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Landauer’s principle is the loosely formulated notion that the erasure of n bits of 

information must always incur a cost of k ln n in thermodynamic entropy. It can be 

formulated as a precise result in statistical mechanics, but by erasure processes that 

use a thermodynamically irreversible phase space expansion, which is the real origin

of the law’s entropy cost. General arguments that purport to establish the 

unconditional validity of the law (erasure maps many physical states to one; erasure 

compresses the phase space) fail. They turn out to depend on the illicit formation of a

canonical ensemble from memory devices holding random data. To exorcise 

Maxwell’s demon one must show that all candidate devices—the ordinary and the 

extraordinary—must fail to reverse the second law of thermodynamics. The 

theorizing surrounding Landauer’s principle is too fragile and too tied to a few 

specific examples to support such general exorcism. Charles Bennett has recently 

extended Landauer’s principle in order to exorcise a no erasure demon proposed by 

John Earman and me. The extension fails for the same reasons as trouble the original 

principle.

1 I am grateful to Alexander Afriat, Jeffrey Bub, Ari Duwell, John Earman, Robert Rynasiewicz 

and Jos Uffink for helpful discussion; and especially to Harvey Leff for stimulating and 

informative discussion of Bennett (2003) and the present paper.
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1. Introduction

A sizeable literature is based on the claim that Maxwell’s demon must fail to produce 

violations of the second law of thermodynamics because of an inevitable entropy cost associated

with certain types of information processing. In the second edition of their standard 

compilation of work on Maxwell’s demon, Leff and Rex (2003, p. xii) note that more references 

have been generated in the 13 years since the volume’s first edition than in all years prior to it, 

extending back over the demon’s 120 years of life. A casual review of the literature gives the 

impression that the demonstrations of the failure of Maxwell’s demon depend on the discovery 

of independent principles concerning the entropy cost of information processing. It looks like a 

nice example of new discoveries explaining old anomalies. Yet closer inspection suggests that 

something is seriously amiss. There seems to be no independent basis for the new principles. In 

typical analyses, it is assumed at the outset that the total system has canonical thermal properties

so that the second law will be preserved; and the analysis then infers back from that assumption

to the entropy costs that it assumes must arise in information processing. In our Earman and 

Norton (1998/99), my colleague John Earman and I encapsulated this concern in a dilemma 

posed for all proponents of information theoretic exorcisms of Maxwell’s demon. Either the 

combined object system and demon are assumed to form a canonical thermal system or they are

not. If not (“profound” horn), then we ask proponents of information theoretic exorcisms to 

supply the new physical principle needed to assure failure of the demon and give independent 

grounds for it. Otherwise (“sound” horn), it is clear that the demon will fail; but it will fail only 

because its failure has been assumed at the outset. Then the exorcism merely argues to a 

foregone conclusion.

Charles Bennett has been one of the most influential proponents of information theoretic

exorcisms of Maxwell’s demon. The version he supports seems now to be standard. It urges that

a Maxwell demon must at some point in its operation erase information. It then invokes 

Landauer’s principle, which attributes an entropy cost of at least k ln n to the erasure of n bits of

information in a memory device, to supply the missing entropy needed to save the second law. 

(k is Boltzmann’s constant.) We are grateful for Bennett’s (2003, p. 501, 508-10) candor in 

responding directly to our dilemma and accepting its sound horn.2 He acknowledges that his 

2 In responding to the dilemma, Leff and Rex (2003, p.34) appear to accept the profound horn. 

They point out derivations of Landauer’s principle that do not explicitly invoke the second law 
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use of Landauer’s principle is “in a sense…indeed a straightforward consequence or 

restatement of the Second Law, [but] it still has considerable pedagogic and explanatory 

power…” While some hidden entropy cost can be inferred from the presumed correctness of 

the second law, its location remains open. The power of Landauer’s principle, Bennett asserts, 

resides in locating this cost properly in information erasure and so correcting an earlier 

literature that mislocated it in information acquisition.

My concern in this paper is to look more closely at Landauer’s principle and how it is 

used to exorcise Maxwell’s demon. My conclusion will be that this literature overreaches. Its 

basic principles are vaguely formulated; and its justifications are rudimentary and sometimes 

dependent on misapplications of statistical mechanics. It is a foundation too weak and fragile to 

support a result as general as the impossibility of Maxwell’s demon. That is, I will seek to 

establish the following:

• The loose notion that erasing a bit of information increases the thermodynamic entropy of 

the environment by at least k ln 2 can be made precise as a definite result in statistical 

mechanics. The result depends essentially, however, on the use of a particular erasure 

procedure, in which there is a thermodynamically irreversible expansion of the memory 

device’s phase space. The real origin of the erasure’s entropy cost lies in the 

thermodynamic entropy created by this irreversible step.

• The literature on Landauer’s principle contains an enduring misapplication of statistical 

mechanics. A collection of memory devices recording different data is illicitly assembled 

and treated in various ways as if it were a canonical ensemble. The outcome is that a 

collection of memory devices holding random data is mistakenly said to have greater 

entropy and to occupy more phase space than the same memory devices all recording the 

same default data.

• The argument given in favor of the unconditional applicability of Landauer’s principle is 

that erasure maps many physical states onto one and that this mapping is a compression 

of the memory device phase space. The argument fails. It depends on the incorrect 

assumption that memory devices holding random data occupy a greater volume in phase 

of thermodynamics. These derivations still fall squarely within the sound horn since they all 

assume that the systems examined exhibit canonical thermal behavior entirely compatible with 

the second law and, at times, strong enough to entail it.
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space and have greater entropy than when the devices have been reset to default data. 

This incorrect assumption in turn depends upon the illicit formation of canonical 

ensembles mentioned.

• A compression of the phase space may arise in an erasure process, but only if the 

compression is preceded by a corresponding expansion. In practical erasure processes, this

expansion is thermodynamically irreversible and the real origin of the erasure’s entropy 

cost. The literature on Landauer’s principle has yet to demonstrate that this expansion 

must be thermodynamically irreversible in all admissible erasure processes.

• The challenge of exorcising Maxwell’s demon is to show that no device, no matter how 

extraordinary or how ingeniously or intricately contrived, can find a way of accumulating 

fluctuation phenomena into a macroscopic violation of the second law of 

thermodynamics. The existing analyses of Landauer’s principle are too weak to support 

such a strong result. The claims to the contrary depend on displaying a few suggestive 

examples in which the demon fails and expecting that every other possible attempt at a 

Maxwell demon, no matter how extraordinary, must fare likewise. I argue that there is no 

foundation for this expectation by looking at many ways in which extraordinary 

Maxwell’s demons might differ from the ordinary examples.

• John Earman and I (1998/99, II pp. 16-17) have described how a Maxwell’s demon may be 

programmed to operate without erasure. In response, Charles Bennett (2003) has devised 

an extended version of Landauer’s principle that also attributes a thermodynamic entropy 

cost to the merging of computational paths in an effort to block this no erasure demon. 

The extended version fails, again because it depends upon the illicit formation of 

canonical ensembles.

In the sections to follow, the precise but restricted version of Landauer’s principle is developed 

and stated in Section 2, along with some thermodynamic and statistical mechanical 

preliminaries, introduced for later reference. Section 3 identifies how canonical ensembles are 

illicitly assembled in the Landauer’s principle literature and shows how this illicit assembly 

leads to the failure of the many to one mapping argument. Section 4 reviews the challenge 

presented by Maxwell’s demon and argues that the present literature on Landauer’s principle is

too fragile to support its exorcism. Section 5 reviews Bennett’s extension of Landauer’s principle

and argues that it fails to exorcise Earman and my no erasure demon.
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2. The Physics of Landauer’s Principle

2.1Which Sense of Entropy?

There are several senses for the term entropy. We can affirm quite rapidly that 

thermodynamic entropy is the sense relevant to the literature on Maxwell’s demon and 

Landauer’s principle. By thermodynamic entropy, I mean the quantity S that is a function of the 

state of a thermal system in equilibrium at temperature T and is defined by the classical 

Clausius formula

  
δS = δQ re v

T
                             1                                        (1)

δS represent rate of gain of entropy during a thermodynamically reversible process by a system 

at temperature T that gains heat at the rate of δQrev. A thermodynamically reversible process is 

one that can proceed in either forward or reverse direction because all its components are at 

equilibrium or removed from it to an arbitrarily small degree.

To see that this is the appropriate sense of entropy, first note the effect intended by 

Maxwell’s original demon (Leff and Rex, 2003, p.4). It was to open and close a hole in a wall 

separating two compartments containing a kinetic gas so that faster molecules accumulate on 

one side and the slower on the other. One side would become hotter and the other colder 

without expenditure of work. That would directly contradict the “Clausius” form of the second 

law as given by Thomson (1853, p. 14) in its original form:

It is impossible for a self-acting machine, unaided by any external agency, to convey 

heat from one body to another at a higher temperature.

A slight modification of Maxwell’s original scheme is the addition of a heat engine that would 

convey heat from the hotter side back to the colder, while converting a portion of it into work. 

The whole device could be operated so that the net effect would be that heat, drawn from the 

colder side, is fully converted into work, while further cooling the colder side. This would be a 

violation of the “Thomson” form of the second law of thermodynamics as given by Thomson 

(1853, p.13):

It is impossible, by means of inanimate material agency, to derive mechanical effect 

from any portion of matter by cooling it below the temperature of the coldest of the 

surrounding objects.
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Another standard implementation of Maxwell’s demon is the Szilard one-molecule gas engine, 

described more fully in Section 4.2 below. Its net effect is intended to be the complete 

conversion of a quantity of heat extracted from the thermal surroundings into work.

One of the most fundamental results of thermodynamic analysis is that these two 

versions of the second law of thermodynamics are equivalent and can be re-expressed as the 

existence of the state property, thermodynamic entropy, defined by (1) that obeys (Planck, 1926,

p. 103):

Every physical or chemical process in nature takes place in such a way as to increase 

the sum of the entropies of all the bodies taking part in the process. In the limit, i.e. 

for reversible processes, the sum of the entropies remains unchanged. This is the 

most general statement of the second law of thermodynamics.

One readily verifies that a Maxwell demon, operating as intended, would reduce the total 

thermodynamic entropy of a closed system, in violation of this form of the second law.

Thus the burden of an exorcism of Maxwell’s demon is to show that there is a hidden increase 

in thermodynamic entropy associated with the operation of the demon that will protect the 

second law.

The present orthodoxy is that Landauer’s principle successfully locates this hidden 

increase in the process of memory erasure. According to the principle, erasure of one bit 

reduces the entropy of the memory device by k ln 2. That entropy is clearly intended to be 

thermodynamic entropy. It is routinely assumed that a reduction in entropy of the memory 

device must be accompanied by at least as large an increase in the entropy of its environment. 

That in turn requires the assumption that the relevant sense of entropy is governed by a law like

the second law of thermodynamics that prohibits a net reduction in the entropy of the total 

system. More directly, Landauer’s principle is now often asserted not in terms of entropy but in 

terms of heat: erasure of one bit of information in a memory device must be accompanied by the

passing of at least kT ln 2 of heat to the thermal environment at temperature T.3 This form of 

3 Landauer’s (1961, p. 152) early statement of the principle immediately relates the entropy of 

erasure to a heating effect: “[In erasing one bit, t]he entropy therefore has been reduced by 

k loge2 = 0.6931 k per bit. The entropy of a closed system, e.g. a computer with its own batteries,

cannot decrease; hence this entropy must appear elsewhere as a heating effect, supplying 

0.6931 kT per restored bit to the surroundings. This is of course a minimum heating effect…” 
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Landauer’s principle entails that entropy of erasure is thermodynamic entropy. If the process 

passes kT ln 2 of heat to the environment in the least dissipative manner, then the heating must 

be a thermodynamically reversible process. That is, the device must also be at temperature T 

during the time in which the heat is passed and it must lose kT ln 2 of energy as heat. It now 

follows from definition (1) that the thermodynamic entropy of the memory device has 

decreased by k ln 2.

2.2 Canonical Distributions and Thermodynamic Entro py

The memory devices Landauer (1961) and the later literature describe are systems in 

thermal equilibrium with a much larger thermal environment (at least at essential moments in 

their history); and the relevant sense of entropy is thermodynamic entropy. Statistical 

mechanics has a quite specific representation for such systems. It will be review in this section.

 One of the most fundamental and robust results of statistical mechanics is that systems 

in thermal equilibrium with a much larger thermal environment at temperature T are 

represented by canonical probability distributions over the systems’ phase spaces. If a system’s 

possible states form a phase space Γ with canonical position and momentum coordinates x1,…, 

xn (henceforth abbreviated “x”), then the canonical probability distribution for the system is the 

probability density

p(x)  =  exp(–E(x)/kT)/Z        2                                                             (2)

where E(x) is the energy of the system at x in its phase space and k is Boltzmann’s constant. The 

energy function E(x) specifies which parts of its phase space are accessible to the system; the 

inaccessible regions have infinite energy and, therefore, zero probability. The partition function 

is

    
Z = ex p (−E ( x )/ k T )d x

Γ∫            3                                                             (3)

A standard calculation (e.g. Thomson, 1972, §3.4) allows us to identify which function of 

the system’s phase space corresponds to the thermodynamic entropy. If such a function exists at

Shizume (1995, p. 164) renders the principle as “Landauer argued that the erasure of 1 bit of 

information stored in a memory device requires a minimal heat generation of kB ln 2…”; and 

Piechocinska (2000, p. 169) asserts: “Landauer’s principle states that in erasing one bit of 

information, on average, at least kB ln(2) energy is dissipated into the environment…”
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all, it must satisfy (1) during a thermodynamically reversible transformation of the system. The 

reversible process sufficient to fix this function is:

S. Specification of a thermodynamically reversible process in which the system remains in 

thermal equilibrium with an environment at temperature T.

S1. The temperature T of the system and environment may slowly change, so that T 

should be written as function T(t) of the parameter t that measures degree of 

completion of the process. To preserve thermodynamic reversibility, the changes 

must be so slow that the system remains canonically distributed as in (2).

S2. Work may also be performed on the system. To preserve thermodynamic 

reversibility the work must be performed so slowly so that the system remains 

canonically distributed. The work is performed by direct alteration of the energy E(x) 

of the system at phase space x, so that this energy is now properly represented by 

E(x,λ), where the manipulation variable λ(t) is a function of the completion parameter

t.

As an illustration of how work is performed on the system according to S2, consider a particle 

of mass m and velocity v confined in a well of a potential field ϕ in a one dimensional space. 

The energy at each point x in the phase space is given by the familiar E(π,x) = π2/2m + ϕ(x), 

where π is canonical momentum mv and x the position coordinate. The gas formed by the single

molecule can be compressed reversibly by a very slow change in the potential field that restricts

the volume of phase space accessible to the particle, as shown in Figure 1. Another very slow 

change in the potential field also illustrated in Figure 1 may merely have the effect of relocating 

the accessible region of phase space without expending any net work or altering the accessible 

volume of phase space.

Figure 1. Thermodynamically reversible processes due to slow change in potential field
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The mean energy of the system at any stage of such a process is

    
E  = E ( x , λ)p ( x , t )d x

Γ∫                            4                                                             (4)

So the rate of change of the mean energy is

    

d E  

d t
= E (x , λ)

d p ( x , t )

d tΓ∫ d x + d E (x , λ )

d t
p (x , t )

Γ∫ d x                         5                                          (5)

The second term in the sum is the rate at which work W is performed on the system

    

d W

d t
= d E (x , λ)

d t
p (x , t )

Γ∫ d x                       6                                                                (6)

This follows since the rate at which work is performed on the system, if it is at phase point x, is 

•E(x,λ)/•λ.dλ••• = dE(x,λ)/••. The mean rate at which work is performed is just the phase 

average of this quantity, which is the second term in the sum (5). The first law of 

thermodynamics assures us that

Energy change = heat gained + work performed on system.

So, by subtraction, we identify the rate at which heat is gained by the system as

    

d Q r e v

d t
= E (x , λ)

d p ( x , t )

d tΓ∫ d x       7                                                           (7)

Combining this formula with the Clausius expression (1) for entropy and the expression (2 ) for 

a canonical distribution, we recover after some manipulation that

    

d S

d t
= 1

T

d Q rev

d t
= d

d t

E  

T
+ k ln exp(−E / k T )d x

Γ∫
 

 
 

 

 
 

so that the thermodynamic entropy of a canonically distributed system is just

    
S = E  

T
+ k ln exp(−E / k T )d x

Γ∫                    8                                               (8)

up to an additive constant—or, more cautiously, if any quantity can represent the 

thermodynamic entropy of a canonically distributed system, it is this one.

This expression for thermodynamic entropy should be compared with another more 

general expression

    
S = −k p (x ) ln p ( x )d x

Γ∫           9                                                                (9)
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that assigns an entropy to any probability distribution over a space Γ.4 If I am as sure as not that 

an errant asteroid brought the demise of the dinosaurs, then I might assign probability 1/2 to 

the hypothesis it did; and probability 1/2 to the hypothesis it did not. Expression (9) would 

assign entropy k ln 2 to the resulting probability distribution. If I subsequently become 

convinced of one of the hypotheses and assign unit probability to it, the entropy assigned to the 

probability distribution drops to zero. In general, the entropy of (9) has nothing to do with 

thermodynamic entropy; it is just a property of a probability distribution. The connection arises 

in a special case. If the probability distribution p(x) is the canonical distribution (2), then, upon 

substitution, the expression (9) reduces to the expression for thermodynamic entropy (8) for a 

system in thermal equilibrium at temperature T.

2.3 Landauer’s Principle for the Erasure of One Bit

What precisely does Landauer’s principle assert? And why precisely should we believe it? 

These questions prove difficult to answer. Standard sources in the literature express Landauer’s 

principle by example, noting that this or that memory device would incur an entropy cost were 

it to undergo erasure. The familiar slogan is (e.g. Leff and Rex, 2003, p. 27) that “erasure of one 

bit of information increases the entropy of the environment by at least k ln 2.” One doesn’t so 

much learn the general principle, as one gets the hang of the sorts of cases to which it can be 

applied. Landauer’s (1961) original article gave several such illustrations. A helpful and 

revealing one is (p.152):

Consider a statistical ensemble of bits in thermal equilibrium. If these are all reset to 

ONE, the number of states covered in the ensemble has been cut in half. The entropy 

therefore has been reduced by k loge2 = 0.6931k per bit.

This remark also captures the central assertion of justifications given for the principle. The 

erasure operation reduces the number of states, or it effects a “many to one mapping” (Bennett, 

1982, p. 305) or a “compression of the occupied volume of the [device’s] phase space.” (p. 307).

Matters have improved somewhat with what Leff and Rex (2003, p.28) describe as new 

“proofs” of Landauer’s principle in Shizume (1995) and Piechocinska (2000). However neither 

gives a general statement of the principle beyond the above slogan, thereby precluding the 

4 The constant k and the use of natural logarithms amounts to a conventional choice of units 

that allows compatibility with the corresponding thermodynamic formula.

-10-



possibility of a real proof of a general principle. Instead they give careful and detailed analysis 

of the entropy cost of erasure in several more examples, once again leaving us to wonder which 

of the particular properties assumed for the memory devices and procedures are essential to the

elusive general principle.

If Landauer’s principle is to supply the basis for a general claim of the failure of all 

Maxwell’s demons, we must have a general statement of the principle and of the grounds that 

support it. We must know what properties of the memory devices are essential and which 

incidental; what range of erasure procedures are covered by the principle; which physical laws 

are needed for the demonstration of the principle; and a demonstration that those laws do entail

the principle. While trying to avoid spurious precision and overgeneralization,5 my best effort 

to meet these demands follows. It is specialized to the case of erasure of one bit and I also 

assume the setting of classical physics. The extension to the erasure of n bits is obvious. The 

extension to quantum systems appears not to involve any matters of principle, as long as 

quantum entanglement is avoided; rather it is mostly the notational nuisance of replacing 

integrations by summations.

Landauer’s Principle for erasure of one bit of information in a memory device.

IF

LP1. The memory device and erasure operation are governed by the physics of statistical

mechanics and thermodynamics as outlined in Section 2.2 above.

LP2. The memory device has a phase space Γ on which energy functions E(x) are defined

and, at least at certain times in its operation as indicated below, the system is in 

thermal equilibrium with a larger environment at T, so it is canonically distributed 

over the accessible portions phase space according to (2).

LP3. The phase space contains two disjoint regions “L” and “R”, with their union 

designated “L+R”. There are different energy functions E(x) available. EL(x) 

confines the system to L; ER(x) to R; and EL+R(x) to L+R. If the device is in thermal 

equilibrium at T and confined to L, R or L+R, we shall say it is in state LT, RT or 

5 For example, one could weaken the symmetry requirement and try to recover entropy 

generation of k ln 2 on average, per erasure. That would greatly complicate the analysis for little

useful gain.
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(L+R)T. When the device’s state is confined to L, it registers a value L; when 

confined to R, it registers R.

LP4. The energy function’s two regions L and R are perfectly symmetric in the sense that

there is a one-one map of canonical coordinates xL∈L� xR∈R between regions L 

and R that assures they have equal phase space volume and such that EL(xL)= 

ER(xR); and EL+R(xL)=EL+R(xR); and EL+R(xL)=EL(xL).

LP5. The erasure process has two steps.

LP5a. (“removal of the partition”) The device in state LT or RT proceeds, through a 

thermodynamically irreversible, adiabatic expansion, to the state (L+R)T.

LP5b.  (“compression of the phase space”) The device in state (L+R)T proceeds through a

thermodynamically reversible process of any type to the state LT, which we 

designate conventionally as the reset state. 

THEN

The overall effect of the erasure process LP5. is to increase the thermodynamic 

entropy of the environment by k ln 2. This represents a lower bound that will be 

exceeded if thermodynamically irreversible processes replace reversible processes.

Figure 2. The erasure process

The proof of the result depends largely on using relation (8) to compute the entropies SL,

SR and SL+R of the three states LT, RT or (L+R)T. We have

    
S L = E  L

T
+ k ln exp(−E L / kT )d x

L
∫ = E  R

T
+ k ln exp(−E R / kT )d x

R
∫ = S R
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where the symmetry EL(xL)= ER(xR) of LP4. assures equality of the above integrals and mean 

energies. We also have from the remaining symmetries that

    
S L +R = E  L +R

T
+ k ln exp(−E L +R / k T )d x

L +R
∫ = E  L

T
+ k ln 2 exp(−E L / k T )d x

L
∫   

 
 
 = S L + k ln 2

where these symmetries also assure us that   E  L +R = E  L = E  R . Hence

SL  =  SR                 SL+R  =  SL + k ln 2  =  SR + k 10                                                   (10)

Since the expansion LP5a is adiabatic, no heat passes between the device and the environment, 

so the process does not directly alter the environment’s entropy. Since process LP5b is 

thermodynamically reversible, but its final state entropy SL is lower than the initial state 

entropy SL+R by k ln 2, it follows that the process cannot be adiabatic and must pass heat to the 

environment, increasing the entropy of the environment by k ln 2. This completes the proof.

This version of Landauer’s principle is very general and sufficiently so to cover the usual

examples. Aside from the selection of the particular erasure procedure LP5, the principal 

assumptions are that the memory device states form a phase space to which ordinary statistical 

mechanics applies at that there are two regions L and R in it obeying the indicated symmetries. 

It is helpful to visualize the states and processes in terms of particles trapped in chambers, as 

Figure 2 suggests. However that visualization is far more specific than the result described.

The step LP5a is called “removal of the partition” since it is commonly illustrated as the 

removing of a partition that blocks the access of a single molecule gas to half the chamber. That 

the expansion of LP5a is thermodynamically irreversible seems unavoidable if the final result is 

to be attained. A thermodynamically irreversible (and adiabatic) process increases the entropy 

of the system by k ln 2 in passing from SL or SR to SL+R. If the process were thermodynamically 

reversible so that the total entropy of the device and environment would remain constant, then 

there would have to be a compensating entropy decrease in the environment of k ln 2. That 

decrease would negate the entropy increase of LP5b. This expansion is the part of the erasure 

process that creates entropy. The second step LP5b, the “compression of the phase space,” does 

not create entropy, since it is thermodynamically reversible. It merely moves the entropy 

created in the first step from the device to the environment. The step is commonly illustrated by

such processes as the compression of a one molecule gas by a piston. No such specific process 

need be assumed. Any reversible process that takes the state (L+R)T to LT is admissible, since all

reversible processes conserve the total entropy of the device and environment.
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Setting aside unilluminating embellishments, this appears to capture the most general 

sense in which erasure of information held in memory devices in thermal equilibrium at a 

temperature T must increase the thermodynamic entropy of the environment. The principle 

does not license an unqualified entropy cost whenever an erasure occurs. It is limited by the 

assumption that a particular erasure procedure must be used, with the real entropy cost arising 

in the first step, the thermodynamically irreversible “removal of the partition.” That this first 

step is the essential entropy generating step has been obscured in the literature by the erroneous

assertion that this first step may sometimes be a thermodynamically reversible constant entropy

process. As I will show in the following section, that assertion depends upon the illicit assembly

of many LT and RT states into what is incorrectly supposed to be an equivalent canonical 

ensemble (L+R)T. 

It may seem that we can generate Landauer’s principle with a much simpler and more 

general argument that calls directly on the expression (9) for entropy. Prior to erasure, we are 

unsure of whether the memory device is in state L or in state R. So we assign equal probabilities

to them:

P(L)  =  P(H)  =  1/2

According to (9), the entropy of the probability distribution is k ln 2. After erasure, we know the

device is in state L. The probabilities are now

P(L)  =  1          P(H)  =  0

According to (9), the entropy of this probability distribution is 0. Erasure has reduced the 

entropy of the memory device by k ln 2. Is this not just what Landauer’s principle asserts?

No, it is not. Landauer’s principle asserts that the thermodynamic entropy is reduced by 

k ln 2. As we saw at the end of Section 2.2, the expression (9) does not return the 

thermodynamic entropy of a system in thermal equilibrium unless the probability distributions 

inserted into it are canonical distributions. The initial probabilities P(L)  =  P(H)  =  1/2 are not 

canonical distributions. They reflect our own uncertainty over the state of the device. While we 

may not know which, the device is assuredly in one of the states LT or RT. Each of the two states

has its own canonical distribution, which represents the device’s disposition in the region of 

phase space accessible to it. As result the above argument fails to establish Landauer’s principle 

for thermodynamic entropy.
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What is dangerously misleading about the argument is that the distribution 

P(L)  =  P(H)  =  1/2 will coincide with the canonical distribution of the device half way through

the process of erasure, after the removal of the partition, when the device is in state (L+R)T. The 

argument then returns the correct thermodynamic entropy reduction in the device during the 

second step, the compression of the phase space. But it remains silent on the first step, the 

“removal of the partition,” the essential thermodynamic entropy generating step of the erasure 

process, and tempts us to ignore it.

2.4 A Compendium

It will be useful for later discussion to collect the principal results in thermodynamics 

and statistical mechanics of this section.

Thermal equilibrium. A system in thermal equilibrium is represented by a canonical distribution 

(2). Its thermodynamic entropy is given uniquely by the expression (8), which is a special case 

of (9) that arises when the probability distribution p(x) is the canonical distribution. 

Accessible regions of the phase space. These are the regions of the phase space that a system in 

thermal equilibrium can access over time as a part of its thermal motion. They are demarcated 

by the energy function E(x) of the canonical distribution as those parts of the phase space to 

which finite energy is assigned. Since the problems of ergodicity raise issues that are apparently

unrelated to Landauer’s principle, I will assume here that the thermal systems under 

examination have the sorts of properties that the early literature on ergodic systems hoped to 

secure. Most notably, I assume that over time a system densely visits all portions of the 

accessible phase space and that the probability a canonical distribution assigns to each region in 

the accessible phase coincides with the portion of time the system spends there.

Compression of the phase space. This compression arises when the accessible region of the phase 

space is reduced by external manipulation of the energy function E(x). The compression is 

associated with a reduction in thermodynamic entropy of the system, in so far as the 

compression reduces the integral 
    
k ln ex p (−E ( x )/ k T )d x

Γ∫  of the expression (8) for thermodynamic

entropy. As long as suitable symmetry requirements are met, a halving of the accessible phase 

space will reduce the thermodynamic entropy by k ln 2.

Creation of thermodynamic entropy in erasure. In the erasure process described, k ln 2 of 

thermodynamic entropy is created in the first, irreversible step, the “removal of the partition.” 
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Without the thermodynamically irreversibility of this step, there would be no thermodynamic 

entropy cost associated with erasure.

3. Illicit Ensembles and the Failure of the Many to  One 

Mapping Argument

3.1 The Use of Ensembles in Statistical Mechanics

There is a standard procedure used often in statistical mechanics through which we can 

develop the probability distribution of a single component in its phase space by assembling it 

from the behavior of many like components. One familiar way of doing this is to take a single 

component and sample its state frequently through its time development. The probability 

distribution of the component at one moment is then recovered from the occupation times, the 

fractional times the system has spent in different parts of its phase space during the history 

sampled. For example we might judge that a molecule, moving freely in some chamber, spends 

equal time in all equal sized parts of the chamber. So we infer that its probability distribution at 

one time is uniformly distributed over the chamber. Another way of doing it is to take a 

collection of identical components with the same phase space—an “ensemble”—and generate a 

probability distribution in one phase space from the relative frequency of the positions of the 

components in their own phase spaces at one moment in time. For example, we may consider 

very many identical molecules of mass m in thermal equilibrium at temperature T and judge 

that the number with speed v is proportional to

    

m

T

 
 
 
 
 
 

3
2

v 2 exp − m v 2

2 k T

 

 
 
 

 

 
 
 . We immediately conclude 

that the probability that some particular molecule has speed v is proportional to this same 

factor. At its very simplest, the procedure might just collapse the probability distributions of 

many phase spaces down to one phase space. We might take the probability distributions of one

component at different times; or we might take the probability distributions of many 

components from their phase spaces. Carried out correctly, this form of the procedure is rather 

trivial, since all the distributions are the same. In all cases, the result is a probability distribution

in one phase space at one moment that represents the thermodynamic properties of one 

component. This technique is so common that we freely move from individual components to 
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ensembles and back and sometimes even speak of ensembles when we intend to speak of just 

one component.

Let us now consider how this process would proceed for forming a canonical 

distribution (2), p(x) =  exp(–E(x)/kT)/Z. First recall how this distribution is derived in the time 

honored ritual extending back to Boltzmann. When we have many components in thermal 

equilibrium, the canonical distribution is generated uniquely from the demand that thermal 

equilibrium correspond to the most probable distribution of energy; and it is essential to that 

derivation that that energy function E(x) represent the energy the component would have, were 

it at phase space position x, with x a position accessible to the component. Thus, in generating 

the canonical distribution for one component from an ensemble, one constraint is essential: the 

phase spaces sampled, either through time or by visiting different components, must have the same 

energy function E(x). It is an obvious but absolutely fundamental point that one cannot assemble 

a canonical distribution properly representative of an individual component by sampling from 

a single component at times when the energy function E(x) is different; and that one cannot 

form such a canonical distribution by collapsing the phase space position frequencies or 

probability distributions from components with different energy function E(x) in their phase 

spaces. For then the energy function E(x) would not represent the energies at phase space points

accessible to the component; or it would not represent the correct energy for the component at 

accessible points in phase space. Whatever might result from such an illicit procedure would 

not correctly represent the thermodynamic properties of just one ensemble member. It would 

not be licit, for example, to apply the thermodynamic entropy formula (8) to it to recover the 

thermodynamic entropy of a component.

Consider sampling from the successive states of the compression process illustrated in 

Figure 1. The sampling must take place during a sufficiently short time period so that the 

energy function is, for all intents and purposes, unchanged. Or consider what happens if we try 

to combine the initial and final states of the relocation process also illustrated in Figure 1. Since 

they have disjoint phase spaces, neither state will be properly represented by the resulting 

distribution that spans both regions of the phase space.

Finally, even if one has an ensemble of canonically distributed systems, they cannot be 

treated as multiple clones of a single canonically distributed system unless the energy functions 
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E(x) is the same in each member of the ensemble. To do otherwise would be an error. 

Unfortunately, this error seems to be quite pervasive in the Landauer’s principle literature.

3.2 Illicit Ensembles

We must be grateful to Leff and Rex (2003) for giving us an uncommonly clear survey of

this literature in the introductory chapter of their collection. While I will quote their text as 

clearly expressing the error, I want to emphasize that they are merely reporting more clearly 

than elsewhere what appears to be standard currency in the literature. In discussing the erasure 

procedure of Landauer’s principle for the case in which the memory device is a partitioned box 

containing a single molecule, they note (p. 21):

The diffusion process in the erasure step (i) [removal of the partition], eradicates the 

initial memory state. Despite the fact that this process is logically irreversible, it is 

thermodynamically reversible for the special case where the ensemble has half its 

members in state L and half in state R. This is evident from the fact that partition 

replacement leads to the initial thermodynamical state (assuming fluctuations are 

negligibly small)…[6]

How has the ensemble entropy of the memory changed during the erasure process? 

Under our assumptions, the initial ensemble entropy per memory associated with 

the equally likely left and right states is SLR(initial) = k ln 2. After erasure and 

resetting, each ensemble member is in state L, and SLR(final) = 0. Therefore ∆SLR = –

k ln 2 = –∆Sres. In this sense the process is thermodynamically reversible; i.e. the entropy

change of the universe is zero. This counterintuitive result is a direct consequence of 

the assumed uniform initial distribution of ensemble members among L and R 

states…

6 (JDN) The apparent presumption is that the insertion of the partition does not alter the 

thermodynamic entropy of the memory devices. This directly contradicts the central 

assumption of the Szilard one-molecule gas engine (described in Section 4 below), in which the 

replacement of the partition reduces the thermodynamic entropy of the one molecule gas by 

k ln 2. This reduction in thermodynamic entropy is what Maxwell’s demon seeks to exploit in 

the standard examples.
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In the following paragraph, Leff and Rex consider the reverse process. They consider the 

memory cells without their partitions so the molecule has access to both L and R regions. They 

continue:

Subsequent placement of the partition has zero entropic effect, because 

(approximately) half the ensemble members are likely to end up in each of the two 

states.

Figure 3 helps us visualize the point:

Figure 3 Collections of memory cells

The claim is that the thermodynamic entropy per cell in the set of cells with random data—as 

many L as R—is the same as the thermodynamic entropy of the cells in which the partition has 

been removed; and it is k ln 2 greater than the thermodynamic entropy of an identical cell in the

set of reset cells.

This is incorrect. The correct thermodynamic entropies are recovered by applying the 

expression (8) to the canonical distributions of molecules in each cell, exactly as shown in 

Section 2.3. I went to some pains in Section 2.2 to show that this expression (or ones equivalent 

to it) is the only admissible expression for the thermodynamic entropy of a canonically 

distributed system. The calculation is straightforward and the results, given as (10), are 

unequivocal. When each of the cells with the random data has its partition removed, its 

accessible phase space doubled. That unavoidably increases its entropy by k ln 2. A cell 

showing L has the same entropy whether it is a member of the cells carrying random data or a 
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member of the cells that have all been reset to L. Thermodynamic entropy is a property of the 

cell and its physical state; it is not affected by how we might imagine the cell to be grouped with

other cells.

How could we come to think otherwise? Whatever may have been their intention, the 

appearance is simply that the collection of cells carrying random data is being treated illicitly as 

a canonical ensemble, as suggested by the naming of the collection an “ensemble.” Thus all the 

results of Section 2 could be taken to apply. Each of the cells from the collection carrying 

random data occupy twice the volume of phase space; the cells are reset to a state that occupies 

half the volume of phase space; therefore their entropy is reduced by k ln 2 per cell. Yet the 

collection of cells carrying random data is clearly not a canonical ensemble. We cannot take the 

probability distributions for each individual cell and collapse them down to the one phase space

to produce a distribution that captures the properties of all. The collapse is illicit in so far as cells

showing L and cells showing R have different energy functions E(x). The energy function of the 

cells showing L is finite (and presumably small) in the L region of the phase space; it is infinite 

outside that region. Conversely the energy functions of the cells showing R are finite in the R 

region; and infinite outside.7 The resulting illicitly formed distribution extends over both L and 

R regions of the phase space. So we might take it to be equivalent to the canonical distribution 

of a cell with the partition removed. To do so would be to conclude incorrectly that each of the 

random data cells and each of the cells with the partitions removed have the same entropy.

If the collection is not being treated as a canonical ensemble, it is hard to understand 

how the results pertaining to thermodynamic entropy and heat generation could be recovered. 

It has been suggested to me that Leff and Rex’s argument depends on introducing a second 

probability distribution that is intended to simulate the entropic properties of a canonical 

distribution. If a cell carries random data, its uncertainty would be represented by a probability 

7 Of course in practice, the molecule in the cells showing L is confined to the L portion of phase 

space by an impenetrable barrier, so the actual energy of the molecule, were it to get through 

might be quite small. What concerns us here is the form of the energy function needed to 

maintain the expression for the canonical distribution p(x)  =  exp(–E(x)/kT)/Z. Since p(x) must 

be zero for the R portions of phase space, E(x) must be infinite there. For further discussion, see 

Appendix.
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distribution F(u), where u=L or R. The entropy formula (9) assigns what we will call an 

information theoretic entropy to the distribution

    

S in f o = −k F (u ) ln F (u )

u =L ,R

∑    11                                                        (11)

The overall effect of erasure is to reduce the uncertainty of the data. That is, erasure might take 

equidistributed L and R data with F(L) = F(R) = 1/2 to reset data with F(L) = 1 and F(R) = 0. The

associate change in Sinfo according to (11) would be a reduction by k ln 2, just the number that 

Landauer’s principle requires. Since the thermodynamic entropy of cells carrying random data 

and reset data is the same, may we not locate the entropy change of Landauer’s principle in this 

information theoretic entropy change?

Promising as this possibility may seem, there is an immediate and, I believe, fatal 

difficulty (as already indicated above in Section 2.3). It is the wrong sense of entropy. I showed in 

Section 2.1 that the sense of entropy at issue in exorcisms is thermodynamic entropy. Sinfo of 

equation (11) is not thermodynamic entropy; insertion of a probability distribution into formula 

(9) does not yield thermodynamic entropy unless the probability distribution is a canonical 

distribution. Thus while it may appear that the erasure process

F(L) = F(R) = 1/2 � F(L) = 1 F(R) = 0

is a kind of compression of the phase space, it is not the type of compression reviewed in 

Section 2.4 that would be associated with a reduction of thermodynamic entropy. For it is not 

the reduction in the accessible volume of phase space of a canonically distributed system. 

Finally, we cannot associate a quantity of heat with the change of information theoretic entropy.

For we have no rule to associate its change with the exchange of heat with the surroundings. 

The rule (1) that associates heat transfer with entropy holds only for thermodynamic entropy 

and, indeed, defines it. No other entropy can satisfy it without at once also being 

thermodynamic entropy.8

8 We may seek a rule somehow analogous to (1) that would connect information theoretic 

information with transfers of heat in some sort of extended theory of thermodynamics. The 

difficulty is that the new notion is incompatible with virtually every standard property of 

thermodynamic entropy, so that the entire theory would have to be rebuilt from scratch. To 

begin, the augmented entropy Saug is no longer a function of the state of a thermal system, as is 

thermodynamic entropy. One memory device in one fixed physical state, displaying an L, say, 

-21-



The entropy Leff and Rex track through the erasure process is apparently the sum of the 

thermodynamic entropy (henceforth “Sthermo”) and this information theoretic entropy Sinfo. 

Using the resulting augmented entropy,9 Saug= Sthermo+ Sinfo, the thermodynamically 

irreversible process of the “removal of the partition” turns out to be a constant augmented 

entropy process. In it, for cells carrying random data, the increase of k ln 2 of thermodynamic 

entropy Sthermo in each cell is exactly compensated by a decrease of k ln 2 of information 

theoretic entropy Sinfo. In traditional thermodynamics, a thermodynamically reversible process 

has constant thermodynamic entropy. Presumably this aids in motivating the labeling of the 

process of “removal of the partition” as “thermodynamically reversible” by Leff and Rex above.

can have different entropies according to how we conceive the data. Is it carrying reset data? Or 

is it carrying random data?—in which case the Sinfo term increases its augmented entropy by 

k ln 2. Also constant augmented entropy processes will no longer be the least dissipative and 

will no longer be thermodynamically reversible in the sense of being sequences of equilibrium 

states as indicated in the text. Then we would need a surrogate for the second law of 

thermodynamics. We cannot simply assume that summed augmented entropy will be non-

decreasing for isolated systems, as is thermodynamic entropy. We must find the law that 

applies and we must find some appropriately secure basis for it, so it is a law and not a 

speculation. That basis should not be Landauer’s principle itself, lest our justification of 

Landauer’s principle becomes circular.

9 That these two entropies can be added to yield augmented entropy follows if augmented 

entropy conforms to expression (9). Consider just one memory device. Its state is represented by

a dual probability distribution that combines the new distribution F(u) and the canonical 

distributions pL(x) and pR(x) of devices in states LT and RT respectively. The combined 

distribution is p(u,x)  =  F(u) pu(x). Substituting this distribution into the expression (9), we find

Saug = F(u)
u=L,R

∑ −k pu(x)ln pu(x)dx
u∫( )− k F(u)

u=L,R

∑ ln F(u) = Sthermo + Sinfo

where the separation into two added terms depends essentially on the probabilistic 

independence of F(u) from pL(x) and pR(x). The first term, Sthermo, is a thermodynamic entropy 

term in so far as it is the weighted average of the thermodynamic entropies of the device in 

states LT and RT.
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It must be emphasized that this is a redefinition of the notion of thermodynamic 

reversibility. The traditional definition portrays a thermodynamically reversible process as a 

sequence of equilibrium states or ones arbitrarily closely removed from equilibrium (e.g. 

Planck, 1926, §1). A paradigm of an irreversible process, however, is the uncontrolled expansion

triggered by the “removal of the partition,” in which a gas expands without performing work. 

That replacement of the partition reconfines the molecule to one half of the box is a sense of 

reversibility. But it is not the relevant sense, since the processes are not equilibrium processes. 

In addition, if we associate a state with a canonical distribution, then the process will only 

succeed in restoring the original state half the time, for, in only half the time, will the molecule 

be reconfined in the side from which it started. Under the new definition, reversible processes 

are no longer minimally dissipative in the sense that they may involve increases in 

thermodynamic entropy, as is the case with the “removal of the partition.”

This new notion of reversibility obscures the real reason that the standard erasure 

process LP5 passes a net amount of heat to the environment. While the first step (“removal of 

the partition”) may be a constant augmented entropy process, it is still a thermodynamically 

irreversible process in the sense that it is a disequilibrium process that creates thermodynamic 

entropy. The thermodynamic entropy created appears as the net heat passed to the environment

in the erasure process.

That Bennett is also in some way working with an illicit simulation of a canonical 

ensemble is the only way I can make sense of claims in his Bennett (1982, pp. 311-12). He 

considers the process of erasure of a bistable ferromagnet, in which the ferromagnet starts in 

one of two states and is reset by a changing external field into one of them. If the initial state is 

“truly unknown, and properly describable by a probability equidistributed between the two 

minima [that would correspond to L and R above],” then he regards the process of erasure as 

logically and thermodynamically reversible. If on the other hand the initial state is “known (e.g.,

by virtue of its having been set during some intermediate stage of computation with known 

initial data)” then the erasure is logically and thermodynamically irreversible. Thus he clearly 

maintains that two ferromagnets in identical physical states have entropies that differ by k ln 2 

according to whether we know what the state is or not.

Indeed the “probability [distribution] equidistributed between the two minima” 

mentioned would seem to be the single probability distribution in the phase space of one 
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memory device, intended to represent the thermodynamic properties of each of the memory 

devices carrying random data. While such a distribution can be defined in one phase space, it is 

not the canonical distribution that represents the thermodynamic properties of the collection of 

memory devices. It will employ an energy function E(x) that allows all parts of the phase space 

to be accessible; each memory device (when recording data) will only have access to a portion of

its phase space, so that it is represented by a different canonical probability distribution. This 

“equidistributed” distribution cannot be used to ascertain the thermodynamic entropy of each 

memory device by means of the results of Section 2.

We see in analogous remarks that Bennett (2003, p. 502) has also adopted the redefined 

notion of thermodynamic reversibility:

If a logically irreversible operation like erasure is applied to random data, the 

operation still may be thermodynamically reversible because it represents a 

reversible transfer of entropy from the data to the environment, rather like the 

reversible transfer of entropy to the environment when a gas is compressed 

isothermally. But if, as is more usual in computing, the logically irreversible 

operation is applied to known data, the operation is thermodynamically irreversible, 

because the environmental entropy increase is not compensated by any decrease of 

entropy of the data.

What makes the difference in deciding whether an erasure process is thermodynamically 

reversible is whether the data is random. Apparently this refers to an analysis such as given 

above. The process of “removal of the partition” does increase thermodynamic entropy; but, 

only in case the data is random, is there a compensating reduction of information theoretic 

entropy, so that the augmented entropy of the process is constant, which is the new definition of

a thermodynamically reversible process.

These approaches seem to be driven by the idea that randomness and thermalization can

be equated. So a collection of devices carrying random data is supposed to be like a canonical 

ensemble. What is at stake, if we treat such collections of memory devices as canonical 

ensembles, is the additivity of entropy. To see this, we will draw on the states defined in Section

2.3 above. Consider a collection of N/2 memory devices LT, each with thermodynamic entropy 

SL, and N/2 memory device RT, each with equal thermodynamic entropy SR= SL=S. If we 

collapse the distributions of all the memory devices down to one phase space in the obvious 
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way, we recover a single probability distribution that is spread over both L and R regions of 

phase space that is actually the canonical distribution associated with the state (L+R)T. So, 

recalling (10), if we insert this distribution into the entropy formula (9), we end up concluding 

that the thermodynamic entropy of each component is S + k ln 2. Thus the thermodynamic 

entropy of the entire collection would be NS + Nk ln 2. That contradicts the additivity of 

thermodynamic entropy that assures us that a collection of N systems each in thermal 

equilibrium at temperature T and with entropy S has total entropy NS.

Or is the thought that the additivity of thermodynamic entropy is to be given up? Is the 

thought that each memory device might have the thermodynamic entropy SR= SL=S 

individually; but the totality of N of them with random data, taken together, has a 

thermodynamic entropy greater than the sum NS of the individual entropies? That thought 

contradicts the standard formalism. Imagine, for example, that the N memory devices record 

some random sequence L, R, L, …. It doesn’t matter which it is or whether we know which it is. 

It is just some definite sequence. That thermal state is represented by a canonical distribution 

over the joint phase space of the N components:

p(x,y,z,…) = exp(-E(x,y,z,…)/kT)/Z = exp(-(EL(x)+ER(y)+EL(z)+…)/kT)/Z   12                     (12)

where the canonical phase space coordinates for the components are x, y, z, …; EL(x) assigns 

finite energies to the L portion of phase space (and so on for the remainder); and Z is computed 

from (3). This is the unique canonical distribution that represents the thermal property of the N 

devices. Applying the entropy formula (8) to this distribution, we recover that the entropy of 

the total collection is NS. That we might not know which particular sequence of data is recorded

is irrelevant to the outcome of the computation. In every case, we recover the same 

thermodynamic entropy, NS.

To imagine otherwise—to imagine that the randomness of the data somehow defeats 

additivity—has the following odd outcome. Imagine that you know which particular sequence 

of L, R, … is recorded in the N memory devices, so for you the data is not random; but I do not 

know which is recorded, so the data is random for me. Then the supposition must be that the 

thermodynamic entropy of the N memory devices is Nk ln 2 less for you than for me. And 

when you tell me which particular data sequence is registered, the thermodynamic entropy of 

the N devices for me will drop by Nk ln 2 to NS, no matter which sequence I learn from you is 

the one recorded. We have the same outcome if we imagine that the thermodynamic entropy of 
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a cell carrying data L, say, is increased by k ln 2 if we happen not to know whether the cell 

carries data L or R. In these cases, thermodynamic entropy has ceased to be a function of the 

system’s state.

3.3 Failure of the Many to One Mapping Argument

The version of Landauer’s principle of Section 2.3 has limited scope. It does not license a 

generation of k ln 2 of thermodynamic entropy in the environment whenever a bit of 

information is erased. It licenses that generation only when a specific erasure procedure is 

followed. The common view in the literature is that the principle has broader scope. The 

argument advanced in support is based on the idea that erasure must map many physical states

to one and this mapping is the source of the generation of thermodynamic entropy. The 

argument appeared in Landauer’s (1961, p. 153) early work. Remarking on the possibility that 

an erasure process might not immediately return the memory device fully to its reset state, he 

noted:

Hence the physical “many into one” mapping, which is the source of the entropy 

change, need not happen in full detail during the machine cycle which performed 

the logical function. But it must eventually take place, and this is all that is relevant 

for the heat generation argument.

Here is a recent version of this many to one mapping argument (Bennett, 2003, p. 502):

While a computer as a whole (including its power supply and other parts of its 

environment), may be viewed as a closed system obeying reversible laws of motion 

(Hamiltonian or, more properly, for a quantum system, unitary dynamics), 

Landauer noted that the logical state often evolves irreversibly, with two or more 

distinct logical states having a single logical successor. Therefore, because 

Hamiltonian/unitary dynamics conserves (fine-grained) entropy, the entropy 

decrease of the [information bearing degrees of freedom] during a logically 

irreversible operation must be compensated by an equal or greater entropy increase 

in the [non-information bearing degrees of freedom] and environment. This is 

Landauer’s principle.10 

10 The text identifies the principal problem with the many to one mapping argument. There are 

others. For example, the argument employs fine-grained entropy. Since fine-grained entropy can 
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That is, a single logical state is represented by a single physical state. A single physical state is 

represented by a volume of phase space. Hamiltonian dynamics conserves total phase space 

volume, so the reduction in phase space volume in one part of phase space must be 

compensated by an expansion elsewhere. And since entropy may be (cautiously!) associated 

with volumes of phase space, these changes in phase space volume may be translated into 

entropy changes.

The central assumption of this argument is that memory cells prior to erasure (the 

“many” state) occupy more phase space than the memory cells after erasure (the “one”) state. It 

should now be very clear that this assumption is incorrect. Or at least it is incorrect if by 

“compression of the phase space” we mean the reduction of the accessible region of the phase 

space of a canonical ensemble as described in Section 2.4. And we must mean this if we intend 

the compression to be associated with a change of thermodynamic entropy for a system in 

thermal equilibrium at temperature T. To see the problem, take the memory cells described in 

Section 2.3. Prior to erasure, the memory device is in state LT or it is in state RT (but not both!). 

After the erasure it is in state LT. Since the states LT and RT have the same volume in phase 

space, there is no change in phase space volume as a result of the erasure procedure. A process of

erasure that resets a memory device in state LT or in state RT back to the default state LT does not reduce 

phase space volume in the sense relevant to the generation of thermodynamic entropy!

How could such a simple fact be overlooked? Clearly part of the problem is that an 

intermediate stage of the common erasure procedure LP5 is an expanded state (L+R)T that 

occupies more volume in phase space. But that state is arrived at by expanding the phase space 

in the first step by exactly as much as it will be compressed in the second. Reflection on that fact

should have revealed that the erasure process overall does not compress phase space.

What obscured such reflection is the real reason for the persistence of the many to one 

mapping argument. It was obscured by the assembly of many memory devices with random 

neither increase nor decrease in isolated systems, it does not correspond to thermodynamic 

entropy, which can increase in isolated systems. The appropriate entropy is the coarse-grained 

entropy, whose use will greatly complicate the many to one argument. While it is extremely 

unlikely, Hamiltonian dynamics does allow the reduction of the coarse-grained entropy of 

isolated systems. It is just this possibility that was the original inspiration for the proposal of 

Maxwell’s demons. Could they somehow convert “extremely unlikely” into “likely”?
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data into an ensemble that is taken to be or to simulate a canonical ensemble. As a result, the 

erasure of random data is incorrectly associated with a reduction in volume of the accessible 

region of a phase space of a canonical ensemble and a reduction of thermodynamic entropy is 

incorrectly assigned to the process.

The many to one mapping argument fails.

3.4 Must Erasure Always Be Thermodynamically Irreve rsible?

When we renounce illicit canonical ensembles and abandon the failed many to one 

mapping argument, we are left without any general reason to believe an unconditional 

Landauer’s principle. We are able, however, to reformulate the question of the range of 

applicability of Landauer’s principle, since we can now recognize that memory devices with 

random data have the same thermodynamic entropy as memory devices with default data. The 

association of an unavoidable thermodynamic entropy cost with an erasure process is 

equivalent to the necessity of the erasure process being thermodynamically irreversible.11 So we 

ask: must erasure always be thermodynamically irreversible?12

It is the case that the erasure processes of the familiar examples are thermodynamically 

irreversible. For example, erasure processes actually used in real memory devices, of the type 

referred to by Landauer and others, employ thermodynamically irreversible processes. We also 

use thermodynamically irreversible processes in our standard implementations of erasure in 

thought experiments, such as memory cells that employ one molecule gases. The standard 

process of this type, a thermodynamically irreversible expansion followed by a 

thermodynamically reversible compression, is the one incorporated into the restricted version 

of Landauer’s principle stated in Section 2.3 above.

11 If a thermodynamically reversible process takes an unerased memory device to an erased 

memory device at the same entropy, then there will be no net change in the entropy of the 

environment, since a thermodynamically reversible processes conserves thermodynamic 

entropy. An irreversible process increases total thermodynamic entropy; and that increase must 

appear in the environment as a thermodynamic entropy cost since the entropy of the memory 

device is unchanged.

12 And if so, must it always come with a cost of k ln 2 of thermodynamic entropy for each bit 

erased?
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What we lack is a principled demonstration that all erasure processes must be 

thermodynamically irreversible. Our experience with familiar examples does count for 

something—but it is not enough. That we find thermodynamic irreversibility in real examples 

and the small stock of fictitious examples used and re-used in our thought experiments falls 

short of the general assurance needed. We need to be assured that all erasure processes must be 

thermodynamically irreversible, no matter how wildly they may differ from the familiar 

examples. For the claim to be examined is that Landauer’s principle is sufficiently powerful to 

preclude all Maxwell’s demons, which must include extraordinary devices that employ 

extraordinary processes.

Perhaps there are some unrecognized principles that govern the real or commonly 

imagined examples and if we could find them then we could give a really universal basis to 

Landauer’s principle. But we are far from identifying them and, therefore, even further from 

knowing if those principles reflect some deeper fact of nature or merely a limitation on our 

imagination.

In this context, we should consider a demand sometimes explicitly placed on an erasure 

process  (e.g. Bub, 2001, p. 573): that it must be indifferent in its operation to whether the state 

erased is L or R. First, it remains to be shown that this demand would force all possible erasure 

processes to be thermodynamically irreversible. Rather, all we know is that the 

thermodynamically irreversible step of the ordinary erasure processes somehow seems 

associated with this indifference: the one removal of the partition allows an L state or an R state 

to expand irreversibly to fill the full phase space. But how are we to bridge the gap between our

limited repertoire of standard examples and all possible erasure procedures? How do we know 

that this indifference cannot be implemented in some extraordinary, thermodynamically 

reversible process? Second, we seem to have no good reason to demand that the erasure 

procedure must be indifferent to the state erased. It certainly makes the erasure process easy in 

ordinary examples: we remove the partition and then compress. But that is no reason to believe 

that no other way is admissible. Leff and Rex (2003, p. 21) state the reason that may well be 

tacitly behind other assertions of the demand: “[dual procedures] would necessitate first 

determining the state of each memory. After erasure, the knowledge from that determination 

would remain; i.e. erasure would not really have been accomplished.” The reason is plausible as

long as we continue to think of ordinary devices and the eraser as, for example, a little 
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computer with its own memory. But what assures us that, in all cases, the eraser must be a 

device of this type? Might it not function without recording states in a memory device of the 

type governed by Landauer’s principle? Or if it does record states, why can it not use the very 

state under erasure to keep track of the procedure being followed?

How might such an erasure procedure look? I am loath to pursue the question since any 

concrete proposal invites a debate over the cogency of a particular example that once again 

obscures the real issue—that the burden of proving Landauer’s principle remains unmet. As it 

turns out, however, such a procedure is described, in effect, in Section 4.2 below. We need to 

reconceive of the Szilard one-molecule gas engine as itself a memory device that records an L or

an R according to the side of the partition on which the molecule is trapped. The “no erasure 

demon” described a little later in the section erases that record using different processes 

according to whether the record is an L or an R and does it in a thermodynamically reversible 

manner. 

4. Why Landauer’s Principle Fails to Exorcise Maxwe ll’s 

Demon

4.1 The Challenge of Maxwell’s Demon

Our present literature on Maxwell’s demon derives from the early twentieth century 

when it was finally established that thermal processes were statistical processes. It became clear 

that the second law of thermodynamics could not be unconditionally true. There were 

admissible mechanical processes that violated it. Small-scale violations arose in observable 

fluctuation phenomena, such as the Brownian motion of a pollen grain visible under a 

microscope. The obvious question was whether these microscopic violations of the second law 

could somehow be accumulated to produce macroscopic violations. Numerous mechanisms for 

doing just this were proposed. As we describe in our short survey in Earman and Norton 

(1998/99, I. §4-6), a consensus  rapidly developed. All the mechanisms imagined would fail 

since their intended operation would be disrupted by fluctuations within their own machinery. 

One of the best-known examples is the Smoluchowski trapdoor of Figure 4.
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Figure 4  Smoluchowski Trapdoor

 A spring loaded trapdoor is installed in a wall separating gases initially at equal temperature 

and pressure. It is set up so that gas molecules striking the door from one side will pop the door

open, allowing the molecule to pass. But it does not allow molecules to pass in the other 

direction since the impact of these molecules slams the trapdoor shut. The expected outcome is 

that the pressure of gas on one side spontaneously diminishes, while it increases on the other, a 

clear violation of the second law of thermodynamics. What was neglected in this expectation is 

that the spring restraining the trapdoor must be weak and the trapdoor very light weight if 

molecular collisions are to be able to open it. But under just these conditions, the trapdoors own 

thermal energy of kT/2 per degree of freedom will lead to wild flapping that will defeat its 

intended operation. The Smoluchowski trapdoor was just one of many mechanisms proposed. 

They included mechanical devices with one-way ratchets and pawls and electrical systems in 

which charged colloids are spontaneously cooled by external absorption of the electromagnetic 

radiation they emit. All these devices were deemed to fail because of disruption by further 

overlooked fluctuation phenomena.

However a nagging worry remained. What if these devices were operated by an 

intelligent agent who could somehow cleverly evade the disruptions of fluctuations? As we 

describe in Earman and Norton (1998/99, I §8-9) this was the problem tackled by Szilard in his 

1929 paper that drew attention to the entropy costs of information processing. It is of course 

standard to naturalize the demon as a very complicated physical system, perhaps even as 

intricate as a human being, but still governed by ordinary physical laws. In this context we can 

now pose:

Problem of Maxwell’s demon.

Is there are device, possibly of extremely complicated construction and of devious 
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operation, that is able to accumulate fluctuations into a macroscopic violation of the 

second law of thermodynamics?

Clearly what will not suffice as a solution is to notice that simple devices—spring loaded 

trapdoors, ratchets and pawls—fail. The concern is that something vastly more complicated 

might circumvent the weaknesses of the simple devices. Clearly what will not suffice is to notice

that most ordinary systems adhere to the second law. The concern is that there might be some 

extraordinary device that does not. Purely mechanical considerations do not preclude it.

4.2 Landauer’s Principle Fails to Exorcise all Demo ns

Let us review the standard way Landauer’s principle is used to exorcise Maxwell’s 

demon. It is in the context of the one-molecule gas engine introduced by Szilard. As shown in 

Figure 5, a chamber contains a single molecule maintained at temperature T by contact with a 

heat sink.

Figure 5. Maxwell’s demon operates Szilard’s one molecule gas engine

The demon inserts a partition-piston to trap the molecule on one side. It then allows the trapped

molecule to expand reversibly and isothermally against the partition-piston. In this process 

kT ln 2 of heat is drawn from the heat sink and converted to work. This conversion is the net 

effect of the completed cycle and it amounts to a reduction in the entropy of the heat sink by 
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k ln 2, in violation of the second law. If we think of the motion of the molecule from left to right 

and back as a rather extreme form of pressure fluctuation that violates the second law, the 

repeated operation of this cycle would appear to accumulate the violations without limit.

To save the second law, we must find a hidden source of entropy. It is supplied by 

noticing that a successful demon must learn where the molecule is after the insertion of the 

partition—on the left “L” or on the right “R”.13 In order to complete the cycle, the demon’s 

memory must be reset to its initial state. That is, the demon must erase one bit of information. 

By Landauer’s principle, that erasure will increase the entropy of the thermal environment by 

k ln 2, thereby restoring the second law.

No one can doubt the elegance of this analysis. However we should not allow that 

elegance to hide its shortcomings. They all come down to one problem. We face one particular 

attempt to reverse the second law and we are using a particular, if natural, set of presumptions 

about how the demon must function. We are supposed to believe that all attempts to reverse the

second law by all demons will proceed analogously. This might well be reasonable as long as 

we deal with ordinary systems that are not too different in their essentials from the one just 

described. But that is not the problem to be solved. The challenge of exorcising Maxwell’s 

demon is to demonstrate the failure of all demons, including extraordinary machines of 

potentially great complication devised by the most ingenious designers. 

Nonetheless, if Landauer’s principle is to be the agent that exorcises all Maxwell’s 

demons, then it must be applicable to all of them. Specifically, in each we must be assured that 

we will find the assumptions of Landauer’s principle realized and the two step erasure process 

(“removal of the partition”, “compression of the phase space”). When it is stated so forthrightly,

it is surely clear that any such assurance is foolhardy.

The whole point is that we just cannot know what the extraordinary machines might be 

like. While I cannot pretend to map out all the extraordinary possibilities, it will be helpful to 

13 Bennett has urged that the older tradition erred in attributing an entropy cost to the acquiring 

of this information and that it can be acquired by thermodynamically reversible processes. 

However, as we noted in Earman and Norton (1998/99, II. pp. 130-14), the successful operation 

of the thermodynamically reversible processes proposed would be disrupted by fluctuations in 

exactly the same way as fluctuations disrupt the operation of simple, mechanical Maxwell’s 

demons.
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review some of the ways in which alterations of this standard set up would confound the 

exorcism. Perhaps closer scrutiny will preclude some of these alterations. If an exorcism based 

on Landauer’s principle is to succeed, however, we must be assured that every one of them can 

be precluded, along with all others that we have yet to conceive.

New physics. The assumption that all Maxwell’s demons must fail is sensitive to the physics 

presumed. Small changes in the physics make simple demons possible. For example, 

following the work of Zhang and Zhang, Earman and Norton (1998/99, II Appendix 2) 

describes a simple force field that would function like the Smoluchowski trapdoor. The field

passes molecules more readily in one direction than in the other. So, if it replaces the 

trapdoor of Figure 4, it will lead to a spontaneous pressure differential between the two 

sides in violation of the second law of thermodynamics. The distinctive feature of the force 

field is that it does not preserve volume in the ordinary position-momentum phase space of 

gas molecules so that the traditional machinery of statistical physics as described in Section 

2.2 is inapplicable.

Given its history, it is almost an irresistible temptation to anthropomorphize a demonic device 

operating a Szilard one molecule gas engine. To function, the device must “know” where the 

molecule is; it must use that information; and it must erase its “memory.” So the binary L/R 

states of the Szilard engine induce us to think of information; and the active processing of that 

information induces us to conceive of the demonic device as a thinking agent. To avoid 

animism, we model the device as a computer. Both the information and computational aspects 

are artifacts of the one example and not universally applicable:

Demons that do not process information. We can readily conceive demonic devices in which 

information is neither acquired nor acted upon. In 1907, Svedberg (see Earman and Norton, 

1998/99, I pp.443-44) proposed a simple device that was intended to reverse the second law.

In brief, charged particles in a colloid emit their thermal energy as electromagnetic radiation

that is excited by their thermal motions. A precisely shaped and located lead casing 

surrounds the colloid and absorbs the radiation. The colloid cools and the casing heats in 

direct violation of the second law of thermodynamics. The device acquires and processes no 

information in any obvious sense. It just sits there, supposedly warming and cooling. While 

you may find this device too simple to merit the name “Maxwell’s demon,” on what basis 

are we to preclude more complicated demonic devices that do not process information? If 
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there is no information processed, there is no information erasure and Landauer’s principle 

is irrelevant to the exorcism. There is no evident sense in which Landauer’s principle 

explains the failure of Svedberg’s device.14

Non-computational demons. There are Maxwell’s demons that manipulate the system they act 

upon without being representable as computing devices. A simple example is the 

Smoluchowski trapdoor. Perhaps we might contrive to imagine the trapdoor as a sort of 

computer with its momentary position and motion a sort of memory of past processes. 

However Landauer’s principle is still not relevant to the exorcism since its two-step erasure 

process is clearly not present.

Non-standard computational demons. While some Maxwell’s demons may be well represented 

as computational devices, our natural presumption is that they have standard architecture: a

central processing unit that does the thinking and a memory device that must be erased. 

How can we be sure that no other architecture is possible in which there is no distinct 

memory device requiring erasure as a distinct step in the device’s operation? Recall that the 

device need not have the power of a universal Turing machine that is able to run any 

program. The demon is a special purpose device that performs one function only. A suitable

model would be a thermostat, which is able to respond differently to high and low 

temperatures without needing distinct memory devices. Or if we contrive to imagine some 

portion of its control circuitry as a memory device, is it a memory device of the right type 

that must be erased by the two-step procedure of Landauer’s principle?

Different erasure protocols. In the case in which the demon does harbor a memory device that 

undergoes erasure, what assurance do we have that the erasure process must follow the two

steps “removal of the partition” and “compression of the phase space” of Landauer’s 

principle? I raised the possibility in Section 3 above of alternative procedures that replaced 

the thermodynamically irreversible “removal of the partition” by a thermodynamically 

reversible step. What assurance do we have of the absolute impossibility of this or some 

other erasure procedure that is incompatible with Landauer’s principle?

14 Svedberg’s device fails for familiar reasons. Thermal fluctuations in the lead casing would 

generate heat radiation that would pass back from the casing to the colloid and a thermal 

equilibrium would be established.
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Must entropy costs match entropy gains? What is striking about the Szilard one molecule gas 

engine (and its generalizations to n-fold compression) is that entropy reduction arising in 

the operation of engine is exactly balanced by the entropy cost of erasing the demon’s 

memory. But this is just one example. What assurance do we have that the two will balance 

so perfectly no matter what the system is that the demon operates on and now matter how 

ingeniously the demon is designed?15

No erasure computational demons. Finally, even if one presumes that Maxwell’s demon is a 

computational device with the standard architecture and that it erases using the procedures 

of Landauer’s principle, it remains to be shown that such a demon must actually perform 

erasures. Consider for example a no-erasure Maxwell demon that operates on a Szilard one-

molecule gas engine as described in greater detail in Earman and Norton (1998/99, II pp. 16-

17). The demon functions by combining operations that are accepted as admissible 

individually in the Landauer’s principle-Maxwell’s demon literature. It uses two 

subprograms, program-L and program-R, which are invoked according to whether the 

demon finds the molecule on the left or on the right hand side of the chamber. (Recall that 

the present orthodoxy holds that this detection can be carried out in a thermodynamically 

reversible process, contrary to the orthodoxy of the 1950s.) Which subprogram is to be run is

recorded in a single memory device with two states L and R that also records the location of 

the molecule. The initial and default state of the device is L and, upon measurement of the 

position of the molecule, the first steps of the program leave the device in the L state if the 

molecule is on the left; or they switch it to the R state if it is on the right. The demon then 

runs program-L or program-R according to the content of the memory device. Program-L 

leaves the memory device unaltered. Program-R concludes with its last step by switching 

the memory device from R to L. At no point in this cycle is there an erasure operation, so 

Landauer’s principle is never invoked.

The principal assumption of the no erasure demon is that a memory device can be switched 

from L to R or conversely without thermodynamic entropy cost.16 The process that effects this 

switching is illustrated in Figure 1. The process is thermodynamically reversible and requires no

15 Earman and Norton (1998/99 II p.19) describes a demon that is programmed sufficiently 

economically for the entropy cost of erasure to be less than the entropy reduction achieved in 

the operation of the engine.
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net expenditure of work; the work needed to advance one wall is recovered from the recession 

of the other.

What these questions and examples suggest is that Landauer’s principle is far from the 

vehicle that exorcises all of Maxwell’s demons. Rather the range of demons to which it applies is

small and with ill-defined borders. The only demons that are assuredly covered are those that 

can be represented as computers that have distinct memory devices; and that have been 

programmed unimaginatively so that erasure is needed; and that use the specific memory 

erasure procedure LP5 of Section 2.3 (and not even all of these are exorcised—recall the 

economically programmed demon mentioned above).

5. Bennett’s Extension of Landauer’s Principle

The no-erasure demon described immediately above is immune to exorcism by 

Landauer’s principle simply because it performs no erasures. Bennett (2003) has proposed in 

response, however, that it does succumb to a more general version of Landauer’s principle. That

extended version assigns an entropy cost not just to erasure but to the sort of merging of 

computational paths as arises at the end of the no-erasure demon’s operation, when program-R 

switches the memory device back from R to L. The new principle reads (p.501)

Landauer’s principle holds … that any logically irreversible manipulation of 

information, such as the erasure of a bit or the merging of two computational paths, 

must be accompanied by a corresponding entropy increase in non-information-

bearing degrees of freedom of the information-processing apparatus or its 

environment. 

The principle is supported by the many to one mapping argument as quoted in Section 3.3 

above. The argument is taken to apply equally to the erasure of memory devices as to the 

merging of computational paths.

To make a cogent assessment of the extension, we should ask the same questions of it as 

asked in Section 2.3 of the original principle. What precisely does it assert? And why precisely 

should we believe it? Most urgently, just what constitutes a “computational path”? In the 

16 If this assumption is denied, then all computation will become thermodynamically 

enormously costly, in contradiction with the Landauer-Bennett tradition that ascribes an 

unavoidable entropy cost only to erasure.
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absence of precise answers, we might note that the many to one mapping argument failed to 

force a thermodynamic cost for information erasure in memory devices. Why should we expect 

it to fare better when it comes to the merging of computational paths? Indeed we should expect 

it to fare worse. In ordinary erasure processes, such as described in Section 2.3, the memory 

devices pass through an intermediate state in which their phase spaces are expanded, so that a 

compression of the phase space ensues. When computational paths merge in computers, 

however, there seems to be no corresponding intermediate state. This merging is quite distant 

from a compression of the phase space as described in Section 2.4.

Let us take the specific example of the no erasure demon that is the extended principle’s 

target. We shall see quite quickly that no consideration advanced so far gives any expectation 

that an entropy cost must be associated with the merging of its computational paths. In 

particular, the merging of its computational paths is not associated with a compression of the 

phase space such as arises in LP5b.

Our no erasure demon executes two programs tracked by a single memory device. If, for

convenience, we imagine the memory device to be a molecule trapped in disjoint regions L and 

R of a chamber by two pistons, we can track at least this portion of the computational paths. 

When program-L is run, the molecule stays in the L region throughout. When program-R is run,

the memory device is switched to read R. To do this, the molecule is slowly moved over to the R

region in a thermodynamically reversible, constant volume process (as shown in Figure 1). The 

same thermodynamically reversible, constant volume process is used to switch the setting back 

to L at the end of the cycle by program-R. In all these processes the entropy of the memory cell 

and the volume of phase space accessible to it, remain constant. Successive stages of this 

switching are shown in Figure 6.
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Figure 6 Time development of the no erasure demon’s memory device and a different device 

that expands and contracts the phase space

There is no thermodynamic entropy cost created by these processes. Indeed there is not even a 

thermodynamically reversible transfer of entropy between the device and its environment. 

These processes are quite distinct from another process, labeled “expansion” and 

“compression” in Figure 6, in which the volume of phase space accessible to the memory device

expands and contracts.

Bennett presumably intends the operation of our no erasure demon to be of this latter 

type of process, for it is through a twofold reversible compression of the phase space that the 

k ln 2 of thermodynamic entropy comes to be passed to the environment. How might we come 

to conceive the operation of the no erasure demon in this way? We would need to sample its 

processes at different temporal stages and then illicitly collapse them into one process of 

expansion and compression. That is, the distributions associated with the two states at time 1 

and time 2 in Figure 6 would be combined to form a distribution that covers double the phase 

space volume. Just as before, the combination is illicit if it is intended to form a canonical 

ensemble. The energy functions E(x) of the phase spaces at time 1 and time 2 are different. The 

first is finite only in the L region of the phase space; the second is finite only in the R region. 

Whatever is produced by the assembly is not a canonical ensemble that properly represents the 

thermodynamic properties of the two states. Its compression is not the compression of the 
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volume of the accessible region of phase space of canonical ensemble as described in Section 2.4.

So we cannot apply formulae like (8) for the entropy of a canonical distribution and infer that its

thermodynamic entropy is k ln 2 greater than the default L state.

Finally, it should also be noted that, even if the process were equivalent to such an 

expansion and compression of the phase space, we would still have not have established that 

the merging of computational flows has generated thermodynamic entropy of k ln 2 in the 

environment. If both expansion and compression were effected as thermodynamically 

reversible processes, any thermodynamic entropy passed to the environment by the 

compression would be balanced exactly by entropy drawn from the environment in the 

expansion phase.

This analysis yields no cogent grounds for associating an assured thermodynamic 

entropy cost with the merging of computational paths of our no erasure demon. Thus we have 

found no cogent grounds for believing the extended version of Landauer’s principle when 

applied to this case and thus no grounds for believing it as a general principle.

6. Conclusion

It is hard to be optimistic about the literature on Landauer’s principle and its use in 

exorcising Maxwell’s demon. The fundamental weaknesses of the literature are at the 

methodological level. While there is talk of a general principle—the entropy cost necessarily 

incurred by erasure and the merging of computational paths—no general principle is stated 

precisely. Instead we are given illustrations and are somehow to intuit the generality from 

them. There is talk of reasons and justification. But we are only given imprecise hints as to what 

they might be. Erasure is a many to one mapping of physical states that somehow corresponds 

to a compression of the phase space that in turn somehow incurs an entropy cost. Yet the 

attempt to make precise the association of the many to one mapping with a compression of a 

phase space founders at least upon the illicit assembly of a canonical ensemble. This literature is

too fragile and too tied to a few specific examples to sustain claims of the power and generality 

of the failure of all Maxwell demons.

Must the erasure of a bit of information be accompanied inevitably by a generation of 

k ln 2 of thermodynamic entropy in the environment? As far as I know, the question remains 

open. While there may be cogent thermodynamic or statistical mechanical grounds for an 
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inevitable entropy cost, the literature on Landauer’s principle has yet to present them. Must all 

Maxwell’s demons fail in their efforts to reverse the second law of thermodynamics? As far as I 

know, the question remains open. It does appear to me, however, that the success of any 

particular demon would probably be precluded if we were to accumulate enough realistic 

constraints on its particular operation—although the experimental successes of “Brownian 

ratchets” must cast some doubt into the minds of even the most ardent opponents of the demon.

What is less sure is whether the particular realistic constraints that end up defeating particular 

demons could be assembled into a compactly expressible, general argument that would assure 

us in advance of the failure of all demons. This much is sure. If ever a successful exorcism of 

Maxwell’s demon emerges, it will require an analysis more sophisticated and precise than those

presently at hand.
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Appendix: The Telescoped Distribution

Assume that we have before us one of the memory devices described in Section 2.3 

above. It is either in state LT or in state RT. But since the device carries random data, we do not 

know which. We decide that there is probability 1/2 of each. The states LT and RT may be 

described individually by the two canonical distributions

pL(x)  =  exp(–EL(x)/kT)/ZL       and              pR(x)  =  exp(–ER(x)/kT)/ZR

where the subscripts L and R on the partition function Z (3) indicate that they are evaluated 

using energy functions EL(x) and ER(x). What of the canonical distribution associated with the 

state (L+R)T that arises when we remove the partition separating L and R? It is

pL+R(x)  =  exp(–EL+R(x)/kT)/ZL+R

Might this not also represent the memory device carrying random data as described above?17 It 

is simply produced by telescoping down the two distributions pL(x) and pR(x) into one phase 

space in a process that is characterized in Section 3.1 as the illicit formation of a canonical 

ensemble. Nonetheless, it will correctly represent the probability that the device would be 

found to be in the state x were we to be able to check its state. Is that not good enough?

The difficulty is that the formula for pL+R(x) is not a complete presentation of the 

probabilistic properties of the device relevant to its thermodynamic properties. What is missing 

is correlation information. If the system is (L+R)T and we could somehow know that it 

happened to be some state x in L at a particular time, then (allowing some time to elapse), the 

distribution pL+R(x) would still tell us the probability of the system being in either regions L or 

R of the phase space. If, on the other hand, the device is storing random data, this would no 

longer be so. If, at one time, we know the device happened to be in some state x in L, then we 

know it will remain in L for all time (assuming no disturbance). This correlation information is 

not represented in the expression for pL+R(x).

The effect of this difference is that the expression (8) for the thermodynamic entropy of a

canonically distributed system can be properly applied to the device in state (L+R)T, but it 

cannot be properly applied to the device if it is carrying random data. To see why it fails in the 

17 I am grateful to Jos Uffink for forcing me to think this through.
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latter case, let us reconstruct the derivation of (8) as given in Section 2.2, now applied 

specifically to the device with random data. We shall see that properly accommodating the 

probabilistic dependencies of the device with random data leads to the conclusion that it carries 

the smaller quantity of thermodynamic entropy, SL  =  SR.

To begin, note that the mean energy of the memory device with random data, in the 

context of the thermodynamically reversible process of Section 2.2, can be expressed as

    
E  L +R = E L +R (x , λ) p L +R ( x , t )d x

L +R
∫ = E L ( x , λ)p L ( x , t )d x

L
∫ = E R ( x , λ)p R (x , t )d x

R
∫                        (A1)

The equalities follow directly from the symmetries assumed for the phase space in LP3. Now 

we might proceed as in Section 2.2 to write down the rate of change of the mean energy as

    

d E  

d t
= E (x , λ)

d p ( x , t )

d tΓ∫ d x + d E (x , λ )

d t
p (x , t )

Γ∫ d x                                            (5)

However, because of the probabilistic dependencies, the second term no longer represents the 

rate at which work is done on the system:

    

d W

d t
≠ d E L +R (x , λ)

d t
p L +R (x , t )

L +R
∫ d x                                            (A2)

At this point the standard derivation of (8) is blocked.

The difficulty is that if the memory device actually happens to be in state LT, then the 

portion of the integration over region R is not relevant; and conversely for state RT. For 

example, if the device is in state LT and the process parameterized by λ alters the energy 

function in region R only, then the process will make no change to the mean energy, whereas 

the integral in (A2) indicates that the process will change the mean energy. Conversely, if the 

device were in state RT, the integral of (A2) would underestimate the rate of change of mean 

energy by a factor of 2 (since pL+R(x) = pR(x)/2 in region R).

To preclude this problem we break up the formula into two cases

    

d W

d t
= d E L (x , λ)

d t
p L (x , t )

L
∫ d x = 2

d E L +R (x , λ)

d t
p L +R (x , t )

L
∫ d x        if the device state is LT

    

d W

d t
= d E R ( x , λ)

d t
p R ( x , t )

R
∫ d x = 2

d E L +R (x , λ)

d t
p L +R (x , t )

R
∫ d x        if the device state is RT

Combining this disjunctive expression for dW/dt with (A1), we recover

    

d Q re v

d t
= E (x , λ )

d p L (x , t )

d tL
∫ d x                 if the device state is LT
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d Q r ev

d t
= E (x , λ )

d p R (x , t )

d tR
∫ d x                 if the device state is RT

Noting that thermodynamic entropy S is defined in terms of the heat passed in a 

thermodynamically reversible process according to the Clausius formula (1), the derivation can 

now be completed as in Section 2.2 in the transition from (7) to (8). We recover that the device’s 

thermodynamic entropy is SL if it is in state LT; and SR if it is in state RT, where

    
S = S L = E  L

T
+ k ln ex p (−E L / k T )d x

L
∫ = E  R

T
+ k ln ex p (−E R / k T )d x

R
∫ = S R

The device is assuredly either in state TL or in state TR; in either case the entropy is S = SL = SR. 

In so far as the memory device carrying random data can be said to be in a single 

thermodynamic state (as opposed to being in one of two, we know not which), then its 

thermodynamic entropy is just S = SL = SR. While a common wisdom may be that we have to 

add k ln 2 to the entropy to accommodate our uncertainty over the states, the above analysis 

reveals no grounds for characterizing such a term as thermodynamic entropy conforming to the

Clausius formula (1). The additional term does arise if we substitute the probability distribution

pL+R(x) into the expression (8) for thermodynamic entropy. Yet we have just shown above that 

the derivation of this expression fails if the probability distribution pL+R(x) pertains to a 

memory device with random data.
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