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We confirm Landauer’s 1961 hypothesis that reducing the number of possible macroscopic states in a
system by a factor of 2 requires work of at least kT ln 2. Our experiment uses a colloidal particle in a time-
dependent, virtual potential created by a feedback trap to implement Landauer’s erasure operation. In a
control experiment, similar manipulations that do not reduce the number of system states can be done
reversibly. Erasing information thus requires work. In individual cycles, the work to erase can be below the
Landauer limit, consistent with the Jarzynski equality.
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In 1961, Rolf Landauer proposed a fundamental link
between information theory and physical systems [1]:
erasing information in a macroscopic or mesocopic system
is an irreversible process that should require a minimum
amount of work, kT ln 2 per bit erased, where T is the
system temperature and k is Boltzmann’s constant. This
work is dissipated into a surrounding heat bath. At the
time, the motivation was to understand the minimum power
a computer requires to function. Surprisingly, logical
operations—the computations themselves—can be coded
using logically reversible gates that, in principle, can be
realized in a thermodynamically reversible operation, with
no dissipation [2]. But eventually, a computer’s memory
must be reset to its original state, and such an operation is,
according to Landauer, inherently dissipative. As the only
inherently dissipative operation, it determines the theoreti-
cal minimum power required to run a computer.
Landauer’s principle acquired further significance some

years later, when Charles Bennett (and, independently,
Oliver Penrose) noted that it resolves the long-standing
threat to the second law of thermodynamics posed by
Maxwell’s demon [3–6]. In modern language, a demon
acquires information about a system, lowering its entropy
and raising its free energy, and then uses this acquired free
energy to do work. Unless some aspect of the demon’s
operation is dissipative, it will use the energy of the
surrounding heat bath to do work, violating the second
law of thermodynamics. Szilard [7], Brillouin [8], and
others [5] proposed that the measurement step is inherently
dissipative. However, as Bennett showed, measurements
can, in principle, be done without work [4]. If measure-
ments and calculations do not require work, the only other
possibility consistent with the second law is that the erasure
step, required to return the computer to its original state, is
dissipative. Thus, Landauer’s principle resolves the para-
dox created by Maxwell’s demon. Although these theo-
retical arguments have persuaded most physicists, there has
been persistent skepticism from a variety of authors, within
and without the physics community [9–11]. The continuing

controversy makes clear experimental tests of Landauer’s
principle particularly important.
Landauer’s principle remained untested for over 50

years. Tests have recently become possible because of
two key recent developments: The first advance is con-
ceptual—a method for estimating the work done on a
particle and the heat dissipated by that particle that is based
solely on the trajectory xðtÞ and a knowledge of the
potential Uðx; tÞ. In particular, it does not rely on meas-
uring the minute amounts of heat (≈10−21 J) involved in the
erasure of a single bit of information. The method was first
proposed by Sekimoto [12,13] and tested, for example, by
studying a colloidal particle in an aqueous medium [14].
Extensions have led to a new field, the stochastic thermo-
dynamics of small systems [15,16]. By focusing solely on
the trajectory and the potential, one can isolate and measure
the quantities of direct interest, removing the contributions
of work and dissipation from ancillary devices—computer,
camera, illumination, etc.—that are irrelevant to calculating
the work done by the potential on the particle and the heat
dissipated into the surrounding bath.
The second advance is technical—the development of

ways to impose user-defined potentials on a small particle
undergoing Brownian motion. One way, for example, uses
the localized potential forces created by optical tweezers
formed from a highly focused laser beam. Then, either by
shaping the beam by diffractive optical elements or by
rapidly moving the beam between two or more locations, a
more complicated potential, such as a double well, can be
created. Such an approach was recently used to make a first
test of Landauer’s principle, under partial-erasure condi-
tions [17]. A related approach [18] had earlier been used to
explore a Szilard engine [5] that converts information to
work, a process that may be regarded as an indirect test of
Landauer’s principle.
Here, we adopt a more flexible approach that uses

feedback loops to create a virtual potential. We implement
a version of the anti-Brownian electrokinetic (ABEL)
feedback trap to test Landauer’s principle. As illustrated
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in Fig. 1, the trap acquires an image of fluorescent particle
diffusing in an aqueous solution and uses image processing
to estimate its position. Rather than using a physical
potential, such as that produced by optical or magnetic
tweezers, in a feedback trap, voltages are applied across
two sets of electrodes, creating an electrical force that
moves the particle. In the present study, the force is chosen
to create a virtual potential Uðx̄nÞ that is a discrete
approximation to a corresponding continuous potential
UðxÞ [19–22]. The potential is virtual because it is imposed
by the feedback loop and is based on the measured position
at x̄n, rather than the corresponding (unknown) actual
position, xn. The feedback trap allows the exploration of
particle dynamics in a nearly arbitrary potential, where the
only constraint is that the local relaxation time of the
potential be significantly greater than the update time of
the feedback loop. The local relaxation time is the time for a
particle to relax in a potential of curvature κðxÞ, where x is
the local position of the particle [23]. A virtual potential
may also be time dependent Uðx̄n; tnÞ; the time variations
must also be slow compared to the feedback update time ts.
If the feedback update time is short, the dynamics in virtual
potentials asymptotically approach those of the correspond-
ing continuous potential [21].
In our experimental setup [22], a camera takes images of

200-nm fluorescent particles in an inverted epifluorescence
microscope. Particles diffuse in two dimensions, as the
800-nm thick cell limits vertical motion. For inserting the
electrodes, the cell has two pairs of holes that are roughly
orthogonal. Fluorescent particles are illuminated by a 5-mW,
532-nm laser. The computer estimates a particle’s position in
a camera image using a modified centroid algorithm and
then generates a feedback force based on the inferred
position. The feedback force is applied as an electric force
that is generated by applying voltage differences to two pairs
of electrodes. The feedback loop is updated every
ts ¼ 10 ms, with force updates at the middle of a 5-ms
camera exposure. The delay between observing a position
and applying the calculated force is also 10 ms.

Since the feedback forces are generated by applying
voltage differences to two pairs of electrodes, one must
translate the voltages into forces properly. The two sets of
quantities are connected by a 2 × 2 mobility matrix μ that
relates the two nominally orthogonal potentials to x and y
displacements [23]. In the feedback trap, displacements are
affected by slow drifts, most likely due to voltage offsets
created by electrochemical reactions at the electrodes and
by the voltage amplifier. Removal of these drifts is essential
for quantitative measurement of thermodynamic parame-
ters such as work. Here, we estimate and correct for them in
real time, using a recursive maximum likelihood (RML)
method [26] for relating displacements to applied voltages.
The RML method gives an unbiased estimate of the
particle’s properties, which are further used for imposing
the “virtual” potential and measuring work with high
precision. See [27] for a full discussion.
The ability to measure work with the high precision and

the flexibility to choose the potential in a feedback trap
gives it a key advantage in testing Landauer’s principle.
Previous tests, based on the rapid manipulation of optical
tweezers, did not have full control of the potential shape
[17]. As a result, they were unable to achieve complete
erasure, and corrections were necessary to connect to the
kT ln 2 result predicted by Landauer for the full erasure
of 1 bit of information. For their reported erasure success
rates of 0.75–0.95, the asymptotic Landauer limit is
≈ð0.13–0.49ÞkT, which is significantly lower than the
full-erasure limit (kT ln 2 ≈ 0.69kT) [28]. Follow-up stud-
ies used the Jarzynski relation to infer the Landauer value
from finite-time cycles [24] and explored the energetics of
symmetry breaking [29]. Here, a higher barrier prevents
spontaneous hops across the barrier, ensuring complete
erasure and approach to the limiting value of work, kT ln 2.
Equally important, we are also able to perform a control
experiment where, using similar manipulations in the
potential that are chosen so as not to compress the phase
space, the required work goes to zero at long cycle times,
consistent with a reversible operation. We thus directly
show the link between phase-space compression and the
loss of reversibility. Avery recent complementary study has
explored Landauer’s principle in the context of a Szilard
engine [7] that extracts kT ln 2 of heat to create one bit of
information [30].
Figure 2 illustrates the two protocols that we used. At left

is the full-erasure protocol, denoted p ¼ 1, to indicate that
the probability that a particle ends up in the right well,
regardless of its initial state (left well or right) is unity. Our
erasure protocol is a modified version of that presented by
Dillenschneider and Lutz [31]. The cyclic operation has
four stages: lower the barrier, tilt, raise the barrier, untilt. To
create the protocol, we impose

Uðx; tÞ ¼ 4Eb

�
−
1

2
gðtÞ~x2 þ 1

4
~x4 − AfðtÞ~x

�
; ð1Þ

FIG. 1 (color online). Schematic of feedback trap operation.
(a) Acquisition of an image of a fluorescent particle. (b) Deter-
mination of particle position from that image using a centroid
algorithm. (c) Evaluation of feedback force Fx ¼ −∂xUðx; tÞ at
the observed position x̄. (d) Application of electric force, with
voltage set by electrodes (light blue), held constant during the
update time ts ¼ 10 ms. The long gray arrow indicates repetition
of the cycle.
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where ~x ¼ x=xm and where the energy barrier Eb separates
two wells located at �xm. The functions gðtÞ and fðtÞ
control barrier height and tilt, respectively [23]. The
full potential is harmonic in the transverse direction:
Utotðx; y; tÞ ¼ Uðx; tÞ þ 1

2
κyy2. The virtual potential is

evaluated at the observed position ðx̄n; ȳnÞ at time nts.
The associated density plot, where red intensity is

proportional to the occupation probability Pðx; tÞ of the
particle, shows that all trajectories end up in the right well.
Figure 2 shows at right the no-erasure protocol, which
differs from the full-erasure protocol only in that there is no
tilt. From the symmetry, we expect (and experimentally
confirm) that there is an equal probability for particles to
end up in the left or right well. In this case, no net erasure of
information occurs.
The cycle time τ is measured in units of τ0 ¼ ð2xmÞ2=D,

the time scale for particles to diffuse between wells at �xm.
In the experiment, xm ¼ 2.5 μm, D ≈ 1.7 μm2=s, implying
τ0 ≈ 15 s. The energy barrier Eb ¼ 13kT, which insures
that the time between spontaneous hops (dwell time) is two
orders of magnitude longer than the longest erasure cycle
[23]. The update time ts ¼ 10 ms is fast enough that the
discrete dynamics and work measurements are accurate
estimates of the continuous equivalents for our set of
parameters [32]. In the no-erasure protocol, A ¼ 0. For
full erasure, A ¼ 0.5.
To find the work in one erasure cycle, we evaluate the

imposed potential U½xðtÞ; t� at the position of the particle
and discretize Sekimoto’s formula [12], W ¼ R

τ
0 dtð∂tUÞ,

where τ is the erasure cycle time. We then have

WðτÞ ¼ −4Eb

XNs

n¼0

�
1

2
ðΔgÞn ~x2n þ AðΔfÞn ~xn

�
; ð2Þ

where ~xn ¼ x̄n=xm, Δgn ≡ _gðtnÞts, and Δfn ≡ _fðtnÞts and
Ns is the number of steps in the erasure cycle.
Figure 3(a) shows that, for fixed τ, the work in each

cycle is stochastic, with WðτÞ empirically distributed as a
Gaussian random variable. We estimate the mean work
hWiτ for cycles of time τ by averaging over N measure-
ments. From Fig. 3(a), the standard error of the mean
depends only on the total time ttot taken by the N cycles. To
keep the standard error of the mean constant for different
cycle times, we thus choose NðτÞ ¼ ttot=τ. With ttot ¼ 60
min, the statistical errors were about �0.10kT. To find the
asymptotic work, we extrapolate results from finite-τ cycles
to infinite cycle times via the expected τ−1 finite-time
correction [13,33–35]:

hWiτ
kT

¼ hWi∞
kT

þ aτ−1; ð3Þ

where hWi∞=kT is ln 2 for the full-erasure and 0 for the no-
erasure protocols.
Figure 4 presents the main results of this study: Part

(a) shows the average work as a function of τ for both the
full-erasure and no-erasure protocols. The solid lines are
fits to Eq. (3). To show the asymptotic form and its limit

tim
e

p = 1 p = 0.5

FIG. 2 (color online). Erasure protocol and trajectories for full
erasure (p ¼ 1) and no erasure (p ¼ 0.5). Full erasure requires a
strong tilt of the potential towards the desired well (A ¼ 0.5). In
the no-erasure protocol, the potential is symmetric at every time
step (A ¼ 0), implying that a particle ends up in a random final
state. The image intensity Iðx; tÞ ∝ Pðx; tÞ the occupation prob-
ability for a particle in a time-dependent, double-well potential
and was generated from 30 trajectories for each case using kernel
density estimation. We used a Gaussian kernel with standard
deviation equal to 0.1 in time and 0.15 μm in space, evaluated on
a 500 × 160 grid. Scale bar at lower left measures 5 μm.
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FIG. 3 (color online). (a) Histograms of work series for
individual cycles of duration τ ¼ 0.5, 1, and 2.5, with Gaussian
fits shown as solid curves. The gray shaded area shows the part of
the probability distribution that is below the Landauer limit.
(b) Variance versus mean for the work distribution, in units of kT.
Solid lines are plotted from the Jarzynski relation, Eq. (4), and
have slope 2.
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FIG. 4 (color online). Mean work measured in the full erasure
(p ¼ 1) and no-erasure (p ¼ 0.5) protocols. (a) Mean work
approaches the Landauer limits for each protocol. Solid line
shows fit to asymptotic τ−1 correction. (b) Mean work as a
function of inverse time. The dimensionless cycle times τ are in
units of τ0 ¼ ð2xmÞ2=D.
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more clearly, we replot the data as a function of τ−1 in
Fig. 4(b). The fit parameters are collected in Table I.
We performed 2444 full-erasure and 2169 no-erasure

cycles in total and measured the overall success rates of
0.9996 and 0.4965, respectively. The latter is consistent
with 0.5 (�0.5=

ffiffiffiffiffiffiffiffiffiffi
2169

p
≈�0.01).

The asymptotic work values are compatible with the
expected values, ln 2 ≈ 0.69 and 0, respectively; the dimen-
sionless scale times a are of order unity, also as expected;
and the χ2 statistics indicate good fits. Thus, we have
shown experimentally that the full-erasure protocol, which
involves the compression of phase space from two macro-
scopic states to one, asymptotically requires kT ln 2 of
work, while the very similar no-erasure protocol, which has
no such phase-space compression, is reversible.
The Gaussian work distributions in Fig. 3(a) have a mean

that exceeds Landauer’s limit in the erasure experiment.
However, individual cycles may have values of the sto-
chastic work that are below the Landauer limit. Indeed, they
can even be negative, drawing energy from the bath, in an
apparent violation of the second law [36]. As a further
check on our results, we note that when work distributions
are Gaussian, the Jarzynski equality—in this case, equiv-
alent to linear response theory—implies a relation between
the mean hWi and variance σ2W of the work distribution
[see, for example, Ref. [37], Eq. (21)]:

σ2W ¼ 2ðhWi − ΔFÞ; ð4Þ

where hWi, ΔF, and σW are all measured in units of kT and
where ΔF equals ln 2 for the full-erasure protocol and 0 for
the no-erasure protocol [23].
Figure 3(b) shows these quantities for both protocols.

The solid lines are plots (not fits) from Eq. (4). There is
good agreement for longer cycle times that becomes poorer
for shorter cycles, which have larger mean work values.
The shorter cycle times are problematic, both because the
asymptotic result, Eq. (4), and the approximation of a
virtual to a real potential can break down. The Jarzynski
equality has been explored in more detail in the context of
Landauer’s principle in Ref. [24]. In combination with the
expected decrease in mean work as cycle times are
lengthened, it explains immediately why the work distri-
bution sharpens for long τ. Because the variance of the

mean estimate and the mean itself [see Eq. (4)] both
decrease as τ−1, measuring for a time T leads to the same
error-bar estimates, independent of the chosen cycle time τ,
assuming that τ is long enough that the distributions are
indeed Gaussian. For shorter cycle times, the distributions
are expected to be non-Gaussian [31].
In conclusion, the results presented here give the first test

of Landauer’s principle to confirm directly the predicted
erasure energy of kT ln 2 per bit, connecting the seemingly
disparate ideas of information and heat flow. The tests also
answer the threats to the second law of thermodynamics
posed by Maxwell’s demon.
The high precision and great flexibility of feedback traps

opens doors to many further tests of stochastic thermody-
namics and nonequilibrium statistical physics. For exam-
ple, the optimal protocols for minimizing the work in
finite-time operations involve complex, discontinuous
manipulations of potentials that would be otherwise hard
to impose [34]. The potential from a feedback trap need not
even come from a potential, making possible the explora-
tion of nonpotential dynamics [20]. Feedback traps are, of
course, also natural settings for exploring nonequilibrium
extensions of the Landauer theory [38,39], as well as con-
nections between feedback and thermodynamics [15,16].
Landauer’s link between information theory and physical

systems is critical for understanding performance limits in
nanoscale machines and biological systems. At present, the
lowest energies involved in elementary operations in
computation such as switching are ≈1000kT [40], which
are approaching the energy scales [ð10 − 100ÞkT] used by
biological systems to sense the outside world and make
decisions [41]. At these energy scales, the fundamental
explorations of equilibrium and nonequilibrium systems
made possible by the new methods used here will become
increasingly important.
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