	(191	ble	• ,	Ho	we	ver	,	for	l	= 0	2	the	re			
		15 0 L	no	cen)	Tripe	etal	F	toc	ent	Iac	0	na	7	-he lo	to	, ta	he	au	nd			
		medi	entra		la	334	have	eru	ms	+	car	ho	20	llan	Se		42	12).			
		131		• 0.	10		10.00		30				70	11000	1	7			-			
		RZA	o :	2"1	11 +	- M	2 2	T(n)	= 0	>												
		~ ~ ~ ~	no:	5"	(n).	+ 1	2 7	5 (2) =	0										1		
		1								-				12-	10 5	-			1.44		-	
		wher	e	K=		12m	1 (E-	- Vo)		;	n	1	1-7	Th2	-	2.02	-	X			
	(4)																		Am		-	
	(4)	For	res	40	the	0=	0	110	r	Ina		500	100	fies	T	ne	K	000	alan	2	1	
		Cono	11102	a					2.		-	1	+			+						
			5(R)	= 1	A SI	cn 7	nn				-	+++							10 10			
		The	sene	ral	501	u tion	6	for	. ,	275	10	15 :	z	r(1).	=	B	Sm	- (-	kr	+ 50	(c	
			_	,							_	,					_		1			
	(5)	Fron	m t.	he	well	- /e	noce	24	Ċe	nt	no	ty	- 0	end.	itic	m:	5	01	2 6	war	e	
		for	ction	S,	we	n	US	t	ha	ve	V	-	con	rtin	001	15	a	e ro	25			
		ハニノ	no.							++				-			111		- 24			
			11	602	TA			1	, ce	R	14	no.	+ 5				1	1.1		1		
			-	sm	KRO	T	-	-		-		c No		and a second							1	
						0																
		02		tar	K		=			ta	ne l			60)					23			
									-			12	23									

			4			1	5		0	2.3		35			21		75		10	220																			
	(6)	5	12	ic.	e		V	01	22	E	,	1	+	f	0/1	loce	25		th	at	-	1	K	2 2	k	-	0	an	d									
			1	th	US	1	17	So	91	m	257	4	6	e		su	1a	11,	0	5	C	an	- /	le	51	ee?	n	fr	m		to	he						-	
			_	fo	lo	t	-	H	iat		th	e	-	-w	0	5	oh	ti	on	5	0	et	4	he		boo	un	da	ry	-	2	100	st			-	-	1	
	-		-	Ь	e		6	90	al			Th	ere	A	re	- ,	1	+	1	0/1	ow	5	1	Cr	on		t	his		a	1d	,	the	2		-	-		
	-	+-+	-	f	a	et	-	¥	ha	t	1	k	- Re	>	20	1,		4	lis	Lt		w	e		ca	n	9	X	par	nd		+4	e	~		~			-
	+	++	-	+	a	n		f	SU2	nç	tie	n.	S		a	nd		1.	ca	n	511	de	10	0	the	e/+		711	r 57		1	eu	٢			-		1	-
	+		+	+	e	rv	ns	-	1'	n		No	1	1	0	6	170	10	-	9	0	0	mo	L ((h)	20)-	2	+	-									+	-
	-		-	-		11	00				43	0.3	13	+		,		-			14	ло	+	Sa) 4	L /	11	2.	+ Sa	3							-	+	T
			+			-	110	-		-	R		13			-		-			L IC					-	R	13	3	-	+							1	
	1																									K	2												
														8																									
			or		No	+	-100	n	2 Л	3		-		No	+	-	So	+	-	-1-30	k	no	3					_							10		_		1
_			_	_																						-	_	-	_									_	+
	-		_	-	. '		-	50	-	=		3	(n	2 -	· Te	2)	No	2							-		-	-							-			+
-	-			-		-		n	-	-	-																	-	-									-	+
-	-		-	-		-	-	2	>	-	2	5	k	1	42	-	12	1	03	3			500		not	0	+		red	-	4	0	100	610	and a	1		-	+
	+		-	e	n	-	-					-	3	(16	-	R) -	10				Jec		010 11	-	acri	e	ana	-	r	1		oro	200	1	+	+	+
	6)	N	011)			11	2_	12		1	:		22	2	(=	-1	1	-	_	2 11	L 7	-		-	_	- 2	em	V	0								+
	-	1		- u		1		10		~					ħ	-	LE		0			ħ	2			-	1	-	the		-								T
																,		2													1								
			4	32-	:			Se		=		_ 1	2 n	11	el	10	No	_		:	-		-	2	ne tr	. (k.	20)3	5 (Vo	-				É.				
														3	ħ	2								3	tr	-				R	-)								-
																		0						, / -	-		-	0	-			-	1			_			-
	(8)	-	0		=		4	12	-	S	12	(2	2+	()	su	nz	21			1			41	112,	SU	1	00	-							_		h	
-	-	1	-	-	_	-	-	-	-	-			_						-					1.				-			_	_				-		-	+
-	-			11	4	-		41.	+	,		0		-	_	72	n		1.0	i P	13	1	Vo		1	-	-	1	- 1.	60)3	1	Vo)				+	+
-	-		-	M	0 1	e		TA	ac			00	-	-		3	hz	-	CR	Ac		(-	Zm	EL	-)	-	-	3	(K JU		(E	/				-	1
	-		-	+	-	-	-	-	-	-		-								-		-	И			-		-								1	-	1	T
	1			c	01	410	h		1.	5	-	tri	1	1	4	22	1		5	0	+	ha	t		50	m ²	- 50	-	-	S	20								
				- 1																											1	/							1
				,			C	5	11		4	Π		(k	Ao)6	()	10) -	1	-	1	67	To	n ² tr4	Vo	10	-	1	/								-	-
											9	R					1	5.						9	花 4	. /	_	+	, ,		_	1	1					-	+
-	-		L	10	te	2	7	th.	at	,		02	rd.	er	1	the	2	C	m	di	tee	213	5	of	£ 4	he	6.	ro	610	200	,	t	he	5	19	21	04	-	+
-	-		1	10		0	toe	25	-	n	0 +	-	a	f (-ec	+		th	e	Y	es	ul	τ.			-	-	+					-			-		-	+
	-		-	-		-	-	-		-									-	-	-	-	-			-		+	-									-	+
-	h	. (1)		-	-		-		-1-	-	100	-	14			1	20	. +	1000	-		nd .		-	man	. 1		-	nee	1.	1		-	61	22		6.		-
	0		+	-	Y	m	h	7	ne	-	re	50	L	0	of	an	10	6,	10	20.7	ar F	a	4	C	520	A	ler,	110	2	12		P	10	50	her	100	110		
-	-		,	a	R	~	200	0	Tr.	7	FOY	0	e)	D		127	it	er	12	th	e	F	501	-21	560	an	PPV	ox	in	at	10	re	2	0			0		
				5	5	- W				-		T	- 1	-	9		~	1	Ŧ	-i	5	-				1													
		1			4	2 (2	1).	=		2	n. h	2	1	0	tr	1	e	c (Ro	R		L.	V(r'								-	2						
					,					27	ĥ		1													_		_	-					-				-	-
					1				-	4								-				-		-					-		3					- /		-	-
				W	hi	01	4		rea	lu	ces	1	+	0		02	de	22		th	e	-	м	se	0.	F	50	ph	eri	ca	6	Cl	00	rd	m	ate	25	-	+
-	-		-	a	5	5	sh	ow	n	-	1-	K		Pr	ob	len	n	1	5 2	-	-	-	-	-				-		-		-	-					-	-
	-	+-+		-	(1-	()	-	-		2 m	-	-	ra	1	01	01	1	11	()	5	m	14	10-	×.	n		-										+	-
	-	+		-	7	12	- /	-	-	-	衣	2		6	a	6	10	-	1.	5.	-	51						+										-	
	+						-	-				-		1		-			1	-0		RI	1			-													3
			-		-		-	-		-		1.		4.8			24	6				1																	
								1					-		8			-								*								1					
	1	-		, il		-		-	-	-	-	-							-		-	-	4	1			-	-	-	-				-				-	

	As	51	GN	m	eni	t	# 1	2																				Pa	ul		Gr	an	t				
	Cr	nt	140	ie	d				12																			DE	AP	-	AP	-1					
		-	-	-		_		-		-	-		-				1		1	9.3		-	-1	1.84	1	1.		Pa	_					2		.85	
	1 1	+		-		-				-	-	-			-			-	-	-	_			_	_		-	3-	24	+-	61		-	+	-		
	Pr	. 1)	4		7					-								-						-		_	+	+	-	-	1	+	-	+		
	Ca										-		5	-				-				р.				-	-	+	+			+	+	+			
		PU																									+	+				+	+	+	-		
	Ъ.	(2)		F	01	-		V	= 1	10	,	r	2	No	;	V	= (2,	n	70	20	5															
		-	0			_									no							× .	-*						_			4					
			Ŧ	(2)	1)	=	-	- 2	2	1	OFR	-		{	0	in	1	2'	5	m	21	ko	- K	12	2'		_	-	_	_	-	-	-	-	-		
		-	+	+	-		-	И	17	20-	R	-	1	10	-			-	-	-			_	_	_		-		+	-	+	+	+	+			
	((3)	-	+	1.1	0	An		,	54	11	-ko	- 4	AL.	r'												+	+	+	+	+	+	+	-	+		
					10					5.0		100															1	+	+	+		+	10			9	
							h	et	-	u	P	n	1			du	-=		SU	n	ho	-7	In	1													
-		-	_	-	_			_	6	tu	11	de	1	_		v			-1	-	- 0	eve	12	to	-1	s'			-		_		_	-	-		
		-	-	-	-	_				-	-	-	-	-		Ao			Tho	N	-	-				-		_		_				-	1		
		-	+	+		_	- 0	1	-			Ī		- 1	1				1			No		1.		E)	/	,	1	1		+	1	-	-		
		+	-	+	-		Teo			C	05	1 10	0-1	R11			+			-11			os	- -	10-	Por I	A	6	a	+	-	+	-	-	+	-	
															-	0																		1			
		_		-		-	-	No	_	_	con	e. 1	ho.	TR	Ne	,	4	-		5			0-1	Calmontes	COLUMN A										-		
		_	_	_			1th	0-	ħl		-		_	-								120	-%	219		_	_	-	_	_		_	-				
		(4)	-	~		-	1			11	-		2	L				4								ve	,		-	-	A	-	-	+	-		
		(4)																					e ves		-	ve	CT	276	+	01		+	+	+			
					n C		//	10	1 CAN				an	a		56	a	116	R E	a	6	Da	Ves	1			1				1	-				-	
					8							F		-	-	17	ko .	TR																			
		_		_						-	-		2		-	t			1											-			-	a .	-		
		-			_				-	-	-	,	,		ko	-		,)		. 1	_	_			1		-	-	-			
		+		S	m	le	+	the		3	ca	+1	er	in	5	15		e la	57	ic	,	1 ho	1 =	=	KI	n	+	1 20	, -	RI		15	1	-		all i	
				2	20	T)	th	C		n	ra		0+	-	an	r	a	re		a	n	d	w	e	he	a ve	2	5	-20	m	M	he				
				L					5						-	-		-					1					+			+	-	1	1			
		_				17	20	- %	-1	=	i	2 %	2	sm		22	2			1												6					
		.)			2	-									2	C				1-					1					,			11			11	17
-	(51	1	1	-	f (24)	=	È.	-2	w	LV	0 /	20	3	-	su	n	(2												100	5(2	h lo	Sm	120	24
			+	-					-		1		N	2	-	(e e	-	1.25.1	in	(-	2 10	20	5	in 1	22		7			3	1 24	-		2
						-						1 -	-					21	C7	T							+	+		-	-		+		1		
	. ((6)		σ		-)	f (2)	2	d-	2		1	-		(15	(0)	112	d	20	5	m	22	d	e q								
																															3	_					
				-	_	-	-	1	T	C		12	_			A	= 0	-				_	(1	21	zk,	-			0	12	-	0		4		
		+	+	-	-	6	u)		ł	(24)	1		su	120	d	The		3		SI	11	10	13	r ()	ZR.	10 3	s un	12	22)	1	SU	NU	d	20		
		+		+	-	-	_		-	-		-		-	-					-				-			+	+	+	-		+	+	+			
	(7)			Le	t		e	e	-		21	e n	0	50	n	1/2	22				-									2.1						
							0	11	e	=		h	R		co	5	1/2	2	d	22	4	2		kn	0	Su	n	2	de	+						1	
100		_																		-				Te	2	su	n 1	122	2					-	-		
		-	-	-		0	2		52	13	2	di	2	-	-	-	11	du	12												-		-	-	1		2.
		-	-							-	-			-	-		(h	No	1-					_							+	-	-	4-			
				-	-	1			-	-	-	-	-					-	-										+	1	-						
														-					-				-														1
					-					1		-	-	*	-				-	-		_	-					-			-	-	-	-			

					a second and
(8) 1.	T = 2T	$\frac{2 \pm n \circ}{\left[\int f(u) \right]^2}$	- u dec		
(01	$\sigma = \frac{2\pi}{(\lambda n_0)}$		the area		
			zhno		
	$= 2T \qquad S \qquad (k n_0)^2 \qquad ($	2m Vo no 3 22	(sun m -	Zusmucosu + US	u² cosin du
-			10		
Nou			2 4		
Nou.	czhno	ne manip	vlation:		
) du =	$\begin{cases} 1 - \frac{1}{(Z h R_0)^2} \end{cases}$	+ SUL 4ARD -	Sm2 2hro 2
	10	T	((2 11/0)	(2hro)3	(2k no)4)
(9) (incsider:				
	× 2	+ +	Sur 2× -	x 6	
6	where x	-> 0 , ×	1 2	zkro which	
4	satis fies	* no 241:			
	$\frac{1}{\chi^2}$ - $\frac{1}{\chi^4}$ -	$+ 2x - \frac{i2x}{6}$	$\frac{1}{2}^{3} + \frac{(zx)^{5}}{1z0} -$	$(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!})$	$(x - \frac{x^3}{x^3} + \frac{x^5}{x^5} - \frac{x^7}{x^7})$
	X2 X4	6	×5	X	6
		1 . 7			1 1 . x 3 . x 5 . x 7
		+ 24 ·	$\frac{4}{3x^2} + \frac{32}{120}$	$-\left(\begin{array}{c}1\\ \times^{5}\end{array}\right. \\ \left(\begin{array}{c}3\\ \times^{3}\end{array}\right) +$	$\frac{1}{5!\times}$ (x - $\frac{x^3}{3!}$ + $\frac{x^5}{5!}$ - $\frac{x^7}{7!}$
		2 4			
1		4 + 2 - 4 XY - 3X	$+ \frac{4}{15} - \frac{1}{24} +$	$\frac{1}{6x^2}$ $\frac{1}{120}$ $\frac{1}{6}$	× 36 120
1	32 -	2 - 1	$=$ $\frac{1}{4}$ $ \frac{1}{3}$		2
	1.60	100 50	T St	0 36	7
(10) 1.	σ= zπ	(4 m2 102 Ro	6 1 . 2 . 4	= 16 TT m2 Vo	2 No 6
		(h+	149	= 16 TT m2 Vo 9 k	4
	(1) h = h = 1	, the		he method of p	
		THE SAN	ac as for the	re method of p	sar Tiac Wares.
Charles and					12/
NB:	In par	rta equa	ation (6), the	ted with res	s like (RRo) = 0
	15 the	following	: Suce I	cted with resp Vol << E, we have	ve:
	RICO -	- K KO	and equation	n a. (5) becom	ues ;
	tan	kro -	tan (k no + So)	
	So Do	a she to	ha huna	La sect have	So de la Do
	50 F01	hat So k.	to and (k.	ve must have Ro) ² So are	much less
	than	(k.ro)3.			
					(70)
					7199

Physics 251b

Problems, 1961 4/14/6/

8. Beginning with $\mathcal{V}_{jmax} \mathcal{M}_{max}$ and using ladder operators and orthogonalization, construct all the \mathcal{V}_{jm} in terms of the products $u_{m1} v_{m2}$ for the case $j_1 = \frac{3}{2}$, $j_2 = 1$.

9. Using the relations for infinitesimal rotation operators,

$$E_z x = -y$$
, $E_z y = x$, etc.

and the fact that these are essentially operators of differentiation, so that

$$\mathbb{E}_{k}uv = u\mathbb{E}_{k}v + v\mathbb{E}_{k}u$$

show that when we start with the function xy just four more functions are required to express all effects of the operators \mathbb{E}_k within the set of functions.

Write the 5-rowed matrices $\|\mathbf{E}_{\mathbf{k}}\|$ that express the effects of the rotations on the one-column matrix $\begin{pmatrix} a \\ \vdots \\ e \end{pmatrix}$ of the coefficients in the expression

axy + byz + czx + d(x² - y²) + e(z² - x²). Find the products $|E_x| \cdot |E_y|$, $||E_y| \cdot ||E_x|$, $||E_y|| \cdot ||E_z||$, etc., and verify that the values of the commutators are those required by the identification

$$E_k = \frac{i}{n} M_k$$

10. A system with j = 2 has been previously found to have magnetic quantum number m_0 with respect to the z_0 - axis. Find the probabilities of the various results mh, if the component of angular momentum along the z-axis (angle 0 with z_0 -axis) is measured:

(a) For $m_0 = 0$, $\theta = 45^\circ$

- (b) For $m_0 = 1$, $\theta = 90^\circ$
- (c) For $m_0 = 2$, $\theta = 90^{\circ}$

Which of these results shows most clearly (by itself) that a measurement of the component of angular momentum along an axis in general disturbs the value along another axis?

11. The component of the spin angular momentum of an electron along the z_0 -axis has been previously found. Find the probability that the value of the component along the z-axis will be found to be the same, and the probability for it to be opposite, for angle θ between these axes:

- (a) By the matrix method used in Problem 10.
- (b) By using the operator for a finite rotation as found in class.

Physics 251b

Problems, 1961

8. Beginning with "joux nex and using ladder operators and orthogonalization, construct all the $\frac{1}{2}$ in terms of the products $u_{m1} v_{m2}$ for the case $j_1 = \frac{3}{2}$, $j_2 = 1$.

9. Using the relations for infinitesimal rotation operators

$$\mathcal{E}_{Z} X = -y_{3}$$
 $\mathcal{E}_{\pi} y = x_{3}$ etc.

and the fact that these are essentially operators of differentiation, so that

show that when we start with the function xy just four more functions are required to express all effects of the operators why within the set of functions.

rite the 5-rowed matrices [14,] that express the effects of

the rotations on the one-column metrix ([.] of the coefficients in

 $axy + byz + czx + d(x^2 - y^2) + c(z^2 - x^2)$. Find the products $[\mathbb{Z}_X \to [\mathbb{Z}_Y]$, $\mathbb{Z}_Y \to [\mathbb{Z}_Y]$, $[\mathbb{Z}_Y] \to [\mathbb{Z}_Y]$, etc., and verify that the values of the commutators are those required by the identification

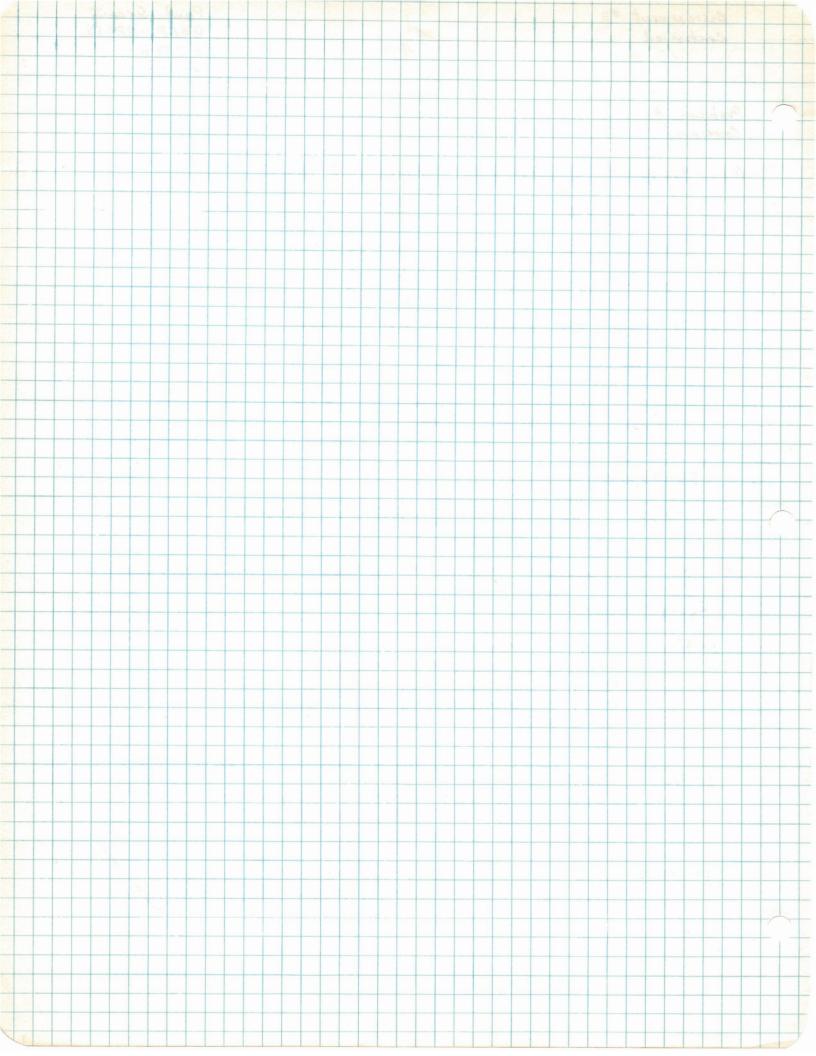
10. A system with j = 2 has been previously found to have magnetic quantum number no with respect to the zo - axis. Find the probabilities of the various results mb, if the component of angular momentum along the z-axis (angle 0 with z_{c} -axis) is measured:

(a) For $m_{\alpha} = 0$, $\theta = 45^{\circ}$ (b) For $m_o = 1$, $\theta = 90^{\circ}$ (c) For $m_{c} = 2$, $\theta = 90^{\circ}$

Which of these results shows most clearly (by itself) that a measurement of the component of angular momentum along an axis in general disturbs the value along another exis?

11. The component of the spin angular momentum of an electron along the zo-axis has been previously found. Find the probability that the value of the component along the z-axis will be found to be the same, and the probability for it to be opposite; for angle O between these axes:

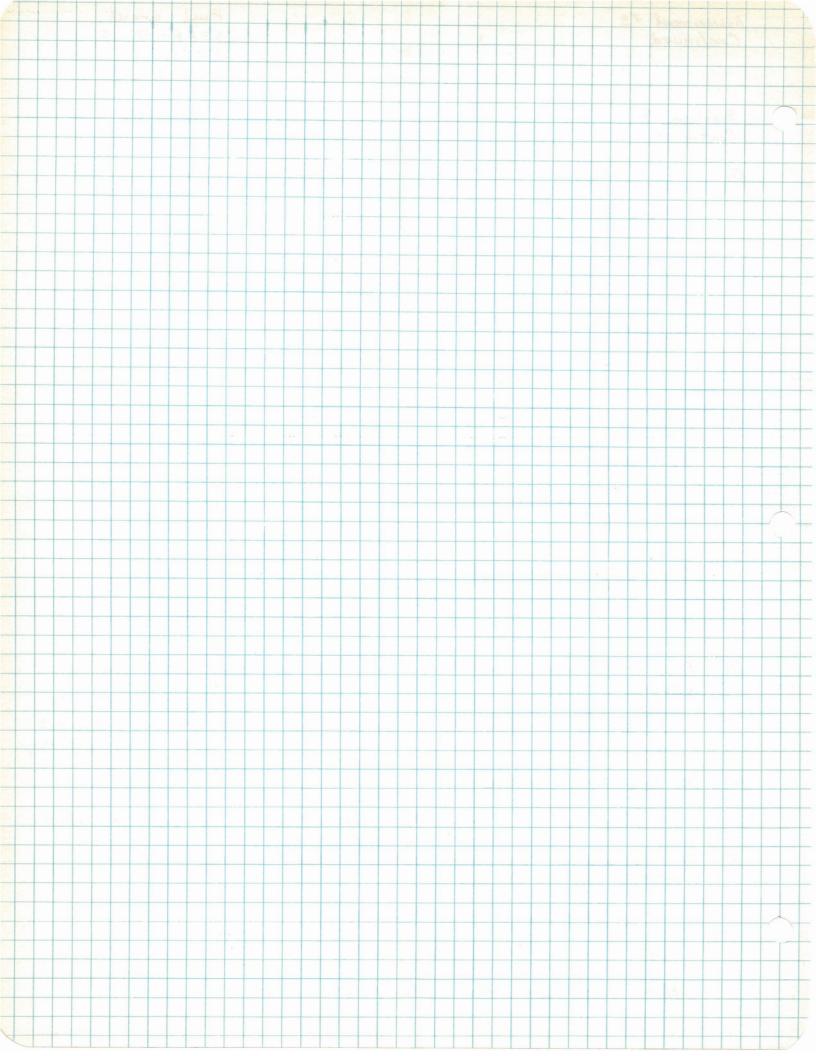
- (a) By the matrix method used in Problem 10.
- By using the operator for a finite rotation as found in (d) class.


			A	551	IN	me	NZ	t	#	3																					Pa	ul		G	ra	nt	-			
						ns				10	3 5	18				-	-	3	-	1.58		24		+		1	19.00	4	1	-	DE	A	0 -	AF	2 -	16	1	3		
						3								1					(294)	200	15	4		1							P	25	-1	6						
		_	1							×																				_	4-	- 11	- 6	61	1					
											2							8			N		-	-				-	-	-	_	~		t -	8		6	2		
-																														_		_					_			
-			8.		(1)		G	100	en		1.	0	ene	d	12			an	d		U	mi	,	V.	42		w	e	_	w	sh		t	0	+	mo	6			
							+	he		11	ne	ear	-		co	m	61-	na	tu	m	3		th	at		-	lor.	m	1	_	_	_		Χ.,			_			
	1	1																												_		_	_	_				-	1	
	1	/)					1	1.	12	1	m	>	1	_		-M.	247	1	31	1:	2 7	n	m	- >	< -	7.7	2 10	1,71	12	17	11	2	n	-7	>	_	-		
	11					1																											_	_		_		-		
1	\square	~			w	he	re		-	1=	10	1+	12	-	1	1+	-7-	2	1,	1.	,*	11:	- 12	1	;		m	12	m	1 +	- 20	22	_	_		_		-		
V	-	_			_		_			r I															_	_			-	-	+	+	-	-	_	1	-	-		
							_			17	1	2	1 22	n 7		=	-	Pga	m						_				-	-	-	+	-	-	_		-			
		_					_			17	1	2	m,	Mz)	15	-	M.	2011	V	m	2			_					-		+	-	-	_		-	_		
-	-				-		-	_	_			_			-					-	1	_		1	-	-			-	-	-	+	+	-	-		-	-		
		_					-	_	<		12	2	m	M	2	13	1 -	72	m	1	1	-	-	a	m,	m	2		-	-	-	+	-	-	-					
					-		-	-	V					-	51		1	,			11		21	-				-		-	-	+				14	+	-		
				-		,			1	m	-	-							241 2		u.	M,	0	m	2				+		-									
-								-				_		(111	+2	12	- 70	:)												-		-								
					(z)		12	1	2					1	-	0		M	-	. +	1.				24	144	2 1	-		1	+-	1-		=	(20	1. +	200	e) ~~	ax	
										6				0	200	- ac a			-		4)		PPL	m	ar	-		M	1 200	ax	+	7	MZ	ma	×	6	an	
						1	4	1 2 200	ax	m			-		U	M	241	a x	2	Jun.	2.24													ĺ						
													V		1	1.	2	J12				-											4							
	~																																							
1 .	1						d	ho	05	in	q		the	3	2	ar	6,	the	ar	4	0	eor	157	an	t		fo	r	7	na	m	ra	20	f.	1					
																														<u> </u>		-	25				-			
							We	2	L	vil	/	se	ne	ero	t	2	0	1-1	the	30	M	al		50	ets	r	w	14	h	_	the	2	3	te	0	do	wz	E		
_							op	re	ra	to	~				_																		- 1				-			
													-	Th	-	4	2 m	e	=)	(4	+2	n) (7	- n	2+	17		4	7	m	1-1		_	3		-	(9) ···		
										-				n					_	5											-	_		_			-	-		
			_					_							3		_			-					1	1,		_		-	-		-	-				-		
				((3)		C	M	510	der	-	1	1=		NG)	1	2	2	1	*		A	101	la	610	2	P	roo	de	c	ts	1	-			5	-		
									_	-	5/2				3/2				11		-	-		11					21			-		5	1		3	115/2		-
						7	n		-		-/2				-12			-	1/2	-		-		-1/2	-				- 3/z	-	-	-	-	- 5	2		3	11.12		-
										-	11-	25			11	, 01	-		. 1.		-	-		11.	120	-			11-11-	. 7	-	1	-	11	3/-	V-1	}	11-1		-
				-					-	~	(13)	20				122				12 V										_		-		M-	-12		3	11-3		
		-							-	-		-	-		113	200		-	N	1/2 1	5.			11	1200	V.		/	U-3	2	12						3	0.		
					1						-			-					M-	12 1				M	16	-1			-								1	V-1		
					(4)		30	512	1		121	th		4	5/2	5/	2	=		1/2	12 7	5,	:											1						
						-		10	-	C		-		1	10					15	1												1		-1		1	1		
						5	5.	7	43	1/2 3	12		-		5	3.	7	U,	22	F,	4	+ .	21	1	1	131-	2 2	15				/								
						Ť																									/			-						
									4	5/2	3/2	. :	-		1	3	7	u.	12	27		+	2	7	U	3/2	. v	To	1						X					
										1					J	5							JS						l											
	1																-	,	-	-	-											,								
					(5))	4.	2	4	5/2	1/2	=	=		M	-	()2	- •	5	U	-1/2	- 2	5	+	J	2.1	M	1/2	vo									
																_		1														1							12	-
							1						+		J	2 5	(53	.1	1	11.1	2	50		+.	JI	.2	1	131	2 0	-1)							
1											1			F	2		,		-			190	1																	
L														J	5	1	(-1	127	01		t	100	F.	Ulip	2 20	0	+	1 -	45	М.	3/2	v.	-1.		-		-	-		
1							t				-								-		-	1																		

			0	3		-	9		-														-				-					15			6			1
(5)	4	5/2	1/2	1	-	3	110	5	M	-11:	2 2	-	+		1-0	1	U.	1/2	50	-	+	17	10	1	13/	22	51	y	1		2.2	101		8			
					1		1					_																V	/									
(6)	,	3	• 3	5	Y:	5/2	-1/2		-	10	0	(5	1.	3		U-:	\$/2	V.	4	-	Z	- 1	7,	U-	k	50)								-	-	
	-				_	15						-			-					1		-	2	-						1	2		14		3		-	-
						`			M-												Ĩ		(1	<u>×</u>				-		-	1
		11	-		19	0	1	1-3	120	7,	-	+	1.1	3	610	5	И	- 1/2	V	2	+		3	1=	20	11	12	v.	-1				1					
		-									_						_									_						1	1		_		1	
	0	2		45	12	-1/2	2	16		Jio	- · .	U-:	3/2	25	-	+	J	6	Ĺ	1-1	20	To	4	4	3 10		И.	1/2	V=	<u> </u>	ν	/					-	
1-7)	-			/	1				0					T	2	1						1	21		,		-		-		/						
(1))	5	in	11/	ar	Y	3		4	5/2		3/2		-	1	5		U.	- 1/2	V-	,	+	4	15	1	1-3	/2	Vo	1	/								
_		45	1-	5/-		1	-	11	-3/-	2	E.									-				/														-
			16	-70																		Û	/						_						_		+	+
- (8)	W	2		Co	m	str	ve	t		43	12	3/2			87	the	200	па	2		to		4	P.5/2	2 3	12		-						_		+	+
																		Ŭ.,																				-
			73						a																													
	-			a 6	22	11 11	1-	-	3/5	5	n H	N	15			5		cl	100	se	-	b		ne	eso	A	ive					-	_		-	-		_
			1		, 4					T	7	7						F	27				24							/							4	
			•		93	12	3/2		-	J	15		U,j	2	UT		-	J	15		U3)	12	Vo					U										
(9)		2	-1	1	43	12	1/2		1		2	-	1	12	12	7	1-1	41	Γ.	4		7.	7	11		75.		_						_	-	-	
		V						16				5	-	1	U C				(2)0		1				240	12 0	10	/										
			_	- 5	m 5	1	(3	• 1	U	1/2	2	To	-	+	51.	2	1	13/	2	υ-												145		_		-	
							-		U-																7	1	1.,	-	25		5					-	_	
						13			<i>u</i> -	1/2		/			9	Je	-	10	1/2		2			15	-	M	3/2)-1						1			
e.3.																											_		_			_		1	-	-	-	
2	1. 2	1		(431	2 ;	12	-	=		8	15	l	1-1	12 1	v,	-	-	1-1	5	U	1/2	Ve	þ	,)	6	-	<i>U</i> 3	12	J-1	,	1/	/				
						-	-																-				-	-						-				
(10)	5	Su	nı	la	rl	7 3			¥3)	12 -	1/2	_	-	J	8	-	1	1 1/2	25	1	- 1	1	5	U	-1/2	Vo		-	1	n 110	M	-3/2	21		-	+	
			11.	-			2				7	7						1	0	7								1										
			4	3/2	;	3/2		1		U	45	-	M.	-1/2	V	-1	-	V	010		ll-	3/2	V	0		1	1											
																										L	/		•				1				-	
													1			-						- 2													_	-		
								-	-		-			14								-	-															
	1				-		-				_					1																						

		A	55	16	N	mo	put	+ -	#3											1										Pa	12	1	fr	an	t			5
			100				d													-															16			
							1													1											25							
																															11-							
\frown	P	rob	ble	in	د	8																																
	C	m	tn	пс	ee	L:																																
	(11)		4	kij-	2 1	12	1	=	0	a	U	-1/1	υ	1	+	6	d	112	Ve	,	+	C	Ma	1	v.	-1											
																								ľ														
					0	12	15	1	_	410	3	-	8	1		-	=		1 60	30-		- 1	6			×		16		=		16						
																						0																
					1	02	- =	=	- 1		610	-	1	5			-			30	-	18	-2.	-		H		11.	3	11		Z/4	6					
																													,									
					C	2		-	1-	•	10			5		-	=		1	30	-	3 -	- 12	-		-		1	2	P		3/6	5					
								-	-											_									1									
			1	7	To		fr	no	R	q	he		pr	op	er		51	GN	,	er	ca	n	m	e	:							_						_
		-	+	_						-	_																			_	_	_	-		-		-	_
	_	-	+	_			1	3	_	-	-	Z	3 60	-	4		3	-											-	-	-	-	-	_	1			_
		-	+	_			N G	-	-	-	-	V	60	-				_				_		_	_		_		-	-	+	-	+		-		-	_
	_	-	+	+	_		17	1		-		T	2				4	2	į .									_	_				+	_				_
		+	-	+	_	2	12	10				-]	90			-	3	190						-	-					-			+					_
		+	+	+	_		-	+-						-	-		-									_	-		-	-	-		+	-	+			_
		-	-	2			_	+	1		-	-	-	-	-	-	-	-		_				-				_	+		+		-		-		-	4
		-	+	3.4	7	T	n	58.	ect	100	A- ,1		-	-	-		-	-					-	-		_	-		+	+	+	-					-	_
		-	+	-	4.		12	-		T	7		,		-		12	-	//				-	3	1	1	-	-	+	1		-	-	-				-
\rightarrow		+	+	+	+ 1	2 !	12	-	-	J	6	U	-1/-	V	1	-	1	-	MIJ	zV	0	+	V	6	1	13/	2 U.	-1	+	-	-	+	+	-	+		-	-
+++		+	+	+	_		-	-	-	-	-	-	-	-	-	-	-	-				+	-	-					+	+	+	+	+	-	-		-	-
	(12	.)	+	0			e		n-		1		-		D	15		-	_	Γ.	L	11.		+	_	2	11-	11- 1		+	3		1		+-		-	-
	(14		+	0	2		2 0	22	n.	m	\$1	4	6		TY	2	- 1/-			1	6	My	2 0-	-1	J	6	M	72 0	0		16	u	- 3/1	L VI			1	7
		-	R	0		0,	+,,	4	tio	. ·	-	-	-	-	-		-	-										-	-		+	-	+		-	-		-
		-	N			T.	1.00					-	-	-	-		-	-				-		-					+	+	+		4		-			-
		л	-	5	2	*		5	45/2	5/2	=		1	121	2 75	7						-									+		+	-	1			-
		4	+	1	-	•		4	15/2	3/2	2 :		3	n	1	75	-	+	2	1	13/2	250												-				-
		-	T					4	P5/2	1/2		-	137	7	1-11	2 2	t	+	10	1	1/2	50	+	H	5	leh	. U-1											1
			T					4	P5/2 P5/2 P5/2	- 1/2	٤ :	=	53	T	11.1	20	E,	+	16	7 11	-1/2	Vo	+	Ja	7	U-31	20											
								4	P5/2	-3/-	2 3	=	mlt	1	1-1/2	v		+ .	216	U	3/2	Vo			-	1												
								4	P5/2	-51	12 :	-	1	1-3	12	v-	,																					
		1	=	4.1	3/2	. 1			43/1	2 3	12	=		25	И	112	5,	_	J	mlla	43	12 2	50														1	
			1						431:	2 1	12	1	1	8	1	1-1/2	U.		F	F	11/2	Vo	-	14	- /	131	z 25	-1										
									431	2 -	1/2	7		8	1	1.12	2-	- 1	F	45	11-1	12 20	· -	- 54	1.15	U.	3/2	27.										
									431:	2 - 3	3/2	19		12	1	1-1	zv	Ęį .		colles!	11.	3/2	V	2							-							
																										-								/				
		1	{ =		1/2	-	1		4	1/2	1	2	5		10	M	1-1/2	5.		- 1	20	"11	1/2	Vo	+	- J.	36	Из	127	5-1	1		1					
									4	1/2	-1	2	=		10	u	1/2	2.	, -	- ,	20	' la	1-1/2	2 20	-	+ [0-100	М-:	3/2	27,		/						
																															L							
																																		-				
																		-																	-	~		
																																				1.1		

.


Ŋ

		As	516	n-	me	ent	t	#	3																				P	au	2		61	ra	nt	t			
	-		nt				_	38	1	2	h	4	X	-			-	2	-		1				14.1	173	39	28					-		IG			14	
		125	- 2	18	- 1	di.	3-1	~	1	2		33	<	2)	3.3	-		74	N.		3	2 34	en			1.5	P	2	51	6	5.		-	1			
	_			_	-		_													_	-	-							4	- 1	11-	61	1			1			
				_	-	-	-	-											-		-	-	1.1		-					_						-			
t i	+	9.	1	1)	-		4	7												-	1	1		-	11	-		1			^			1	4	-)	
		1.	(+			-	_			_											ne e		the	4	CI	las. m	5	0	+	1	nf	-17	Te	2517	ma	6	
																		C	10	GR	a	113	e		10	10	-71	on:	5_1			-		-	-				
	1																		Ēz		x =		- 4			Ey	X	5	Z			1	Fx	X	=	0			
1	11													X					E	2	9 :	-	×			Ey	y	11 11	0				Ex	4	-	-	Z		
	$\sum_{i=1}^{n}$	1		_	_	/	4								2				Ez	2	4	=	0			Ey	7	1	-)	¢			Eχ	マナ	8	C.	1		
4			_	-	/		_							_			9	_		2	-	-							4					-	2			2	
				<i></i>	Z	-	+		5	12	ce	5	E	Z	V	X	22	-	y	JX	<u>i</u>	E	4 =	7	2 2	×	- >	x d	2	-)	E	Ξx	()	y	20	-	Z	dy	_
++-		+		-		+	+	-	_			_		_	_			-	-	-	-	-			-				-	-			-	-	-			U	
+-+-			(-	2)	1	110		0	en	er	to	2		Je.	n	2	E	1	v.	v	-	-	,1	E	75	-	+	v	E.	11	,		4	he					
			-			01	10	3	4	G		e,	xp	re	55	10	ne	-	G	Pov	-	1	fut	tur	e		US	e:			1		*						
																			,			1										- 24			-			3	
					E;	e X	2	-	=	X	2.	- 7	2			Z	2	42		-	え	Χ+	-	κ.		E	2	ŻΧ	1)	-				1.1	33	1		1	
				-	E	y) × ×	XU	1	6	y	7		1.5	1	-	E	y	y I	-	-	- 4	×	N. K			E	y	Z ×	-			-		-	3	1			
				+	E	××		5	0	-	Х	2	2	2		E	FX	3:	k e	•	ye	~	¥.	6		E	X	ZX	-	-	7.1	X	4	4					
++-				+	F	- 74	V	2	-	_	- 2	хu	_	_		E.	y	2	e	7	2 PA 14	-			E	-	22	-		Z	0			-				-	
++-			-	+	F	2	XZ	2	L L			XZ		_		E		2	=	.7	y x			-		7				- 2		ĸ		-				-	
					E	X	X	2			20					E	x y	2	8	- 2	24	Z			E	X	22	-		Z					2.0	3			
	1																																						
T			_	_	E	2 (X2	- 4	2)	15	-	4	xy			E	= (y2.	- 21	-)	W	Z×	2					2- X											
			_	-	E	1 (XZ		12)	-		27	ξ×			E	1 (y2	2	2)	11	22	X		E	4	22	- x	2)	=	-	42	X		-				
		+-+		+	E	x (X		47	-		2 7	2			E	ĸ (32	- 2	-	= -	40	12	_	E	X	7.0	- x	51	-	Z	YN	-	-	-			-	
+-+-			1.	3)		Er				+4	0		. 4		0		4	16						-		V.	4	4					ton	+	1	24			
+-+-			C		+	111	A	h		Lh	0	0	00	va	tio	ve	a	D IC	1	4	ho		se	e 55	Y	na	(XU		2		2	r	20	et	to	vel	4	
						op-	er	ra.	te		w	17	h	P	ac	h		e	ler	ne	en	t		the	t	15	: 1	xy		u		~		1			4	4	
				-		E	17	×	y	13	X	2-4	Z			E	e E	2)	xy	18	a.	2	12				Ey	Ex	E	2	XU	1 :	= ' -	- 2	xy				
++-				-	-	E	5	X	7	V	y	7			_	E	E	y	xy	17	-	7	X	2			Ex	E	F E	1	Xy	:	-	7	4	12			
+				+		E	= x		XY	1	-2	e X		-		Ē	y 1	X	x u			+ (±	χ~.			Ez	E	E	x	XU	(:	-	-2	XU	1	-		
+++			-	+		F	-	15		Yh.	m		ch	0	~	1	ha	t		+6	e	1	m	et	ior	15		хи		17	17	ŁΧ	1	(x2	- 4	2)	(7	2-X	2)
				-		Car	n	n		0		b	as	15		fa	r	-	the	on	r	ED	re	se	it	a	tion	n	1	7		the	,	01	las	5		2- X	
					7	Nh	10	h		15		Co	n	515	te	n	t.		V	he		las	t		for	ur	-	lur	1c	tion	us		ar	re		the	2		
					7	nei	N		0	re	s.																-								2	2			
+-+-				-			-	_			1-			-							-	1	-					,		1		1			-				
+-+-			-	+	N	ot	e	4	4	ha	t	_	L.	12	-	Z	-	-	15		no	4	0	n	2	n	nd	ep (1	en	de	en ?	+ 7.	-	ba:	515				
++-		+		+	f	UN	10	Tio	nc		5	m	C	2		Y	6	- 7	-	-	1	-	3	(X		y z)+	(1	¢ T	- X	-)	5	-		+				
++				+	-	and a	,		+).	<	Л		2	no	ar	-	1	ne	h	and a	t	In			ſ	-	two		-	4	pr	/	0	01	10	1 cl	4	
	-				0	le f	1		d	1.	-	had	10	80	1	120	e .	tin	ne				1000	~	-		1	20		0		/		P		100	1		
T						1						~	- 0		7	-	1													,	/								
																														4									
					_							_									-														1				
+-+-			_		-			-								₀			-			-						_	_										
																				18	1.5														1	1	-		

				(5)	2				(11)
	14	ΪEŋ	Ex	0	E		E	Ę	Con
		-	. 1	ne	ž		y	X	255
2			•	ra	F		F	F	de ;
-	a l b c d e	a b c d e	a 6 c d e	to		-11	11	10	ur u
οω Εx		-	1	n nt	H H	=	-		hi
E	-	-				-			thech
3						Ь			e
=	000000000000000000000000000000000000000	0 1 0 0	0-10	n		Xu			e
	0	-1 0 0 0	00-1]			xp
0 0 -1 -1	0 -1 0 0 0 0	0 0 0 1	000	+		+			re
	-4 0 0	0 0 2 0	0 2 0 0 0 0	he		a			551
0 Z 0 0	20000	0 0 -4 0	200			Ye			n
2 0 0 0				co		7			at
-4 0 0 0	abcde	a b c d e	a b c d e	e/		+			ie i
				4		- (2
3 	3)	N	2)		2			ky vi
0 f 0 0 -1 0 0				er		d-			th
E 0 1 0 0	e- -c b a 0	-b a zd- c	C Zet - 0 - 1	it.		- 4			+
4 0 0	,	4e	2	5		e)			6000
ke -2 0 0 0				0		2			1 2 ac
Ex			l	4		×			h
1)	Ì	V	/			ł			+ 0
	/	/	/	the		. (, Ŧ f
00000-1			/	e		0)			×
0 0 2 0 0		/				(x	z): ()	+ 0	+ Ke
0 1 0 0						2_0			d
-2 0 0 0				25		1 ²)			lx" el
-2 0 0 0 0									2- cer
						t			j ²)
						C) + en
						(2			- e ts
					(2	21			(1
					N1	×2		e na	22.
				1	×	-)			- ×
				x)	X			2) Hu
				F		~	2		= 4
				-					-
							11. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

	Assi		2440	+	#	2		1					-				1			-						-	P	11)	1	iro		+				-	
	Con														-																		IG					
			10															1									P	Z	51	h			0					
	1	-																										- 1										
	-	-																									4	1	-							-		
\frown	Pro	ble	111		9	-																																
	Con						-																									-						
	Con	411			1																-															-		
	(7)	+		-		-	-			12	1	0	0	0										0	2	0	0	0								-		
		-	-				-								1	-			-					1	0	0						-					-	
		-	16	Ful	. 1	E2	.11	=		0	0	0	4	-2		;	11	E2	1.	IE.	. 1	11		0		0												
		+	11.			- X				0	000	1	0	0	1	1	-11		n		<u>, ц</u>			0	0	1	0	0										
		-					-		1	0	0	1	0											0	0	0	0	0										
		-			-	-	-			•					/																							
		-								-						0	-1	0	0	0																-		
																1	0	0		0																		
		-	IF.	1.	E	211	-	1)	Ea	1.	IF	.1	1			0		0				11	1	Es	1												-	
			HC X		11-2-	e II		Y	- 2	1	11 0	X Q				0	0	0	0	0			-11	e	4						-		-		\neg		-	
			-													0	0	1		0									1		-		-					
		+		-	-	-																							_									
		-		-	-		-																															
	(8)	-		-	-	-	-		10	0	1	0	0										10	0	z	0	0									-		
	C=1	+	-	-	-	-		1	0		0			1												-2												
		-	1E		1.1	ER	11 =	-	2	0	0	5	0			1	Eal		E	. 11	=		1	٥	0	0												
	+++	-	1 F	9 11	- 11		1		0	0	0	0	0		;		- 6							-1														
			-	-	-					1		0														0												
					-		-		10	,																	1											
		+														1	0	0	-1	0	6																	
											÷					1		0																				
			IE	41	.]	E	1.	-	11	Ez	11.	IE	Ey	:	=								11	-	E	x 1							1					
				4									0				0	0 1	0	0	0				11						/							
																		(1	/								3	
																												-										
	(9)	2	Drop	ppl	ng		the	7	na	tri	K	2	101	ta T	FIO	n		u	e	3	ee	01	u	ie		ca	n	0	vr	it	e	4	re					
			een																																			
																									{	1	2	Jk	L =	= X	10 N	2	JZX	, 2	xy	1		
					E	Ez,	Er	-	=	-	1	= 1	k.L	E	e			w	er	e	e	-17	re	1	5	0).	2	el	3	no	ł	d	iffe	iren	t		
																						q				-	1,	1-	he	-	X	24	, .	X	erev 2, 2	yx		
												_																						-	-			
	(10)	U	12	h	ave		fro	m		le	ci	for	e	;																								
																										_									,			
					2	m	7,	MA	2	1	_	e th		E1	*l	9	Ne		, 0	ohe	ere	. 6	Egh	l	1	5	th	e	50	am	e	a	5	al	bou	e.		4
																																	_				_	_
	(11)	I	F	c	ve	-	ma	zk	e		th	e	1	de	nt	fi	cai	Fio	2			Er	=	-	1 t	2	Nh		0	an	d		-			_		
1		5	ubs	st,	tui	te		n	6	9),	W	e	ha	ve	5										R								_		1	1	-	_
		-																															-			_		
				-	- <u> </u> ħ	2	0	m.	1,1	m4	-	Ξ	-	-	7	ť	-11	el	W	le													-					
					П	-	-				-				n						-						/				-		-			_		
				02			m	ny,	n	14		1		-	17	t	EJ	kl	- 9	Me						1					-		-					
		-																						1	1					_	-		-			-	-	-
		-	4	hu	3	1	105	tif	y.	n	5		th	e		19	len	ti	410	a	tio	n.	•	6						-	-	-	-			_	-	
		-			-	-			-	0				•		-						_	-								-	-	-					
						-									-	-															-		-			-		/
						1									-	-		1					L				-		-	L					-		-	

		(,			/		(
															/				
															4		1		
																10.			
										-									
			(7.		16		15		(4		(3)		(Z)			67			
)	+))))))			161
				F															
	1-		T	SL			,		0.	6	1.	e h							
(al	Z	J		N×] (;	Survey of the local division of the local di		m	И;							
Z	2		re	2	13.	5	1	1+-	zo	L-		ło			K		Z	6	t
Co				5	-7	()	12	m)	1-	11		1				9	0		4
2				1.	nt	+ .	4>	(3	mo	-	2			2		/			73
0			1=	+ 7	1)	m	5		, >					×		~			
t			2	n	(1	+1.		m	11	n						72			
n			,	+1	47)((+1)	2	lх									
(5)		10	٦)(m)	1-	И	7	ſ	-	+				>				
<		>	n	7-		m	со	5	M						0				
- 2		-	U	m	5.0)	se	12	> 1	n								-	
1		(Z)	12	<		0	m	y.	y								
M		2		<	9	'n	. γ	17	• >				_						
07		ce	:	<~	<	n+	Шо	m	,				_					1945	
)		S		n	m	- 1) <	- 1	Y	•					E	5			
		9		+ 1	-1	w	(m	23				1× m-			X	+			
-		- v		12	1-	10.	. า		- 4	n				12	P	a			
5		nõ		Иσ	Mo	2	mo	<~	NN	1- ħ				No	re E	te			-
u)		>	>	5	>	n	11	- 1				>	es ea	5			
. 0		<				-		m	S	1 241				1	51	61			
		2		ų	-	: (-	0)	w	.>				-	bh	of			
<-		m		- 0	(m	0	50)	l e	-		-			le	l.			
11		• >		>	20		1-	1	:05	-				m	0	1		-	
24					50		m	H	Θ	ş		m.		2	ath	he			
•							+1		17	(2				Im	ei	2			
		0			mo)(;	AAA	47	+ ~		SU		>.	-,	0			
= 0) <		1+3	Zm	-	n)	2)(.	me		< n	20	di j			
					m		n)	21	1	(7		9		e la	the	4		1	-
					124		9	1-0	12-	-w	m			MO	ea rt	er		0:	-
					۵)		s w	m	m	17	- 1)			>	r	en		25	-
							10	د >)(2	()	5					t		-1	-
	,						<	<~	+ 74	5 1/	12				00			Ь	
						+	'n	n	n+	2	1	+	+	-	20	c			
							r-1	12	· 1)	12	m				ab	m			ra -
				d'see	<u>}</u>	1 -	1 7	No	S	u.	+1		2		21-	p			
				-	- 24	× 86	Mo	2	S	-1)	2		-		no	th			
							>		0)	4				at	e			
				4					m						100	ts			81
									+1						5				
									2										

	(8	3)		1	1	2	. 00	w	e	-	:	1										-	-													5		X							
				4				1					<	10	14	No	>	-	(co:	s E) -	n	0)	<	11	mo	>	+		sv	ne		2	m	5	1	0							
				1	IJ			+	_		1	-	-	_																													-		
		-					s L	-	0		<-2	2/1	Мо	>		+	(co:	6	+	·w	10)	<	-1	1 %	10)	>	+	(567	5	mi Z	0	20	120	10	>	11	0			.8%			
				1	11	2	. ;		~	м	B	- 0) :	-								_	-																					-	
				-	•		J	6	1	5	e e	9	2		11	Mo	>		+	v	mo	<	0	120	10))	+		56	,1	54	2		<1	mo	>	-	0)			-		1	
	10																							-																				_	
	(9		ш		2		<		0		>	-	+	•	<-	0		2			<		D	0)				<			2				2174			-		-					
			m				N				05	0					мб						0							м 6 0				W0	-2										
			m	11	. 1				0							0						5	6	51	ME	2			W	0 +	205	0			sm	Ð			4	0	3				
		-	m	1	-1			5	и	л.	Ð	-			u	10-	+ C	156		-		J	6	51	2	0				0					0	>				**					
		+	m	1=	0			(0				+	-		56	3	w S	4	-			1	Mo					5	6	500	10			0										
			3															_																									-		
	(10)					<	-2	-1-	KAO			+		<			0)			<	0	12	No	>			<							Im								_		
				1=					0	_			-				0						0	- M	0					u O					- 2¢		9						-		
				1=				1	0									m	9			0	_	2							no z			10	0	0		0					_		
			м	(=	-1					лØ	-							2 Se				16'			0					0					0										
	-		ш	(=	-2			2	Ио	+	20	tos	0				su	10				-	_	0						6	5				0					(_		
	(11)	-	12	M	2		-		-	1	1	m		w	12	Ио						244	.]	1		M	2	<	Ma	In	n'>	< >	ni l								_			
					-		_	-	_	·		_	_			_				W								~				m			>			_							
	-			. "	e															1	m											-			-					(jes					
	-																						-								-													1	
								-																																					
	-																		-																										V
L																										_											_								

	Assi	6 NM tinu			3		1.00															P	E A 23		- A	P-	ut - 16			
		leni tinu																				67								
	(12)	Con	isid	'er	2	110 =	0	,	0	= 7	74				-		+	-			-	-	-	-						
		<	-210	>	<	-1107	>	<	<0	10	>		<11	0	>	<	210	>>	-			-	-							
			0			0			(2			50	TIN	_	-	- Jz	2					-					(3)		
			0	-		0			7	2			-	52	-		52	1					-							
			0	-		J31 Z			_	0				J3 Z	_		0	1		5	0	+	+	-					- 7	
			521			J21 2			_	131	-			0	_	_	0	-				-		-				3		
-			521			521	-			0				0		-	0	>			-		-	-						
	(13)	Sun				- /							/		2	-						-		-						
	(13)	we				n	ave	¥	ahe	5	US	va	27			na				5	0	90	ar.	ion	,					
		2-21	0	-	k	0		0 J3/z		52/2 -52/-		- 52			.7	31/2	5		3%	- Ji	1/2		52	1						
		<		-		53/2		0		0	2	0		#		5/2	ĸ		3/2		0		0							_
			IJ	3		52/2		- 1		=	_		1		+															_
			<-z	34	RNI	Ì	2	2)	-		00/00		-		+	-						-							_
			<- 2	07	-	9	TR.			51		_	-			-		1			_		+	-			3			
		<-11	0>	= -	- 1e	0		0 13]/z	-	12/2	-	52	2	11	- 5	2 4	. .	- 5	2	. 5	62	H		3 1	e					
						0	12	0	+	03/2		0			+															
		1<-1	1071	2 =	9	- le	2		+	-				_	-							_	-	-						
						0		0	2	2/2	-J	27			+	5		.[4	1	1		1		1	-1					
		<01	0)	1	k	0	1/2	0	-	E/2 3/2		2 ¹ /2 0	1	E		尼 、	k.	J.N.	- (-12	- 1)	19		6 8	le				
				2				V2/2	-	0																				
		120	10>		5	64		k"		=		3 3		1e2																
× ×		<1	107	=		Ye.	0	(0	0	2	- 52	12))	-	52-2	je.	53	3	. 5	7	-	+	3 4	k		2			
							0 Fe/z	13	87/2 87/2	0	12	0	2			-			a>1			9		k2						
										1		1										10								/

				(17			(16		(15	. (14	(13
)			>		-)	2))
			<	4					1		<
<	<-	<	<1	1-2							2
-2)	-1	01	10	211					= 2 10		0>
1>	17	17	2	· > ·	0 0 1 1						
W	11	11	IJ	11		7	2		2 mlu	2 <n< th=""><th>1</th></n<>	1
3	-		- 1								
Je	k	k	2	k							e
					0 0 16/2 1						000000000000000000000000000000000000000
0 JE/2 1	0 0 1	0 0 1	0 0 0 1	0 0 0 1	2					9 64	
Ju	Ja.	50	JG	Jo			0	0>1	= 7	. 1 : 2	0 0 13/2 12/2
72 1 7/2 0	0 5/2 1 5/2	0 0 7/2 1	0 0 .7/2 1	0 5 7/2 1		<	U	Z		22	- C 133
1 58/2 0	1 1 56/	1 1 56/ 0	0 561/2 1 561/2	0 56/ 1 56/	0 167/2 1 1567/2 0	011)	17/2	-	; =	9) 1/2 0 1/2
	2			2		>				Ą	JZ/2 -JZ/2 JZ/2 0
1 0 0	1 1 0	1 1 0	 0	1 1 161/2 0						-	Z
						<1		a la	to to	30	
	=	11	-		 	117				•	
5		(-	-		>			NIN	3.	- 1-
62	- 4	0	16 N	56/2					-	12 R	22
k	k.	;	k	- 10		<	7				k
	-		. '		1 0 0	21	\checkmark			+	. 1
<u>J6</u> Z	Jela	1 <	-	-		17		/			J2 2
1	7	01	J672	162				/	1	3	
		12		1						- 1	1
-	56 2	2	-		0					22	3 4
312	. =	II	3/2	m m							
k	ł	0	k	k						II II	8
;	N w		;	-)							
<	k			1<						48	3 8
2-2	·,		211	211							k
	<		1>1	1						k ²	
> 2	11		<u>ک</u> ر :	NI							A CONTRACT
	> 2			94							
94	11		7	- 7							
R	9 4		k ²	22							
2	k										
	2										
	A Deland										

	nee	IGNN		t	ŧ	3					-												D	2.11	1	1	2-	ent	4			
	Cm	tim	veo	1	4.	-												-			1	41.5						-16			-	
	Lori																							Z								
																					1			1-			51	2				
		,													_						_					_				_		
		plem		10					-	_		-				-	_			_	_						-	-		_	_	
	Con	tinue							-	_	_	+	-					_		_	-	-							_	-		
	(18)	2	-	1/4	.]]	21	2 =		4		9	12		= /	,			Z	-	-	1/9	+				_			-+	-		
	(18)	m	-2	1 10	. [.	~ 1	-		7	-	94	R.	-		5	,	k	2	-	-	17	+							-	-	1	
			+							+	-	+	+							-	+	+					/				-	
	(19)	14	-21	121	2	=	1 <-1	11>	2	-	<	<11	1>1	2	11	1	22	11>	12	-	=	1/4	4			/						
																								/								
		<	<01	1>	2	11	0																1									
											_	-	1						_	_	_	-			-				-	_		
	(20)	Con	251	der	2:	-	Mo	= 8	2	;	0 =	= N	2	-					-			-							-	_		-
			21	27		,	-1/2			2012	>	-	-	1/2	-		1-	.12	2	-	-	-	-						-	-	-	
		<.	6	61	- 	<	-116		<	010	- /	-	<	12	/		6	12			-				_							
			0				0			0				1				2														
			0				0			501				Z				1					-		-	1.1						
			0				56/2		_	Z		-	-	56)	2			0		E	0					***						
			1				2		_	56		-	-	0				0	-		_	-									-	
			2	-			-	$\left \right $	-	()	-	-	0			-	0	-	-	+	-		-		_	_		+	-	-	
	+-+		+				0	0		0	1	1	+					-	-	-	+	-		_		_						
	(21)	<2	12>	_	. 1	2	0	0		10/2		_	=		- k	. 5	67		Jal	. =	3	- 1e		1<	2/2	27	2 =	9	- 1	k2		
							0	V61/2		Z	Je	1/2					2		2		5	-)					4	4			
							1	2	١	567/2																				_		
							_		_		-	-	-				_	_	_	_	_	-							_	_	_	
+ + +		<11	-	-		,	0	6 0	-	0	2	-	-						-	_	0		1	<1	->	12	-	0	1/2 r	2		
		211	41	-	- 1	R	0	J6/2		J6/2			=		1 4	2 4	e	-5	6'	-	- 3	k. j	- 1	<1	61	1	-	7	R	+		
			+				1	2		Z Ju/2	0		+					-			+	-				_			+	+		
										-10		1																				
							0	0		1	Z																2					
		<0	127	=		k	0	0		2	1		1	-	- 5	5 4	k.	- '	3	=	3	161	k;	1	01:	2))	313	27	-k	2		
			-				0			56/2	0		-			-	_		-		-	-							-		-	
-			-				1	Z	-	0	0	1	-				-	-		-	-	-								-		
			-				0	0	-	1	Z	1	-				-	-				-										
		<-	1/27	> =	-	k	0	0 56/2		2	1		1	-	-27	έ,	-3	+	50	1 k	• +	16	H	-	31	2;	1<	(-1/2	>1	2 =	9/2	
		Ì					0	2		6/z	0								2			F										
							1	J6/2		0	0																					
			-								_	1						-	_			-							-			
		1	21.	27	-	4	0	56%	2	2	1		-		M		-	-	1	-	-	2 .		1	/	21-	>1	2	=	9	42	
		<	0	/	9	k	2	2	1-	0	0		Ξ	-	562	R	• •	- 50	2	1	- 11ce	3 10	j	1	1-	610				4	k2	
			-				1	161		0	0		-								-	-										
			2									1																				
	(22)		51		(m	12	>12	=	2	. 5	9 4	+	1 60	64	6 %	2	+	27	1e	2	9	30	6 k	2	11	1	;	Ye	-		6	
		m	5-2							4	4			1	2			4											_			
			-										-					_	_	-		-							-	-		-
			-						_	-+		-	-	-			_		-	-		-						1		-		

		5-	3 mil	9				
23)	(-2/2	712	=	1<21	27	2	1	1/16

 $|\langle -1|z \rangle|^2 = |\langle 1|z \rangle|^2 = \frac{1}{4}$

5

 $|\langle 0|2 \rangle|^2 = \frac{3}{8}$

(24) Consider mo =1; 0 = 172; and Koli>, the probability of having m=0 alone an axis 90° from 20°. That is, we have made one measurements along 20° and have found mo =1. However, we have now disturbed the system. Thus, when we make a subsequent measurement along m we should have a finite probability of having m=0. However, I toli> = 0. Thus, when we make a measurement on the system and find it to have had mo =1 alons 20°, it destroys any chance the system had to have m = 0 along z 90° away.

1			A	55	GI	un	ier	ut	#	3													1							P	au	2	(Fri	an	t				
						no							2	sur	-	23	>	1	1	3	-	ζ.	231	-	N.	171	¥ ~	-	243							16				
																					1000	1									2					340				
																														4	4 -	12	-	61				-		
-	L									_	_					22	_		-		-	9												-				_	-	
-	<u>}</u>	-			()		/		11	_	-	,	-		,	-	-	_	-	-	-		_								-	11		-	,		_	_	-	-
-	-	-	11.	a.	(1)	1	For	r	Vh	e	5	ak	e	0	ŧ	e.	2p	eri	en	1 ce	,	w	e I	0	ler	-w	2	0	2	n	пе	the	d	6	F	. ,	_	-		
+	-							la-									ba	bi	11	TIE	5	6	ale	m	g	Y	ne		14	res		04		P	rok	ple	n	-	02	
1		-	-				10		C	as	+	f	0/1	da	3	5	-		-	-	-													-				-	-	
					(2)			2	0													-															1			
		1								A	Z						1	Msi	>	IJ		2	->	12	NS	> <	(w	15	W	50	>									
		1							/	1												N	15														4			
		4						0	/		-	_			_	_	-	Sz	0	W	50	> :	-	M	0	r	W	150	\geq	_								-	_	
-		H	/	-				$\left\langle \cdot \right\rangle$		-	-	>	Xo	_	-	-	-	-	-	-	C	-					C			~				-	-		_	-	-	
+	ł	-	-	-								-		-	-		-	20	>	-	2	2	Cos	9 9		-	2×C	5		. 0				-	-			-	-	-
-		-		-						-	×	-						-													-			-	-					
					(3))	F	ro	m		re	รบ	2+5	5	di	er	ive	d	1	n	(ila	55	1																
												1							_	1	10																	-		
	-							11	27	> ·	-	0)	;		1-	1/2	>	=	(1)	_			-				-							-24	AA.	-	8	
	-	-	-	-	-	-	-	S.		-	-	C	1	. (c .				+	1	01		-				_					-		-	-			-	-	
		-			-			3.	-	-	-	2×C	+		9	-	-	-	n	(20)					-			-		-		1			-			
								S	-	=		S×	-	ı	S.	1	10		ħ	10	0)																		
1	1																			1																1				
-								2	x	Ξ		- 5	+		5-	-				_														-		5			_	_
+	-									-	-	-		2			_		•	-	-											_	_				_		-	
+	-	-	-	-	-		1.		SP	-	1	-	Sz	-	100	2 4	3	_	<	T.	2	m	0	_		C	4	su	0			_	_	-			3	+		
+												-	~ ~							-+		2						2	_	-								-		
															,																									-
					(4)		<	5+	11	12		1		ħ	(0	0)()	H	0																				
									>						,	2 1						1								_									_	
								5+	1-	- 1/2	>	=		ħ	(00)(ĩ)	19		ĥ	0	10	-	ħ	11	2	>		_		_					-		-	
								<	1,	1/2	5	-		t	1	00	21	1		-	t	10		1	+	1.	1/2	>				_							34	
-																		ĺ,					1		n	1	10	-	_		_									
								S -	1-	1/2	>	Ξ		ħ	(00	$\left(\right)$	0		-	0																			
		1													(1	(124			
									0	1					1-	1				C				-								8-1- 								
	-	-				1			7+	1.	Ms	5	1)	_	h	1-	Ms	+1	/	SW	5,	- 1/2		-												10	-		-	-
-									S.	1	244	5	18		t	1.	44.		1	C		11															-			
			-							1	VVI ;	-			N		IVIS	-	1	0	ns,	1/2				-														
	5				(5)	1		5	20	- 1	Ws	5	1		Ms	0)	Ms	0)	1	-	Z	1	Ms	. 12	Ns	><	Ws	17	Aso	>			-				-			
									ħ												M	S																-		
							-		-	-	5	2					1				0	140	A	1				C										_	-	
-		-					1		ZY	ns		1	Ws	C	05	9	1	13	2	-	2	Z	-	1	MS	+1	2	9-	WS,	-1	12	_		-			-	-	-	
+		-		-					-	- 3	-	-				_	-	5	m	0		24	4 -	1	5	โพร		-	2	/	244	12	140	>					-	
																		-	2	-		11	3-		C	- 113	, ')	2	5	1	PULS	1	VISI	-						
t																																								

		5				0	6		-																		2	*	1	1		1	23	3			
(6)	NX	ns	117	nis	>	2(Ws	10:	6	- V	Usa	1	Ns	M	50)	1	51	N	9	<1	Ms	- 1]	Ms	50>	2	Sm	5-1	, - /	1/2					-		-	
			_		5 11	10		12	140	+1	1.	-	. >		S		,		2		H	0															
		+		-	2	2			N S	-		ANI2	0 /		0 11	ns +	',	1/2)																	-	-
(7)	Ms	5	1/2	2 3		(M	50	-	20	SG)	<-	21	Mg	0)	2	+		sw	0	<	- 1/2	12	Uso	>	ų	0		-		23	2	<u>AA</u>			
		+	+		-						~											_								-							
	Ms	5 =	- /	1/2	1		()	MSO	+	4	Z	0)	<	1-2	1 71	150	>	+		51	Z	-	< 10	= 1	Msd	5	1)	0)						1		
	or				-																												_				
		+			<-!	-1.	W So	>				<	1-2	m	10	2													-					1			
		+	-		-	sw	10					N	150	-	202	0																					
		-		-	M	50 .	+ -	LOS	Ð				N,	M	0			11	0									_							-	-	-
		-			1	-	-																									2			_		
(8)	Nou	0:	-	:	m	5	٢v	Nsl	Ws	2	2	=		<		12	Uso	>1	2	+	<	(土	1 711	507	12		8	1	-				_				
10			1							*	0		2	24											_					_							
(9)		<-	を	1741	507					203	9	5	- u	10	150	-	<	- N	M	50	>																
		1.	<	Eh	Mso	217	2	11		0	05	26	9	1	4.	Ws	0	ċo.	50		+	42	Usa	2	1	<	12	1	M	50)	12	-				· ·	
		-		+)					~	SU	n ²	0													1			_	_	_	-
(10)	Plu	90	zn	ng		in	(8)	<u>،</u> .	u	e		ha	Je	5																_				_		
		,	,		1		1.	2						51	m	20	-																				
			<	12	12	lso	21		-			1						056	9	+	4 N	150				<						- 24.5					
		+	-	-										-							-									-							
(11)	Muso	, =	1/2	2:		1	くさ	-11	27	12	N	-	2	2	-	50	no	0 5	Θ	5	:	=	-	2	5	1	+	co	2 6	əţ	1	-	co	52	02	_	
	Jad .			1/2	,	1	1	- -	1	21	2	-	1	- 5		5	m	26	7	2	1		1	. 5	1	_	0	9	0	2	1		54	2	Θ		
	Mso	0 -	-	10	-	1			2				2	2	-	1 .	+	co	50	S			2	2				9		5				<u> </u>	2	_	4
(12)	Th	e	5	ar	ne		ve	230	1+		sar	r	6	0	6	ac.	hie	ve	d		USI	119	3	e	94	a	tio	r	(6)	0	4			V	/	
	Th P W	110	ble 1	me g	Ive	10	q	an	ect	4/4	+	e a l	kn gu	at	40	Jus	8	(7)	Ζ,	0	en	d		m	-	=	1	1/-	2		w	hi	ch	2			
					+	-				a			-	~																-		- 4- - 5- 8-					
		-							-								-							-	_											-	2
															-												-										
											-					-	1. 1.																				
					-								-)

	ASSIGNA	newt	#3																Pa	u)		Gr	a	t				
	Contin			2 25	2 3 3	11.3			1		1	N .			3			-					- 10			(8)		
								_	_		_		_								-11							
	_					_			-			-	-	-			_		4	-1	2-0	61	_					
	Problem	21							+			+	-	-			-	-		_	_	-	-					
× 1	Contin								-			-					+	-		-		-			+			-
																							+					
	П. Ь, (1)	Reci	222	f	rou	ĸ	lea	ton	re	+	-he	-	de	f,	nı	tion	n	01	C	K	he							
		spin	nor	r	ota	tion		01	per	a to	r :		-								_			_				
		10	157		1	ê û	- , -	1.			_	-			-			-		_	_		_		-			
		I'N	15 /		e			Ms	07			-						-		-	-	+	-+		-		-	
	(2)	Fo	2	roto	atic	n	a	bo	ut		+1	he	4	-	ax	15	2					-	-					
			20										C															
			0	2				_	_	_		_	_			1		2				_						
		++-	5				+	-	ū.	5	-	+	Gy		=	(1	0	2)		_	-	-	_					_
			K	>	Xo						-	+	-				-	/		-	+	+	-	+	-	10.2		_
									-		-	-	-				-				-				-			
	(3)		er	TE O	3 :	=	C	02	ofr	Jy		+ .	1.	su	9	25	y	-,	-	_	_	_		_	_			
												+			_		-			-	+	-		-	+-		-	
		54	2 =	1	0-2	1/0	-2	-	1	0)		+	,	0	_ 2	и =	1	10		-	+	+	+	+	+-		-	-
															2		1	01							-			
\frown		0.	3 -	Oy	1			6.	24.	÷1.	=	Oy												20		3)		
~																0	_	,		_	_	_	_	_	_		_	
		.1 .	e	10 4	9 :	-		co :	s of N	-	+	~ (J.J	50	n	2		-		-	+	+	-	-	-		-	
					+ +				-		-	+	-				+			-	+	+	-					-
		=	1	0	6/2	0		+	1	0	S	m	0/z			-	1	0	52 1	0/2	-	5	m	9/2				
				0	C	02 01	2)		-	· Shu	Ok	(0						su	. 0/	2		Cer	201	12)			
								_	<u> </u>				_							_	_	-	-	_			-	
	(4)	d la	OSE		1.24	<		111-			. /	/ //	1		_					+	-	1	+	+			-	-
	()	CRO	- 3 5		1 1005	0,		170	- /		1	0) '				-			+	+	+	-	-	-			
						el.	Tu						1co	2 0	12													
		Inc	5	=	e	0/2	5	11	2)	-	2									_	_	_	_	_	-			
								_	-		_		(-5	m e	9/2					-		-	-	_			+	-
+-+-+			1	ac e,	12 (1		e 1.	0	1	10'		-	4	00	0/2)/	67			SIA	.0	1/2	1-	1/2	5	-	
		T		- /	1	0]		0		6				6		16		61				-	14	1				
																								-				
		=	1/2	2)<	1/2/	(EM	+	1.	- 1/2	><	-1	2	ms)	>							_			2 3			-	
	15	11		1.0					11	-		-	11-		6.	0.4	. /.	1		10		-		200 t	6	-	-	
+	(5)		4	ne	prob	abil	ity)	ha T		Wis	F	12		tra	M	Y	ne	n	ree	eso	re	me	mi		-		_
\frown		10 :		Cosz	0/2		=		2 11	217	12)	12																
			19 A.																									
		and	4	he	pro	obab	pi li	+3	¢	hat	t	th	e w	m	ea	sur	e m	en	t	10	Sil	/	91	ve	Ms	H	1/2	
	_	15:	1		11	12		0	2	er							-			-		-	_	-	-			
			1	121	-122	1		2	m	78	2									-			-		-			-)
										1	-														1			1
	(5)	No as 15 :	\ 1/2 . +	cos^2	1/2] : orsb : 0/2 pro	ms)	+ : ty = >. 1.	, . , + &	- 1/2 1/2 2 1/2 2 1/2	>< + 11	(- 1) Ms 127	12 · = 12	1/2		fro		H	he	n	neo	250	re	me	ent	2		1/2	

				(8)		(7)				(6)
78)				
	0	0		F		A				1
	sh	2		iro		-				Ve
	10		V	m		st i	+	To		100
	e h	(. (re	+	2 k	~	co
		φ.		(6)		r	-	0	- 2	0
		1/2				2		-	8	d
· J		2		4	17	w	Is	W	N N	
		-			Иs	a	-	.7	1	
					0,	1e	+	U U		2/3
	5		-		>		+	Ì	1	50
	-	<	Y		N	+	2		20	
	<	11	<i>,</i> ,			th.			S	u
	1/2 1/2	21	2			000	51		9 /2	r
	Olv .	J Tre O	-	11	4	re 2P	s M	3		te
	1/2	>	+		1/2 0 - 1)	pr	9/3			
	>				1	00	2	(-	
	12 e		Ce	5		20		1	5	to
		-	12	2		h	-		м	k
		2.1	orla	AZ G	}		10	5 0	<i>0</i> /2	N
		K	and the second		w	9		3/2		ic
		1/2	4		he	ve	1+			
		11		-	e r	0				,
	<	12	12	50	e	P			Ms	the
	1/2	>		n		P		~ ~		2
	12			9/2 9/1		ro				
	2	/)	~	2)		ty	1			t
	-									ra
			. 2	4		(]				us
	1/2			1/2		ir				po
						ac				se
	02							3		
					P	7		-		
4	4					-				
6/2	he	- - 				+	/			
1						+		1		10 10
	1				1	+		/		
)	0					+				
	ro					R		53 5 74 - 7		
	6						*			
	ab									
	11									
	t			(
	25									

Physics 251b Froblems, 1961

12. Enumerate the possible values of m_{fa} , m_{sa} (a=1,2,3) for a system of three equivalent p electrons, $(np)^3$ ('possible' means consistent with antisymmetrization of the wave functions). Determine the spectral terms that can arise from this configuration.

13. Prove Ehrenfest's theorem for the case of a particle in an electromagnetic field; i.e., from

$$\frac{d}{dt} \stackrel{F}{=} = \frac{\dot{F}}{\dot{n}} = \frac{\dot{I}}{\ddot{n}} \stackrel{F}{[H, F]} + \frac{\partial}{\partial t} \stackrel{F}{=}$$

$$\frac{H}{dt} = \frac{1}{2m} \stackrel{\vec{n}}{\vec{n}} \stackrel{\vec{n}}{=} e_{\vec{r}}, \quad \vec{\vec{n}} = \vec{p} - \frac{e}{c} \vec{A}$$

show that

$$\frac{d}{dt} \vec{r} = \underline{1} \vec{\pi}$$

$$\frac{d}{dt} \vec{\pi} = (\text{Lorentz force})$$

$$\frac{d}{dt}$$

14. Consider the case of a uniform magnetic field (0, 0 Å) imposed on a spherically symmetric electric field $\varphi = \varphi(\mathbf{r})$. Take the vector potential to be

 $\vec{A} = \frac{1}{2} \varkappa (\hat{k} \times \vec{r}), \text{ or } A_k = \frac{1}{2} \varkappa \epsilon_{k3l} x_{ll},$

and define the orbital angular momentum operator as

 $\vec{\underline{L}} = \vec{r} \times \vec{p}$, or $\underline{L}_k = \epsilon_{klm} \times l p_m$.

a) Calculate the commutators $(\underline{H}, \underline{L}_k)$, and show that

- 1) \underline{L}_{τ} is an exact constant of the motion.
- 2) The terms linear in $\not\sim$ in the time derivatives of \underline{L}_{x} and \underline{L}_{y} are in agreement with the classical picture of the Larmor precession.
- b) Show that, if terms in χ_2^2 are neglected, \underline{L}^2 is a constant of the motion.
- c) The unperturbed state of an atom is that with $\neq = 0$,

Fhysics 251b Froblens, 1901

12. Inumcrate the possible values of m_{a} , m_{a} (a=1,2,3) for a system of three equivalent p electrons, (np)³ ('possible' means consistent with antisymmetrization of the wave functions). Determine the spectral terms that can arise from this configuration.

 Frove Shrenfest's theorem for the case of a particle in an electromagnetic field; i.e., from

$$\frac{d}{dt} \vec{E} = \frac{1}{2m} [\vec{E} \cdot \vec{E}] + \frac{1}{2t} [\vec{E} \cdot \vec{E}] + \frac{1}{2t} \vec{E}$$

$$\frac{d}{dt} = \frac{1}{2m} [\vec{u} \cdot \vec{u} + e_{f'}], \quad \vec{p} - \frac{e}{c} \vec{A}$$

show that

$$\frac{d}{dt} \quad \vec{r} = \underline{1} \quad \vec{n}$$

$$\frac{d}{dt} \quad \vec{n} = (\text{Lorentz force})$$
It

14. Consider the case of a unify m magnetic field $(0, 0 \not\leftrightarrow)$ imposed on a spherically symmetric electric field $f \neq \gamma(r)$. Take the vector potential to be

$$(\mathbf{k} \times \mathbf{r})$$
, or $A_{\mathbf{k}} = \frac{1}{2} \frac{\gamma}{\epsilon} e_{\mathbf{k} 3 \mathbf{k}} \mathbf{r}$,

and define the orbital angular momentum operator as

a) Calculate the commutators (1, 1, 1, and show that

- 1) L, is an exact constant of the motion.
- 2) The terms linear in N_1 in the time derivatives of \underline{L}_{X} and \underline{L}_{Y} are in agreement with the classical picture of the Larmor precession.
- b) Show that, if terms in $\sum_{i=1}^{2} are neglected, L^{2}$ is a constant of the motion.
 - c) The unperturbed state of an atom is that with $\gamma_{i}=0$,

and \underline{L}^2 exactly quantized. For the action of the perturbing magnetic field, the following order-of-magnitude relations hold:

(1H"1-3) ~ <1[4,2]>

(Element of $[\underline{H}, \underline{L}^2]$) ~ (off-diagonal element of H) \cdot (ΔL^2) $\Delta L^2 \sim \hbar^2$ (ΔE) (M = 0, $\Delta L \neq 0$) ~ $\frac{me^4}{\hbar^2}$ $\overline{x}_k \sim a_0$, $\overline{x_k x_\ell} \sim a_0^2$; $a_0 = \frac{\hbar^2}{mo^2}$

Find the order of magnitude of the coefficient with which a wave-function of <u>different</u> L^2 is combined with the unperturbed wave-function. Evaluate numerically for field of 10,000 gauss.

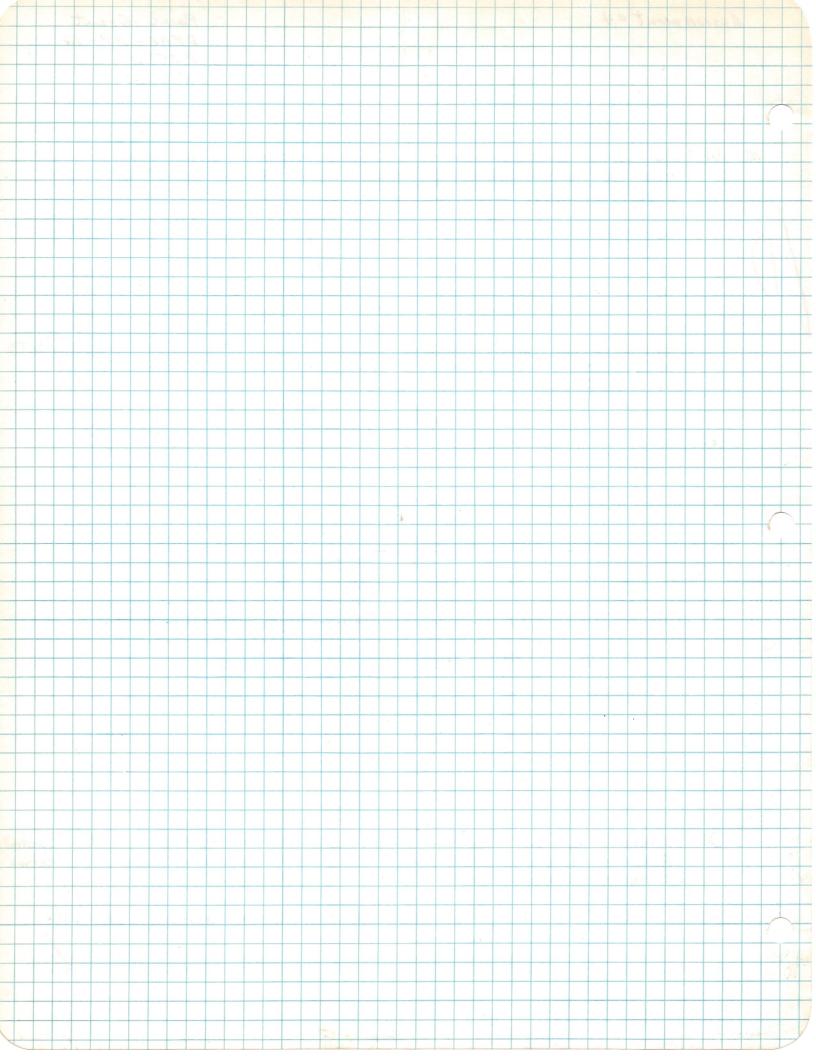
15. For the atom in the presence of the magnetic field used in Problem 14, calculate the magnetic moment from the formula

$$\vec{\vec{\mu}} = \frac{1}{2c} \int (\vec{r} \times \vec{j}) d\mathbf{r}$$

(Here \vec{j} is the 'electric current' --- probability current multiplied by charge <u>e</u>). Express result as two terms, both involving mean values (no other integrals): one term is the value for $\mathcal{H} = 0$, the other a term proportional to $\overline{\mathcal{H}}$. and L² exactly quantize . For the action of the perturbing magnetic field, the following preservations tude relations hold:

Hement of 2, 1 -diagonal element of 1) - (14

S D' XI A S A


a wava-function of <u>different</u> LA is confined with the unperturbed wava-function. Gvaluate numerically for field of 10,000 gauss.

5. For the atom in the presence of the magnetic field used in roblem 14. chiculate the magnetic moment from the formule

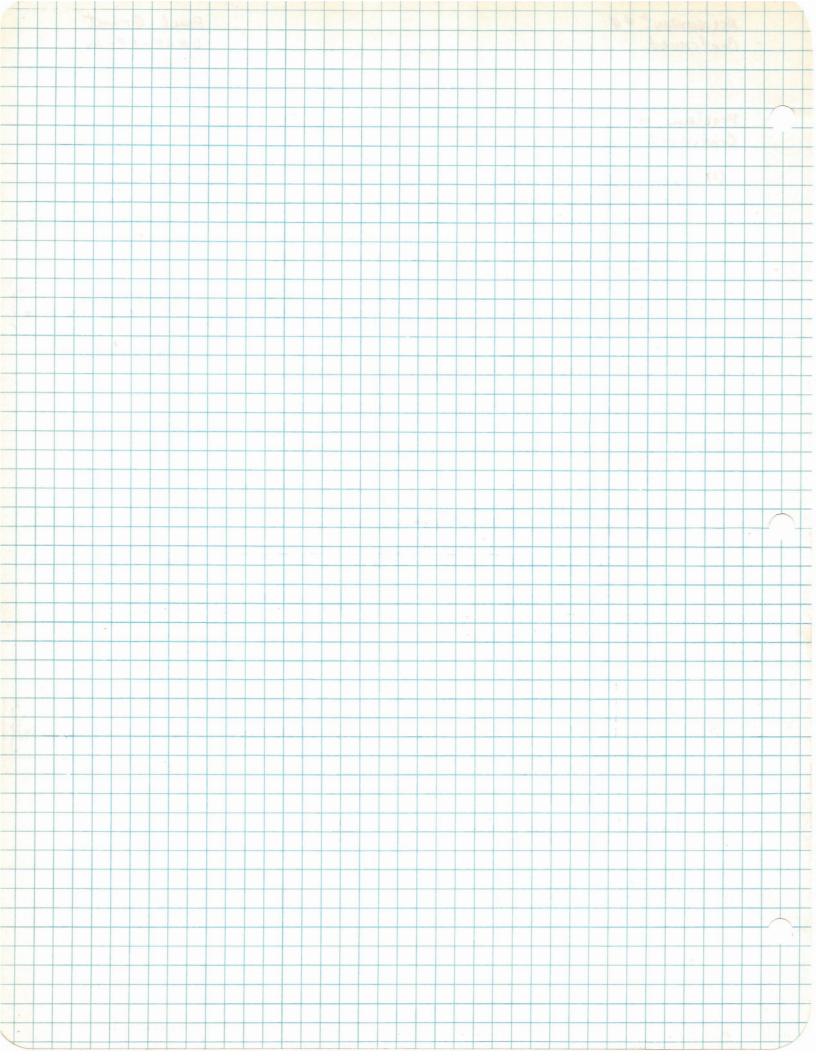
(txt) : 1

(Here j is the 'electric current' --- probability current weltighted by chares $\underline{\mathbf{e}}$). Express result as two terms, both involving mean values (no other integrals): one term is the value for $\underline{\mathbf{k}} = 0$, the other s term proportional to $\underline{\mathbb{C}}$.

f				As	.51	51	n	10.	n i	t	#	4																										1	Pa	ee a	2 -	6 4	re	2	t	. 6		
	-												-	_				+					+	_						-	-			+				1	0 10	.7.	6	5			_			
1)											+					-						-										+					-		-			_				
			12.		(1)		2	13	e	£	or	F	-		an th	nt	7	5-	n	110	w	e.t	2	C	-	ta	ble	ve	3		fu.	n	ct	201	us	e9	0	DIT Ve	-h	mi	th	e P						
	/						-	Mei	+	<u>t</u>		Ms	+			n	+	+	_		-	+	+	1		_	1,0	+	-	-		ز	-	+	_			= /z	-	M	-		_	15				
/		ſ)					1			,	+					1	6	-			-				0		-		4	63 +-			-	NUT	2				2		-		T	-1/	12		
R		U										+	-+-				1	_			•	-				-					+ +					2				1	1		1	12.	-1/2 -1/2	2		
/							-	-1				3	1 + 1 + 1				0	+				+					0				+ + +					2 20 00					2	3/2	1/2	3/2	- 1/2	1/2	+ 1/2	2
							-	-1					+				-	-				+	•				0		+		1 1+			+	_	2 2	-				2	+	1	12	, -, -, -, -, -, -, -, -, -, -, -, -, -,	1/2		
-	+				(2)				+				+					5.	1				4	М	5			+	+					+		2	0					+			/	<	-	
	+								+	-		-	+			-		-				-	+	2				t	+	_				+	-						1	/		+				
. 1		>							-														×)										+										-				
	1	^					-		+	-				_									+	1										+	:										-			
	-												8				(×				(XX	9			0	XX				(*	+		_						/		-				
	-	_				_	-	3	-	-			-2					-1		_	-		1				-	1	+	-			2	+	-		_	3	-	1	/	M	+	-	-			
-		_					-	-	+				8				-	*			-	0		9			(X)			(8	+					/		-	-	+	+				
																		-					R																									
	-													_										-2			-							_								-	+		_			
									-														1						-																			-
-	-				(3)		1		te +	to	n	21		L	11 11	2				M		1	+	2 +	, ±	1	0		-			MA	102	+	10	lic	, t	5	11	2224		2	10	2021	2		Speter	20 P
																1													- 1						- 1									2 -)		
1)			(4)	_	ł.		1	Z) ;	j	2	P	j	4	S			2	re	2 Lf	10	the	ro	+	SIO	pe		tro	~2		te	27	M	S	0	eri	SL	ME	5	f	re	m	L	th	e /	
												1										-	1	V															1		1				-			1

								+										1
-								<u></u>					1			-		ĺ
								5					1	1				
			1												13			
														1	. a.		(
	19	(1		C				-		(1	(3		((-0	
	?)	8)		7)		6)	5)			4)	3)		2)		1)		nt	
															1		-11	
	1							w							Ne		nu	
	1							1+									ed	mer
		0		PI				h				-						
	-	l x di		ľ		-								+			-	ħ
	d	17 5	1			+								+			-	ŧ 4
	t				_	-		A.						+				!
	I R	11	-			_		ı										
						_				L_	1				-			
		-			_	_		ar						-				
	11	123						nd	-									
		en				1	10	!			10			-			. 1	
	1 E I F I F	-			-		;	Q				+		+				1
	AL 3	-				1	E)				+]			2	
		010				Z	AL	f		1	5	иС		+			+	
						1	, X.	Cu			5-	-		+				
		Ĩ				-	1]	nc			pr	(
	-	1 J				Pa	11	ta			AL	1						
					~	, x.	0	ón.			+			-		×	<u>.</u>	
		J				7	25	5			Ar.			-				
						_	2	0			pr						-	
	/		XJ	2] 2	~	S In	Q,	Α	Ala	m	2-1	1	i ip					
	/	11- 2					Xe				+ (3						
						S	=	Po			an i	21	1					
						5-	0	51			2							
						on A	;	tio			AZ	-1						1
						e,)	[ŧ	n.		-								
						12	a,d					X				5	F	
						+	22]	-			+						E	au
				7		ſ	11				e		+				5	
						A.	[×	-			ę		e			-	16	
						pe,	4,2			tie			9			01	-	
						X	<			25							3	-
			1			1	5			:						1	16	-
					-	2-	-	-							-			-
						7	0											
	2			-	<u>()</u>				-									
										-					-			
								-										
									the second se	and a second second	-					a second s	-	

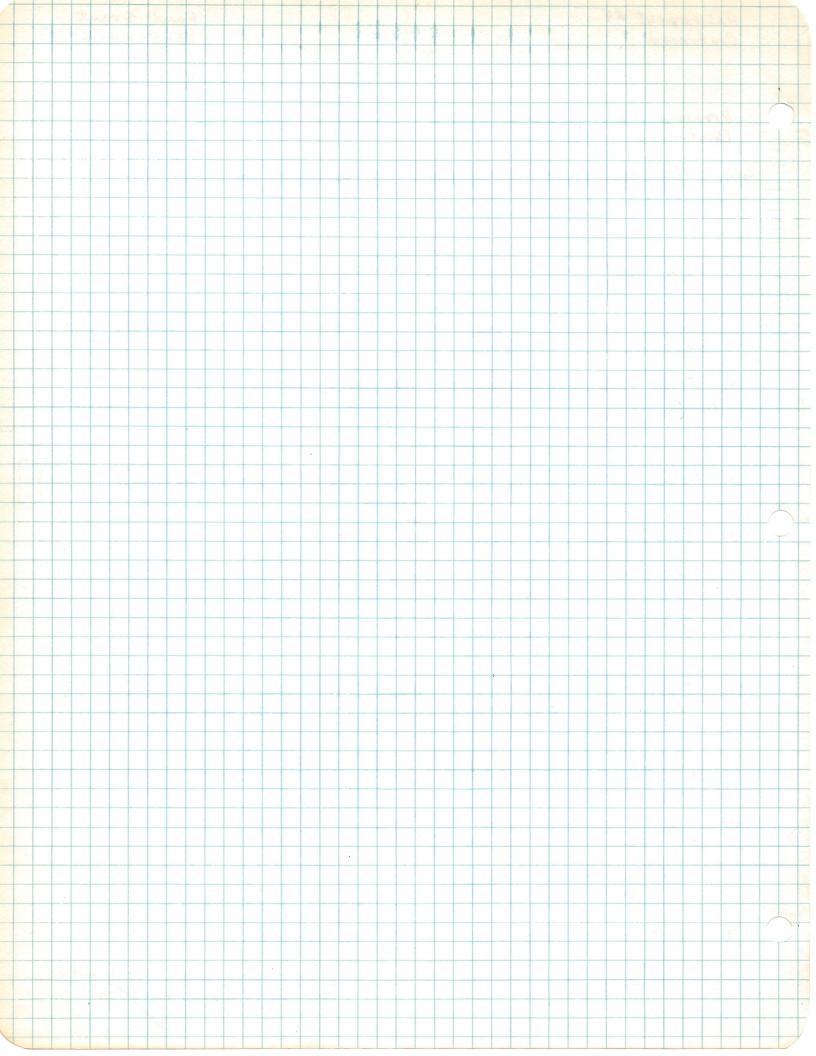
b. (1)		0	di	10		1		1		5			7		7	1				1			r			0					-	7									-	110									+
		+	+	+			1		-	-		C		+			t			+	-		+	+	-		+				+	-	- /																		
1	-	, I	i ħ	A M	2 r	*		-	2	e m	e	2	E	p,	L A	L	, 1	P2].	t	E	A,	P	2	. (4]	-	e e	21-		E	Pri	4e	,1	12] .	+ {	A		Pi	, F	to	1)	5				(
			-		+	4	2	24	(2	5	1	22	. ,	P	1	3	+	. 20	11	1	in		- 1	22		A	41			+	e	2	E	.9	e,	p.	,]	-						5			8	1.18	
			-	+	-		+	-		C	+		-	+	-		+	-		+	-		-	+	_	_	+	10 14		-	+			-	+	_		-	+	-	7					7.					
(z)			d	t	[V			h	-	2	4	1	e m	6	ł	2.	p	A	A		Pi		H	5	A	2 E A	p.	e, Pe	P	Top.	+	- {	P	e E I	,tope	tz ,A	11/2	p.		+	p	C	.1	re,	A	7		he	A	~
				-	0/0	- (2	1	e	AA	-,	A	3	+	5	A.	4 1	PL	, 1	12	3	+	. (1	12	2	p.	2				+	e	5	0	e,	P	Ē	1) El	-		H.		À	20	1	
			5		-	~	C.	5	p.	~	A	3	A		t	A		٤.	pe	A	2]		[Ar	1	1000	34	12-	A	25	Ar) f	7		2	f.	6.	1	-	1	1	1	-		-		1.		42	+
	-	=	-		1	-		N	1	ſ		e	MC		Ş	,	p		-	210	12/2	P	L	3	Ę	5	A.	11	Pa	7	+	E	P	, A	1	2		-													+
		-	_	-	0	5	-		2	1	1.		-		+	5	0		A	1	7	2	5		p	-	KIZ I	Ch and	AX	A	-	2]	the +	AA	1 0	5	e.	Pr	-	,	7		_					-		+
				•	67	PFG		-20	2	L	× 1×1	1 2017	a.			1	したろ		THE DE	5 1013	11	7	(-	1	-	. 1	0		T.S.		7					-	2/21	101.0	4		1		<				-			
					0	_			1	ſ			1	+	-	.,	-			-	+	_	r.	-	-		+	+			+				+	_		-	-	+	_	(, 7				20	0			
	-	=		+	-	í,	-			1 7					n		10	1		-			0				T			1.5	1				14 2	_ 1		4	d'a	1			k.		- (01.	21	- Jo		-	
	ii d	he	ere Le	re ve	n	US Fi	ea	12	+	0	p	e	ra	te	r	\$.		-	le Ti	al	o ke	4	1	the to	ehe		fa	N	+	a	the	a	t	11	th	le	r	Pe	1 x sp	2	.7	n	e to	2	5	n	HE	2		•	
10		zet			13	57	,			d			br	Т							+	-	-	+	T		-		F	F	3	+	_	3.F			1-		7			1			0		4			-	
(3		0	di	10		H		010	lt	<	-	1	Tg	15	2	-		-	И	ne	-	6	2		L	-	20		7	2		8		-		11	15		2,	5,0	1	e		X	2		X	4	- W	1	
(4	1	He	+	-	15	<	You	31	00	i)	1	17	n	P	or	-+	a	n	t	· MA	1	10	2	1910	Re	1	té	1	w	A.	20.	e	-	13	6			A	B	+ 1	B A	20	1	1	5	ar ar	1	1.5	2		
(4)	1		A	B	+	2	A	(B)	+	4		A	1	er I	4	₽B	Y	E a	=		B	+	at)	2	50		14	La F	ho	đ	5	E	he	re	e	-17	K	2	a	n	d	2:	B	s d	22	i	37	4	
		k	e		H	le	c-	20	net	e n	at	2	n		0	A	e	ra	s	0	2	6	VI	oc	ss d	10	2	2	1	te	r.	m	1+	ia Fie	n	-	5	54	ne	0	4	ite	4	000	n	et	a	en s	s	te.	5
			-he 7 a																																																
			H.	nev	c	tu	nto	reo	1.1	of	2		than	e 10		C	1	or ts	d	m	a	t	es	2	d	n	1000	al		ar e	- 0	L C	r	ea	es		0-	H	e	n	ee+	-	-	A	B	+ 2	BA		(3	s	
																- 10											-	-	-		-	-	-						-	_	-	2							a.a	le	
(5)		Su	AC	ee			H	0		Cer	n	2	A	*			da	T	-	-	2	7	enc		{ (TP		eid	A		X	H	2	·H	F X	((P	No	F	ī)	5	-	e	2.00	na	d	P	1	-	
		22	hic	k		×	co	r	re	51	00					0-	n	de	27			H	ie		6	20	n	d	11	420	n	5		5	to	+	Lea	2	6	26	60	U	e		à	s	+	0		~	1
		He	er	n	11	Fi	CI	et	3			+	0 1				0	2	10-	-	10	-16		WW	21	10	2	×I	7		+	e	F	Ann			3		2 10	25	51	Ca	1	4			1				
		li	he	er	e		nia	11/2)	v	>	. +	i.	-	1	e	E	1	a	15	2	+	he	87	4-11-	12	0)	re	n	it	Z		fo	br	re								-		-							


Confishend Properties Confishend Properties S=7-6/ M. 0. 0) We (00 W) ; $\sigma = Q(4)$; $\vec{r} = \frac{1}{2} \phi^{2}(\vec{s} \lor \vec{n})$ or $\vec{h} = \frac{1}{2} M \not e_{BSS} X_{B}$ and $\vec{l}^{2} = \vec{h} \land \vec{l}^{2}$ or $l_{hh} = \ell \land \ell \land \vec{n} \land h_{h} = \frac{1}{2} M \not e_{BSS} X_{B}$ and $\vec{l}^{2} = \vec{h} \land \vec{l}^{2}$ or $l_{hh} = \ell \land \ell \land \vec{n} \land h_{h} = \frac{1}{2} M \not e_{BSS} X_{B}$ where $\ell_{B} \ell_{H} = 0$ unless $\mathcal{A} \mathcal{P}_{H}$ ($\underline{s} \lor \vec{n}$) mplied or \mathcal{Q}_{H}) (2) $H = \sum_{h} \left[\frac{1}{2} \frac{1}{2$	Ass	16Nn	nent	# 1	+						-													P	au	2		Gr	ar	t		1		
$ \begin{aligned} S = 7 - 67 \\ H(a, 0) H = (0, 0, M) ; q = Q(s) ; T = \frac{1}{2} H(\overline{s} \times \overline{s}) or. Au = \frac{1}{2} H(\overline{s}_{s,s}) \times s \\ and \overline{s}^{2} = \overline{s}^{2} \times \overline{s}^{2} or. Lu = 648m Xu pm (summ num plued on 0, m) \\ where C \neq em = 0 vm/erss \#Rmu a \mid I defformed \\ 1 1 \geq 3, 2 \leq 1, 3 \geq 1 \\ -1 1 \leq 2, 2 \leq 1, 1 \leq 3 \end{aligned} $ $ \begin{aligned} (a) H = \sum_{k} \left[\frac{4h}{2m} - \frac{a}{2mc} \left(\frac{4}{2} + k_{k} + h_{k} + h_{k} \right) + \left(\frac{a}{2m} \right)^{k} + e \\ (b) H = \sum_{k} \left[\frac{4h}{2m} - \frac{a}{2mc} \left(\frac{4}{2} + k_{k} + h_{k} + h_{k} \right) + \frac{1}{2m} H(\overline{s} + \overline{s} - \overline{s} + \overline{s}) \\ + \frac{a}{2m} \left[\frac{a}{2m} - \frac{2}{2mc} \left(\frac{4}{2} + k_{k} + h_{k} + h_{k} + \frac{1}{2} + H(\overline{s} + s_{k} - \overline{s} + \overline{s}) \right) \\ + \frac{1}{2m} \left[\frac{a}{2m} - \frac{2}{2mc} \left(\frac{4}{2} + k_{k} + h_{k} + h_{k} + \frac{1}{2} + \frac{1}{2m} \left(\frac{4}{2} + \frac{1}{2} + \frac{1}{2m} \right) \right) \\ + \frac{1}{2m} \left[\frac{4h}{2m} - \frac{2}{2m} - \frac{2}{2mc} \left(\frac{4}{2} + k_{k} + \frac{1}{2} + \frac{1}{2m} - \frac{4}{2m} \right) \\ + \frac{1}{2m} \left[\frac{4h}{2m} - \frac{2}{2m} - \frac{2}{2m} \left(\frac{2}{2m} + \frac{1}{2} + \frac{2}{2m} \right) \right] \\ + \frac{1}{2m} \left[\frac{4h}{2m} - \frac{2}{2m} \left(\frac{2}{2m} + \frac{1}{2} + \frac{2}{2mm} \right) \\ + \frac{1}{2m} \left[\frac{4h}{2m} - \frac{2}{2m} \left(\frac{2}{2m} + \frac{1}{2} + \frac{2}{2mm} \right) \\ + \frac{1}{2m} \left[\frac{4h}{2m} - \frac{2}{2m} \left(\frac{2}{2m} + \frac{1}{2} + \frac{2}{2mm} \right) \\ + \frac{1}{2m} \left[\frac{2}{2m} - \frac{2}{2m} \left(\frac{2}{2m} + \frac{1}{2} + \frac{2}{2mm} \right) \\ + \frac{1}{2m} \left[\frac{2}{2m} + \frac{1}{2m} \left(\frac{2}{2m} + \frac{1}{2m} \right) \\ + \frac{1}{2m} \left[\frac{2}{2m} + \frac{1}{2m} \right] \\ + \frac{1}{2m} \left[\frac{2}{2m} + \frac{2}{2m} \left(\frac{2}{2m} + \frac{1}{2m} \right) \\ + \frac{1}{2m} \left[\frac{2}{2m} + \frac{2}{2m} \right] \\ + \frac{1}{2m} \left[\frac{2}{2m} + \frac{2}{2m} \left(\frac{2}{2m} + \frac{1}{2m} \right) \\ + \frac{1}{2m} \left[\frac{2}{2m} + \frac{1}{2m} \right] \\ + \frac{1}{2$	Co	mfn	nued	1 -	23	100	1	1		2		8	1			2	9	10			2.	3	-					Sec. 1	16	14		2		
$ \begin{array}{c} \mathcal{H} = 0 & \mathcal{H} = (0 \circ \mathcal{H}) ; \ \mathcal{A} = \mathcal{A}(\mathcal{L}) ; \ \mathcal{A} = \frac{1}{2} \mathcal{H} \left(\overline{\mathbf{x}} \times \overline{\mathbf{x}} \right) \text{or} \mathcal{A} \mathbf{x} = \pm \mathcal{H} \mathcal{E}_{\mathbf{x} \mathbf{x}} \times \mathbf{x} \\ \text{and} \overline{\mathcal{L}}^2 = \overline{\mathcal{R}} \times \overline{\mathcal{R}}^2 \text{or} L_{\mathbf{x}} = \mathcal{E} \mathcal{E} \mathcal{R} \mathbf{x} \mathbf$			++	-							_	+							-				+						-	-	-			
and $\vec{z} = \vec{k} \times \vec{p}$ or $L_{k} = \vec{c} dl_{k} \times k p_{m}$ $(\underline{s}_{0} + m p) + dd_{m} dn \underline{s}_{m})$ where $C_{\mu} c_{m} \pm 0$ $v_{\mu} less \mu l_{m} dl_{m} dl_{m} dl_{m} dl_{m} dl_{m}(2) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{4k} h_{k} + h_{k} h_{k} \right) \pm \left(\frac{2}{8} \right)^{m} h_{k}^{m} \right] \pm c p(3) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{4k} h_{k} + h_{k} h_{k} \right) \pm \left(\frac{2}{8} \right)^{m} h_{k}^{m} \right] \pm c p(4) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{2} h_{k} \epsilon_{ksk} p_{k} x_{k} \pm \frac{1}{2} h_{k} \epsilon_{ksk} x_{k} e_{k} \right)(5) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{2} h_{k} \epsilon_{ksk} p_{k} x_{k} \pm \frac{1}{2} h_{k} \epsilon_{ksk} x_{k} e_{k} \right)(6) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{2} h_{k} \epsilon_{ksk} p_{k} x_{k} \pm \frac{1}{2} h_{k} \epsilon_{ksk} x_{k} e_{k} \right)+ \frac{c}{2m} \left[\frac{4k}{2m} - \frac{c}{2} \frac{c}{2mr} h_{k} \epsilon_{ksk} \frac{1}{2} p_{k} x_{k} \pm x_{k} p_{k} \frac{1}{2} \frac{1}{2} \frac{c}{2} \frac{m}{2} h_{k}^{m} \left(\frac{c}{c} a_{k} x_{k} \right)^{m} \right]+ \frac{c}{2m} \left[\frac{4k}{2mr} - \frac{c}{2} \frac{c}{2mr} h_{k} \epsilon_{ksk} \frac{1}{2} p_{k} x_{k} \pm x_{k} p_{k} \frac{1}{2} \frac{1}{2} \frac{m}{2} h_{m}^{m} h_{k}^{m} \left(\frac{c}{c} a_{k} x_{k} \right)^{m} \right]+ \frac{c}{2} p_{k}^{m} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{c}{2} \frac{c}{2} \frac{c}{2} \frac{m}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{m}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} \frac{m}{2} \frac{m}{2} \frac{c}{2} \frac{m}{2} $							1.0			-	-	2	4		-				-	-			+	5	-	1-	6	1	1		-			_
and $\vec{z} = \vec{k} \times \vec{p}$ or $L_{k} = \vec{c} dl_{k} \times k p_{m}$ $(\underline{s}_{0} + m p) + dd_{m} dn \underline{s}_{m})$ where $C_{\mu} c_{m} \pm 0$ $v_{\mu} less \mu l_{m} dl_{m} dl_{m} dl_{m} dl_{m} dl_{m}(2) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{4k} h_{k} + h_{k} h_{k} \right) \pm \left(\frac{2}{8} \right)^{m} h_{k}^{m} \right] \pm c p(3) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{4k} h_{k} + h_{k} h_{k} \right) \pm \left(\frac{2}{8} \right)^{m} h_{k}^{m} \right] \pm c p(4) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{2} h_{k} \epsilon_{ksk} p_{k} x_{k} \pm \frac{1}{2} h_{k} \epsilon_{ksk} x_{k} e_{k} \right)(5) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{2} h_{k} \epsilon_{ksk} p_{k} x_{k} \pm \frac{1}{2} h_{k} \epsilon_{ksk} x_{k} e_{k} \right)(6) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{2} h_{k} \epsilon_{ksk} p_{k} x_{k} \pm \frac{1}{2} h_{k} \epsilon_{ksk} x_{k} e_{k} \right)+ c p(7) H = \sum_{k} \left[\frac{4k}{2mr} - \frac{c}{2} \frac{c}{2mr} h_{k} \epsilon_{ksk} \frac{1}{2} p_{k} x_{k} \pm x_{k} p_{k} \frac{1}{2} \frac{1}{2} \frac{c}{2mr} h_{k}^{2} \left(\frac{1}{2} e_{k} x_{k} x_{k} e_{k} \right) \right]+ c p(4) Now, L_{k} = \frac{2}{c} \sum_{k} \sum_{k} \left[\frac{1}{2mr} h_{k} c_{ksk} \frac{1}{2} p_{k} x_{k} + x_{k} p_{k} \frac{1}{2} \frac{1}{2} \frac{c}{2mr} c_{ksk} \frac{1}{2} \frac{1}{2} \frac{c}{2mr} \frac{1}{2} \frac{c}{2} \frac{c}{2} \frac{c}{2} \frac{m}{m} c_{ksk} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{c}{2} \frac{m}{m} c_{ksk} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{c}{2} \frac{m}{m} c_{ksk} \frac{1}{2} \frac{1}{$												-	17										-											
and $\vec{z} = \vec{k} \times \vec{p}$ or $L_{k} = \vec{c} dl_{k} \times k p_{m}$ $(\underline{s}_{0} + m p) + dd_{m} dn \underline{s}_{m})$ where $C_{\mu} c_{m} \pm 0$ $v_{\mu} less \mu l_{m} dl_{m} dl_{m} dl_{m} dl_{m} dl_{m}(2) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{4k} h_{k} + h_{k} h_{k} \right) \pm \left(\frac{2}{8} \right)^{m} h_{k}^{m} \right] \pm c p(3) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{4k} h_{k} + h_{k} h_{k} \right) \pm \left(\frac{2}{8} \right)^{m} h_{k}^{m} \right] \pm c p(4) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{2} h_{k} \epsilon_{ksk} p_{k} x_{k} \pm \frac{1}{2} h_{k} \epsilon_{ksk} x_{k} e_{k} \right)(5) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{2} h_{k} \epsilon_{ksk} p_{k} x_{k} \pm \frac{1}{2} h_{k} \epsilon_{ksk} x_{k} e_{k} \right)(6) H = \sum_{k} \left[\frac{4k}{2m} - \frac{c}{2mrc} \left(\frac{1}{2} h_{k} \epsilon_{ksk} p_{k} x_{k} \pm \frac{1}{2} h_{k} \epsilon_{ksk} x_{k} e_{k} \right)+ c p(7) H = \sum_{k} \left[\frac{4k}{2mr} - \frac{c}{2} \frac{c}{2mr} h_{k} \epsilon_{ksk} \frac{1}{2} p_{k} x_{k} \pm x_{k} p_{k} \frac{1}{2} \frac{1}{2} \frac{c}{2mr} h_{k}^{2} \left(\frac{1}{2} e_{k} x_{k} x_{k} e_{k} \right) \right]+ c p(4) Now, L_{k} = \frac{2}{c} \sum_{k} \sum_{k} \left[\frac{1}{2mr} h_{k} c_{ksk} \frac{1}{2} p_{k} x_{k} + x_{k} p_{k} \frac{1}{2} \frac{1}{2} \frac{c}{2mr} c_{ksk} \frac{1}{2} \frac{1}{2} \frac{c}{2mr} \frac{1}{2} \frac{c}{2} \frac{c}{2} \frac{c}{2} \frac{m}{m} c_{ksk} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{c}{2} \frac{m}{m} c_{ksk} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{c}{2} \frac{m}{m} c_{ksk} \frac{1}{2} \frac{1}{$,																								ų.,				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14. 0	. (1)	H.	= (00	74)	÷	Q	1	41	(1)	;	-	A	Ξ	1/2	- 9f	(たい	x n)	on	- 1	the	1	12	26	E	23	1	Xg			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		+			-	7 -	;	1	- 17	2	+	+	1			1	10	-	V .			_	1		-		-		. 0		0	-)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			an	a	-			6 ×	1	+	0	2	L	k:	-	EI	e-la	и	Xe	- 1	m		(50	jn	-	120	IP	114	ed.	ov	L X	, m	-1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	M		w	her	e	E	· pl	m	-	:	C		V	nl	255		R	en	e	a	11	a	4	ere	nt	4				1				
(2) $H = \sum_{n=1}^{\infty} \left[\frac{4\pi}{2\pin} - \frac{e}{2\pinc} \left(4\pi R_{n} + R_{n} f_{n} \right) + \left(\frac{e}{2} \right)^{n} H_{n}^{n} \right] + e \varphi$ (3) $H = \sum_{n=1}^{\infty} \left[\frac{4\pi}{2\pin} - \frac{e}{2\pinc} \left(\frac{1}{2} H_{n}^{n} \epsilon_{n,2n} + \frac{1}{2} H_{n}^{n} \epsilon_{n,2n} \epsilon_{n,2n} \epsilon_{n,2n} \epsilon_{n,2n} + \frac{1}{2} H_{n}^{n} \epsilon_{n,2n} \epsilon_{n,2$												1		12	3,	2	31	,	31	2									-	1				
(3) $H = \sum_{k=1}^{n} \sum_{k=1}^{n} \frac{1}{2^{k}n} - \frac{e}{2^{k}ms} \left(\frac{1}{2}\frac{W}{4}\frac{e}{2^{k}sa}p_{k}x_{k} + \frac{1}{2}\frac{W}{4}\frac{e}{4^{k}sa}x_{k}x_{k}p_{k}\right)$ $+ \frac{e}{2^{k}n} + \frac{1}{2^{k}n} + $	-1/U					-			_	_	~	1	-	13	2	3	21	,	21	3	_	_	-	-	_			-	-					
(3) $H = \sum_{k=1}^{n} \sum_{k=1}^{n} \frac{1}{2^{k}n} - \frac{e}{2^{k}ms} \left(\frac{1}{2}\frac{W}{4}\frac{e}{2^{k}sa}p_{k}x_{k} + \frac{1}{2}\frac{W}{4}\frac{e}{4^{k}sa}x_{k}x_{k}p_{k}\right)$ $+ \frac{e}{2^{k}n} + \frac{1}{2^{k}n} + $	V						6			-	-	-	-				-	-	-	_	-		+	-			-	-	-					
(3) $H = \sum_{k=1}^{n} \sum_{k=1}^{n} \frac{1}{2^{k}n} - \frac{e}{2^{k}ms} \left(\frac{1}{2}\frac{W}{4}\frac{e}{2^{k}sa}p_{k}x_{k} + \frac{1}{2}\frac{W}{4}\frac{e}{4^{k}sa}x_{k}x_{k}p_{k}\right)$ $+ \frac{e}{2^{k}n} + \frac{1}{2^{k}n} + $		(2)	+	1 -		7.		12	_		e	- 1	01	A	+	A	2.00	1-	+	(원)	2	HE	7	+ 0	2 4	e	-							
$+ \underbrace{\left(\frac{e}{2}\right)^{n}}_{22m} \cdot \underbrace{\frac{1}{4}}_{m} \frac{m^{2}}{2} \left(\left(e_{xx,a} \times a \right)^{n} \right)^{n} + e^{p}$ $= \underbrace{\sum_{k} \left[\frac{e_{k}}{2m} - \frac{1}{2} \frac{e_{k}}{4m} e_{kx,a} \right]_{k}^{2} \left(e_{kx,a} + x_{k} e_{k} \right)^{2} + \underbrace{\sum_{k}}_{k} \frac{e_{kx,a}}{2} \left(e_{kx,a} \times a \right)^{n} \right]$ $+ e^{p}$ $(4) Now; A_{R} = \underbrace{\sum_{k}}_{k} \underbrace{\sum_{k}}_{k} \frac{e_{kx,k}}{2} + \sum$						k	L	zn	~	1	ZWI	cl	1				14	/	1	zn	a		7							-				
$+ \underbrace{\left(\frac{e}{2}\right)^{n}}_{2m} \cdot \frac{1}{4} \frac{n}{n}^{2} \left(\left(e_{12,0} \times e_{1} \right)^{n} + e^{n} \right)^{n} + e^{n} \left(e_{12,0} \times e_{12,0} \right)^{n} \right)^{n} + e^{n} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{$		(0)		_			r	2			p		1.						_	_							1					-		
$+ \underbrace{\left(\frac{e}{2}\right)^{n}}_{2m} \cdot \frac{1}{4} \frac{n}{n}^{2} \left(\left(e_{12,0} \times e_{1} \right)^{n} + e^{n} \right)^{n} + e^{n} \left(e_{12,0} \times e_{12,0} \right)^{n} \right)^{n} + e^{n} \left(\frac{1}{2} - \frac{1}{2} + \frac{1}{$	1	(3)	s-H +	=	2.	R	-	ZN	~		211	nc	12	- 76	61	3.2	PI	L X S	2 -	+	Z	9 1 E	13.	e x	le -	Pre)	-	-	-				
$= \sum_{k=1}^{2m} \left[\frac{\mu_{k}}{2m} - \frac{\chi}{k} \frac{e}{4\pi\pi} e^{-\frac{\chi}{k}} \sum_{k=1}^{2} p_{k}x_{k} + xe \cdot p_{k} \left\{ + \frac{\chi}{k} \left[\frac{e}{k} \right]_{k}^{2} w^{2} \left(\frac{e}{k} \sec x_{k} \right)_{k}^{2} \right] \right]$ $+ e \cdot e$ $(4) Now: L_{R} = \sum_{k=1}^{2} \sum_{k=1}^{2} e_{k}se \left[x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k} x_{k} p_{k} p_{k$			+++	-			6			+	+	-	-	-			-	-			-	-	-				-	-	-	-			•	-
$= \sum_{k=1}^{2m} \left[\frac{\mu_{k}}{2m} - \frac{\chi}{k} \frac{e}{4\pi\pi} e^{-\frac{\chi}{k}} \sum_{k=1}^{2} p_{k}x_{k} + xe \cdot p_{k} \left\{ + \frac{\chi}{k} \left[\frac{e}{k} \right]_{k}^{2} w^{2} \left(\frac{e}{k} \sec x_{k} \right)_{k}^{2} \right] \right]$ $+ e \cdot e$ $(4) Now: L_{R} = \sum_{k=1}^{2} \sum_{k=1}^{2} e_{k}se \left[x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k}se \left[x_{k} x_{k} x_{k} x_{k} p_{k} \right] \sum_{k=1}^{2} \frac{e^{\pi}}{4\pi\pi} e_{k} x_{k} p_{k} p_{k$			+	(e)	2	. 1.	N	2	En.	30	Xe)2		+	e	q												1.						
$(4) Now: L_{R} = \sum_{n=1}^{n} \sum_{n=1}$				22	n	4)																					
$(4) Now: L_{R} = \sum_{n=1}^{n} \sum_{n=1}$. 1	~	F	p	-		1	0	01			_	5	_	_	-	_		>		- (5	213	- 17	2 /	-		. 1	7		
(4) Now ; $L_{R} = \sum_{n=1}^{n} \sum_{n=1}^{$			-	-	R.	Th	L	2	m		Z	47	nc	E	13	e	2	ph	Xe	+	X	e-p-	k g	+ 2	24	m	N.	(4	12 3	e x	e)	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-	te	9			+			+										-		-										
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					•												1																	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(4)	Now	2	4	r =	=	2	e	2	e	Ens	st	X	5 7	Pt		_		_	_	_	-	_					_			_		
$+ \left[x \neq p_{h}, x_{s} q_{t} \right] \left\{ + \sum_{k} \left(\frac{g_{s}}{g_{s}} \right)^{2} q_{t}^{2} \epsilon_{r \leq t} \left(\frac{g_{s \neq a}}{g_{s \neq a}} \right)^{2} \left[x \neq \frac{g_{s}}{g_{s}}, x_{s} p_{t} \right] + \sum_{s \in e} e_{n \leq t} \left[q_{s}, x_{s} q_{t} \right] \right]$ $(5) \left[p_{h}^{2}, x_{s} q_{t} \right] = \left[q_{h}^{2}, x_{s} \right] q_{t} = \left[p_{h}, x_{s} \right] q_{h} q_{t} + p_{h} \left[p_{h}, x_{s} \right] q_{t} \right]$ $= -2 x \ln p_{h} q_{t} \leq p_{h}, x_{s} q_{t} \right] = \left[p_{h}, x_{s} q_{t} \right] x_{h} + p_{h} \left[x_{h}, x_{s} q_{t} \right] $ $(6) \left[p_{h} x_{h}, x_{s} q_{t} \right] = \left[p_{h}, x_{s} q_{t} \right] x_{h} + p_{h} \left[x_{h}, x_{s} q_{t} \right] $ $(7) \left[x_{h} q_{h}, x_{s} q_{t} \right] = \left[x_{h}, x_{s} q_{t} \right] q_{h} + x_{h} \left[p_{h}, x_{s} q_{t} \right] q_{h} + x_{h} \left[p_{h}, x_{s} q_{t} \right] q_{h} \right]$ $(9) \left[x_{h}^{2}, x_{s} q_{t} \right] = x_{s} \left[x_{h}^{2}, y_{t}^{2}, q_{t} \right] = x_{s} \left[x_{h}^{2}, q_{t}^{2}, q_{t} \right] q_{h} + x_{h} \left[x_{h}, q_{h} \right] x_{h} + x_{h} x_{h} \left[x_{h} q_{h} \right] q_{h} \right] = 2 x \ln x_{h} x_{s} x_{h} \left[g_{h} \right] q_{h} $				-		-		-	2	4	+	F	-	_	_	_	-	-	-	+	-	-	-	-	-			-	-		_	-	-	
$+ \left[x \neq p_{h}, x_{s} p_{t} \right] \left\{ + \sum_{k} \left(\frac{e_{s}}{e_{s}} \right)^{2} p_{k}^{2} e_{r \leq t} \left(\frac{e_{s} e_{s}}{e_{s}} \right)^{2} \left[x \neq x_{s} p_{t} \right] + \sum_{s \in e} e_{n \leq t} \left[\frac{e_{s}}{e_{s}} x_{s} p_{t} \right] \right]$ $(5) \left[p_{h}^{2}, x_{s} p_{t} \right] = \left[p_{h}^{2}, x_{s} \right] p_{t} = \left[p_{h}, x_{s} \right] p_{s} p_{t} + p_{h} \left[p_{h}, x_{s} \right] p_{t} \right]$ $= -2 x \ln p_{h} p_{t} p_{s} p_{$.1.	5 H	10	1=		-		51	5.	5		1	En	5+	F.	2	Y	. p.		-4	'e	H	61	3.1	4	RS+	5	50	le V		Xr	0+	7
$ [5] [p_{n}^{2}, x_{s}, p_{e}] = [p_{n}^{2}, x_{s}] p_{t} = [p_{1}, x_{s}] p_{0} p_{t} + p_{n} [p_{e}, x_{s}] p_{t} $ $ = -2 a \ln p_{n} p_{t} \delta_{p} s $ $ [6] [p_{e} x_{e}, x_{s}, p_{t}] = [p_{n}, x_{s}, p_{t}] x_{e} + p_{n} [x_{e}, x_{s}, p_{t}] $ $ = [p_{1e}, x_{s}] p_{t} x_{e} + p_{n} x_{s} \delta_{p} (x_{e} + p_{e}) [x_{e}, x_{s}, p_{t}] $ $ = [p_{1e}, x_{s}] p_{t} x_{e} + p_{n} x_{s} \delta_{p} (x_{e} + x_{e}) [p_{n}, x_{s}, p_{t}] = -a \ln p_{t} x_{s} \delta_{n} s + a \ln p_{n} x_{s} \delta_{p} t $ $ [7] [x_{e}, p_{b}, x_{s}, p_{t}] = [x_{e}, x_{s}, p_{t}] p_{h} + x_{e} [p_{n}, x_{s}, p_{t}] = a \ln x_{s} p_{n} \delta_{e} t - a \ln x_{e} p_{t} \delta_{e} s $ $ [8] [x_{e}^{2}, x_{s}, p_{t}] = x_{s} [x_{e}^{2}, p_{t}] = x_{s} [x_{e}, p_{e}] x_{e} + x_{s} x_{e} [x_{e}, p_{t}] = 2 a \ln x_{s} x_{s} \delta_{e} t $		//	L",	- R	1				R	5	t		271			L	The p	~ >		-	L	4	mc				230	1	LI	PL n	~,		75	7
$[5] [p_{n}^{2}, x_{s}, p_{e}] = [p_{n}^{2}, x_{s}] p_{t} = [p_{1}, x_{s}] p_{0} p_{t} + p_{n} [p_{e}, x_{s}] p_{t}$ $= -2 a \ln p_{n} p_{t} p_{e} p_{s} s$ $[6] [p_{e} x_{e}, x_{s} p_{t}] = [p_{n}, x_{s}, p_{t}] x_{e} + p_{n} [x_{e}, x_{s}, p_{t}]$ $= [p_{1e}, x_{s}] p_{t} x_{e} + p_{n} x_{s} [x_{e}, p_{t}] = -a \ln p_{t} x_{s} \delta x_{s} + a \ln p_{n} x_{s} \delta et$ $[7] [x_{e}, p_{b}, x_{s}, p_{t}] = [x_{e}, x_{s}, p_{t}] p_{h} + x_{e} [p_{h}, x_{s}, p_{t}] = a \ln x_{s} p_{h} \delta et - a \ln x_{e} p_{t} \delta et$ $[8] [x_{e}^{2}, x_{s}, p_{t}] = x_{s} [x_{e}^{2}, p_{t}] = x_{s} [x_{e}^{2}, p_{e}] x_{e} + x_{s} x_{e} [x_{e}, p_{t}] = 2 a \ln x_{s} x_{s} \delta et$								-				L					,		_	e	_			7		_		4	C			7	1	
$[5] [p_{n}^{2}, x_{s}, p_{e}] = [p_{n}^{2}, x_{s}] p_{t} = [p_{1}, x_{s}] p_{0} p_{t} + p_{n} [p_{e}, x_{s}] p_{t}$ $= -2 a \ln p_{n} p_{t} p_{e} p_{s} s$ $[6] [p_{e} x_{e}, x_{s} p_{t}] = [p_{n}, x_{s}, p_{t}] x_{e} + p_{n} [x_{e}, x_{s}, p_{t}]$ $= [p_{1e}, x_{s}] p_{t} x_{e} + p_{n} x_{s} [x_{e}, p_{t}] = -a \ln p_{t} x_{s} \delta x_{s} + a \ln p_{n} x_{s} \delta et$ $[7] [x_{e}, p_{b}, x_{s}, p_{t}] = [x_{e}, x_{s}, p_{t}] p_{h} + x_{e} [p_{h}, x_{s}, p_{t}] = a \ln x_{s} p_{h} \delta et - a \ln x_{e} p_{t} \delta et$ $[8] [x_{e}^{2}, x_{s}, p_{t}] = x_{s} [x_{e}^{2}, p_{t}] = x_{s} [x_{e}^{2}, p_{e}] x_{e} + x_{s} x_{e} [x_{e}, p_{t}] = 2 a \ln x_{s} x_{s} \delta et$			+	L X-e	fr	., X:	s Pt	-]	5+	Z	(0	2	W2	e	rs	+ (643	e)	λ.) x	e	, X s	ft	1.	+2	s.e	En	st	20	2,3	154	24		
$= -2 \sqrt{h} p * pt \delta_{ps}$ (6) $[p_{k} x_{e}, x_{s} p_{t}] = [p_{k}, x_{s} p_{t}] x_{e} + p_{k} x_{e}, x_{s} p_{t}]$ $= [p_{k}, x_{s}] p_{t} x_{e} + p_{k} x_{s} [x_{e}, p_{t}] = -\lambda h p_{t} x_{e} \delta_{ss} + \lambda h p_{k} x_{s} \delta_{et}$ (7) $[x_{e}, p_{b}, x_{s}, p_{t}] = [x_{e}, x_{s} p_{t}] p_{k} + x_{e} [p_{k}, x_{s} p_{t}]$ $= x_{s} [x_{e}, p_{t}] p_{h} + x_{e} [p_{h}, x_{s}] p_{t} = \lambda h x_{s} p_{h} \delta_{et} - \lambda h x_{e} p_{t} \delta_{ts}$ (8) $[x_{e}^{2}, x_{s} p_{t}] = X_{s} [x_{e}^{2}, p_{t}] = x_{s} [x_{e}^{2}, p_{t}] x_{e} + x_{s} [x_{e}, p_{t}] x_{e} + x_{s} x_{e} [x_{e}, p_{t}] = 2\lambda h x_{s} x_{e} \delta_{et}$								-	5	-	-	4 20				-	_	-				+	-	-			-	-	-	-		-	7	
$= -2 \sqrt{h} p * pt \delta ps$ $(6) \left[p* xe, xs pt \right] = \left[p*, xs pt xa + p* xe, xs pt \right]$ $= \left[p*, xs \right] pt xe + p* xs \left[xa, pt \right] = -xt pt xa \delta as + xt p* xs \delta et$ $(7) \left[xe p*, xs pt \right] = \left[xe, xs pt p* + xe \right] p* xs pt \right]$ $= xs \left[xe, pt \right] p* + xe \left[p*, xs pt \right] = xt xs p* set$ $(8) \left[xe^{2}, xs pt \right] = xs \left[xe^{2}, pt$		(5)	Spi	2	(s-P	×7	3	5	Ph	Y	57	P+				5	P1	Xs	74	PA	P	+	-p.	15	p.	e.	Xo	1	Pt					
(6) $\begin{bmatrix} p_{k} \times e & x_{s} & p_{t} \end{bmatrix} = \begin{bmatrix} p_{k} & x_{s} & p_{t} \\ x_{s} & p_{k} \end{bmatrix} \begin{bmatrix} p_{k} & x_{s} & p_{t} \end{bmatrix} = \begin{bmatrix} p_{k} & x_{s} & p_{t} \end{bmatrix} = -x_{t} & p_{t} \times e & S_{k} & s \\ p_{k} & x_{s} \end{bmatrix} p_{t} \times e & t & p_{k} \times s \\ \begin{bmatrix} p_{k} & x_{s} & p_{t} \end{bmatrix} = \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \times e \begin{bmatrix} p_{k} & x_{s} & p_{t} \end{bmatrix} \\ p_{k} & x_{s} & p_{t} \end{bmatrix} = \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \times e \begin{bmatrix} p_{k} & x_{s} & p_{t} \end{bmatrix} \\ = & x_{s} \begin{bmatrix} x_{e} & p_{b} & p_{k} \end{bmatrix} p_{k} & t \\ x_{e} & p_{b} & p_{k} \end{bmatrix} p_{k} & t \\ \begin{bmatrix} x_{e} & p_{b} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} & p_{t} \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & p_{t} & p_{t} & p_{t} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{s} & x_{e} & p_{t} \\ \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & p_{t} \\ \end{bmatrix} p_{k} & t \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x_{e} & x_{e} & x_{e} & x_{e} & x_{e} \\ \end{bmatrix} \begin{bmatrix} x_{e} & x$		Ĭ.		1	•							10					1 - 3				1		1			-,			1			33		
$= \left[p_{k}, x_{s} \right] p_{t} x_{e} + \left[p_{k}, x_{s} \right] \left[x_{e}, p_{t} \right] = -i\hbar p_{t} x_{s} \delta_{ks} + i\hbar p_{h} x_{s} \delta_{et} \right]$ $= \left[\left[x_{e}, p_{b}, x_{s}, p_{t} \right] = \left[x_{e}, x_{s}, p_{t} \right] p_{h} + x_{e} \left[p_{h}, x_{s}, p_{t} \right] \right]$ $= \left[x_{s}, p_{t} \right] p_{h} + \left[x_{e} \left[p_{h}, x_{s} \right] p_{t} = i\hbar x_{s} p_{h} \delta_{et} - i\hbar x_{e} p_{t} \delta_{hs} \right]$ $= \left[x_{s}, x_{s}, p_{t} \right] p_{h} + \left[x_{e} \left[p_{h}, x_{s} \right] p_{t} = i\hbar x_{s} p_{h} \delta_{et} - i\hbar x_{e} p_{t} \delta_{hs} \right]$ $= \left[x_{s}, x_{s}, p_{t} \right] = \left[x_{s}, x_{s}, p_{t} \right] = \left[x_{s}, x_{s}, p_{t} \right] x_{e} + x_{s} x_{e} x_{e}, p_{t} \right] = 2i\hbar x_{s} x_{s} x_{e} \delta_{et}$			Ŋ	- '	21	Fr	pr	Pt	5	p	5						_	_											-					
$= \left[p_{k}, x_{s} \right] p_{t} x_{e} + \left[p_{k}, x_{s} \right] \left[x_{e}, p_{t} \right] = -i\hbar p_{t} x_{s} \delta_{as} + i\hbar p_{a} x_{s} \delta_{et} \right]$ $= \left[\left[x_{e}, p_{b}, x_{s}, p_{t} \right] = \left[x_{e}, x_{s}, p_{t} \right] p_{h} + x_{e} \left[p_{h}, x_{s}, p_{t} \right] \right]$ $= \left[x_{s}, p_{t} \right] p_{h} + \left[x_{e} \left[p_{h}, x_{s} \right] p_{t} = i\hbar x_{s} p_{h} \delta_{et} - i\hbar x_{e} p_{t} \delta_{hs} \right]$ $= \left[x_{s} \left[x_{e}, p_{t} \right] p_{h} + x_{e} \left[p_{h}, x_{s} \right] p_{t} = i\hbar x_{s} p_{h} \delta_{et} - i\hbar x_{e} p_{t} \delta_{hs} \right]$ $= \left[x_{s} \left[x_{e}^{2}, x_{s}, p_{t} \right] = \left[x_{s} \left[x_{e}^{2}, p_{t} \right] = x_{s} \left[x_{e}, p_{t} \right] x_{e} + x_{s} x_{e} x_{e} p_{t} \right] = 2i\hbar x_{s} x_{s} \lambda_{e} \delta_{et} $		10	T	10.	Ve	V	-		7	To			-	VA	4	-	7.	V		8-	D.	1	-	-					-			-		
(7) $[Xe pb, Xs pt] = [Xe, xs pt] ph + Xe [ph, xs pt]$ $= xs [Xe, pt] ph + Xe [ph, xs] pt = 1 h xs ph Set - 2h Xe pt Sets$ (8) $[Xe^2, xs pt] = xs [Xe^2, pt] = xs [Xe^2, pt] = xs [Xe, pt] = xs [xe, pt] = 2 h xs xe Set$		(6)	L	pre	xe,	XS.	1st			61	k,	Xs	et.	X	T	p	R	2.2	c,)	15-	4	7	-	_				-	-	-				
(7) $[xe pb, xs pt] = [xe, xs pt] ph + xe [ph, ks pt]$ $= xs [xe, pt] ph + xe [ph, xs] pt = 1 h xs ph Set - 1 h Xe pt Sets$ (8) $[xe^2, xs pt] = xs [xe^2, pt] = xs [xe^2, pt] = xs [xe^2, pt] = 21 h xs xe Set$			H	[1	Die,	Xs	Pt	Xe	+	p	1	Ks	X	2,	Pt] =		-1	the	Ot X	1	Sas	+	· i	ħ.	Pp	Xs	5	lt					
$= x_5 [x_e, p_t] p_h + x_e [p_h, x_s] p_t = ih x_s p_h Set - ih x_e p_t Set$ $(8) [x_e^2, x_s, p_t] = x_s [x_e^2, p_t] = x_s [x_e, p_t] x_e + x_s x_e [x_e, p_t] = z_ih x_s x_e Set$													_													1		-	1			14.		
(B) [Xe ² , Xs pt] = Xs [Xe ² , pt] = Xs [Xe, pt] Xe + Xs Xe [Xe, pt] = 2 1 to Xs Xe Set		(7)		Xe.	Pt,	Xs	Pt	[=	2,	Ke,	Xs	Pt.	P	k.	+	X	el	P	1	Xs	Pt	1	-	-									
(B) $[X_{e}^{2}, X_{s}, pt] = X_{s}[X_{e}^{2}, pt] = X_{s}[X_{e}, p_{t}] \times [X_{e}, p_{t}] \times [X_{e}, p_{t}] = Z_{t} T_{t} \times X_{s} \times [S_{e} + S_{t}]$			_	V	5	V	7	m		4	vi	7	-		7	~		_	, .	t.	1	n .	C	12		, 1	V.		-	S,				~
			-	X		K.C. J.	15 J	P	n	T	χ.	e l	81	, X	5	P		-	1	n I	1.5	you	97	E	-	n n	11	P		OR:				
		(8)	Sxe	2 X	sp	+1	H		Xs	5 x	e,	Pt] =		Xs	T	Xe.	Pt	TX	e	+	Xs)	le ') Xe	pt	1	= -	21	ħ	Xs	Xe	Se	t	
(9) [0] Xs Pt = Xs [9] Pt [9]		1-2		ſ			-						-		5	-			-	_						-								
		(9)	- 1 9	, Xs	Pt	(=	-	X	5]	q,	Pt	5	-					-	_		_						-		-			-	-)
						-					-																							

(10)	[н,,	LaJ	H		Z	122	1 -	1th	. E.	rst	P	p	t	-	22	2	2.0	Nit	14	T E MI	€ C	E.	532	En	st	(-	Lt.	×s	1	Xe	Pt	.)	
	- 2	No No									Pn	X.s	+	Xs	P	r)	+	MR	1.7.0	12 +	1 3	zaħ	(<u>e</u>) ² 4 x	12	Ens	t (th.	st) ^z	Xs	s Xe			
(11)	(x							3																					10)	8			
	<i>d</i> . {									-								-		-	-	-			-		-		•	N.			
		Win W				6		-				(1	24 1	Xs	+	Ks	P	~)	t	N'L	N/W	No.	, 21	K. 4	(E) m	- 94-	E	st	(6	-43	t)	Xs	Xt
(12)		1	0			-								Рэ	P	z	-	C	>										15)			-	
(13)		More Z							-	9								0															
		s=1 s=2 s=2	: 2 1	0	{	-		2 t	_						_	_	_	(e -	P+)		2	(1	3	Xı	+	Xiv	f3)				
					(: 3									- ×	1 -	Pt)	,	}	-		2.	X1 4	93		(44) 				
(14)		h t= t=	1:	0	}	2	7	5,	En	3.2	E	15	2	(-	ph	Xs	+	×s	p	r)									-				
(15)		t=	10 :	0	1	r k	11 12	1 :	:0	5	-6	151	2	(p		5	ţ-	Xs	P) :		(1		3 1		X3	PI)	P	2	X3	e.	
		k t = t z t =		7		1.0						232) ² 2	Xs Xs	Xz	. 2	1	:		- ×	13	Xz											
(16)		N. Y	t e	E E	ist	Xs	5	æ,,	Pt]	E .								1															
			= 1 '		2			X2 2 5		1.1	1										q.	Pz	+	X	n o	Pz	e e	5					~-
							11	e	. {	-	Xz	P3	Q		ΗX	3	Pz	4	3	0	4	2 (Хз.	P2	-	Xz	P	з)	Q				

	ASSI	(F-N)	men	at	#	4		-	-												-					P	u	n	G	ra	ut						
	Con															1		8	(4	X	-	-			_						G			23		
															0					1.1			1			P	24	51	Ъ							-	
		_		_		_	_	_																		5		7-	61								
	0	, ,			,	-	+	_	-	-		-	-		1.5	-	30		_			5	_							_	•	13	_		0.5		
	Pro				4		+		+	+							_	-											-		-		_		+		-
	Con	TW	vee	X			+	+	+	+			-	-																							
	a. (17	7)	21	5	H,	Lx	7	=	1	ħ	e 7	6	(2	Xĸ	P3	+	2	X	s f)											- 3				- 3	
							-			42	nc										Ĺ																
		1		2,	+1	e 2	- 11	2	1	-		1		1	-	1		-												-		1			28	-	_
		+	-	CA	4	C) M	14	-	(•	- X.	e X1	c/		+	6	()	3	fz	-	· X ·	2 7	23) 9	0				_			-		_		-		
			-		-	-	+	+	+	-															_	_									+		
		. 5	Η, L	.×]	=	1	(ħ	e2	4	XX	Pa	+	14	2-p	×	_	e	26	20	12	4	- 6	e (R	Py	-	Y	P	÷)	4							
		_					21	nc		4				'			0	-		• 7							~	(
	1.0		5.	1 ,	7	_	_		0	01		1		-	1						/					_		-						(22	-	
-	(18	3)	LH	t, Li	25	-	-	27	m	C	1	2,	Se	1 2	t,	E	53	26	35	+	(-	Pt	xe	+	Xe	P	÷)		_		-				-	-	
		-			-	-	+	-	+	-		-						-	-														_		-		
			-		Z	2	1 2		11	Ter	4	En	30	6	352	ŧ	(1	2 x X	3	+x	5 -	pn) .	+ .	2	2	5	1	* (물)	296	126	st	(en	3+	2 Xc	X+
				_				_	_	_															h	s	t		2	m					_	-	-
		+	Z		3. t	e	63	st	Xs	: [l,	Pt	5						_				_			_	_				-				-	-	
		-		-	-		+	+	+	+	-	<u>ц</u>						_	-	_		_	_			_	-		-		1	-	-			-	_
	(19)	-	51	5		5.	Es	530	6	20		10		1.0	+ x		2+)						_								1		-			
							6																,														
			5	1	1,	2	(2	2	P 1	2	(6	-13	æ E	318	. (-	Ez	32	6	327	£) (P	t x	Le	+	X.	e 1)e)					_		
	++-	-	1	5=	3	:0	+	}																								0			-	-	
	+-+-	-		-	+	+	+	+			1			6																					255	-	
		-			+	-	+	+	l	1	cr v	:		2	-	E	31+	(.	Pt	XZ	+	X2	PZ) =	-	-	(12	χ-	2 .		K2.	Pz)			
									l	15	N	: 0		ę									1				~	1					1 -				
				1		1	_	_	-		1							_	_							_							a. 1		-	-	
	(20	")	N		22	2	Ex:	36 (635	t	(P	XX	3	+ X	3 P	*)		_	-	_		_			_	_	-	_							-	-	-
	+-+-	+		+	F ./	2	,	-	1	3	- (60	21	4.	e .	+	F	4 9 9	. 4	20	,)	1	01	Ve	+	Xe	. 0	4	1				2			-	
	-			t	= 3	2	: 0		10	-																											
									5	1	1	1	VV.		E	232	2 (PI	e X	1+	- X	1 -	Pr		8	-	(-	D, 3	e1 .	+	X1.	PI)	1	2		
		-		_	_	_	+		+	-	2 3		_	3		/		1.		,	1	4		>		_	/	_					1	-	-	-	
				-	+		+	+	-	3 5	2		4	k	- (らん	31	(10	hX	2	+	X2	1/2	.)	5	-	(.	Pz	Xz	+	×.	2 14	e]		+		
				-	+	-	+	+	+	5 -	5	, (,																								
	(2	i)	-	N	1	3	Z	é	33	st	64	30	2	Xs	Kt																						-
×		-																13	-						/			2			2	28	1		-		
				-	t	= /	12	: ', 0	-	2	1 te	S	-)	E	351	(6	九日	51)	Xe	5 X	1	+	E	35	2 (1	En	32))	5	X-2	3		200			-	
		-		-	t	- 3	3;	0	+	+	5=	1		Y	7,5	, (4,	2.0	12	×.	X-	3	10	_	Х	. Y		-		-		1	-		18		-
		-			+	-	+	+	+							-														-							
											s -	-2	3		2	5-	- (En	51)2	2 X.	zx	13	-		-	X2	X					1				2	
	-			-		-										ha													5			7	2		-		
	(22	2)	Y	S	SI	3 6	2 6	<u></u>	t	Xs	L	q,	Pe	1	Ŋ.	e.	1	3	631	t	Xv	29	, Pi		+	63	zt	Xz	. 2	Ch .	Pe	5	5		-		
			-		T										~			_	_								-							-		1	7
				Ī	4		-		1		10	6		12	2					1				1 0	1					-						1	-

					10	2	1		1997	,			~ ~			1			- A - 1												4			10	6						1
	(23)	1.	5	H	L	1	0	13	e	(0	1-	Px	-	X	P.	1)	4	2		+		-	-									2									
				_	-					-		2				2		1		1																					1
	(24)	2	Η,	Le	1]	13	11	+	1	47	MC	-	11 1	e	2/5		t	E	532	E	zst	- (Pe	- X2	+	- x	1	22/					23.						1	-	
		-	-	W	1	W	1	2		1 h	2	F	E	3+	6	251	e (1	AX	5 -	+ X.	s 1	2)+	-	1	D.	5	1	ħ[.	E)"	A/2	62	st	1 Er	est.	22	Xs	Xt	1	-
										5 2								+	-	+	+	+	+		•		-	6		41	m	1.5				1		-			
						6												-	-				-																1		2
	(25)	1	e	25	Se	2 6	-53	26	25	t (P	τX.	e 1	- %	2 1	Pt.	/	5	-	+	+	+	+	-										-	-	-		-	1	-	
			5:	=	1 :		WAY (J. e	473.	e t	zit	(1	7 X.	e +	Xe	Rt)	-	-	-	-	-	-																		
			3	-	6,6	5 1	0		z t	- 7 3.	1, 2 3	2 1	0	1	-6	13	e	P:	3 X4	2 -	t Ka	. 1	3)	=	4		2 X	z	P3												1
	(26)		5.	51	5		1.10	+ 4		+ (0							-		-	+	-	+	_	-		_				,					-	-	-	1	-	
	(20)	1																			+		1											1		3				-	
-			t	= 2	3	10	NV.	A	Sin	6,	63	16	25	, (qu	XS	+	×s	PI	•)	+	+	+	-	+	-											-		-		
										-	5	= ;	3		1 h		Ez:	31	(1	he	Хз	+:	×s	ip.	c)	-	2	-2	Xs	p	2			-							
	-		+	-	-	-	_	_			-	+		\vdash		-	-	+	+	+	+	+	+		+	-								1	4	-			-		
	(27)	DA	11	1.5	N	1	62	st	(the	st)	2 X	s X	+	_	-			-	-	_	_	-									-									
			t	=	11			Ma	2	2 6	62.	51	(6	龙日	31)	2 ×	(3)	×,	+		+		+										1	2		1	-				-
			t	= 2	,3	5 0	0	î		5	¥	Ŧ	2	0	5				13			,	-	1		V	зХ								1				1		
										5	=	1	5 :3		1	h	E e	73	1)2		(3)	-1	+	-	-	X	3 X	(_	2									
	(28)		57	4		0	/		*	X	- 5	. 0		.7	5	P	. 5	7	5	-		V	5	0	0	1	+	6	10	Y	<	10	1	2.	2	2	-	-	-	-	
	(00)																																	8	2	5					
			=	-	e	2	X	3	9	P., 1	P. [5 -	-	XI	5	ę,	Pa	. \	5	+	=	(e	3	Х	14	23	-	Х	34	2,4	9	2	-		-	-	-	+	-	
	4.2	F			-					+		ni		-				1			1	-		0	2/		-	>	7	C						-	>				
	(29)	4	Η,	64	1	1			-	1 h	w	R	1		y.	P	2	-	t R	1	Py	1	¥	e		7	X	5	¥ e	3 2	Χ.	Pz	-	- 2	P	× 1	59	0	-	+	
	(30)									00			01					2					2	_	-	21	1														100
	(00)	Noa																																							
		4	4	Px	ę	U		1	22	26	×	4		=	-	5	X	2	-	-	ę		;	_	Z		0x	11.	1	the	-	2	XZ	9	/	-	-	-		+	
										200																															
		The																													to		Fia	2	te	200		1.00	10	100	
		m	Č	a	h		de	ese	2 1		15												1		1 4					00	10	-						Jan	7-31	nes	
	(31)	F	H	Lx	7	H			<i>it</i>	e e e	74	(5	X	02		. 7	h	20	-	e	R		24	7							4		-	- 195	-	-	-	1		+
																											2														1
			H	1	5	1	6		-	st z	n	R	-3	21	16	22	-	Z	P	10	+	e	200	X	2	x	5							•		-	-	-	-	-	
					2		_	. (1	_			-	-	-									-	-								-		48	5	-		1	
			+	-	-	-	-		9	1	10				1	1		+		-	-						1				(2	2	311							+
V																																1								L	1


Ass 16N men Continued				Paul Grant DEAP-AP-16 P 2516 5-7-61
	2: Check	e on part (a)		
a lu	vays van	nisk:		= Smg Six - Sng Sur st and last terms
			Esta (Pt Xe + Xe	
,	p J L		$(p_{\pm} x_{\pm} + x_{\pm} p_{\pm}) +$	20% ZZ LASTETAS EURS XS XE S
	= P= Xn +	Xn P3 - Sp3	Z (pexe + xe P	P2)
	~		$\frac{hs}{h} \left(\frac{p_n}{x_3} + \frac{x_s}{x_5} + \frac{p_n}{x_5} \right)$	
		Enst Egen E LEAST (833 St	t - Sat Sat) X5 Xt	
		Enst Xo Xt	- 2 2 53	3t Enst XsXt X1 X3 + Enz3 X2 X8 g
		2 X1X3 + 6 11		
				$(p_{1} \times s + \times s \cdot p_{1}) + \frac{2e^{\frac{1}{6}}}{c} (\delta_{1} \times \lambda \times s + \delta_{1} \times \lambda \times \lambda s)^{2}$
			$z p_{X} - e \frac{q_{X}}{c} y z$ - $z p_{Z} + e \frac{q_{X}}{c} x z$	

	As	5121	UM	en	it	Ħ	4																					Pa	u	2	G	ra	ut	5				
		ntr																				-		1		1	53	De	EA	P-	A	P-		A COLUMN A	3	3		
			-		_	-	_	-	_	_	_	_			-	1							-								6					-	-	
			-		_	-	-	-	-	-	+	2	2	-		-	-	1	-		1		-		1		-	5-	7.	-6	1		2	11	-	-		
	Pro	bh	en	- 10	4				-	+						-							-					-		-								
		vtin												1																								
																								-														
_	a. (32)	S	nc	e		14	6	=		上五	_	5H	, 1	k	3	+	-	9	LA		;		90	LE		-	0	,									
			F		-	_								-		-	-	-		_	h							_			. /		4		,	-	-	
				L	2	-	7	2	2 1	r, 6	- 8	7	-	= 0	1		-	a	na		// 0	en	ice			15	a		C	m:	S To	an	/	0	4		-	
			YI	he	-	m	ote	n																							-	/						
		\ \																																				
	(1	83)	Th	le	C	la	551	Ca	1	e	90	at	FIO	n	4	»+	_	La	rn	100	2	1	pr	ec	eş	\$ 10	n		15	\$						-	-	
				d	1	>	-	7	-		-	Þ.	1	7		-		E	2	ī	2	0	24	-	И			e		1-	1	27	1.	a	-	-	-	
				S	L		-	1			Ju	6 /		r		-	-	zn	C	-	×		T		-		2	m	C	Q		T	1^	of				
				-	->							->										C																
				di	E	H		-	R	C	1	4	x (R	X	P)	=	-Z	enc	-	3	(7	f).	声)	r	-	- (H.	n)-1	5	-			_		
				-	_		-+	-		_	-	_	_					-			_	C		-	×		_	-							-	-	-	_
	(34)		di				- 6	27	1	5		06	- 7	1		7	7.6	.2	1			-	-	_			-	-						-		-	_
				di	÷	-		2	m	C	2		- 2	10		1.0	~	T	2	0																		
											ī,	_	-	ī.	í				2					07	C							2						
		_		12× At		6	· ~ *	- ET	m	C	3	>	< >	PZ		-	7	P	e .4	r.	E	-	e	nc.	3	Z	P	×	-	χ-	Pa	5			_	-	-	_
					-		+	-	111		7.4	-	64 J.				_	-	-	2							-	-	_			-	_			-	-	
			0	12)	3	-		e	2/		5	U	0	2	_		2	0.)	IJ		e	N.		S	7-1	2.	_	4	Pz	3						
			-	dt	-	-		2	e?	ic		2	2	T	- dia				0	5			2	N.	2	2	~	2		4	1 -)						
										20										0								_										
_			2	11: dt	2	5	-	-	e 9. 2 n	16	. }		7	P	8	-		NY.	PR	5	.0	R.	0		_	_	_		_						2	-	-	_
				ac		-	-	-	cn	14			_				-		_	-			-		-	-			-					_				
	(3	35)	G	va	n i	ton	n	ZA	ned	ha	in	10	al	14		wa			ha	Ie.	3										11		-					
	Ì													v	*														2					1				
	_	-		de	-× +	N	_	1	5	H	, 4	~]	-	-	e	K	3	7	P	×	-	Χ.	PZ	+	e	e of	. 7	4	6				1.9			-	-	
_		. 1		a	2	-	+	n	`	+	`	-	_	6	11	6	C								-	_	-	-	2	_	-	_		_	_	-	-	
				d	Ly			٢	5	H			7	-	(en	f	5	7	D		_	4	Pz		-	en	4	Z	2			_		-			
				d	t	-		ノた	- 2	-	,	9.	7		2	m	C	2		(4		9	10			C		-	7								
		_	1	1				_	_	-	-						. /			,					_	_	,	_				1	2					
			he			15				50	n	re	_	a	5	Y	he	2	C	la	55	10	al		m	01	-10	15	_	fo	57		lu	iea	9-9-9	-	-	
		7	ter	w	75	-	n		9	∀.	+	-	-												-	-	-	-	-						1	-	-	-
						-	-	-	-	-				-									-	~	-													
	b. (i)	N	00	0	•.	١	2	1		6	12	+	- 1	24	+	- 1	NN																				
					0		5								v						- 7		7		, =	.7					-	4.	2		19			
			0	mo	x	-	LH	, 2	2		=			4,1	- ×	7	+)	H	, 4	3	, -	- L	Н,	6	-7	_										-	
	(2)	<	in	00		5	1	, 4	1	7	-		6	10		1						-			-	-				1							-
			5	CM.			4	-7) 4					_																5	1							
		1			1	H	, L'	2]	0	2	1	H,	Lx	12	-×	+	Lx	LI	+, 4	-×	5	+		•	•	•				12	1							
					_																				-	-					-	-			-		-	
																			-																	_	/	

1	0	(3)		0	1	1 (S) - 1		5	11	1	7		-		-																	1		1			~							+
-						1.	-	1	15	1		1	-		r	11	1	7			ς,		,	1	1	1	1			,	1			14										
			1	, 6	2	-		H	5-6	*	L	×	+ 1	- *	-	Π	, 60	× 7	1		1+	5,4	-3	71	13	+	L	3) A	F 2 L	-9-													
	-	(4)		[Η,	Lx	31	X	V	-	it.	en	of 1c	-	5.	× -	07	-	7	P	×	-	e	14	R	1 20		3	J.	Pz	-		2 4	Y	25	1	200	1	40	17			+	-
				,	=	1	ch	e	21	<	2		2-2		- D-	-			2	2	0			7	0	-	2.		-	2 0	L IX	2 0					8			2	-			
	X										<u> </u>	1.	1		- 1						-			£.	X	27	1	+	2	-4	×. <	- P	4			1				-				
								00	-	(23		PE		-	£	2	7-	1-4		5	-			•				-	+	-	-		-	+		4	-						-
		(5)		1	~ {	Н	2	7	V		1	ħ	el	26	5	2	X X	22	X	p:		_	7	-p		- 			5.	na	1 Nu	by	1	7	2.10	2	7 8		2				F	+
				~														1.			1			4.	1	7.5		-	9	1.4	-	(FA		-	. Y	50			7				+	
							-		-	+-			+	+	+	_	-	-	+	╀	+	-								-						+							-	+
		(6)		2	H,	23	30	3	1	-	-	2	ne	16 C	5	2	2-	p7	-	N	P	3	+	e	C C	2	×	3 3		21	Dr.	-	X	P	8	5							-	
			_	1			=		1 15	el	NF_	5	4	Pa	1	Px		- 1	P2	×			_	2	p	~	p		-	20	27	X	Pla				-		-				-	
	-		-					-				-	No No				\mathbf{x}_{i}					_		-	1 0		1				4	1					-			1				
	((7)		4	22	A	4,2	37														P		20	2-1	2	,	- ;	2.4	1 m	27	2.9	+	XT	24	2	Pu					2	-	-
		-						-	(u	2 7	6	2	- M Z	C p	(V	ZX	4	-	×	Pi	174	×	2			-			1		-	U			1	2								
	. ((8)	_		[H	1, 1	27	1)					of nc		~								- 1		12) -	- (- ;	Xt	12	z p	5 7		2 1	2	x-p	1)						-
	-				,															T																2	1			1	_			
			-			-		P				1	2 ¹		T	+	- (2	PX	2	P	3	-	2	Py px	N N	PX)	+	(3 p	3)	P	8	-	X	PE	Se re	P				-	+
				+ (5	Ri					12		4													1								-	2 21	PX	Pazz	BAX				+
		•	-	-	e	0%		(ZY	St	Pz		+ '	y -	P2	TA Ja	2 B M) .	+ (-	2 JAS	Py z	14 14	J.		200	20 20	The N	P	4)	+	(2)	X N	27	x	t	Z P	PX	22	x nx			-	+
	-			+	-(-	2)	< X X X	Pz	-	- ×	1	E	2 X)]	S																											+
		(9)														20	2/2		-	5	2.		10.0	2		5	~	5	2	. ?		5		2 10	2		S	21	, × 1	2-2	7			+
	((7)		1.		LH	, L'	2	-			Ť	e t	N	C N	r	15		1	5	Z		24	2				-	-	-	+	2×	5,2	-px	5		2	ZX	1	2	1		-	-
		(10)		5	m	ce			d	4	22		H		んれ	- {	4	θ, ι	2]		0	in	d		9 3	- 1	2	N	0	;									14	-		K	
						2	2					-	+	t					2	11		-		/						+						-	26	2		1	1		F	
						20	re		n	e	51.	ec	ns	d	,	10		sf		th	e	-	me	T	in	-	13			Te	e r	m	5	L	n		R		N	/		1		
					-	•							-			1		*										-											V	3				

	As	sienmen	t #4	+									7				Pa	u2	B	ra	ut			
	and the second se	rtinued															DE	AP	- A	P -				
2	-							-		_	-						PZ							
							++		-	-	+				-		5-	7-	- 61	/	+	×		
\frown	Pr	oblem	14					-			1		-		-					-	-			
		ntinve																						
		1			1			_		_	-		1					-			_	×		
	C. (1)	The	app	rogrid	ate	coef	fic	ien	1	15	0	F	H	(G	for	n	1.	-		-	+			
				<1 H	(0 0)					+			-		-			-		+	+			
					AE																			
	(2)	Note	that	- <	(1) H]	5>	=	< J	L I H	(0)]	2)	+	- <-	4 H	113	>		+		-	-			
							_	<	140	13 14	5							-			-			
		smee	<	1.1	1>	rea						ites	5	of	¥	he	e	m	per	tur	be	l		
		syster		,	×															•				
						1		1				21	_		_		_						-	
	(3)	From	th	2 5	tate :	ment	0.	F	The		940	ble	m	1			-				-			
			LHU	1-2	~	<	18	H, L ^e	11	>														
				E			4	= (ALZ)															
	()			C	- 1 1 -	_		(P)	201	2 C			_	•	-		-	_		-	-			1
	(4)	Now :	<	LH, I	212	-	-1 1	(き)	H	- 1	Ez	3,31	ez.	- Sp	32,	742	+ 2	хz,	2.px	3	72 2X	, X-P.	24	
\frown								2.0	2								-			-				-
	(5)	EH, LZ	1 2	may	be	bett	er	0	rit	ter	4													
													-	7	_					-		_		
		[H, L2]	=	-1	Zm	"H		27	1. L	xç	+	ZZX	520	51	-		+			-			-	
					C PPC		L							-			-			-				
	7	<) < H,	1317) = 1	た (星) これ	2 0/2	[{	74	Lx	2 +	5	2 x ,	242	7										
					2 71	A	LL	0)		2	(- 3	7					_	-		-	-	
	(6)	7.1					0				tur	6.		1.	<i>a s</i>	t			Xe	2	. 1	2		
	(0)	Takin SL ² n	y the	>	DE (A = 0	T A	7	0)	-	n	net.		KR n		th	12	X	2		a	0		
)	order DE (1				-	tr2	,											
			1																	-		_		
		< 10	1H, L2	512	~	ħ (-	E)	H	aot	h		-	n	(2)	12 A	And in case of the local division of the loc	0			-		-		
								-		-			-							+				
	(7)	<2 1	Herla	> .	~	tr2	(8) R	2 00	2	1		26	2 ao	3									
-			AE		_	m	ħ2.	et					W	1 cr								-	-	
		11	1 H (1)	1)			a.3						-						+	+		-	-	
		-	AE	4-			C2																	
-												2												
	(8)	mcz	R	10-6	eng	3 0	203	~	10	-25	cna	3	.,	K	2 2	10	Ð					_	-	
		,	1.1	H (I)] .			-11		-12	-				~~~~	~	0	202)	and	In	Lu-	10	-	
	_						0	->	10	>		Sive	2	reis	8	av	2	Pur	ict	on		ind		
																	Ì	1						
											-					1		-		_				
		-mc	<-1	H ()) 4			10		10 2				ν 25 7	ve	ry	57	nali	2	con	or.	out.	ion		
											-				-									

4						· 61 +1		1	wi	+	# 4	1			1		1																	el				1.7			18		
		1		Co	n	TI	nu	eo				-																				P	Z	AH 51 7	Ь			16					
																																							1				
			15.		(1)			ĩ		-	-	1	-	5	(.	ñ	×	To)	0	11		~				8					-		-				. 3	1				
				c - 1		_		,		-	-	+	+		+	+		-	-				c								11.04	7			2			1		12			
		1			(z)		F	r	m		2	ec	to	re		-	2	0	=	-	20	nen	3	φ		7 4		-	4	~	φr	3	-		me		A	Ψ	F 4	P			
-	1			_		P		1.1	en	-	5	Ψ	*	īp	4	-	Y	17	*	ψ	*	Z	1	412	2	A	4	P*	Ŷ					-									
				((3)			R	×	ATO	=	-	-	e	~	Ş	ψ*	1	ถิ่	x y	5	ψ	-	4	TR	×	P	Ψ	02		-	e	NIC	r	×	A		•	φ				
							M		ezn	-	5	4	> *	Ĭ	*	ψ	-	- 1	Y	L	4	4 ×	25	-		e ² nc	j	2	A	4	6 4	¥											
				((4)		No	w	2	4	ta	k	me	e	C	on	ne	on	ien	nt	is				2	× -	-	Z	1	N	6	n l	m	X	e-	Pm	~						
									XŦ								10												2	~								8			100		
							ŀ	łm	1		12	orfe		5	2 6	-n	13.	5	Xs	5							- 1																
+				_				1.		17	×	À)	k	B		12	9	ł	VV.	1	NAN	1.1	N.	é	r l	mi	ł	201-1	55	X	e	X=											
•	-	_	-	((5)				1	-	-	-	C	-	3	7 4	7	ſ	E	h.l	w	. (4	* X.	e P	ne (4	d 9'	-		5 h	em	(4	Xe	p.	m	4*	d	P			
	_							-	-	-	-	-	+	+	+	+	+	L	<u>\$</u>	-		-	-	-		-	-	-	-		2	m		2							1		
									ew	G	• •	2	H	VV	MIS	61	er		6-11	18	s .	×	(e)	Ks	4	* 4	- 0	d po		-		-				-							
	_					_		-	_				e			1		7				ſ	5	ſ								1					.1.76			2			
				-	(6)	_		14	k	10	-	4.	2010	C	6	2	2	~	6.	h Q	m		5) (Xe	Pn	4	d	~	-	}	¥ 3	(2	Pr	и	Ψı	d	P	5			
									-	e	off		25	-	En	13	8	5	ψ	((Xe	x.	3	t e	dn	-															3		
				((7)	_	C	m	51	de	27	-	(4	X	2 1	Pm	. (+*	- ,	11				l	1	2	n															
-		_						or	-		ħ	(μ_	0	-	(x	2	ψ.	+)	0	7-	1	11	+	42	(e (4]	-	1st	-	ſx	e	40	. t	4		er	6				
+						1			1			1					1															/		À.				~					
1	Ċ	1	N						-		d	u:		000	4 Km	d	7	+			d	5 -		Xe	- (Xe	φ*) 0	27		-				-								
-		-							-		(0+	V			L	>	1									th							+		0	C.					
											-		Т	~	4	var	4		a	1)		a	b==	ne				0	CF		P	la	1 6		n			1			
Y																1				-																						-	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	$\overline{\mathcal{H}}_{i} = \frac{e}{2mc} {\underset{=}{\overset{=}{\overset{=}{\overset{=}{\overset{=}{\overset{=}{\overset{=}{$	(8) :. $\mu_{k} = \frac{e}{zmc} \sum_{x} \sum_{m} \epsilon_{k} e_{m} \left[\int \psi^{*} x_{3} - \psi^{*} x_{3} \right]$ (9) $U_{s}m_{g} (xyz) \rightarrow (1z3)$
E = E = E = E = E = E = E = E = E = E =	M=1,310 m=2: Z Z E122 E235 X X X 3	II. = = = = = = = = = =	
E = 2, 3; 0 $m = 2, 3; 0$ $m = 1; E = 2 + 20; K = 35$ $m = 1; E = 2 + 20; K = 35$ $m = 1; E = 2 + 20; K = 2$	$m = 1, 3 : 0$ $m = 2 : \qquad \qquad$	W. = E E E E E I lm [[4 * Xe pm 4 dr	
$M = 2, 3; 0$ $M = 1;$ $M = \frac{1}{2};$ $M = \frac{1}{2}$	$m = 1, 3 : 0$ $m = 2 : \qquad \qquad$	E E E tilm [] 4 * Xe pm 4 dr	
$M_{3} = \frac{e}{2mc} \left\{ L_{3} + \frac{e^{2K}}{2c} + \frac{2}{2} \right\}$	1,3:0 = 2: Z Z E E122 E235 X X X S	E E E tilm [[4 * Xe pm 4 dr	
$E = \frac{e}{2me} \left\{ \frac{1}{2m} + \frac{e^{2k}}{2} + \frac{2}{2} \right\}$	3:0 2: Z Z E EIRZ EZ3S X EXS	E E E, em [[4 * Xe pm 4 dr	
$\frac{e_{2}e_{1}}{2me} \left\{ \begin{array}{c} 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\$	O Z Z EIRZ EZZS XRXS	E. E. E. lm [JU * Xe pm 4 dr	
$\frac{2 \operatorname{lm} \operatorname{Em} \operatorname{ss} \operatorname{X2 \times s}}{\operatorname{E} \operatorname{E} \operatorname{E} \operatorname{E} \operatorname{E} \operatorname{E} \operatorname{E} $	Z Z EIRZEZZS X XXXX	Etilm [[4# Xe pm 4 dr	
m Em 25 $X_2 X_5$ $Z_1 Z_2 E_2 E_1 E_1 B_5 X_2 X_5$ $e_2 E_1 E_1 E_1 B_5 X_2 X_5$ $e_2 E_1 E_2 E_2 E_2 E_2 E_2$	E E EIRZEZZS XRXS	Elm [[4 * Xe pm 4 dr	
$E_{1} = E_{2} + E_{2$	E EIRZEZZS XEXS	ilm [Ju# Xe pm 4 dr	
$\frac{2}{2} \frac{1}{2} \frac{1}$	EILZEZZS X. X.		Exem JUT X3 -
$\frac{x_2 \times s}{\xi_2 \xi_1 \xi_{13} s \times \xi_{2} \times s}$	122 EZ3S XEXS		a Exem [f 4 * x +
$\frac{1}{2} \frac{1}{2} \frac{1}$	Ezzs XeXs		Exem [] W * x +
X 5 1 & 1 & 5 X & X 5 2 0 X 2 X 5 2 0 X	235 X.e X.s		em [f y * xs -
135 X 4 X 5	H		- ex*44
5 X 4 X 5	· · ·		∫ ψ ⁺ Ψ
XaXa	<u>ц</u> н	-	P " x x - 4
Xs		-	۲ LX
			2
			p.
			m
	X3		40
	. X.		17
3			
(2		_	elv
			04 0
	4 2		
			23
		-	Em
		+	35
		+	5
		10-	2
	7	. 93	* X *
	0	-	Xs
		×	4
		(3)	dr
		1/2	, , ,
		$= - \frac{1}{X_3 X_1}$	$E_{1} e_{m} \times e_{pns} = Z_{1} = \chi_{2} e_{3} - \chi_{3} e_{2}$

 \bigcirc P251-6 Homework $O < \vec{p} | \mathbf{x} | \vec{p}'' \rangle = \int \langle \vec{p}' | \vec{\lambda}' \rangle d\vec{r}' \langle \vec{\lambda}' | \mathbf{x} | \vec{\lambda}'' \rangle dr'' \langle \vec{\lambda}'' | \vec{p}'' \rangle$ $= \frac{1}{\mu^{3}} \int d\vec{r}' d\vec{r}'' \, S(\vec{r}' - \vec{r}'') \, \chi' \, e^{-\lambda \vec{p}' \cdot \vec{r}' / k} \, e^{\lambda \vec{p}'' \cdot \vec{r}'' / k}$ $= \frac{1}{h^{3}} \int d\vec{r}' x' e^{-x} (\vec{p}' - \vec{p}'') \cdot \vec{r}' / \hbar$ $= -\frac{\hbar}{\lambda} \frac{\partial}{\partial p_{\lambda}} \left\{ \frac{1}{h^{3}} \int d\vec{r}' e^{-\lambda} (\vec{p}' - \vec{p}'') \cdot \vec{r}' / \hbar \right\}$ - The a S (P'- P") = = Z (21/F/2")< "1" (2') $= \sum_{2'n''} \langle n' | F | 2'' \rangle S_{2'2''} = \sum_{2'} \langle n' | F | n' \rangle$ (b) Let F be one of a complete set of mutually commuting observables F, X. Then from part (a): $\frac{\mathcal{Z}}{\mathcal{Z}}\left(\frac{q}{|F|q}\right) = \frac{\mathcal{Z}}{\mathcal{Z}}\left(\frac{F}{q}\right) = \frac{\mathcal{Z}}{\mathcal{Z}}\left(\frac$ = Z F'g(F') where g(F') = E < F'a' | F'a' > = Z 1 is The number of states for which the sigenvalue of F is F'; that is, The degeneracy of F'.

. .

3 F 3 + 3 F = 0 0 = < \$' | F \$ + 3 F | 3" > = < \$' | F | 8" > (3" + 2") Auce (3132 = 31 (31 ; 313"> = 31 13">. Hence (2'1F12") = 0 unless 5" = - 3" (15d), 12 at) are complete sets of states, related by a unitary transformation, (5 arl 7 at). They are not necessarily orthonormal. note that , k can take in any value, we are given two sets of in states I gan , I are connected by The mam unitary transformation (5ª +/ 2ª *) (1, h = 1, 2, ..., m). fince this is unitary: Z < 2 a / 1 = a =) < q a = / 2 a 2) = } Shr h, r = 1, 2, ..., in 0 otherwise finilarly, the second part of the hypotheres implies : n Z (2) 62 / 5 b3) (2 b3 / 2 b3) = { Ses 2,3 = 1,2, ..., n pri (2) 62 / 5 b3 / 2 b3) = { O otherwise The theorem halde for any operator F, not necessarily Hermitean, and any value of m and n. The completeness relation is : E (2an) (2an) = 1; it in clear that 2: 12 an X 2 and is not the unit operator as the m states are not complete.

(2)

, ,

.

(4) (Then: f'' (0) = - 2m for V(1) 1' dr' is purely real, as in for any 0. (a) $1 \int \frac{m^2}{(0)} = \frac{m^2}{4\pi^2 h^4} \int \int dt' dt'' V(n') V(n'') e^{i \hbar (n_0 - n)} \cdot (n'' - n'')$ $\sigma = \int |f''(\theta)|^2 d\alpha = \frac{m^2}{4\pi \epsilon t^4} \int \int d\alpha dt' dt'' v(\alpha') v(\alpha'')$ · e the no. (1'-1") - the n. (1'-1") d a = d (cora) dB; dr' = r dr' d (cora') dB'; take d=0 in the direction of not - i' Let $\vec{n}' \equiv p + \vec{n}''$; $dt' = d\vec{p}' = p^2 dp d(corr) d\eta$; take V=0 in direction of no. = 4m² Satur V(n') So V(n') sun² ho / n'' - n''' de' $= \frac{m^{2}}{\pi \hbar^{2}} \int \int d\tau' d\tau'' \, v(n') \, v(n'') \, \frac{m^{2}}{\hbar^{2}} \frac{1}{n''} \frac{1}{n''}$ using 4 /2 dB' / d (cora') = 1 . (b) u⁽²⁾ ~ m² e^{2kon} ff dt' dt" V(a') V(n") e the lat'- and $\frac{1}{n^{2}} - \frac{3}{n^{4}}$ · p - 1 the (2 . 1' - 20 . 7") $\begin{array}{c} \cdot \ e & 1 \\ \cdot \ e & 1 \\ f^{(2)}(0) - \frac{m^2}{4\pi^2 h^4} \int \int dt' dt'' V(n) V(n') \underbrace{e^{-heln' - n''l}}_{\pi\pi''} e^{-tho ho \circ (\pi' - n'')} \\ \cdot \ \frac{m^2}{\pi\pi''} \int d\tau'' V(n'') \int_{\pi''}^{\infty} V(lp' + n''') \underbrace{e^{-thop} am hop}_{hop} \\ \cdot \ \frac{m^2}{4\pi^2 h^4} \int \int d\tau'' d\tau''' V(n') V(n'') \underbrace{e^{-holn'' - n'''l}}_{\pi\pi'' - n'''} \frac{hop}{ho / n' - n'''l} \\ \end{array}$ $T = \frac{4\pi}{n_0} I_m \left\{ s^{(i)}(0) \right\} = \frac{7m^2}{\pi t^4} \int \int d\tau' d\tau'' V(n') V(n'') \frac{sim^2 h_0 |\vec{n}' - \vec{n}''|}{h_0^2 |\vec{n}' - \vec{n}''|^2}$

.

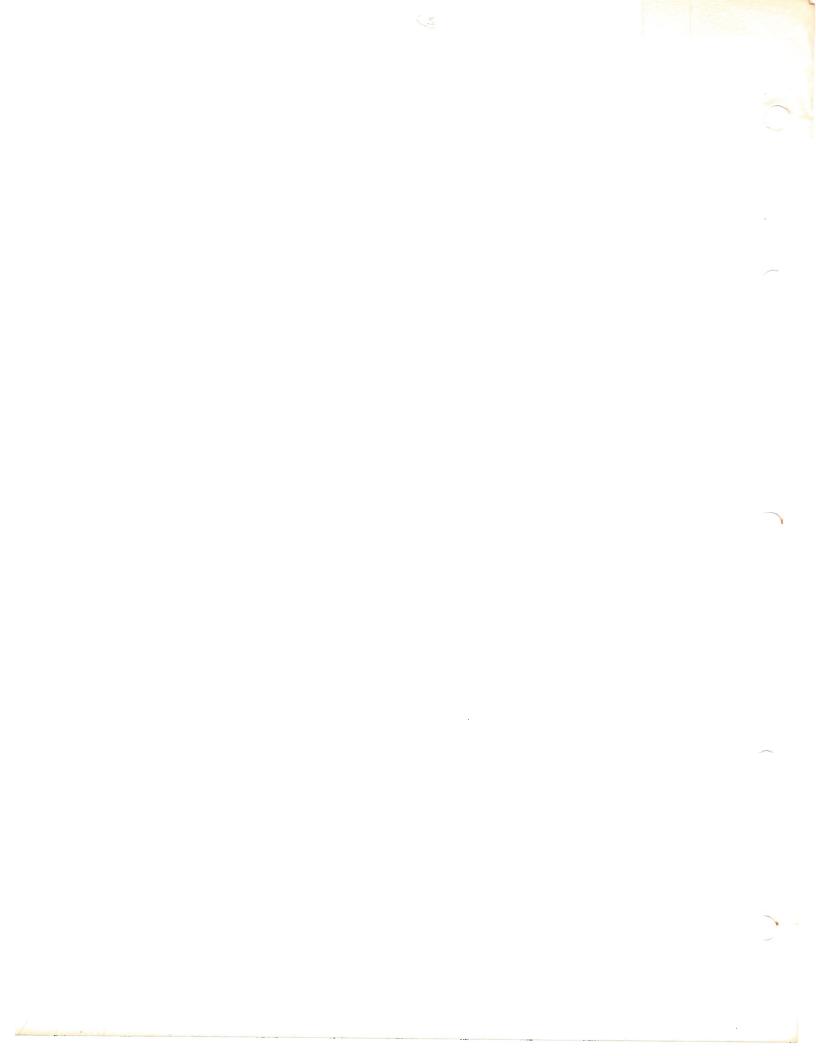
.

i and i i i i i

.

5 (a) fince \$ 10 < 11, only l = 0 need be considered. I = 4TT sun 2 So. Let Ro(n) = Vo(n) Then - the vo" + Vo Vo = E Vo (n(n)) - #2 Vo" = EVO (17) Rol $\Lambda \subset \Lambda_0: \quad \mathcal{V}_0(\Lambda) = A \quad \text{and} \quad \Lambda + B \cos \lambda' \Lambda \quad \text{where} \quad \begin{array}{l} {L'}^2 = & \frac{2 \, \mathcal{U}_1 \left(E - \mathcal{V}_0 \right)}{\hbar^2} \\ & \mu^2 = & \frac{2 \, \mathcal{U}_2 \left(E - \mathcal{V}_0 \right)}{\hbar^2} \end{array}$ Arice Ro in finite at 1=0, B=0. Continuity of the at 1=10 gives 1 croi R'= A h' cosh'r - A sun 2'r 1 > no? R'= C & cor (Antsol - C ain (An + Sol (R') 1=10 = h' cot l'10 - to = h cot (hro + 80) - to tan (hro + So) = the tan L'Ro So = - k lo + tan' (the tan h' ro) = - kno + tan' [M/h + tan n'/h (kno)] = - k 10 + tan' { h 10 + 1/3 21/22 [h Rol 3 3 But the = 1 - to s thus : 80 = - heo + tan' { tho + f(1- 1/2) (hho) 3 } = - 1/3 Vo/E (hho) 3 = -1/3 2mVo hho3 12 h ho3 or = 4TT So2 = 16 TT 242 Vo2 No (b) From problem 6: V = max IS dr dr' V(A) V(A') sm k/A'-A'I $= \frac{16\pi m^2}{h^4} \iint_{0} n^2 dn n'^2 dn' \sqrt{2^2} \frac{m^2 h / n^2 - n' l}{h^2 / n^2 - n' l^2}$ $= \frac{16\pi m^2}{\pi^4} \iint_{n^2} n^2 dn n'^2 dn' V_0^2 = \frac{16\pi m^2 V_0^2 n_0^6}{9 \pi^4}$

(6 (3) 11 = 3/2; J2 = 1 : J = 1 , 3 , 5 . To construct Q, m. Begin with 95/2, 5/2 = M3/2 VI. Apply : M- lym = V(2+m) (2-m+1) lym-1 and M- = M. + M2-Then: get some answers as we did in homework. @ E. i = Î. x i where Î, is a unit vector in the 1 direction ! Let : $f_1 = xy$, $f_2 = yz$, $f_3 = Zx$, $f_4 = (x^2 - y^2)$, $f_5 = (z^2 - x^2)$ fi fz We easily find f3 54 fs Ex -f3 -f4-f5 F1 Zfz Zfz Ey fz -fi f5 253 -4f3 Ez f4 t3 -f2 -4f1 2f1 proving the set is closed. The matrix representation of E is now clearly : 01000 By direct matrix multiplication we find: [En, Es] = - Eigh En Letting Ex = $\frac{d}{\pi}$ Mh, we find the angular momentum commutation relations; $\vec{m} \times \vec{m} = i\hbar \vec{m}$



@ my method is probably better. The incompatibility of measurements is probably shown most clearly in (c) where we abtain a finite probability for Mz = 2th in the I direction despite the pact that we know Mzo = 2th in the (perpendicular) to direction, and the magnitude of the angular momentum vector must be Jot to. @ q=1/2; ms= = 1/2 (a) since { (= -m) (=+m) { (= +m) } (= (mo) + (mo - m corx) (m/mo) + min { (= -m)(±-m) }" (m+1/mo) = 0 $y_{\text{et}}: |(-\pm |\pm 2)|^2 = (|\mp \cos \alpha)^2 |(\pm |\pm 1/2)|^2$ $= \frac{1}{2} \frac{1$ (6) From class: $\psi' = \begin{pmatrix} coz & z + \lambda & dz & Sun & (\lambda & dx + M_2) & Sun & \psi \\ (\lambda & Mx - My) & sun & z & coz & z - \lambda & dz & sun & z \end{pmatrix}$ Rotating through a about the y axis ! $\psi' = \begin{pmatrix} \cos 2 & \frac{1}{2} & 5 & \frac{1}{2} \\ -\frac{1}{2} & \cos \frac{1}{2} \end{pmatrix} \psi$ For $\psi = (0): \psi' = (cor \frac{\pi}{2}): |\langle \pm | \pm \pm \rangle|^2 = \int cor \frac{\pi}{2}$ For $\psi = (\hat{j})$: $\psi' = (sm \frac{\varphi}{2}) : |\langle -\frac{1}{2}| + \frac{1}{2} \rangle|^2 = \int sm^2 \frac{\varphi}{2}$

ω

•

3 15. $\vec{J} = \frac{e\hbar}{2\mu} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) - \frac{e^2}{mc} \vec{A} \psi^* \psi$ $\vec{z} \times \vec{z} = \frac{e}{2m} \{ \psi^{*}(\vec{z} \times \vec{p}) + 4(\vec{z} \times \vec{p})^{*} \psi^{*} \}$ - e2 7 [22 2 - (2. 2)2] 4 4 $\vec{u} = \frac{1}{2c} \int (\vec{z} \times \vec{j}) dt$ $= \frac{e}{4mc} \left\{ \int \psi^{*} \vec{z} \,\psi \,dr + \left[\int \psi^{*} \vec{z} \,\psi \,dr \right]^{*} \right\} - \frac{e^{2} \vec{k}}{4mc^{2}} \int \psi^{*} \left(\Lambda^{*} \vec{k} - 2\vec{n} \right) \psi \,dr$ = e (2) - e2 H S(12) Th - (22)

· ·

.

. .