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I. TINTRODUCTION

The advances in cryogenic techniques at the beginning of the
Twentieth Century gave impetus to the investigation of the low-
temperature electrical properties of conducting systems. It was
generally thought at that time that the resiétance of a metal should
increase as the temperature was lowered and the electron vapor froze
to the atoms. However, investigations using precious metals — gold,
silver and platinum — sﬁowed that the resistance near absolute zero
attained a constant value which depended upon the residual impurities
of the sample, 1In an effort to produce métallic wires of:excéedingly
.high purity, Kamerlingh Onnes selected elemental mercury which could
be distilled repeatedly in vacuo. In December 1911, Onnes obserﬁed
the catastrophic loss of resistance that characterized the super-
conducting state. *

Fbllowing two decades of cataloguing the transition tempera;
turas of variou§ materials, Meissner and Ochsenfeld observed a
second fundamental property of superconductors: on cooling below
the transition temperature, a weak magnetic field is éxpelled from
the interior of a Bulk superconductor.2+ Several other experimental

5

observations such as the specific heat” and isotope effecth’5 also
preceded the development of the first successful microscopic theory

of superconductivity -- that of Bardeen, Cooper, and Schrieffer6 .-

¥*
All references are listed at the end.

"The Meissner effect is characteristic of Type I superconduc-
tors, Type II superconductors were later discovered which show a
mixed state in which the magnetic field may penetrate the bulk
material., o




in 1957. With the theoretical understanding came a variety of new experi-
| 7,8 9

mental observations =-- flux quantization, tunneling,” and others.

The wealth of practical applications for superconducting materials
was recognized from thebbegihning,and the list grew as new properties
of the superconducting state were found. The ultimate drawback to the
realization of most of these applications, however, was the necessity
for elaborate, costly refrigeration. By 1930 the element with the high-
est transition temperature, niobium (9.2°K), had been caﬁalogued.lo
Searches for higher-temperature superconductors focused on alloys, par-
ticularly those of niobium; four decades of research produced the mate-

rial Nb_Ge in thin film form with a transition temperaturé of'22.5°K,11

5
the highest currently known.*

As the effort to obtain materials with higher transition tempera-
tures brought diminishing returns, a new era of investigation was
dramatically opened in 1964 when Little proposed that supércondﬁctivity
should occur as a result of exciton-induced electron-electron atﬁraction
in the same ménner as for the phonon mechanism.13 Because of the signi-
ficantly larger energies characteristic of the molecular excitons envi-
sioned by Little compared with common Debye energies, a correspondingly
higher transition temperature could be expected. Soon after a similar
proﬁbsal was advanced by Ginsburg.lu’15 

The models proposed by Little and Ginsburg entail the juxta-
position of a conducting or semiconducting medium with a highly polar-

izable material such as a dye. 1In the Little model a filament of car-

bon or transition metal atoms known as the "spine" is surrounded by

3 .
Recentowork on the same material raises the critical tempera-
ture to 23,3°K.12
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covalently bonded or complexed dye molecules as shown in Figure 1.
Direct interaction of electrons on the spine is supplemented by
indirect interaction through the excitation of the polarizable side
chains. Under favorablé conditions the attractive region of the
exciton interaction may be sufficiently strong to dominate the
Coulomb repulsibn between spine electrons, That such an attrac-
tive interaction does exist is supported by the obsefvation that
'highly polarizable cyénine dyes substituted on the methine bridges
of copper porphin result in shifts of the near-ultraviolet "Soret"
absorption band to lower energies --up to 0.5 electroﬁ volt shift --
compared with the'unsubstituted copper porphins.;

The Ginsburg model uses similar ingredients, but it differs
in the spatial arrangement. The surface of a conducting material is
coated with the polarizable material; or altermatively, alternate
layers of metal and dielectric are placed on a substrate. The Little
and Ginsburg models became known as one- and two-diﬁensional'excitonic
superconductors, respectively.

Soon after the proposals for these low-dimensional supercon-
ductors were published, a theoretical objection arose. Noting
that at finite temperatures thermodynamic fluctuations in one-
dimensional systems with short-range forceé preclude the existence
of a phase transition to a state with 1ong-rénge order, Ferrell,17
Rice,l8.and Hobenbergl9 éoncluded that such systems could not exhibit
superconductivity., In response Little proposed that persistent

currents still might occur in truly one-dimensional systems even in

the absence of a shdrp phase transition.go In the Ginsburg-Landau
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theory, the supercurrent is given by (w*vw-wvw*) , where  is the
quahtized order parameter. To dissipate a supercurrent, it is nec-
eséary that the amplitude of V must become zero., While fluctua-
tions of V¢ in one dimension destroy long-range phasé coherence,
amplitude fluctuations are highly restricted. Studies along this line
were later reported by Langer.21 A further response, and one more in
keeping with the nature of real systems, was presented by Dzyaloshinskii
and Katz.22 They proposed an array of filamentary structures with suf-
ficient space between filaments for an excitonic medium and concluded
that such a system would be a superconductor of the second type.

A further objection to the Little model was raised By Kuper.23
On considering the lack of screening of charges in a filamehtary con-
ductor, he concluded that the strength of the excitonic attréctive
interaction wouid be insufficient to dominate the unscreened Coulomb
repulsion. Extending the model calculation of Kuper by accounting
for nelghboring filaments, Davis found that static screening does
occur for such systems.2

As originélly proposéd,thespine in the filamentary model would
consist of carbon atoms with alternate double bonds. Ideally in such
a structure thé resonance of the bonds would give a half-filled con-
duction band. 1In the absence of a stabilizing interaction caused by
the surrounding environment, however, the alternate double bonds would
tend to localize. This same phenomenon is observed in a second class
of compounds that serve as our primary spine models for the investi-
gation of one-dimensional excitonic superconductivity. These are the

partially oxidized platinum chain compounds investigated independently




‘by Krogmann.25 Early theoretical arguments proposed and recentvex-
perimental evidence confirms that these linear chain compounds,
which are metallic conductors at room temperature, are subject fo a
periodic distortion along the chain similar to the localization in
the carbon chain and known as the Peierls distortion (see Chaptér 11).
Such a distortion, which occurs at low temperatures, results in an
energy gap in the conduction band and thus compeﬁes with Cﬁoper pair
formation for the ground state., The excitonic interaction must be
sufficiently attractive to overcome this competing mechanism.

One final objection‘with regard to the lattice stability may be
noted. On caiculating the maximum transition temperature to be
expected when phonon attraction and Coulomb repulsion are accounted
for, as in the two square-well model of McMilian,26 Cohen_and
Anderson found tﬁat the highest transition temperatures would not
result from using the largest excitation energies possible (i.e., mo-
lecular excitons); rather, the typical phonon energies weie more

27

nearly the optimum energy. This analysis was based on the stabil-
ity requifement that the static effective interactién for any wave
vector must necessarily be non-negative in order for the lattice to
be stable against deformétion of that wave vector. The strength of
the electron-phonon coupling would be limited by the strength of the
Coulomb pseudopotential, which would apply similarly to the exciton
case. Cohen and Anderson went on to show, however, that such a limi-
tation would not apply if Umklapp processes, that is, short-range

scattering through wave vectors lying outside the first Brillouin

zone, were allowed. Such processes occur in the Little model where
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the ﬁolarization.of the dyes occurs over regions in space smaller-
than the lattice dimensions. Similarly, Allender, Bray, and
Bardeen have investigated the two-dimensional model of Ginsburg

and find that the strength of the electron-exciton coupling can be
gfeater than that of fhe Coulomb pseudOpotential.QSv This occurs in
‘their model under favorable conditions.

The organization of the investigation of these oﬁe-dimensiohal
model systems as presented in this thesis is as follows. ‘In Chapter
I1 we review the current experimental data on the pléﬁinum chain |
compounds that are used to model the spine. We consider in detail
the static screening calculation mentioned abo&e. Chapter III deals
with the calculation of the electronic properties of individual dye
malécules and of various arrays of dyes about the spihe; The dévelop~
ment‘of superconductivity theory is briefly reviewed inFChapter IV and
the recent theory of Kirzhnits, Maksimov, and Khomski_ie9 which is uséd
in the calculations is developed in detail, Finally, Chapter V pre-
sents the numerical method and results of these calculations, dis-
'cusses the dependence of the transition temperature on tﬁe vérious
parameters, and indicates areas of this investigation thgt allow for

further study.




IT. SCREENING

A, Metal Atom Chains

The chain of metal atoms, or "spine", serves three basic func-
tions. These are 1) to provide a point of attachment (atom‘for‘
complexation) for the dye units, 2) to provide a conducting pathway
for electron flow in the superconducting state, and 3) to screen
the Coulomb interaction between charges on the gpine and those in
the dye molecule,

Investigation of the first functioh is in the domain of organo-
metallic synthesis, Much novel synthetic work has been stimulated by
the request for sucﬁ a metal-atom-dye system;)o’51 Figure 2 shows two

ligand systéms developed for this purpose.32 While such work has

Figure 2 Ligands for metal-atom-dye systems.




produced several new discoveries in organometallic chemi_stry,53 the com-
pounds used as models in the theoretical calculations of this work are
the partialiy oxidized platinum cyanide complexes, in particular

K Pt(CN)hCI

-2.6H20 (KCP-C1) and K?Pt(QN) *2.3H,0 (KCP-Br).

2l 0.%2 4*%0.30
MVP is used to designate these partially oxidized compounds in general.
As discussedlater,thé important discovery that dye molecules could be
complexed directly to the platinum atom reaffirmed the choice of these

: L
compounds for the prototype,32’3l

and we may expect to have some freedom
in the manipulation of these structures.

The ability of MVP compounds to fulfill the second function is even
better establighed. We shall roview the properties of these materials,.
but it may be noted in passing that the spine for a model excitonic
superconductor need not be a metallic conductor in the.ndrmal phase.

A semiconductor with a gap Eg may become supercoﬁducting provided the
superconducting gap Ab is sufficiently large that the conduction‘band
becomes populated. Using the simple BCS formulation, a superconducting
phase should be found for Eg <A in the calculation.by Little,13

or Eg <:Ab/2 in the calculation by Davis . O

Theoretical investigation of the electrical properties of one-
dimensionallconducting systems began soon after thé foundation was
laid by Bloch in 1928 for three-dimensional materiéls.35 The well-
known Kronig-Penny model56 represented the potential at each nucleus
by a‘delta function. Matching the wave functions at each nucléus gave
the eigenvalues. Using the tight-binding approximation, a simple cosine
band shape, .E(k) = (EO/E)(l - cos(ka)), can be obtained for a linear

array of atoms. We shall see below that this result is a good approxi-

mation to the band structure in these platinum chain compounds.

..9..
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The‘early experimental work on one-dimensional systems began with
Magnus Green Salt (MGS) which attracted attention because its deep green
color could not be explained from the colors of the anion (usually red in
salts and solutions) or the cation (colorless). The crystal structure
was determined early (1932),57 but the nature of the absorption'was not
investigated until 1651 when Yamada measured the unusual dichroism of

59 ‘He related the changes

'MGSBB and other platinum cyanide complexes.
iﬁ wavelength and sharpness of the characteristic absorption band for
light polarized parallel to the platinum chain on changiﬁg fhe cation
(Mg, Ca, Ba) to the changes in the distance and strength of interaction
of the platinum atoms rather than to the interaction of the platinum
complex with the cation. Rundleho deveioped the platinum-platinum
interaction theory using molecular orbital théory, and by 1961 a ré-
view of the metal-metal interactions in square-planar complexes was
written by Miller.LL

The assignment of the various 5d orbitals to the observed transi-
tions in the visible gpectra of square planar platinum complexes was
undertaken by several investigators with conflicting results for the
ordering of the energy 1_evels.br2_b‘5 The work of Fenske et. al.16 in-
cluded fhe first application of ligand field theory to these complexes;

In the square planar enviromment the platinum 5d orbitals are split into

four groups:

dxy (bgg)) dXZ’dyZ (eg>; dzg (alg)’ dx_Q_yQ (blg)'
On investigation of a wide variety of these complexes, Milleru6

concluded that the 5d_p orbital would be the highest filled level and

proposed a band picture using this as the valence band and the 6pz as

- 10 -
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45 suggested the

the conduction band. At the same time Day et. al.
possibility of narrow band semiconduction and reported the first
electrical measurement.

Other early measurements on MGS and Ir(CO)

k7

pacac (dicarbonyl-

who noted the signi-

L8

acetylacetoiridium) were reported by Collman
ficant anisotropic nature of the conductivity. Atkinson, et. al.
studiéd a variety of MGS analogues reporting approximate ohmic behavior
and an activation energy calculated from the expressioﬁ R=A e-E/kT.
Extending the electrical measurements to a wider selection of compounds,
Monteith, et. :al.u9 measured square planar complexes of palladium, nickel;
iriqium, copper, and rhodium. They observed that thg conductivity of
nd8 systems generally increased in the order n=3% to n=5 for analo-
gous complexes as had been suggested by Collman.u7
In 1969 an excellent review of the square planar complexes con-
taining metal-metal bonds was published by Krogmann.es He noted that
the dxg_yg orbital should lie highest, and the metal d orbitals
(specifically the dxz and dyz 50) should be involved in back |
T-bonding with the ligand molecular orbitals. More importantly he drew
atténtion to the new class of compounds which could be formed by partial

51-57

oxidation of the platinum cyanide and oxalate complexes. Krogmann

recognized that the removal of antibonding electrons from the Sdzg

orbital on oxidation with 012 or Br2 resulted notbonly in stronger —
. 51

Pt-Pt bonding but also in metallic and paramagnetic behavior. Thus
began a period of intensive investigation of MVP materials. Experi-
ments included reflection and absorption spectroscopy, magnetic circular

dichroism, dc and ac conductivity, x-ray and diffuse x~ray analysis,

- 11 -
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specific heat, Mossbauer spectroscopy, inelastic neutron scattering,

NMR, and EPR.

The ordering of the 5d orbitals was soon established by Piepho
‘et. 31.58 on measuring the magnetic circular dichroism. Their order-
ing is as follows:

< d ,d

= <
Xy Xz dz2 < dx2

yz -y2

In contrasﬁ to the semiconductor behavior of the unoxidized com-
pounds, early results of electrical measurements indicated metallic
behavior in one-dimension for MVP compounds. Krogmann reported con-
ductivities up to 10’2 (oh‘m-cm)~1 in the chain direction using a two
probe technique. Minot and Perlstein59 reported a dc conductivity'of
L (o'hm--cm)—1 for KCP-Br at room temperature éompared with 5 X 10-7 |
for K2Pt(CN)A using a four probe technique in both céSes. They also
reported a Seebeck coefficient of +12pv/°K indicating "a degenerate
gas of holes." Noting the raﬂdom occupation by bromine atoms of 3/5
the total Br sites crystallographically available,'Minot ana Perlstein
introduced the question of the e¢ffect of this disorder on the periodic
potential which would give rise to the d-band structure. The screening
calculation of this work responds in.part to this question.

A second report on conductivity in KCP-Br by Berenblyuﬁ et. a1.6o-
gave information on the ac conductivity as well as temperature depen~
dence. Measurements for frequencies up to 1010 Hz gave the same con-
ductivity as dc measurements above 100°K — a room temperature conduc-
tivity of (3.5+0.5) X 102 _(ohm-cm)"1 being reported. On lowering the
temperature o and o fell off exponentially, the slope being

de hf

- 12 -




and low-temperature activation energies of 800°K and

larger for O4e

160°K were reported for Gdc. and o respectively. Thils unexpected

hf
result was interpreted as indicating a nonmetallic hopping transport
mechanism, |

In feplytx)this assertion, the Interrupted Strand Model (ISM) was
introduced by Kuse and Zeller.61 In real crystals metal atom chains
are interrupted by impurities, vacancies, dislocations, etc. Each
strand is assumed metallic, but current flow between strands may
,requife an activation energy at low frequencies; at higher frequencies
the interruptions are short-;ircuited_by their capacitanée. Experi-
mental observation.of the optical reflectiv%gy of KCP-Br was used to
support this view. A Drude (free-electron)gg;absorption edge was found
for light polarized parallel to the crystal axis with a plasma frequency
hvp = 2.88 e.v., and collision time 1 = 7.5)(10'15 sec. In addition the
temperature-dependent longitudinal conductivity extrapolated to T = m‘
- gave o= 1.2>'<10u(ol'1rn--cm)_1 which can be compared with the optical

]

data using the formula o = er; .65 Gesereich et. a1.6u found similar
results and more recently far infrared65 and very low temperature
measurements have been made.

In addition to the ISM, other hypotheses were advanced:nearly simul -
taneouély. The parallel work on NMP-TCNQ (N~-methyl phenazinium
tetracyanoquinodimethan) led Epstein et. al.’67 to apply the Mott—HuBbard
model to these one-dimensional systems. In 1949 Mott discussed the pro-
_ cess whereby elec;ronic states of a metal would become localized as the

lattice separation increased.68 In the metal-to-insulator transition

the decrease in electronic kinetic energy is balanced by an increase in

- 1% -
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the electron-electron Coulomb energy. The Hubbard model69 explicitly
takes into account the electron correlation effects. These one-
dimensional conducting systems became model compounds for comparison

of theory and experiment.'m-'-(3

We shall not discuss this model in
detail, but only note one result: an insulating ground state is pre-
dicted for a half-filled one-dimensidnal.band. The TCNQ compounds
have insulating ground states and several havé half-filléd bands.
The KCP compounds, while possessing insulating ground states, do not
have half-filled bands.

7h

195Pt) on KCP-Br by Ruegg et. al.

Mossbauer studies ( later
confirmed the fact that the electrons are not localized on an atomic
scale even at low temperatures, Such loéalization would result in a
double salt, (O.85[K2Pt(II)(CN)h] N 0.15[K2Pt(lv)(CN)hBr2]]-BHEO, and
two overlapping lines in the Mossbauer spectrum. Only one Lorentzian
line could be fit to the data thus eliminating charge localization
models.

Bloch et.‘al.'-(5 focused on the disorder in the system noted by
Minot and Perlstein who also developed this theory. The random occupa-
tion by Br atoms adds a non-periodic contribution to the potential along
the spine. The result i1s localization of the electron'stétes to within
distances on the order of 30c (¢ = Pt-Pt distance).76_’77 ~ Conduction

78

occurs along the chain via phonon-assisted hopping and the tempera-
ture dependence of the conductivity would be Ilng ~ -(TO/T)u -with

u = 1/2 for the one-dimensional systemé. A replottingbof the o(T) data
of Kuse and Zeller for KCP-Br showed a significantly better fit for

o= 1/2 thén for u =1 over 1% orders of magnitude in the con-

ductivity.79

- 1L -




Greene and Little measured the low-temperature (1.5 to 6.5°K)
specific heat of KCP-Cl.80 A lcast squares fit of the data‘ﬁsing the
expression C = T + 5T5 + 8T5 showed a very small value for
y (.51 x 10'” J/moleoK) and thus a small value for the density of
states at the Fermi level: A4(0) < 7.6)(1019011\"5 ev-l. This result
was nevertheless reconcilable with both the ISM and WL (weak-
1ocaliz;tion) models which predicted #(0) to be of the order
2-5% loeocm-Bev-l; In the WL model the time requifed for the system
to come to equilibrium at these temperatures greatly exceeds the
measurement period. In the interrupted‘étrand model if the conduc-
tion is assumed to occur only along the chains, then the crystal will
appear as. a distribution of Schottky anomalies, and no term linear
in T is expecﬁed. On the other hand, if conduction around the
interruptions occurs via hopping to neighboring chains, the slow
response time again accounts for the lack of the linear term.

The mechanism for transport between strands was at that time
under investigation by Bernasconi, Kuse, Rice, and Ze]..1e1:'8l.83 in an
enlargement of thé‘interrupted strand model. The following obsefva~
tions were recorded for KCP-Br: 1) GH and o, (conductivities
parallel and perpendicular to the chain, respectively) were found to
have the same temperature dependence (same ), and 2) % (300°K )

varied widely with sample while (EOOOK) was independent of the

oy
sampie used in the measurement. They concluded that the interstrand

transition limited the conductivity, UH being determined by ¢, and

the average strand length L - This ruled out the WL model in the




form developed by Bloch et. al., but does allow for weak localization
in general. In addition the ISM had to be revised to allow fér hopping
between strands using the formalism of Mott.

At this time there was a growing awareness of.the applicability
of a general theorem due to Peierls.81L In a solid it is possible to
produce a gap in the'e1ectron energy sﬁectrum at wave vector ﬁ by
introducing a static lattice distortion of wave vecﬁor ok , so that
the Brillouin zone boundaries are redefined at Kk . There is no over-
all gain in energy unless the discontinuity occurs at or near the Fermi
level. 1In three dimensions this is generally of little consequénce
since a reduction in translational symmetry results in an energy gap
which is planar in k-space so that the intersection wi;h the Fermi
surface would occur only in a small region. In one dimension, however,
both the gap and Fermi level could involve the same singular region
so that the gain in energy on distortion could be substantial.

In a similar way a dynamic distortion first postulated by Kohn
for three~dimensional metals can occur in a much exaggerated form in
85

one dimension. This arises from the energy conserving scattering of

f f
to a divergence of the dielectric function e(k) at k = 2k

electrons from the singular Fermi points at +k_. and -k_ and leads

£
Renker et, al. observed a giaﬁt Kohn anomaly in KCP-Br using coher-

ent inelastic neutron scattering at room temperature.

Shortly thereafter theoretical treatments of the Peierls insta-

87,88

Two reviews of one-

89

dimensional conducting systems were also published by Shchégolev

bility in one dimension were reported.

and by zeller. %
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Several recent experiments provide confirmational evidence for
the Peierls-Kohn instability. Comes et. al. measured the diffuse

91

x-ray scattering from KCP-Br. At room temperature they found a
linear superlattice distortion. of periodicity 6x2.88 & in which the
platinum atoms varied from the average pbsition by a longitudinal
sinusoidal displacement, Tﬁe wave vector for such a period has the
value 2kf . When the temperature was lowered, the diffuse x-ray
gcattering progressively lost its one-dimensional character below
IEOOK, and it was concluded that a phase transition would occur below
77°K (the lowest temperature at which measurements were made) leading
to a unit cell 3cxX2ax2a. They suggested that the soft phonon mode
of a room temperature giant "Kohn anomaly" transforms to a static
Peierls distortion at low temperatures.

Similarly, a comparison of room temperature NMR experiments with
low temperature ones supports the Peierls-Kohn instability. At room
temﬁerature Rupp foﬁnd a Knight shift between oxidize& and unoxidized
compounds.92 However, at low temperatures (1.5 -IIOOK) no shift is
observed for KCP-Br by Niedoba et. al.? Their observation of a
single, narrow, temperature-independent NMR line suggested the com-
pound to be a band insulator in the ground state.

Most recently, EPR experiments by Mehran and Scott9h on KCP-Br
showed g factors characteristic of d o-like hole states as they
had previously found for MGS.95 They conclude that the temperature
variation of the line intensities cannot be reconciled to either the
ISM or the WL model, but canbe explained in terms of the Peierls-Kohn

instability model.




A band structure calculation has been carried out by Abarbanel96
for one-dimensional systems by using the multiple-scattering technique

97

of Johnson. A linear array of PtClZ iéns was used; the MSO stag-
gering of neighboring coﬁplexes was not included. Preliminary results
indicated a simple cosine 5d,o band with band width of approximately
3 ev.* This may be compared with the analysis of the optical data

B

of Bernésconi et. al. On evaluating the effective number of elec-
trons contributing to the oscillator strength as a funétion of energy,
they found Neff(w) to saturafe at 1.67 electrons per platinum at

¥ = 2ev  and to remain constant up to 5ev. This puts an upper limit
on the »5dzg band width which is comparable with that calculated by
Abarbanel for the oxidized compounds .

In summary, the mixed valency compounds exhibit metallic behavior
at room temperature with a dynamic lattice instability, and at lower
temperatures a phase transitlon occurs with alstatic distortion. The
detailsbof the transition are not yet clear nor is the zero order band
structure entirely resolved.

The third function of the spine in the Little model for an exci-
tonic superconductor is to screen the Couloﬁb interaction between charges
on the spine and those in the dye molecules. Tﬁis will result in a
smaller repulsion between the spine electrons and the negative charge

induced in the far end of the dye molecules. A model calculation has

been performed to evaluate the cxtent of this screening.

¥* .
More recent results give a band width of 2.3 e.v.
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B. Thomas-Fermi Screening

The nature of screening in compounds which have less than three-
dimensional freedom of motion for the conduction electrons has been

22,23 99-101

treated by several authors, The one-dimensional case is

23 using a single-filament model and by Dzyaloshinskii

treated by Kuper
and Katze2 using an array of filaments. Recently an extensive investi-
gation of the dynamical nature of the screening in one-dimensional and
‘nearly one~dimensional systems by Bush99 has extended the present
calculation.

We consider two models in the present treatment. The first is
that of Kuper which involﬁes a single filament of radius R1 lying
along the z axis. The region within the filament is‘designatedbas
metallic and in the absence of source charges has a dniform electron
density No , matched by an equal uniform positive background. The
region outside the filament has zero charge density and is designated
as empty. This model neglects the contribution to the screening of the
Coulomb field which arises from the movement of_cha;ge in the neigh-~
boring filaments. Our second model attempts to correct this by
including the average effect of these filaments. This is done by
adding to the first model another metallic region with elecfron density
Néi and corresponding positive background. This third region is coaxial
with the inner filament and extends from an inner rédius R2 - to infinity,
thus limiting the extent of the empty region in the radial direction to
the region from R1 to R2 . See Figure 3. Né is chosen to rgpre~

sent the mean density of screening electrons in the bulk material. It
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Figure 3 Screening region geometry.




is convenient to define p  , the linear density of screening_electroﬁs
in the z direction, which is also characteristic of the filamentary
compound being represented; p - abN; s where a and b ‘are the
lattice constants in the x and y directiohs, respectively. The

density of elgctrons in the inner filament is then related by No = p/ﬂRi.
For systems We are considering, a representative value for R1 would

be the covalent radius of piatinum, and for R, we would use the dis-

2
tance between metal-atom chains a for compounds with tetragonal unit
cells such as KCP-Cl, or the geometrical mean distance (ab)1/2 for com-

pounds with rhombic unit cells such as Mg, 82P;(C20u)2-5.5H20 (see

Table 1).

TABLE 1. Parameters for partially oxidized compounds (Refs. 25,51-57)

Lattice Constants'(g) Effective RQ(K). Linear

Compound ! ! Density

8 b ¢ (ab) Carriers/g
KgPt(CN)uC1O.32'2.6H20 9.87 9.87 2.89 9.87 0.111
MgPt(CN)hCIO 28-7}120 14.66 14.66 2.985 k.66 0.094
Mg, 82Pt(céoh)2-5.5ﬁgo 16.56 1Lh.27 2.85 15.37 0.126
Kl.,,mPt(CN)u-l.BHgQ 15.59 10.01 2.9 12.49 0.088

Inside bulk materials the Coulomb interaction between conduction
electrons 1is modified by a wave-vector- and frequency-dependent di-

electric constant e(k,w) , such that the Fourier transform of the

_21-




potential due to a source charge ¢ has the form
2
o = lq/kTe(k,w) .

The evaluation of ¢(k,w) is a major task in itself, and for present
purposes we shall use the results of the Thomas-Fermi approximation.
This leads to a static screening constant of the form € = 1+K2/k2,
where K-l is the screening length. The results of our treatment
can be expected to give a good description in the static limit. 1In
our second model the radial movement of charge is permitted in the
puﬁer coaxial region corresponding to the movement of Qharge between
metal-atom chains in the actual compounds by hopping or tunneling.
Characteristic times for such movement, however, may be long and thus
‘may place a iow limit on the frequencies for»which we can expect this
model to give valid results. We expect our model to give best results
for static screening.

We chose not to use the random-phase approximatidn (RPA) to
eyaluate the dielectric constant because of the difficulty one can
encounter in these one-dimensional gystems from a variety of insta-
bilities to which such linear systems are prone, In particular, the
use of an unstable Hartree-Fock state as the starting point in an RPA
calculation leads to imaginary excitation energies resulting in a
screened interaction which would be unphysica‘l.102 The Thoﬁas-Fermi
method is less sensitive to these instabilities and gives physically

reasonable results which depend principally upon the density of the

assumed ground state,




This Thomas-Ferml quasiclassical treétment of electron interactions
is based on the éssumptions that the system 1s in its lowest quéntum
state and that the spatial variation of the electrostatic potential
is sméll over distances comparable to the mean electron wavelength.lo5’lou
The application of these assumptions is made in the followiﬁg manner.

We consider the source charge ¢q to be located at the origin,'and we
denote by @ (?) fhe electrostatic potential at T . The electron
density is modified by the presence of the charge so that the new maxi-
mum kinetic energy E. + et (%) , which varies in the metallic region,

gives rise to a variation of the charge density,
N(E) = -e(8r/360)(en(eniE )17/

Poisson's equation then gives the second relationship necessary to

determine N(T) 5
Fo =‘ —MW[N(}’)-NO] - rgqs(r) .
Expan§ing for small values of ® compared with Ef , we have
VZQ - Co - brgd(r)

where

: 2
2 lime
2 = B empPYP 2 L — Gy )t

=~
il

or more generally

2

K~ = Mﬂee

N (0)

where .#(0) 1is the density of states at the Fermi surface.
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The basic problem is to find solutions to the differential equation

Fo - ko : (1)

subject to boundary conditions which will depend upon the partiéular
model. ' Since both models have cylindrical and reflection symmetry we
use cylindrical coordinates, and (1) becomes

Fo 13 o

—F AT T+ T = K“o s - (2)
dR R R 3z

which is 1ndependent of the angular coordinate and is separable in R

and z :
®(R,z) = R(R) z(z).
Thus,
1 o7 .
w___,; N - ac“
7(z) oz°
and
1 /R 1R .
~———-(——§ + = —-) - KPPy = 0.
R(R) \ QR R OR

Solutions for the z coordinate are
Z2(z) = cosaz ,

which are even functions of z due to reflection symmetry through the
z=0 plane. Solutions of the radial equation are the modified Bessel

functions of order zero, 10(5R> and KO(BR) , where 82 = K2-+o? .
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Each value of « gives a linearly independent solution to (2), and
the general solution for a metallic region is the integral

[~]

o(r,2) = [ 18 @1,6R) + B @K (BR)] costadar .
0

In the case of the metallic region of the coaxial surrounding cylinder

/2

2
we replace B by B’ = (« -+a‘)1/2 , using the initial uniform density

of electrons appropriate for this region to determine x’ ; the coef-

ficients are then A and BIII(a) . For the empty region

1r1()

k=0 , and we have the general solution
o(R,z) =v./r [AII(a)Io(aR) + BII(a)KO(aR)] cosqzd& .
: 0

We determine the various coefficients Ai and Bi by applying

the boundary conditions. For both models we require the limiting form

of the potential as r=0 to be

lim ro(r) = q ,
0

2 2)1/2 .

where r=(RT+z In this limit IO(BR)+1 , and the potential

reduces to the secorid term

1im ro(r) *>rf B_(x)K (BR) cosqzdx
I o
r+0 0

Choosing BI(a) to be independent of « gives105

rd(R,z) = BIWe_Kr/E ,



so that

1im ro(R,z) - By /2

r+0 .
Thus BI(a) = Qq/n . The solution ®(R,z) scales with q and for
our calculations we use ¢q = 1 throughout.

The behavior as r+w is also the same in both models, and we
require that ¢-+0 as ree . Since Io is unbounded as its argu-
ment increases;‘we must have Ai(a) =0 , where 1 = II for the fila-
ment model and 1 = III for the extended model. |

The application of the remaining boundary conditions requires a
separate treatment in each case although the general requirement can
easily be stated, that is, we require the potential and its normal-
derivative to be continuous across each boundary.

In the single filament casc requiring ¢ and o9/3R to be
continuous at R1 gives a pair of linear equations to be solved for

AI(a) and BII(a) :

I,(BR A () - K (oR )B () = -(2q/n)xo(831) :

BI, (BRy)A (@) + oK, (oR B (@) = B(2q/m)K (BR;)

The solutions are

i o BK (GR, )R, (BR,) = oK (B8R, )K, (0 )
&) = - s
m BK (0GR, )I; (BR) + oK, (R, )I_(BR;)

2q BI, (BRy )R, (BRy) + BK (BRI, (BR,)

BII(a) = -
m K (ORI, (BR,) + 0K, (R )T (8R,)

In the case of the filament and coaxial cylinder there are two

boundaries and thus four linear equations for the coefficients AI(a),
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8. (@), B (@), and B

) %? Ko(ﬁRl)
=4 gx, (8R,)
1
4: @) = ¥
0
0]
Io(gle
AL, (BRy)
: 1
Ar1(@) = §y
0
0
I (BR;)
BI, (BR;)
1
B11(®) = ey
0
0

111’ -

The solutions are

aIl(

KO(BRI).

29
= K, (BR,)
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KO(QRE)

» -Ko(s'Rg)

B'K, (B'R,)

0

-KO (B IRQ)

B'K;(B'R,)




1_(pR;) -1_(oR) ) | -K_(aR,) - %—Tg K, (BR,)
BI (BR))  -omj(oRy) oK (o) 24 g, (BR, )
B (Of\ --.1_.-
111\’ T Mo .
' 0 I_(oR,) K (_ozRe ) 0
0 ary (aR2 ) -0y (ocR2 ) 0
where
I (BR) -1 (oR,) K, (0R,) 0
BI, (BRl ) -0, (aRl ) oKy (och ) 0
Mla) =
0 Io(aRg) Ko(ozRQ) _ ‘-Ko(ﬁ'Rg)
0 at, (ozR2 ) ~0K (aR2 ) 5} ’Kl (B 'R2 )

The integrals involved in the computation of the potential were
performed by numerical quadrature. The lower limit of zéro was replaced
by IO_SK. For small valﬁes of « the integrand is well behaved for
regions in which. K % 0 . In the empty regions the integrand is domi-
nated by the BII(Q)KO(QR) term for small « , since Ké(aR) o« -1nCR .
The coefficient BII(G) , however, varies as (-1:1(:)41{1)-l so that in this
case the integrand is well behaved also, and we can cut off at the lower

limit 10™°k. For large « , the Ai(a)lo(aR) or Ai(a)IO(BR) term
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-20R
dominates for 1=1T or IT . One Finds that A (0) = e L 5o that
-x(2R, -R) |
the product varies as Ai(a)Io(aR) e , which 1is less than or

equal to e_CXR since 'Ri 2z R . The portion of the integrai for

Q@ > 5« contributes approximately

f e ® - (1/R) e KR
oK ’

For R ?‘K-l this will be negligible.

P

The integral from 10 7k to 5k was calculated using Simpson's rule.
In addition the integrél was bounded above and below by rectangles whose
areas were also computed. In this way error limits céuld easlly be placed
on the value fof the integral. Typically a grid of.lldo points was used
whose spacing was constant throughout a given section, there being gen-
erally ten contiguous sections chosen to minimize the computation timé
while retaining sufficient accuracy. Maximum error for the integral was
less than 5% for most cases; the error increased as z increased. Cal-
culations with very fine grids (10,000 points) showed that the actual
error waé generally less than 0.19.

KCP-Cl 1is a typical compound which we hope to describe by this .
method. The lattice is tetragonal with lattice constants a = b = 9.87 X
and ¢ = 2.89 R .25 The formal oxidation state of the platinum is +2.32
giving 0.32 holes/Pt for screening. Thus in a chain of platinum atoms
the linear density is p = 0.1l1l1 holes/X . For a filament of radius

el holes/cm5 and

Rl = 1.295 R this gives a density No =21.2 ¥ 10
K = 1.14 X-l . In the bulk material where there is one platinum chain
in a cross section of 97.4 22 the resulting density is much lower,

N/ = 1.1k x 1021 holes/cm5 giving «’ = 0.88 871 . This is the value
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for the reciprécal of the screening length in the bulk material, that
is,‘in the metallic region which extends outward from an inner radius
R, = 9.87 X , the distance betwcen platinum chains.

A different "effective" charge density could also be used if one
wished to take into account the effect of.the random distribution of
the chloride ions. Their ranAOm distribution should result in an
increase in the bandwidth of the partially filled 5dzg band of the
platinum atoms,_thereby giving 2 smaller density of states at the Fermi
level .#(0) , effectively reducing the density of screening charges in
the material, and resulting in proportionate decreases in Kg. and_K’2°

One could also superimpose a uniform background dielectric constant €

by including it in the substituted Poisson's equation
eoV2® = K0 - bmgd(r)

Thus K2 would be replaced by K2/€o , or'equivalently the effective
~ linear charge density would be given by p/ez , since K2 varies as
the cube root of p . The source charge q would then be replaced
by q/e0 .

| Preliminary calculations, using the covalent radius of platinum
for Ry , confirmed Kuper's suggestion that an effective radius smaller
than the covalent radius should be used to account for tﬁe absence of
screening within the filament due to radial or azimuthal adjustment of
the electron gas. The physical system has the source charge distribﬁted
throughout this region in the atomic orbitals of platinum rather than
concentrated at the center, and thus there sﬁould.be only a slight

reduction in the potential from the Coulomb value at R the surface

1 )
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of the cylinder. The effect of reducing'the radius of the filament
below the covalent radius (1.29% X) was examined by computing the

screening for the smaller values of R.:0.1, 0.01, 0.001, 0.0001 & .

1
In each case the linear density p remained constant giving increas-
ing values of k with decreasing filament radius. Using values of
Rl- less than 0.1 & resulted in a potential at R = 1.295 8 which
was less than the Coulomb potential by about 10% for both models.

All calculations were repeated using values of R, £from 0.1 to 0.001 R.

1

The results for R, = 0.01, 0.001 , and 0.0001 ® were found to be essen-

1
tiaily identical. 1In this manner we are able to take into account the
contribution from screening due to movement along the filament while
excluding that due to transverse motion,

We have calculated the screened potential in the 2z = 0 plane
for a large range.of radial distances for both models. The results

‘are shown in Figure 4. The potential screened by the filament alone
lies just below the unscreened Coulomb potential and shows no exponen-
tial decay outside the filament. On the other hand, the potential
screened by both the filament and the outer cylinder falls away from
the Coulomb potential in the region between the filament and cylinder

even though k =0 in this region. The potential was found approxi-

mately to fit the function
' z=0

-K R
o(R,0) - Ae °Tf g

2=0 _ 5917 871 . The fully screened

in this empty’region, with Kogg =

potential shown in Figure L is the usual result for the bulk material.

it can be seen that the potential screened by both regions lies between
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the Coulomb potential and the fully screened potential.

The remainder of the calculations were done only with the extended
model, since the Kuper single-screening-region model showed results
‘qualitatively very similar to the unscreened Coulomb potential. The
extended model, which accounts for the presence of the neighboring
chains, is expected to give results more directly apélicable to the -
caléulation of the effective interaction as given in Chapter III.

The anisotropy of the potential in the extended modél was invés—
tigated by calculating the potential at a grid of 80 points with R in
the range 1.295 - 5 R and z 1in the range 0 - 15 X. These results were

fitted by least squares to the function

-K r
f .
o(R,z) - Ae °FF

where r = (R2+z2)1/2 . It was found that this isotropic function
provided an excellent fit with error generally less tﬁan 5% and nearly
always less than 15% throughout the region, Table 2 shows the results
for KCP-Cl. The ihsensitivity of the effective reciprocal screening
length to orders-of-magnitude changes in R1 is clearly evident. Thus

the screened potential due to a unit source charge in a platinum chain

can be described by the equation

o(r) = 1.18 0 15%%

for the region between chains.




TABLE 2. Screening in €, PE(CN) CLy 2. CH 0
(p=0.111 holes/cm’ k' =0.88 &7t R, =9.87 §)
! « A Kot
0.1 ’ 5,368 0.950 - 0.1k21
0.01 7.256 1.168 0.1%56
0.001 15.6%3 1.18% 0.134Y4
0.0001 33,680 1.186 0.1346

Other compounds similar to KCP-Cl are known which have different
values for the formal oxidation state of Pt and also different lattice
constants. Table 1 gives several examples. In order to investigate
the effect of varying the linear density and the nearest-chain dis=-

tance, we computed the potentials at the same spatial grid of points

2

ing from 10 to 15 2. Table % shows the results for Eeff obtained

by 1east-squares fit and averaged over the three smallest values of

for values of p wvarying from 0.08 to 0.10 carriers/g and R, vary-

Rl . We see that the variation of p has little effect on the
screenéd potential, at least within this small range. Of course, as
o Q the potential must approach the Coulomb potential, Kéff~>o .
Variation of the interchain distance has a more pronouﬁced effect;

as the distance increases by 50%, the average effective reciprocal

screening length decreases by 509,. The variation is smooth and is

describable by the function

_ ' 2
Kegg = 0.1318 - Oe015h9(R2 -10) + o.001009(R.2 -10)" .

.‘.51;..


http:1(;)Pt(CN))~CIO.32

for Extended Model

TABLE 3. K«

eff
R, (%)
p .
Carriers/R 10 11 12 13 1L 15
0.08 0.132 Q.16 0.104  0.094%  0.086 0.079
0.09 0.132  0.117 0.105 0.09% 0.086 | 0.079
0.10 0.1%2 0.117 0.105 0.095 0.086 0.079

For the compounds with unequal lattice constants a and b , the
geometrical mean can be used for R2 , thus giving the correct density
of screening charges in the bulk region Né .

A third model was also investigated to a limited extent. In
this we attempted to take into account only the four ﬁearest-
neighbor filaments by replacing them by a metallic cylinder of finite
extent in the radial direction. ' The inner radius R2 - 9.72 and
outer radius R5

radius was the interchain distance and the cross-sectional area was

= 10.04 & were chosen so that the cylinder's average

four times that of a filament with covalent radius. The value of «
approp:iate for the platinum chain was used in both the filament and
the finite cylinder. It was found that screening in the finite cyl-
inder_reduced the potential below that of the filament alone by about
5%, but did not result in the exponential decay found for screening by
a filament and infinite cylinder. It appears that the addition of a
large number of.concentric finite cylinders would result in the screen-

ing produced by the infinite cylinder.
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Screening in materials which are characteristically one-dimensional

cannot be described by results from models which ignore the three-
dimensional nature of the bulk material. Instead, screening is inter-
mediate between that for a single filament and that for bulk screening.
The close relaﬁionship to bulk screening is shown by the isotropic form
of the screened potential, as has also been observed Ey Viéscher and
Falicov99 in the two-dimensional case. As mentioned ébove this result
bears directly on the problem of finding the field due to a random dis-
ﬁribution of chaiges such as the chloride ions in KCP-Cl. A much
narrower potential distribution is expected in the case where screen-
ing is substantial, since in that case only nearest-neighbor contri-
butions would be significant rather than Coulomb contributions from
sites located many cells away.

.In the investigation of the superconducting traﬁsition temperatures
forvmodel organometallic systems composed of a sbine surrounded by dye
moleculés, we shall employ the results of this chapter to account for
screening of the Couloﬁb interaction due to neighboring spines. We
shall compare the transition temperatures of these cases to those for

which the neighboring spines are neglected.
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IIT. EXCITONIC SYSTEMS

A. Individual Dyve Molecules

Thé dye molecules whicﬁ'surround the spine in the Little model
for an excitonic supetrconductor modify the direct Coulomb interactidn
due ﬁb the virtual excitation of the dyes. In this chapter the method
for calculating the new effective interaction, Veff(q,w) , will be
described. Parts of this method have been discussed in the litera-
ture.1-6'111

The wave function for the nth eigenstate of a dye may be written
Wn(rl,re,...) . When combined with other dyes in an array the dye-dyg

interaction tresults in a band of energy levels for the system whose

ground state wave function may be written in the form

1 igR,
Y(q) = —= Do S (r,R,r,R,...)

-R.
\ﬁF 3 o'l 372 )

The ground state and low-lying excited states of the system afe used to
calculate the effective interaction. The method for calculating single
dye wave functionsg wiil be described first, followed by the method and
rgsults for the.array of dyes.

The cyanine dyes under consideration are large conjugated molecules
whose pqlarizability arises from the extended ﬂ~e1ectr§n system. See
Figure 5. The total number of atoms ranges from 27 to ~ 60 with each
dye having 2 (in some cases 4) nitrogen atoms and approximately equal
numbers of carbon and hydrogen. Since the relevant electronic proper-

ties arise primarily from the 7r~electrons we wish to treat these
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Pyridine cyanine Pyridine Carbocyanine

Cyanine Carbocyanine Dicarbocyanine

Figure 5 Dye molecules used in model system.
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Phenanthroline Cyanine

Phenanthroline Carbocyanine

Figure 5 (continued)
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electrons 1in as accurate a manner as is computationally feasible. We
begin by aséuming a fixed nuclear configuration and o -7 separa-
bility.

The calculation of the ground state and low-lying excited states
proceeds in three separable stages. The initial stage is a Huckel
calculation for the molecular orbitals using a Linear Combination of
Atomic Orbitals (LCAO) basis set built from atomic 2p, orbitals.

The second stage is a Zero-Differential-Overlap (zDO) épproximation,
‘modified to account for many-body 'm-electron correlation effects. The
final step is a configuration interaction (CI) calculation involving
generally:h or 16 configurations. The methods and parameters for each
of these will now.be described briefly paying particular aftention to
the many-body modification of the second stage.

The Huckel method is a single particle approach in which the

molecular orbitals are eigenvectors of an effective Hamiltonian:
Hoep(r) = -G /om)% 4 v _ (r)

The potential seen by the electron accounts for the attraction due to
the nuclei plus the repulsion due to an average distribution of all
the electrons. The Hamiltonian is characterized by its matrix elements

which are related to empirical quantities. The Coulomb integrals,

_ L1112 ot e _ .
o = Hii , are taken as the sum: a, = wiin/iivi/z where Wi is

the ionization potential, i1 is the repulsion integral for two

Tm-electrons on the same atom, and Vi is the valence. Throughout this

work the following values have been used: We = 11.2, W = 2h.7,

Yo = 10.6, and 7y = 1.5 all in e.v. Also V., =1 and Vg =2

~ Lo -




Thus A, = -5.9 and o = -11.0 e.v. for the Huckel calculation. The

résonance integrals, B = Hrs , are taken to be zero for non-bonded atoms
r and s . For bonded atoms variation of B with environment is taken
into account., In the aromatic rings the resonance integrals_are
BCC,ring = -2.,30 and BCN.: -1.80 e.v. The twisting of the r:i.,ngsll—j
felative to one aﬁother lowers the BCC,chain integral. - The expression
B = Bocos ellh can be used to approximaté the resulting integral. 1In
this work BCC,chain = -1.10 e.v. was found to give good égreement for
the simplest cyanine dye and was used in all cases. This corresponds to
a twist of *‘500 at each chain carbon.

Zeroth order molecular orbitals determined in the Huckel calcula-
tion were then used in the ZDO calculation of the second stage. The
closed shell Fock Hamiltonian for rm-electrons is giyen By Frs = H:gre +

2Jrs - KrS , or more explicitly:

Pl = Hoor o+ 3 3 o [(0r(De (1] /rplei(2)e (2))
t u

-(1/2) (0% (o (1) /r |6%(2)0 (2)))]

core

where H__ includes the nuclei plus o-electrons, p . = 22:thcku

. 3 ' ¢ 2 s
is the bond order, <¢;(l)¢s(1>‘e /r12\¢t(2)¢u(2)) is the two-electron
; ' 3 2 % R
.Coulomb integral, and (¢r(1)¢t(1)]e /r12]¢s(2)¢u(2)) is the two-

electron exchange integral.

The ZDO method introduced independently by Pariser and Parr115’116

17 112

1
and by Poplg employs the following simplifying assumptions:

1) Atomic overlap is neglected, S_ =5
rs rs
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core core
2) H o =P (x#8)

is neglected if r and s are not
bonded atoms. In theory the core integralé differ
from the resonance integrals of Huckel theory since the
latter include a contribution from the potential of the
smoothed-out distribution of 7r-electrons. For this work,

core .
however, we set B = Brs using the different values for
chain, ring, and heteroatom bonds.
* 2 ¥ (. . _

3) (¢r(1)¢s(l)1e /r12‘¢t(a o (2)) Beulyr ¢+ WO electron
integrals which depend on overlapping charge distributions
of atomic orbitals on different atoms are neglected. Thus
off-diagonalVCoulomb integrals vanish as do the "proper"

atomic exchange integrals.

With these assumptions the off-diagonal Fock operator becomes

Fe (r#s) B - (1/2) p_ vy r and s bonded,

rs rs’'rs

-(1/2) Pro?rg r and s not bonded.

il

The diagonal elements are then
_ core i 3
Fop = By * ;Z ptulstu<¢r<l \e /1010% 2)4’ (2))
u
_ o 2 * »
(1/2) By +Oup’ r(1)¢t(1)1e /r121¢r(2)¢u(2)>

core
Hee + (1/2)a.7, +.; vt

core

where 9. =P is the charge density at atom r , and H

rr
includes the kinetic energy plus the potential due to the nuclei and

core e
g-electrons. Hrr can be split into two parts as was done for the

Huckel calculation. The first term, W, is the kinetic energy plus

- hg -



the core potential (nucleus, inner shell and c-electrons) at atom i .

The second term gives the potential due to the cores of all other
atoms, j . From a distance these will appear as localized positive
charges of magnitude given by the valence, Vj . Their cdntribution
is
- Z Vj”vij ,l so that ngre = -Wi - E ijij
A

J#L

The basic equations are then

Fig = W+ (1/2)ay7y; + 2. (a5 -V4)744
J#
where A,, =1 if {1 and j are bonded

1]

it

0 otherwise.

The secular equations are’

(Fyy "B e + 2, ¥ 1%
ifi

Empirical values for W, and Bij are the same as used in the Huckel

i
calculation.

It is at this point, where empirical values for the 744 and
empirical expressions for the 71j are introduced, that'a modifica-
tion of the ZDO procedure is made. Expressions for 7ij ‘such és the
Pariser-Parr polynomial interpolation formulall6 and the simple
| 118

ee/(rij-+a) expression of Nishimoto and Mataga attempt to account

for o=-screening of the interaction between m-electrons on different




atoms. However; in the large conjugated systems which are under con-
sideration, m~electron screening must also be taken into account in a
_consistent manner,

The importance of many-body m-electron correlation effects has
been demonstrated by Little in the following way. A test charge was
placed at ry within the boundary of a large conjugated molecule,

resulting in charges being induced on the atoms r’ . See Figure 6.

Figure 6 Induced éharges in conjugated molecules.

The net potential at point t, 1is then given by the sum of the poten-

2
tial due to the test charge and induced charges which were determined
by a standard ZDO-SCF-MO calculation using Mataga's expression for
7ij . Due to the finite size of the molecule (lack of translational

invariance), the effective potential, V(rl,rz) , depended on both 1,

and r, rather than [rl -rgg . The effective potential determined

in this manner was used in a subsequent calculation in place of Mataga's
expression. Comparison of these results with observed spectra show
substantially better agreement than results from using either Mataga's

expression or the Pariser-Parr expression alone.

-4l -



A straightforward procedure for incorporating this many-body

correlation effect in a ZDO-SCF-MO calculation has been developed by

Little and Gutft‘em‘ld.mB.110 It 1s based on the Random Phase Approxi-

mation developed by Gell-Mann and othersllg-lel

for a dense electron gas.
A brief physical description is gi#en below.

The ground state of the system iYo> is first determined by the
Huckel.MO method. A limited set of excited states, formed by excita-
tion of a particle from an occupied state «a to an unoccupied state i ,

is used to expand the perturbed state 'Y) which results from placing

a test charge within the molecule at ry

[ (xy, e )
i 1 . (5)

=€

(¥
o)y = v +2 300w
i,00

i

The factor 2 accounts for the sum over spins. Note that the net poten-

tial, given by

Vi) < Volem) o 2 el e () L ()
. Y

is used in the matrix elements between Huckel states. (Vo(ri’rj) , the
unscreened interaction between Tr~electrons at ro and rj , 1s given by
Mataga's expression for 7ij and thus includes og-screening.) On using

(3) to evaluate the induced charges we obtain

pa(ey,r) = b S| [ ey 8 ()8 (et (22, (1)
i,0 . .
where €, = € " €y is the excitation energy. Using the Huckel LCAO

i T i

coefficients we may write this as



A )( /)

ir ar

ba(ry, ') = D, V(r,w") |- E ek 4 (5)
r” - i,0 €17 €y
which gives
baley, 1) = T V) () (6)

on substituting the expression for the mutual polarizability,

H(r”,r7) . Using (5) in (L) we have

_ : " 7" r! 7
V(rl,re) = Vo<r1’r2) + 25:” V(r r,T ) (", )V (£, 2
r’,r

which can be rewritten

:z; V(ry,x" )[BT, - :z; n(x”, e W (x!,r )} = v (r],7,)
r T .

Defining R(r”,rg) by the term in the brackets gives in matrix nota-

tion
and thus

Thug the effective interaction between Tr-electrons, , used in the

7ij
SCF-MO calculation is determined for all pairs of points from the bare
interaction, Vo , and the effective dielectric function R . The

expressions for the elements of the secular equation becomes

- i#
Fog = P15 - (1/2)Pg745
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Orbitals and excitation energies obtained in the modified ZDO-

SCF-MO calculation are used in a configuration interaction calcula-
tion in the third stage. 1In the CI calculation the 7m-electron corre-
lation effects are accounted for to a certain extent through the use
of an interaction, 5 , screened by higher excitations., The effective
interaction, V , was calculated in the static limit since the magni-
tude of the test charge was constant with time. In the calculation of
the excited states an excited configuration mixed with the ground state
bcorrespon§s to the oscillation of charge with frequency o = eid/h .
Thus the frequency dependent mutual polarizability-should be used
in (6), and damping effects should be taken into account as well. In
the CI method developed by Little and Gutfreund, a simplifying assump-
tion 1s introduced in calculating the low-lying excitéd states.
Generally only the lowest-lying excited singlet state is required for
present purposés. Transition dipoles for other excited states are
too small to give a substantial contribution. Thus the configurations
may be divided into two sets, the first containing low-lying single-
particle configurations, the second containing.all other configura-
tions. The interaction between members of the first set is fhen
calculated by allowing for virtual excitations in the second set only.
The frequencies of these higher excitaﬁions will be sufficiently large
tﬁat the static mutual polarizability, calculated by summing only over
excitations of the second set, can be used.
Using this effective interaction, the energies of the low-lying
excited statesvwere calculated along with the transition densities for

each of the dyes considered in this investigation. Table 4 shows the
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results for the lowest-lying excited state only. Due to the symmetry

of the phenanthroline molecules the lowest-lying state results in the
nitrogens of the'phenanthroline ring having oﬁposite charges. This
will give negligible contribution to the effective interaction. The
second and fourth excited states, both of which are listed in Table L,
fesult in like charges on these nitrogens. Examination of the dipole
moments shows that the higher of these two has the larger moment, and

only this state 1s used in subscquent calculations.

B. Arrayvs of Dye Molecules

With the wave functions, energies, and transition aensities of
the individual dye units, a calculation of the band of energies
resulting from dye-dye interactions between dyes piaced along the
linear spine can be made. The wave functions for an excitation in
a periodic array of N unit cells with & dyes per unit cell is given

by the Bloch function

iqR

@) = (/48 2 Tero (Rg)e "
' mly v
where @v(le) = wo(Rll) ...~WV(Rm1) e wO(RNa) is the configuration

in which the molecule st le is in the excited state vv , all others
being in their ground states. The energy, gE(q) , and coefficients

gczl , are determined from the equation

H . %¥(q) = *B(q) Se(q)
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TABLE L. Molecular Traunsition Densities and Transition Energy

FENY

@ 3 Oy WU

10
11
12
13
14
15
16
17

Pyridine
Cvanine

E = 2.6986 e.v.
.0364
L0647
.OL6T
0274

0

0

0

.0506
.0562
0001
057k
.0506
.0270
.0480
0627
L0365

Pyridine
Carbocyanine

E = 2.0391 e.v.

a.
Q

0

_J49_

0310

0594
.0550
.0262
.0313

No)iyoht

Dicarbocyanine

Pyridine

E

1.

6811 e.v.
L0254
.0553
.0526
.0236
.0258
L0475
.0208
.0009
.0001
.0002
.0201
.0LT6
L0231
.0255
L0546
.0522

.0253



%
g
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[
O

11
12
13
14
15
16
17
18
19
20
21
22
25
gu
a3

Cyanine

TABLE & (continued)

Carbocyanine

E =2.1822 e.v.

-0

'
O

O O O O O O O O

.0k19
.0209
.0090
.0150
.0265
.0058
.0269
.0L66
.0005
L0149
0.
.0k19
0309
.0L68
.0062
0419
.0310
L0267
.0089
0486
.0270

0210

S O O O O o O o O ¢ o o

- 50 =

Bo= 1.7915 e.v.

L0364
.0210
.0116
L0067
L0270
.0021
L0236
0392
.0288
.0481
0243
.0003%
0286
.0066
.0210
.0%89
0024
L0366
.0241
.0270
.0115
.0483
.0236

Dicarbocyanine

E = 1.2275 e.v.

0.0302
0.0181
0.0102
0.00385

0.016L -

0.0025
0.0170
0.0345
0.0352
0.0LL7
0.0186
-0.0182
-0.0003
0.018%
-0.0%5k
-0.009k
~0.0182
-0.0343
-0.0025
-0.0301
-0.0186
-0.016k4
-0.0102
-0.0k4kLT
-0.0170



Atom

O O3 Ot WD e

TABLE 4 (continued)
Phenanthroline Phenanthroline
Cyanine Carbocyanine
E = 1.8522 e.v. E = 2.2%359 e.v, E = 1. 4773 e.v. E = 1.9129 e.v.

-0.0018 -0.0119 -0,001kL 0.0082
-0.0011 ~0.02L6 -0.0029 0.0201
-0.0019 -0.0108 -0.0012 0.0078
-0.0012 -0.02h7 ~-0.0031 0.0201
-0.0020 -0.0112 -0.0013 0.0080
-0.0013 -0.0113 -0.0009 - 0.0079
-0.0023 -0.0191 -0.0020 0.0121
-0.0059 -0.0419 -0.0066 0.0302
0.0168 0.0208 0.00L45 0.0217
-0.0493 0.0187 -0.0088 0.0L67
0.0134 0.0120 -0.0036 0.0249
-0.0068 -0.0505 -0.0110 0.0018
-0.0050 -0.0397 0.0067 0.0227
-0.0110 0.0%05 -0.0433 -0.0228
-0.0056 0.0112 0.0126 -0.0123
-0.0170 0.0264 -0.0088 -0.0433
0.0035 0,0263% -0.0054 -0.0085
0.0379 0.009% -0.0111 -0.0276
0.0044 0.0050 0.0054 -0.0181
0.0089 0.0272 0.0389 -0.0060
0.0239 0.011k 0.0038 -0.0071
-0.0020 -0.0190 0.01%6 -0.0%95
-0.0051 ~0.0415 0.0222 ~0.0109
0.018% 0.0209 -0.0017 0.0120
-0.0567 0.018) -0.0054 0.0301
0.01Lk 0.0120 0.004k 0.0209
-0.0062 -0.0509 -0.0079 0.0470
-0.00L8 -0.0397 -0.00%2 0.0251
-0.0128 0.0%02 -0.0120 0.0018
-0.0072 - 0.0112 0.0070 0.0220
-0.0211 . 0.0262 -0.0487 -0.022L4
0.0033 0.0265 0.0131 -0.0123
0.0419 0.0094 -0.0107 -0.0k29
0.0048 0.0051 -0.0066 -0.0085
0.0102 0.0268 -0.0140 -0.0274
0.0265 0.011k 0.0054 -0.0180

0.ok2k -0.0061

0.0038 -0.0072

0.0141 -0.0%9k

0.0241 -0.0109
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Hiot = Z H(R; ) + E V(Ri’RJ')

i i<

is the total Hamiltonian composed of the single dye Hamiltonians plus
the iqtera¢tions between the dyes. On multipiying through by. ®¥(Rst)
and integrating over the electronic coordinates we oBtain the secular
equations for this CI calculation:

iqR.

r ¥ £ t
gcqt(Er -gE(q)) + }E: °c;1 MEX e Moo
m,1l,v

where Er is the energy of a single dye in the rth excited state,

vt ) %*
M= 2f¢r(Rst)V(ri,rj)¢>V(Rm1)d"r

]

Qjﬁr(rl’Rst )‘J(rl,r2 )pv(rQ’le )drldr2 _

pr<rl’R9t) being the molecular transition density of state r for
the molecule located at R_, . The interactionm, V(rl,rg) , between
charge densities on different molecules takes place in a region in
which the electrons on the spine serve to screen such interactions.
Thus the Thomas-Fermi screened interaction as calculatéd in the
previous chapter is appropriate: V(rl,rg) = egexp(-Xrlg)/rlg'.
Diagonalizing the CI matrix gives the excitation energies gE(q)
and coefficients gc:t for the exciton states as a function of
wavenumber ¢ and mode E . |
Electrons in the spine interact via the screenea Coulomb inter-

ction, Vo(q) , and via the excitation of the dye molecules. The



scattering of an electron from state [k} to the state [k-q) with

creation of an exciton of wavevector ¢ has the following matrix

alement:
Q = (1k-q[v[osk) . | (7).

Ignoring the'decay of the exciton, we assume f§r simplicity that the
state has a long lifetime. As a result, we may take thé.energy '
depéndence to be g delta function at the exciton energy. In the cal-
culation of this matrix element the tight-binding approximation is
used for the electron state in the spine

ikR,

() = oy (&) = (A/M Je(x-Rpe
j .

where ¢ is an atomic orbital of the metal atom. Thus (7) becomes

' . P 1{kR -(k-q)R,]
Q = (1/N)3/2szk¢*(r1-Rj)¢(r1-Rk)e T B

iqu *
) e o dr de,dT

If we assume zero differential overlap for the metal atom orbitals and
orthogonality of the molecular orbitals on different molecules we have:

iqR

Q = (I/N)i/il)ﬁz:‘¢(r1 -Rj)fg e A V(rl,rg)

. EVE s -iqul ‘
% }E: g1 ¢V(Rm1) e ¢O(le) drldredT
m,1,v
Now

o (TpRy) = (VA [ vy (R darsar,

-55_




So that

\/‘é./NB/?ﬂ zj:_|¢(r1-n'j)]2v(r1,r2) 2. g:;ﬁl 0, (FpoRpy)

m,1l,v
iq(R,-R )
X e 1 m drldr2
And pv(re,le) can be written v( o R R ) where R, 1is the site

vector in the unit cell. Substituting

and noting that V(rl,rg) —V(r,r’) we have

iq(R.-R_)

Q =\/§/N5/2 foz: l¢(r)!2V(r,r’)gcgpv(r'Jer-Rm-il)e I ™ grdrt .
1,v 3,m

Letting Rt = Rm-Rj we get

-igR

\/§/N5/2 Zf [@(r)lgv(r,r')gcﬁpv(r Rtl)e Cardr’

Since the integrand is independent of j for all N j-values, we have

finally

, - -igR
V(2;N>ffz !d)(r)t (r r’)g le (!, t1> Carde’ .

tly
The sum over 'unit cells, t , can be truncated after a small number
of cells since the interaction of the charge demsity |¢(r)|2 with
the transition density o, falls off as a dipole interaction with

distance 1f -r'|



The interaction between electrons on thé spine and the dye molecules

will lead to electron scattering in first order. To second order the
interaction results in an electron self-energy plus a coupling between
spine electrons. Thus one electron polarizes the array of dye mole-
cules while the other interacts with the polarization. In order for a
superconducting phase to appegr this coupling of electrons must result
in an attractive interaction sufficiently large to overcome the ditect
Coulomb repulsion. Since this is a second order effect the square of
the above matrix elements Q will be required. |

The scattering matrix elements, exciton energies, etc., were cal-
culated for a variety of the dyes shown in Figure 5. The dyes were
placed symmetrically about a metal atom in a plane perpendicular to
the spine with the nitrogen atom of the dye located 2.0 2 from the
metal atom. See Figure 7. Larger dye-metal atom separations resulted
in much weaker interactions. (See Chapter 5.) The spacing betweeﬁ |
metal atoms along the spine was %.L0O % which is sufficiently large to
accommodate parallel_layers of dye molecules. The number of unit cells
used.;n the calculation was 9, and the results were calculated for
10 values of q from O to 7. Special calculations were performed
which used longer chains or a greater number of q-values. This was
not féund to affect the results. (Sée Chapter 5.) TIn calculating the
Coulomb repulsion between electrons on the spine, the Mataga expression
711/(rij+a) wasbused with a = 2.80 R for the platinum atom size.

Table 5 gives the scattering matrix elements, !QI2 , and the
excitation energies,. Eq E using L dye molecdles per unit cell. The

phenanthroline cyanine case is included in this table even though there
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Figure 7 l-dye structure.
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TABLE 5. L-dye Array

Scattering Matrix Elments/Excitatim Energies

I dyes per unit cell Thomas-Fermi screening X = 0.1k X‘l
Dye .

Molecule q - 0.0 ©0.35 0.70 1.05 1.%0 1.74 2.09 2.4k 2.79 3.1k
Pyridiné 16.90113 14.1002 8.5764 L. 4283 2.3403 = 1.3319 0.739% 0.4359 ' 0.3395 0.3279
Cyanine b Lot 4 .2606 3.8232 3.3461 2.96h3 2.6809 2.4629 2.3121 2.2370 2.2175
Pyridine 19.2204 15.6L488 -8.8996 4. 2276 . 2.1430 1.2025 0.6h27 0.3597 0.2857 0.2855

Carbocyanine i .0Lk0o6 3.8020 3.2452 2.6783 2.271k 1.9946 1.7805 1.6336 1.5707 1.55%
Pyridine 19.3219 15.4L67 8.3356 3.7107 1.8281 1.0276 0.53%26 0.2836 0.2303% 0.2381

Dicarbocyanine 3.734h 3.4649 2.8493 2.2535 1.8615 1.6116 1.4118 1.2733 1.2228 1.2186
Phenanthroline 13.3756 10.9327 6.3879 3.1013 1.5670 0.8597 0.4530 0.2509 0.19k¢ 0.1906
Cyanine 3.5696 3.4081 3.0252 2.6202 2.3111 2.0902 1.9203 1.803k 1.745k 1.735¢6
Ho?zsule _ I dyes per unit cell ‘ Thomas-Fermi screening A = 0.0 g1
Pyridine 29.4269 23,0556 11.8379 5.1466 2.7101 1.6378 0.8265 0.L1ks 0.3619 0.4010
Cyanine L.8598 4.5982 3.9926 2.3849 2.9529 2.6506 2.kobs 2.2322 2.1602 2.1L83
Pyridine 374567 28.2349 12,9008 4.8L01 24764 1.5590 0.7255 0.3124  0.3039 0.378L
Carbocyanine L,6816 4.3070 3.4700 2.7025 2.2u11 1.9551 1.7024 1.5234 1.4725 1.4778
v Pyridine 41.5883 30.3959. 12.5827 k.1koT 2.1072 1.4073 0.6067 0.2200 0.24kh2 0.3440
Dicarbocyanine v 4.5564 L.0987 3.1021 2.2505 1.8118 1.5685 1.3204 C1.1391 . 1.1108 1.1335
Phenanthroline 2L, Thh3 18.9611 9.0973% 3.6037 1.8199 1.0957 0.5115 2267 0.2070 0.2460

-0

Cyanine 3.9522 3.7110 . 3.1616 2.6321 2.2815 2.0483 1.85%2 .TL62 1.6663 1.6622




are actually only two molecules per unit cell. These molecules have

essentially two dyes in each structure. This is verified by the large
values for the scattering matrix elements. As in the subsequent cases
the calculations weré performed with and without Thomas-Fermi screening
due to neighbofing chains. The value for the screening length, 0.1k X-l,
is that appropfiate to a density of chains and-blatinum oxidation state
found in KCP-él.

| The results given in Table 6 are for an arrangement of dyes in
which two molecules.ére on opposite sides of the metal atom. This
results in scattering matrix elements of half the strengtﬁ of the L-dye
case while the excitation energies are shifted slightly lower.

In the final case 4-dye molecules were placed in alternate cells
with the center of the nine cells occupied. This tesultéd in symmetric
values of |Ql2 and Eq about the value q = /2 as shown in Table 7.

Finally one additional function of the dye moiecules was invésti-
gated. The arfay of dyes acts as a dielectric background for the
Coulomb interaction between electrons on the chain. Thié occurs through
the higher excitations of the dyes and reduces the Couldmb interaction
by a factor of about 2. The energies of these excitations are much
larger than those of the excitations dealt with ébove and thus may be
treated in the static limit.

In the RPA approximation the screened interaction Gg(q) is given

by
V(1) = v (@)/(1 - 1°(a)V (a))

where T (q) is the lowest-order proper polarization propagator. For
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Dye

Molecule q »

Pyridine
Cyanine

Pyridine
Carbocyanine

" Pyridine
Dicarbocyanine

Dye
Molecule

Pyridine
Cyanine

Pyridine
Carbocyanine

Pyridine
Dicarbocyanine

0.0

8.4551
3.7845

9.6099
3.2498

9.6608
2.9179

k. 7173
k.0563

18.7276
3.6561

20.7955
3.4329

TABLE 6. 2-dye Arrsy

Scattering Matrix Elements/Excitation Energles

- 2 dyes per unit cell

0.35

T7.0497
3.6548

7.8241
3.0866

7.7232
2.73T3

0.70

L .2880
3.3419

4.4LgT
2.70kk

k.1678
2.3226

. 2 dyes per

11.5270
3.869%

14.1169
3.39%0

15.1975
3.1249

5.9186
3.14366

6.4502
2.8238

6.é912
2.4530

unit

1.05

2.21k
2.9975

2.1138
2.3111

1.8553
1.9155

cell

2.5752
2.99%

2.k200
2.2935

2.070k
1.87k7

Thomas-Fermi screening X\ = 0.1k g1

1.ho

1.1746
2.7167

1.0715
2.0218

0.9140
1.63%

Thomas-Fermi screening

N =
N
£8

P gt
o N
8%
N

8

1.7k

0.6659
2.5030

0.6013

"1.818%

0.5138
1.4551

0.8189

2.4573

0.7795
1.759k

0.7036

1.3894 .

2.09

0.3696
2.3353

0.3214
1.6580

0.2663
1.3059

0.4132
2.2691

0.3627
1.5716

0.3033
1.2065

2.4k

0.2179
2.217h

0.1798.

1.5463

0.1418
1.2012

of1

0.2072
2.1353

0.1562
1.4370

0.1100
1.0719

2.79

0.1697
2.1570

0.1429
1.4960

0.1151
1.1598

0.1809
2.0772

0.1519
1.3951

0.1221
1.0k57

0 no

O

b

.1639
.1ho7

.1ho7
4856

.1191
L1543

.2005
. 066k

.189
3965

.1720
L0587



Dye
Molecule q =+

Pyridine

Cyanine

Pyridine
Carbocyanine

Pyridine
Dicarbocyanine

Dye
Molecule .

Pyridine
Cyanine

Pyridine
Carbocyanine

Pyridine
Dicarbocyanine

0.0

5.4872
3.3300.

6.0477
2.7999

5.9625
2.4765

9.17Th
3.5040

11.3413
3.0797

1237kl
2.8450

TABLE 7. Empty Cells Array

Scattering Matrix Elements/Excitation Energies

4 dyes per umit cell Thomas-Ferml screening A = 0.1k 8-1

Dye molecules in altermate cells only

0.35 0.70 1.05 1.k 1.7h4 2.09

h.7035 3.2187 2.1g49 1.8027 1.8020 2.1918
3.2487 3.06Th 2.90k1 2.8221 2.8219 2.9035
5.0407 3.208% 2.0%01 1.6372 1.6365 2.0%68
2.6863 2.439 2.2290 2.1325 2.1323 2.228%
L.8622 2.9025 1.7e01 1.32975 1.3970 1.7591
2.3L38 2.0611 1.8322 1.7360 1.7359 1.8315
L dyes per umit cell Thomes-Fermi screening A = 0.0 3-1
Dye molecules in alternate cells ounly
T7.2991 4.1693 2.5219 2.1380 2.1375 2.5181
3.3792 3.1121 2.8gko 2.8011 2.8009 2.8935
8.6003 L.,3056 2.3255 1.989%0 1.9889 2.3215
2.8897 2.496k ©2.2019 2.0975 2.0973% 2.2011
9.0240 4.031% 1.9766 1.7377 1.7379 1.9729

2.6048 ‘2.120k 1.78k9 . 1.6896 1.6895 1.7840

2.4

3.2124
3.0665

3.2009
21380

2.9150
2.0595

L.1577
3.1109

4.2907

2.4OkT

k.o148

 2.1183

7.08L5
3.3781

8.579h
2.8882

8.9938
2.6028

3.1k

5.L872
3.3300

6.0LTT
2.7999

5.6525
2.4785

9.177h
3.50L0

11.3412
3.0797

12.3743
2.8L50




(7?’)(

the dye molecules we calculate V q) , the second order term in

- the RPA expansion, from the expression

2)(q) - _/‘_/:/:/'vo(x,x1 0 (%) %, )V (x,,x" jeld(x=x’ )dxdxldxed_x’

Ho(xl,xg) is given by the mutual polarizability of a single dye unit,

Xy and x5 being restricted to the same molecule, See Figure 8.

Vo (@) Vo (@) f o Vele @ Vola) 4 ...

Figure 8 1Infinite series for Coulomb interaction screened by
higher excitations.

Then v;(q) is given by

V(@) = v (a)/(1 - V<2)(q)/vo(q))_ .

(o}

Values for the screened interaction depend upon the dyes in the arrays.
Table 8 preseﬁts values of v;(q) for the case of pyridine cyanine
with 4 dyes per unit cell and )\ = 0.1k g1 . Values of Vo(q) are

presented for comparison.
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TABLE 8. Coulomb Interaction along Spine

(Calculated using 9 unit cells)

Thomas-Fermi Thomas~Fermi
Plus Higher Excitation
q No Screening Screening Only Screening
(4 pyridine cyanine dyes)
(h =0.14 &Y (= o.1u &Y
0.0 16.7595 6.7h%2 2.5303
0.35 1%.2219 6.1176 2.3052
0.70 6.4703% L7605 1.8377
1.05 2.8757 3.0128 1.Lkook
1.40 3,3650 3.0%51 - 1.517h
1.74 3.9712 2.7169 1.4233
2.09 0.6628 2,380k 1.3797
244 1.5635 2.1%10 1.3470
2.79 2,2684 2.,0931 ' 1.3787
3,14 %,0%8L 0.125% 1.4078
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IV. THEORETICAL DESCRIPTIONS OF SUPERCONDUCTIVITY

A. Phenomenological Theory

The theoretical description of superconductivity began with the

phenomenological London equations 2 which sought tovdeseribe the
electrodynamics of the superconducting state and especially to'account
for the Meissner.effect.2 An elaboration of these equations was made
by Ginsburg and Landau.123 Whereas the London equations treated all
electrons as belonging to the superconducting phase, the Ginsbufg-
Lendau equations dealt with the intermediate state which consisted of
both superconducting and normal regions, the order parameter, V(r) ,
characterizing the degree of superconductivity at each ppint in the
material, The essential corfectness of the Ginsburg-Landau equations
has Been confirmed by detailed study of the microscopic theory (BCS)

- and have found wide application in the electrodynamics of super-

12k

conductors near the transition temperature,

B. Microscopic Theory

The first microscopic theory to account for the various experi-
mental observations of superconductors, as mentioned in the introduc-
tory chepter, is the well-known theory of Bardeen, Cooper, and.
Schrieffer.6 Two fundamental breakthroughs which led to the develop-
ment of the BCS theory were first, the eheoretical prediction by

125

Frohlich and experimental observation by several wofkersh’5 of the

isotope effect, and second, the discovery by COoper126 that two




electrons excited»above a Fermi sea and lnteracting via an arbitrarily
weak attractivé interaction form a bound pair thus making the entire
Fermi sea unstable to the formation of such pairs. The BCS approach

is highly intuitive. The isotope effect indicated that the lattice
played a fundamental fole. It was known‘at the time that the perturba-
tion of.the elec;ron states by the phoﬁons when carried to_second order
Aled to‘a self-enefgy correction'for an electron thropgh the diagonal
elements and to electron~electron interaction via phonoﬁ exchange
through the off-diégonal elements., The second order iﬁteraction in.

the notation of second quantization is

P
w0 :
o= Z Z (e -e )2 -8 R S T (8)
q Kﬁf k "k-q q
where €y is thé energy of the electron state X measured from the

Fermi surfacé,i c; and ¢, are the creation and annihilation opera-
tors for the state K , respectively, and ah is the frequency of a
longitudinal phonon of wavevector a . Figure 9 shows the graphical

representation of this interaction. BCS noted that for Ié -ekI%:w

kt+q q

the interaction was attractive. However, due to the Fermi statistics

obeyed by the electrons, the field operators acting on the ground
. cf c cT c, ¢
k’+q k' k-q k o

positive or negative values depending on the particular occupation of

state wave function, e.g., , could result in either
states which preceded the field operators. This is anélogous to the

difference in sign between the direct and exchange terms in a Hartree-
Fock treatment of a molecular wave function that results on permuting

two states in a Slater determinant.

- 6L -
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Figure 9 Phonon exchange

BCS circuﬁﬁented this alternation inlsign of the mafrix elements
by imposing the restriction that only wave functions in which occupancy
6f electron étates occurred in pairs would be considered in constructing
the ground state. The choice of pairs, viz., palrs of opposite spin and
momen tum, was based on the following: 1) interaction between opposite
spin electrons was stronger due to the lack of the exéhénge term, andi
2) using pairs of opposite momentum gave the largest number of states
available for interactioﬁ within an energy range o, from the Fermi
surface in the absence of magnetic fieids. With these restrictions
the BCS reduced Hamiltonian encompassed'only a small part of the total
Hamiltonian. However, as seen a posteriori, it contained just that
part which gives rise to the superconducting state. This reduced

Hamiltonian can be written

| " ¥ Fot
Hoed = § el el y) 'Z, Vik! Sk’ C-k’ Sk
Kk

which operates only within the pair sub-space.
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The trial wave function was constructed by placing electrons in

pair states with probability of occupancy given by hk . Thus

PN t
Y = Ik[ [(1 "hk) -+ hk C-k‘ck* 00

where @o is the vacuum. The variational method was then applied to

k

type of wave function. The energy of the occupied states is given by

determine the function h, which would give the lowest energy for this

g = ezek“k
where the 2 accounts for spin up and spin down electrons. The inter-

action term is

W o= -kak,lhk(].-hk)hk,(l-hk,) 1/2 .

Minimization of the total energy, W_ = W _+W

o ke tW1 leads to the equa-

tion
- 1/2 ‘ 1/2
[hk(l-hk)] / kakl[hkl(l'hkl)] / ( )
= . 9
1 -2hk 2€k :
With the definition
1/2
A = X Vgl (1= 1Y
k! '
we have the result
€
k X
hk = 1/2 1 -
2 2,\l/2
(e +4)
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Noting that

e .
2(ef +0)

[hk(l ihk>] 1/2 (10)
and substituting'(lo) into (9), we obtain the BCS condition deter-

mining the enefgy gap:

Ak=kak "

. 11
Kk’ e(eil+Ail )'1/2 )

It is this gap function and the transition temperature related to it
that we wish to.determine for our linear chain - dye-systems.

BCS found an approximate soiution to the aone gap equation by
assuming ka, to be a separable potential with a cutoff:

v ‘ekl:lek'| <wcl
Vkks =
0 otherwise,

giving

-1/ 40V

b, = 2fine (12)

[¢]

in the weak-coupling limit. #(0) 1is the density of gtateé at the
Fermi surface.

The same calculation can be carried out for finite temperatures
giving an equation similaf to (11), but including the probability,

(1 -2fk,) , that states k‘,-kK’ to which K,-kK are scattered, are

unoccupied:
1/2
[h, (1-h )]
e I SR IRy
"2hk k’ .
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Minimization of the free energy with respect to £ gives

1

where

B, = (CasD)MR

This leads to the integralvequation

Voo o8 L
T zk: 2(é§1jk+ik§,)1/2 tanh (/)11 2) (13)

B = 1/kT

which determines the transition temperature; at T = Tc, Ak =0 .

Thus
k’rc‘ - 1.1h.mce'1/”(°)v (1b)
in the weak-coupling limit. -Combining (12) and (1k) we.find
2AO(O)/kTC = 3.50 ,. . (15)

which is predicted to be the same for all superconductors baéed on
the law of corresponding states. We will use this felétionship to
estimate Tc from the calculated gap function at T = O?K .

The simple form for the BCS potential combines all the factors
producing an attractive interaction at the Fermi surface into one
effective potential well whose deﬁth, V , and width, 2o , ﬁhen

characterize the system. While this method works quite well for

the so-called "weak=-coupling" superconductors; it coﬁpletely ignores
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the details of the interaction which leads to Cooper pair formation.
An investigation of these details is necessary for the strong-coupling
superconductoré because the electron states involved in pair formation
can no longer be treated as simple Landau quasiparticles since their

127

decay rate becomes comparable with their energy. In addition,
superconductivity has the inherent difficulty of inVolviﬁg a retarded
interaction. Coupling of the exciton (or phonon) field with the elec-
trons may result in overscreening or underscreening for frequency
dependent charge distributions. Indeed, overscreening of the Coulomb
repulsion between elgctrons is the basic reason for tﬁe_attractive
interaction which results in Copper pair formation.128 The Hamil-
tonian scheme requires that two-body potentials be instantaneous,

thus a retarded potential would have to be simulated by a velocity-

dependent pbtential;

C. Compensation of Dangerous Diagrams

Soon after the BCS treatment a new approach was devélpped by
Bogoliubov whichvaﬁplied a canonical transforﬁation to the Frohlich
Hamiltonian. This transformation had previously been deveioped_for
Bose-Einstein systems.129 The new method, which allowed for explicit
inclusion of the coupling of the electron and phonon fields, is known
as the Méthod of Compensation of Dangerous Diagrams.lBO This method
will be devéioped below to derive the integral equatioﬂs for the gap
function and to show that different interpretations of the determining

condition Lead to different gap equations .131'133




The Bogdliubov compensation of dangerous diagrams approach begins
with the Frohlich Haﬁiltonian.that describes the coupled Fermi and
Bose fields. In this development we will use phonons for the Bose
field. The Hamilfonian can be written as the sum of the ion Hamilton-
ian:

. |
Hy o = };: P/ + V(xy)

the electron Hamiltonian:

:Z: p?/Em + :E:

'i<j|ri

T,
J

‘and the interaction term:

Z U(r,,%) -
il

In the notation of second quantization this becomes

+ +
H=H,+H, Z ¢ kcr ko * Z “q b bq + chkc k’c(bq+b-q)
q kk‘oc
q=k’-k
It is the second order perturbation term of Hint that leads to the

attractive interaction as noted above. While the BCS method eliminates
the phonon field and deals only with an elgctron fiela with an effec~
tive interaction due to Hint » the Bogoloubov épproach deals with both
fields. 1In dealing with the phonon field the basic motivation is to
transform the electron field operators e and _c; in such a manner
that the effect of Hint on the ground state disappears to low order

in the interaction.
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The general

+
%

i

Bx

V2
k

2
where uk +

form of the Bogoliubov transformation ié given by:
cT -v.c = c -V cJr
YIS e ukkf Kk

Aukc Kk + vkc+ B = ukc* + v, C
-k kd -k k| Tk k)

1 is required to retain the anti-commutation proper-

ties of the operators making the transformation canonical:

4 o + ot
O], = B ol = e, = 0
1.
[Bk;ﬁkl]_'_ = Skk' [Bk’Bk']+ = [B;,B;r]+ =0
The inverse transformation is easily found to be:
c.f = f + v, B c = LI
“kf T O + Py kb~ n% + if
c = - v t f = LI
k) T Bk T Vi ky T Y8 T i

This transformation thus anticipates the palring of time-reversed

electron states.

With these definitions the Frohlich Hamiltonian

can be written, (see Appendix):

where

b

H o= H +H 4
o 1

ﬁg + H% + HR + U

t t t
zk: Ek(cxkock + B_kﬁ_k) + Z coqbqbq
q

i

’

2 Mg v ) (ot s o )bl )]
- g=k’-k#0 '
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o

2 2€kukvk(a1t.ﬂik B
k _

2 (e (5 - B0y +8Lp )
k

e

2
kvk = constant

2¢
k

kk*
g=k’~k#0

0% oot t ' t
.H2 = Z Mq[(uk“k"vkvk')(akakl“‘a_kla_k)(bq+b_q)]
The first step in the method of compensation of dangeroﬁs diagrams
is to note that it is the matrix elements of Hﬁ_ which give rise to

the dangerous terms. These matrix elements have energy denominators

of the form
{e(k1)+-e(k2)+~...4—e(kn)}

which lead to singularities as each ¢, -0 , i.e., at the Fermi sur-

k
face. In the normal state, terms such as these are not dealt with
because in thaﬁ case the number of particles is fixed.

Bogoliubov chose to compensaté for these terms‘bé requiring that
ﬁhey cancel with certain other terms arisiﬁg from the other perturba-
tions. It is the ambiguity of choice of_compensatiﬁé terms which
1eads to the several possible results for the gap equation. We con-
lsider first the éase treated by Bogoliubov. Figure 10vshows in
diagram form the comﬁensation condition. We compensaté for the
éreation of the pair of quasiparticles by the combined application

of ﬁ% and Hg‘. In each of the diagrams the starting point is the

vacuum state [0), and the final state |F) has two quasiparticles

-T2 -




time

o
,
W
x
.
Hh

K O O

Figure 10 Compensation condition for creation of pairs.

and no phonons, |[F) = |1 Y . The two possible intermediate

1 ;0

2 H

| g k Pek

states generated by Hl are given by the two diagrams on the right.

In terms of matrix elements we have:

| — (F| )15 o
,(FIH§|0>+Z |5 ‘LH e
1 Eo-Bg |

On substituting the expressions for Hﬁ, ﬁ?,

2 2 2 2 .
E,=1U, E; = ek(uk-vk) + ek,(uk,-vk,)4-mh-+U , the above expression

and ﬁz and noting that

becomes, (see Appendix),

| (o vy = vy ) (g vy + Vk'%)
2e,u v, = 2 lu |2 = 0 ,(16)

. 2 2
If we neglect the reno?malization of H, and set Ek==ek(uk-vk) s

then (16) becomes

e - Z |Mq|2(ui,-v12<,)) v, _(2_V2)2 ,M|2 Ve Vi =O.
k B o j“kk "k " Yk - B B0

Finally, we define B by the leftmost term above, and write: u “and
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v, 1in terms of the gap function using the definition

£ o= (1/2) (1+———g-k————); Zoe (1) (1———%-——)

We find the equation for the gap function:

2
||

Ak'
’52'+Ai’ Ek,+Ek+wq

Comparison with (11) shows two differences of this result with the

b = 2
-

BCS result:

. . |M |2(u‘i‘ _.vi')
€, 1s replaced by ¢, = ¢ -~ Z g :
k k k E ,+E +o
k’ k" "k q

and

| |
is replaced by —_—

Ek,+-Ek4-wq

The ground state shows qualitatively the same properties in both cases,

Vkk”

i.e., an'energy gap in the excitation spectrum of minimum magnitude

A .
Lo}

Supposé'that we investigate the destruction of'pairs rather than
their creation in the dangerous diagrams method. That 1is, we use the
compensation condition expressed in Figure 11; The analysis proceeds
as in thé previous case except that the energy denominator, E, -E

o "1°
now becomes

2€k(“i"vi)'*ug = el )+ e (e - if)'*“hf*u

]

By - Ey

€, ( 2 -v2) - e P ) -
k% T Vi k%’ T Yk q ’
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time

Figufe 11 Compensation condition for destruction of pairs.

which leads to the gap equation

N Y T
As a final adaptation of the method of compensation éf dangerous
diagrams we.now allow for the renormalization of the quasiparticle
energy through the term HR S aﬁd Ak wili be chosen in such a
manner that the corrections to the quasiparticle energyi Ek =1J£E:ZE
;n Ho will cancel with the second order terms from H?, and - Hg .
This is shown in‘diagrgm‘forﬁ in Figure 12,

time

o‘kH'R ak ozk Hg (Xk,Hg ock | Oy, o

R

Figure 12 Compensation condition using renormalization.
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As a result of this renormalization, the denominator for a process

generated by HB is no longer singular as the energy approaches the

Fermi energy. We note that the presence of the o quasiparticle in

the rightmost diagram of Figure 12 prevents the vacuum polarization
process with k” = k . 1In developing the expressions for these dia-
grams we choose the initial and final states to contain one quasi-

particle, o - The same result would be obtained for B_kA. Then

|®) = o)

where IO) is the vacuum state for the quasiparticle operators.

Expressed in terms of matrix elements the compensation condition is:

(FIH |I)(I|H |F) (FIH |1)(1|H |F)
(FIH.RlF) + Z = F = 0
‘ I

I Ep - By Ep -

Substituting for the operators H

may‘be expanded as in the above cases (see Appendix); We find for

the second order process, energy terms EF’ E?X , and E¥P given by

2 2
EF = ek(uk-vk) + U
EX 2 2
EI = ,Ek'(uk' "'Vk/) + (Dq + U
VP 2 2 2 2 )
EI = ek(uk.- Vk)'-l' €k//.(l1k// "Vk//> + -€k"'(u§tﬂ "Vidw) + (-Dq + U

As shown in the Appendix, the compensation condition reduces to:

. (u ’ V. ) ( PRI B LR 1)2
ek“ﬁ"’@'%" Z qu|2 k‘fk Yk Vk .“k k" %k
K’ : Ek,-Ek-f-cnq }E:k_,+Ek+c1)q

qg=k-k*
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Now with the definition of the renormalization factor

u |®
q!
2o

-Ek

e = /M, M = LY
Kk’ (wq+Ek,

we have

. 1 ' ' 1
Ak = (1/27k) Z IM 12 Ak — =i + -
\1 §k,+/\§ Ek,-Ek+cuq Ek"f"EkJ"‘Dq

thus including both the resonant and nonresonant denominators which

occurred separately in the previous treatments. We see, therefore,
that all the different interpretations of the method ofvcompensation

of dangerous diagrams eliminate the singular energy denominators for

hid LA

processes described by HB , but lead to different expressions for

1%

the gap equation.
A further significant development carried out by Bogoliubov was
the inclusion of the instantaneous Coulomb repulsion in the Hamil-

13h

tonian. It was found that the Coulomb fepulsion lowers the transi-
tion temperature to a smaller extent than would be anticipated on the
basis of the BCS theory. Thus for a Coulomb pseudopotential of

strength V_, the BCS theory gives

C
A - o W)
whereas Bogoliubov found
A = 2nw, expl-LA (0){V - —
| 1+Vcln(Ef/u>)

This result was confirmed with the development of the Green's function
technique which also gave a natural definition to the cutoff frequency

w in the Coulomb pseudopotential.,135 The Green's function technique
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has the advantage that it may easily be extended beyond the second
order of perturbation theory. 7This allows us to deal with strong-
coupling superconductors which occur in the case of the excitonic

mechanism as well as for many phonon superconductors.,

D. Green's Function Method — Gor'kov

Initiai development of the Green's function method was carried

out by Gor'kov.156

It had been known for some time that a perturba-
tion expansion of the electron-phonon Hamiltonian did not lead to
superconductivity to any order in the expansion even though formally
the expansion parameter (or coupling constant) was smali; This is
due to the strong scattering between states near the Fermi surface
and was confirmed in the BCS gap equation by the appearance of.the
coupling constant in the form e-l/g which has an gssential singu-
1arity as g =0 . We have reviewed thﬁs far two methods for re-
solving this dilemma. BCS used a variational approach ﬁithin the
space‘which allows for the pairing of electroms. Bogcliubov com- |
pensates to low order in perturbation theory for the dangerous terms
1éading to the divergent scattering. The Green's functiqn technique
of Gor'kov follows along the first of these two by explicitly taking
into accouﬁt the formation of Cooper pairs. This is a featurg common
to the subsequent Green's function treatments.

Gor'kov develops the simplest case with a model Hamiltonian
describing only the Fermions which interact via an instaﬁtaneous foup

Fermion interaction:

B - ] 0P+ w0 0N e
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If we were to treat only the kinetlic energy term and possibly a one-

electron potential in zeroth order, we would obtain zeroth order
Green's functions for the particles in plane wave states
1

p,@) = —————— .
W=€_ + 1iwd
p

Nl

G

However, this does not allow for the pairing interaction to be taken
into account and does not lead to a superconducting ground stéte.
Rather than dealing with this in a perturbation approach, the total
Hamiltonian is used to describe the ground state. In the equations
of motion for the field operators there then arise terms such as
(¢+W)W(x) s which subsequently occur in the equation for the Green's

function as the time-ordered product

(T (g ey D (o 20 5 Dt (3,0

If this term is approximated by combining creation and destruction

operators, thé-resulting expression,
ot t + t
(Tlg ) (T g ¥, )0 = (T(w, ) (Tligg))

gives rise to the direct and exchange terms of the Hartree-Fock

approximation. Gor'kov showed that one may account for the creation

and destruction of pairs of particles by including the additional term

(N (g ) N 2) (B2 TG )W)

The change in particle number by 42 on creation or destruction of a
pair is shown explicitly. Thus we are again dealing with a system
having a variable number of particles as in the BCS and Bogoliubov

cases.
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Both results are in agreement with the BCS theory. The lifetimes for

these states, determined by the imaginary part of the Green's function,
were not calculated.

While the Gor'kov paper 1s important in that it was the first to
treat the superconducting problem using the Green's function technique,
it is based on a simpliﬁied four-Fermion interaction thus neglecting
phonon field (or exciton, as in the present study). Because of this‘
simplicity, the trﬁe Green's function could be determined for.this

model system.

E. Green's Function Method — Eliashberg

Inclusion of the phonon field using the Green's function approach

was first carried out by Eliashberg.137

The interaction between the
two fields was treated according to the full interaction Hamiltonian
(unsimplified); and on account of this, the true Green's function |
could not be determiﬁed directly, but rather approximated by summing

an infinite perturbation series according to the Feynman-Dysoﬁ method.
We should note, however, that it is not the fact that a certain class
of Feynman diagrams are summed to all orders that giveé rise to the
superconducting ground state solution. Rather one starts at the outset
with a bare Green's function, Go(p,w) , which already describes, along
with Fz(p,m) , the superconducting ground state. Thus we are not con-
tradictiﬁg the assertion that the superconducting ground state cannot
be achieved by perturbation theory to any order. We are improving

upon a zeroth order superconducting ground state. We now have the

apparatus necessary to describe the details of individual superconducting
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materials through the phonon's Creen's function Do(q,uﬂ.
138

Several accounts of the Eliashberg method have been published.

The original paper introduced unwieldy L-component vectors

t 4 |
v o= (wl/g,w_l/g,w_l/z,wl/e) in order to treat the pair formation.
139

Contemporary work by Nambu on the gauge invariance introduced the
widely used spinor notation in which the new field opeéerators are two-
component operators that pair time reversed states:
c 4 T

Yk = :f* , and its Hermitian adjoint: Y; = k*

c_k+ : c-k+
The simplicity of the Féynman diagram technique is preserved by using
the Wk' operators. The result is a 2x2 matrix equation which treats
the normal and pair Green's functions equally. We shall not require
the spinor notation in the detailed treatment of the method by
Kirzhnits, et., al., and shall continue to use the separate functioms,
G(p,») and Ff(p,w) ; for the single particle and pair propagators,
respectively,

Eliashberg's approach is along the following lines. We begin

with the Hamiltonian for the coupled electron-~phonon system.
= .Ho * Hint
B o= [y GO (x) - uly (x)dx + B
o j o el o ph
B = v v (x)0(x)ax
int o) a ‘

WG(X) = Q-l/2 }E: akeik'x
k
A L ml/e t oy iq.x
o(x) = Q Z ozq(bq+b e

9<qy
2
AT sq/kO

Q
!

I o




where Hel(x) is the one=-electron Hamiltonian and H?h. is the non-
interacting phonon Hamiltonian. The cﬁemical poteﬁtial is included
in Ho as a Lagrange multiplier — we are dealing again with a system
of variable number of particles.

The Hamiltonian for the non-interacting electrons, Hel , 1s
diagonal in the y-representation, and the Green's function applicable
to the norﬁal state is given by

1
) = ———
a>-cp—+1aﬁ
as noted in connection with Gor'kov's treatment. To develop the non-
interacting Gfeen's function for the superconducting state, Go(p,w) 5
Eliashberg included a certain portion of the electron-phonon inter-
action in a redefined zeroth-order Hamiltonian, ﬁ; = ﬁ;l + th p
by carrying out a unitary transformation from the operators wk*’wk¢
to new operators Xo and Xl: UQBWQ :'XB . Bogoliubov, as séen
above, had shown that such a transformation would yield the super-
conducting ground state provided 1) the Xo’xl operators satisfied
the anti-commutation relations for Fermi operators, and 2) that
certain 'dangerous" terms were eliminated from the Hamiltonian to
ldw order. Essentially the‘same requiremenfs weré applied by
Eliashberg, although the second requirement was given more cleariy
by requiring that ﬁ;l be diagonal in the X-representation. The
first of these requirements allows Wick's theorem to bé applied to
time ordered products of  operators even though the ground sﬁate

is not their vacuum state as it is for the X operators. The second

requirement allows us to calculate the zeroth order Green's function,




Go(p,m) = -1 (Txxf) , from its cquation of motion just as simply as
we found G _(p,w) . On the other hand, we may continue to use the
0

normal state operators Y by applying the inverse transformation to

the zeroth-order Hamiltonian:
Yeew % =Lew .
XH % = YUTH

As a result thie new zeroth-order Hamiltonian U-lﬁelU " is no longer
diagonal in the y-representation, and the equations of motion for
and W+ are coupled giving, as in the Gor'kov treatmeht, single

particle and pair.propagators, Go(p,w) and FZ(p,w) .

While the non-interacting propagators aré easily evaluated, the

full propagators, G(p,») and F+(p,w) , depend upon the full

Hamiltonian and must be approximated. The Feynman-Dyson perturba-

tion series allows this approximation to be carried to infinite order

for a certain class of diagrams.

One first determines the equation of motion for G(xt,x‘t’) ,

or for Ff(xt,x’t’) , from the expression for the time derivative,

say for example,

1S e xt) - a(t-t')a<x~x')+<T§{q(xt)w(x't'>

by substituting for the time derivative of the field operator:

L TN

The self-energy in the resulting equation for G**(xt,x't') is given

-8l -

ldil davi

o I\




in terms of the vertex funétion,
Dxt,x’t?) = (To(xe)y(xe)y’ (xt7))

which arises from the coupling of the electron and phonon fields in

"4
Hy oo The expression for G*+(xt,x t’) becomes

[i ’é% - H(o)(x) + u} G**(Xt,x’t’) - 5t -t7)8(x - x7)

i

fdwdy{zl(xt,yw%+(yr,x't') + 22_(xt,yT)Fh (y7 )|

I

-4 (To (xe )y (xe )y  (x7€7)) .

The total vertex function is shown in diagram form in Figure 13. The

(a) (b) (c) ()

Figure 1% Total vertex function.

Feynman-Dyson series for the self-energy may be obtained by using the
series for the vertex function along with the full propagators,

G(xt,x’t’) and D(xt,x’t’) , giving the expression:

Z(xt,x't’) = 'fdydTD(xt,y'r) G(xt,yr) M(yr,x’t”) .




This ig shown in Figure 1k, By using the full propagators Dyson's

Equation gives the sum of the contributions of each order to the

plxt %) (xt x‘t’) 4+

]

]

o e o

Figure 14 Feynman-Dyson scries for the proper self-energy.

self-energy. In order to solve the two eéuations for G(p,») and
%(p,w) , the Fourier transforms for a translationaily invariant sys-
tem, several approximations are introduced. Firxrst, Eliashberg asserts
that the total vertex function may be approximated by the simple
vertex F(I)V (see diagram (a) in Figure 1%). This had Been shown to

be possible for the normal state by Migdal.lho Second,bthe phonon

propagator is assumed to be the same in the superconducting state as
in the normal stat;. Thus the phonon propagator determined by Migdal
may be used in this case also. With these two approximations we have
two simultaneous equatiors for the functions G(p,w) and Z(p,@) .
Because of the coupling of  and wf the matrix expressioné for.

Z and G consisﬁ of two parts, one involving Zl , the self-energy"
for single particles, while the second involves 22 , the self-energy

for pdirs. Dyson's equation is then the pair of equations:

Zl(p,w) = (2; n J/é(k,w’) D(p-k,w-m’)dBkdw'
.'Ze(p,m) = = z;;;— k w’) D(p -k w-m’)dBkdm
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We shall see that the second of these leads to the starting point
for the Kirzhnits' method which follows.

Substituting the Fourier transforms of the expressions for G
(or F* ) into the above expressions gives the self-energies. Zl
aﬁounts to a :enormalization of the energy of the electrén states
.while 22 dete;mines the gap in the excitation energies as well as

their damping rate. On solving the resulting equations, Eiiashberg

determines the gap function, C(w) , to be

ReZ,. (w) 1 1 q w (0)
c(w) = 2 - — Lgo? 4= 44
(1-f(w)/w) b k) 1+ 0 4 ©y

f C (e, g))dg( 1 1 .
Je S ) e )

uﬁ(g)-w+ah dﬁ(§)+w+dh

where

J?(ko)+ce(ko)T .

The details of the phonon spectrum are accounted for by the function

o (0)
q —ﬁr—- . Eliashberg noted the difference between the above gap
: .

equation and that of Bogoliubov, a difference which oniy occurs for
large  , the region in which the diagrams are no longer '"dangerous".
Because the Eliashberg method sums certain terms in the perturba-
tion series to ailfofders rather than only to second order as in the
Bogoliubov method, it is expected to give better agreement with experi-

ment. Such agreement, found in the work of Scalapino, et. al.,ll‘L1 and

12

McMillan, et al., on the tunneling results in superconductors, sup-

ports the strong-coupled theory. The Eliashberg formalism has also
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been employed by Morel and Anderson155 who used an Einstein phonon
spectrum and includéd the Coulomb repulsion., They found good order-
of-magnitude agreement for calculated transition températures al-
though their results for the isotope effect conflicted with experi-
ment for certain metals.

Swihart116 compared results for the energy gap using three
different kerﬁels‘in the gap equation: 1) the Bardeeﬁ-Pines poten-
tialluu (see Eq. (8)), 2) the Bogoliubov potential, and 3) the
Eliashberg potential. He found that all three resulted in a gap
function at the Debye energy which agreed with the anomaloqs
tunneling behaﬁior of Pb if the Coulomb interaction was included.
However, only the behavior of the gap function calculated from the
Eliashberg potential conformed to data on the critical field for
Hg and Pb. Such data depend strongly on the form of the gap at the
Fermi surface.

The Eliashberg method has also bgen employed for estimating
transition temperatures of strong-coupled superconducting metals
and alloys by McMillan.26 Finally it should be mentioned that this
method has been applied to the excitonic meChénism for éupercon-

ductivity by Allender, Bray, and Bardeen28 for two-dimensional

metal-semiconductor systems.

F. Dielectric Response Method

Recently another Green's function method has been developed
which incorporates the infinite summation in orders of perturbation
theory using the Feynman-Dyson method, but which results in a simpli-

fied kernel in the energy gap integral equation through the use of
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the spectral weight function and by setting the temperature of the

system to the as-yet-to-be-determined superconducting transition

L. 2
temperature. This is the method of Kirzhnits, Maksinov, and Khomskii. 7
We shall derive the Kirzhnits gap equation in detail and show how it

is modified for our one-dimensional system.

The method of Kirzhnits, et. al., takes the approach common to
the Eliashberg method in that we begin with Green's functions which
already describe the "non-interacting" superconducting state. That
is, the only interactions included in zeroth order are the inter-
actions which result in Cooper pair formation. Thus we begin as iﬁ
the Eliashberg method with a single particle propagator, Go(p,w) 5
and. an anomalous propagator, FZ(p,w) . In the Eliashberg equations

we improved upon the zeroth order Green's functions by summing a

perturbation series for the self-energies of the single particle
and the pair'propagators. We noted that the first leads to a re-
normalization of the excitation energy while the second ieads to the

gap in the energy spectrum. The Kirzhnits approach ignores this

renormalization and deals only with the anomalous propagator.' A
justification for this will be given below. |

The self-consistent equation for the true anomaléus propagator,
FT(p,w) , is based on the first-order term in the perturbation
expansion using Wick's theorem. A sum over diagrams is then obtained
by replacing the non-interacting propagator, FZ(p,w) , by Ff(p,m) .

For the zero-temperature expression we have

* 1 SN
P) = c§0<p,m>co<-p,-w>r( Pt v pc,om 00

i
X T(p-k,m0') . | (17)
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The Feynman diagram for this equation is shown in Figure 15 and differs

V(p-k,w-0")

-
F'(p,0) 6, (p,0) Fl(k,a') 6 (-p,-w)

Figure 15 Feynman diagram for anomalous propagator equation.

from that for ‘Z(p,m) (see Figure 14) by the addition of the single
particle propagatdrs Go(p,w) and Go(-p,-w) . We introduce immedi-
ately the two assumptions used by Eliashberg. First, the propagator
for the effective interaction, V(q,w) , is assumed to be the same in
the superconducting state as in the normal state. Second, the total
vertex function is replaced by the simple vertex, F(l) s Which may
be included in the expression for V(q,w) . 1In light of this second
assumption we have neglected diagrams such as that of Figure 16 which

requires a vertex of greater complexity,

V(p-k,m-0")

-p,-a))

GO(P:w) v
' G(k,0") I'(p,w,k,w)

Figure 16 Higher order term for anomalous propagator.




In a second paper on the Green's function method in super-
conductivity, Eliashberg computed the temperature Green's functioﬁs
ig(P,iwn) and grf(p,iwh) ; this was a simple extension of the
original work. In the Kirzhnits method, however, the use of the
finite temperature formalismiis an essential feature, and in
particular, Kirzhnits begiﬁs by setting the temperature eqﬁal to
the critical temperatufe. This results in a considerable simpli-
fication. As the critical temperature is approached the anomalous
self;energy tends to zero so that the single particle Green's func-
tion for the superconductingrstate may be replaced by its ndrmal

state counterpart:

z
G(p,n) = —B—

R N
where gp = (p2/2m) - € - The renormaiization factor z_ can be

determined by computing the self-consistent single particle propa-

gator. As noted above, we ignore this renmormalization setting

zp =1 . This is consistent with the weak-coupling apbroximation.29
The second essentially new feature of the Kirzhnits method is

the use of the Lehmann or spectral representatioﬁlg5 for.the effective

interaction and for the anomalous propagator. The représéntation for

the effective interaction,

V(q)w) = VO(Q)/G(Q)(D) 3 | (18)

derives from that of the charge-to-charge response function which
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gsatisfies the causality principle:

[es]

B
S
0]

L ' L + L dE'
e(q,0) [\E+w=-18 " E ~w+ 15 ’

We define p(q,E) = ~(1/m) Im(1/e(q,E)) , giving the following finite

temperature spectral representation for the effective interaction

® p(q,E) dE°
Vade) = V@ (- f ———]| . )
0 &h-&E .

where Vo(q) is the bare Coulomb interaction. It has been noted by
several authors that the spectral density function for the dielectric
response function is related to the form factor for electron scat-

146

tering in a metal:

p(a,8) = Vo(@)is(qE) - s(g,E)] . |

Similarly, the anomalous propagator has the spectral representation:

+ » f(p,x)dx
7 (p,10) —
AV ia)n -

We may write the finite temperature form of (17) at T = T, , viz.,

d5k

#'(p,10) = -9 (p,10,) G(-p,io,)T }:f V(p-ke oy - )

to
X F (kylwm) s

in the following manner using these spectral representations;

© £(p,x) 1 oK o dyf( dye(k,y)
ST el e f
P m

io -x (imh) i -y

-0

(20)

% ‘ 1 1
x| 1 -J/. o(p-ik, k) ( + { dE
E+iw =iw E-iw +iw
noom n o m

_ggm



The gap function is given in terms of the wave-vector dependent part
of the spectral representation:

o) = 2| [ to,x) ax

(21)
0

We derive the integral equation for the gap function by first simpli-
fying (20). ,

We first apply the standard procedure for frequency sums in the
finite temperature scheme by using the relation

f g (w)dm
= =0 eni eBCw

C +1
where 8 = 1/kT_ and the contour C is shown in Figure 17.

£3

X
X

N

ot 1
T, 2, 8lia)

N\
/N

! C
Figure 17 Contour for frequency'sums.
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B w L
The function 1/(e ¢ +1) provides the first order poles at each

iwn . In the present case we have

oo 1 ) i ' ; 1 1
T, z 1 ff p(q,E) : + ; dE
iw -y 0 lE—Fi(D -iw E=-1iw +iw
M==c0 - M n m n m :

1 f Sdw 1
emi c eﬁcw

+1 @7V 0

where q = p~-k . The first term,

' dw 1

C oC 41 ®7Y

is evaluated by deforming the contour to that shown in Figure 18(a).

Picking up the contribution from the pole at w=y , which is circled

clockwise, gives ‘ Y‘;
1 1
Res| T ——
B.® B.Y
e +1 e +1
w=y ‘

/2 B y/2

-B >
2(1/2)e CY/ +(1/2)ech -(1/2)e €
By/2  BY/2
e

+ e

= (1/2)[1'tanh<BCY/2}]

The second and third terms,




dw 1 1 1

-(1/2mi) f - 5

B w

c . .
C e +1 m-y a;-E'-lwn w+E N

are evaluated with the deformed contour of Figures 18(b) and (c).

e - = Lol S
- ~ -~ } ] w®
o/ ® 4 (Ca N NI \
\ / R / \
- LA ‘ TS,
: :')(‘_"\ . v . T
{ AV H ATy Ve -/II
y
\ wy ] \ w=y 4 \ w=y ,
\ / 4 / 3 /
& e ~ P4 ~ e
S0 ~ el IR B
s
(a) (b) ()
Figure 18 Deformed contours for frequency sums
Picking up the contributions from both poles gives
| 1 a1l 1 +1
Res 5 o . + Res 5 o s
e +1 w-iw fE e © +1w-y
» n W=y aﬁiE+iwn
where the upper (lower) sign refers to the second (third) term. Thus

we have
1 1 1 1 1
B.Y . T * B (Evia)
e 7 +1 y-1a5_-E y -1&h~&E e +1 E4~1mn-y
1 1
Bc(-E+iwn)
e + 1 —E-kiwh-y
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The correct analytic continuation is obtained by setting e = =1,
giving
1 1 1 -1 -1
+ + +
By B E By BE :
e +1 e -1 iu%_-y‘-E e +1 e -1 iah-y4-E

We arrange the terms in braces as follows:

1 1 é(l/e)e

2 B E/f2

CY/ 2(1/2)e ¢

+ =
-6 E B y/e
e +1 e F -1 e c

Adding and subtracting

2
(1/2)eB°Y/

By/2  B.y/2
e + €

+

(22) becomes

B2 B/
e =€

+ e

eyt B E2 pE/?
e =&

-8 E/2
(1/2)e © /

- (1/2) ch/g _ch/g
e + e

- - (1/2)eotn(s,

Similarly,

+ = -(1/2)[coth(p E/2) - tanh(8 y/2)] .

-1 -1
By -8 E
e ¢ + 1 e ¢ +1

~BCE/2 BCEE ’
e -e

BE/2 -8 E/2
e + e

- (AR R
e -

E/2) + tanh(B_y/2)]




Collecting this together, (20) becomes

~ £(p,x)dx 1 / R (o} 3 ey '
_— . _y dyf(k,
v{; io -x (iwn)2 - gi (em)? ° ! ¢_/°: ¢ ¢
x {(1/2)(1 - canh(p_y/2)] - (L/2) f oa,E)  (23)
0

[coth(BcE/2)+tanh(ch/2) coth(BcE/Q)-tanh(ch/E) '
X + dE

1mh -y - E 1wn -y + E

Having noted above that Ze(k,m) and FT(k,m) , which is derived

from it, are even functions of w , we find

00

» £(k,y)dy | 3
g (k:iwm) = f I =
J, o -y 2
L ® £(k,y)dy
Flem) = [ 5 (21)
J o o-im -y _

2 'f(k:'Y)dy )
T e
in -y o

Then £(k,y) = =f(k,-y) 1is an odd function of y so that in (23)

co

[ vt - - [ eetopyannisyze)
- 0
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Similarly,

s : - .coth(BcE/2)+tanh(ch/25
-<1/e>f o(q,E)dE f_dyfuc,y) '
0 = i(Dnv‘- »y-E

coth(ﬁcE/E )-ta'nh(ch/E )
! iah -y 4 E
- -ap) [ o(,m148 [ ayey)
' 0 0
1 1

X [coth(BcE/2)-tanh(ﬁcy/E)} - -

- _iah-y+E 1&h+y-EJ
1. 1
[coth(BCE/Q)+tanh(6¢y/2)] -
_imn-y-E imn+y+E_

An expression similar to that in braces in the equation above appeats

1h7

in Eliashberg's treatment of the finite temperature case.
Eliashberg claims that the expression in braces simplifies to
1 1

2tanh(ch/2) [ -
m%-y-E mh+Y+E

with error of order (T /w )2 where w_ = 2sp
c/o o o

of sound and bo the Fermi momentum. This approximation has been
used by Allender, et. al.,28 and may be seen in the following manner.

We note first that the coth(BcE/Q) terms are non-singuiar in TC

The tanh(ch/E) terms can be arranged as follows:

1 1 1 ' 1
tanh(ch/E) - - - +

m%-y-E m%+y+E m%~y+E w%+y-E

s Dbeing the speed



This follows from (2L) since

- Pi Iomis(x) (26)
x+ 18
Thus we have
aox 3 I O
£(p,x) = 1/2'”1)_[ o(t{)/ dyf(k,y)tanh(B y/2) | |\ ————% 5
5 (x-18)7-E

P

Lo
RIS

: (x+18) Ep’

(o]

1 j 1 1 I
+fp(q)E>dE( ) B l - ‘
5 (x-18) —gp x-i8-y-E  x-18+y+E

g e 1)) (@)

(x+16)2 ~§§ Ix+i&-y-E x+i§+y+Es

Although Kirzhnits, et. al. omit the details of their derivation, it
appears that at this point (26) is applied to the abo&e expression to
develop the kernel, K(x,y,p,k) , for the integral equation. We shall
briefly show the steps involved in this development. However, we take
a different approach in arriving at the gap equation and shall show
this following the digression.

In the Kirzhnits method we apply (26) and write

1 1 1]1[ T 1
omi (x~i6)2-§§ (x+i5)2 -gi o xe-gi-sgn(x)ia 'x2-§§+sgn(x)16

1

sgn x)B(x gp)

1

<1/2!gp|)sgn<#>[a<x-1gpi>+a<x+lzpl>1
(28)
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Adding and subtracting

1 1
tanh(B y/2) - .,
1uh -y -E iah-ry-kE
gives
1 : 1
2tanh(ch/2)’ - -
- m%-y-E m%+y+E

1 1 1 1
+ tanh(scy/e) - ; + -
1¢h+y-E l&h-y—E iwn+y+E iwh-y+E

Since the variable y in the second line is restricted to values
near zero, the contribution of these terms vanishes in the lowest

order approximation in y . Thus (23) becomes
‘}fp £(p,x)dx
Ao -x
=00 n

> J/P -y ./2)
vo\q>J/” ay£(ic,y )tanh (B y /2
(16)% -2 /(2 ° U,

4 | 1 1
X |1 +J/. p(q,E)dE -
iah-y-E, iah+y+E

0

1

_t

We may now develop from the above equation an expression for
the weight function, £(p,x) , which can be used in (21) to deter-
mine the gap function. The weight function can be determined from

the discontinuity of the propagator across the real axis:

fF(p,x) = (1/2mi)[F (p,x-18) - & (p,x+18)] .  (25)
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~where we have used the identity:

-1
B(g(x)) = }E: ’g'(xn)] H(x -xn) where g(xn) =0 .
n .
Similarly,
1[ 1 1 1 1 P P 1
' - = 8(x-A) + —
2 2 ; 2 2 . 2 2
emil(x-18) §p x-A-i% (x+18) Ep x-A+18 X -gp x-A 2'§p|
Thus
1[ 1 ‘ 1 1 | 1 j 1 1 )
2ﬂiv(x-15)2-§§l Xx=1id-y-E x-18+y+E‘ (x+15)2-§§lx+16—y-E x+18+y+E$
"~ {oey-)-stuaysn) + | — S e
= O(x=y=E )=8(x+y+E } + - &(x- .
x2~§§ lx-ynE X+y+E ’2|§p| EP

Combining this with (28) and noting that the gap function is given by

the integral of f£(p,x) for positive values of x only, we have

Ok P |
f(P:x) = "f 3/ dyf(k:y)tanh(BCY/Q)K(X,Y:P;k)
(e

where

il

K(x,y,p,k)

1 Lol
Vc,(q)[l 6(x-|§pf)t[ dEp(q,E)

;5(x-]§R[)<XP P )+8(x-y-E)I

2l e | ) 2 - 2]

X

-y-E  x+y+E
y y p

o]

5(x-|€ | ) P P )
o LD e (1)
2|§pl 0 E+y+x  E4y-%/

il

io)
+ T R
X

p(q,x-Y)e(x-y)]
T %p
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which is Eq. (8) in the paper by Kirzhnits, et. al.?9

At this point an integration may be performed with respect to
x as indicated in (21) giving the gap equation. Instead we return
now to our approach and proceed from (27) by integrating immediately
with respect to x along the contour shown in Figure 19. The con-
tribution to the integral élong the positive imaginary axis vanishes

as 8 - 0 . For the first term we have

1 i 1 1 1 dx

_/dx 2 2" 2 o = ‘ ;
emi Yo (x-18) .-gp' (x+13) —gp | emi ¢ (x—gp-i&)(x+gp-i§)
in the second term the poles are not enclosed by the contour. There

are two possible cases. These are shown in Figures 19(a) and (b).

For gp > 0 we have

il

1
Res [———-——-} 1 /2gp .
’ x4—§p- i% x:§p+16

For £ <O we have

‘ 1
x-gp - i3

Thus the first term gives 1/2'5p| . In the second term we have

1.‘1 1}}

il

-1/2»;p .

x==F +18
P

1

s dx[ 2 22 .
emi Jg (x-18) -gp x=-18-y-E  x-iB+y+E

1 % 1 1 H
(x+i‘6)2--§§ x+18-y-E  x+id+y+E

Again in the second term the poles are not enclosed by the contour.

Figures 19(c) and (d) show the two cases to be considered.
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(c) @

Figure 19 Poles enclosed by contour in x-integration.
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Then from the definition of the gap function we have

S ®0(q,E)dE ‘
@) = =[5 [ et /v, |1 - af ——| . (29
(2m)” o1&, +y+E

We now wish to show explicitly the gap function ¢(k) under the
integral.

Kirzhnits notes that from the explicit expression fOr_the pair
propagator in terms of the anomalous self-energy, the sﬁectral weight

function may be written in the general form as

toa] 1 Ap,x) | Ret(p,x) e ) . P
£{p,x) = Re|— = B(x- + = Imd(p,x) =% .
i (x-i&)g-gi Elgp[ p r xg‘—gi

This follows from (26) and the fact that T = T. - From this we can
see that the Kirzhnits gap function gives only the re;l part of the

gap. In addition, the spectral weight function has a delta function
singﬁlarity at each ]gpl . Thus the major contfibuﬁion in the inte-
gral with respect to y will occur at y = ngl . Replacing y by

ngl throughout (29) neglects the difference term:

~ p(q,E)dE.

@k i
-/ 3 vo_(q)fdyf(k,y tanh(g _y/2)]1 -2/‘ T
(2m)” 5 | o E+v+lel

Q(Q)E)dE

~tanh (8| _Ekl/E) 1 -2[

o Erlgl+le, |

which is regular in Tc . Kirzhnits claims that "this term leads only
to a numerical factor of the order of unity in the pre-exponential

factor in the expression for T, .”29 Thus, the final form for the
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Kirzhnits gap equation in three dimensions is

&k o (k) | ' ~  o5(q,E)dE
o(p) = f 3vo(q) tanh(eclgkl/e) 1-2/
(2m)” 2| g, | o E+lgl+lel

We may note that the equation has the same form as the finite tempera-

ture BCS equation at T = Tc if we define the effective interaction

by
“p(q,E) dE |
0p,k) = V.(a) 1—2/ ,
pE+lg ]+l |
giving f
(p) dekK y 20 (65| /2) | (30) !
o(p) = -~ U(p,k tanh(B |g, | /2 . 30
(em)? 2| g, | o

Although U(p,k) is similar to the effective interaction for electron.
scattering [see Eqs. (18) and (19)] in that both involve the bare
interaction Vo(q) and the scattering matrix elements, |Q|2 =
Vo(q)p(q,E) , (see Chapter III), they differ in the form of the

energy integral., Ginsburg has pointed out that this difference is
"agsociated with the fact that supercoﬁductivity does not reduce to

the scattering qf two electrons on each other with the exchange of

150

phonons . " We have noted this above in connection with the inability
to describe the superconducting state in a power series expansion in
the (small) eléctron-phonon.coupling constant.

The temperature dependence in (30) occurs in the hyperbolic
tangent function. The same functional dependence on temperature is
found by Eliashberg in the finite temperature case,and by BCS, cf.

(11) and (13). Eliashberg remarks: "Thanks to tﬁis, the usual rela-

tion between T and A(T=0) 1is preserved (Eq. (15)).”1h7. We take
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advantage of this in thé numerical computational procedure thus elimi-

nating the computation of |§k|w tanh(B I k|/2) - B /2 in the limit
as ngl approaches the Fermi surface. Equation (30) becomes
i U(pk) #(k)
¢(p) = = 3
' (2m) §k+¢

In the development of the gap equation it is generally assumed

that the material is isotropic or that one is dealing with a "dirty"

151

superconductor; . This allows the integration over k-space to be
replaced by an immediate integration over the angular variables plus

an integration over the energy:

a2k
f - /N(e:)da
(2mr)

In the present treatment of one-dimensional conducting systems, such

N

a simplification is not apﬁlicablea However, in the present case,
only the variation of ¢(p) with respect to p, is impértant, SO
that in this case also we are left with an'integratibn over one
variable:

m

. U(p,k) (k) |
o(p) = -(2m) / dlk . (1)
s (gk + 0 )

In the metal-atom-dye arrangements we will be considering, there is a
reflection plane of symmetry normal to the z-axis. Thus we have
= g, and U(p,k) = U(-p,-k) giving ¢(p) = ¢(-p), so that we

may write (31) as

v
-1 o (k) : ‘
o(p) = -(im) f Gk ———e {U(p,k) + U(p, k)] . (32)
0 (g 9 ) |
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The methods for calculating the quantities which enter the one-

dimensional form for the effective potemtial, viz. the Coulomb inter-
action, either screened by higher excitations, V;(q) , or unscreened
Vo(q) , the scattering matrix element, |Q|2 , and the excitation

energy, Eq , are given in Chapter IITI. As noted there, the matrix
elements for the spectral density, have a delta-function dependence

on the energy:
o(p-k,E) = p(p-k) B(E-E,)

Using this we may write the final form for the gap equation as used

for numerical calculation:

R )_1/” (k) | - 2 Q(p-k)| 2 N
p) = =(km )V, (p-k) - +V (p+
o V(Er o) Etlelelgl  °
| 2|Q(p+k)|2 |

- . (33)
Bt 5] + 18l
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V. RESULTS AND CONCLUSIONS

A. Numerical Method

Numerical coﬁputation of the gap equation based on several of
the descriptions given in Chapter IV have been carried out.
Swihart used the Bardeen-Pines potential in the BCS equation (13).
to determine the temperature dependence of the energy gap, the ratio
of the energy gap to the critical temperature, and-several other

parameters in the weak-coupling case.152

‘At the same time Culler,

et. al. found nuﬁerical séiutions for the gap equation using the
Eliashbergequation.153 Results of these calculationskdifferedixlform

for A(®w) near the Fermi level. This has been discuéséd,subse-

quently by Swihart.l15 More recent numerical calculatioﬁs using the
Eliashberg equétidn have also been reported.%’wu’l,55 . Numerical cai-
culétions using the Kirzhnits equation have not been pfeviously’published.

In the present method we assume that if a solutioﬁ to the inte-

gral equation (32) exists it may be found by an iteration>procedure:
T dk
0,,(P) = ==
i+l bt - 5
- 70 J (g (k)+¢i(k))

Although the kernel of the integral is non-singular, ailarge contri-

0, ()[U(p,k) + U(p,-k)] (34

bution occurs for values of k in the region near kF 'where e(k)
vanishes. We treat the region within £k =~ of k, separately by
dividing the interval [O,m] into two regions: @1as[kF-kq,kF+ko]

and Rees[o,kF-ko]U[kF+ko,ﬂ] . Thus we have the inhomogeneous
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equation for p eR2

| dk
05,1(P) = £(p) - ;ﬁ;f 0, (k) [U(p,k) +U(p,-k)]  (35)
A (2200 + 6% ()
where
1 TR . |
£(p) = -rﬂf = ¢, (k)[U(p,k) +U(p,-k)1

Ry V(2w +o7 )

Repéated iteration of (35) gives a converged solution in .Re that
is used in a subsequent iteration in Rl . In this manner iterations
in ;he senéitive region, Rl , are based on converged solutions in
R2 . This proeedurg was used by Swihart152 who also ﬁsed the
Tolmachev "quasi-linearization" m,ethod.13h Initial studies showed
the latter method to be unnecessary to achieve convergence for the
Kirzhnits equation.

The procedure ofviterating in R, to convergenée before each
iteration in R1 was continued until the function was found to»have
converged in Rl also. This was followgd by a finallseries of itera-
tions in which new values of ¢i+1(p) were calculated for both regionms.

The criterion for final convergence was
| ST
(1/8) 35 Joyq(py) -0 ()l < max(oy 4 (py)) x 107 . (36)
3 .
The integration was carried out by using Simpson's Rule. In the

region near the Fermi level, however, this method was found to be inade-

quate because of the denominator: E(k) =‘l§2(k)-+¢§(k) . In a small
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region within‘is of kF Simpson's Rule was replaced by an analytic
integration in the following manner. The grid of points in Rl was

chosen such that

N, -N, = WN-2 (37)

2 1

where N, 1is the number of points from zero to kF -k, and N2 is

the number of points from zero to ky +k_ . See Figure 20. 1In this
manner a point, N_, fell at the Fermi level with welght k in the
Simpson's Rule method. The analytic correction is then given by
kF+6
1 ' dk o)
= Yr ¢'(k>[U(p:k)+U(P)'k)] -z [K(N '1)
gt 4 D) 5. 1 1 , 3 o.
K-8 ‘/(g (k) + 0% (k)

+ uK(No) + K(No‘ +‘ 1)]

where K(I) is the value of the integrand at' I, and & 1s the dis- 4
tance between points in Rl . The analytic ihtegfal may be apprdxi-
mated by setting k::kF in the slowly varying functions of k , giving
1 A dk |
--é-ﬂwi(kF)w(p,kF)Jru(p,-kF)]f — .
(P i)

Following the results of Abarbanel96 for a platinum chain system,'we

use a cosine band shape with band width E° :

g(k) = (E,/2) (cos(i) - cos(i))
For k mnear the Fermi level we have

g(k) ~ (E/2) (k-ky) sin(ky)
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Figure 20. Grid for numerical integration.

From this approximation the analytic contribution at the Fermi level,

(38) becomes

1 | Eos_in(kF)/2+J(Eosin(ké)/2)2+¢§(kF))1

1 .
T ¢i(kF)[U(P,kF)+U(P;'kF)] E sin (k) in . ¢ (k)
o Sin kF . C 1 kF
In general the grid consisted of N;= 20 points in the first
section of Re R N2-N1= 30 points in Rl , and N5-N2 = 10 addi-
tional points in the second section of Rg . Grids with as few as
40 points with various distributions in Rl and R2 subject to
- 3*
restriction (37) gave the same transition temperature to within 2%.
Initial trial solutions, ¢O(I) , were chosen to be constant.
The uniqueness of the converged gap function was examined by using

values of the constant both larger and smaller than the reéulting

¥*
A minimum of 10 points in each region was also imposed.
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gap at the Fefmi level. It was found that the solutions coincided

and the transition temperatures agreed to better than 0.1% using

the convergence criterion (36).
B. Parameters

Paraméters for the standard model system for comparison of
transition temperatures and for investigation of uniquéness and sta-
bility ;re<given in Table 9. The parameters fall into two cgtegories.

In the first category are those parameters that determine the effec-

tive interaption bgtween electrons on the spine through the dielectric

response function (18). The results for the standard model and for the

other systems have been given in Tables 5 — 7 for the scattering matrix

elements and the excitation energies as a function of the wave vector.

In addition, the Coulomb interaction along the spine is given in Table 8

for the bare interaction, the Thomas-Fermi screened iﬁteraction, and L
for the'particular case of Thomas-Fermi screening as well as screening
by the higher excitations of four pyridine cyanine molecules per unit
cell as given in the standard model system.

The band width and Fermi level parameters in the second catégory
are treated as independent of those in the first categéry-fof the pur-
pose of determining the effect of their variation on‘the transition
temperature. Certain parameters are related, however. The Thomas-
Fermi screening length is weakly dependent on the density of states at

the Fermi level. The organometallic compound K2Pt(CN)hCI -2.6H20

0.32
has served as the reference for most of the spine-related parameters.

The Thomas-Fermi screening length used in the calculatiom, 0.1k an,
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TABLE 9 Parameters for Standard Model System

Parameters for calculation of effective interaction

Dye molecule

Number of dyes per unit cell

Number of unit cells

Number of q " values

Platinum - nitrogen distance (in plane)
Platinum - platinum distance [along chain)
Platinum atom size

Thomas-Fermi Screening length

Screening from higher excitations

Parameters for calculation of transition temperature

Band width

Fermi 1eve1.(kF/n)

Pyridine Cyanine
h.
9
10
2.0 &
3.1 R
2.8 §
0.1y 871

yes

3.0 e.v.
5/6



is the one appropriate to this compound as determined in Chapter II.
This introduceé some inconsistency since the lattice coﬁstants of
KCP-Cl are tdo small to accommodate the large dye mﬁlecules which we
envision in the unit cell. The enlarged structure would have some
unknown, smallérvvalue for the screening length. The transition
temperatures were calculated without Thomas-Fermi screening in order
to make the appropriate comparison.

The.band width is directly related to the platinum-platinum
distance along the spine. The band structures détermined by
Abarbangl were for the compound PtC1~ at a variety of trial platinum-
platinum-separations.96 At a separation of 2.8 R the band ﬁidth was
found to be 2.5 e.v., but at 3.25 R it was found to be 1.2 e.v. The
exact band widtﬁ for KCP-Cl is unknown although as noted in Chapier 11
it should be of the order of that for PtCl~ at 2.89 8. calculations
have been made using the two band width values, 3.0 and 2.5 e.v., for
each of the ligand systems. These values‘thus represent the largest
band widthé to be expected. It may be noted from Table 9 that the
platinum-piatinum.distance for the standard model system suggests
that a smaller value of the band width should be used. The separa-
tion used in the'caléulation, 3.4 X, was éhosen to allow for the
Van der Waals contact distance between parallel 1ayers‘of cyanine’
dyes.. As seen in the next section, however, the transition tempera-
ture is relatively insensitive to the band width over this range of
Pt-Pt separation. A conservative estimate can then be obtained

using these‘larget band widths.
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One other standard parameter bears explaining, namely, the Fermi
level. The value 5/6 1s that appropriate again to the model compound
for the spine and reflects the partial oxidation of these compounds. |

Because of this unfilled band these compounds show metallic behavior.

C. Results and Discussion

In Table 10 we have selected eight cases giving a representative
variation of the barameters for the model system and list the calculated
transition temperatures. Figures 21(a) - (h) show the form of the kernel

(33) (the term in braces) for each of these cases. The equipotential

lines are plotted using the following color scheme: red=+L4.0,
red-orange=+3.0, orange=+2.0, yellow;+l.0, white:0.0, green=-1.0,
blﬁe-greenzfe;o, blue=-3.0, pink=-4.0 all in electron volts. The
attractive fegions, a‘function of electron states p and k , can
easily be seen. Several observations may be made. High transition
temperatures result when the attractive interaction occurs for a large
range of electron states and correspondingly for a deep potential. Neg-
lect of Thomas-Fermi screening, Case 5, results in a high transition
temperature even though the attractive region is significantly smaller
than in the staﬁdard,mbdel and thus shows the impoftaﬁcé of the depth
of the attractive potential. The sharply reduced effective interaction
in this particular case of empty alternate cells, Casé #7, results in
no attractive region along‘the diagonal, .p =k , and gives no solution

to the gap equation.
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TABLE 10 Transition Temperatures for Variations of the'Standard

Model System

Variation

All standard parameters

No screening by higher excitationé

Band width = 2.5 e.v.

Fermi level = 4/5

Thomas~-Fermi screening neglected
é molecules per unit cell
Alternate cells empty

Phenanthroline cyanine molecule

- 117 -

Transition
Tempegature

— (R)
3060
13
3249
- 2863
| 2517
6

‘5021




Figure 21 Kernel of integral in the gap equation

Alky) = 0.16 e.v.

Figure 22(a) Gap function
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Figure 21 (b)

Aliy) = 0.14 x 1072 e.v.

Figure 22 (b)



Figure 21 (c)

a(kF) = 0.49 e.v.

Figure 22 (c)



Figure 21 (d)

Alk.) = 0.43 e.v,

)

Figure 22 (d)
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A("%) = 0.38 e.v.

Figure 22 (e)



Figure 21 (f)

A(kF) = 0.8% x 107 e.v.

Figure 22 (f)
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No solution

Figure 22 (g)
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Figure 21

A(kF) = 0.16 e.v.
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Figure 22

- 125 -



We have plotted the corfesponding gap function for each of these
cases, éxcept Case #7, in Figures 22(a) — (h). Each figure shows the
‘ calculatedvvalue of the gap function at the Fermi surface.

Table 11 shows the transition temperatures calculated for the
arrays with 4 dyes per unit cell. Variation with band width, Fermi
levél, screening from higher excitations, and Thomas-Fermi screening
is shown. The inclﬁsion of screening from the higher excitatioms of
the m-electron system is found to be of primary importance in obtaining
high transition temperatures. The standard reference model has a
transition temperature of 3060°K; neglecting this screening gives a
Coulomb potential that dominates the attractive interaction for nearly
all values of p and k‘ and results in a transition temperature so close
to zero that one might not expect to find a superconducting state.

Thomas-Fermi screening is found to have only a moderate effect
on the transition temperatufe. Thus larger lattices required to accom-
modate the dyes would not rule out supercoﬁductivity'caused by the
lack of screening by neighboring chains. The close préximity of the
dye molecules to the chain compared with the interchain distance
results in the spreening from higher excitations of the qr-electron
system being more important than interchain Thbmas-Fermi'screening.A
Thomas-Fermi écreening has the positive effect of reducing the direct
interaction betwéen electfons on the spine. It also has the negative
effect of reducing the overall interaction of the spine electrons with
the dipole induced on the dye molecule. Thus inclusion of Thomas-
Fermi screening generally results in a slight increase in Tc , but

in several cases the balance of these two effects results in a
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3P

Pyrid

Fermi
Level

5/6

5/6

k/5

- 5/6

5/6

4/5'

)

ine Cynanine (A)

Band
Width

3.0 e.v.
2.5
3.0
3.0
2.5

3.0

TABLE 11.

Pyridine Carbocyanine (B)

Pyridine Dicarbocyanine (C)

» = 0.0 871 A = 0.1k g1
A B C A B C
T (°k) I T T T T
[} C (o4 C C [od
0 0 816 13 1028 153L
o 0 1033 57 1259 1765
0 0 364 0 lshl 1057
2517 hals 6117 3060 | Lko70 L4839
2765 5213 6LL1 %2L9° L9l 508X
2319 4682 5897 2863 ho63 611

Transition Temperatures for Arrays

with Four Dyes per Unit Cell



decrease in the.transition temperature. The accuracy of these calcu-
lations from first principles, it should be noted, is insufficient

to support conclusions for these mixed trends in the Thomas-Fermi

- screening based on, for example, chain length of the dye.

The length of the chain in the various cyanine dye molecules does
correlate with the transition temperature if other factors are fixed.
The longer chain length results in a larger transition dipole and a
smaller transition energy. Both these results favor a stronger effec-
tive interaction with the spine electrons.

As noted in Chgpter III in the case ofvtwo phenanfhroline cyanine
dye molecules per unit cell, we expect results similar to the case of
four pyridine cyanine dyes. No solutions were found for the models
that neglected screening from the higher excitations. With the inclu-
sion of this screening, the transition temperatures were found to be
essentially the same as those for pyridine cyanine. ‘Aithough the
scattering matrix elements ére smaller for the phenanthroline than
for the pyridine cyanine, this is compensated by a smaller.energy for
the excited state as well as increased m-electron screening from the
extra ring structure close to the metal atom chain. See Figure 23.
The transition temperatures were found to be 3021°K and 3311°K, with
and without Thomas~Fermi screening, respectively. In both cases
standard values for the band width and Fermi level were used.

In Table 12 we present the calculated transition temperature
for the arrays that contain 2 dye molecules per unit‘cell. An

attractive interaction is found only under optimum conditions.
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Figure 23 Unit cell with two phenanthroline cyanine dyes.
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Pyridine Cyanine (A)

Fermi

Level

5/6
5/6
L/5
5/6
5/6

L/5

Band
Width

3.0 e.v.
2.5

3.0

3.0
2.5

5.0

TABLE 12

00"

Pyridine Carbocyanine (B) Pyridine Dicarbocyanine (C)

x = 0.0 87! - A = 0.1y 871
A B c A B c
T (°K) T T T T T
c c c Cc C C
0 0 0 0 0 0
0 o 10k 6 562 1054

Transition Temperatures for Arrays with Two Dyes per Unit Cell.



In the cases primarily considered,we envision each cell being

occupled by two or more dye molecules. For this reason we calculated
- the effective in;eraction caused by the dyes using a platinum-platinum
distance of 3.4 R. on considering the case in which we attach dyes

in alternate cells only, we found no solutions except in the cases

of pyridine carbocyanine (17°K) and dicarbocyanine (155°K), parameters
for the reference system being used in both cases. It ﬁay be possible
to choose ligands for the empty cells that require less space along
the spine axis. Such ligands would not be expected to contribute to
the attractive interaction, but would allow the platinum-platinum
distance to be reduced and thus make the overall model more consistent
with the known reference spine compound, KCP-Cl.

One of the synthetic requirements assumed thus far is the ability
to complex the dye to the ﬁetal atom thereby bringing the e#citonic
medium into intimate contact with the conducting spine. In the cal-
culation of the effective interaction,'we have agsumed that the exchange
contribution of the spine electrons with those in the molecular orbitals
of the dyes is small compared with the direct interaction. For the
carbon spine thié can be arfanged by having the dyes lie in the plane
perpendicular to the spine thereby making the spine T orbital ortho-
gonal to the 7 orbital of the nearby nitrogen atom. vIn the case of
the transition metal atom chain; the radial extent of the d o con-
duction band is small compared with the other d orbitals on fhe
mgtal, giving little overlap with the dye molecular orbitals. Neglect
of exchange is then consistent with the Zero-Differential-Oveflap approxi-

mation used in calculating the molecular orbitals.
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We have modeled systems in which the dye molecules are removed

from the metal atom and find that the interaction falls off rapidly
with the platinum-nitrogen distance. At 3.0 R separation finite
transition temperatures were found for pyridine carbocyanine (526°K
with Thomas-Fermi screening; 77°K without) and for pyridine di-
carbocyanine (1015°K with Thomas-Fermi screening; T70°K without).
No solutions were found if screening due to higher excitations was
neglected. This places a great emphasis on the necessity to syn-
thesize compounds having the dye molecules complexed directly to
the metal atom. Ligand structures such as shown in Figure 2 position
the dye'moleculebtoo far from the conducting spine and cannot be
expected to gilve an attractive interaction with the dye molecules we
have considered. |

The effecf of variation of the band width and Fermi level may be
determined from Table 11. Variation of the band width over the full
range from 1.0 e.v. to 3.0 e.v. has been done and tﬁe results are

presented in Table 13 for the standard system.

TABLE 13 Variation of Transition Temperature with Band Width

Band width (e.v.): = 1.0 1.5 2.0 2.5 3.0

[

T - 4033% 2698°K | 3456%K  3249°%k 3060°K

Calculated transition temperatures thus appear to be relatively insen-
sitive to the band width in the region of interest.

Checks were made to determine if the 9 unit cells and 10 q values
in the standard model system were sufficient to give transition tempera-

tures which were independent of the number of unit cells and ¢ values.
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Representative results are shown in Table 14 using 10 q values with
various numbers of unit cells with four pyridine dicarbocyanine mole-
cules per unit cell. Results using 20 q values and 17 umit cells
are shown in parentheses in Table 1L, As can be seen from the table,
use of the small number of unit cells and ¢q values may account for
a variation in T_ of the order of 20%.

TABLE 14 Variation of Transition Temperature with Number of Unit
Cells and q Values

Number of unit cells: 0 11 13 - 15 17

v, 816°k 811°%  886°%k 928k  9h2®%k  (886°%K)
T  (A=0.0)

¢ ¥, 6117°% 6083°k 6030°k 5998°k 5993°K  (5862°K)
We may comment now on several of the objections raised against

the pos;ibility of high temperature excitonic superconductivity as
noted in Chapter I. Perhaps the most apparent conclusion is that
structures with metal atom chains complexed with certain dye molecules
can give rise to a large attractive interaction between spine electroms.
Lack obehomas-Fermi screening on the level found in metals does not
result in Coulomb domination of the execitonic interaction as Kuper
suggested.25

 The possibility of avPeierls instabiiity still reﬁains one of
competing mechanisms. The transition témperatures of the order of
103 %k obtained in the present calculations are expected to be larger
than characteristic temperatures for a Peierls transition. Such a

competition may occur in Nb,Sn and similar compounds (knowﬁ as A-15
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‘compounds) that have a linear chain structure. A theoretical
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http:suggested.23

treatment of these mechanisms has been carried out by Gutfreund, et.
::11.,]'57 who conclude that in principle either mechanism may dominate.
Calculation of the Peiefls transition temperature along the lines
given by Gutfreund, et. al. could be carried out, but comparison of
order of magnitude results for Tp with current ones for Tc would
not likely support a definitive conclusion.

Among the objections noted in the first chapter, the most elusive
geems to be thatvof the general stability of the lattice for negative

27

values of the static dielectric function. Cohen and Anderson ' and
Allender, Bray, and Bardeen28 have claimed that the strength of the
electron-exciton coupling is not 1imited by this requiremeht -
inclusion of Umklapp processes being the necessary feature to remove
the limitation. Pines and Noziere5158 have discussed this problem
using a jellium model for which the lattice structure is neglected,
thus Umklapp processes are not relevant. They find that negative
values for the static dielectric function would be accompanied by
density waves in the jellium'background. A simple calculation by
using (19) and the values for the Coulomb interaction, scattering
matrix elements, and transition energy for the standard reference
system, for example, gives a value Re(l/e(q=0,w=0)) = -2 . Thus
this question of lattice stability is significant, but as yet it is
not known if Umklépp processes and other lattice features would aliow
for a stable lattice under these conditions. Perhaps this comment

d:159

by Ginsburg should be note "One should keep in mind that even

[V(q,w) =.Vo(q)/e(q,w) (18)] is not always appliéable since it does
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not take into account the anisotropy and inhomogeniety of the crystal

(generally, the dielectric permeability eij(w,a) is a temsor), and,
more important, in an inhomogeneous system (crystal), this temsor
describes the electromagnefic properties of the medium only for waves
with wavelength )\ > a ."

From the results of our present calculations, or estimations
since they rely on parameters taken in some cases from systems that
model only a portion, (for example, the spine), of the total system,
we may reasonably conclude that éxcitonic superconductivity can be
expected from structures that conform to the basic requirements of
the Little model. Of primary importance is the close proximity
(complexation appears to be the only possiﬁility) of the excitonic
system to the spine. Also important is the use of dye molecules with
a large transition dipole for a low-lying excited state and which
provide for dielectric screening in the region near the spine.

The particuiar dye molecules we have used in the.models have
not yet been complexed to the metal atoms. If this is possible,
three problem areas remain to be solved by ingeneous‘synthesis.
First, the metal-atom - ligand systemvmust stack in chains. With-
out thié, no delocalization of the electrons on the metal atoms can
take place. Second, the spacing between metal atoms élong the chain
must be sufficiently small for banding to occur. And, finally, a
partial oxidation of the spine must be achievable without destroying
the ligand system. Thus far, partial oxidatidn of platinum chain
systems has been carried out for a few ligand systems.léo These are

formidable synthetic challenges.
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APPENDIX

APPLICATION OF THE BOGOLIUBOV TRANSFORMATION

TO THE FROHLICH HAMILTONIAN

The Frohlich Hamiltonian for the coupled electron-phonon system

is given by

ot + vt t
H = Z oo * Z mqbqbq + M S g (bq + b_q)

ko k,k’,0

where q = k“ -k , the prime on the summation sign indicates the
k = k’ term is omitted, and € is the unrenormalized electron
state energy with € = €k for an isotropic system. The Bogoliubov

transformation takes the general form

]

+ t

% “k°;¢ - Vk°-k+ % = “k°k+ - ch-k+
, ,

e A I R TR S

and u§4-vi = 1 is imposed to preserve the anti-commutation properties

for the quasiparticle operators:

I
O

[o&,a;,]+ - Biexe” [o&,a&,]+ = [a;,ai,1+

|
o

t o t ot
[ﬁk’ak']+ = Bkk' [Bk’Bk']+ = ‘[Bk’Bk']+

Combinations of « and B operators anti-commute. The inverse
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transformation is given by:

]
i

1—

k) uy + iy Ck* O * vkﬁfk
‘ t t

°-k+ = 9B x i “kp T ukBTk " i

The general ﬁroduct of a creation and destruction operator for spin-up

electrons transforms as:

i

“i) k) (90 * %8 ) e + B L)

: t Tt t
U e+ Vi PO R P e F iieP LB e
and for spin-down -electrons:

+ t
c-k*c-k’+ = (B = ) (b e - Vk',a]:’)

ot t ot T
U PPk T iR Pk T P ol T Ve

]

Thus the terms of the Frohlich Hamiltonian become

C;*Ck* -+ Ctk+c-k+1

Z. ek";c%& = Z €k
ko k

; Ek{ulecaltak+ukvk(akﬁfk+5-kak) + VBBl

]

2.t L
+wpB B ukvk(s-kak+ak‘3-k)- * Viaka: g

Z ek§(ll12( -Vi)(azak+5fk6-i€)-+ EUka(OLZBfk+B_kak)+2vi}
k.
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and

I'd
t t
kzk; chko'ck'cr(bq+b-q)
, U
2. (ck* Kk’

R p

)(b +b_ )

k+ k+

I

o t .
) Mq(b;r*b-q){“k“k'ako‘k'+"k“k'5-kak'+ %Vk""lﬁ kT kP ks -k’

k,k’
. +
* B e B T WV KB i
tt K.
B RN
- M (e + e m ) (0gB s B0 ) (b +b )
k, k'

+ (au . - vkvk,)(a;:ozk, + Btk'.ﬁ-k) (b; + b__q)}

Collecting, we may wtite this as

o |
H = HO+H1+Hg+H?+HR+U

where

.1..

T +
0 Z Ek(o‘kak+e’-k8-k) + Z wq bq bq
' q

o
it

ED kf }(ukvk,+uk,v (ofptr +B L )T +b_ )]
=2, u %(“k“k'" Ve 05040 #8118 k)(b by

k,k’
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"
H% = Ek: 2e v (B + P o)

= Y (g (e -vE) - B ) (o +808 )

k

U E-EE: Qekvi = constant .
k

Compensation of dangerous diagrams for the creation of a pair

of quasiparticles gives the condition

(¥ 63 |1) (1 1 Jo)

L ADED Y -

T By mEy

where [0) is the vacuum state with energy U , |[I) the intermediate
state generated by H? , and the final state ]F) has a pair of quasi-
particles, o and B_, (see Figure 10). The energy of the inter-

mediate state is given by
. PR - I T | T
<I IH ,I) = (I I ; ek,,(u.k,, - Vk// )(Czk,/ak,, 4+ B'k”ﬁ-k”) + § (quqbq +U ,I) .

This gives the same emergy for |[I) = l%u y 1, 431, ) and

B
, k -k q
|1y = |1, , 1, ;1 ) , namely:
e s B-k mﬁ ’
E; = ek(ui-vi) + ek,(ui, - i,) + 0 + U .

| 2 p 2 2
The energy denominator is then —[ek(uk-vk)~+€k,(uk,-vk,) + mb} .
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For the matrix elements we have

| t oot
(F IH? lO) = (lak,].3 . I z 2€k”U~k”Vk// (ak”B-k” + B_kllakll) lo>
- k”
= 2€kﬂu-kllvku 5k,k” 3
o ) / |
(T IHl |O> = (1%515-1{, :lw | Z Mq§ (uk//Vklu'f' uk”vk”)

q k”k 44

X (ak+"B '-fk”' + B-k-”ak”') (b: + b_q) % o)

Mq(ukllvkdw + U-kaVk// ) 61{” ,kakm,k' ,
’

o | | : t
(F IHgll'-) = <1°‘k’13-k| k,;%,” Mq }(Uk//u-kaw.' Vk”vk’”)(ak”ak”’ + B_kme_k!/)

.1.

b
><(q

. | )

1,1 31
Oy B'-k’ wﬁ

i

Mq(uk//ukm - Vk//an:) 51{”,1(' &k”’,k .

Similarly

. ,1. [ 1

0 B, 2 0. Ly ot

315 2 . o
B O e B-knlwq J:n lo)
= Mq(uk”u'k'” - Vk//Vkaw )Sk// ,ksk”',k': { Mq(ukﬂvk;” + Uk.kau )Bkﬂ ,k'ak'”,k} .

Thus both intermediates give the same value and the compensation
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condition becomes

g P - v ) (e )
Eekukvk -2 Z =0

Y e (D) 4 e (0l -VR) + o
kS Sk k) ke e TV q

Rearranging the terms gives

€U Vi - Z' ]Mqlgg (u.i, —Vi')ukvk + (u.i-vi)u.k,v ’
k'k k ;

’ 6(2-V2)+€(2-V2)+a) -0
k k'R Tk k%’ T Yk’ q

2 2 , .
We denote ek(uk -vk) by E, and define the renormalized quasi-

particle energy by

. ]Mql(ui, "Vi:)

ih

Bk K

k’ Ek+ Ek' +u>q

Defining the gap function by

' g
UIZ: = (1/2) '1+'—"2_€k—2— s then v12€ = (1/2)|1 -—21(-———;
Ve +4 . € ~ O
and
‘ 1/2
wv, = (1/2)4f1 + — 1 - —x |}
. 52 22
e Vet 47
, ga 1/2 '
= (1) {1 - 55—
& T
N

!
—

=
~
~—
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The compensation condition becomes

M Iuklvf
2
° " gkukvk-(u.i~vk)z: B +E ., +0
k’ k" q
2
(1/2 _.__fk.___- 1/2) “"’""‘"Z ~|Mq|

dék Ai SRV ng,mk Bl +Epo 4oy

giving the gap equation

2

Do IMq|
> .
k’ #Eka+Ak By + o+ @

Compensation of dangerous diagrams using the renormalization

term HR gives the condition

FEEDaEE) @ E ) E|F)
(F [ 7y + ) —2———gE e

+ = 0
EX VP ’
I r " Ep Eg-Ep

where the initial and final states are |[F) = |1ak) . Diagrams for
these terms are given in Figure 12. The energies of the initial
state, intermediate exchange state, and intermediate vacuum polariza-

‘tion state are

1l

Ep = <1ak|Hl|vlock> IZ €le” “k" - k” )ak”ak” * U|l )

k 4

]

2 2
ek(uk svk) + U
B - [ E k" (6=, -vE,) + 3 b’ +U|1 1)
T ‘lk// k” ak”ak” q°q°q ak’, o
kll q
2
= €k’(ukf - i;) + U)q + U
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By o lo s lp it ]Z cier (ther = Vi Yoo +818_)

q k’

1.
+qubqb +U|l ak 5 k”’
q

2 2 2 2 2 2
€k(\-lk "Vk)+ Gk//(Ukﬂ' k”) + le”(u-l(”"'vk”’) + a_)q + U

For the matrix elements we have

L]

2 2 + T
(F IH.RIF) (1ak lkZ (Ek'(uk' - Vk/) - Ek') (ak'ak' +ﬁ_k'8_ka) Ilak>

TR SR R

A

ABEIED = (1 i1 | D Mgty = %) O i)
1 e |
X (p}b_q)‘llak)
= Mq(uk”uk”" -v ”Vk”) ) ’,k”?)k,k’"
and |
(I.IH?IF) = <104k’1ak~’18_k»;1w | Z’ Mq(uk,v wrr + U o Vi )

q kl’kllﬂ

X (altfﬁfklﬂl ‘+B-k'ak”” b +b )I]- )

it

Mq(u-klvkrm + U-k””sz) B ’,kllsk'”k””
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Cbllecting this together with the cnergy denominators gives the

compensation condition

2
“k“k ViV
( )E +Z
kuk i/ T 2 P
k’ k(“k k> (“k"k')"“q

2
|Mq I (uk”vk”" + uk”'vk” )

" v o1 e “€ If( 2”‘ '“V2//) - € lw( 2”'_ 24\») -w
K"k k" " VK K~ Yk k q
k" #k -

K A
The last term can be made independent of k by adding and subtracting

from the equation

IM By, o Sty

, 2
k'”%k k(uk k) - k'”(uk.”'- k.w)-(.l)q

This gives

‘ P 2
( 2-V2) B - quF(uk'“-k‘Vlek> IM I (ukv et Wy ) -0
R\ TR T K T L & +§: ., . =
k‘/ k' - k, +>(l)q .k' k’ -+ k + (Dq

where we have let k™ - k’ in the final term and dropped the constant
term. Renormalizatioq makes a negligible contribution in the energy

denominatofs, therefore we have used Ek and Ek'
Using the previous definitions for the gap Ak in terms of u

and Vk we find

( _ 2 _ 1 T S 3
Wty TV = L -
&§§+Ai)(§§,+Ai,)
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and

(o suv ) = 21 Stk T A’
ek T %%/ T 2 > 5. 2 2 :
V(g + ) (g - +4,0)
Using these in the compensation condition gives

e U
Gk(ui'vi) "Ek - % IMq|2 - 1 ke AkAk |
K l {(F‘i"'ﬁe{)(ii,%-i) Ek'-Ek""L‘q

Skok’ ~ ALk ! C Y
{(512:“@(51?'“51%') ot Bp 40y

Making use of the symmetry about the Fermi surface, terms odd in &

-1 -

vanish in the sum giving

' | 1 1
% Z N, :
& uk k —Ek+a>q Ek,+Ek-t~<1>q
1 1 :
+ % Ak z | + =0 .
_ Jgk'*Ak k’ Jrk,+L\k +-E Kt Ek'+,Ek+wq

We are led to make the definition of the renormalization factor N by
|2
q,,

£ = ek/yk‘ where e 1+ E o + )2;E2
k’ q Eye

' IM

1M

- Thus we have

Sk g .1 Z': gquIEEk E : IM &
“k Pk 2 2
E ’ - ..
V@i“*ﬂﬁ ko (Bt ) Jgk Jak""Ak

1 1
. |

Ek' —Ek+cnq Ek,+Ek+mq

I
o
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"T

Multiplying through by i Ak and setting Ek t{i + Ai gives

1 1
L - (e &)y + Z M, * + I =0

Kk’ "Ek""Ak { -E +wq Ek,+E'.k+cnq

= gkyk we may rearrange this to give.the self-consistent

Noting that €

gap equation

. 4 . 1 1
Ak=(1/27k)Z|M|2 s {Ek + — }:o.

, -Ek+u>q Ek,+Ek+a>q
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GLOSSARY

BCS -~ Bardeen, Cooper, and Schrieffer. The BCS theory was the
first successful microscopic theory 6£ superconductivity.
The theory accounted for the properties common to super-
conductors: infinite conductivity, Meissner effect, criti-
cal field, persistent current, flux quantization, specific
heat and.isotope effect.

CI —  Configuration Interaction. CI is a method for obtaining a
more accurate ground-state wave function by adding excited-
state functions to a trial ground-state function. Applica-
tion of the variational principle determines the degree of
admixture of excited states.

ISM =~ Intertupted Strand Model. This model seeks to explain the
optical and conduction properties of one-dimensional systeﬁs
by accounting for the effects of the finite chain length
because of interruptions along the metal-étom chain,.

KCP — Potassium Cyanoplatinate. KC?-Br and KCP-Cl denote the
square-planar cyanide complexes of platinum that afe partially
oxidized by bromine and chlorine, respectively.

MGS - Magnus Green Salt. MGS consists of chains of alternating,
square-planar, complexes of platinum with ammonia and with
chloride ions. |

MVP — Mixed Valency Planar, also Mixed Valency Platinum. ‘MVP
denotes the sqﬁare-planar complexes of platinﬁm with cyanide
or oxalate ligands that have been pa;tially oxidized because

of cation deficiency or an excess of halogen.
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RPA — Random Phase Approximation. Also known as the sum of ring
diagrams, the RPA seeks to approximate the true interaction
between fermions by accounting for the lowest-order polari-
zation process in the many body system, the creation and
propagation of a particle-hole pair.

WL — Weak Localization. The WL model seeks to explain the con-
duction properties of certain one—dimensionai systems that
have a random distribution of charges or dipoles along the
periodic potential. Because of the non-periodic potential
of the random distribution, electron states along the chain
are localized.

ZDO~SCF-MO = Zero Differential Overlap-Self-Consistent Field;Molecular
Ofbital. The ZDO procedure for determining molecular orbitals
1s an approximation that includes electron-electron Coulomb
repulsion except for those cases which_depend on overlapping

charge distributions of atomic orbitals on different atoms.
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