MODELING REGIONAL HYDROGEN INFRASTRUCTURE DEVELOPMENT

Joan Ogden

Research scientist Princeton Environmental Institute Princeton University ogden@princeton.edu

presented at the H2A Meeting National Renewable Energy Laboratory Golden, CO April 23, 2003

DESIGN, ECONOMICS AND EVOLUTION OF A H₂ ENERGY INFRASTRUCTURE DEPEND ON:

- Location, size, type, time variation and geographic density of the H₂ demand.
- Cost and performance of technologies making up a H₂ energy system.
- Cost, location and availability of resources for H₂ production. (And, for fossil derived H₂, location and capacity of sites for sequestering CO₂.)
- The capacity and location of existing energy infrastructure and rights of way.

GEOGRAPHY IS IMPORTANT IN UNDERSTANDING TRANSITION TO WIDESPREAD USE OF H₂

- Many of the factors that determine the system design are geographically specific => regional issues are likely to be very important in determining the design, cost and evolution of a H₂ energy infrastructure
- Most earlier technical/economic studies of H₂ infrastructure have estimated costs in a general way, rather than designing system for a particular region

<u>THIS STUDY</u>: Assess alternative transition strategies toward widespread use of H₂ under different regional conditions.

APPROACH

- Develop engineering/economic models of system components: H₂ production systems, H₂ transmission and distribution, H₂ refueling stations, H₂ demand, CO₂ sequestration.
- Use Geographic Information System (GIS) data to study spatial relationships between H₂ demand, supply, primary resources, CO₂ sequestration sites, and existing infrastructure in particular region.
- Explore use of various techniques (GIS analysis, mathematical programming) to find the lowest cost strategy for building a widespread H₂ energy system. Given a specified H₂ demand and resources for H₂ production, design a system to deliver H₂ to users at the lowest cost. Examine which transition paths give the lowest overall cost.
- Carry out regionally specific case studies of H₂ infrastructure development, involving multiple H₂ plants, multiple H₂ demand sites, using GIS data.

WHAT DO WE HOPE TO LEARN?

- Time constants and costs. How can H2 demand be characterized in space and time? Which supply options are preferred as demand grows? How fast can we implement H2 infrastructure? How much will it cost? What are the best strategies? What level of demand is needed for widespread implementation of H₂ energy system?
- Sensitivities to: technology performance and costs, size and density of demand, local availability of primary sources(and for fossil H2 CO₂ sequestration sites), market growth, policies.
- Rules for thumb for optimizing H₂ infrastructure development.

MODELING H₂ ENERGY SYSTEM COSTS

- Develop engineering/economic cost and performance estimates for H₂ production systems, H₂ storage, H₂ transmission and local distribution, H₂ refueling stations, CO₂ sequestration, as function of scale.
- Future feedstock/energy prices (natural gas, electricity, coal, wind etc.) use EIA projections for particular regions. (More generally, one could calculate the cost of increasing supply of primary energy resources to make H₂ for vehicles. For example, increase the natural gas supply for H₂ from steam reforming or build wind power systems.)

Fraction of H₂ cars in fleet vs. year and market penetration rate

H ₂ Cars (fraction of all new cars)	Year 1	Year 5	Year 10	Year 15
10%	0.7%	3.5%	7%	10%
25%	1.8%	9%	18%	25%
50%	3.5%	18%	35%	50%
100%	7%	35%	70%	100%

TOOLS FOR ESTIMATING H₂ DEMAND

Highlight urban areas to find total H₂ demand in a city

Cleveland: 60,000 kg/d (25 million scf/d or 100 MW)

Columbus: 44,000 kg/d

(18 million scf/d or 71 MW) Cincinnati: 46,000 kg/d (19 million scf/d or 75 MW)

State: 384,000 kg/d (159 million scf/d or 630 MW)

<u>OBSERVATIONS</u>: The 3 largest urban areas account for ~40% of state H_2 demand, but many people live in areas with lower demand density, where infrastructure might be more expensive -- at least at this level of demand (10 years into a 25% H_2 vehicle market penetration rate).

Each city has relatively small H_2 demand, ~10% of the size of a large fossil H_2 plant. One 380 t/d (153 million scf/d) central H_2 plant could serve the entire state, but long, inter-city pipelines would be needed => local, smaller scale H_2 production might be preferred at this level of H_2 demand.

H₂ REFUELING STATIONS

- Where should H₂ refueling stations be located? (Early H₂ stations might serve fleets, possibly co-located with CNG stations or buildings; later stations serve general transportation markets)
- How many H₂ stations are needed and how many cars should each station serve? (A large number of stations offers more convenience, but the infrastructure might cost more per car, and limit the possibility for carbon capture, if many small stations are needed. Can H₂ be acceptably convenient at a reasonable cost?)
- What level of convenience is needed? (How convenient are gasoline stations today? Or are home, neighborhood or workplace refueling preferred?)

HOW CONVENIENT ARE GASOLINE STATIONS IN OHIO?

From analysis of GIS data, we find for Columbus, Ohio area gasoline stations:

- ~240 gasoline stations. Density of urban gasoline refueling stations ~1 per mi² (1.3/mi² ctr city; 0.7/mi² suburbs)
- Fraction of gasoline stations on main roads ~ virtually all
- Distance between gasoline stations along roads
 - Urban roads ~ 1 per mi
 - Rural Interstates ~ 1 per 6-10 mi
- Fraction of gasoline stations in "clusters" (arbitrarily defined as several stations within 0.5 mi of each other)
 - Urban ~ 60-70% (typically 2 to 4 stations per cluster)
 - Interstate ~ 90% (typically 3 to 5 stations per cluster)
- Fraction of gasoline stations in near rail lines, electric lines, natural gas lines, or limited access highways (possible rights of way for H₂ local pipelines) = almost all.

Acceptable	#(fraction)	H ₂ Cars served per	H ₂
Distance	of gas	stat ion =	dispensed in
betwee n	stat ions	(fraction H ₂ cars in fleet)	each stat ion
urban	that offer	*(3000 cars per station)/	kg/da y
stat ions (mi)	H ₂	(fraction of stations w/ $\rm H_2)$	
1 (~same as	80(33%)	90 (1% H2 cars)	30
today'sgas		900(10% H2 cars)	300
stat ions)		9000 (1 00% H2 cars)	3000
2 (~ half as	40 (17%)	180 (1% H2 cars)	60
convenient)		1800 (1 0% H2 cars)	600
		18000 (100% H2 cars)	6000
Acceptable			
Dista nce			
betwee n			
inte rstate			
stat ions (m i)			
10	25%		
20	12%		

"Gasoline-like" convenience in Columbus (80 stations): Number of H₂ cars served (kg H₂/day dispensed*)

H ₂ Cars	Year 1	Year 5	Year 10	Year 15
(fract ion				
of all new				
cars)				
10%	56	282	564	806
	21	106	211	302
25%	145	725	1450	2014
	54	272	540	755
50%	282	1450	2820	4029
/ -	106	544	1057	1510
100%	564	2820	5640	8057
	211	1057	2115	3020

* assumed 80 mpge H2 FCV driven 11,000 mi/y

Comp.Gas Truck = 420 kg

LH2 Truck = 3600 kg

Onsite reformer = 240-4800 kg/d

Onsite electrolyzer = 2.4-2400 kg/d

Pipeline delivery = 240-4800 kg/d per station; (pipeline viable, only if high demand and high demand density)

Possible H₂ refueling options for "Gasoline-like" convenience at public H₂ refueling stations: match by capacity Year 10 Year 15 Year 1 Year 5 H₂ Cars **Compressed Gas** (fract ion Truck of all new cars) LH2 Truck 10% Onsite electrolysis 25% Onsite 50% reforming 100% **Pipeline delivery** of CO₂ free H₂

HYDROGEN FACILITIES AND GOOD TO EXCELLENT RENEWABLE ENERGY RESOURCES Type of Facility Captive Hydrogen Producer Gaseous Hydrogen Producer By-Product Hydrogen Producer Biomass 🛀 Wind **Concentrating Solar Power** By-Product Purifier Resource Potential Resource Potential **Resource Potential** × Liquid Hydrogen Producer Satellite Terminal Excellent Excellent Excellent Undetermined Good Good Good

Connecting H₂ Supply and Demand: Columbus, Ohio

- Columbus Population ~ 1 million; ~700,000 light duty vehicles, metro region ave. vehicle population density ~600 cars/km²; center city higher.
- Projected H₂ Demand (if all LDVs use H₂) = 400 MW

(100 million scf H₂/d or 240 t/d)

- Nearest large coal plant is "General Gavin", built 1974, pulverized coal steam plant, with flue gas desulfurization, Low NOx burners, SCR.
 - 2600 MW capacity
 - 17 million MWh/y
 - 7.2 million tons coal/yr (~6400 MW coal on ave.)
 - 18.6 million tons CO₂/yr (~ 20 CO₂ wells @ 2500 tonnes/d/well)
 - kWhe/kWhcoal = 30%
 - ave. annual capacity factor = 74%
 - All coal is barge delivered
 - ~~

Making H₂ from Coal for Columbus

- To make H₂ for all Columbus cars (via coal gasifier with 65% energy conv. efficiency), use ~10% of present of coal flow at General Gavin, then pipe 240 t/d (100 million scf/d) H₂ 150 km to city. The H₂ pipeline itself might cost about \$40-50 million and adds a relatively small amount to the delivered cost of H₂, ~ \$0.15/kg. H₂ compression and storage at the central plant might add ~\$0.5/kg.
- Observation: General Gavin power plant is operated at only ~ 74% capacity factor today (because it follows electricity load). If this plant is "repowered" with a coal IGCC, with CO₂ capture, and run at a higher capacity factor, then it might be possible to supply electric needs and make enough H₂ during off-peak electric demand hours for light duty vehicles. (Onsite electrolysis using off-peak vs. central H₂ production w/pipeline distribution?) *Important to understand interaction of electric grid and H2 grid*.
- ~20 CO₂ injection wells each handling 2500 tonnes/day would be needed to dispose of CO₂ associated with a fossil energy complex at the General Gavin (using the same amount of coal as present).

GIS GIVES THE H₂ INFRASTRUCTURE DESIGNER A DATA BASE THAT CAN BE QUERIED IN A MYRIAD OF USEFUL WAYS

For example:

Distances between supply, demand, resources

Mass and Energy flows => match supply and demand

Shortest path along rights of way

•Characteristics of "features" like power plants, $\rm H_2$ demand centers, etc.

•Select features with specified characteristic (e.g. all areas with a H₂ demand density > threshhold)

FUTURE WORK

- Develop tools for system cost comparisons and optimization, using data in GIS format
- Examine how H₂ infrastructure design and cost depends on geographic factors. Study design space to find low cost transition strategies
- Take this "60,000 foot" look down to earth
- This type of model might eventually provide insights
 useful for
 - Integrated Assessment models.
 - Energy economy models. How does H₂ interact with other parts of the energy economy and environment?
 - Sustainable urban planning.