„Innovative Solutions for bulk power transmission“

Dr. Peter Menke
CTO Power Transmission Division
Siemens Energy Sector

13.5.2011
HVDC example from China: Hydro power via an 800kV HVDC link

- With conventional AC power transmission the hydro power could not be used: 5000 MW over 1400 km.
- World’s first 800kV HVDC
- Commissioned 06/2010

CO_2 abatement: 30 Mt p.a.
Green towers: 800 kV DC overheadline in China:

This slim HVDC overhead line with two conductor bundles is equivalent to two 380kV double systems with in total 12 conductor bundles.
Project „Trans Bay Cable“, USA
Secure the power supply of San Francisco

P = 400 MW, ± 200 kV DC cable

Q = +/- 170-300 MVAr

Eliminating transmission bottlenecks ...

... dynamic voltage stabilization
Security of supply: HVDC as a firewall during the US blackout 2003

Québecs HVDCs still in operation and supporting system restart

Quelle: EPRI 2003
Overhead lines, cables, AC and DC …
… there is a third option commercially available!

Gas Insulated Lines (GIL)

<table>
<thead>
<tr>
<th>GIL – Technical data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>245 to 550 kV</td>
</tr>
<tr>
<td>Rated current</td>
<td>up to 4000 A</td>
</tr>
<tr>
<td>Rated short-time current</td>
<td>63 kA/3s</td>
</tr>
<tr>
<td>Insulating gas</td>
<td>N₂ and SF₆ gas mixture</td>
</tr>
<tr>
<td>System length</td>
<td>from 100 m to 100 km</td>
</tr>
</tbody>
</table>
Customer: Amprion
Country: Germany
Date: 2011

Requirements
- Replacements of a 380 kV OHL by an underground transmission solution with gas insulated lines (GIL)
- Creation of space for a new runway at the airport Frankfurt
- Low environmental impact (safety, EMI, small width of route)
- Worldwide first pilot for directly earth buried GIL in this voltage level

Products
- Gas insulated line (GIL) for 400kV
- Two systems with 1.800 MVA transmission power each

Customer benefit
- Transmission of high power under ground
- Least possible width of route
- Low losses without need of tunnel works
- Environment friendly integration in to the landscape
500kV GIL Project ‘Jinping I’

Location

- Hydropower Plant at Yalong River in Sichuan Province (Southwest China).
- Energy for the Megacities in the East
- Height of arch dam: 300 m
- 3600 MW rated power generation capacity
- Six turbines 600 MW each
- Commencement of commercial operation: 2012
‘GIL Jinping I’
Project Overview

End User: ERTAN Hydropower Development Co. Ltd.

Project Highlights:
- First Siemens GIL in China
- First vertical and welded Installation of 2nd Generation GIL
- 3 GIL Systems, approx. 350 m each

Technical Data
- Rated Power: 3500 MVA
- Rated Voltage: 550 kV
- Rated Current: 4,000 A
- Insulation Gas: 100% SF₆
- Contract Award: 25.07.2008
- Commercial Operation (planned): 01.08.2011
Dead End Tower

Outdoor terminations for GIL connection
Guidelines/trends for transmission technology selection

<table>
<thead>
<tr>
<th>Equipment</th>
<th>OHL</th>
<th>GIL</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard lines in rural area</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lines with special constraints, requiring underground solutions (e.g. close to airports, through cities or villages, in space-restricted areas etc.)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Lines with transmission power < ~ 1,500MVA</td>
<td>X</td>
<td>(X)</td>
<td>X</td>
</tr>
<tr>
<td>Lines with transmission power > ~ 1,500MVA</td>
<td>X</td>
<td>X</td>
<td>May need double cable system</td>
</tr>
<tr>
<td>Special requirements concerning EMF</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Special requirements concerning fire protection and/or explosion protection</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Details are extremely dependent upon project conditions!
Lifecycle considerations: Ohmic losses

- Overhead Line: 4x240/40AlSt
- Overhead Line: 4x560/50AlSt
- XLPE Cable: 2xKLDE2Y, 1x2500mm²
- GIL: 517/500-180/160

With GIL, approximately 30% less losses.
EMC considerations: Magnetic fields

400 kV, 2 x 1000 MVA

Magnetic field strength

OHL
Cable
GIL
Safety and Security of Supply Considerations: Auto Reclosure on GIL

Scenario:
- fault detection by protection system
- line drop-off and arc extinguishing

Auto Reclosure:
- gas insulation is self-recovering
- in case of successful auto re-closure by-products are collected in the particle trap
- in case of unsuccessful auto re-closure no impact or fire outside the GIL

View inside the GIL:
Test Conditions: 63 kA, 500ms

No external impact, no fire risk due to non inflammable materials
Cost comparison of 400kV transmission systems

Table is for 2,000MVA

<table>
<thead>
<tr>
<th>Equipment</th>
<th>OHL</th>
<th>GIL</th>
<th>Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of necessary systems</td>
<td>1</td>
<td>1</td>
<td>x2 (if double system needed)</td>
</tr>
<tr>
<td>Installation cost</td>
<td>1</td>
<td>Circa x10</td>
<td>Circa x10 (double system)</td>
</tr>
<tr>
<td>Operation losses</td>
<td>1</td>
<td>lower</td>
<td>lower</td>
</tr>
<tr>
<td>Maintenance costs</td>
<td>1</td>
<td>lower</td>
<td>lower</td>
</tr>
<tr>
<td>Replacement needed</td>
<td>Circa 100yrs</td>
<td>Expect 50+yrs</td>
<td>Circa 30+yrs</td>
</tr>
</tbody>
</table>

Details are extremely dependent upon project conditions!

Dr. Stephan Poehler
High Voltage Substations
High transmission power → Low expenses for right of way
High reliability → Low invest for redundancy
Sealed for lifetime → Low maintenance cost
Low losses → Low operation cost
No ageing of insulating gas & Long lifetime through particle trap → No cost for replacement
Low capacitance → No expensive reactors
Automatic reclosure functionality → No invest for new protection
Low external electromagnetic fields → Optimised short routing possible
High safety (no fire hazard) → No invest for fire protection needed, Possibility to share civil cost with other utilities
Thank you for your attention!
References
Gas-Insulated Transmission Lines, Status Oct 2010*

National Grid Transco
Elstree, Great Britain
750 m / 2004

Statkraft (NVE)
RoD, Norway
110 m / 1981

Rheinisch Westfälische
Elektrizitätswerke
Kelsterbach, Germany
5400 m / 2009

Badenwerk
Rheinhafen, Germany
Steampower station unit 7
800 m / 1982

Schluchseewerk AG
Wehr, Germany
4000 m / 1975

Stadtwerke München
HKW-Nord, Germany
800 m / 1990

Neckarwerke
Altbach, Germany
800 m / 1985

ERTAN Hydro Power
Jinping I, China
3300 m / 2011

China Three Gorges
Project Corporation,
Xiluodu, China
12750 m / 2012

Tehri Hydro Development
Corp., Tehri
Hydro Project, India
4550 m / 2006

Electricity Generating
Authority of Thailand
Sai Noi, Thailand
3510 m / 2002

Public Utilities Board
Senoko, Singapore
401 m / 1993

Perusahaan Umum
Listrik Negara PLN
Gresik Power Plant,
Indonesia
2300 m / 1992

Energy Org.
Power Station Iran 1,
Iran
3700 m

National Grid
Stella West, GB
1258 m / 2010

National Grid
Penwortham, GB
770 m / 2010

Austria Hydro Power
Limberg II, Austria
480 m / 2010

Ontario Hydro
Bowmanville, Canada
1257 m / 1987

NEEWS Northeast Utilities
Service Co., USA
1275 m / 2011

Energie Ouest Suisse
PALEXPO, Switzerland
2560 m / 2001

Deutsche Babcock AG for
Ministry of Electricity
Homs P.S., Libya
800 m / 1980

Egyptian Electricity Authority
Illy el Baroud, Egypt
670 m / 1993

Cairo Electricity
Power Corp.
Cairo, Egypt
1850 m / 2004

Swawek, Windhoek
Ruacana, Namibia
800 m / 1976

SNEC Jeddah,
Saudi Arabia
300 m / 1981

Saudi Consolidated
Electricity Company
Rabigh/Yanbu,
Saudi Arabia
1340 m / 1988

Saudi Consolidated
Electricity Company
9023, Saudi Arabia
21,000 m / 2010

Dubai Electricity and
Water Authority
Warsan, Dubai
4050 m / 2007

Dubai Electricity and
Water Authority
Series Reactors, Dubai
1100 m / 2011

*) overall tube length 86,704 m

© Siemens AG
Energy Sector – E T HS