
A LDA+U study of selected iron

compounds

Thesis submitted for the degree of

Doctor Philosophiae

CANDIDATE: SUPERVISOR:

Matteo Cococcioni Stefano de Gironcoli

October 2002





Contents

Introduction 4

1 Theoretical tools and approximations 7

1.1 The Born Oppenheimer approximation . . . . . . . . . . . . . . . . . . . 7

1.2 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1 Approximations for the exchange-correlation energy functionals:

LDA and GGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 The Local Spin Density Approximation . . . . . . . . . . . . . . . 14

1.3 Periodic systems: the Bloch theorem . . . . . . . . . . . . . . . . . . . . 16

1.4 The plane wave pseudopotential method . . . . . . . . . . . . . . . . . . 18

1.4.1 The non linear core correction . . . . . . . . . . . . . . . . . . . . 22

2 Some d-open shell systems studied with GGA 24

2.1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Bulk iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Iron oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Fe2SiO4 Fayalite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 The LDA+U method within a PW PP framework 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Rotational invariant LDA+U method . . . . . . . . . . . . . . . . . . . . 53

3.3 LDA+U simplified scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Calculating the Hubbard U . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Implementation of the LDA+U approach in a PW PP code . . . . . . . . 68

4 The LDA+U approach: application to some real systems 70

4.1 Bulk iron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Iron oxide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2



4.2.1 The electronic structure of FeO . . . . . . . . . . . . . . . . . . . 85

4.2.2 The electronic structure of NiO . . . . . . . . . . . . . . . . . . . 91

4.2.3 The structural properties of FeO . . . . . . . . . . . . . . . . . . 94

4.3 Fe2SiO4 fayalite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5 Conclusions 108

Bibliography 115



Introduction

Since its theoretical foundation in the mid-1960’s [1, 2], Density Functional Theory

(DFT) has demonstrated a large predictive power in the study of the ground states

properties of real materials, so that it has soon become the most important tool (if not

the only one) for first principles calculations. Though exact in principle, this theoretical

scheme needs some approximations to be used in practical calculations. In fact, the

many body problem concerning an interacting electron system is far too complicated

to be approached directly, so that it is usually treated in a simpler one body formalism

which describes a fictitious non interacting electron gas with the same density of the real

interacting one. In this simplified scheme the many body contributions to the electronic

interactions are usually modeled in some approximations.

The simplest of these simplified (and the first historically introduced) is the Local

(Spin) Density Approximation (LSDA) which is based on the assumption that the elec-

tronic system can be locally represented by a uniform electron gas with the same density.

Using L(S)DA the structural, electronic and magnetic ground state properties of a large

class of materials, including, for instance, nearly-free-electron-like (simple) metals, cova-

lent semiconductors, ionic solids, and even rather complex intermetallic transition metal

compounds, could be described and understood very deeply and usually within a fair

agreement with experimental results.

A possible extension to the LDA method is represented by (spin-polarized) General-

ized Gradient Approximation (GGA approaches) which, in the modeling of the effective

electronic interactions, also accounts for the possible inhomogeneity of real electron sys-

tems. The introduction of this approach could solve indeed some open questions within

LSDA and even improve the descriptive power of DFT calculations about the structural

and the electronic properties of some real non homogeneous systems as, for instance,

the transition metal compounds.

However GGA functionals brought out very little enlargement of the class of materi-

als whose properties could be successfully described by DFT, so that there still remains
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quite a large group of systems (of growing scientific interest) whose study cannot be ac-

curately addressed by standard DFT approaches: the strongly correlated materials. The

reason why ordinary LDA or GGA methods are not able to correctly describe this class

of materials mainly consists in the fact that their energy functionals are built treating

the real interacting electron system as a (possibly homogeneous) electron gas, and thus

result to be not accurate enough to deal with situations in which strong localization

of the electrons is likely to occur. The description and understanding of the electronic

structure of strongly correlated materials is indeed a very long standing problem and the

transition metal oxides (which, in contrast with the observed insulating behavior, are

incorrectly predicted to be metals or small gap semiconductors by LSDA or GGA) have

represented for long time the most notable failure of DFT. When the high-Tc supercon-

ductors entered the scene (their parent materials are also strongly correlated systems)

the study of new approaches which could allow to describe this kind of systems with

first principle calculations received a new impulse, and in the last fifteen years many

methods were proposed in this direction.

One of the most popular approaches of this kind is LDA+U for which a variety of

different functionals were introduced and developed. Although the different formulations

can differ, to some extent, from each other for their theoretical construction and the

technical details concerning their practical implementation, the main idea they all rely

on is the same and mainly consists in trying to correct the standard (LDA or GGA)

energy functionals with a mean field Hubbard-like term which is meant to improve

the description of the electronic correlations. The formal expression of this additional

energy functional is generally taken from the model hamiltonians (the Hubbard model

is just one example) that represent the ”natural” theoretical framework to deal with

strongly correlated materials. These models, however, are strongly dependent on the

choice of the interaction parameters which sometimes have been evaluated using ab-

initio (constrained) calculations. Anyway, no general procedure is well established to

calculate these effective interaction parameters entering the theory and this situation is

also reflected in the LDA+U-like approaches. In fact, the few method which have been

proposed to extract the effective electronic interactions from first principle (constrained)

calculations, did not give very reliable results, so that their value is usually determined

by seeking a good agreement of the calculated properties with the experimental results

in a semiempirical way.

In this work a critical study of the LDA+U approach is proposed, which starting from

the formulation of Anisimov al. [3, 4, 5], and its further improvements [6, 7, 8], develops
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a simpler approximation that appears, to our opinion, a more ”natural” extension of the

LDA (or GGA) description we aim to correct and complete. In this context a method

to calculate the interaction parameters is also introduced which is based on a linear

response approach and allows to fix the parameters entering the LDA+U correction in

close relationship with the behaviour of the system under consideration, without any

aprioristic assumption.

This methodology is then applied to the study of the electronic, magnetic and struc-

tural properties of some iron compounds, chosen as representative of ”normal” (bulk

iron) and strongly correlated (iron oxide and fayalite) situations.

The present thesis is organized as follows. After having devoted a first chapter to

a brief overview of the standard DFT techniques and approximations, in the second

chapter we present results about the electronic, magnetic, and structural properties of

some iron compounds obtained within the GGA framework. We underline the merits of

this approach in describing these crystals, but also point out the aspects which need a

further improvement to be correctly described because the relevance of strong electronic

correlation. In the second chapter the LDA+U method and its implementation within a

pseudopotential-plane wave framework are introduced. We start from a brief historical

overview about this theoretical method and discuss the goals it was built for. Then

we focus on the particular approximation we actually use and underline the motivations

which led us to consider this simpler expression for the LDA+U functional. To complete

the theory and make our approach self-sustaining, a linear response approach to calculate

the effective electronic interactions entering the LDA+U correction is also presented,

together with a discussion about the differences with the approaches presented in other

works. In the fourth chapter we deal with the same systems studied in the second

chapter but using LDA+U. We focus on the improvements we obtain with respect to

the GGA calculations and discuss the role of LDA+U corrections in describing the

electronic structure of these materials and their structural properties. A conclusive

discussion about merits and defects of the presented simplified LDA+U scheme and of

the linear response approach to calculate the effective interactions is presented in the

last chapter together with some possible perspectives of improvement and still remaining

problems.



Chapter 1

Theoretical tools and

approximations

In this chapter the theoretical approaches and approximations used in standard first

principles calculations will be briefly described. Our motivation is twofold: on one

hand the most commonly used tools employed in the study of the physical properties

of real materials are reminded; on the other hand a more complete description is given

to the theoretical background our LDA+U approach is built on. This will provide a

better understanding of the starting point of the new theoretical approach and a good

knowledge of the many technical details required for its practical implementation.

1.1 The Born Oppenheimer approximation

The possibility of treating separately the electrons and the ions of a real system, ab-

initio calculations generally rely on, is the result of the adiabatic approximation of Born

and Oppenheimer [11] which is a consequence of the large mass difference between the

two families of particles. In other words, being much lighter than the ions, the electrons

can move in a solid much faster than the nuclei and the electronic configuration can be

considered as completely relaxed in its ground state at each position the ions assume

during their motion. In mathematical terms we would say that the time scale for the

electron excitations, the inverse of their bandwidth, is usually much smaller than the

one for the ions, namely the inverse of the phonon frequencies. This means that while

studying the electronic degrees of freedom the ions can be considered at rest; thus the

total wavefunction of the system can (approximately) be written as the product of a

function describing the ions and another for the electrons depending only parametrically

7



CHAPTER 1. THEORETICAL TOOLS AND APPROXIMATIONS 8

upon the ionic positions:

Ψ(R, r) = Φ(R)ψR(r) (1.1)

where R = {RI} is the set of all the nuclear coordinates, and r = {ri} is the same quan-

tity for all the electrons in the system (though not explicitly indicated, the many particle

wavefunction ψR(r) also depends on the electronic spin degrees of freedom). Within this

approximation, the ionic wavefunction Φ(R) is the solution of the Schrödinger equation:(
−∑

I

h̄2

2MI

∂2

∂R2
I

+ E(R)

)
Φ(R) = εΦ(R) (1.2)

where MI is the mass of the Ith nucleus and E(R) is the so called Born-Oppenheimer

potential energy surface corresponding to the ground state energy of the electronic

system when the nuclei are fixed in the configuration R. More generally electronically

excited potential energy surfaces can be defined which are important when electronic

transitions driven by ionic motion, through the non adiabatic coupling terms (electron-

phonon interaction), are considered. The potential energy surface can be computed

solving the Schrödinger problem for the electrons:⎛
⎝−∑

i

h̄2

2m

∂2

∂r2
i

+
e2

2

∑
i�=j

1

|ri − rj| −
∑
iI

ZIe
2

|ri −RI | +
e2

2

∑
I �=J

ZIZJ

RI − RJ

⎞
⎠ψα

R(r) =

= Eα(R)ψα
R(r) (1.3)

where ZI is the charge of the Ith nucleus, −e and m are the electronic charge and mass,

and α is an index for the electronic state.

The equations describing the electronic and the ionic problems are obtained from

the equation for the total system assuming the wavefunction factorization of eq. 1.1

and neglecting the non adiabatic terms which come from the kinetic operator for the

nuclei acting on the electronic wavefunction ψR(r). This is expected to be a good

approximation for most real materials since the neglected terms are of the order of the

ratio me/M between the (effective) electronic mass and the ionic one. The separation

among electronic and ionic degrees of freedom is a very useful simplification of the

problem and allows to treat the ions within a classical formalism as generally done in

molecular dynamics calculations. However the electronic problem is a quantum many

body problem; the total wavefunction of the system depends on the coordinates of all

the electrons and cannot be decoupled in single particle contributions because of their

mutual interaction, so that the problem is still far too complicated to be solved exactly

in practical computations. Owing to this difficulty, further developments are required

to perform ab-initio calculations for real materials. Density Functional Theory provides

a framework for these developments.
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1.2 Density Functional Theory

The first important conceptual advantage introduced by Density Functional Theory

(DFT) [1] is the possibility to describe the ground state properties of a real system in

terms of its ground state electronic charge density (which depends on just one spatial

variable) instead of the far more complicated wavefunctions (which depends on the

coordinates of all the electrons in the system). Dealing with the charge density allows

to reformulate the problem in a mean-field-like language which is however based on an

exact result. If we consider an interacting electron gas, the external potential acting on

the particles determines the ground state of the system and the corresponding charge

density. Thus, all the physical quantities concerning this state (like, for instance, the

total energy) are functionals of the external potential. As it was first demonstrated

by Hohenberg and Kohn [1], due to a one to one correspondence among the external

potential and the ground state density (which allows to express the former as a functional

of the latter), there also exists a unique universal functional F [n(r)] of the ground state

electron density alone such that a variational principle exists with respect to the electron

density for the total energy functional

E[n(r)] = F [n(r)] +
∫
Vext(r)n(r)dr (1.4)

where F [n(r)] contains the kinetic energy and the mutual Coulomb interaction of the

electrons, and Vext(r) represents the external potential acting on the particles. The

minimization of this functional with the condition that the total number of particles,

N , is preserved: ∫
n(r)dr = N, (1.5)

directly gives the ground state energy and charge density, from which all the other

physical properties can be extracted. This variational principle is very important from a

conceptual point of view as it suggests a procedure to access all the interesting quantities.

Unfortunately, the universal functional F [n(r)] (which is independent on Vext(r))

is not known in practice and in order to transform DFT into a useful tool Kohn and

Sham [2] introduced a further development which consists in mapping the original in-

teracting problem into an auxiliary non interacting one. For this fictitious system of

non interacting electrons the Hohenberg and Kohn theorem also applies and the unique

functional F [n(r)] corresponds in this case to the kinetic energy of the non interacting

electrons, T0[n(r)]. The density functional F [n(r)] for the interacting system can then

be expressed as the sum of the kinetic energy of a non interacting electron gas with



CHAPTER 1. THEORETICAL TOOLS AND APPROXIMATIONS 10

the same density of the real one and the additional terms describing the interparticle

interaction:

F [n(r)] = T0[n(r)] +
e2

2

∫ n(r)n(r′)
|r − r′| drdr

′ + Exc[n(r)]. (1.6)

The second term in the right hand side of eq. 1.6 is the classical Coulomb interaction

among the electrons described through their charge density (the Hartree term), whereas

Exc[n(r)] is the so called exchange-correlation energy and accounts for all the many body

effects which are not described in the other terms. In practice this term contains all

the differences among the non interacting fictitious system and the real interacting one

(here including corrections for the Coulomb interaction and for the kinetic energy also)

so that what we do is confining our ignorance about F [n(r)] into one single, hopefully

small, term. This is particularly useful when we minimize the functional F [n(r)] with

the constraint given by the conservation of the total number of particle to obtain the

ground state physical properties of the real system. In fact from eq. 1.6 it is quite

easy to extract the effective potential VKS acting on the electrons of the fictitious non

interacting system. If we impose the total energy functional for the non interacting

electron gas

E0[n(r)] = T0[n(r)] +
∫
VKS(r)n(r)dr− μ′

(∫
n(r)dr−N

)
(1.7)

to be minimized by the same electron density which also minimizes the total energy of

the interacting electron system

E[n(r)] = T0[n(r)] +

e2

2

∫
n(r)n(r′)
|r − r′| drdr

′ + Exc[n(r)] +
∫
Vext(r)n(r)dr− μ

(∫
n(r)dr −N

)
(1.8)

the expression for the effective Kohn-Sham potential results:

VKS(r) = Vext(r) + e2
∫

n(r′)
|r − r′|dr

′ + vxc(r), (1.9)

vxc(r) =
δExc[n]

δn(r)
, (1.10)

which is defined within an unimportant additive constant corresponding to the difference

among the chemical potentials μ and μ′, which were introduced in the total energy

functionals as Lagrange multipliers to ensure the conservation of the total number of

particles. The resulting effective hamiltonian for the system is the one describing a non

interacting electron gas feeling the effective potential VKS in which all the interparticle

interactions for the real system are contained. The electronic problem can thus be
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approached using (fictitious) one particle wavefunctions which allow the charge density

to be written as:

n(r) =
∑

i

fi|ψi(r)|2, (1.11)

where i is an index for the single particle state, and fi is the Fermi distribution (which

corresponds to θ(εF −εi) for T = 0). The kinetic energy for the non interacting auxiliary

system is also straightforward to compute within this formalism:

T0[n(r)] = −∑
i

fi

∫
ψ∗

i (r)
h̄2∇2

2m
ψi(r)dr. (1.12)

From the minimization of the non interacting energy functional with respect to ψ∗
i

with the constraint of fixed number of electrons, the following set of Schrödinger-like

equations (called Kohn-Sham equations) can be obtained:

ĤKSψi(r) =

[
− h̄

2∇2

2m
+ VKS(r)

]
ψi(r) = εiψi(r) (1.13)

where the hermeticity of the operators appearing in this expression ensures the possi-

bility of choosing the constraints in such a way the orthonormality conditions for the

fictitious wavefunctions are satisfied:

∫
ψ∗

i (r)ψj(r)dr = δij. (1.14)

It is worth to remark that the wavefunctions appearing in the Kohn-Sham equations

have no direct physical meaning: they are the eigenstates of the one body density matrix

we use in the theory but cannot be considered the wave functions for the electrons of

the real system as they are the electronic orbitals for the auxiliary non interacting gas.

The set of the Kohn-Sham equations is a strongly non linear one since the electronic

wavefunctions, which are to be obtained as the solutions of the problem, also enter the

expression of the effective potential as they are used in building the charge density on

which VKS depends.

This means that, in order to solve this system, we have to adopt an iterative method

which, starting from an initial guess for the wavefunctions and the potential, evolves

both quantities up to self consistency. Owing to the fact that solving the Kohn-Sham

equations corresponds to minimize the total energy functional of the N -electrons system

on a set of orthonormal single particle wavefunction, the ground state total energy can

also be expressed as:

E0[n(r)] =
∑

i

fiεi − e2

2

∫
n(r)n(r′)
|r − r′| drdr

′ + Exc[n(r)] −
∫
vxc(r)n(r)dr + Eion (1.15)
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where the Hartree (H) and the exchange-correlation (xc) contributions respectively ac-

count for the double counting and the miscounting of the same quantities in the sum

of the eigenvalues, whereas Eion is the energy term accounting for the direct Coulomb

interaction among the ionic cores. The variational principle the theory relies on, eq. 1.8,

implies that the total energy functional is quadratic, near the self consistent point, in

the fluctuations of the wavefunctions (or the charge density) around their self consistent

value. This variational properties is not shared by eq. 1.15 which displays a linear error

near the self consistent point. In fact, at any intermediate step of the minimization, the

Hxc potential entering the expression of the Kohn-Sham hamiltonian, eqs. 1.13 and

1.9, is calculated from the charge density nin obtained in the previous iteration. This

charge density is generally different from the analogous quantity obtained in the current

diagonalization nout. The sum of the eigenvalues thus reads:

Eband =
∑

i

fiεi = T0[n
out] +

∫
(Vext(r) + V in

Hxc(r))n
out(r)d(r) (1.16)

which behaves at most linearly in the above mentioned fluctuations of the quantity nout

around its self consistent value. To obtain a variational total energy we can add some

corrections to the band energy which eliminate the undesired dependence on nin. The

final expression results:

Ẽband[n
out] =

∑
i

fiεi +
∫

(V out
Hxc(r) − V in

Hxc(r))n
out(r)d(r) =

T0[n
out] +

∫
(Vext(r) + V in

Hxc(r))n
out(r)d(r) +

∫
(V out

Hxc(r) − V in
Hxc(r))n

out(r)d(r) =

T0[n
out] +

∫
(Vext(r) + V out

Hxc(r))n
out(r)d(r) (1.17)

where it is evident that the correction (to be added to E0 in eq. 1.15) completely vanish

when self consistency is reached (full details can be found in [12]).

The theoretical approach described so far is expected to be very efficient when the

dominant part of the energy consists of the kinetic and the electrostatic terms be-

cause they are described without any approximation. However the success in studying

real materials depends very strongly on how the (hopefully small) exchange-correlation

contribution is described and this is particularly true with systems (like the strongly

correlated materials studied in this thesis) where the many body effects are expected to

be important.
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1.2.1 Approximations for the exchange-correlation energy func-

tionals: LDA and GGA

Up to this point no approximation was introduced into the theory, but there still ex-

ists a term (the exchange-correlation energy) which, though well defined (and exact)

in principle, has a very complicated expression which is not known explicitly. Some

assumptions are thus needed in the definition of Exc to convert the DFT in a practical

tool for ab-initio calculations and this modeling necessarily introduce in the theory some

approximations.

The simplest of these descriptions is called the Local Density Approximation (LDA)

and is obtained assuming that the xc energy of a real system behaves locally as in

a uniform (homogeneous) electron gas having the same density. The xc energy thus

depends only on the local density of the system and actually reads:

ELDA
xc [n] =

∫
εhom

xc (n(r))n(r)dr (1.18)

where εhom
xc (n(r)) is the xc energy density of the above mentioned homogeneous system.

The xc potential can be easily obtained from the xc energy functional and results:

vLDA
xc (r) =

δELDA
xc [n]

δn(r)
=
∂Fxc(n)

∂n
|n=n(r) (1.19)

where Fxc(n) = εhom
xc (n)n. This approximation was designed to work with systems in

which the electronic charge density is expected to be smooth (like, for instance, in nearly

free-electron-like (simple) metals, intrinsic semiconductors and so on) but it gives indeed

quite good results also with non homogeneous systems like covalently bonded materials

and (some) transition metals. It typically produces good agreement with experiments

about structural and vibrational properties, but usually overestimates bonding energies

and predicts shorter equilibrium bond lengths than found in experiments. In order to

overcome these and other difficulties of LDA, some extensions of the original approxi-

mation were introduced among which the Generalized Gradient Approximation (GGA)

family is one of the most successful. Within GGA the xc energy is a functional not of

the density alone, but also of its local spatial variations:

EGGA
xc [n] =

∫
εGGA

xc (n(r), |∇n(r)|)n(r)dr. (1.20)

Several expressions of the xc energy density have been described in different formulations

of the GGA functionals. Among these, the Perdew-Burke-Ernzherof (PBE) expression

was chosen in this work [13].
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The potential corresponding to the energy functional EGGA
xc [n] can be expressed as:

vGGA
xc (r) =

δEGGA
xc [n]

δn(r)
=

(
∂Fxc

∂n
−

3∑
α=1

∂α

(
∂Fxc

∂(∂αn)

))
|n=n(r) (1.21)

where Fxc(n, |∇n|) = εGGA
xc (n, |∇n|)n, ∂α stands for the αth component of the gradient

and the rule of integration by parts was used to obtain the last equality. This improved

approximation is actually able to cure some defects of LDA and generally produces

better description of the structural properties of real materials. In particular it improves

significantly the results about the binding energy of real system. It is also expected to

give a better description of non homogeneous systems, like transition metals, producing

correct results in some cases where LDA completely fails. One example is bulk iron

which in agreement with experiments, is predicted by GGA to have a ferromagnetic

(FM) bcc ground state rather than a paramagnetic fcc one as found in LDA.

Despite the theory is exact in principle, the approximations we have to adopt for

the exchange and correlation energy both in LDA and GGA introduce a mean-field-

like formalism which can be expected to work well for systems with rather delocalized

electrons but is not sufficiently accurate when dealing with materials with localized

electrons for which many body effects are expected to be more important.

1.2.2 The Local Spin Density Approximation

A formulation of the xc functional depending only on the total electron density should

allow an exact description of real materials; however the treatment of magnetic systems

is much simpler if the xc energy functional is explicitly considered as dependent on the

two spin populations separately. In this case the Kohn Sham equations can be written

independently for the two spin polarizations:[
− h̄

2∇2

2m
+ V σ

KS(r)

]
ψσ

i (r) = εσi ψ
σ
i (r) (1.22)

where we have:

V σ
KS(r) = Vext(r) + e2

∫
n(r′)
|r − r′|dr

′ + vσ
xc(r) (1.23)

vσ
xc(r) =

δExc[n
↑, n↓]

δnσ(r)
(1.24)

nσ(r) =
∑

i

fσ
i |ψσ

i (r)|2, n(r) =
∑
σ

nσ(r). (1.25)

Of course the two spin populations interact with each other through the Hartree and

xc potentials and the effective field acting on one of them depends on the opposite-

spin charge density also. As it can be observed from the expression of the effective
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potential, the Coulomb part of the potential doesn’t change at all with respect to LDA;

the unbalance between up and down spin states, which originates the magnetization,

is indeed produced by the exchange and correlation potential which accounts for the

differences between like-spin and unlike-spin interactions. The exchange and correlation

functionals of this generalized spin-dependent approach (whose simplest variant is the

so called Local Spin Density Approximation) are usually given separate expressions. In

fact, the exchange contribution is diagonal in the spin and can be obtained extending

the non polarized expression:

ELSDA
x [n] =

∑
σ

∫
FLSDA

x (nσ(r))d	r =
∑
σ

1

2

∫
FLDA

x (2nσ(r))d	r (1.26)

where FLDA
x is the same functional used for the unpolarized case. The correlation

functional, instead, is obtained interpolating the results for the homogeneous electron

gas at different spin polarizations and can be written as dependent on both the (total)

charge density n(r) and the magnetization m(r) which is defined as:

m(r) = μB(n↑(r) − n↓(r)). (1.27)

If we define the magnetic polarization,

ξ(r) =
1

μB
|m(r)|
n(r)

, (1.28)

so that 0 ≤ ξ ≤ 1, this contribution to the total energy actually results:

ELSDA
c [n, ξ] =

∫ [
εUc (n(r)) + f(ξ(r))

(
εPc (n(r)) − εUc (n(r))

)]
n(r)dr (1.29)

where f(ξ) is a smooth interpolating function with f(0) = 0 and f(1) = 1, and the

εPc and εUc functionals represent respectively the correlation energy densities for the

polarized and the unpolarized systems. The contribution to the Kohn-Sham potential

coming from the exchange and correlation functionals described so far corresponds to

an effective magnetic field. In fact, by calculating the first derivative of these quantities

with respect to the spin polarized charge densities, we obtain a first term equal for the

two spin polarizations and a second one (depending on the magnetization) which has the

same absolute value but changes sign according to the spin it is applied on. This latter

term introduces differences in the two effective fields thus producing the spin unbalances

from which the magnetic properties of the system derive.

A similar extension to the spin polarized case is also possible within the GGA ap-

proximation. However, within this approach, the correlation contribution usually does
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not contain the gradient of the magnetic polarization [13] and the functionals finally

reads:

Eσ−GGA
x =

1

2

∑
σ

∫
Fx(2nσ, |2∇nσ|)dr (1.30)

Eσ−GGA
c =

∫
Fc(n, ξ, |∇n|)dr (1.31)

where Fx and Fc are the gradient-dependent analogues of the quantity defined in the

LDA case.

1.3 Periodic systems: the Bloch theorem

The description of real (bulk) materials within ab-initio calculations is based on the

assumption that the atoms which compose them are at rest in their equilibrium positions

and these form an infinite, periodically repeated structure. In mathematical terms, if

we call V the external potential acting on the electrons, we have:

V (r + R) = V (r) (1.32)

where R is a direct lattice vector corresponding to an integer linear combination of

three fundamental vectors determining the periodicity of the lattice in three independent

directions. The whole electronic hamiltonian and all the physical quantities describing

the periodical system also share the translational invariance of the lattice and this allows

to use the Bloch theorem which states that the single particle electronic wave function

can be expressed in the form

ψkv(r) = eik·rukv(r) (1.33)

where k is the crystal momentum of the electrons (it actually describes the translational

properties of the wavefunction), v is a discrete index (called the band index) classifying

states corresponding to the same k−vector and ukv(r) is a function with the same

periodicity of the crystal:

ukv(r + R) = ukv(r). (1.34)

Due to the translational invariance of the system different k−points can be treated

independently. In fact, the hamiltonian commutes with the operators which generate

translations through the points of the lattice and is thus block diagonal on the basis set

of the eigenvectors of these latter operators which corresponds to Bloch wavefunction of

the form given in 1.33 and are classified by k. In this context the band index v numbers

the eigenvalues of the hamiltonian belonging to the same k−block.
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The k−vectors are defined within the so called first Brillouin Zone (BZ) of the

reciprocal space which has a periodic structure whose fundamental lattice vectors bi are

related to the ones of the real (direct) space ui as follows:

bi · uj = 2πδij i, j = 1, 2, 3. (1.35)

The sums over the electronic states which define many physical quantities as, for in-

stance, Eband and n(r), actually correspond to integrals over the BZ (and sums over the

band index v). Using the symmetry of the crystal, the integration can be conveniently

confined in a smaller region of the BZ, the so called irreducible wedge of the Brillouin

zone (IBZ). This result can be further improved by the use of the special point integra-

tion technique which allows to perform reciprocal space integration (needed for example

when calculating the charge density or the sum of the eigenvalues) using generally a

small set of k-vectors in the IBZ. These points can be chosen according to different

techniques [14](in this thesis we use the Monkhorst and Pack recipe) and in general the

accuracy of the (approximate) method can be checked by the convergence properties of

the physical properties of interest upon increasing their number. As an example, the

reciprocal space integration for the charge density is performed as a sum over a discrete

set of vectors:

ñ(r) =
∑

k∈IBZ

ωk

∑
v

fkv|ψkv(r)|2 (1.36)

from which the electronic charge density results through a symmetrization procedure:

n(r) =
1

NS

∑
S

ñ(S−1r − f) (1.37)

where NS is the number of symmetry operations S in the space group of the crystal and

f a possible fractional translation. In eq. 1.36 the ωk coefficient is the k-point weight

calculated within the special point technique.

The special points technique is very efficient in the description of semiconductors or

insulators but gives poor results when directly applied to metals. This happens because

the region around the Fermi level (which is crossed by some electronic states) needs to

be sampled quite accurately and in general a larger number of vectors is required. If the

used k-point grid is not fine enough, there could also be problems of instability during the

self-consistent run because even small shifts in the Fermi energy could include or exclude

in the reciprocal space sums (like the one in eq. 1.36) a finite number of electronic states

thus producing considerable fluctuations in the corresponding quantities. A possible so-

lution to this problem can be achieved using the tetrahedron method which consists in
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decomposing the BZ into symmetry breaking elemental volumes and connecting the en-

ergy bands between neighboring k-points by linear interpolation. However this method

presents some important drawbacks [15] so that we choose to use another approach to

the problem of describing metallic systems. This technique consists in introducing a

finite smearing of the Fermi distribution (actually corresponding to consider a finite

effective temperature) which smoothes the weight of the states around this level and

avoids large fluctuations in the calculated quantities. The convoluting function used to

introduce the smearing can be chosen in many ways: finite temperature Fermi distri-

bution, Lorentzian, Gaussian [16], cold smearing factors [17], and so on. In this thesis

the Methfessel and Paxton smearing technique [18] is used which adopts a combination

of Gaussians and polynomials as spreading functions. This approximation works quite

well for metals (even if a larger number of k-points is usually required than for semi-

conductors) and the accuracy of the reciprocal space integrations at finite smearing can

be checked by their convergence properties upon increasing the number of the special

k-vectors in the IBZ and reducing the broadening width σ. The main drawback intro-

duced by the smearing technique is the dependence of the ground state total energy

on the chosen σ. The Methfessel and Paxton methods allows to considerably reduce

this dependence by accurately choosing the convoluting function to smear the Fermi

distribution.

1.4 The plane wave pseudopotential method

In order to solve the KS equations by practical calculations we need to transform the

original integro-differential problem into a more tractable algebraic one. This can be

achieved by expanding the electronic wavefunctions on a basis set and using this rep-

resentation in all operators in the hamiltonian. The one chosen in this work (and one

of the most used in ab-initio calculations) is the Plane Wave (PW) basis set [12] which

takes advantage from efficient algorithms, like the Fast Fourier Transform (FFT), to

move back and forth from real to reciprocal space. The Bloch electronic wave function

in eq. 1.33 can thus be represented in the form:

ψkv(r) =
1

(NΩ)
1
2

∑
G

ei(k+G)·rcv(k + G) (1.38)

where Ω is the volume of the unit cell, the G vectors are the reciprocal lattice vectors,

and the cv(k + G) coefficients are normalized in such a way that:∑
G

|cv(k + G)|2 = 1. (1.39)
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Using this expansion, the KS equations can be written in reciprocal space as:

∑
G′

[
h̄2

2m
|k + G|2 + vh(G − G′) + vxc(G −G′) + vext(G,G

′)

]
cv(k+G′) = εkvcv(k+G).

(1.40)

It is evident from this expression that the hamiltonian has block diagonal form with

respect to the k vectors and the diagonalization can thus be performed within each of

these block separately. As we are studying the ground state properties of the system,

for each k−point only a finite number of the lowest-energy electronic states on which

all the electrons of the system can be accommodated, need to be computed to obtain

the charge density. This quantity is then used to construct a new guess of the potential

to be reintroduced in the Kohn-Sham equations for the successive step of the iterative

diagonalization. Of course the PW expansion is exact in the limit of infinite number

of G-vectors. In practical calculations one can deal only with a finite number of plane

waves and usually chooses those contained in a sphere of maximum kinetic energy Ecut

(the energy cut-off):
h̄2

2m
|k + G|2 ≤ Ecut. (1.41)

The accuracy we obtain in resolving the KS equation under the condition in eq. 1.41

has to be checked each time by increasing the value of the energy cut-off and studying

the convergence of the properties we are interested in. The big advantage of using the

PW expansion mainly consists in the fact that Ecut is the only parameter in the theory

which controls the accuracy of the description of the system under consideration. This

means that, once Ecut is fixed, all the wavefunctions of the system whose variation takes

place over distances larger than (and up to) 2πh̄/
√

2mEcut can be well described.

Unfortunately, the PW expansion uses the same resolution in each region of space so

that, to describe the ionic cores and the electronic states partially localized around them,

we would need an intractably large number of G vectors. One possible way around this

difficulty is the Pseudopotential (PP) technique, which is based on the assumption that

the most relevant physical properties of a system, as far as bonding and chemical reactiv-

ity are concerned, are brought about by its valence electrons only, while the ionic cores

(the nuclei dressed by the most internal electronic cloud) can be considered as frozen in

their atomic configurations. The valence electrons thus move in the effective external

field produced by these inert ionic cores and the pseudopotential tries to reproduce the

interaction of the true atomic potential on the most external (valence) states without

explicitly including the core states in the calculations. There exist different procedures

to build a pseudopotential but the general ideas they rely on are similar. Once a full
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potential calculation is performed for the isolated atom, the electronic states are divided

into two categories: the internal states and the valence ones. The internal electrons re-

main frozen in their ground state atomic configuration whereas for the external ones a

pseudowavefunction is built (which matches the corresponding full potential one in the

region external to a fixed core radius) which is chosen to be smooth and nodeless inside

the core, while conserving the total valence charge in this region (norm conserving condi-

tion). Given a choice for both the core radius and the shape of the pseudowavefunction,

a pseudopotential is built (inverting the Schröndinger-like equation for the considered

electronic state) which reproduces the scattering properties of the ”real” valence states

of the reference atomic configuration in a region of energies which has to be as large

as possible in order to give good transferability of the pseudopotential when used in

different chemical environments. Owing to the smoothness of the pseudowavefunction,

the calculations can be performed with a reasonable number of plane waves. However in

order to reproduce the scattering properties of the all-electrons (AE) wavefunctions of

several angular momenta, it is usually necessary to split the pseudopotential in a local

part (matching the real full potential outside the core) and a non local one (vanish-

ing outside the core) which acts in different ways on each different angular momentum

channel. The first expression for this non local contribution was given in a semi-local

form [19, 20, 21] where the non-locality is built just on the angular coordinates:

V (r, r′) = Vloc(r)δ(r− r′) +
lmax∑
l=0

Vl(r)δ(r − r′)Pl(r, r
′), (1.42)

where Pl is the projector operator onto the lth angular momentum subspace. However,

in order to make the PW calculation more efficient, Kleinman and Bylander (KB) [22]

replaced the above semilocal expression with a fully separable form:

V (r, r′) = Vloc(r)δ(r − r′) +
∑

i

|i〉Vi〈i|. (1.43)

where the wavefunctions |i〉 are (modified) atomic pseudo-states such that the KB po-

tential reproduces the action of the original semilocal one on the reference atomic pseu-

dowavefunctions.

The most complete generalization (and improvement) of this scheme was introduced

by Vanderbilt [23, 24] who found a method to increase the transferability of the PPs

while reducing the workload necessary to describe the pseudowavefunctions inside the

cores. The region of energy corresponding to occupied states in the crystals is sampled

with more than one projector so that the index i in eq. 1.43 runs not just on the atomic
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reference states but also, for each angular momentum, on a set of (usually two) energy

values around them used to reproduce the correct scattering properties of the ion. This

requires a generalization of the expression 1.43 whose non local part becomes:

Vnl =
∑
i,j

Bij |βi〉〈βj| (1.44)

where the functions |βi〉 are built from the chosen pseudowavefunctions (corresponding

to the chosen energy εi) and local pseudopotential and are localized in the core region

(they vanish at a chosen core radius of the atom on that site), while the matrix Bij

is an hermitian operator built using the same quantities. This is already a very useful

improvement as it allows to increase the PP transferability, but the most important

reduction of the computational load introduced by the ultrasoft (US) PPs comes from

the relaxation of the norm conserving condition on the pseudowavefunctions and the

possibility of choosing them as smooth as possible inside the core regions. This is

possible by introducing a generalized overlap operator:

S = 1 +
∑
i,j

qi,j |βi〉〈βj| (1.45)

so that the orthonormality condition to be satisfied in the solution of the KS equations

is:

〈ψi|S|ψj〉 = δij . (1.46)

In these expressions qi,j is the integral of the augmentation charge density,

qi,j =
∫
Qi,j(r)dr (1.47)

Qi,j(r) = ψAE∗
i (r)ψAE

j (r) − ψPS∗
i (r)ψPS

j (r) (1.48)

where the wavefunctions appearing in eq.1.48 are the atomic (all-electrons and pseudo)

states used to build the crystal electronic ones. Owing to this generalization of the

overlap, the charge density has to be completed with the augmentation part on the

ionic cores:

n(r) =
∑
k,v

fkv

⎡
⎣|ψkv(r)|2 +

∑
I,i,j

QI
ij(r − RI)〈ψkv|βI

i 〉〈βI
j |ψkv〉

⎤
⎦ . (1.49)

In this expression an index, I, counting the different ions, in position RI has been added

to the augmentation charges QI
ij and to the β functions. This modification in n(r) also

involves the expression of the potential in the KS equations. If we describe the external

potential in the form:

V (r, r′) = Vloc(r)δ(r − r′) +
∑
I,i,j

DIion
ij |βI

i 〉〈βI
j | (1.50)
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the coefficient DIion
ij have to be calculated as:

DIion
ij = BI

ij + εjq
I
ij (1.51)

and the KS equations (which have to be solved with the generalized orthonormality

condition 1.46) finally read:

⎡
⎣−∇2

2
+
∑
I,i,j

DI
ij|βI

i 〉〈βI
j | + Veff

⎤
⎦ |ψkv〉 = εkvS|ψkv〉 (1.52)

where

Veff = Vloc + VHxc and DI
ij = DIion

ij +
∫
Veff(r)Q

I
ij(r− R)dr. (1.53)

As evident from the last expression, the pseudopotential needs to be updated at each

iteration (the effective potential Veff is built with the electronic charge density) and this

makes it participate to the screening process, further increasing its transferability. The

prize to be paid to obtain the advantages introduced by US PPs (beside updating the

DI
ij coefficients each time) consists in the fact that we need a very large cut-off energy

to describe the augmentation contribution to the charge density. However this term is

important just in the calculation of n(r) and does not enter the diagonalization problem

which has the dimension fixed by the (smaller) wave function energy cut-off.

1.4.1 The non linear core correction

The PW PPs method is based on the assumption that the electronic charge density

can be separated into a valence term nv(r) and a frozen core contribution nc(r). In its

original form H and xc potentials in the solid are calculated using nv(r) only. This is

not an approximation for the Hartree potential because it’s linear in the charge density

and the contribution coming from the core term can be easily separated from the other

(and included in the local part of the pseudo potential). The problem exists instead

for the xc potential which is not linear in the density. Thus separating the xc energy

density as

εxc(nv(r) + nc(r)) ∼ εxc(nv(r)) + εxc(nc(r)) (1.54)

introduces a systematic error which is more serious when the two contributions to the

charge density considerably overlap with each other. It follows that the systems having

valence electrons strongly penetrating in the core regions (they usually are very localized

external states like d bands for transition metals or f states in rare earths compounds)
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may be affected by this problem. The exact solution would be to include the core states

with strong overlap with the valence ones in the valence manifold, but this would become

very expensive from a computational point of view, also requiring a larger space for the

wavefunctions to be stored. The non linear core correction (NLCC) approximately

overcomes this difficulty including the core contribution in the charge density when

computing the xc energy and potential. The xc energy thus results:

Exc[nv + nc] =
∫

(nv(r) + nc(r))εxc(nv(r) + nc(r))dr (1.55)

where the core contribution is still fixed in its frozen atomic configuration (it is not

updated during iteration). The need of introducing the NLCC formalism is particularly

evident when dealing with magnetic crystals: without including the core contribution

(which is spin unpolarized), into the charge density, the magnetic polarization ξ, intro-

duced in eq. 1.28,

ξ(r) =
n↑ − n↓

n↑ + n↓ (1.56)

could be significantly overstimated thus spuriously enhancing the tendency of the system

to acquire a finite magnetization.



Chapter 2

Some d-open shell systems studied

with GGA

2.1 introduction

The present chapter is devoted to the study of selected compounds using standard DFT

methods. All the chosen systems contain Iron whose electronic configuration (for the

isolated atom) is [Ar]3d64s2. Both the 3d and the 4s electrons of iron (which populate

the most external shells) play an important role in the chemistry of this element. Being

weakly bound to the ionic core (composed by the nucleus and the most internal electronic

clouds) the 4s electrons are easily lost by the atoms in presence of other elements with

(even slightly) higher electronegativity (as oxygen, for instance). A different behaviour

is observed instead for the 3d electrons which, being more localized than the 4s ones,

are more bound to the ionic cores. Despite this fact, they are deeply involved in the

chemical bonds that ions form and, being usually the highest energy occupied states,

they are frequently responsible for the conduction properties of iron compounds, as they

represent the incomplete manifold crossed by the Fermi energy. However, despite the

fact that the electrons which are responsible for the possible metallic behaviour of iron

compounds are mainly accommodated on these states, the d levels strongly retain their

atomic character which (usually) produces quite narrow bands, very localized charge

densities and magnetic moments.

The localization of the d (open) shell electrons may cause electronic correlations on

the atomic sites to play a very important role in the physical behaviour of iron (and,

in general, of transition metal) compounds and create some troubles to conventional

LDA or GGA approaches which are not designed to deal with rather localized strongly

24
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correlated electrons.

The motivation of the present chapter is thus twofold: from one side we study the

physical properties of some representative systems that are correctly addressed within

GGA and whose good description we would like to be preserved (as much as possible)

also when using our LDA+U scheme; on the other hand we can consider the aspects

that are not well reproduced by the conventional xc functionals and possibly need a

better treatment of the electronic correlations.

The chapter is divided in three sections each one devoted to a different material:

(bulk) iron, FeO iron oxide and Fe2SiO4 fayalite.

The computational approach adopted to study these compounds is GGA used in

its spin polarized version together with NLCC. For each of these systems, we present

the band structure, the magnetic moment arrangement, and the structural properties

(determined from the fit of our total energy calculations to the Murnaghan’s equation

of state) and comparison is made with the experimental results (when available) to

underline successes and defects of this preliminary study.

Bulk iron has been studied extensively using ab-initio calculations and we know that

σ-GGA together with NLCC pseudopotentials are required to obtain the bcc ferromag-

netic (FM) phase as the ground state (LDA without NLCC predicts a paramagnetic

fcc structure to be the most stable) [25]. Within this approximation it is quite well de-

scribed by standard DFT which is able to correctly reproduce structural, magnetic, and

also vibrational properties [26]. Thus the strong correlations existing for the d electrons

around the Fermi level are not expected to be very important for this material and this

is the aspect we want to investigate in this thesis.

Iron oxide, FeO, (as many other transition metal oxides) is a material which can

be poorly described within GGA. Even if this theoretical approach can give reasonably

good results for the magnetic moments and the equilibrium lattice spacing, it is less

accurate in describing its behaviour under pressure (in particular the distortion along

the [111] direction) and, more seriously, fails in reproducing the observed insulating

ground state. In fact, as other compounds of this class (the transition metal oxides),

FeO is an insulator of supposedly Mott kind where the band gap is actually due to

the strong on site Coulomb repulsion which forbids the electrons to hop from one site

to another. The approximated expression of the conventional GGA functionals is thus

not sufficiently accurate to give a good description of the electronic properties of this

compound, and this is probably the reason for the failure in describing its physical

behaviour which will be presented in this chapter.
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Fe2SiO4 fayalite is a mineral of geophysical interest in the study of the Earth’s upper

mantle. We present some calculations (using, in this case, both LDA and GGA) for this

compound and we eventually obtain both magnetic and structural properties in quite

good agreement with experiments (the best results were produced by GGA). However,

despite the observed insulating behaviour, we obtain a metal with a narrow band of

iron d-levels crossing the Fermi energy. The charge density of the states around this

level was found to be extremely localized on iron sites thus revealing the strong atomic-

like character of these electrons and the possible importance of on site correlations.

Comparing GGA calculations to a simplified Hubbard model we will be able indeed to

roughly estimate the average Hubbard U , and to obtain a value of 2.4 eV consistent

with a Mott-Hubbard behaviour of this compound.

2.2 Bulk iron

In this paragraph we report some results about the equilibrium structural, magnetic and

electronic properties of bulk iron as obtained by DFT calculations.

In order to describe electron-ion interactions we use an ultrasoft pseudopotential

generated according to a modified Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) scheme

[27] which has been used previously in a structural and vibrational study of iron [26]. As

the LSDA is known to give wrong results about the ground state structural properties of

this material, we adopt the σ-GGA framework using the Perdew-Burke-Ernzherof (PBE)

[13] expression for both the exchange and correlations functionals. An energy cut off of

35 Ry is chosen to describe the electronic pseudo wavefunctions while the augmented

part of the charge density is expanded up to 420 Ry. The wave function energy cut-off is

larger than the one used in other works for iron [26], but this will be required in LDA+U

calculations and we adopt the same choice here in order to obtain consistent results in

both schemes. To perform reciprocal space integrations we adopt the Monkhorst and

Pack special point technique [14] and a mesh of 8×8×8 special points (corresponding

to 29 inequivalent points within the Irreducible wedge of the Brillouin Zone) is found to

sample the BZ quite accurately. The Methfessel and Paxton smearing technique [18] is

used to smooth the Fermi distribution and a broadening of 0.005 Ry, which is smaller

than required in ”ordinary” DFT calculations, gives good accuracy for our LDA+U

calculations whose results will be presented in the last chapter and compared with the

ones obtained in this section.

In its ground state this material has a ferromagnetic (FM) spin arrangement and
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Figure 2.1: The fit to the Murnaghan equation of state for bcc FM Iron. The volume is

given in (a.u.)3 while the zero of the energy coincides with the minimum of the energy-

volume fit.

Table 2.1: The calculated lattice constant (a0), bulk modulus (B0) and magnetic moment

(μ0) in comparison with LSDA (from ref. [26] and experimental results (from ref. [28].)

a0 (a.u.) B0 (Mbar) μ0 (μB)

σ-GGA 5.42 1.45 2.46

LSDA 5.22 2.33 2.10

Expt. 5.42 1.68 2.22

a body centered cubic structure. In order to study the structural properties of this

FM bcc phase, we change the volume of the unit cell (while keeping its cubic shape

fixed) and study the behaviour of the total energy of the system. The result is shown

in fig. 2.1 where a fit of the calculated points to the Murnaghan equation of state is

also introduced to estimate the equilibrium lattice spacing and the bulk modulus. In

table 2.1 a comparison is made between the experimental and the theoretical results
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Figure 2.2: The band structure of bcc iron. Solid line for majority spin bands, dotted line

for minority spin bands. The 0 of the energy is set at the Fermi level. The experimental

results were taken from [55].

for these quantities and for the magnetic moment on each ion. The agreement with the

experiments is fairly good for the cell parameter, while there are large discrepancies (but

much smaller than those produced by LSDA [26]) for the bulk modulus and the magnetic

moments. The electronic structure obtained at the equilibrium lattice parameter is
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Figure 2.3: The projected density of states of bcc iron. Red lines are for d states, black

lines for s states. The top panel is for majority spin states, the down panel for minority

spin states. The s density of states is multiplied by a factor of 5 in order to have an

integral comparable with the one of the d density of states.

shown in fig. 2.2 where a finite splitting among the two spin populations (which is

the origin of the ferromagnetic character of the material) is evident and larger in the

region around the Fermi level. In the same plot some experimental results obtained by

photoemission techniques by Turner et al. [55] are also shown. The comparison with our

calculated band structure seems to be quite good especially in the Γ-N-P region, while

a somewhat looser correspondance is obtained around the H point and in the Γ-P-H

zone. In this plot a clear distinction can be made among two groups of levels as also

evident from the projected density of states in fig. 2.3: the first group, extended in the

region around the Fermi energy (approximately from 5 eV below the Fermi energy to

3eV above it), is mainly composed by the 3d levels of iron; the second group, with a

much larger dispersion, consists of the 4s states which extend between 8 and 4 eV below
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the Fermi level, and above the region occupied by the d states. The magnetization

of the ions (generated by the relative shift among the two spin populations) is due,

to a large extend, to the d states. Thus, the same electrons which are responsible

for the metallic behaviour, also give rise to the magnetic properties of this material

(itinerant ferromagnetism). However a very small contribution also comes from the s

states because, as it can be observed in figure 2.3, they have slightly different density of

states in the two spin channel which produces unbalance among their populations (the

integrals of the two density of states are 0.39 and 0.45 electrons/cell for the majority

and the minority spin s states respectively). As it can be observed from fig. 2.3, in the

region around the Fermi level states of both kind coexist, but the s density of states

is strongly depleted (for both the spin channels) in the region where the d levels are

located, and is quite small in proximity of the Fermi level. The mixing among the two

is thus expected not to be very important so that the metallic character of the material

mainly arises from the strongly atomic-like d states.

As evident from the study about electronic, magnetic and structural properties, the

GGA approach gives a very good description of bulk iron; some questions, however,

still remains about its physical behaviour as, for instance, the mechanism which leads

to atomic like magnetic moments. The magnetism produced by itinerant electrons, in

fact, is still an open problem and the importance of the electronic correlations in this

context is one of the points under debate [29].

2.3 Iron oxide

Iron oxide (FeO) is a much more problematic material than Fe to be studied with

state-of-the-art numerical techniques. As it happens in most transition metal oxides,

LDA completely fails in reproducing the observed insulating behaviour (expected to

be produced by a Mott-like mechanism); nevertheless it can describe the structural

and magnetic properties of this compound in reasonable agreement with experimental

results, at normal pressure and temperature conditions.

In this paragraph some results of a σ-GGA study of FeO will be presented and

particular care will be devoted to its structural and electronic properties, to be compared

with the LDA+U results presented in a later chapter of the thesis.

The calculations are performed describing iron with the same US GGA (PBE) NLCC

pseudopotential already used for the bulk material, while for oxygen an US PBE (non

NLCC) potential has been chosen. The same smearing amplitude (0.005 Ry) as for bulk
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Figure 2.4: The unit cell of FeO. Red balls are Fe, blue are O, while the arrows represent

the spin polarization of the magnetic ions

iron is also used to smooth the Fermi distribution (we know that GGA describes this

compound as a metal) and a 4×4×4 mesh k-points (corresponding to 13 independent

vectors within the IBZ) is found to be enough for reciprocal space summations. An

energy cut-off of 40 Ry is chosen to describe the electronic wave functions, while the

augmented contribution to the charge density requires a 400 Ry cut-off. These are

again larger values than strictly required in ”normal” GGA (or LDA) calculations, but

we choose them in order to compare directly these results with those obtained in LDA+U

approach in which they are necessary.

The unit cell of FeO (in the undistorted phase) has a cubic rock salt (B1) struc-

ture with rhombohedral symmetry originating from the magnetization of the iron. The

ground state spin configuration, shown in fig. 2.4, is ferromagnetic for ions belonging to
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Figure 2.5: The fit to the Murnaghan equation of states for iron oxide. The volume is

given in (a.u.)3 while the zero of the energy coincides with the minimum of the energy-

volume fit.

the same [111] planes, while nearest neighbor magnetic planes are in an antiferromag-

netic configuration with each other because of a superexchange interaction mediated by

the oxygen ions lying in between [30]. At ambient pressure a rhombohedral stretching

of the crystal structure along the [111] body diagonal is also observed upon lowering

the temperature below the Néel value (≈ 198 K). The distortion is found to increase

under pressure loading and the Néel temperature is also observed to increase; at higher

pressure the system transform to other structural phases whose nature has been recently

studied [31, 32] and which will not be addressed here. We begin studying the undistorted

structure in the ground state rhombohedral AF spin configuration. The results of our

calculations can be seen in fig. 2.5 where the curve resulting from a Murnaghan fit to the

calculated points is also drawn and used to extract some structural parameters of this

material. In the table 2.2 a comparison is made with the experimental results about

the lattice parameter, the bulk modulus and the magnetic moment of each iron. Despite

some scattering in the experimental results, the agreement is reasonable especially for
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Table 2.2: Calculated lattice constant (a0), bulk modulus (B0) and magnetic moment

(μ0) in comparison with experimental results (taken from ref. [31].)

a0 (a.u.) B0 (Mbar) μ0 (μB)

σ-GGA 4.30 1.73 3.61

Expt. 4.33 1.42-1.80 4.20

the lattice parameter (we report the side of the conventional cubic cell of fig. 2.4 which

is not a fundamental direct lattice vector) and the bulk modulus. A larger discrepancy

is obtained for the magnetic moment of each iron which is anyway in better agreement

with experimental result than in other theoretical studies [31].

The electronic band structure of iron oxide has been calculated at the equilibrium

lattice parameter (of the undistorted cubic structure) for the AF spin configuration

depicted in fig. 2.4. The result is plotted in fig. 2.6 where the zero of the energy scale

is set to the Fermi energy. As it can be noticed from the plot, there is a complete

degeneracy among the spin up (solid lines) and the spin down (dotted lines) electronic

levels due to the antiferromagnetic ground state spin configuration. The majority spin

d states of each iron are located between 4 and 1 eV below the Fermi energy, while

the (partially filled) minority bands are extended around the Fermi level (between -1

to 2 eV) and cross it in several points thus producing the metallic behaviour. This is

at variance with experimental results which show an insulating ground state for this

compound at low pressure and temperature, and represents the most evident failure of

LDA (or GGA) in describing this class of compounds. However, the itinerant character

of the d electrons of iron is not in contradiction with the non zero magnetization which

actually results from the finite (exchange) splitting between majority and minority spin

states. Thus, while failing in reproducing the conduction properties, LDA and GGA

can give appreciable results about the magnetization on each ion. Four groups of states

in the electronic band structure can be distinguished: the oxygen s and p states lying

at about 20 eV and between 9 and 4 eV below the Fermi energy respectively, the iron

d levels from -4 to 2 eV around the Fermi energy, and the iron s states which are

completely empty in the region above the Fermi level. In a perfectly cubic environment

the d states of the magnetic ions could be further divided into two subgroups: the low

lying t2g levels (xy, yz and xz) and the higher energy eg states (x2 − y2 and 3z2 − r2).

The rhombohedral ligand field felt by the iron in the AF spin configuration lifts the
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Figure 2.6: The band structure of iron oxide corresponding to the spin configuration of

fig. 2.4. Solid lines, for majority spin bands, are completely degenerate with the dotted

line for minority spin bands. The zero of the energy is is set to the Fermi level.

t2g degeneracy of the cubic structure and produces one state of A1g symmetry, which

corresponds to the linear combination 1√
3
(xy+yz+xz) of 3Z2−r2 symmetry where Z is

taken along the [111] rhombohedral axis, and two other states of Eg symmetry lying on

the FM [111] planes corresponding to E1
g = 1√

6
(2xy−yz−zx) and E2

g = 1√
2
(yz−zx). The
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Figure 2.7: The projected density of states of AF undistorted iron oxide. The zero of

the energy is set to the Fermi level.

insulating gap could not be realized without rhombohedral symmetry [31] [33] because

in this case the degenerate t2g states would all sit at the Fermi level thus producing a

1/3 filled band. In the rhombohedral symmetry, in order the gap opening to take place,

the A1g state should correspond to a lower energy with respect to the other two states

originating from the t2g triplet (the six d electrons of iron would completely fill in this

case the five majority spin states and the lowest energy minority-spin state thus leaving

the other states above the Fermi energy). This is not realized within the GGA which

thus also fails in ordering the d orbitals of the magnetic ions. Furthermore, even if this

order were correct, the gap in the band structure would have been too small [31] (as it

happens for MnO and NiO) because it is not just produced by the ligand field acting

on the iron, but rather it is expected to be due to electronic correlations which are not

properly described within ”ordinary” mean-field-like LDA or GGA approaches.

A related aspect which is, however, somehow well described by GGA calculations

is the spectroscopical nature of the (unrealized) gap opening at the Fermi level: pho-
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Figure 2.8: The Murnaghan fits for different distorted structures. smaller angles corre-

spond to larger rhombohedral distortions. The volume is given in (a. u.)3.

toemission and optical experiments on iron oxide both reveal that the valence band of

this compound is of mixed O 2p-Fe 3d character [33] so that transitions between the

valence and the conduction band should also involve electrons hopping from oxygen to

iron (charge transfer insulator). A strong mixing between the oxygen p states and the

iron d levels should therefore be observed on the top of the valence band. Despite the

gap is not obtained within GGA, the mixing among these states is somehow realized in

our calculation as evident from fig. 2.7 where the projected density of states describ-

ing different atomic contributions has been plotted. Neglecting the states at the Fermi

energy, mainly originating from the minority-spin d states, we can see, in fact, that a

considerable overlap of oxygen p states and majority-spin d states exists in the region

near to 2 eV below the Fermi level. However, the spectral weight of this overlap region

is mainly due to iron d levels while a stronger interaction among oxygen p and iron d

states can be observed only between 5 and 9 eV below the Fermi level where oxygen

states give the ominant contribution. In other words, even if some finite overlap exists,

the two atomic contributions are centered in different regions of the energy spectrum.
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Figure 2.9: The rhombohedral angle is the one among any two of the face diagonal

vectors. In the undistorted structure its value is 60◦.

Despite GGA is quite successful in reproducing the lattice spacing and the bulk mod-

ulus of FeO in the cubic (undistorted) structure, the failure in describing its electronic

properties is possibly the reason of quantitatively wrong results for the rhombohedrally

distorted phase. In fact the cubic structure of FeO is found to be unstable with respect

a rhombohedral stretching along the [111] cubic diagonal and the reason of this is a

strong interplay among electronic/conduction properties, orbital ordering, and crystal

symmetry, producing very efficient magnetocrystalline interactions [31]. In fact, the dis-

tortion is observed at ambient conditions when temperature is decreased below the Néel

threshold (which is of about 198 K) and found to even increase under pressure loading.

The GGA approach to the study of FeO correctly predicts the distorted structure to be

the ground state at normal conditions (calculations are always performed at zero tem-

perature) and also reproduces the enhancement of the rhombohedral stretching under

pressure loading. In fig. 2.8 the fitting curves corresponding to different rhombohedral

distortions are plotted (the distortion parameter is the rhombohedral angle αr among

any two face diagonal vectors shown in fig. 2.9) and it can be seen that increasing pres-

sure favours larger and larger distortions. In order to study the increase of distortion

from a quantitative point of view we calculated the pressure corresponding to each point

of the Murnaghan curves and explored a pressure range from 0 to 200 kbars. At each

chosen pressure (we divided this interval in 20 parts) we calculated the enthalpy of the
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Figure 2.10: The rhombohedral angle as a function of pressure.

system (E + PV ) and fitted its dependence on cosαr with a quadratic curve finally

obtaining the rhombohedral angle corresponding to the minimum of the enthalpy. The

result is shown in fig. 2.10 where a clear tendency toward the enhancement of the rhom-

bohedral distortion can be observed as predicted by [31] and references quoted therein.

In the same picture two experimental points are also presented. The ambient pressure

experimental result was extracted from ref. [34], whereas the 200 kbar one was obtained

from ref. [35]. Both of them were obtained for non stoichiometric compounds so that

we extrapolated the experimental results up to the composition with the same amount

of iron and oxygen using the linear dependence of the rhombohedral angle with iron

concentration obtained in ref. [34] from measurements at 90 K and ambient pressure.

The use of the same linear dependence on ion concentration may not be very accurate

for the point at 200 kbars. In any case the amount of stretching (the deviation of the

rhombohedral angle from its cubic structure value of 60◦) predicted within GGA is far

too large if compared with experimental points even if we consider the results obtained

for the non stoichiometric compound which is used in experiments. In ref. [36] the same

agreement with experimental results led the authors to conclude that the behaviour of
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the rhombohedral distortion under pressure loading is correctly described within GGA,

but we think this is true just on a qualitative ground. Thus, GGA does not describe

accurately the structural properties of this compound in its ground state both at am-

bient and higher pressure regimes. As we expect this failure to be connected to the

incorrect description of the electronic structure, the rhombohedral distortion will be a

further aspect (beside, of course, the band gap opening and its spectroscopical nature)

our LDA+U approach will be tested on.

2.4 Fe2SiO4 Fayalite

Fayalite is the iron-rich end member of (Mg,Fe)2SiO4 olivine (orthorhombic structure),

one of the most abundant minerals in Earth’s upper mantle. Modeling the physical

behaviour of this compound is thus very important for geophysics which requires con-

sidering high pressure and temperature conditions. However the study of this material

at room temperature and pressure is also very interesting because it allows to under-

stand the starting point of the structural phase transitions it undergo at upper mantle

conditions. At normal pressure and temperature, fayalite shows insulating behaviour

and experimental work indicates a Mott-Hubbard type mechanism [37, 38]. The mag-

netic structure of Fe2SiO4 Fayalite has been also studied with Mössbauer spectroscopy

and neutron diffraction and it is reported to be a (noncollinear) antiferromagnetic com-

pound below a Néel temperature of TN ≈ 65 K [39]. Strong anisotropy in the measured

magnetic susceptibility (and also the noncollinearity of the spin arrangement) support

the idea of strong correlations among the crystal structure and the electronic/magnetic

properties.

In this work we will consider the ambient pressure, low temperature (T<TN) phase

of fayalite, which will be described (within standard spin polarized LDA or GGA ap-

proaches) in its ground state AF spin configuration. The neglect of spin orbit coupling

and of the orbital contribution (found to be not completely quenced) to the magneti-

zation does not allow to consider the noncollinear spin arrangement of this compound,

nor the important magnetocrystalline effects which lead to the strong anisotropies in

the measured magnetic susceptibility. Nevertheless an ab initio study of this compound

within a collinear spin polarized description could be useful to understand the role of

the electronic degrees of freedom on both magnetic and structural properties. In this

context, to reproduce the observed insulating behaviour could be of crucial importance

in the study of this material and, due to the strong interplay between electronic, mag-
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Table 2.3: The Wyckoff parameters for each ionic species

Ion Class Coordinates

Fe1 4a (0,0,0), (1/2,0,1/2)

(0,1/2,0), (1/2,1/2,1/2)

Fe2, Si, O1, O2 4c ±(u,1/4,v),

±(u+1/2,1/4,1/2-v)

O3 8d ±(x,y,z), ±(x,1/2-y,z),

±(x+1/2,1/2-y,1/2-z),

±(x+1/2,y,1/2-z)

netic and crystal properties, also contribute to a deeper understanding of the structural

phase transitions it undergoes under pressure loading.

In the present investigation the physical properties of Fe2SiO4 fayalite are studied

from first principles using LSDA and σ-GGA approximations. The comparison among

the results obtained in the two approaches will allow to establish the relative merit of the

two schemes and to identify those properties of Fayalite that are reasonably described

by these electron-gas based schemes and which ones are instead poorly described and

point toward strong correlation effects.

From X-rays diffraction studies it is known that Fayalite has an orthorhombic cell,

whose experimental lattice parameters are (in atomic units) a = 19.79, b = 11.50,

c = 9.11. The unit cell (depicted in fig. 2.11) contains four formula units, 28 atoms:

8 iron, 4 silicon, and 16 oxygen atoms. Silicon ions are tetrahedrally coordinated to

oxygens, whereas iron ions occupy the centers of distorted oxygen octahedra. The point

group symmetry of the non magnetic crystal is mmm (D2h in the Schoenflies notation)

and the space group is Pnma. The magnetization of iron reduces the original symmetry

and only half of the symmetry operations survive. The general expression for the internal

structural degrees of freedom is given in table 2.3 in the Wyckoff notation [40]. Iron

sites can be divided in two classes (see fig. 2.11 and tab. 2.3): Fe1 centers which are

structured in chains running parallel to the b, [010], side of the orthorhombic cell, and Fe2

sites which belong to mirror planes for the non magnetic crystal structure perpendicular

to the b side and cutting it at 1/4 and 3/4 of its length. The main structural units are

the iron centered oxygen octahedra which are distorted from the cubic symmetry and

tilted with respect to each other both along the chains and on nearest Fe2 sites.
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Figure 2.11: The unit cell of Fayalite. Light blue ions are Si, darker blue O, red Fe.

As for the magnetic structure, Fayalite is known to be an antiferromagnetic (AF)

compound with slightly non collinear arrangement of spin on Fe1 iron sites. This non

collinearity (expected to be due to the coupling of spin-orbit with the crystal field of the

tilted octahedra [39]) will not be addressed here. Magnetic moments along the central

and the edge Fe1 chains are antiferromagnetically oriented, but no constraint about

the relative orientation of moments on iron belonging to different classes comes from

experiment.
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Table 2.4: The relaxed lattice parameters and the total energy for spin configuration 1

and 2

a b c Δ E

[a.u.] [a.u.] [a.u.] [Ry/cell]

Exp.

19.79 11.50 9.11

LSDA

1 19.23 (−2.8%) 11.09 (−3.6%) 8.99 (−1.2%) 0.0598

2 18.36 (−7.2%) 10.77 (−6.3%) 9.42 (+3.4%) —

σ-GGA

1 19.96 (+0.9%) 11.45 (−0.4%) 9.21 (+1.1%) 0.0113

2 19.78 (−0.1%) 11.29 (−1.8%) 9.36 (+2.7%) —

In order to investigate the ground-state spin configuration of Fayalite density func-

tional theory (DFT) calculations were performed both in the LSDA and σ-GGA approx-

imations (the PBE functional is used in this case). The same ultrasoft pseudopotentials

used for bulk iron and iron oxide were adopted for Fe and O while a norm-conserving

pseudopotential was used for Si atoms. A 31 Ry kinetic-energy cutoff was found suffi-

cient for the plane-wave expansion of the electronic states, while a 248 Ry cutoff for the

augmented charge density was used. As the electronic structure of Fayalite turns out to

be metallic, the smearing technique was adopted to smooth the Fermi distribution with

a broadening width of 10 mRy, while 16 points in the IBZ (2×4×8 Monkhorst-Pack

grid) were found to give a good convergence of the total energy and the ionic forces.

Two spin configurations, shown in fig. 2.12, are compatible with experiments: in the

first one the magnetization of Fe2 ion is opposite to the one of the closest Fe1 iron, and

one obtains AF order between ions at the center of edge-sharing oxygen octahedra and

ferromagnetic order between corner sharing octahedra. In the second spin configuration

the opposite is true and AF order occurs between corner sharing octahedra. This second

magnetic structure is consistent with an iron-iron magnetic interaction via a superex-

change mechanism through oxygen p orbitals. This mechanism provides AF coupling

when the Fe-O-Fe angle is close to 180 degrees (corner sharing octahedra) and a weak

ferromagnetic interaction when this angle is about 90 degrees (edge sharing octahedra).

For each spin configuration (and both exchange-correlation functionals) a structural re-

laxation of the internal ionic degrees of freedom and of the unit cell lattice parameters
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Figure 2.12: The two possible spin configurations. 1) AF interaction between edge-

sharing octahedra; 2) AF interaction between corner-sharing octahedra. The zig zag

lines connect first neighbor Fe1-Fe2 iron sites (almost on the same 001 plane).

was performed. In the final relaxed geometries force components did not exceed 10−3

a.u. and the stress tensor vanished within 4-5 kbar corresponding to errors in both the

atomic positions and the lattice parameters of about (and usually less than) two parts

per thousand. For both exchange-correlation functionals the second spin configuration

has lower total energy and is therefore the magnetic ground state of the system. Su-
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perexchange mechanism is thus confirmed to be responsible of magnetic interaction and

the difference between the total energies of the spin configurations (about 10 mRy/cell

in σ-GGA) gives a measure of the exchange parameters between Fe1 and Fe2 iron (it is

about sixteen times the average JFe1,F e2). This small value is consistent with the low

value of Néel temperature (∼65 K at ambient pressure). Despite the fact the canting

of the magnetic moments on iron sites cannot be accounted for (because only collinear

magnetism is allowed in the calculation and spin-orbit coupling is not included), their

absolute value is found to be in good agreement with experimental results [39]. Our av-

erage value of 3.8 μB per magnetic ion compare quite well with the experimental result

of 4.4 μB (both for Fe1 and Fe2 ions) at a temperature of about 10 K if we consider

that this latter moment contain a residual orbital contribution (the spin-only value is 4

μB) [39].

Although both LSDA and σ-GGA functionals provide a reasonable description of the

structural properties of the system it can be observed that for both spin configurations

σ-GGA gives lattice parameters which are in better agreement with experimental data

than LSDA does. Moreover σ-GGA structural properties are not very sensitive to spin

ordering while LSDA appears to be more sensitive.

The result of our calculations are collected in table 2.4. A detailed comparison of the

internal structural degrees of freedom is given in table 2.5 where the theoretical value of

these quantity obtained for the ground-state spin-configuration using LSDA and σ-GGA

are compared with the experimental data. An overall good agreement between theory

and experiment can be observed but again σ-GGA results are in closer agreement with

experimental results.

Using σ-GGA approximation, a good description was obtained for the ground-state

crystal structure and spin configuration of Fayalite. However, as in the case of iron

oxide, the same can not be said for its electronic band structure. In fig. 2.13 the σ-

GGA band structure of Fayalite around Fermi energy is shown where it appears to be

a band metal, with two iron d bands crossing the Fermi level, in spite of the fact that

experimentally it is found to be insulating. A finite density of state (DOS) is present at

the Fermi energy, see fig. 2.14. All the electronic bands displayed in fig. 2.13 originate

from iron d levels. As in FeO, due to the AF ordering, spin up and spin down levels are

degenerate. Fe2+ ions occupy the center of distorted oxygen octahedra. The quasi-cubic

local symmetry determines a crystal field splitting of the d levels in two groups: a lower

energy t2g (three-fold) level and an higher energy eg (two-fold) level. It is convenient

to refer to the simple scheme reported in fig. 2.15 and compare it to fig. 2.14. Every
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Table 2.5: The relaxed ionic positions in the unit cell described by the Wyckoff param-

eters.

Ion u v x y z

Exp.

Fe2 0.7800 0.5147

Si 0.5975 0.0708

O1 0.5929 0.7313

O2 0.9530 0.2923

O3 0.1637 0.0384 0.2885

LSDA

Fe2 0.7591 0.5080

Si 0.5905 0.0716

O1 0.5886 0.7471

O2 0.9353 0.2878

O3 0.1663 0.0224 0.2822

σ-GGA

Fe2 0.7766 0.5170

Si 0.5955 0.0710

O1 0.5964 0.7376

O2 0.9467 0.2979

O3 0.1650 0.0292 0.2782

iron ion in Fayalite is in its high spin configuration because the crystal field splitting,

UCF, due to the oxygen octahedra, is smaller than the exchange splitting, UX due to the

first Hund’s rule. From an analysis of the band structure it results that UCF ∼ 1
2
UX.

Therefore five electrons per iron fill up completely the majority spin d states (Hund’s

rule is fulfilled) whereas one more electron per iron atom partially fills the minority spin

t2g bands that are crossed by the Fermi level. The distortion of the Fe-O octahedra

from cubic symmetry induces a partial mixing of majority spin t2g and eg states and a

small splitting of the minority spin t2g levels in two groups of 12 bands each (visible in

fig. 2.14 only as a very deep dip in the DOS at ≈0.3 eV above the Fermi level due to

the finite smearing width used in the plot). The t2g bandwidth around the Fermi level

is about 1.5 eV (or about 1 eV if only the 12 lowest t2g bands are considered).
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Figure 2.13: The electronic band structure originated from the iron d levels.

One important feature of the electronic band structure is the marked flatness of the

bands around the Fermi surface along [001] (ΓZ line in fig. 2.13) and [100] (ΓX, SY,

ZU, RT) directions and the relative large dispersion in the [010] direction (ΓY, XS, ZT,

UR). This means that the calculated electronic states in the minority-spin t2g bands are

rather localized in the x an z direction and mainly extend along the zig-zag chains in

the y direction.
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Figure 2.14: The electronic density of states. The zero of the energy is set to the Fermi

level.
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Figure 2.15: A simple scheme about the splitting of the iron d levels in the crystal.

This scenario is confirmed by fig. 2.16 where the charge density corresponding to the

electronic states at the Fermi energy is shown by isosurfaces drawn at a value equal to

2 % of the maximum charge density. As evident from the plot, electronic states at the

Fermi-level actually belong to both Fe1 and Fe2 irons but extreme localization occurs

on iron sites so that electrons are very little extended away from the atomic sites. The
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Figure 2.16: The charge density generated by states around the Fermi level.

spatial localization of these states suggests that correlation effect due to on-site Hubbard

repulsion, treated only at the mean-field level in the LSDA and σ-GGA calculations,

may be important and may explain the insulating behavior of Fayalite.

Let us make a first crude estimate of the on-site repulsion for electrons on the iron

sites and compare the result with the relevant bandwidth around the Fermi level. Let

us assume that GGA provides a good mean-field-like solution for the electronic states

around the Fermi energy and compare its electronic compressibility with the RPA result

obtained for a simplified Hubbard model that describes the physics of the electrons

responsible for conduction (or lack of it) in Fayalite. This is given in the following

expression:

H =
∑

<i,j>

∑
l,l′
tijc

†
i,lcj,l′ +

U

2

∑
i

∑
l

∑
l′(�=l)

ni,lni,l′ (2.1)

where tij is the hopping amplitude between two nearest iron on the same zig-zag chain

(the model is therefore effectively unidimensional), U is the average on-site repulsion, c†il
and cil are creation and annihilation fermionic operators on the l-th orbital of the i-th

site, while nil (= c†ilcil) are the corresponding occupation numbers. The spin degrees

of freedom never appear in this simple model because we consider only the three t2g
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minority spin levels for each iron atom and thus, fixing the site, actually fixes also the

spin. This simple model contains the two competing parameters (the hopping term and

the on site repulsion) which describe the physics of the electrons around the Fermi level.

In order to establish a connection between the parameter in this model and the DFT

calculation we need to treat it at the same level of approximation, i.e. at the mean-field

level. One can thus assume that

EDFT ≈ 〈H〉MF = T [〈n〉] +
NsU

2

(m− 1)

m
〈n〉2 + Ebg (2.2)

where T is the average kinetic energy, m is the number of states per site (3 t2g levels

on each ion in our case), 〈n〉 is the average electronic occupation of each iron site,

and Ns is the number of iron site in the unit cell (8). The total energy does not

allow to extract a value for U due to the presence in the actual system not only of

the mentioned states close to the Fermi energy but also of all the other electrons that

determine the structural stability of the system and are hidden in Eq. (2.2) in the

background energy, Ebg. The electronic response to long wavelength external perturbing

potential is however insensitive to the background and we can therefore compare the

electronic compressibility obtained from the DFT calculation (which is proportional to

limq→0 χ(q, 0) where χ is the density response function of the electronic system [41])

with the second order derivative of the total energy in Eq. (2.2) with respect to 〈n〉. We

obtain:

U =
m

(m− 1)

[
∂μ

∂ < n >
− 1

ν(0)

]
. (2.3)

In this expression the quantities in square bracket can be easily calculated in the DFT

approach: ν(0) is the electronic DOS at the Fermi level per iron atom, whereas ∂μ/∂〈n〉
is the linear variation of the Fermi energy when the number of electron in the unit cell

is changed (a uniform compensating background is added when changing the number of

electrons in order to keep the system neutral). This derivative is computed numerically

adding ±0.01 electrons per unit cell. From Eq. 2.3 we obtain U = 2.4 eV which is much

larger than the electronic bandwidth (≈ 1.5 eV) around the Fermi level.

This implies that the electrons in the minority t2g bands do not have enough kinetic

energy to overcome the repulsion they experience on each iron site and thus a Mott

localization is likely to occur giving rise to the observed insulating behavior. We will

come back to this issue in the last chapter of this thesis devoted to LDA+U calculations.



Chapter 3

The LDA+U method within a PW

PP framework

3.1 Introduction

As we learned from the few case studies presented in the previous chapter and from

very abundant literature, LSDA actually fails in describing the electronic structure, and

thus the conduction properties, of strongly correlated systems. Slight improvements can

sometimes be achieved using GGA functionals which indeed provides better results about

the physical properties of non homogeneous systems, like transition metal compounds,

proving particularly useful to correctly describe their binding energies and, in some cases,

their magnetic and structural properties. Two examples are NiO and MnO [30, 42].

The former is described as an insulator within GGA because the crystal field due to the

oxygens around the transition metal ions splits the (minority spin) t2g d states (which

are fully occupied) from the eg empty bands left above the Fermi level. With the latter a

similar situation occurs because the exchange interaction among spin up and spin down

populations (the first Hund’s rule) pushes the five d bands with one spin below the Fermi

energy (completely filled with the five d electrons of Mn) and pulls the opposite spin

states above it. However, even in these lucky situations, where the gap opening occurs

because the number of d electrons is such as to completely fill the lower energy d bands,

the obtained gap between valence and conduction states is far too small if compared

with the results of photoemission experiments on these materials, and its spectroscopic

nature is also wrong as the oxygen p states are not present at the top of the valence

band (as experiments point out), but below the highest occupied d states [43]. It seems

to be a scenario similar to the one occurring in semiconductors which are also known

50
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to display theoretically a smaller band gap than experimentally observed. However

with the strongly correlated materials (such as transition metal or rare earth oxides)

LSDA (or GGA) shows indeed a different behaviour because, while completely failing

in describing their conduction properties, it can generally achieve reasonable results for

the magnetic and the crystal structures (some completely wrong cases are also known

as, for example, δ-Pu [44]).

So what is the reason of such a failure in describing the electronic structure of strongly

correlated materials? To answer this question we can think of what would happen if we

described, using band structure calculations, the valence states of a simple metal while

increasing the interatomic distances. We would observe electronic states of vanishing

width crossing the Fermi level but, while retaining the metallic character, we would

approach the insulating state corresponding to the infinite distance among the atoms.

The electronic states around (and crossing) the Fermi level would produce a charge

distribution extremely localized around the atoms (similar to the one of d electrons in

fayalite) such that band conduction would be hindered. The problem thus seems to be

due to an inadequate description based on the use of band structure calculations. To

solve this paradoxical situation we should be able to measure the relative ”strength” of

two competing factors: the kinetic energy of the electrons (their bandwidth) and the

energy cost (the Coulomb repulsion) they have to pay when approaching regions where

other electrons are localized (i.e. the ionic cores). In fact, strongly correlated materials

(usually systems with partially filled d or f valence shells belong to this family) are

such that their electrons (or some of them) are supposed to spend their time in regions

(around the ions) where the presence of other particles would make them feel strong

Coulomb repulsion, thus making their motion ”correlated”. This is quite a different

situation from what we have in simple metal (especially simple ones) where electron-

electron scattering is expected to be weak and particles spend vanishing amount of time

in the regions around the ions. So we have two extreme scenarios (actually continuously

connected to each other). When the kinetic energy is the dominant contribution (beside

the attraction to the nuclei), the electrons can overcome the (on-site) Coulomb cost and

actually delocalize in extended states giving metallic behaviour. On the other hand,

when the bands on which they move are quite narrow (high effective mass, low kinetic

energy), correlation wins and electrons actually localize in some regions (they cannot

move to other ones because this is too expensive) while the system acquires insulating

character (of so called Mott-Hubbard type [45]).

The band structure calculations are not the best approach to observe this phys-
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ical behaviour, as they are manifestation of a one body problem (even the formally

exact Kohn Sham equation in DFT), whereas correlation is the result of many body

interactions. Furthermore the exchange and correlation functionals currently used are

built from a homogeneous electron gas so that interactions are treated in a mean field

approach which is not accurate enough to properly describe correlations or account for

other many body effects. The ”natural” theoretical framework for studying such systems

(Mott insulators and strongly correlated materials in general) are the model hamiltoni-

ans (the Mott-Hubbard model and the Anderson impurity model are just two examples)

in which the bandwidth (related to the hopping terms) and the electronic correlations

are explicitly considered. This approach allows to directly take into account the be-

haviour of the system in regimes with different relative strength of these two factors.

Unfortunately these models are strongly parameter dependent (the hopping amplitudes

t and the on site repulsion U have to be given as input) and usually too much simplified

to include effects coming from crystal structure or the different kind of ions. So we

cannot use them if we want to obtain accurate numerical results and study how the

electronic, magnetic, and crystal structures of a system result from the nature of the

ions, their spatial arrangement, the kind of state they build to accommodate valence

electrons, the importance of the ion cores and their finite size, and so on.

Owing to these difficulties in the direct use of these models, a number of methods

was presented in the last 15 years which attempt to link the two theoretical frameworks

discussed so far (model hamiltonian and ab initio calculations). For some time (after

the discovery of high Tc superconductors) constrained LDA was performed to obtain

a realistic evaluation of the interaction parameters entering the model hamiltonians

[46, 47]. However, the most recent theoretical methods aim to directly approach the

study of strongly correlated materials from first principles [48, 49, 50]. The main idea

they all have in common is to use some hints from the many body formalism to (try

to) correct some of the defects of DFT and go beyond the mean field approach in which

electronic interactions are treated. However the way of obtaining this extension differs

from one model to the other and also depends on the particular inefficiency they propose

to cure (as for example self interaction, orbital polarization and so on).

One of the most popular methods in this family is LDA+U which is the one adopted

in this thesis. The present chapter is indeed devoted to introduce the LDA+U method

as implemented in a PW PP framework. In the first part, starting from the (early)

approach of Anisimov and coworkers [3, 4, 5], we discuss the main idea and the most

important features of the method. Then, presenting the most recent rotationally invari-
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ant formulation [6, 7], we extract from it the simple approximation we actually use in

our calculations. At this point, a separate discussion is introduced for our simplified ap-

proach which underlines some differences among our theoretical construction and that

presented in other works. The following paragraph is devoted to the development of

a method to calculate the effective Coulomb on site repulsion starting from the linear

response of the system under consideration (as described by LSDA or GGA) to fluctu-

ations in the d levels occupancy of the ”Hubbard” sites. A possible extension of the

linear response approach to determine the on site repulsion parameter is also discussed

in comparison with other methods presented in the literature. In the last section, after

introducing our definition of d levels occupancy, some technical details are described

about the use of LDA+U formalism in a PW PP code.

3.2 Rotational invariant LDA+U method

The main idea proposed by the LDA+U method is to correct the LDA (or GGA) ap-

proach in order to make it able to approximately describe strong electronic correlations.

As underlined in the introduction, in order to obtain this, we have to go beyond the

electron gas approximation used to model electron-electron interactions. One way to

introduce such a correction is the Hartree-Fock (HF) approach which is based on the

use of Slater determinants (built from atomic orbital) to represent the many body wave

function. This method includes in the Hamiltonian both one body (external potential)

and two body (electron-electron) interactions, but actually results in unphysically too

large couplings due to the absence of screening.

Screening is instead included (at least in principle) in LDA+U. This approach is

essentially based on an Hartree-Fock-like expression for the effective (screened) elec-

tronic interactions which is introduced as a mean field Hubbard-like correction to the

standard Hxc functionals. The starting point of the method is the description of the

system within LDA (from now on we use LDA to mean standard LSDA or σ-GGA)

which is supposed to contain (screened) correlations in some average way. This ”wrong”

contribution (modeled in some mean field approximation) is then subtracted from the

energy functional, and finally a correction term, in which correlations are supposed to

be treated properly, is added. The total energy functional thus reads

ELDA+U [n(r)] = ELDA[n(r)] + EHub[{nIσ
mm′}] −Edc[{nIσ}] (3.1)

where n(r) is the electronic density, nIσ
mm′ are generalized atomic orbital occupations (to
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be defined later) for the ”Hubbard” atom (the atom with strongly correlated orbitals)

at site I, and nIσ =
∑

m n
Iσ
mm. In this equation ELDA[n(r)] is the ”ordinary” energy

functional used in DFT calculations, whereas EHub[{nIσ
mm′}] and Edc[{nIσ}] represent

respectively the term containing the ”correct” on-site correlation functional and the

Mean Field (MF) approximation to it, which modeling the LDA contribution to the

on-site electronic interactions, has to be subtracted in order to avoid double counting.

This first expression of the LDA+U approach was formulated by Anisimov et al.

[3, 4, 5]. A recent important contribution was given by Pickett et al. [8] who, while

slightly refining the functionals, introduced a linear response technique for calculating

the Hubbard parameters. Despite some different details occurring among these ap-

proaches, the main physical idea behind them can be captured in a very elementary

formulation of the total energy functional:

E = ELDA +
∑
I

⎡
⎣U

2

∑
m,σ �=m′,σ′

nIσ
m n

Iσ′
m′ − U

2
nI(nI − 1)

⎤
⎦ (3.2)

where nI
mσ = nI

mmσ, nI =
∑

m,σ n
I
mσ, U is the parameter (the Hubbard U) describing on

site correlations and the second and third terms in the right hand side are, respectively,

Ehub and Edc. If we derive this equation with respect to the orbital occupation to obtain

the corresponding orbital energy, we have:

εImσ =
∂E

∂nIσ
m

= ε0I
mσ + U(

1

2
− nIσ

m ) (3.3)

(ε0 is the corresponding LDA quantity) from which it is evident that a gap of width

≈ U opens between occupied (nI
i ≈ 1) and unoccupied ones (nI

i ≈ 0) orbitals. If we

define the atomic orbital occupation as the projection of the occupied valence manifold

over the corresponding atomic state (nI
mσ =

∑
k,v〈ψσ

k,v|P I
m|ψσ

k,v〉) we can easily extract

the potential entering the Kohn-Sham equation which reads:

V |ψσ
k,v〉 = VLDA|ψσ

k,v〉 +
∑
I,m

U(
1

2
− nIσ

m )P I
mσ|ψσ

k,v〉. (3.4)

From this expression we can see that if the occupation of a particular atomic orbital

is initially larger than 1/2 then the Hubbard contribution to the potential is attractive

and encourages the electrons to localize on that particular atomic state, whereas the

opposite happens when the initial occupation is smaller than 1/2. In practical calcula-

tions, the final result does not actually depend very strongly on the initial conditions as

occupations greatly evolve during the self consistent iterations with possible changes in

the sign of the Hubbard potential. In the final self consistent configuration completely
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empty or completely filled atomic orbitals are not necessarily obtained because the LDA

contribution to the energy functional contains the competing factor (the tendency to

minimize kinetic energy through delocalization) which sometimes could result stronger

than the effect due to the Hubbard U term. Fractional occupation numbers (for atomic

orbitals around the Fermi level) is indeed the situation we would expect when applying

this functional to a normal metal. Furthermore, even for localized electrons we could

observe fractional nIσ
m because localization may occur on hybridized orbital built by d

levels with states of other atoms (this situation is actually not taken into account by

most models).

Despite the fact that this simple scheme already contains the main physical mecha-

nism that could lead to gap opening in strongly correlated materials, it actually neglects

the exchange coupling and the possible non spherical character of the effective interac-

tions (the dependence of U on the magnetic quantum number m) entering the model.

Its most serious inconsistency is, however, that the expression given in eq. 3.2 is not

invariant under rotation of the atomic orbital basis set used to define the occupancies

nI
iσ. To solve these problems, Anisimov and coworkers [6, 7] introduced a basis set

independent formulation of LDA+U in which EHub and Edc are given a more general

expression:

EHub[{nI
mm′}] =

1

2

∑
{m},σ,I

{〈m,m′′|Vee|m′, m′′′〉nIσ
mm′nI−σ

m′′m′′′ +

(〈m,m′′|Vee|m′, m′′′〉 − 〈m,m′′|Vee|m′′′, m′〉)nIσ
mm′nIσ

m′′m′′′} (3.5)

Edc[{nI}] =
∑
I

{U
2
nI(nI − 1) − J

2
[nI↑(nI↑ − 1) + nI↓(nI↓ − 1)]} (3.6)

where U and J are screened Coulomb and exchange parameters. The Vee integrals in

eq. 3.5 describe the Coulomb interaction among (d) electrons sitting on the same site.

Their expression is borrowed from the expansion of the e2/|r− r′| Coulomb potential in

terms of spherical harmonics (see [6] and references quoted therein):

〈m,m′′|Vee|m′, m′′′〉 =
∑
k

ak(m,m
′, m′′, m′′′)F k (3.7)

where 0 ≤ k ≤ 2l (l is the angular moment of the Hubbard electrons which is equal to

2 in our case) and

ak(m,m
′, m′′, m′′′) =

4π

2k + 1

k∑
q=−k

〈lm|Ykq|lm′〉〈lm′′|Y ∗
kq|lm′′′〉. (3.8)

The F k coefficients, that in HF theory are the radial Slater integrals describing the

electron-electron (bare) interaction, in the present formulation represent parameters to
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be related to the U and J of the LDA+U approach. For d electrons we just need F 0,

F 2, and F 4 which can be related to the on site and exchange interaction parameters as

follows:

U =
1

(2l + 1)2

∑
m,m′

〈m,m′|V ee|m,m′〉 = F 0 (3.9)

J =
1

2l(2l + 1)

∑
m�=m′,m′

〈m,m′|V ee|m′, m〉 =
F 2 + F 4

14
(3.10)

where m and m′ describe electronic (atomic) orbitals with the same l. In these formulas

the V ee integrals have the same angular dependence of HF electronic interactions, but

they are evaluated using an indirect procedure which allows to account for the screening

[9]. At first, the effective U and J are calculated (usually extracting their value from

LDA) from which F 0, F 2 and F 4 are obtained (assuming the atomic value for F 4/F 2

= 0.625 for d electrons) using eqs. 3.9 and 3.10. As the factors ak(m,m
′, m′′, m′′′) are

products of Clebsh-Gordan coefficients (the |lm〉 are also spherical harmonics), once the

effective Slater integrals are obtained, the Vee interactions entering the EHub functional

can be directly evaluated and, being extracted from effective average Coulomb and

exchange interactions, they result to be screened quantities as well.

It is worth notice that the ingredients used in this rotationally invariant formulation

are strongly atomic-HF-like (it is evident in the procedure to obtain the Vee integrals

from the effective interactions U and J) and so we can expect it to be valid in the case

the electronic states are effectively localized around the ions. This is indeed a limitation

of the model (actually designed for a localized basis set approach) because, if we want to

apply this scheme to a generic material, we cannot be sure that localization will occur,

and furthermore, if it actually takes place, there is no guarantee that the Vee values

(computed in this HF-like approximation) will be the correct ones. In other words,

the physics of the system could lead to a kind of localization that these (atomic like)

effective interactions are not able to enforce.

3.3 LDA+U simplified scheme

Owing to this unsatisfactory theoretical construction of the model, the lack of formal

justification of its formulation, and the technical difficulties arising from the use of plane

waves instead of localized basis set, we decided to extract from it a simpler scheme,

whose theoretical foundation is possibly easier to understand, and we tried to construct

a functional that could be applied to the study of real materials without any aprioristic
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assumption. Formally, this new functional can be obtained from the basis set invariant

formulation described so far by setting F 2 = F 4 = J = 0. This corresponds to neglect

the non sphericity of the electronic interactions (a0(m,m
′, m′′, m′′′) = δm,m′δm′′,m′′′) and

the differences among the interactions in like-spin and unlike-spin channels (described

by J). The energy functional can be easily recalculated from expressions 3.5 and 3.6

and we obtain:

EU [{nIσ
mm′}] = EHub[{nI

mm′}] −Edc[{nI}]
=

U

2

∑
I

∑
m,σ

{nIσ
mm −∑

m′
nIσ

mm′nIσ
m′m}

=
U

2

∑
I,σ

Tr[nIσ(1 − nIσ)]. (3.11)

Despite this model can be obtained from the rotationally invariant LDA+U, we observe

that we got rid of its HF-like assumptions in the evaluation of the electronic interactions,

and the average (effective) U can be defined in some more physically transparent way. In

this sense the approach formulated in eq. 3.11 is not a restriction of the one given by eqs.

3.5 and 3.6, but rather a quite independent one. The model can indeed be thought of as

the generalization to crystals of constrained occupation calculations in atomic problems.

An atom in contact with a reservoir of electrons (as, for instance, another atom in its

neighborhood, or a metallic surface to which it can adhere) can only exchange integer

numbers of particle with its environment. This means, that intermediate situations with

fractional occupations of one (or more) of its orbitals may only arise, in the open atomic

system, as time averages over states with integer number of electrons on the atomic

orbitals [10, 51]. In quantum mechanics an open system with a fluctuating number of

particles is described not by a pure state or wave function, but rather by a statistical

mixture so that, for instance, the total energy should be given as:

En = (1 − ω)EN + ωEN+1 (3.12)

where EN and EN+1 are the energies of the system corresponding to states with N and

N + 1 particles respectively, while ω represents the statistical weight of the state with

N +1 electrons. The average number of particle in the system, n, can be given a similar

expression:

n = (1 − ω)N + ω(N + 1) = N + w (3.13)

so that the total energy of this open atomic system is represented by a series of straight-

line segments joining states corresponding to integer occupations of the atomic orbitals
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Figure 3.1: The total energy profile as a function of the number of electrons in the

system. The curve in the bottom is the difference between the other two (the LDA

energy and the ”exact” result for an open system).

as depicted in fig. 3.1. In between, just one orbital is partially filled so that the slope of

the corresponding straight-line segment is nothing but the eigenvalue which is getting

filled:

εi =
dE

dni
. (3.14)

This situation is not well reproduced by the LDA approach which produces unphysical

total energy minima in correspondence of fractional occupation of the orbital of the

atomic system. Thus the picture given by LDA is not physically meaningful as, if

we admit that the total energy of the open atomic system can be defined for fractional

occupations and is also differentiable with respect to N, a paradox arises when the atoms

get farther and farther from each other in the dissociation limit [10, 51]. Nevertheless,
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if the occupation of the orbitals is constrained to integer values the LDA approach can

reproduce the differences among the total energy of different states quite accurately [52].

(this is the reason for which the two curves in fig. 3.1 touch each other when the system

contains integer numbers of electrons). However the physical situation (the straight-line

segment curve) can be recovered, beside constraining the occupations to integer values,

adding a correction which, vanishing for n = N−1, N,N+1..., eliminates the curvature

of the LDA energy profile in every interval between two successive integer values of the

occupation (bottom curve of fig. 3.1). This is what is done by eq. 3.11 which is based

on the assumption that the curvature of the energy profile is not dependent on n. In this

context the interaction parameter U is the effective (unphysical) curvature of the energy

as a function of n which we want to eliminate. Equivalently, the quadratic dependence

of the total energy on n can be regarded as the self interaction of the particle which

is being injected into the system. The Hubbard parameter results, in this context, the

effective strength of this unphysical coupling of the electrons with themselves which has

to be subtracted to the total energy of the system.

The situation is of course much more complicated in solids where fractional occupa-

tions of the atomic orbitals can occur because hybridization. But still the correlation is

an atomic-like (on site) problem and the model in eq. 3.11 is expected to ”measure” the

atomic character of the valence wavefunctions and apply to them the same corrections

that would be necessary for the corresponding atomic states.

The way this simple model works is equivalent to the one described at the beginning

of the present section which can be recovered in the basis set where the occupation

matrices are diagonal. In addition, the functional we choose retains the very appealing

feature of rotational invariance (the physical occupancies are those in the diagonalizing

basis set) so that the efficiency of the method does not depend on the basis set used to

describe the atomic states.

In order to fully define how the model works and to calculate the Hubbard contribu-

tion to the potential, we have to fix a precise definition for the nI,σ
m,m′ occupation matrix.

In our implementation we define:

nIσ
mm′ =

∑
k,v

fkv〈ψσ
kv|ϕI

m′〉〈ϕI
m|ψσ

kv〉 (3.15)

where fkv is the weight of the electronic state (kv), ϕI
m is the valence atomic orbital

|nlm〉 of the atom sitting at site I (l = 2 in our calculation and the same function is used

for both spins), and ψσ
kv is the valence electronic wavefunction corresponding to the state

(kv) with spin σ. The integrals defining the occupation matrix in eq. 3.15 select for
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the localized orbital the Fourier components corresponding to the same k-vector which

classifies the valence state ψσ
kv. For this reason these integrals could equivalently be

calculated using extended atomic wavefunctions constructed as Bloch sums of localized

orbitals centered on translationally equivalent atomic sites:

ϕI
m,k(r) =

1√
N

∑
R

e−ik·RϕI
m(r −R − τI). (3.16)

These Bloch functions do not satisfy, in general, any orthonormality condition since

functions of non equivalent sites may have non vanishing overlap. Using the Bloch

sums of the atomic (localized) orbital is however one of the possible choices we could

adopt to describe the atomic wavefunctions on which the occupation matrix has to be

calculated. Other choices could be used as well as, for instance, orthogonalized atomic

Bloch functions, Gaussian functions centered on the atomic sites, Wannier functions

and so on. In principle, the particular choice of the (atomic-like) basis set used to

describe the possible localization of the electrons should be not very relevant as far as the

interaction parameters of the theory are defined in a way consistent with the definition

of the localized basis (and thus of the occupation matrix). Different definitions for the

occupation matrix will determine, in principle, different values of the parameter entering

the LDA+U functional as it has been pointed out recently also by Pickett et al. in ref.

[8].

In the next section this problem is discussed and a linear response approach is pro-

posed as a possible scheme to evaluate the Hubbard U .

3.4 Calculating the Hubbard U

The theoretical approach we presented in the previous paragraph as the one chosen to

be implemented in our plane waves code, needs to be completed with an appropriate

definition of the interaction parameter (the Hubbard) U entering its expression. In fact,

in order to apply this theoretical scheme to generic systems (also non strongly corre-

lated ones) and make it correctly reproduce their physical properties, we have to get

rid of any aprioristic assumption about the choice of the effective on-site correlation for

each material. In other words we want to extract U from the the physical behaviour

of the system under consideration in such a way it correctly ”interprets” and then re-

produces (and promotes) its tendencies toward strong correlation, electron localization,

gap openings and so on. This requires this interaction parameter to be calculated in

close consistency with the mathematical expression of the model and with the definition
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of the d level occupancies given in the previous section. In constructing this theoretical

framework, in fact, we didn’t use any ”universal” definition of the quantities entering

its expression nor a well fixed standard approach (if any exists) to the problem of cor-

rectly describing strong electronic correlations. What we did was giving the system new

degrees of freedom (the possibility of modifying the d level occupancies as defined in

eq. 3.15) which could possibly be exploited to better account for on site correlations,

so that now we have to tune the effective interaction associated to them in agreement

with the real trends of the systems.

As it was explained in the previous paragraph, the Hubbard U describes the spurious

curvature of the total energy with respect to the number of electrons accommodated in

the system due to the incomplete cancellation of the self energy in LDA. Equivalently,

it can be defined as the first derivative of the last occupied eigenvalue with respect to

its occupation. This is a well defined quantity in the atomic limit where just the highest

energy orbital is partially occupied. It follows that the effective interaction parameter

can be evaluated, in this case, considering the finite difference between the 3d energy

eigenvalues when the number of electrons accommodated on the d valence manifold is

changed by one, and the system is free to screen the additional (constrained) charge

on the d states by (self consistent) modifications in the occupation of other levels and

in the shape of the electronic wave functions [9]. This approach for calculating the

Hubbard U from first principle was also applied to the crystal case by Anisimov and

coworkers in an early work on LDA+U [9]. The use of a localized basis set to construct

the valence electronic states, as in the linear-muffin-tin-orbital (LMTO) method, allows

to eliminate from the hamiltonian of the system the hopping terms among the atoms

with a constrained d population and the others. The problem is thus reduced to the

one of an isolated atom embedded in a background which participates to the screening

of the effective interactions. This extension to the crystal is based on the assumption

that the screening of the Coulomb interactions is mainly performed by the s or p orbital

on the same site where the charge is constrained, while the contribution from the other

atoms is expected to be less important [9]. However this is not valid in general when

we deal with crystals, since the strong overlap between the atomic orbitals may lead to

a situation which cannot be described by the atomic limit. Thus, the finite difference

method, based on a unitary variation of the on-site charge, cannot be applied because

fractional occupations of the atomic states with possible continuous variations are to

be expected as a consequence of hybridization and of possible degeneracies among the

valence states driven by the symmetry of the crystal. Furthermore in a PW PP formalism
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the atomic limit cannot be properly recovered as the hopping integrals among neighbor

atoms cannot be explicitly eliminated from the expression of the hamiltonian.

Owing to this situation, in order to calculate the on-site interaction U we adopted

a linear response approach in which the d-level occupations, nIσ
mm′ , are forced to vary

around the LDA (unconstrained) value. This method was inspired by the linear response

scheme used by Pickett et al. in ref. [8] to compute the effective Hubbard parameter.

However some differences with respect to that approach arose in our work and will be

underlined later on.

In order to extract the Hubbard U what we need is the LDA total energy as a function

of the total d level occupancy of one ”Hubbard” site ELDA[nId]. From this dependence

we can (numerically) compute the second derivative ∂2ELDA/∂(nId)2|nId=nId
LDA

which

corresponds to the effective curvature of the LDA total energy. However this quantity

is not directly the Hubbard U we want to compute; in fact, if we had perturbed a

non interacting system we would have obtained a quadratic behaviour of its energy as

well, because the imposed d charge variation would have determined a change in the

kinetic energy of the system. This kinetic energy term, which involves also non directly

perturbed sites because of hybridization of the atomic orbitals and the possible itinerant

character of the valence states, should not be included in the calculation of the Hubbard

U , nor in the screening of this effective coupling, because it does not originate from the

electron-electron interaction. It rather comes from the band structure of the system

which is correctly accounted for in the LDA functional so that including it in the on site

U parameter would lead to a double counting error.

Eliminating the band energy contribution from the calculation of the Hubbard pa-

rameter in our approach plays a role analogous to the cancellation of the hopping terms

among the perturbed atom and the others in the LMTO approach of Anisimov and

coworkers (see, for instance, ref. [5]). In the atomic limit the hybridization among the

atomic orbital occurs because the very large interatomic distances, and the cutting of

the hopping term between the perturbed atom and the others becomes an exact proce-

dure. In our case the same situation is recovered because the single particle eigenvalues

would eventually collapse to the corresponding atomic energies and the dependence of

the (spurious) non interacting electron term of the total energy on the atomic occupa-

tion would result linear thus giving a vanishing contribution to the effective curvature

we want to measure. Thus, in the atomic limit, the two methods are perfectly equiva-

lent. In our approach, however, no aprioristic assumption is made about the mechanism

of screening and the system is free to exploit all the degrees of freedom it contains to
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redistribute the constrained charge. The system, in fact, has many more degrees of free-

dom than those we can describe with the d levels occupancies, and when d population is

changed on one site, all of them take part to the response of the system, thus renormal-

izing the resulting interactions. In this context the ”non-Hubbard” atoms (and the non

”correlated” orbitals of the Hubbard atoms) play an important role in the screening of

the charge fluctuation induced on the Hubbard atoms and described by the nIσ
mm′ . The

role of the renormalizing background (as well as the one of the other Hubbard atoms)

is, instead, completely neglected in the approach by Pickett et al. [8] where the linear

response theory is applied treating the single angular momentum contributions to the

atomic occupations of the perturbed atom as the effective perturbed degrees of freedom.

In our approach the total on-site occupation are considered and the effective Hubbard

U results:

U =
d2ELDA

d(nId)2
− d2ELDA

0

d(nId)2
(3.17)

where the second derivative of ELDA
0 is the above mentioned independent electrons

contribution we have to subtract from the full curvature of the LDA functional.

In actual calculations constraining the total d orbital occupations is not very practical

and what we do, instead, is to force them to vary adding to the effective potential a

localized perturbation acting on the d levels of a particular ”Hubbard” site:

V constr = V LDA + αP I
d (3.18)

where V LDA is the LDA potential (we always start from ”normal” (U = 0) LDA cal-

culations), P I
d represents the projector on the d states manifold of the atom at site

I:

P I
d =

∑
m=−2,2

|ϕI
m〉〈ϕI

m| (3.19)

and α is the amplitude of the potential shift we add to the d levels of the chosen

”Hubbard” atom to excite charge fluctuations on its orbitals. For a number of potential

shifts around zero we solve the Kohn-Sham equations up to self consistency and what

we finally obtain is:

E[α] = minρ{ELDA[ρ] + αnI
d} (3.20)

where ρ is the electronic charge density of the system under consideration and the

minimization is performed over an orthonormal set of electronic valence states. This ex-

pression is easily generalized to a set of perturbations acting on all the relevant Hubbard

sites:

E[{αI}] = minρ{ELDA[ρ] +
∑
I

αIn
I
d}. (3.21)
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From the solution of the Kohn-Sham equations we calculate the value of the total d

occupations on each ”Hubbard” site corresponding to the ground state of the system,

which are the quantities we would like to treat as the independent variables in our linear

response study (instead of the αI). We can switch to an occupation-dependent energy

functional by a Legendre transformation:

E[{nI
d}] = min{αI}{E[{αI}] −

∑
I

αIn
I
d} (3.22)

where, at the minimum, the independent variable nI
d would correspond to dE[{αJ}]/dαI .

In this context the derivatives defining the effective interactions can be easily obtained

from the expression 3.22:

dE[{nJ
d}]

dnI
d

= −αI({nJ
d}) (3.23)

d2E[{nJ
d}]

d(nI
d)

2
= −dαI({nJ

d})
dnI

d

. (3.24)

that show that what is needed in order to compute the effective interaction parameter is

the linear variation of the localized potential shift, αI , induced by a variation of the d-

level occupation of the same site when all other occupations are unchanged with respect

to their LDA value.

However, from eq. 3.21 the quantity that is directly accessible is the response function

χIJ =
dnI

d

dαJ
(3.25)

that measures the fluctuation of nI
d produced by αJ acting, in general, on a different

”Hubbard” site. We can expect that this matrix strongly depends on the spatial ar-

rangements of the atoms, the distances among each other, the symmetry of the system,

the possible magnetization on the ions and so on. Using this response-function language,

the effective interaction parameter U can be recast as follows:

U = −dα
I

dnI
d

+
dαI

dnI
d0

=
(
χ−1

0 − χ−1
)

II
(3.26)

where the last expression on the right hand side of this equation represents the diagonal

(on-site) term of the matrix in the brackets. The physical meaning of eq. 3.26 is clear: we

force a fluctuation on the d level occupancies on one site I and observe its redistribution

over the whole system (also non ”Hubbard” sites take part to this relaxation) which

is due to a shift of the energy levels on each site, and to electronic interactions which

produce on-site correlation (thus introducing an energy cost to be paid when moving to
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other strongly correlated sites with other particles already in their d levels). As we are

able to isolate the first contribution which is present also in a non interacting system,

we subtract it from the total response of the system and what remains is the pure effect

of local field interactions. This is reminiscent of a known result of the linear response

theory in which the difference among the total and the bare response function describes

the effect of local field interactions. The fact that we use integrated quantities (the nI
d)

as the effective degrees of freedom (instead, for instance, of the local charge density

n(r)), implies that the resulting effective interaction we obtain from this procedure is

averaged on the atomic region.

The matrix, whose diagonal term defines the Hubbard U , also contains non diagonal

terms which correspond to inter site effective interaction in LDA. We do not use them in

our model as we are interested in correcting the on-site (short range) electron-electron

self interaction letting LDA account for inter-site terms.

In eq. 3.26 the fluctuation of the atomic occupations, nI
d0, which defines the bare

response function χ0, must be calculated without including the effect of the interparticle

interactions. In practice we perform a well converged LDA (U = 0, α = 0) calculation

and, starting from its self consistent potential and the corresponding electronic wave-

functions, we add a series of potential shifts on each non equivalent ”Hubbard” site,

and let the system evolve to self consistency each time. At the first iteration of the

perturbed run only the ”bare” perturbation is included in the effective potential acting

on the electrons. In other words, the density response obtained at the first iteration

does not involve any effect of the electron-electron interaction and actually corresponds

to the response of the independent electron system. The needed nI
d0 and χ0 are thus

obtained in the first iteration of the perturbed (α 	= 0) run to self consistency, whereas

the corresponding interacting (renormalized) quantities are calculated at the end, when

electron-electron interactions have fully played their role in screening the effective cou-

plings and charge distributions.

This is quite a different way to calculate the effective Hubbard U than the linear

response approach proposed by Pickett et al. [8]. In fact, they evaluate the bare contri-

bution to the effective interaction directly calculating the second derivative, with respect

to the atomic occupations, of the kinetic energy contained in the self consistent total

energy, which produces unrealistically large results (the same authors could not use the

obtained values in practical calculations). This is not the true independent electrons

contribution to be subtracted from the total response function because a non interact-

ing electron gas would have a different response in the kinetic contribution than an
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interacting one.

Once we have studied the linear response of the system to perturbations applied

to all possible non equivalent ”Hubbard” sites, we have all the information we need to

completely describe the response matrices χ and χ0. For symmetry reasons, given a pair

of sites IJ at a distance l from each other, the corresponding element of χ (for example)

dnI
d/dα

J is the same we can obtain putting the perturbation on a site J ′ equivalent to J

and studying the d level occupation response on a site I ′ whose distance from the J ′ is l.

We thus have in these matrices separate contributions coming from first, second, third

neighbors and so on, and this provides some indications about the range of the screening

and of charge redistributions. In order to properly calculate the effective interaction

parameter U , a large enough number of neighbors of the perturbed atom has to be

included in the unit (super)cell, so that the charge redistribution governing the screening

can be completely accommodated within the considered volume. In practice, we have

to repeat the perturbed calculations for larger and larger unit cells up to the point the

resulting value of U is reasonably converged. At each step of this study we add more and

more distant shells of neighbors of the perturbed atom; thus the effect (and the relative

importance) of adding first, second, third nearest neighbors (and sometimes even farther

atoms) can be studied separately while increasing the size of the unit (super)cell. The

background, corresponding to all degrees of freedom not described by the nI
d occupation

numbers, also takes part in the screening of the effective interaction. Therefore, besides

the Hubbard occupation numbers we deal with explicitly, it is useful to consider a charge

reservoir which physically describes the s and p states of the strongly correlated atoms

and the orbitals of possible interstitial ions. This translates in one more column (and

one more row) in the linear response matrices. The matrix elements associated to this

additional degrees of freedom are determined imposing overall charge neutrality of the

perturbed system and absence of charge density variation upon perturbing the system

with a constant potential. From a mathematical point of view both χ and χ0 matrices

acquire a null eigenvalue corresponding to an eigenvector having N+1 equal components

(N being the number of strongly correlated sites):

−→−→χ−→
β =

−→−→χ 0

−→
β =

−→
0 (3.27)

where
−→
β = β

−→
1 . Thus the inverse matrices we need in eq. 3.26 are indeed ill defined.

However, it can be shown that their singularities cancel out when computing the differ-

ence χ−1
0 −χ−1. In fact, if we represent these matrices in block diagonal form (separating

the eigenspace corresponding to the zero eigenvalue from the rest), we can single out
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a N × N non singular block which is the one we need to invert in eq. 3.26. A simple

trick to perform the necessary inversions without bothering for this singularity consists

in shifting the null eigenvalue of both the χ and the χ0 matrices by the same amount,

γ. This is easily done adding to both χ and χ0 a matrix built with (N + 1) × (N + 1)

elements all equal to γ/(N + 1)). Inverting both χ and χ0 we thus obtain, for each of

them, a N × N block (corresponding to the inverse of the N × N non singular blocks

of the starting response matrices), and the same result (1/γ) on the remaining diagonal

element. This latter term is canceled in the difference of eq. 3.26 while the physical

interaction comes from the the two non singular N ×N contributions to be subtracted

one from the other. The numerical stability of this procedure has been tested and the

final results was found to be independent on the chosen γ over a wide range of possible

values. It is worth notice that this procedure is not the same as directly computing

χ−1
0 − χ−1 with the row and column corresponding to the background removed; in fact

we maintained the system neutral and the charge reservoir played a role in the screening

that would be neglected otherwise.

We want to present now a possible extension of the approach described so far, which

includes the spin degrees of freedom in the calculation of the on site interaction pa-

rameter. The way the spin of the electrons can be considered in the presented linear

response approach, does not introduce any conceptual complication with respect to un-

polarized case. In fact, this additional degree of freedom can be easily accounted for

by potential shifts acting on the two d states spin channels separately. We thus obtain

(2N + 1) × (2N + 1) χ0, χ and ”interaction” matrices; this latter contains the relevant

informations in the diagonal (on-site) elements of each N × N block corresponding to

the ↑↑, ↑↓, ↓↑ and ↓↓ spin arrangements between the perturbing potential shift at site L

αLσ and the perturbed d level occupation of the site I nIσ
d . This extended spin resolved

procedure would correspond, ideally, to account for the exchange interaction param-

eter J of the full rotational invariant LDA+U formulation (eqs. 3.5, 3.6). However,

the expression we obtain for the interaction matrix can not always be mapped on this

model. In fact, the LDA average contributions to the exchange and correlation which

we obtained from our constrained calculations in the study of the magnetic system we

present in this thesis are not the same for the two spin channels as predicted instead by

eq. 3.6 which is perfectly symmetric upon exchanging the two spin components of the d

orbital occupations. In other words the two spin populations are treated on completely

different grounds by the standard L(S)DA approach and completely different effective

interactions are thus obtained in the two spin channels. Since the exchange parameter
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J cannot be obtained in this spin polarized linear response theory, the procedure used

in the full rotational invariant LDA+U approach to extract the V ee integrals of eq. 3.5

cannot be adopted. A possible alternative that does not rely on the spin symmetry

in eq. 3.6 is to introduce in our simplified model a different Hubbard U for each spin

polarization. The simplified model described in eq. 3.11 is thus generalized as follows:

EU [{nIσ
mm′}] =

1

2

∑
I,σ

UσTr[nIσ(1 − nIσ)]. (3.28)

In this case, however, we neglect the role of the off diagonal spin blocks of the obtained

interaction. On the other hand this is consistent with the spirit of our approach (where

U describes the spurious self interaction of the electrons) that does not contain off

diagonal spin contributions. These off-diagonal interaction terms should be already

properly taken into account in LDA in a way similar to the interaction between different

sites, so that we don’t need to correct them while modifying the on site correlations.

In practice, applying the described technique for the calculation of spin dependent

interactions is quite problematic since the majority spin population is very delicate to

probe (thus producing very unstable results for the effective interactions) upon numerical

errors in the response matrices. This behaviour is due to the fact that the majority spin

states are well below the Fermi level so that adding some charge on these orbitals

is almost impossible (they are close to be completely filled in our atomic occupation

language), and also extract even small amount of charge from them is particularly

expensive. They thus tend to be particularly inert upon charge perturbations driven by

the applied potential shifts, so that numerical differentiation is affected by large errors.

3.5 Implementation of the LDA+U approach in a

PW PP code

Let us give at this point some technical details about the implementation of the described

LDA+U functional within PW PP code. The use the ultrasoft (US) pseudopotentials

(PPs) [23, 24], requires that the products appearing in eq. 3.15 are completed with the

augmentation correction inside the ionic cores. So, for instance, instead of 〈ϕI
mk|ψσ

kv〉 we

have 〈ϕI
mk|S|ψσ

kv〉 where S is the overlap matrix defined in eq. 1.45.

Having fixed the definition of the atomic orbital occupations we can now derive the

Hubbard contribution to the KS potential. To find the expression of VU |ψσ
kv〉 we first

calculate the derivative of EU [{nIσ
mm′}] with respect to nIσ

mm′ and then the derivative of



CHAPTER 3. THE LDA+U METHOD WITHIN A PW PP FRAMEWORK 69

this quantity with respect to ψσ∗
kv . The result is:

VU |ψσ
kv〉 =

U

2

∑
I,m′

S(|ϕI
m′k〉 − 2

∑
m

nIσ
mm′ |ϕI

mk〉)〈ϕI
m′k|S|ψσ

kv〉)

=
U

2

∑
I,m,m′

S|ϕI
mk〉

[
(δmm′ − 2nIσ

mm′)〈ϕI
m′k|S|ψσ

kv〉
]
. (3.29)

The ordinary result, eq. 3.4, is recovered just replacing S with the unitary matrix. The

contribution of VU does not correspond to the Hubbard energy (eq. 3.11) because the

factor 2 in front of the atomic occupations in eq. 3.29. Furthermore, the resulting total

energy of the system is not variational since the atomic occupations are updated at

each iteration of the self-consistent run. The problem is similar to the one discussed

in chapter 1 about the non variational contribution of the Hxc potential to the band

energy of the system. The sum of the eigenvalues results in a term which reads:

ELDA+U
band =

∑
kv

fkvε
LDA+U
kv = ELDA

band +
U

2

∑
I

∑
m,σ

{nIσout
mm − 2

∑
m′
nIσin

mm′nIσout
m′m } (3.30)

where fkv are the spectral weights of the electronic valence states of energy εLDA+U
kv ,

ELDA
band has been defined in eq. 1.16 (here we do not consider the non variationality of

this term), and nIσin
mm′ and nIσout

mm′ represent, respectively, the atomic occupation matrices

used to build the Hubbard potential and obtained from the last iteration. A corrections

has now to be added to the sum of the eigenvalues which eliminates the undesired

dependence of ELDA+U
band on nIσin

mm′ and also accounts for the double counting problem of

the Hubbard contribution to the energy of the system:

ẼLDA+U
band = ELDA+U

band − U

2

∑
I

∑
m,σ

{nIσout
mm − 2

∑
m′
nIσin

mm′nIσout
m′m }

+
U

2

∑
I

∑
m,σ

{nIσout
mm −∑

m′
nIσout

mm′ nIσout
m′m }

= ELDA+U
band + U

∑
I,m,m′,σ

[
nIσout

mm′

(
nIσin

m′m − 1

2
nIσout

m′m

)]

= ELDA
band +

U

2

∑
I

∑
m,σ

{nIσout
mm −∑

m′
nIσout

mm′ nIσout
m′m }. (3.31)

It can be noted in the final expression of this equation, that the resulting contribution

of the Hubbard interaction to the band energy is the Hubbard energy given in eq. 3.11

written as a function of the only nIσout
mm′ occupation matrix.



Chapter 4

The LDA+U approach: application

to some real systems

In this chapter the LDA+U method, introduced in the previous chapter, will be applied

to the study of some real materials. Apart a brief investigation about the electronic

structure of nickel oxide NiO, the same systems already studied within the conventional

GGA approach will be taken into consideration so that a direct comparison will be pos-

sible between the results of that preliminary investigation and the ones obtained within

the LDA+U method. The application of the LDA+U approach to the study of bulk iron,

iron oxide and nickel oxide will give a good opportunity to test our theoretical scheme

due to the availability of a reasonable number of experimental results about the elec-

tronic, magnetic and structural properties. The merits of our approach as well as some

remaining problems will be underlined and discussed in comparison with other similar

theoretical approaches that can be found in literature. Some possible (semiempirical)

extensions of our simple functional (similar to other approaches used in literature) are,

in fact, used to try to improve the description of the structural properties of bulk iron

and iron oxides. The reliability of the method in describing the physical properties of

real material which strongly depend on their structure is then discussed pointing out

some still remaining problems. The study of fayalite within the LDA+U scheme is finally

presented with a discussion about the results obtained for the electronic and magnetic

properties.

70
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4.1 Bulk iron

The application of the LDA+U method to the bulk iron (as to other transition metals) is

rather unusual in the literature even if some consideration has been devoted to the role

of electronic correlations on the physical properties of this material. On-site electronic

interactions are expected to be important, for example, in reproducing the thermal

expansion of iron (in particular the electronic contribution to it) [53], its magnetoelastic

properties (incorrectly described by LSDA or GGA approaches) [54], or the features of

its itinerant-electrons ferromagnetism such as ferromagnetic instabilities, effective local

moments, and fluctuations in spin and charge [56]. In other works it is shown that the

electronic correlations for the 3d electrons of iron are important to better reproduce

the observed features of its band structure (obtained by photoemission spectra) [55], or

are explicitly taken into consideration in ab initio calculations to study the magnetic

anisotropy of this material as in ref. [57].

In this work some properties of bulk iron will be studied for which electronic correla-

tions are believed not to play a major role. As evident from the results shown in chapter

2 (and also in other works as in ref. [26]), GGA can provide quite a good description

of bcc FM bulk iron and good agreement can be obtained with experiments about the

band structure (as already remarked in ref. [55]), the magnetic moments and the struc-

tural properties (lattice spacing and bulk modulus in particular). The LDA+U method

can thus be tested on iron in order to check whether it is able, through the consistent

calculation of the on-site interaction parameter (the Hubbard U), to preserve the good

description of the GGA approach.

LDA+U calculations for iron are performed in the same conditions as the ones of the

preliminary GGA calculations presented in chapter 2 (we used the same pseudopotential,

the same xc functional, the same energy cut-offs for electronic wavefunctions and charge

density, and also the same k-point grid and smearing width for the Fermi distribution)

so that a direct comparison is possible between the two sets of results. The presence of

the Hubbard U requires a larger cut-off for the wavefunctions than strictly necessary for

ordinary GGA calculations because the d level occupancies are defined as projections on

atomic states which need a large cut-off to be described accurately (the d atomic states

are quite localized). Furthermore we also need to use a rather fine k-point grid in the

BZ for reciprocal space integrations to avoid that atomic wavefunctions centered on a

given atom have finite spurious overlap with their periodic replicas associated with the

discreet BZ sampling. This determines the choice of the 40 Ry energy cut-off and the
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Figure 4.1: The two-atoms cubic supercell of iron.

8×8×8 grid we have used after having tested good convergence of the total energy upon

increasing their values.

In its ground state bulk iron has a bcc unit cell. However the primitive unit cell (the

one containing just one atom) cannot be used for calculating the Hubbard U by the

constrained LDA method described in chapter 3. A potential shift on the d levels of all

the atoms of the system would produce a variation of the d levels occupancies poorly

screened by the compensating background consisting of just the s states of the ions. In

order to properly take into consideration the effects of screening on the effective interac-

tions, we need instead to observe how the perturbed atom redistributes its d level charge

to the s states and among the nearest ions. Larger and larger supercells (containing one

periodically repeated perturbed atom) are considered in order to describe an isolated

perturbation.

We begin using a supercell of simple cubic (sc) shape (as the one depicted in fig. 4.1)

containing the perturbed ion and one of its nearest neighbors. Then we consider a 2×2×2

bcc supercell which contains 8 atoms: 4 nearest neighbors and 3 second neighbors. The

successive step is a 2×2×2 sc supercell with 16 atoms: 8 nearest neighbors, 3 second

neighbors, 3 third neighbors and 1 fifth neighbor (the fourth neighbor is first neighbor

of an atom which is translationally equivalent to the perturbed one). The largest cell

we consider is a 4×4×4 bcc supercell with 64-atoms inside; we used this very large
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cell just to extrapolate the results from the smaller ones as explained later on, and not

in an explicit self consistent calculations. For each of the chosen supercells a series of

self consistent calculations is performed with different potential shifts (symmetrically

distributed around zero shift) applied to the d levels of one of the iron ions (we always

choose to perturb the atom at the origin for symmetry reasons). Then we used the

resulting values of the total d states occupancies to compute, by finite difference, the

derivatives which define the response matrices χ and χ0 (see the discussion in section

3.4, eq. 3.25). Adding more and more atoms into the calculations of the χ and χ0

matrices, by using larger and larger supercells, allows to separate the contributions to

the effective interactions coming from successive shells of neighbors. If, for instance,

we suppose that the first nearest neighbor redistribution of the d charge is sufficient to

compute the effective interactions, we can use the result of the sc supercell containing

2-atoms (the one with the d potential shifted and one of its nearest neighbors) in the

eight time larger sc supercell with 16 atoms inside (8 of which are first neighbor of

the perturbed one) just assigning the nearest neighbor contribution of the response

according to the results of the 2-atom cell and putting the successive shell contributions

to zero. Each of the eight nearest neighbor would be given, in this case, 1/8 of the

corresponding response term calculated in the 2-atom sc cell, as the total amount of

the charge flowing from the perturbed atom to its environment is equally distributed

to the neighbors of the first shell. This extrapolation procedure is quite useful because

it allows to appreciate the contributions coming from successive shells of neighbors

(and their relative importance) to the calculation of the effective interactions. This is

evident from the fig. 4.2 where the lines connect the results obtained extrapolating

contributions up to a given shell of neighbors to larger supercells. At each supercell the

distances among the different lines describe the importance of involving successive shells

of atoms in the redistribution process of the perturbed charge. It can be observed that

the extrapolation procedure gives good convergence of the calculated parameters and the

result obtained from the sc 2-atom cell once inserted in the 64-atom supercell captures

most of the effective interaction. The second and third nearest neighbors bring, of course,

significant contributions in the resulting parameter and this is particularly evident by

extrapolating their results to the largest supercell. However, while the difference with

the (extrapolated) result of the sc 2-atom cell is quite relevant, the third neighbor

contributions is not so different from the second neighbor ones, and, despite we did not

check directly, we believe that contributions from further shells of atoms rapidly become

very small. Thus, the main contributions can already be obtained within the sc supercell
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Figure 4.2: The calculated Hubbard U for different supercells. The lines connect results

from the ”cell extrapolation” procedure (see the text) describing the contribution up to

a given shell of neighbors of the perturbed atom.

containing 16 atoms. The extrapolation from this to the 64-atoms unit cell also brings

minor variations which are indeed within the finite numerical accuracy of our simple

scheme. Our estimate for the Hubbard U will be made, therefore, using the supercell

containing 16 atoms and corresponds to a value of 2.2 ± 0.2 eV at the experimental

lattice spacing.

We have then performed an LDA+U calculation for bulk iron at the experimental

lattice spacing using the computed value of U . The resulting band structure is shown

in fig. 4.3 where the same experimental results already reported in chapter 2 are also

present. As it can be easily noted by comparison with the results obtained in the

preliminary GGA study the agreement with the experiments is now somehow worse

than in that case (especially around Γ, P and H high symmetry points). The global

effect of applying the on site repulsion U mainly consists in a (almost) rigid downward

shift of the majority spin bands of about 1eV while the minority states are maintained,



CHAPTER 4. THE LDA+U APPROACH: APPLICATION.... 75

 
E

ne
rg

y 
[e

V
]

 -10

  -5

   0

   5

  10

  15

H P Γ H N P N Γ
Figure 4.3: The band structure of bcc iron obtained within the LDA+U approach.

Solid lines for majority spin bands, dotted lines for minority spin bands. The zero of

the energy is set to the Fermi level.

with good approximation, at the same positions. The levels of s character are also

left unchanged by the application of the LDA+U method as it is demonstrated by the

features at the bottom of the valence bands near the Γ point (still in good agreement

with experiments) and the structure of the electronic levels far above the Fermi energy.
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Figure 4.4: The dependence of the calculated Hubbard U on the cubic lattice spacing.

This is consistent with the fact the Hubbard correction is applied just on the d states

of the materials.

Although quite evident, the observed disagreement in the band structure of iron

may not be dramatically serious, also keeping in mind the fact that i) within DFT the

single particle energy bands have no precise physical meaning; ii) the reliability of the

approximations used to extract the experimental results has been questioned by some

authors [58].

In order to further test the method on this material we investigate the structural

properties studying the effect of the correlations introduced in our scheme at different

lattice spacings. As the calculation of the Hubbard parameter has to be done on the

same system it is used on, we have recalculated this quantity for each considered unit

cell volume. The dependence of the calculated interaction parameter on the lattice

spacing of the unit cell is shown in fig. 4.4 where a marked increase of the Hubbard U

can be observed when the lattice parameter is squeezed below its experimental value.

Despite this may appear counterintuitive because correlation effects are expected to
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Figure 4.5: The band structure of bcc iron obtained within the LDA+U approach at a

lattice spacing 5% smaller than the experimental value.

be less important when atoms get closer and closer to each other, actually it is not

because, in a meaningful comparison, the increase of the interaction parameter should

be compared with the increase of the bandwidth of the electronic levels around the Fermi

energy. In fig. 4.5 the band structure of iron (obtained within our LDA+U approach)

at a lattice spacing 5% smaller than its experimental value (the corresponding U is 2.6
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Figure 4.6: The total energy as a function of the unit cell volume and a Murnaghan fit

to the calculated points. The zero of the energy is set to the minimum of the plot, while

volumes are given in (a. u.)3.

eV) is shown. It can be observed that the bandwidth of the d states in both majority

and minority spin channels has become of about 7 eV so that its increase, of about

2 eV, results much more pronounced than the one in the U parameter (0.44 eV), and

the metallic character of the system is actually reinforced as expected when squeezing

under pressure. When the unit cell volume becomes larger than the experimental one

(we now go back to fig. 4.4) a less pronounced increase of the U parameter can be

also observed probably motivated by the fact that the system is approaching the atomic

limit where the screening is less efficient. Using the calculated values for the Hubbard

parameters in LDA+U calculations at different lattice spacings we can study the effect

of the LDA+U functional on the structural properties. The result is shown in fig.

4.6 where a Murnaghan fit to the calculated points is shown and used to extract the

equilibrium lattice parameter and bulk modulus. A comparison with the experimental

values for these quantities is presented in table 4.1. The agreement of LDA+U with the
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Table 4.1: Calculated lattice constant (a0), bulk modulus (B0) and magnetic moment

(μ0) in comparison with previous σ-GGA and experimental results [28]. LSDA results

are also shown (from the same reference) to appreciate a comparable agreement with

experiments as for LDA+U results.

a0 (a.u.) B0 (Mbar) μ0 (μB)

LDA+U 5.53 2.12 2.60

σ-GGA 5.42 1.45 2.46

LSDA 5.22 2.33 2.10

Expt. 5.42 1.68 2.22

experimental data for the lattice spacing is of the same order as the one obtained by

LSDA (but of opposite sign) while GGA gives, in this case, perfect agreement. The bulk

modulus obtained within this latter approach is, however, too soft while the LDA+U is

intermediate (somewhat too hard if compared with the experimental result) and closer

to experiments than the one obtained within LSDA. On the other hand, the magnetic

moment is overestimated by the LDA+U approach which gives a worse result than both

LSDA and GGA. The overall agreement of the obtained structural parameters with the

experimental results is thus quite reasonable for our simple LDA+U scheme even if we

could not improve on the results obtained within the GGA approach. The band structure

at the equilibrium lattice spacing is shown in fig. 4.7 where the same agreement can be

observed with the experimental results as the one reported for calculations performed

at the experimental lattice spacing. The results presented in this section about bulk

iron, although not completely negative, are not fully satisfactory in the perspective of

a systematic use of LDA+U method, as we would expect that an useful approximation

should improve the description of problematic systems without spoiling the description

of ”normal” ones.

Since the simplified LDA+U approach we have adopted here is slightly different from

what is commonly used in the literature, we need to check whether extensions of the

method frequently used in literature could help improving the obtained results.

The first attempt we made consisted in using the full rotationally invariant formula-

tion of the LDA+U functional (which we call LDA+U+J) introduced by Anisimov and

coworkers [6, 7] and described in section 3.2 (eqs. 3.5 and 3.6). The additional parame-

ter we need in this approach, the exchange coupling J , cannot be easily calculated from
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Figure 4.7: The band structure of bcc iron obtained within the LDA+U approach at

the equilibrium lattice spacing.

first principle within our scheme as explained at the end of section 3.4. We therefore

tried different values of J (together with our calculated Hubbard U) seeking a good

agreement with the photoemission results for the band structure of this material at the

experimental lattice spacing. This semiempirical procedure is somehow equivalent to

what is generally done in order to ”compute” the values of the interaction parameters
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entering the theory. The final choice for J is 1.75 eV while for the Hubbard U we use

the ab-initio value of 2.20 eV. These values for the interaction parameters are somewhat

larger than those used in ref. [57] (which are U = 1.2 eV, J = 0.8 eV); however we can

notice that the difference U − J , which is sometimes used as an effective Hubbard U , is

almost the same as in our calculations. Completely different values are instead obtained

in ref. [59] (U = 6.65 eV, J = 0.89 eV) where the iron ion is treated as an isolated

impurity in a MgO environment and the atomic limit is thus recovered.

The band structure resulting from our interaction parameters at the experimental

lattice spacing is shown in fig. 4.8 where a similar agreement with experimental results

as the one obtained within standard GGA can be observed. Some minor details differ

in the two results (GGA and LDA+U+J) but it is not possible to clearly establish

the best agreement to the photoemission measurements on the basis of the available

experimental results. We then recalculated the structural properties of bulk iron to

check whether the improvement obtained in reproducing the electronic band structure

is able to produce better results also for the structural properties and the magnetic

moment. In these calculations we assumed that J remains fixed while for U we used

our calculated values. The results of these calculations are given in fig. 4.9 whereas

in table 4.2 the resulting lattice spacing, bulk modulus and magnetic moments are

compared with previous results and with experiments. A slight improvement can be

observed for these quantities in comparison with LDA+U results, but the improvement

is not significant. Thus, our simplified approach is practically equivalent to the method

commonly used in literature for studying the structural properties. The systematic

deviation of the calculated parameters from the experimental ones also means that

reproducing the band structure with reasonable accuracy is not sufficient to guarantee

that other physical properties can be well represented and we will have to take care of

this fact when applying the LDA+U scheme to other compounds.

Another simplified approach commonly used in literature consists in considering just

one interaction parameter (which we can call Ueff) corresponding to the difference Ueff

= U − J [31, 32], and using it in a theoretical approach which is formally equivalent

to the LDA+U as it has been adopted in this thesis [43]. Keeping the J fixed (to 1.75

eV), we evaluated the effective U (Ueff ) starting from the calculated values for U and

repeat the self consistent calculations at each considered lattice spacing. The results

for the lattice spacing, the bulk modulus and the magnetic moment are given again

in table 4.2. As it can be clearly observed there is an overall agreement between the

LDA+U, LDA+U+J, and the LDA+Ueff approaches about the structural properties
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Figure 4.8: The band structure of bcc iron obtained within the LDA+U+J approach

at the experimental geometry. U = 2.2 eV, J = 1.75 eV. Solid lines for majority spin

bands, dotted lines for minority spin bands. The zero of the energy is set to the Fermi

level.

of bcc FM bulk iron, and this confirms that, at least for this compound, they are

practically equivalent when dealing with structural properties. The important feature

of the considered theoretical schemes, which controls the description of the structural
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Figure 4.9: The total energy as a function of the unit cell volume and a Murnaghan

fit to the calculated points obtained within the LDA+U+J approach. The zero of the

energy is set to the minimum of the plot, while volumes are given in (a. u.)3.

properties, is the variation of the Hubbard parameter U with the lattice spacing (which

is the same for these approaches) resulting from our calculations. Better results about

the lattice parameter, the bulk modulus, and the magnetic moment could possibly be

obtained calculating the exchange parameter J at each lattice spacing and considering

its variation as well.

In order to check the validity of this idea, we made a further attempt considering,

within the full rotational invariant scheme, an exchange parameter J which varies with

the lattice spacing a of the unit cell (LDA+U+J(a) method). The dependence of of the

exchange interaction on the cell parameter was modeled assuming that J represented

a fixed fraction of the (calculated) on-site Coulomb interaction U at each considered

lattice spacing. Using the empirical value of 1.75 eV determined for the experimental

volume, we calculated the fixed ratio with the corresponding Hubbard U (2.2 eV) and

used this to rescale the value of the exchange parameter for each lattice spacing. A fit
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Table 4.2: Calculated lattice constant (a0), bulk modulus (B0) and magnetic moment

(μ0), obtained within the different LDA+U approaches described in the text, in com-

parison with previous LDA+U, σ-GGA, LSDA and experimental results.

a0 (a.u.) B0 (Mbar) μ0 (μB)

LDA+U 5.53 2.12 2.60

LDA+U+J 5.50 2.05 2.53

LDA+Ueff 5.51 2.22 2.59

LDA+U+J(a) 5.41 1.51 2.37

LSDA 5.22 2.33 2.10

σ-GGA 5.42 1.45 2.46

Expt. 5.42 1.68 2.22

to the Murnaghan equation of state of the total energies, calculated letting J varying at

different volumes, gave the results which are shown in table 4.2. It can be observed that,

despite the arbitrary dependence of the exchange parameter J on the lattice spacing, the

results obtained within this LDA+U+J(a) method represent a significant improvement

with respect to the other LDA+U approaches and even give (slightly) better agreement

with the experimental results (for the bulk modulus and the magnetic moment) than

GGA does. This improvement in the description of the structural properties (but also

in the electronic structure) of iron confirms our idea that, at least for this material,

considering the exchange parameter and its variation with the volume (and in general

with the geometry) of the unit cell is necessary to correctly reproduce the physical

properties. We also notice that having an exchange interaction J of comparable strength

of the on-site Coulomb repulsion U is consistent with the strong ferromagnetic and

metallic character of this material. In fact, in a rough HF-like picture, U − J is the

effective electronic interaction in the like-spin channel to be compared with the pure U

for the unlike-spin one. This means that each ion tends to fill one population of spin,

thus fulfilling the first Hund’s rule and giving rise to a large on site magnetic moment,

but also that, when the itinerant character of the electrons is pronounced, the ionic

magnetic moments tend to align with each other to avoid the costly hopping of the

valence electrons on opposite spin atomic orbital (itinerant ferromagnetism of iron).

The case of transition metal oxides is quite different. First, the distances among

the transition metal ions are larger than in the corresponding bulk material so that
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the d states are more localized around the Fe ions. Second, the hybridization with the

s orbitals (which also contributes to the metallic behaviour in the bulk iron) is much

less important as the presence of the oxygen ions usually strips electrons from the most

external states of metals and pushes them far above the Fermi level. The last valence

electrons are thus accommodated on very narrow, almost pure, d states which, retaining

their atomic-like character to a large extent, may likely generate an insulating behaviour

of Mott-Hubbard type which is indeed observed in many cases.

Transition metal oxides are thus the prototype systems for which the LDA+U ap-

proach is expected to give a very important contribution. This is what we are going to

test in the next sections where the study of FeO and NiO within our LDA+U approach

will be presented.

4.2 Iron oxide

4.2.1 The electronic structure of FeO

The use of the LDA+U method for studying FeO is mainly motivated by the attempt

to reproduce the observed insulating behaviour. However ferrous oxide has a quite

rich phenomenology including structural phase transitions which seem to be intimately

correlated with changes in the magnetic and the electronic properties.

FeO is a very interesting compound for geophysics as it is one of the candidate

constituents for Earth’s lower mantle and outer core. Thus the experiments have mainly

concentrated on the phase transitions this system undergo at high pressure over a wide

range of temperatures. It was found that an important transition from the cubic rocksalt

structure to a rhombohedrally distorted phase occurs at room temperature at about 16

GPa in correspondence to the onset of the AFM order from the paramagnetic (PM) state

[35, 36]. In fact the Neél temperature, which is 198 K at ambient pressure condition is

found to increase with pressure and reaches the room value at about 16 GPa. Another

structural phase transition is found to occur at 70 GPa when this compound transforms

from B1 (cubic or rhombohedrally distorted) to B2 (hexagonal) phase while becoming

metallic [31, 32, 35, 36].

The currently used numerical approaches (LDA or GGA) can give a good description

for the high pressure phases of FeO where correlation effects are not very important

[31, 32, 36]. Even in lower pressure regimes, where on site electronic correlations become

stronger, despite failing in correctly reproducing the conduction properties, LDA and
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Figure 4.10: The supercells used in the calculation of the Hubbard U . C1 is the primitive

cell (2 iron), C4 contains 8 iron ions, C16 contains 32 iron ions and C128 contains 256

iron ions. The arrows indicate the fundamental lattice vectors.

GGA can provide a reasonable description of its structural and magnetic properties and

also predict qualitatively correct behaviour of the rhombohedral distortion with pressure

as shown in chapter 2 (and in ref. [36]).

In this section the low pressure (rhombohedrally distorted B1) AFM phase of FeO

is considered in order to study the possible role of correlations in both magnetic and

structural properties. The stoichiometric compound is studied in this work despite it is

never obtained in experiments due to its instability toward states with iron vacations

which deeply influence the magnetic and the structural properties of this material.

Despite the structure is found to be rhombohedrally distorted from the cubic shape
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Figure 4.11: The different contributions to the Hubbard U from farther and farther

shells of neighbours and their convergence properties with size. C128 is just used to

extrapolate results obtained using smaller supercells.

below the Neél temperature (and our calculations always correspond to low temperature

conditions) we start considering the cubic cell with the antiferromagnetic order described

in fig. 2.4, at the experimental lattice spacing. As already observed in the case of

iron, the LDA+U approach required a larger energy cut-off (40 Ry) for the electronic

wavefunctions, while the used 4×4×4 k-point grid is not denser than would be necessary

in ordinary calculations as this method produces an insulating state. However, quite

a small smearing width (0.005 Ry) of the Fermi distribution had to be used when

calculating the effective on-site parameter in order to well account for the dynamics of

the single particle energy levels around the Fermi energy which produces the charge

redistribution.

In order to compute the Hubbard U we adopted the same procedure used for bulk

iron and shifted the potential acting on the d states of one iron ion to study the response

of the d atomic occupations on the perturbed site and on the others atoms in the system.
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When this perturbation is applied on one of the two ions of the primitive unit cell, the

result is not very accurate because the redistribution of the charge can just involve the

other iron, apart the compensating background (containing iron s states and oxygen

s and p states) so that the perturbation is not completely decayed. In practice, the

perturbed atom strongly interacts with its nearest neighbours with the same spin which,

being translationally equivalent to it, also have a shifted potential in the d channel, so

that the screening process is not completely efficient. We thus perform constrained

GGA calculation perturbing the potential on the d states of one particular ion in larger

and larger supercells which are shown in fig. 4.10. The result about the convergence of

the Hubbard U with the number of iron ions contained in the supercell is shown in fig.

4.11. The larger supercell considered, C128, (containing 256 iron ions) is used just to

extrapolate the results obtained from the smaller ones as it is too large to be used in

direct calculations.

The result obtained using the primitive cell is quite distant from the converged value

of the C16 supercell, but, if we consider its extrapolation to the largest C128 structure,

we realize that the nearest neighbour contribution can already capture most of the

effective interaction. The inclusion of the nearest neighbours with the same spin and

of second nearest neighbours with opposite spin (C4 supercell) gives a finite (negative)

contribution to the effective parameter as resulting from the full extrapolation to the

C128 supercell of the results obtained with C4. Further shells of neighbours are instead

irrelevant for the calculation of U as demonstrated by the almost complete equivalence

among the the relaxation of the results obtained for the C4 and the C16 supercells

into the largest one. In practical calculations we thus performed constrained GGA

runs using C4 and then extrapolated the result to C128 to obtain a full converged

parameter. The final result is a Hubbard U of 4.29 eV which is in good agreement

with the values obtained (or simply assumed) in other works [31, 32]. We then used

the computed interaction parameter in LDA+U calculations of some physical properties

of this compound. The obtained band structure of the undistorted unit cell at the

experimental lattice spacing is shown in fig. 4.12. A gap opens around the Fermi level

whose minimal width is about 2 eV. The band gap is direct and located at the Γ point.

If we observe the (projected) density of states shown in fig. 4.13, we can easily realize

that the effective gap appearing in the latter plot is larger than the one in the band

structure. The reason for this is that the Γ point transition is of Fe d - O p → Fe s

kind and the contribution of the s states to the projected density of states is not clearly

visible on the scale of the plot of fig. 4.13. This implies that the above mentioned
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Figure 4.12: The band structure of FeO in the undistorted (cubic) cell at the experi-

mental lattice spacing obtained with a Hubbard U of 4.29 eV. The zero of the energy is

set at the top of the valence band.

transition is very weak and this is in very good agreement with experiments reported

in [60] where a weak absorption between 0.5 and 2.0 eV is reported. A stronger line

(relative to the Fe d - O p → Fe d transition) is observed at 2.4 eV [60, 61, 62] which

is also in quite good agreement with the width of the gap we obtain in the calculated
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Figure 4.13: The projected density of states of AF undistorted iron oxide at the exper-

imental lattice spacing obtained with U = 4.29 eV.

density of states (about 2.6 eV) and other theoretical results [33]. If we compare the

density of states obtained within the LDA+U approach with the one we calculated using

GGA the only difference which is worth to be underlined (besides the gap) is the fact

that the oxygen p states are mixed with the iron d majority spin levels over a wide

region of energy extending to almost the top of the valence band (for majority spin

we mean the up spin if the magnetization of the considered ion is up and viceversa).

In the GGA result (fig. 4.13), instead, the oxygen p states are mainly concentrated

below the majority spin d states of iron except a rather isolated contribution on the

top of the valence band. The photoemission experiments, however, predict the top of

the valence band to be of mixed O 2p - Fe 3d character [63] which is obtained in both

approach. Nevertheless the consequent interaction among the two atomic state groups

is stronger in the LDA+U result (due to the larger region of overlap) which can be

in better agreement with experiments predicting for FeO a moderate charge transfer

character of the insulating state. The contribution of oxygen p states at the top of the
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valence band is quite large in our results, and also increases just below this region where

the strong mixing with the Fe d majority spin states is observed.

The calculated magnetic moment on the iron ions results to be of 3.73 μB which

slightly improve the GGA result of 3.61 μB but is still quite far from the experimental

value 4.20 μB.

However, despite its simplicity, our LDA+U approach, with the consistent evaluation

of the Hubbard U , works quite well in reproducing the width and the spectroscopic

nature of the band gap of FeO. We want now to further investigate this aspect and test

the accuracy of our approach on another paradigmatic transition metal oxide such as

NiO.

4.2.2 The electronic structure of NiO

The reason for choosing NiO is that it is a well studied material in the family of tran-

sition metal oxides so that there exist a good number of works (here including some

photoemission experiments) our results can be compared with. On the contrary of FeO,

no compositional instability is observed for NiO so that the stoichiometric compound is

easy to study thus resulting much better characterized than the iron oxide. Furthermore

NiO is a more tractable system to be studied within ab initio techniques. It has cubic

structure with the same AF spin arrangements of rhombohedral symmetry as FeO, but

does not show tendencies toward geometrical distortions of any kind. Due to the pres-

ence of 8 electrons in the d states of Ni (which completely fill, in the atomic limit, the

majority spin and the minority spin t2g levels of each ion) and to the presence of a crystal

field splitting (which separate the lower energy t2g states from other two of eg symme-

try), it is described as an insulator within the standard GGA approach (which however

predicts a smaller gap than experimentally observed), so that the d states already have

the correct order for the insulating state to take place. For NiO we did not perform any

structural relaxation nor preliminary GGA investigation; we simply run calculations at

the experimental lattice spacing for the cubic unit cell with rhombohedral AF magnetic

order which is the ground state spin arrangement for this compound. We used the same

energy cut offs (of 40 and 400 Ry respectively) for both the electronic wavefunctions

and the charge density as for FeO and also the same 4×4×4 k-point grid for reciprocal

space integrations. The pseudopotential for Ni is also of US kind and was built within

the GGA scheme following the PBE prescription.

To calculate the Hubbard U of NiO we followed the same procedure as for FeO with-

out studying the converged properties of U in this case. We performed a constrained
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Figure 4.14: The band structure of NiO in the undistorted (cubic) cell at the experi-

mental lattice spacing obtained with a Hubbard U of 4.58 eV. The zero of the energy is

set at the top of the valence band. The experimental results were taken from ref. [64]

(hollow symbols) and [65] (solid symbols).

calculation in the C4 cell and then extrapolated the obtained result to the C128 super-

cell (see fig. 4.10) obtaining a final value for the U parameter of 4.58 eV. In fig. 4.14

the band structure of NiO obtained with this value of U is shown and compared with
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Figure 4.15: The projected density of states of AF undistorted nickel oxide at the

experimental lattice spacing obtained with U = 4.58 eV.

the photoemission data in the ΓX direction extracted from ref. [64, 65]. Despite the

agreement with the experimental results is not excellent, our band structure can repro-

duce some features of the photoemmission spectrum for this compound. Our theoretical

value for the optical gap is ≈ 2.7 eV around the T point. The fundamental gap, of about

2 eV, is in not in so good agreement with the experimental values exceeding 4 eV as

reported in [61, 62, 66]. In ref [67], however, a wider range for the experimental value of

the band gap of NiO is reported ranging from 3.0 to 4.4 eV. In the same work it is also

reported that in practical LDA+U calculations the experimental value of the band gap

is correctly reproduced in calculations using U parameters of the order of 8 eV which

are however found to give a worse description of other properties of the material. Using

an Hubbard U of 5 eV the same authors were able to obtain a gap of 2.8 eV which is

closer to our result. The magnetic moment of the Ni ions is correctly described within

our LDA+U approach which gives a value of 1.7 μB well within the experimental range

of values ranging from 1.64 and 1.9 μB [67].
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In fig. 4.15 the density of states of NiO obtained in our study is shown. The most

important feature that is worth notice in the density of states of NiO is the fact that

the p states of oxygen dominate the top of the valence band while the bottom of the

conduction band is mainly d-like thus producing a charge transfer insulator rather than

a pure Mott-Hubbard one. This is in good agreement with experiments and other

LDA+U calculations which predict the band gap to be of p − d type and the charge

transfer character to increase going from FeO to NiO.

4.2.3 The structural properties of FeO

Having obtained quite a good description of the electronic structure of FeO and NiO, we

want now to use our LDA+U approach to investigate the structural properties of this

compound and check whether it is able to correct the disagreement between the GGA

results and the experiments about the rhombohedral distortion and its behaviour under

pressure. In order to obtain this we followed the same procedure already adopted in the

GGA case (chapter 2): we considered a number of rhombohedral distortion, centered

around the undistorted cubic structure, and for each of them we performed self consistent

calculations at different lattice spacings in order to properly sample the behaviour of

the total energy with respect to the volume of the unit cell. In the case of LDA+U

calculations, however, a further amount of work is to be done because the Hubbard

U parameter has to be recalculated for each distortion and for each considered lattice

spacing. This has been done using the same procedure described in the first paragraph

of this chapter extrapolating the (distorted) C4 result for the χ and χ0 matrices to a

C128 supercell with the same considered distortion. The result of these calculations is

presented in fig. 4.16 where a Murnaghan fit is shown for the calculated points at each

value of the rhombohedral distortion αr. We now extract, for each Murnaghan fit, the

pressure dependence of the total energy and repeat the same analysis already done for

the GGA case. We thus chose a number of values in the pressure range from 0 to 250

kilobars and for each of them we made a quadratic fit to describe the dependence of the

total energy on cos(αr). The minimum for this fit at each considered value of pressure

produces the behaviour of the rhombohedral angle which is shown in fig. 4.17 where

the GGA results and the experimental points already reported in chapter 2, are also

considered. The dependence of the rhombohedral angle on pressure which we obtained

within our LDA+U approach is not in agreement with the experimental results, nor with

the ones obtained within GGA. It even introduces a worse description with respect to

the GGA results because it predicts the unit cell to be contracted (αr > 60◦) along the
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Figure 4.16: The Murnaghan fits for different distorted structures obtained within the

LDA+U approach. Angles smaller than 60◦ correspond to rhombohedral stretching

distortions along the [111] direction.

[111] body diagonal (instead of being stretched) and also shows a qualitatively wrong

behaviour of the deformation with pressure.

In order to try to improve the description of the structural properties (in particular

the rhombohedral distortion) of FeO under pressure loading, we made some attempts to

include in our LDA+U functional some additional degrees of freedom (interaction pa-

rameters) which were not considered up to this moment. For this compound, however,

we don’t have any photoemission experiment the calculated electronic band structure

can be compared with, as it was the case for iron. To fix the value of the additional

parameter we tried to anchor our calculations to the experimental results for the rhom-

bohedral distortion and the lattice spacing obtained at ambient pressure in ref. [34].

In order to obtain the (equilibrium) structural parameters (lattice spacing and rhombo-

hedral distortion) for the stoichiometric compound, we extrapolated the experimental

dependence of the structural parameters on iron content reported in the same ref. [34].
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Figure 4.17: The rhombohedral angle as a function of pressure for both GGA and

LDA+U approaches. Two experimental points are also shown, which were extracted

from refs. [34, 35] as explained in the text.

As this particular distortion was not considered so far, we needed to calculate the Hub-

bard U parameter for this considered geometry of the unit cell and for a number of

different lattice spacings used in the structural relaxation.

The first attempt we made was, as in the case of bulk iron, to use the full rotational

invariant LDA+U approach (3.5, 3.6) that we named previously LDA+U+J. In order

to fix the value of J we attempted several values for this parameter and, holding it fixed

and considering the calculated values for the U parameter, we computed the structural

properties at the experimental rhombohedral distortion. Unfortunately we found that

increasing J from 0 to 2 eV the equilibrium lattice spacing, that was about 0.7 %

smaller than the experimental value, decreases even further so that the best agreement

is obtained for J = 0, that is our simplified LDA+U approach.

However, in the case of iron, considering the exchange parameter J as a function

of volume could improve very much the description of the structural properties of that
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Figure 4.18: The rhombohedral angle as a function of pressure for all the considered

LDA+U, LDA+U+J, LDA+Ueff approaches in comparison with the GGA and the

experimental results.

material. Thus, we wanted to make a similar attempt for FeO and, after arbitrarily

fixing for the experimental undistorted structure a J of 2 eV, we assumed that the

ratio between U and J remained fixed while changing the lattice parameter and the

rhombohedral distortion. Calculating this ratio from the starting undistorted unit cell

(the corresponding U is 4.29 eV) we could obtain a value for the exchange interaction

in correspondence to each lattice spacing and distortion considered in the structural

relaxation. The functional containing the additional exchange parameter J was chosen

in two ways: in the first we used the rotational invariant formulation (LDA+U+J), in

the second we considered, within the simplified approach, an effective U equal to the

difference U − J (LDA+Ueff ). Performing structural calculations for a set of different

distortions according to the same procedure illustrated above for the simplified LDA+U

scheme we obtained the results shown in fig. 4.18 where the LDA+U and GGA curves

are also given in comparison with two experimental results. As it can be observed from
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this figure the two extended methods are not equivalent as in the case of bulk iron. The

rotational invariant approach gives results which are comparable, or even slightly worse,

than the ones obtained within the simplified LDA+U scheme; the LDA+Ueff method

improves the description of the other two but the agreement with experiments does not

change significantly and the rhombohedral distortion still has the wrong sing. Despite

the choice of the exchange interaction J was completely arbitrary, we could show that

considering this additional parameter in the model may improve the description of the

structural properties of real compounds as also happened in the case of iron. However, in

the case of FeO, the details about the dependence of J on the structural parameters and,

above all, about the way this additional interaction is treated into the model are very

important. Thus, calculating the exchange interaction from first principle would be very

useful even if, from our results, we do not expect a great improvement in the description

of the structural properties of FeO, unless the dependence of the calculated J on the

structural parameters would result very different from that found for the Hubbard U .

To summarize our experience, the use of the simplified LDA+U approach described

in this thesis or of some of the extended approaches including the exchange parameter

results useful in the study of the electronic structure of strongly correlated materials as

it is able to realize the observed insulating behaviour, to open a gap of width comparable

with experimental results and to produce the correct ordering of the bands around the

energy gap. However, the use of this approach to study the structural properties of the

same compounds is problematic, as demonstrated by the case of FeO, and the quality of

the obtained results is critically dependent on the value of the effective interactions, on

their variation with the structural parameters and, above all, on the theoretical details

and approximations used to build the model. This latter difficulty is probably due to

the simplicity of this kind of approaches which does not allow them to properly take into

consideration the many degrees of freedom governing the electronic charge distribution

and thus the structural properties. The same conclusion we arrive at is also suggested in

ref. [68] where a structural study about NiO using GGA and LDA+U metods produced

a charge distribution in not very good agreement with the experimental one.

4.3 Fe2SiO4 fayalite

In this section we present the results of the application of the LDA+U scheme to fayalite.

The main purpose of this calculation is to study the possible gap opening in the band

structure of this compound and the nature of the resulting insulating state. In fact,
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as we realized in the study of FeO, the LDA+U approach is quite efficient to study

the electronic band structure of strongly correlated materials, but not reliable enough

to correctly describe their structural properties. Thus, this latter issue will not be

addressed for this material and we will focus our attention on the electronic and magnetic

properties studied at the experimental geometry.

The technical details about our practical calculation are slightly different from the

ones used in the LDA and GGA studies presented in chapter 2. Thus, to compare the

results obtained from the LDA+U scheme with those produced by standard DFT meth-

ods, it will be necessary to repeat the GGA calculation at the experimental structure

with the same set of parameters required by the LDA+U approach. The same pseu-

dopotentials (ulstrasoft fo Fe and O, norm-conserving for Si) used in the preliminary

GGA investigation were also adopted in this case. To calculate the Hubbard parameter

we decided to use a smearing width of 0.005 Ry as for bulk iron and iron oxide (smaller

than required in standard calculations) to be accurate in describing the region around

the Fermi levels where dynamics of levels controlling the charge redistribution in the

constrained calculation takes place. Larger energy cut off than used in the calculations

reported in chapter 2 were required for both the electronic wave functions and charge

density (we used values of 36 and 288 Ry respectively) to obtain a good accuracy in

describing the atomic states. A smaller k-point with 8 inequivalent vectors in the IBZ

(corresponding to a 2×4×4 Monkhorst-Pack grid) is instead sufficient in the present

case to give a good convergence of the total energy and the atomic forces.

As the primitive unit cell of fayalite is quite large, we did not perform the (direct)

constrained calculation in larger superstructures (which would be very expensive from

a computational point of view) supposing that a large enough number of neighbors,

(representing the possible degrees of freedom for the charge redistribution), is already

included in the primitive one. Thus, larger supercell were just used to extrapolate the

obtained results according to the same procedure illustrated for bulk iron and iron oxide.

We considered four supercells. The first is the primitive one (containing 8 iron ions)

which is used in the constrained calculation. The second one icludes 16 iron ions and has

been obtained by duplicating the primitive one along the y direction (1×2×1 supercell)

which is the one along which the dispersion of the (GGA) band structure (and thus the

mobility of the electrons) is larger. A third supercell, containing 64 magnetic ions was

obtained by duplicating the primitive structure in each direction (2×2×2 supercell). The

biggest one is a 4×4×2 supercell and contains 256 iron ions. To calculate the Hubbard

parameter we pertub separately the two different families of iron (Fe1 and Fe2). We thus
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Figure 4.19: The convergenge of the Hubbard parameters with the number of iron

included in the supercell. U1 is for Fe1 ions, U2 for Fe2.

obtain two different values for the interaction parameters whose convergence properties

with the number of neighbors in larger and larger supercell is shown in fig. 4.19. The

final results for the on-site Coulomb parameters are 4.9 eV for Fe1 ions and 4.6 eV for

Fe2, which are much larger than the rough estimation we made in chapter 2.

Some preliminary results obtained from a GGA calculation for fayalite at the exper-

imental structure which is considered in this section have to be shown in order to be

compared with the ones obtained within the LDA+U approach in the same conditions.

The GGA band structure of fayalite is shown in fig. 4.20. The same qualitative consid-

erations done for the GGA study in chapter 2 are still valid here, while a more extended

energy range in the plot of the band structure allows some further observations about

the relation among the d states of iron and the levels originated from the atomic states

of other ions.

A rough classification of the electronic states in three groups can be made from the

plot in fig. 4.20. The first group of levels, that lies in the region at the top of the
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Figure 4.20: The band structure of fayalite obtained within GGA. The zero of the energy

is set to the Fermi level of the system. Different lines were used to distinguish the two

spin groups of levels but, due to the antiferromagnetism of the system, the states with

different spins are completely degenerate.

considered energy window, well above the Fermi energy, display a marked dispersion

which suggests they mainly consist of the s states of iron and silicon. The central block

of states, ranging from (approximately) 5 eV below the Fermi level to 2 eV above,



CHAPTER 4. THE LDA+U APPROACH: APPLICATION.... 102

consists instead of rather flat bands, that reveal the atomic-like character of the d states

of iron. A further distinction of this manifold into two subgroups is also evident and

separates the lower energy bands, which lie, completely filled, from 5 to 1.5 eV below

the Fermi level (corresponding to the majority spin states of each iron), from the higher

energy group of states which crosses the Fermi level and extend from -0.5 to 2 eV,

consisting in the minority spin states group of each magnetic ion. As discussed in

chapter 2 this separation of the d bands of iron is the origin of the magnetic moment of

each ion of this kind while an equal number of sites with opposite magnetization ensures

the ground state of the system to correspond to an AF spin configuration. The third

group of bands lies from 10 to 5 eV below the Fermi level (it actually cannot be clearly

separated from the second) and is characterized by a somewhat larger dispersion than

the one observed in the second block which reveal the p nature of these states.

This crude distinction of the energy levels is confirmed by the density of states shown

in fig. 4.21. In this plot we considered, for clarity, just the d states of one Fe1 iron and

the p levels from one of the oxygens. The contributions to the density of states coming

from other atomic levels of the same kind would, in general, be different from the one

plotted in this picture, but the qualitative behaviour and the relative importance of the

different atomic contribution were found to remain the same and we decided to show just

a representative case. Other atomic contributions are also escluded from the plot as, for

instance, the s states of iron or the s and p states of Silicon. The reason for this is that

they are not important in the physical picture we want to describe: the former states

lie well above the Fermi level, whereas the latters give a negligeble contribution in the

whole energy window of the plot (the Si ions are almost completely spoiled of their outer

electrons). Another set of states, consisting in the oxygen s states, is not considered

here; however they are concentrated in a small energy region around 20 eV below the

Fermi level where only a small overlap with the Si s and p states can be observed. As

it was anticipated in the above introduction, and also observed in the analougus sudy

in chapter 2, the Fermi level cuts the minority spin d manifold of iron thus producing

a metallic behaviour. This is the main wrong result produced by GGA in representing

the conduction properties of this material which is experimentally observed to be an

insulator of supposedly Mott-Hubbard type. Another aspect of the density of states

which is worth notice is the separation among the majority spin d states of iron and the

oxygen p states below the Fermi level. Except for some small overlap, the two groups

of states are mainly concentrated in two adiacent regions of energy thus confirming the

classification of the states made above.
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Figure 4.21: The projected density of state of fayalite obtained within GGA. Contribu-

tions from the majority (up) and the minority (down) spin d states of one of the Fe1

iron ions and from the total p manifold of one oxygen are shown.

We now want to compare the GGA results with the picture obtained within our sim-

plified LDA+U method using the calculated interaction parameters. The band structure

in this case is shown in fig. 4.22. A band gap now separates the valence manifold from

the conduction one. The obtained width of about 3 eV overstimates the experimental

results at zero pressure which report an energy gap of about 2 eV [69]. However, we have

to take into consideration that the experimental structure is not the equilibrium one in

our approach. An estimate of the stresses acting on the unit cell showed a tendency to-

ward contraction which could lead to a partial reduction of the calculated band gap due

to the widening of the d bands of iron (as already observed for bulk iron). Furthermore

the inclusion of the exchange interaction parameter J , which is neglected in this case,

could lead to a pronounced modification of the electronic band structure as it was ob-

served for bulk iron and the gap could be considerably reduced. The classification of

levels introduced within the GGA approach looses its validity in this case. The minority
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Figure 4.22: The band structure of fayalite obtained within the LDA+U approach. The

zero of the energy is set to the top of the valence band. Completely degeneracy among

spin up and spin down states can be observed also in this case.

spin manifold is separated into two subgroups by the gap opening and the higher energy

d states are shrinked in a smaller energy region and moved above the bottom of the

iron s states band which remains almost unaffected. The lower energy minority spin

d states, instead, are immerged in the group below the Fermi level where the two sets
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Figure 4.23: The projected density of state of fayalite obtained within the LDA+U

approach. Contributions from the majority (up) and the minority (down) spin d states

of one of the Fe1 iron ions and from the total p manifold of one oxygen are shown.

of states (belonging to iron and oxygen respectively), distiguished in the GGA results,

collapsed into a unique block. The most evident consequence of the gap opening mainly

consists in the pronounced shrinking of the d states of iron which, once separated into

two groups, become flatter than in the GGA case. This is evident on the top of the

valence band, but also for the states well below this energy level, which thus reveal a

more pronounce atomic-like behaviour. In this region (extending up to 8 eV below the

top of the valence band) the same distinction made within GGA is not possible anymore

as we observe a unique block of very flat states. Some mixing has thus occurred among

the d states of iron and the p states of oxygen which is indeed confirmed by the projected

density of states plotted in fig. 4.23. Beside the gap opening between the two groups

of the minority spin states, we can notice, in fact, that a strong mixing occurs among

the oxygen p states and the iron d level over the rather large region extending for 8

eV below the top of the valence band. In particular a finite contribution of the oxygen
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Figure 4.24: The projected density of state of fayalite obtained within the LDA+U

approach. Contributions from the majority (up) and the minority (down) spin d states

of one of the Fe1 iron ions and from the total p manifold of one oxygen are shown.

states is present at the top of the valence manifold thus suggesting that, as in the case

of FeO and NiO, a charge transfer mechanism is responsible for the observed insulating

behaviour rather than a Mott Hubbard one. In fig. 4.24 the projected density of states

describing the contributions from the d levels of Fe1 and Fe2 ions is shown. The most

important feature which is worth notice is the fact that the gap opens among the d

states belonging to ions of different kind. The minimum energy transition accross the

gap implies the hopping of electrons from Fe1 to Fe2 irons.

Regarding the magnetic structure of fayalite we did not investigate the two possible

spin configuration studied in chapter 2 and just took into consideration the spin arrange-

ment obtained, within GGA, as the ground state one. The magnetic moment on each

iron, however, is now found to be 3.9 μB which is in closer agreement with its spin-only

value (4 μB) of the experimental result (4.4 μB) than the one obtained in GGA (3.8

μB). This increase is probably due to the enhancement of the atomic-like character of



CHAPTER 4. THE LDA+U APPROACH: APPLICATION.... 107

the iron d states which is concenquence of the gap opening.

In conclusion, the LDA+U method gives a quite good description of the electronic

band structure of fayalite reproducing the observed insulating behaviour with a rea-

sonable value for its fundamental band gap. Unfortunately, the unreliability of this

theoretical approach forbides, for the moment, to investigate the possible consequences

of the improvement in the description of electronic structure on the structural proper-

ties of this material and on the important phase transitions it undergoes upon pressure

loading. These issues are thus left inexplored at the moment.



Chapter 5

Conclusions

In the present thesis the accuracy and potential of the LDA+U method in the description

of the structural, magnetic and electronic properties of real materials has been analyzed

in detail applying this approach to some iron compounds. We have implemented the

full rotational invariant LDA+U formalism [6, 7] as well as a simplified approach where,

while maintaining the appealing feature of rotational invariance of the parent model,

the exchange contribution to the effective electronic interaction is neglected and a direct

connection of the correction term with the spurious electronic self-energy present in

LDA is made.

The practical implementation of these schemes in a plane wave pseudopotential for-

malism was realized introducing localized d level occupation matrices as projections of

the occupied electronic manifold on suitable atomic states.

In order to make the approach non-empirical, a method for the ab-initio calculation

of the interaction parameter U in a plane wave pseudopotential formalism was intro-

duced so as to be consistent with the assumed definition for the occupation matrices.

This was done studying the response of the system under consideration to localized per-

turbations of the Hubbard ions and properly extracting from the total response function

the local interaction term. In practical calculations this study has to be performed in

larger and larger supercells in order to correctly extract the contribution for an isolated

perturbation. In order to study the convergence properties of the effective interactions

with the size of the considered unit structure an extrapolating technique of the results

of the small supercell to the very large ones was introduced and found to be accurate.

A possible extension of this method to include spin degrees of freedom in the de-

termination of the interaction parameter (which would allow to calculate the exchange

interaction J) was considered. It was, however, never used for actual calculations be-
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cause it resulted affected by large numerical errors due to the encountered difficulties in

modifying, with a perturbing potential, the occupancy of the completely filled majority

spin states. The very large stiffness of the corresponding response function made the

numerical differentiation and the inversion of the corresponding matrix very unstable

and unreliable.

The method was applied to both ”normal” and ”correlated” iron compounds in order

to analyze its usefulness as a general approach.

The application of our simplified approach to bulk iron was mainly done in this spirit

as it is known that standard GGA (and also LDA) functionals can give a good descrip-

tion of its physical properties and we wanted to check whether the LDA+U method was

able to preserve the success of the former approach. The results obtained for bulk iron

could not improve the GGA picture, but remained within the same range of agreement

with the experimental results already fixed by LDA. The effect of the Hubbard-like inter-

actions on the electronic structure of this material mainly consists in a rigid downward

shift of the majority spin states which made worse the agreement with the photoemission

results. However, the shift could be eliminated, and the agreement with the experiments

reestablished, by considering an exchange parameter in the Hubbard functional treated

as in the full rotational invariant approach. Assuming that the exchange parameter

scales with the lattice spacing as a constant fraction of the calculated Hubbard U we

were able to give a good description of the structural properties of this material, also

slightly improving the agreement of the GGA results with experiments for bulk mod-

ulus and magnetic moment. Our simplified approach, instead, produced a systematic

overestimating of the equilibrium lattice spacing and bulk modulus. Similar overesti-

mating were obtained using a rotational invariant formalism with a fixed J for all the

explored unit cell volumes. Thus, at least for iron, including the exchange parameter

in the model is important and considering its variation with the volume is necessary to

correctly describe the structural properties of this material.

The use of the LDA+U approach to the study of transition metal oxides (which

are generally strongly correlated materials), as FeO and NiO, is instead more ”natural”

because the (almost pure) d bands are very narrow and the overlap among the atomic

states is small due to larger interatomic distances. The application of our simple LDA+U

method to both FeO and NiO gave good results in describing the electronic structure as

it reproduced the band gaps (of the observed width in the case of FeO) with the correct

(observed) spectroscopic nature of the associated transitions. The band gap of NiO

was indeed obtained to be smaller than the experimental value, but in agreement with
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other theoretical approaches. The structural properties of FeO, however, could not be

represented very well within this scheme because the rhombohedral distortion of the AF

phase upon increasing pressure was obtained to have quite large discrepancies with the

experiments and even a qualitatively wrong dependence on pressure. The GGA method

could instead reproduce, at least, the correct qualitative trend of this quantity under

pressure loading. Also for FeO we considered, beside our simplified LDA+U approach,

a number of variations of the method described in the literature but no significant

improvement could be achieved in the description of the structural properties, thus

confirming that our simplified scheme shows the same problematic behaviour of other

more complicated approaches when used for structural calculations. This situation

may be possibly traced back to the inability of the LDA+U method to describe the

electronic charge distributions which in NiO, for instance, has already been documented

in literature [68], while the small variation of the Hubbard parameter with the structural

properties is probably not responsible for the obtained wrong behaviour under pressure

loading.

The application of LDA+U to Fe2SiO4 fayalite was mainly motivated by the possi-

bility of studying the gap opening in the band structure (this material is also observed

to have an insulating behaviour driven, probably, by a Mott-Hubbard mechanism) and

the spectroscopic nature of the possible electronic transitions across it. A gap, about 3

eV wide, is obtained in the band structure (somewhat larger than the experimental one

measured at ambient pressure) which makes this compound acquire the observed insu-

lating character. The analysis of the electronic density of states reveals that the oxygen

p states give a finite contribution to the top of the valence band so that the mechanism

leading to the insulating behaviour is, to some extent, of charge transfer type rather

than purely Mott-Hubbard. The stronger atomic-like character of the d states produced

by the gap results in a much flatter valence manifold and is probably the origin of the

obtained enhancement of the magnetization of each iron ion.

In conclusion our analysis shows that LDA+U method(s) can give quite good results

in the description of the electronic properties of strongly correlated materials and can

reproduce the observed band gaps and their spectroscopic nature. In the case of tran-

sition metals it is somewhat less accurate than for strongly correlated systems but can

correctly reproduce the increase of the metallic character upon squeezing under pres-

sure. However, the application of this simple scheme to study the structural properties

of real materials is generally problematic and the reason seems not to be related with the

simple approximation our model relies on. A possible improvement upon its results can
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sometimes be obtained using the original full rotational expression and considering, as

in the case of iron, the variation of the additional exchange parameter with the unit cell

volume. However this procedure does not lead to systematic improvements and the case

of FeO is paradigmatic. In order to better assess the potential of the LDA+U method

for structural calculations a consistent and reliable procedure to calculate the exchange

parameter J is needed. In any case we believe that, even in this case, the simplified

way strong electronic correlations are treated in the model can hardly be successful in

describing, with the same accuracy, the different electronic, magnetic and structural

properties of real materials. The examples presented in this thesis, in fact, show that

using LDA+U it is possible to correctly describe the electronic structure of real (prob-

lematic) systems without, however, the guarantee that other physical properties can

receive an accurate description as well.
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