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One of the outstanding challenges to information processing is the eloquent suppression of energy
consumption in the execution of logic operations. The Landauer principle sets an energy constraint in
deletion of a classical bit of information. Although some attempts have been made to experimentally
approach the fundamental limit restricted by this principle, exploring the Landauer principle in a purely
quantum mechanical fashion is still an open question. Employing a trapped ultracold ion, we
experimentally demonstrate a quantum version of the Landauer principle, i.e., an equality associated
with the energy cost of information erasure in conjunction with the entropy change of the associated
quantized environment. Our experimental investigation substantiates an intimate link between information
thermodynamics and quantum candidate systems for information processing.
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It was Landauer who expostulated, for the first time, a
minimum amount of energy required to be consumed in
deletion of a classical bit of information, known as the
Landauer principle (LP) [1], implying an irreversibility of
logical operations [2–4]. In terms of the LP, the erasure
of information is fundamentally a dissipative process,
which dissipates at least kBT ln 2 amount of heat, called
the Landauer bound, from the system into the attached
reservoir, where kB and T represent the Boltzmann
constant and reservoir temperature, respectively. On the
other hand, if we try to understand violation of the second
law of thermodynamics by Maxwell’s demon (an intel-
lectual creature envisioned by Maxwell), who converts
thermal energy of the reservoir into useful work [5–7], the
entropy cost should be considered regarding the demon’s
memory, which is also subject to the LP. So far, much of
the discussion has been devoted to the validity and
usefulness of the LP, including some skepticism and
misunderstanding [8–12]. Since suppression of energy
dissipation to a possible minimum is indispensable
towards the continued development of digital computers
[13,14], even for quantum information processing [15],
further investigation of the LP is certainly of particular
importance.
Some experimental attempts, subject to the conventional

inequality of the LP, have been carried out to approach
the Landauer bound using single-bit operations [16–20].

The latest experiment [20], for example, was implemented
on a nanoscale digital magnetic memory bit, by which the
intrinsic energy dissipation per single-bit operation was
detected. In contrast, a very relevant investigation for
extracting kBT ln 2 of heat in the creation of one bit of
information [21], which is the complementary study of the
LP in the context of a Szilárd engine [22]—a quantitative
Maxwell demon—was accomplished recently on a single-
electron transistor. However, all these aforementioned
considerations surmise that the heat related to the removal
or generation of a bit of information is regarding an open
environment, which is a reservoir with much bigger size
than the system. If we extend the treatments to a quantum
domain, e.g., the information to be erased being encoded in
a qubit and the environment being quantized, the model
needs to be substantially reconsidered. The entropy of a
quantum system is associated with the characteristic of
the state, rather than the thermodynamic arrow of time.
Additionally, in contrast to a large reservoir considered in
the original version of the LP, the quantized reservoir is of a
finite size and hence vacillating in interaction with the qubit
system under quantum operations for information erasure.
So, different from the previous assumption of final product
states [23–25], quantum correlation appears between the
system and the quantized reservoir during a quantum
erasure process, which requires evaluation via mutual
information and relative entropy. However, even with
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elaborately designed systems under the consideration of
a quantized reservoir, experimentally measuring mutual
information and relative entropy is not easy to accomplish
[26,27], which hampers efforts to exactly approach the
Landauer bound.
Here we report an experimental investigation of a

quantum mechanical LP by an experimental evaluation
of system-reservoir correlation and entropy change during
the erasure process. Our operations are based on a single
ultracold 40Caþ ion confined in a linear Paul trap. Trapped
ultracold ions, with the possibility of precise manipulation,
have been considered as an ideal platform to explore the
thermodynamics in a quantum domain with ultimate
accuracy [28–31]. For our purpose, we consider the two
internal levels of the ion as the qubit system and the
vibrational degree of freedom of the ion as a finite-
temperature reservoir. Removing information encoded
initially in the qubit, we perceive the quantized LP by
observing the phonon number variation in the quantized
vibration of the ion. Owing to precise control of the
2 degrees of freedom in a coherent way, we demonstrate
for the first time the possibility to approach the Landauer
bound solely in a quantum mechanical fashion.
Our exploration mainly follows the idea termed as an

improved LP [32], which describes the energy cost regard-
ing information erasure employing an equality, rather than
the conventional inequality. Assuming initial states of the
system and reservoir to be a mixed state ρS and a thermal
state ρR, correspondingly, our model starts from an uncor-
related state ρSR ¼ ρS ⊗ ρR and evolves to a system-
reservoir correlated state ρ0SR resulting from an erasure
process, where the system and reservoir states turn to ρ0S ¼
TrR½ρ0SR� and ρ0R ¼ TrS½ρ0SR�, respectively. The improved LP
gives a tight bound of the heat cost for an information
erasure by an equality as

ΔQ=kBT ¼ ΔSþ IðS0∶R0Þ þDðρ0RkρRÞ; ð1Þ

where ΔQ ¼ Tr½HRρ
0
R� − Tr½HRρR� represents an average

energy increase of the thermal reservoir with the
Hamiltonian HR. ΔS ¼ SðρSÞ − Sðρ0SÞ denotes the entropy
decrease of the system with the von Neumann entropy
defined as SðôÞ¼−Tr½ôlog ô�. IðS0∶R0Þ ¼ Sðρ0SÞ þ Sðρ0RÞ−
Sðρ0SRÞ indicates mutual information related to the system-
reservoir correlations following the erasure process, and the
relative entropy Dðρ0RkρRÞ ¼ Tr½ρ0R log ρ0R� − Tr½ρ0R log ρR�
corresponds to the free-energy increase of the reservoir
during the erasure process. In comparison with the original
form of the LP, i.e., ΔQ=kBT ≥ ΔS, Eq. (1) is obviously a
quantum version of the LP linking quantum information
with thermodynamics.
Our experiment is performed in a typical linear Paul trap

with four parallel bladelike electrodes, and two end-cap
electrodes aligned along the axial direction [33,34]. The
trap is driven by the rf Ωrf=2π ¼ 17.6 MHz with the power

of 5 W, giving the radial frequency ωr=2π ¼ 1.2 MHz,
and the trap axial frequency under the pseudopotential
approximation is ωz=2π ¼ 1.01 MHz with a voltage of
720 V applied to the end-cap electrodes. Under an external
magnetic field of 6 G, the ground state 42S1=2 and the
metastable state 32D5=2 split into two and six hyperfine
energy levels, respectively, as shown in Fig. 1(a).
We encode j↓i in j42S1=2; mJ ¼ þ1=2i and j↑i in
j32D5=2; mJ ¼ þ3=2i, where mJ is the magnetic quantum
number. After Doppler cooling and optical pumping, a
resolved sideband cooling is applied to cool the z-axis
motional mode down to its vibrational ground state with the
final average phonon number of 0.030(7), and the internal
state of the ion is initialized to j↓i with a probability of
98.9(2.3)%. The population of j↓i could be detected by a
397-nm laser with detecting error ≤ 0.22ð8Þ% [35]. A
narrow-linewidth 729-nm laser with wave vector k radiates
the ultracold ion with an incident angle of 22.5° with respect
to the z axis, yielding the Lamb-Dicke parameter η of 0.09.
Figure 1(b) presents a schematic of our work. We start

from preparing the qubit in an equal probability admixture
of the states j↓i and j↑i, indicating that the initial entropy
of the system is superlative, but in contrast, our available
information about the system is minimum; that is, we have
no explicit information about the existing state of the ion.
For a general case, we consider the reservoir to be initially
in a thermal state with an associated energy defined as E0 ¼
Tr½HRρR� for a given state ρR [see Fig. 1(b1)]. The erasure
is performed by employing a red-sideband transition,
governed by HR ¼ ηℏΩðaσþeiϕ þ a†σ−e−iϕÞ=2, where Ω
and ϕ represent the Rabi frequency and laser phase,
respectively, σþ (σ−) indicates the raising (lowering)
operator of the spin, and a (a†) denotes the annihilation
(creation) operator of the quantized vibration of the ion in
the z direction. The erasure process produced by
UR ¼ expð−iHRtÞ, with t as the pulse length, causes the
population transfer from j↑i to j↓i, corresponding to an
entropy decrease of the system, which is accompanied
by the reservoir energy increase up to Em, as depicted in
Fig. 1(b2). The erasure process ends with the system in the
polarized state j↓i and the reservoir changes to the final
state ρ0R, the energy of which is given as Ef ¼ Tr½HRρ

0
R�;

see Fig. 1(b3). So we finally have a complete enlightenment
about the state of the system accomplished by virtue of the
heat increment ΔQ ¼ Ef − E0. In this way, we may verify
Eq. (1) by observing the variation of the population and
phonon number in the qubit and the reservoir, respectively,
where the entropy decrease of a system is ΔS ¼ ln 2 in an
ideal erasure for the system attached to a zero-temperature
reservoir. The corresponding experimental procedure is
drawn in Fig. 1(c).
In our actual implementation, superposition of the

qubit states was achieved by a carrier-transition operator
UCðθc; 0Þ ¼ cosðθc=2ÞI − i sinðθc=2Þσx, where σx is the
Pauli operator. Since the dephasing rate (∼0.5 kHz) of the
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qubit is much larger than its decay rate (∼1 Hz), waiting
for a time longer than 2 ms would definitely lead to qubit
dephasing but without affecting the population, which
guarantees the removal of the off-diagonal terms of
the density matrix of the aforementioned model while
retaining the diagonal terms unaffected, yielding the initial
state ρS ¼ αj↓ih↓j þ βj↑ih↑j, with α ¼ cos2ðθc=2Þ and
β ¼ sin2ðθc=2Þ. Meanwhile, the reservoir was thermalized
due to switch-off of the cooling lasers during this waiting
time. Consequently, our implementation commences with
the reservoir at a finite temperature, where the average
phonon number hni0 is determined by waiting for a desired
time duration. To remove the information from the system
as much as we can, we have considered an optimal erasure
under the first-order approximation where the largest
contribution term affecting the erasure is eliminated during
the red-detuned laser radiation for top ¼ π=ηΩ ¼ 33ð2Þ μs
[34]. With this short-time implementation, decoherence
effects, during the information removal, are negligible.
In our current study, all the four parts of Eq. (1) are

explored experimentally as shown below. In our setup, the
knowledge about the phonon number is obtained from
qubit state measurement under the governance of the blue-
detuning Hamiltonian HB ¼ ηℏΩðaσ−eiϕ þ a†σþe−iϕÞ=2.
In Figs. 2(a) and 2(b) we show, respectively, the

experimental observations of the blue-sideband Rabi oscil-
lations versus the waiting time before and after the erasure,
which is accomplished via the curve-fitting approach [36].
Consequently, based on the experimental data, the phonon
number due to heat variation, as plotted in Fig. 2(c), could
be calculated by Eq. (S14) in Ref. [34], and meanwhile the
relative entropy of the reservoir is acquired. However, the
populations in j↓i and j↑i at the end of the erasure are
monitored from the 397-nm spontaneous-emission fluo-
rescence spectrum [see Fig. 2(d)], which yields a variation
of the system entropy. Moreover, the mutual information
term is smaller with respect to other terms in Eq. (1), and a
direct measurement of the mutual information is compli-
cated due to its relevance to the system-reservoir entangle-
ment. Therefore, we estimated the mutual information by
an alternative way, as explained in Ref. [34], instead of
direct experimental measurements.
With the data measured above, the Landauer bound and

the improved LP are witnessed under the different reservoir
temperatures in Fig. 2(e). Our observations clearly exhibit
that the equality in the original form of the LP cannot be
accessed quantummechanically at the finite temperature. In
contrary to the classical version of the LP in which the huge
reservoir changes very little during the erasure process such
that the mutual information and the relative entropy of the
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FIG. 1. A single trapped ion manipulated for exploring an improved LP. (a) Level scheme of the 40Caþ ion confined in a linear
Paul trap under an external magnetic field. The qubit encoded in j↑i and j↓i represents the system, and the reservoir is denoted by
the quantized z-axis vibration of the ion. The system-reservoir coupling is well controlled by red- or blue-sideband 729-nm laser
radiation, and readout of the qubit is carried out by 397-nm spontaneous emission. (b) Illustrative schematic. (1) Starting point,
where the qubit (i.e., the system) is in a maximally mixed state ρS ¼ ðj↑ih↑j þ j↓ih↓jÞ=2 and the vibrational degree of freedom
(i.e., the reservoir) is thermalized to energy E0. (2) Intermediate step, where the 729-nm laser drives a unitary evolution of the
system and reservoir. The entropy of the system decreases, while the energy of the reservoir increases to Em. (3) End of the erasure,
where the system is populated in j↓i and the reservoir ends at a higher level with energy Ef. (c) Flow diagram of the experimental
operations, where (1) is to reach a mixed state of the system, (2) is related to a thermal state of the reservoir, (3) is to monitor the
population of the system state, and (4) refers to measuring the average phonon number in the reservoir by observing the blue-
sideband Rabi oscillation.
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reservoir can be ignored, both states of the system and
reservoir in the quantum regime vary during the erasure
process, which yields a quantum correlation between the
system and the reservoir. Intrinsically, we can observe a
large disparity between the heat consumption of the
reservoir (black curves) and the entropy decrease of the
system (blue curves), due to the difference from quantum
correlation and the relative entropy of the reservoir. This
difference turns out to be larger at lower temperature
because in this case the relative entropy becomes more
dominant in Eq. (1). In particular, in the limit of zero
temperature, one may find the system’s entropy decrease
ΔS ¼ ln 2, the mutual information IðS0∶R0Þ ¼ 0, and the
relative entropy Dðρ0RkρRÞ → ∞, which agrees with the
result of 1=T → ∞ in the left-hand side of Eq. (1). In this
scenario, the nearly perfect overlap between the red dashed
and black solid curves implies that Eq. (1) provides a better
way to understand the LP and the associated Landauer
bound in the quantum regime.

It is interesting to note that the quantum LP is very
sensitive to the initial condition of the model. Figure 3
presents the variation of the system entropy from negative
to positive and then to negative again, arguing that entropy
decrease, i.e., removal of information, occurs in the system
for θc ∈ ½0.54ð3Þ; 2.80ð2Þ�, and otherwise, the system
entropy increases during the erasure, indicating creation
of information. This indicates that our implementation
could demonstrate both the generation and deletion of
the system’s information by simply tuning θc (i.e., varying
the initial state of the system). Particularly, the generation
of information in the region of θc < 0.54ð3Þ corresponds to
a fully quantized single-qubit Szilárd engine, the opposite
process of the quantum LP. However, the observation in
the region of θc > 2.80ð2Þ is counterintuitive, where the
generation of information is accompanied by the energy
increase of the reservoir. This phenomenon is completely
different from the aforementioned quantum LP and Szilárd
engine, but reflects the significant role of the relative
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FIG. 2. Experimental implementation of information erasure in a qubit system. (a) Blue-sideband Rabi oscillations before the
erasure for different waiting time τ. (b) Blue-sideband Rabi oscillation at the end of erasure for different waiting time τ.
(c) Average phonon number in the reservoir before the erasure (red dots) and after the erasure (black circles), obtained by
calculating the data in (a) and (b). (d) Population in j↓i (black circles) and j↑i (red dots) at the end of erasure. The system is
initialized with populations of 0.531(15) and 0.467(16) in j↓i and j↑i, respectively. Dots or circles are experimental data and
curves are analytical results. Each data point in (a) and (b) is measured by 102 repetition and in (d) by 104 repetition. (e) Test of
the improved LP at different reservoir temperatures. The curves from top to bottom correspond to ΔQ=kBT with ΔQ ¼
Q0ðhni − hni0Þ (black curve and crosses), ΔSþ IðS0∶R0Þ þDðρ0RkρRÞ (red curve and circles), and ΔS (blue curve and dots), where
the reservoir temperature is defined as T ¼ T0= ln½1þ 1=hni0�, with hni0 the initial average phonon number. Inset of
(e) demonstrates the result of ΔQ=kBT − ½ΔSþ IðS0∶R0Þ þDðρ0RkρRÞ�. Experimental data in (e) are obtained from (a)–(d).
The energy and temperature units are Q0 ≔ ℏωz ¼ 6.7 × 10−28 J and T0 ≔ Q0=kB ¼ 48.5 μK, respectively. The curves in each
panel are analytical results in our optimal erasure scheme using a π pulse of the red-sideband radiation [34]. The associated error
bars reveal standard deviation.
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entropy of the reservoir played in the fully quantized
system-reservoir model [37].
In summary, we have demonstrated, in a more pertinent

way, the first experimental investigation of the quantum
mechanical LP using a single ultracold trapped ion. This is
an imperative step towards better understanding of the
fundamental physical limitations of irreversible logic oper-
ations at the quantum level. Our observation confirms that
the LP still holds even at the quantum level after some
modification by introducing quantum information quan-
tities. Our experimental evidence might be helpful for
efficient initialization of a future quantum computer
involving an artificial quantum reservoir for fast elimina-
tion of the encoded information from large numbers of
qubits, in which the information erasure yields more heat
consumption than the classical counterpart due to system-
reservoir correlations. For the same reason, quantum error
correction in such a quantum computer would also cost
higher heat (or energy). We believe that the experiment
reported here will open an avenue towards further explora-
tion of the Landauer bound in the quantum regime as well
as possible applications.
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