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I. INTRODUCTION 

The advances in cryogenic techni ques at the beginning of the 

Twent i eth Century gave impetus t o the investigation of the low-

temperature electrical properties of conduct i ng systems. It was 

general ly t hought at that time that the resistance of a metal should 

i ncrease as t he t emperature was lowered and the electron vapor froze 

to t he atoms . However, investigations using precious metals - gold, 

silver and plat i num - showed t hat the resistance near absolut e zero 

at t ained a const ant value which depended upon the residual i mpur i t ies 

o f the sampl e. I n an effort to pr oduce metallic wires of exceedingly 

high purity, Kamerlingh Dnnes sel ected elemental "mercury which could 

be di s t i lled repeatedly in ~. In December 1911, Onnes observed 

t he catastrophic los s of r esistance that characterized the super­

~ conduc t i ng state . 

Following two decades of "cataloguing the transition tempera­

t ures of var ious material s ,Meissner and Dchsenfeld observed a 

second f undamental property of superconductors: on cooling below 

the t r ansition t emperatur e, a weak magnetic field is expelled from 

2t
the inte~ior of a bul k superconductor . Several other experiment al 

ob servat i ons such as the specific heat3 and isotope effect4,5 also 

preceded the deve lopment of the first successful microscopic theory 

6of superconduct ivity -- t hat of Bardeen, Cooper, and schrieffer -­

*All r eferences are lis t ed at t he end. 

f The Meissner effect is characteristic of Type I superconduc­
tors . Type I I s uperconductors were later discovered which show a 
mixed state in which the magnetic field may penetrate the bulk 
material. 
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in 1957. With the theoretical understanding came a variety of new experi­

menta l observat i ons-- flux quant i~ation,r,8 tunne1ing,9 and others. 

The wealth of practical applications for superconducting materials 

was r ecognized f rom t he beginning, and t he list grew as new properties 

of the superconducting stat e were found. The ultimate drawback to the 

r ealization of most of these applications, however, was the necessity 

f or elaborate, costly refr igeration. By 1930 the element with the high-

o 10est transit ion t emperatur e, niob ium (9.2 K), had been catalogued. 

Searches f or higher-temperature superconductors focused on alloys, par­

t icularly t hose of niob i um; f our decades of research produced the mate­

o 11r i a l Nb Ge in thin film form with a transition temperature of 22.3 K,
3

the hi ghest currently known. * 

As t he effort to obtain materials with higher transition tempera­

tures brought diminishing r eturns, a new era of investigation was 

dr amat ically opened i n 1964 when Little proposed that superconductivity 

should occur as a result of exciton-induced electron-electron attraction 

in t he same manner as f or the phonon mechanism. l ) Because of the signi­

ficantly larger energies characteristic of the molecular excitons envi­

sioned by Lit tle compared with cormnon Debye energies, a correspondingly 

higher transit ion temperature could be expected. Soon after a similar 

14 15---' 
proposal was advanced by Gi nsb urg. ' 

The models proposed by Little and Gi nsburg entail the juxta­

posi tion of a conducting or semiconducting medium with a highly polar­

izable mat erial such as a dye. In the Little mod~l a filament of car­

bon or transition metal atoms known as the "spine" is surrounded by 

*Recent work on the same materi al raises the critical tempera-
t ure t o 23.3°K.12 

- 2 ­
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covalently bonded or comp1exed dye molecules as shown in Figure 1. 

Direct i nteract ion of el ectr ons on the spine is supplemented by 

indirect interaction through the exci tation of the polarizable side 

chains. Under f avorab le condi tions the attractiva region of the 

exciton interaction may be sufficiently strong to dominate the 

Coulomb r epul s i on between spine electrons. That such an attrac­

tive interact i on does exist 1s support ed by the observation that 

high ly polar izab l e cyanine dyes substituted on the methine bridges 

of copper porphin result i n shifts of the near-ultraviol et "Soret" 

absor ption band to lower ener gies - - up to o. 5 el~ctron vol t shift _.. 

compared with t he unsubstituted copper porphins ,_;tS 

The Ginsburg model uses similar ingredients, but it differs 

in t he spatial arrangement . The surface of a conducting material is 

coated with the polarizable material; or alternatively, alternate 

l ayers of metal and dielectr ic are placed on a substrate. The Little 

and Ginsburg model s became known as one- and two-dimensional excitonic 

superconductors, respecti vely. 

Soon after the proposals for these low-dimensional supercon­

duc t ors were pub lished, a theoretical objection arose. Noting 

that at finite t emperatures thermodynamic fluctuations in one-

dimensional systems wi th short-range forces preclude the existence 

of a phase t ransi tion to a state with long-range order, Ferreli,l7 

18 '! 19 .
Ri ce;___ /l and Hohenberg concluded that such systems could not exhibit 

superconductivi ty . I n r esponse Little proposed that persistent 

currents s t ill might occur in truly one-dimensional systems even in 

the absence of a sharp phase t ransition. 20 In the Ginsburg-Landau 

- 3 ­
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SPINE POLARIZABLE MEDIUM 

Figure 1 	 Prop~sed one-di mens i onal excitonic superconductor 
model . 
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theory, t he supercurr ent is gi ven by (~ 90/-~~ ) ,where ~ is the 

quant i zed order parameter. To dissipate a supercurrent, it is nec­

essary that t he amplitude of IV must become zero. While fluctua­

tions of ~ in one dimens i on destroy long-range phase coherence, 

amplitude f l uc t uations are highly res t ricted. Studies along this line 

21 were later Teported by Langer . A f urther response, and one more in 

keeping with the nature of r ea l systems, was presented by Dzyaloshinskii 

and Katz.22 They proposed an arr ay of f i lame~tary structur es with suf­

ficient space between filament s for an excitorticmedium and concluded 

t hat such a system would be a superconductor of the second type. 

23A further objection to the Litt le model was raised by Kuper.

On considering the l ack of screening of charges in a filamentary con­

duct or, he concl ud ed that the st rength of the excitonic attractive 

interaction woul d be insuffi ci ent to dominate the unscreened Coulomb 

repuls ion . Extendi ng the model calculation of Kuper by accounting 

for neighboring fi l aments , Davis found that static screening does 

24 occur f or such sys t ems. 

As orig i nal ly proposed, t he spine in the filamentary model would 

cons ist of carbon atoms with alternate double bonds. Ideally in such 

a s tructure the resonance of the bonds would give a half-filled con­

duction band. I n the ab senc e of a stabilizing interaction caused by 

the surrounding envi ronment , however, the alternate double bonds would 

tend t o l ocalize. Thi s same phenomenon is observed in a second class 

of compounds t hat serve as our primary spine models for the investi­

gation of one-di mens ional excitonic superconductivity. These are the 

part ially oxidized platinum chain compounds investigated independently 

- 5 ­



· 25
by Krogmann. Ear l y t heoretical arguments proposed and recent ex­

per imental evidence conf i rms t hat these linear chain compounds, 

which are metall i c conduc tors at room temperature, are subject to a 

periodic distortion along the chai n similar to the localization in 

th e carbon chain and known as the Peierls distortion (see Chapter II). 

Such a distortion , which occur s at l ow temperatures, resul ts in an 

energy gap in the conduct ion band and thus competes with Cooper pair 

formation f or t he ground s tat e. The excitonic interaction must be 

suff ic iently attractive to overcome th is competing mechanism. 

One f inal ob j ection wi th regard to the lattice stability may be 

no t ed . On ca l culating the maximum transition temperature to be 

expect ed when phonon attract ion and Coulomb repulsion are accounted 

for, as in the two square-well model of MCMillan,26 Cohen and 

Anders on found that the highest transition temperatures would not 

re sult from using the l arges t excitation enezgies possible (i.e., mo­

l ecul ar excitons); rather , t he typical phonon energies were more 

nearly the optimum energy.27 This analysis was based on the stabil­

ity r equirement that the static effective interaction for any wave 

vector must necessarily be non-negative in order for the lattice to 

be stable against def ormation of that wave vector. The strength of 

the electron-phonon coupl ing would be limited by the strength of the 

Coulomb pseudopotential , which would apply similarly to the exciton 

case. Cohen and Ander son went on to show, however, that such a limi­

tation woul d not apply if Umklapp processes, that is, short-range 

scattering through wave vect ors lying outside the first Brillouin 

zone, were allowed~ Such processes occur in t he Lit t le model where 

- 6 ­
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the polarization of the dyes occurs over regions in space smaller 

than the lattice dimensions. Similarly, Allender, Bray, and 

Bardeen have i nvest i gated the two - dimensional model of Ginsburg 

and find that the strength of the electron-exciton coupling can be 

28 
greater than that of the Coulomb pseudopotential. . This occurs in 

their model under favorable conditions . 

The organi zation of t he i nvestigation of these one-dimensional 

model systems as presented in this thesis is as fol lows. In Chapter 

II we revi ew t he current exper imental data on the platinum chain 

compounds that ar e used to model the spine. We consider in detail 

the s tatic screening calculation ment ioned above. Chapter III deals 

with the calcul~tion of the electronic properties of individual dye 

molecules and of various arrays of dyes about the spine. The develop­

ment of superconduct ivity theory is briefly reviewed in Chapter IV and 

the recent theory of Kirzhnits, Maksimov, and Khomskii29 which is used 

in t he calculations is developed in detail. Finally, .Chapter V pre­

sents the numerical method and results of these calculations, dis­

cusses the dependence of the transition temperature on the various 

parameters, and indicat es areas of t his investigation t hat allow for 

further study. 
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II . SCREENING 

A. Metal Atom Chains 

The chain of met al a toms, or "spi ne", serves three basic func­

t i ons . These are 1) to prov ide a point of attachment (atom for 

complexation ) for t he dye units, 2 ) to provide a conducting pathway· 

f or el ectron fl ow in the superconduc ting state, and 3) to screen 

the Coul omb int eraction between charges on the spine and those in 

t he dye mo1ecule ~ . 

I nvestigation of the first f unction is in the domai n of organo­

metall i c synthesis . Much nove l synthet ic work has been stimulated by 

t he r equest f or such a meta l -at om-dye system.30 ,31 Figure 2 shows two 

32ligand sys tems developed f or this purpose. While such work has 

, / 

n SnCIa II . 

e N I N-O 
. ' Rh / . ' SnCI . 3/
N ~ . ."M-. 0

Il ~ II 
/ " 

Figure 2 Li gands for metal-atom-dye systems. 
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produced several new di scoveri ef: in organometallic chemistry,33 the com­

pounds used as models in the theore t ical calculations of this work are 

t he partial l y oxid ized plat i num cyani de complexes, in particular 

K2Pt( CN)4ClO.32·2.6H20 (KCP-Cl ) and K2Pt(GN)~rO.30·2.3H20 (KCP-Br). 

MVP is us ed to designate thes e partially oxidized compounds in general. 

As di scussed l ater , the important discovery that dye molecules could be' 

complexed di r ec tly to the platinum atom reaffirmed the choice of these 

32 31 d1compounds f or the protot yp e , ' and we may expect to have s ome free om 

i n the mani pulation of these structur es. 

The ability of MVP compound s to fulfill the second func t ion is even 

bett er es tablished. We shall r(wiew the properties of these materials, 

but it may b e noted irt passing that the spine for B model excitonic 

superconduc tor need not be a metallic conductor in the normal phase. 

A semiconductor wi th a gap E g may become superconducting provided the 

superconduct i ng gap D­ is sufficiently large that the conduction band 
o 

becomes populated . Us ing the simple BeS fo+mulation, a superconducting 

phase shoul d be f ound for E < 6 in the calculation by Little,l3
g 0 

or E < D- /2 in the ca lculation by Davis. 30 
g 0 

Theoretica l inves tigat ion of the electrical properties of one­

di mens ional conducting systems began soon after the foundation was 

l aid by Bl och i n 1928 for three-dimensional materials. 35 The well ­

known Kronig-Penny model36 represented the potential at each nucleus 

by a delta func tion. Matching the wave functions at each nucleus gave 

the ei genvalues. Using the t ight -binding approximation, a simple cosine 

band shape , E( k ) (E /2) (l - cos (ka)), can be obtained for a linear 
o 

array of atoms . We sha l l see below that this result is a good approxi­

ma t ion to the b and s truct ur e in these platinum chain compounds. 

- 9 ­
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The ear l y experimental work on one-dimensional systems began with 

Hagnus Green Salt (MG S) which l~ttracted attention because its deep green 

co l or could not be explained f rom t he colors of the anion (usually red i n 

salts and so lutions ) or t he ~ation (colorless). Th~ crystal structure 

wa s determined early (1932 ),37 but the nature of the absorpt i on" was not 

inves tigat ed unti l 1951 when Yamad a measured the unusual dichroism of 

MGS38 and other platinum cyani de complexes. 39 He related the changes 

in wavelength and sharpness of the characteristic absorption band for 

light polari zed parallel t o t he pla t inum chain on changing the cation 

(Mg , Ca, Ba) to t he changes i n the distance and strength of interaction 

of t he plat inum at oms rather thnn to the interaction of the platinum 

40
complex wi th t he cation . Rundle developed the platinum- platinum 

interact i on theory using mo l ecular orbital theory, and by 1961 a re­

view of the metal -metal i nteractions in square-planar complexes was 

wr~tte· n by M1'IIer. 41 

The assignment o f t he various 5d orbitals to the observed transi­

tions in the v i sible spectra of square planar platinum complexes was 

under t aken by several investigators with conflicting results for the 

4~)-h5 43
ordering of th e energy leve ls. - The work of Fenske et. a1. in-

eluded t he first application of ligand field theory to these complexes. 

In the square planar environment the platinum 5d orbitals are split into 

f our gro ups: 

d (b ), d d (e) d 2 ( a 1 ), d 2 2 (b 1 ).xy 2g xz' yz g ' z g x -y g 

On i nvestigation of a wide variety of these complexes, Miller46 

concluded that t he 5d 2 orbital would be the highest filled level and 
z 

proposed a band picture us ing this as the valence band and the 6p as 
z 

- 10 ­
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the conduction band. At t he same time Day et. a1.45 suggested the 

pos s ib i lity of narrow band semi conduction and reported the first 

e l ect r ical measurement. 

Ot her early measur ement s on MGS and Ir(CO)2acac (dicarbonyl­

~cetyLacetoiridium ) were reported by Col l man47 who noted the 8igni­

48
ficant anisotropic nature of the conduc tivity. Atkinson, et. a1. 

studied a variety of MGS ana l ogues report ing approximate ohmic behavior 

A e-E/ kTand an ac tivat i on energy calculnted from t he expression R := 


Extending the e l ectrica l measurements to a wider sel ect i on of compounds, 


Mont eith, et . al. 49 measured squar e pl anar complexes of palladium, nickel, 


iridi um , copp er , and rhodium. They ob served that the conductivity of 


S
nd sys tems generally increas ed in t he order n:= 3 to n = 5 fo r analo­

. 47 
gous complexes as had been suggested by Collman. 

In 1969 an excellent review of the square planar complexes con­

taining metal-metal bonds was published by Krogmann. 25 He noted that 

the d 2 2 orbital shoul d lie highest, and the metal d orbitals x .-y 
50(specifically the d and d ) should be involved in back 

xz yy. 

7T-bonding with the ligand molecular orbitals. More importantly he drew 

attention to the new class of compounds which could be formed by partial 

oxi da t i on of t he platinum cyanide and oxalate complexes. 5l - 57 Krogmann 

r ecogni zed that the removal of antibonding electrons from the 5d 2 z 

orbital on oxidation wi t h Cl or Br resulted not only in stronger
2 2 

Pt -P t bonding but a lso in metallic and paramagnetic behavior. 51 Thus 

began a period of intens i ve i nvest i gation of MVP materials. Experi­

ments il~cluded r eflection and abs orp tion spectroscopy, magnetic circular 

dichrOism, dc and ac conductivity, x-ray and diffuse x-ray analysis, 

~ 11 ­
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specific heat, Mossb auer spect roscopy, inelastic neutron scattering, 

NMR , and EPR . 

The orderi ng of the 5d orbital s was soon established by Piepho 

58et. al . on measuring the magnetic circular dichroism. Their order­

ing is as follows: 

d < d ,d <: d 2 « d 2_y2xy xz yz z x

In contras t to the semiconductor behavior of the unoxidized com­

pounds, early r es ults of elect rical measurements indicated metallic 

behavior in one -dimension f or MVP compounds. Krogmann reported con­

duct i vities up to 10-2 (ohm- cm)-l in the chain direction us i ng a two 

probe t echnique . Minot and Perl st ein59 reported a de conductivity of 

4 (ohm-em)-l for KCP-Br at room temperature compared with 5 X 10-7 

for K Pt(CN)4 using a four probe technique in both cases. They also
2

reported a Seebeck coefficient of +12~v/oK indicating "a degenerate 

gas o f holes~" Noting t he r andom occupation by bromine atoms of 3/5 

the total Br sites cr ys tal lographica11y available, Minot and Perlstein 

introduced the question of the effect of this disorder on the periodic 

potent i al which would giv e ri se to the d-band structure. The screening 

calculation of th is work r esponds in part to this question. 

A second r eport on conduct ivity in KCP-Br by Berenblyum et. al.60 

gave i nformation on the ae conductivity as well as temperature depen­

dence . Meas urements f or f r equencies up to 1010 Hz gave the same con­

ductivity as dc mea s urement s above lOOoK - a room temperature conduc­

2
tivi t y of (:3.5 ± 0.5) X 10 (ohm- em) -1 being reported. On lowering the 

tempera t ure O"dc and fell off exponentially, the slope beingO"h f 
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l arger f or O"dc and l ow-tempernture activation energies of 8000 K and 

o160 K were report ed f or and O"hf respectively. This unexpectedCYdc 

r esul t was i nterpreted as indicating a nonmetallic hopping transport 

mechani sm. 

In r ep ly t o this as sertion , the Interrupted Strand Model (ISM) was 

61 introduced by Rus e and Zel1er. In real crystals metal atom chains 

are interrupted by impurities, vacancies, d~slocations, etc. Each 

s trand i s as sumed met a l l ic , but current flow between strands may 

r equire an activation energy at l ow frequencies; at higher frequencies 

the i nterrup tions are short -circ uited by their capacitance. Experi­

mental observa t ion of the optical ref lectivi~y of KCP-Br was used to 
?~ 

support this view. A Drude (free- electron)~) absorption edge was found 

f or light po lari zed paral l el to the crystal axis with a pl~sma frequency 

15hv = 2.88 e.v., and collision time T = 7.3 X 10.. sec. In addition the 
p 

temp erature ~dependent l ong itudinal conductivity extrapolated to T = 

. . 4 -1 
gave 0" =: 1.2 X 10 (ohm-cm ) which can be compared with the optical 

63 64
data us i ng the f ormula 0- = TITV( 

r) 

Gesereich et. al. found similar 
p 

65 66results and more recently f ar infrared and very low temperature 

measurements have been made. 

In addi tion to the I SM , other hypotheses were advanced 'nearly simul­

taneously. The parallel work on NMP-TCNQ (N-methyl phenazinium 

67tetracyanoquinodimethan ) led Epstein et. al. to apply the Mott-Hubbard 

model to these one- dimens i onal systems. In 1949 Mott discussed the pro­

cess whereby elect roni c s t ates of a metal would become localized as the 

68lattice separ at i on increas ed . In the metal-to-insu1ator transition 

t he decrease in e l ectroni c kinetic energy is balanced by an increase in 

- 13 ­
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the electron-electron Coulomb energy. The Hubbard mode1 69 explicitly 

t akes into account the electron correlation effects. These one~ 

di mensional conducting sy st_~ms became model compounds for comparison 

of theory and experimen~. 70-73 We shall not disc~ss this model in 

detail, but only note one result : an insulating ground state is pre-

dieted for a half-fi l led one -dimens i ona l band. The TCNQ compounds 

have insulating ground s tat es and s everal have half-filled bands. 

The Kep compounds , while poss es sing insulating ground states, do not 

have half - fi lled bands. 

195 · 74Mossbauer studi es ( Pt ) on KCP-Br by Ruegg et. a1. later 

conf irmed t he fa c t that the electrons are not localized on an atomic 

s cale even at low temperatures. Such localization would result in a 

~ (II ) (IV)
double sal t, {o.85[K2Pt (eN )),] + O.15[K2Pt (CN)4Br2])'3H20, and 

two overlapping l ines in the Mossbauer spectrum. Only one Lorentzian 

line coul d be fi t t o the data thus eliminating charge localization 

models. 

al. 75Bloch et. foc used on the disorder in the system noted by 

Mi not and Perlstein who a lso developed this theory. The random occupa­

tion by Br atoms adds a non-periodic contribution to the potential along 

the sp ine . The tesult i s l ocal ization of the electron states to within 

dis tances on the order of 30c <c = Pt-Ft distance).76,77 Conduction 

occurs along the chai n via phonon-assisted hopping18 and the tempera­

ture dependence of t he conduc tivity would be InG" '" -(T /T)fl ·with o 

~ 1/2 for t he one -dimensional systems. A replotting of the ~(T) data 

of Kuse and Zell er for KCP -Br showed a significantly better fit for 

1.1 = 1/2 t han for ~ l over 13 orders of magnitude in the con­

ductivi t y.79 
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· (0Greene and Little measured the low-temperature 1.5 to 6 .5 K) 

80specific heat of Kep-C 1. A least squares fit of the data using the 

expression C = yT + ~T3 + 5T 5 showed a very small value for 

-4 . 0 
y (.51 X 10 J /mol e K) and thus a small value for the density of 

-1stat es at the Fermi level : uf' (0) <7. 6 X lO19~m ... 3 ev This result 

was nevertheless reconcilable with both t he ISM andWL (weak­

local ization ) model s which predicted vr(O) to be of the order 

20 -3 - 12-5 X 10 cm ev • In the WL model the t ime required for the system 

t o come to equil ibrium at these temperat ure s greatly exceeds the 

measurement period. In the i nt err upt ed strand model if t he conduc­

tion is as swned t o occur only along the chains, then the crystal will 

appear 8S a distr ibution of Schot t ky anomalies, and no term linear 

in T i s expect ed . On t he other hand, if conduction around the 

interrupt ions occurs v i a hopping to neighboring chains, the slow 

r esponse time again account s for the lack of the linear term. 

The mechanism for transport between strands was at that time 

81 83under investigation by Berna sconi, Kuse, Rice, and Zeller - in an 

enlargement of the i n terrup ted strand model. The following observa­

t i ons were recorded for KCP-Br : and () (conductivities1) ()\1 
~ 

para llel and perpendicular to t he chain , respectively) were found to 

have the same temperature dependence (same ~ ), and 2 ) ~\\ (300oK) 

varied widely with sampl e while 0-.1 (300oK ) was independent of the 

sa~pl e used in the measurement . They concluded that the interstrand 

transition limited the conductivity, UI\ being determined by Cr1. and 

t he average strand length P­ This r uled out the WL model in the 
o 
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form developed by Bloch et. al.) but does allow for weak localization 

in general. In addition the ISM had to be revised to allow for hopping 

between strands using t he formalism of Mott. 

At this time t her e was a growing awareness of the applicability 

of a gener a l t heorem due to Peierls.84 In a solid it is possible to 

produc e a gap in the el 
, 

ec t ron energy spectrum at wave vector k 
~ 

by 

introducing a stat i c lat t ice distortion of wave vector '2' , so that 

the Brillouin zone boundaries are redefined at k. There is no over­

al l gain in ener gy unl e ss the discontinuity occurs at or near the Fermi 

level. In three di~ensions thi s is generally of little consequence 

since a reduction in t ransla t i onal symmetry results in an energy gap 

which is planar in k-space so that the intersection with the Fermi 

surface would occur only i n a small region. In one dimension, however, 

both the gap and Fermi level could involve the same singular region 

so that the gain in energy on distortion could be sUbstantial. 

I n a similar way a dynamic distortion first postulated by Kohn 

for three-dimensional metals can occur in a much exaggerated form in 

85 . one dimension. This ar ises from the energy conserving scattering of 

elect r ons from the s i ngul ar Fermi points at +k and -k and leadsf f 

to a divergence of t he dielec t ric function E(k) at k = 2kf . 

Renker et . a1. observed a gi ant Kohn anomaly in KCP-Br using coher­

86ent i nel astic neutron sca t tering at room temperature.

Shortly thereafter t heoretical treatments of the Peierls insta­

d..b 1. 1 . 1ty i none 1menS1on were reported .87,88 Two reV1ews. 0 f one­

89dimensional conduct ing systems were also published by shchegolev

and by Ze11er. 90 
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several recent experiments provide confirmations1 evidence for 

the Pei erls-Kohn instability. Comes et. a1. measured the diffuse 

91 x-ray scattering f rom KCP-Br. At room temperature they found a 

linear superlattice distortion of periodicity 6 X2.88 R in which the 

platinum atoms varied from the average position by a longitudinal 

sinusoi dal displacement . The wave vector for such a period has the 

value 2k • When the temperature was lowered, the diffuse x-rayf 

scattering progressively lost it s one-dimensional character below 

120oK, and i t was concluded t hat a phase transition would occur below 

77°K ( the lowes t temperature at which measurements were made) leading 

to a unit cel l 3c X 2a X 2a. They suggested that the soft phonon mode 

of a r oom t emperature giant "Kahn anomaly" transforms to a static . 

Peierl s distortion at l ow t emperatures. 

Similarly, a comparison of room temperature NMR experiments with 

low t emperature ones s upports the Peierls-Kohn instability. At room 

t emperature Rupp found a Knight shift between oxidized and unoxidized 

compounds. 92 However, at low temperatures (1.5 - llOoK) no shift is 

observed for KCP -B r by Niedoba et. a1. 93 Their observation of a 

single, narrow, t emperature-inQependent NMR line suggested the com­

pound t o be a band insulator in the ground state. 

Most recently ,· EPR experiments by Mehran and scott94 on KCP-Br 

showed g fac tors characteris t ic of d 2-1ike hole s t ates as theyz 

had previously f ound for MG S. 95 They conclude that the temperature 

variation of the line intensities cannot be reconciled to either the 

I SM or t he WL model " but can be explained in tenns of the Peierls-Kohn 

instability model . 
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A band structure calcul at i on has been carried out by Abarbanel96 

fo r one-dimen s i onal syst ems by using the multiple-scattering technique 

0of Johnson. 97 A l inear array of PtCI;1 ions was used; the 11 5 stag­

gering of neighboring compl exes wa s not included. Preliminary results 

indicated a s impie cosine 5d 2 band with band width of appr oximately
z 

3 eVe* This may b e compared with t he ana lysis of the optical data 

98of Bernasconi e t . al . On eval uating t he effective numb er of elec­

trons contributing to the oscil lator str ength as a f unc tion of energy, 

they f ound Neff(m) to saturat e at 1.67 electrons per platinum at 

hw = 2ev and to remain cons tant up to 5ev. This puts an upper limit 

on the 5d 2 b and width which is comparable with that calculated by
z 

Abarb anel for the oxidized compounds. 

I n sunnnar y, the mixed valency compounds exhibit metallic behavior 

a t room temp erature with a dynamic lattice instability, and at lower 

t emperatures a pha se trans ition occurs with a static distortion. The 

details of t he t r ans i tion are not yet clear nor is the zero order band 

structure entirely r esol ved . 

The th i r d function of the spine in the Little model for an exci­

tonic superconductor i s to scr een the Coulomb interaction between charges 

on t he sp i ne and those in t he dye molecules. This will result in a 

smaller repuls ion between the spine electrons and the negative charge 

induced in t he f ar end of the dye mol ecules. A model calculation has 

been per formed to evaiuate the ext ent of this screening. 

*More rec ent results gi ve a band width of 2.3 e.v. 
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B. Thomas -Fermi Screening 

The nature of s creeni ng in compounds which have less than three-

dimensional f reedom of motion for the conduction electrons has been 

22 23 99-101t reated by several authors . ' , The one-dimensional case is 

t reated by Kuper23 using a sing l e-filament model and by Dzyaloshinskii 

22and Katz using an array of filaments. Recently an extensive investi­

ga t ion of the dynamica l na t ure of the scr eening in one-dimensional and 

near ly one-d imensional systems by Bush99 has extended the present 

calcul at ion. 

We consider t wo models in the present treatment. The first is 

that of Kuper wh ich involves a single filament of radius Rl lying 

along the z axis. The region within the filament is designated as 

metallic and i n the absence of source charges has a uniform electron 

dens ity N ,matched by an equal uniform positive background. The 
o 

r egion outside the f ilament ha s zero charge density and is designated 

as empty. This mode l neglec ts the contribution to the screening of the 

Coul omb field which ar is es from the movement of charge in the neigh­

boring filaments . Our second model attempts to correct this by 

i ncluding the average effect of these filaments. This is done by 

add ing to the f i rst model another metallic region with electron density 

N' and corres ponding pos i tive background. This third region is coaxial 
o 

wi t h t he inner f ilament and extends from an inner radius R2 to infinity, 

t hus l imiting the extent of the empty region in the radial direc tion to 

t he r egion f r om Rl to R2 . See Figure 3. N' is chosen to repre­
o 

sent the mean dens i ty of screening electrons in the bulk material. It 
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Figure 3 Screening region geometry. 
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i s convenient t o define p ,the linear density of screening electrons 

in the z direction , which is also characteristic of the filamentary 

compound being represent ed ; p abN ' ,where a and b are the 
o 

latt ice constants i n t he x and y direc t ions, respectively. The 

density of electrons in the inner fi l ament is then related by No ~ P/TIR~. 

For syst ems we are cons ider ing , a r epres entative value for wouldRl 

be the cova lent r adius of platinum, and for R2 we would use the dis­

tance between met al- atom chains a for compounds with tetragonal unit 

cells such as KCP-Cl , or t he geometrical mean distance (ab) 1/2 for com­

pounds with rhombic unit cell s such as MgO.82Pt(C204)2·5.3H20 (see 

Table 1). 

TABLE 1. Parameter s fo r partially oxidized compounds (Refs. 25,51-57) 

Latt i ce ConHtants (~) Effective R (R) Linear
2Compound b VT;;bY Density 

a _c_ a Carriers/~ 

K2Pt(CN)4C10.3202.6H20 9·87 9·87 2.89 9.87 0.111 

MgPt (CN)4CIo.28· 7H20 14 .66 IlL 66 2·985 14.66 0.094 

MgO.82Pt(C204)2°5 .3H20 16.56 14.27 2.85 15·37 0.126 

Kl .74Pt(CN )4·l.8H20 15 .59 10.01 2·96 12.49 0.088 

Inside bulk materials the Coulomb interaction between conduction 

electrons i s modifi ed b y a wave-vector- and frequency-dependent di­

electric constan t E(k,w), s uch that the Fourier transform of the 
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potential due t o a source charg e q has the form 

~ :::: 4nq/k 2 
E (k ,(J)) • 

The evaluation of €(k , (J)) is a maj or task in itself, and for present 

purposes we shall use the result s of the Thomas-Fermi approximat ion . 

This leads to a static screeni ng cons tant of the form E l+K
2 /k2 , 

... 1
where K is the screening leng th . The results of our t reatment 

can be expected to give a good descr iption in the static limit. I n 

our second model the radial movement of charge is permit t ed in the 

outer coaxial region correspond ing to the movement of charge between 

metai-atom cha i n s in the actual compounds by hopping or tunnel ing. 

Characterist i c times for such movement, however, may be long and thus 

may place a low l imi t on t he frequencies for which we can expect this 

model to give valid res ul ts. We expect our model to give best results 

for s t at i c screening. 

We chose not t o use t he r andom-phase approximat"ion (RPA) t o 

eval uate the dielectric cons t an t because of the difficulty one can 

encounter in these one-dimens ional systems from a variety of insta­

bilitie s to which such l inear systems are prone. In particular, the 

use of an unstable Hartree-Fock s t ate as the starting point in an RPA 

calculation l eads to imag i nary excitation energies resulting in a 

screened inter action which would be unphysical.102 The Thomas-Fermi 

met hod i s less sens itive to t hese instabilities and gives physically 

reasonabl e r esul ts which depend pr incipally upon the density of the 

a s sumed ground state . 
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This Thomas-Fermi quas icl assical treatment of electron interactions 

i s based on the ass umptions that the system is in its lowest quantum 

state and t ha t the spat ial variation of the electrostatic potential 

is small over di s tances comparable to the mean electron wavelength. 103 ,104 

The app l ication of these a ssumpt ions is made in the following manner . 

We conside r the· source charge q to be located at the origin, and we 

-+denote by ~ Ct ) the el ectrosta tic potential a t r . The electron 

dens i ty i s modifi ed by the presence of the charge so that the new maxi­

mum k i netic energy Ef + e¢(r ) , which varies in the metallic region, 

gives rise t o a variation of the charge density, 

N("t ) == -e (8rr/3h3)[2m(e~+E )]3/2 
f 

Poisson 's equa t ion then gives the second relationship necessary to 

determine N( t ) , 

::;::if~ -4TI[N(r)-N ] - 4nq5(r)o 

Expanding f or small values of ¢ compared with E , we have
f 

ifrp f(2('p - 4TIq5 (r) , 

where 

2
4me2 22 1 / 2 

K ; (2m/h2 )3/2 E (3N / TI )1/3
f o112 

or more gener ally 

K2 4ne2 ,/II"(0) , 

where ur(O) is the density of states at the Fermi surface. 
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The basic prob l em is t o find solutions to the differential equation 

if(/) K2(f) (1) 

subjec t to boundary conditions which w~ll depend upon the particular 

model . Since both models have cyl indrical and reflection symmet ry we 

use cylindrical coordinates , and ( l) becomes 

02f!v 1 ~ a2
(f) 


-+- -+- ::: K2(J;J (2 ) 

OR2 R oR 0z2 

which is independent of the angular coordinate and is separable in R 

and z 

(!>(R,z) ~J(R) Z(z). 

Thus, 

1 ()'::lZ 
I) 

- cl'" - 27 (z) (JZ 

and 

. 2 
1 ~ 1 ~ 2 o~ (R) 

(d 
OR2 + ; oJ -(K +ci) 

Soluti ons for the z coordinate are 

Z(z) cosaz , 

which are even f unctions of z due to reflection synnnetry through the 

z = 0 plane. Solutions of the radial equation are the modified Bessel 

222functions of order zero , I (~R) and K (~R) ,where ~ = K + a .o 0 
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Each val ue o f a gi ves a linearly independent solution to (2), and 

t he general solution fo r a metallic region is the integral 

~ (R, z ) = f
o::l 

tAl (0:)1 (rw) + B1 (O:)K (flR)] coso:zcb · 
0 o 

o 

In the case o f the metallic r egi on of t he coaxial surrounding cylinder 

we replace ~ by 13' = (K,2 + ci) )l/2 , using the initial uniform density 

of e l ectrons appropriate for t hi s region to determine K' the coef­

ficien t s are t hen AlII (a ) and Br l l (a ) . For the empty r egion 

K = 0 , and we have the genera l sol ut ion 

00 

~ (R , z) (0: )1 (a R) + B (0:)K (aR)] cosazcbf [A 11l 1 0 o 
o 

We determine t he various coefficients Ai and Bi by app l ying 

the boundary condi tions. For both models we require the limiting form 

of t he potential as r = 0 t o b e 

lim r~( r) q , 
r+O 

where r = (R2 + z2 )1/2 . In this limit I (I3R)+l , and the potentialo 

reduces t o the second t erm 

lim r~( r ) -+ r f
00 

B1 (O: )Ko (f3R) coso:zdo: 
r+o o 

Choosing Br (a) t o be independent of. a gives 105 

r~( R, z ) B TIe- Kr /2r 
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so that 

lim r~(R,z) Br 'IT/2 
r +O 

Thus BI (a) ~ 2q/TI . The solution ~(R,z) scales with q and for 

our ca l culations we use q 1 th r oughout . 

The behavior as r..,. 00 is a l so th e same in both models, and we 

requi re that ~ .. 0 as r .... 00 Since I is unbounded as i ts argu­
o 

ment increases, we mus t have A.(a) = 0 ,where i = II for the fila­
l 

ment model and i III for th e extended model. 

The application of t he rema ining boundary condit i ons r equires a 

separ at e t r eatment in each case although the general requirement can 

eas i.ly be s tated, that is , we r equir e the potential and its normal 

deri vative to be continuous across each boundary. 

In the single filament Case requ i ring ~ and ~/dR to be 

continuous at Rl gives a pair of linear equations to be solved for 

A1(CX) and BII(a) 

Io(~Rl)AI(O:) - Ko(aRl)B1r(a) = -(2q/'rr)Ko(f3Rr ), 

f3 I 1 (SRl )A1 (a ) + aKl (aR1)B1I(a) := S(2q/TI)Kl (t3R
1 ) 

The so l ut ions are 

2q f3 Ko(aRl )Kl(SRl ) - aK (f3 R1 )K1 (aRl ) AI (0:) 
o

TI f3 Ko (aRl) I l(f3Rl) + aKl(aRl)Io(f3Rl) 

2q SIo (f3Rl )Kl(SRl) + f3Ko(f3Rl)Il(f3Rl) 
BII (0:) 

TI K (aR1)I1(SR1) + OKl(aRl)Io(f3Rl)o

In the case o f the fi l ament and coaxial cylinder there are two 

boundar i es and thus four l i near equations for the coefficients Ar(a), 

- 26 ­



The solutions areAII (a), BII(a), and BIII (a) . 

.. ~ l{ (f3R ) - Io(cxR1 ) ... K (aR ) 0 
7T 0 1 o 1
 

gg ' ~K (~R ) -all (aR ) aK (aR ) 0 
7f 1 1 l 1 1
 

1 

AI (a ) = M(a ) 


0 10 (aR2 ) Ko (aR2 ) . _KO(~/R2) 

0 a ll (CXR ) -oK (oR ) ~/K (~'R )
2 1 2 1 2 


10 (SR1 ) 
- gg K (t3R ) -Ko(oR1 ) 0 

7f 0 1 


t3 Il ( ~Rl) 29. 0K (I3R ) aK (aR ) 0
'rr 1 1 1 l
 

. 1 

AIl (a ) = M(CX) 

0 0 Ko (aR ) -Ko (t3'R2 )2
 

0 0 -oK (aR ) ~'K (f3'R )1 2 1 2 


10 (~Rl ) -I o(cxR1 ) - gs K (f3R ) 0
TIO 1 


f3 I 1 (f3R1 ) -a I (aR ) ~ 13K (t3R ) 0
1 1 TI 1 1 


1 

BIl (ex) = M(ex) 


0 10 (CiR2 ) 
0 -Ko (~/R2) 

o a ll (cxR2 ) o ~ 'K1 (~'R2) 
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10 (~Rl) -Io(aR1 ) -Ko (aRl ) 
- gg K (~R )

7T 0 1 

~ Il(~Rl) -all (aRl ) aKl(aRl ) 
gs fjK (I3R )
7T 1 1 

\ . 1 
B111(a ; = M(a) 

0 I (aR
0 

) Ko (aR ) 0 o c:.. 2 

o a ll (aR ) -oK (aR ) . o
2 l 2 

where 

10 (13Rl ) - 1 (aR ) -Ko(aR1 ) o 
0 1 

f3 I I (I3R1 ) -a ll (aR l ) aK1 (aRl ) o 

M(a) ­

o 10 (aR ) KO (aR2 ) -KO ((3' R )
2 2 

o a ll (aR2 ) 
..o:K (aR ) f3'K (f3'R ) l 2 1 2 

The integrals i nvolved in the computation of the potential were 

performed by numerical quadr at ure. The lower limit of zero was replaced 

by l O- 5K• For smal l val ues of a the integrand is well behaved for 

regions i n which K I 0 . I n the empty regions the integrand is domi­

nat ed by t he Brr (a)Ko (dR) tenn for small a} since K (aR) ex: -lnaR . 
o 

The coef f i cien t BI1 (a) , however, varies as (-lruYRl)-l so that in this 

cas e t he int egr and is well behaved a1$0, and we can cut off at the lower 

limit l O-5K. For large a , the A. (a)I (aR) or A. (ex)I ((3R) term 
1. 0 1. 0 
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-2aR 
dominates for i == I or II . On(~ f lnds that Ai (a) ex:: e i. so that 

-()~( 2Ri -R) 
the product varies as Ai (a ) Io (C~) e , which is less than or 

-aR equal to e s ince R ~ R . The portion of the integral fori 

a > 5K contr ibutes approximately 

00 

f
5K 

e 
-aR cIa (l /R ) e -5KR 

For -1R > K this will be neg l igible . 

The integr al fr om lO - 5K t o 5K was calculated using Simp son's rule. 

In addi tion the integral was bounded above and below by rectangles whose 

areas were also computed. In thi s way er ror limits could easily be placed 

on the value for the integral. Typically a grid of 1100 paint s was used 

whose spacing was constant throughout a given section, there b eing gen­

era lly t en cont iguous sections chosen to minimize the computation time 

whi le retaini ng suf f i cient accuracy. Maximum error for the integral was 

l ess t han 5~ f or most cases; t he error increased as z increased. Ca1­

cu1ations with ver y f ine grids (10,000 points) showed that the actual 

error wa s gener al ly less than o.li . 

KCP- CI i s a typical compound which we hope to describe by this 

method. The latt ice i s tetragonal with lattice constants a:::: b = 9.87 R 

and c 2.89 R .25 The formal oxi dation state of the pl atinum is +2.32 

giving 0.32 hol es ! Pt for screening. Thus in a chain of platinum atoms 

he l inear density is p:::: 0.111 holesjR For a 	 filament of radius 

21
RI = 1.295 R thi s gives a density N = 21.2 X 10 holes/cm3 and a 

K = 1.14 R-1 
. I n the bulk material wher e there is one platinum chain 

in a cros s sect i on of 97 .4 ~2 the resulting density is much lower, 

21
Nt 1. 14 X 10 holes/cm3 gi ving K' = 0.88 ~-l • This is the value 

o 
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for t he reciprocal of .the screening length in the bulk material, that 

is , in the metal lic r eg i on which extends outward from an inner radius 

R2 ~ 9 .87 ~ , the distance b etw(~ en platinum chains. 

A di fferent "ef fective" charge density could also be used if one 

wished to take i nto account the e f fect of the random distribution of 

the chlori de ions . Their random di stribution should result in an 

increase in the bandwidth of the par t ially filled 5d 2 band of the z 

platinum a toms , t her eby gi ving a smaller dens ity of states at the Fermi 

level ./V(O) , ef fectively reducing t he density of screening charges in 

2 K,2the material , and resulting i n proportionate decreases in K and 

One could also superimpose a uni form background dielectric constant E 
o 

by inc luding it in the substitut ed Poisson's equation 

E if-~ Kc
l 

<]) _ 4'lTqB( r ) 
o 

2 2/ . .Thus K would b e replac ed by K E ,or equivalently the effective 
o 

linear char ge density wo uld be given by p/€3 , since K 
2 varies as 

o 

the cube root of p The source charge q would then be replaced 

by q/EO · 

Prel i minary cal culations , us i ng the covalent radius of platinum 

f or Rl ' confirmed Kuper 's suggestion that an effective radius smaller 

than the covalent radius should be used to account for the absence of 

screening wi thin the filament due to radial or azimuthal adjustment of 

the elect ron gas. The phys i cal system has the source charge distributed 

throughout this r eg ion in the atomic orbitals of platinum rather than 

concentrat ed at the center, and thus there should be only a slight 

reduction in t he potential f rom the Coulomb value at R , the surfacel 
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of the cylinder. The effect oE reducing the radius of the filament 

bel ow the covalent r adius (1.29 ~) R) was examined by computing the 

sc reening for t he smaller values of R1:O.l, 0.01, 0.001, 0.0001 ~ • 

In ·each cas e the linear density p r emained constant giving increas­

ing va l ues of K with decreasing f i l ament radius. Using values of 

Rl less than 0 .1 R resul ted in a potentia l at R = 1.295 R whi ch 

wa s l e s s than the Coulomb potent i al by about 10% fo r both models. 

Al l ca lculat ions were repeat ed us ing va l ues of Rl from 0.1 to 0.001 g. 

The r esul ts f ot Rl = 0.01 , 0.001 , and 0.0001 i were f ound to be essen­

tially i dentical. In t his manner we are able to take into account the 

cont ribution from. screening due to movement along the filament while 

exc l uding that due to transverse motion. 

We have calculated t he screened potential in the z = a plane 

for a l arg e range of radi al di stances for both models. The results 

are shown in Figure 4. The pot ential screened by the filament alone 

lie s just below t he unscr eened Coulomb potential and shows no exponen­

tial decay out side the f ilament. On the other hand, the potential 

screened by both the !ilamen~ and the outer cylinder falls away from 

the Coul omb potential i n the r eg ion between the filament and cylinder 

even though K = 0 in this region. The potential was found approxi­

mat ely to fi t the funct i on 

z=o
-K R 

~ ( R, O) Ae ef f /R 

2=0in this empty r eg ion , with 0.111 R- l The fully screenedKeff 

potential shown in Figure 4 i s the usual result for the bulk material. 

It can be s een that the potent i a l screened by both regions lies between 
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Figure 4 Potent ia ls in the z 0 plane. 
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the Coul omb potential and the fully screened potentiai. 

The r emainder of the calculations were done only with the extended 

model, since the Kuper sing1e-screening-region model showed results 

.qual i t atively very s imil ar t·o t he unscreened Coulomb potential. The 

extended model , which account s for the presence of the neighboring 

chains, is expected to give res ul ts more directly applicab l e to the 

calculation of t he eff ective inter action as given in Chapter III. 

The ani sot r opy of t he potential in the extended model was inves­

tigated by calculating the pot ent ial at a grid of 80 poi nts with R in 

the range 1.295 - 5 ~ and z in the r ange 0 - 15 2. Thes e r esults wer e 

fitted by least squares to the function 

-Keffr . 
~( R, z) Ae /r , 

2 2 1 /21;"here r (R + z ) • It was found that this isotropic function 

provided an excel l ent fit with error generally less than 5% and nearly 

a l ways l es s t han l5~ throughout the region. Table 2 shows the results 

for Kep-Cl. The insensitivi ty of the effec t ive reciprocal screening 

lengt h to orders-of -magnitude changes in Rl is clearly evident. Thus 

the screened potential due to a unit source charge in a platinum chain 

can be describ ed by the equation 

~( r ) 1.18 e-O.135r/r 

for the r egion between chains. 
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TABLE 2 . Screening in 1( ;) Pt(CN))~CIO.32· ~~ . GH20 

(p :: 0.111 holes f crn3 	
K' == 0.88 ~-1 R2 == 9.87 ~) 

K AR1 Keff 

0 .1 	 3.36() 0-952 0.1421 

0 .01 7. 25t) 1.168 0.1356 

O ~ OOl 15.633 1.183 0.1344 

0 .0001 33 . 680 1.186 0.1346 

Other compounds similar to KCP - Cl are known which have di f ferent 

value s f or the f ormal oxidat ion state of Pt and also different lattice 

constant s. Table 1 gi ves several examples. In order to investigate 

the effect of varying t he l inear density and the nearest-chain dis­

t ance , we computed the potentials at the same spatial grid of points 

for values of p varying from 0.08 to 0.10 carriers~ and R2 vary­

ing f rom 10 to l5~. Tab l e 3 shows the results for Keff obtained 

by least - squares fit and averaged over t he three smallest va l ues of 

Rl • We see that t he var i a t ion o f p has little effect on the 

screened potential , at least within this small range. Of course, as 

p + 0 the potential mu st approach the Coulomb potential, Keff ~ 0 . 

Variation of the interchain di s tance has a more pronounced effect; 

as the di s tance increases by 50%, the average effective reciprocal 

screening length decreases by 50% . The variat i on is smooth and is 

describab le by the f unction 

Keff 0.1318 ~ O ~ 0 1549(R2 - 10) + 0.OOl009(R2 -10)
2 

. 
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TABLE 3 . Keff for Extended Model 

R,) (R) 
c... 

p 

Carr i er sfi 10 11 12 13 ll~ 15 

0 .08 0 . 132 O.lHI 0 . 10~· 0 .091+ 0.086 0 .079 

0. 09 0.132 0 .117 0. 105 0 .094 0.086 0.079 

0 .10 0 . 132 0.117 0.105 0.095 0.086 0.079 

For t he compounds with unequa l la t tice constants a and b . the 

geometrical mean can be used f or R2 ' thus giving the c orrec t dens i ty 

o f s creening charges in t he bulk region N' 
o • 

A third model was a l so i nvestigated to a limited extent . In 

thi s we attempted t o t ake into account only the four near est-

nei ghbor fi laments by rep l ac i ng them by a metallic cylinder of finite 

extent in the radi al direction . The inner radius R2 = 9.7 ~ and 

outer radius R3 = 10 .04 R were chosen so that the cyl inder's average 

radius was t he interchain distance and the cross - sectional area was 

f our t imes that of a f ilament with covalent radius. The value of K 

appropr iat e f or t he platinum chai n was used in both the filament and 

t he finite cylinder. It was found that scr eening in the finite cyl­

i nder reduced the po tential below that of the filament alone by about 

5%, but did not result in t he exponential decay found for screening by 

a filament and inf inite cylinder. It appears that the addi t ion of a 

l arge number of concentric finit e cylinders would result i n the screen­

ing produced by the infini t e cylinder. 
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Scr eening i n mater i al s which are char acteristically one-dimensional 

cannot be de scribed by r es ult s from models which ignore the three-

dimensional nat ur e of t he b ul k mat er ial. I ns t ead, screeni ng is i nter­

mediat e between that for a single fil ament and that for bul k screening. 

The close rel ationship to bulk screening is shown by the isotr opic fo rm 

of the screened potential , as. ha s also been ob served by Visscher and 

Falicov99 i n the two-dimensional case . As men tioned above this result 

bears directl y on t he problem of finding the fi eld due to a random di s­

tribut ion of char ges such as the chlori de ions i n Kep-CI . A much 

narrower potential distribution i s exp ected in the case where screen­

ing is substantial, since in that cas e on l y near est-neighbor contri­

butions would be significant r ather thart Coulomb contribut ion s fr om 

sites l ocated many cel l s away . 

In the investigation of the superconducting transition temperatures 

for model organometallic systems composed of a spine surrounded by dye 

molecules , we shal l employ the results of this chapter to account for 

screening of the Coulomb interaction due to nei ghboring spines. We 

shall compare the trans i t i on t emperatures of these Cases to those for 

which the neighboring spines ar e neglected. 
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III . EXCI TONIC SYSTEMS 


A. I nd i vidua l Dye Molecul es 

The dye molecules wh i ch s urround the spine in the Little model 

for an excitonic superconductor modify the direct Coulomb i nter ac tion 

due t6 the vi r tual exci t ation of the dyes. In this chapter the method 

for calculating the new effective interaction, veff(q,ru), will be 

described. Part s of t his method have been discussed in the litera­

ture 1-6- 111 . 
th

The wave f unction f or t he n eigenstate of a dye may be wri tten 

Ifn (r l' r , ..• ) . When combined with other dyes in an arr.ay the dye-dye
2 

inter act ion re sul ts i n a band of energy levels for the system whose 

ground s tat e wave function may be written in the form 

1 " i qR 
':t' (q ) £fi? ~ e j ~ (r -R R )o -V j 0 1 j,r2 - j' .•.

N 

The ground s tate and low-lying excited states of the system are used to 

calcul~te the ef f ective interaction. The method for calculating single 

dye wave f unctions will b e described first, followed by the method and 

re sult s f or t he array of dyes. 

The cyanine dyes under consideration are large conjugated molecules 

whose polari zab ility arises from the extended n-electron system. See 

Figure 5. The to ta l numb er of atoms ranges from 27 to ~ 60 with each 

dye having 2 ( in some cases 4) nitrogen atoms and approximately equal 

numbers of carbon and hydrogen. Since the relevant electronic proper-

t i es ar ise primarily f r om t he 'if-electrons we wish to treat these 
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Figure 5 Dye molecul es used in model system. 
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electr ons in as accura te a manner as is computationally feasible. We 

begin by assuming a fixed nuclear configuration and 0- - 7T separa­

bil i t y. 

The calculation of t he gr ound state and low· lying excited states 

proceeds in three separable stages. The initial stage is a Hucke1 

ca l culation f or the mo l ecular or bitals using a Linear Combination of 

Atomic Orbi tals (LCAO ) bas is set built fr om atomic 2pz orbitals. 

The second stage is a Zero-Di fferential-Overlap (2DO) approximat i on , 

modi f ied to account for many-body 'rr-elect r on correlation effects. The 

f i nal st ep is a conf iguration interacti on (CI) calculation involving 

generally 4 or 16 configurat i ons . The methods and parameters for each 

o f these wil l now be descri bed bri efly paying particular attention to 

the many -body modification of the second stage. 

The Huckel method i s a single particle approach in which the 

molecular orbi tals are eigenvectors of an effective Hamiltonian: 

Heff (r) - (rl;-~ /2m)if + veff(r) 

The potent ial seen by the electron accounts for the attraction due to 

the nucl ei plus the r epulsion due to an average distribution of all 

the el ectrons. The Hamiltonian is characterized by its matrix element s 

which are related to empi r ical quantities. The Coulomb i ncegrals, 

112 Iex :::: HOi' are t aken as the s um : ex. -W + l . .V. 2 where Wi is 
1. 1. t 1.1. 1. 

the i onization potent ial , l .. is the repulsion integral for two 
1.1. 

n-electrons on the same atom, and V. is t he valence. Throughout this 
~ 

work the following values have been used: We 11.2, WN =: 24.7, 

lC = 10 .6 , and YN = 13·3 a l l i n e.v. Also Vc 1 and VN =: 2 . 
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Thus == -5.9 and ~ - 11 .11 e.v. for the Hucke1 calculation. TheaC 

resonance integral s, ~ H ,are taken to be zero for han-bonded atoms r s 

r and s . For bonded a toms varia t ion of ~ with environment is taken 

into ac count . In the aromat i c rings the resonance integrals are 

ScC,ring = -2· 30 and ~ CN = - 1 080 e .v. The twis t i ng of the r i ngs 113 

relative to one another lowers t he integral. The expressionSCC, chain 

~ = S cos 9
114 

can be used to approximate the resulting integral. In 
o 

this wor k SCC, cha i n = - 1 .40 e.v. was f ound to give good agreement fo r 

the simpl es t cyanine dye and was used i n all cases, This corresponds to 

a twist of ~ 50o at each chain carbon. 

Zerot h order mo l ecular orbitals determined in the Huckel ca lcu1a­

t ion were then us ed in the zno calculation of the second stage. The 

closed she l l Fock Hami ltonian for 'TT­ electrons is given by F 
rs H

core 
rs + 

2Jrs - Krs or more expl icitly: 

Frs = H~~re + I: I: Ptu 1(<t>;(1)Q)s(1)\e?'/r12 \<p;(2)¢u(2) 
t u 

2
- ( 1 j 2 ) ( ¢ ; ( I ) ¢ t ( i ) Ie / r 12 I<p: (2 ) ¢ u ( 2 ) ) 1 

H
core 

where i nc l udes the nuc lei plus ~-electrons, p == 2"'c crs tu LJ kt ku 

is the bond order, (¢; (1 )¢s( 1 )\e2/r121¢;(2)¢u(2) is t he two-electron 

Coulomb integr a l , and (<t>;(l)¢t( 1) le2jr121¢:(2)¢u(2) is the two­

electron exchang e i ntegr a l . 

The zno met hod introduced independently by Pariser and Parr1l5 ,116 

l 17
and by Pople employs the fo llowing simplifying assumptions:1l2 

1) Atomi c overlap is neglect ed, S 5 rs rs 
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Rcore
2 ) ~ core (r ~ s) 1.s neglected if r and s are not r s rs 

bonded atoms . I n theory the core integrals differ 

f r om the resonance integrals of Huckel theory since the 

latter include a cont r ibution from the potential of the 

smoothed-out dis tribution of Tr-elect r ons. For this work, 

core Showever, we set using the different values for~rs rs 


chai n , r i ng , and heteroatom bonds. 


3) < 4l~E- (l)4>(1 )' e2/r1214>1~( 2 )4> (2 ) = 5 5"1 • Two- electron r stu rs tu rt 

i nt egrals which depend on overlapping charge dis tributions 

of atomic orbital s on different atoms are neglected. Thus 

off- diagonal Coulomb integr als vanish as do the "proper" 

atomic exchange i ntegrals. 

With t hese assumpt i ons t he off-diagonal Fock operator becomes 

sFrs (r f s) ~ - (1/2) Prs"lrs rand bonded,rs 

-(1/2) Pr s 1rs rand s not bonded . . 

The diagonal elements are t hen 

core
F = H + ~~ p ~lOt <¢~~ ( l)¢ (1)\e2/r121¢~t~(2)4> (2)r r rr ~~ tu u r r ' u 

t u 

-(1/2 )Otr5ur (¢;(1)4>t(1)! e
2 

/ r 12 14>;(2)¢u(2)] 

core 
= R + (1/2)q Y + ~ qt ' rt rr r r ~ 

Rcorewhere i s the charge density at a t om r , andqr == Prr rr 

includes the kinetic energy plus t he potential due to the nuclei and 

core . .cr-electrons. H Can be Sp I l t 1nto two parts as was done for the rr 

Huckel calculation. The first ter m, -w. , is the kinetic energy plus
1 
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the core potentia l (n ucleus, inner shell and cr-electrons) at atom i. 

The second term gives t he potential due to the cores of all other 

atoms , j From a di stance these wi ll appear as localized positive 

charg~~ of magnitude given by t he val ence, V.• Their contribution . J 

is 

so t hat H
core w ­- L Vj l'ij ii - i E vj Yij 

j/i jli 

The bas i c equa tions are then 

Fi i = -We + (1/2)q. y.. + ~ (qi -Vi)Yjj1. 1. 1.1. £...i 
j/i 

Fi j 6ij~ij - (1/2 )YijPij 

where = 1 if i and j are bondedL}ij 

o otherwise. 

The s ecula r equations are· 

(F ii - Ek )ck i + ~ FijCk j 
o 

jii 

Empi r ica l values f or Wi and t3 ij are the same as used i n the Huckel 

calculation. 

It i s at t hi s point, where empirica l values for the and:ti i 

empirical expres s ions for the y. . are introduced, that a modifica­
1J 

tion of the ZDO procedure is made. Expres s ions for yij such as the 

ll6
Paris er -Parr polynomia l i nterpo l at ion formula and the simple 

e
2

/ (r .. +a) expres s ion of Ni shimoto and Matagal18 attempt to account 
1] 

for cr- screening of the i nteraction between TI~electrons on different 
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atoms. However, in the large conjugated systems ~"hich are under con­

sideration, TI~electron scr eening must also be taken into account in a 

consistent manner. 

The i mportance of many-body TI-electron correlation effects has 

been demons trated by Little in t he fo l l owi ng way. A tes t charge was 

l aced a t r wi thin the boundary of a large conjugated molecule,
l 

resulting i n charges being induced on the atoms r' . See Figure 6. 

r 1 -- ...... 
rl 

r 
2 

Figure 6 Induced charges in conjugated molecules. 

The net potent i al at point r is then given by the sum of the poten­
2 

tial due to t he t est charge and induced charges which were determined 

by a s tandard ZDO -SCF -MO calcul<ltion using Mataga's expression for 

f'ij . Due to the finite si ze of the molecule (lack of translational 

invariance), the effect ive potent i al, V(r
l
,r ) , depended on both r

2 l 

and rather than - r21 The effective potential determinedr 2 \ r l 

in thi s manner wa s used in a subsequent calculation in place of Mataga's 

expres s ion. Compari son of these re sults with observed spectra show 

substantially better agreement than r esults fr om using either Mataga's 

expression or the Pariser-Parr expression al one. 
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A stra i ghtforward procedure for incorporating this many-body 

correl at i on effec t in a ZDO - SCF-MO calculation has been developed by 

108- 110 .Little and Gut fre und . It i~ based on the Random Phase Approx1­

119-121 mation developed by Gell-Mann and others for a dense electron gas . 

A brie f physical description i s given below4 

The ground state of the' sys t em 11' ) is first det ermi ned by t he 
o 

Hucke! MO method . A limited set of exci t ed states, formed by exci t a­

tion of a part ic le f rom an occup ied state a to an unoccupied state i 

is us ed to expand t he perturb ed s t ate /"1') which resul ts from p lacing 

a t est char ge within the molecul e at r l 

1"1'0 ) + 2 " I\f. ) ('¥ial V (r1 ,r" )I'¥)1"1') (3 ) L..J 10; 
-Ei,O: ia 

Th e factor 2 account s fo r the sum over spins. Note that the net poten­

t ial , given by 

V( r ,r ) v ( r l ,r2 ) .+ ~ oq(rl,r' )vo(r l ,r2 ) 
(4)

l 2 o 
r 

is used in the matrix e lements between Huckel st at es~ (V (ri,r.) , the 
o J 

unscreened i nteraction between TI~electrons at r. and r. , is given by
1 J 

Mataga ' s expres sion for and thus includes ~-screening.) On using Yij 

(3) to evaluate the induc ed charges we obtain 

5q (r 1,r / ) = -4 L: [f 'l'i ( r " )V(r1,r" )'Ya(r" )dr ll 
] (l/E )'I'i (r' )'I'a(r/)ia

i ,et 

where E = Ei - EO; is the excitation energy. Using the Hucke l LeAOia 

coeff icienti we may writ~ t hi s as 
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""" (CirIlCar,/I)(,Ci ,e 1)1
nq(rl , r' ) l.: V( rl ,r" ) • )1, L.J 	 r ar ( 5 ) 

i a E - E ' 'r" 	 , i (1, 

which g ives 

oq (rl,r ' ) l.: v (r l' r") II (r", r' ) (6 ) 

r " 

on substituting the express ion f or the mutual polarizability, 

TI ( r " ,r') . Us ing (5) in (4) we have 

V(r1,r2 ) v0 ( r 1 ' r 2 ) + l.: V ( r I ' r II) II (r II , r I )V 0 ( r ' ,r2 ) 
, /Ir ,r 

which can be re~ritten 

L: V ( r I ' r" ) [or II , r 2 - l.: IT ( r 1/ ) r I ) V0 ( r' , r 2 )] = V0 ( r 1 ' r 2) · 
r " r' 

Defining R(r",r	 ) by t he t erm in the brackets gives in matrix nota­
2 

tion 

v · R ::: V 
o 

and t hus 

-1
V :::: V . R 

o 

Thus the e ffective inter~ction between TI-el ectrons, y •. , used in the 
~J 

SCF-MO calculation i s determined for all pairs of points fr om the bare 

interaction, V , and the effective dielectric func tion R • The 
o 

expressions f or the elements of the secular equation becomes 

-w. + (1/2 )q .Y . . + ~ (q ... v. fr ..Fi i 1 ~ ~ ~ 	 ~ 1 J JJ 
j /i 

F i · ::: 6i'~i' -	 (1/2)Pi'Y " J J J 	 . J ~J 
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Orb i t a l s and exc i tation energies obtained in the modified ZDO­

SCF-MO calculation are us ed in a configuration interaction calcula­

t i on i n the third stage. In the CI calculation the TI-electron cor re­

lation ef fects are accounted fo r to a certain extent through the use 

o f an int erac t ion, V , screened by hi gher exc itations. The effect ive 

interaction, V, was calculated i n th e s t atic limit since the magni­

tude of the tes t charge was cons tant with time. In the calculati on of 

the excit ed s t at es an excited configuration mixed with the ground stat e 

corresponds to t he oscillat i on of charge with frequency ill EiCX/n . 

Thus the f requency dependent mut ual polarizab i lity ' shouid be us ed 

in (6), and damping effects should be taken into account as well. In 

the CI method developed by Litt l e and Gut freund, a simplifying ass ump ­

tion i s intr oduced in calcul ating the low-lying excited states. 

Generally only t he lowest- l ying excited singlet state is required for 

present pur poses. Transi t ion di poles f or other excited states are 

too smal l to give a substanti al contribution. Thus the configuration s 

may be divided i nto two sets , t he fi r s t containing low- l ying single-

part icl e configurations , the second cont aining all other configura­

i ons . The inter action between members of the first set is then 

calculated by allowing fo r v i rtual excitations in the second set only. 

The frequenci es of these higher exc i tations will be $ufficient ly l ar ge 

that the static mutual pol ar i zabil ity, calcul ated by summing only over 

excitations of t he s econd set , can be used. 

Us ing th is effective interact ion , t he energies of the low- l yi ng 

excited states were calculated along with the transition densities f or 

each of the dyes considered in t hi s i nves t i gat ion. Table 4 shows t he 
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r esults for the l owest-ly ing excited state only. Due to the symmetr y 

of th e phenant hr oline molecules the lowest-lying state results in the 

ni trogens of the phenanthrol ine ring having opposite charges. This 

will give negli gible contribut i on t o the effective interacti on. The 

second and f ourth excited stat es , both of which are list ed i n Tab le 4, 

result i n l ike charges on these ni trogens. Examinat ion of the dipole 

moment s shows that the higher of th ese two ha s the larger moment, and 

only t his state i s used in subsequent calculations. 

B. Arrays o f Dye Molecules 

Wi t h the wave f unctions, energi es, and t ransition densities of 

the individual dye units, a calculat ion of the band of energies 

r esulting f rom dye-dye interactions between dyes placed along the 

linear spine can be made . The wave functions for. an excitation in 

a periodi c array of N uni t cel ls with a dyes per unit cell is given 

by the Bloch func t i on 

iqR 
~ ( q ) == (l/~) ~ SC~l¢v(Rml)e m 

mlv 

where ¢v(R 1 ) == ~0(R11 ) · 1!rV (Rml ) ... "¥o(~) is the configuTationm

in which t he molecule at is in the exc ited state '¥v ' all othersRml 

b eing i n their ground s tates. The ener gy, SE(q) , and coefficients 

SC~i ' are determined f rom the equation 

H Sp (q ) ::: SE( q ) S,¥(q) t ot 
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TABLE 4. Molecular Transi t ion Densi t i es and Transition Energy 

Pyr i dine Pyridine Pyridine 
Cyanine Carbocyani ne Dicarbocyanine 

Atom E = 2.6986 e. v . E :::; 2.0391 e.v. E = 1.6811 e. v . 

1 0 .0364 0.0310 -0.0254 

2 0. 0647 0.0594 -0.0553 

3 0 .0467 0.0550 -0.0526 

4 0.0274 0.0262 -0.0236 

5 0 .0506 0 .. 0313 -0.0258 

6 0 .0562 0.0474 -0.0475 

7 0.0001 -0.0332 0.0208 

8 -0 .0574 -0.0004 0.0009 

9 -0.0506 0.0331 0.0001 

10 -0.0270 -0.0310 0.0002 

11 -0.0480 -0.0)+72 -0.0201 

12 -0 .0627 -0.0550 0.0476 

13 -0.0365 -0.0264 0.0231 

14 -0.0310 0.0255 

15 -0.0590 0.0546 

16 0.0522 

17 0.0253 
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TABLE )l (continued) 

Cyanine Carbocyanine Dicarbocyanine 

Atom E = 2. 1822 e . v . E ::~ 1.7915 e.v • E = 1.2275 e·,v. 

1 -0.0419 -0.O361l 0.0302 

2 -0.0209 -0.0210 0.0181 

3 -0 .0090 -0.0116 0. 0102 

4 -0.0150 -0.0067 0.0095 

5 -0 .0265 -0.0270 0.0164 

6 -0.0058 -0.0021 0.0025 

'( -0 .0269 -0.0236 0.0170 

8 - 0. 0466 ~O .0392 0.0345 

9 -0.0005 -0.0288 0.0352 

10 0. 0149 -0.0481 0.0447 

11 0 .0210 -0.0243 0.0186 

12 -0.0419 0.0003 -0.0182 

13 -0 .0309 0.0286 -0.0003 

1~· 0 .0468 0.0066 0.0184 

15 0. 0062 0.0210 -0.0354 

16 0.0419 0.0389 -0.0094 

17 0.0310 0.0024 -0.0182 

18 0 .0267 0.0366 -0.0343 

19 0. 0089 0.0241 -0.0025 

20 0.0486 0.0270 -0.0301 

21 0. 0270 0.0115 -0.0186 

22 0.0483 -0.0164 

23 0.0236 -0.0102 

24 -0.0447 

25 -0.0170 

- 50 ­



TABLE 4 (conti nued) 


Phenant.hr o l ine Phenanthro1ine 


Atom E = 1.8522 

1 -0 .0018 
2 -0 .0011 
3 -0.0019 
4 - 0 .0012 
5 - 0 .0020 
6 -0 .0013 
7 -0. 0023 
8 -0.0059 
9 0 .0168 

10 -0.0493 
11 0.0134 
12 -0 .0068 
13 -0 .0050 
14 -0 .0110 
15 -0 .0056 
16 -0 .0170 
17 0. 0035 
18 0.0379 
19 0 .0044 
20 0.0089 
21 0.0239 
22 -0 .0020 
23 -0.0051 
24 0.0183 
25 -0.0567 
26 o.014l~ 
27 -0.0062 
28 -0 .0048 
29 -0 .0128 
30 -0 . 0072 
31 -0 .0211· 
32 0 . 0033 
33 0 .0419 
34 0.0048 
35 0. 0102 
36 0.0265 
37 
38 
39 
40 

Cyanine Carbocyanine 

e .v . E = 2.2359 e.v. E = 1.4773 e.v. E = 1.9129 e.v. 

-Oe0119 -0.0014 0.0082 
-0.0246 ~0.0029 0.0201 
-0.0108 -0.0012 0$0078 
-0 .0247 -0.0031 0.0201 
-0. 0112 -0.0013 0.0080 
-0.0113 -0.0009 0.0079 
-0.0191 -0.0020 0.0121 
-0.0419 ...0.0066 0.0302 
0. 0208 0.0045 0.0217 
0.0187 -0.0088 0.0467 
0. 0120 -0.0036 0.0249 

-0.0505 -0.0110 0.0018 
-0 .0397 0.0067 0.0227 
0.0305 -0.0433 -0.0228 
0.0112 0.0126 -0 .0123 
o.0261~ -0.0088 -0.0433 
0.0263 -0.0054 -0.0085 
0.0093 -0.0111 -0.0276 
0.0050 0.0054 -0.0181 
0.0272 0.0389 -0.0060 
o.Olll~ 0.0038 -0.0071 

-0.0190 0.0136 -0.0395 
-0.0415 0.0222 -0.0109 
0.0209 -0.0017 0.0120 
o . () 18!1· -0.0054 0.0301 
0.0120 0.00)+4· 0.0209 

-0.0509 -0.0079 0.0470 
-0.0397 "0.0032 0.0251 
0.0302 -0.0120 0.0018 
0. 0112 0.0070 0.0220 
0.0262 -0.0487 -0.0224 
0.0265 0.0131 -0.0123 
0.0094 -0.0107 -0.0429 
0. 0051 -0.0066 -0.0085 
0. 0268 -0.0140 -0.0274 
o.0111~ 0.0054 -0.0180 

0.0424 -0.0061 
0.0038 -0.0072 
0.0141 -0.0394 
0.0241 -0.0109 
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where 

= ~ H(Rt ) + ~ V(Ri,R )Htot j 
i i< j 

is the t otal Hamiltonian composed of t he s ingl e dye Hamil toni ans plus 

the interactions between the dyes. On multiplying through by ¢*(R t ) r s 

and integrating over t he electronic coor dinates we obta i n the secular 

equat i ons for th is CI calculation: 

•F;,)c V r vt ~qRSC~t (Er - SE(q») + ~ ql Mmi e m o 
m, l,v 

where E i s the energy of a single dye i n the rth excit ed state , 
r 

Mrvt 2f¢~!- (R )V(r. ,r .)¢ (R l)d1"ml r st 1 J v m 

2Jf~r( rl,Rst)v(rl,r2)pV(r2,Rml)drldr2 

P (r1 , RS"t ) being t he molecular transition density of state r for r 

the molecul e l ocated at Rst ' The interac tion, V(r l ,r
2
), between 

charge"densities on dif feren t molecules takes place in a reg ion in 

wh i ch the electrons on the spine serve to screen such i nteractions. 

Th4s the Thomas-Fermi screened i nteraction as calculated in the 

previous chapter is appropriate: V( r l , r 2 ) = e2exP(-Ar12)/r12 . 

Diagonalizing the CI matrix gi ves the excitat i on energi es ~E ( q ) 

S rand coefficients c for t h e exciton states as a func tion of qt 

wavenumber q and mode S. 

Electrons in the spine interact vi a the screened Coulomb i nter­

action, V (q) , and via the excitation of the dye molecules. The o 
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scattering of an el ec t r on fr om state 'k) to the state /k- q) wi t h 

creation of an exc iton of wavevect or q has the following matrix 

e l ement: 

Q = (1 
q 

;k-ql vlo;k) (7) 

Ignoring the decay of the exciton, we assume for simplicity that the 

state has a long lifetime. As a r ns ult, we may take t he energy 

dependence to be a delta function at the exciton ener gy . In the cal ­

culat i on of thi s matrix el ement th (~ tight -b i nding approxima t i on i s 

used for the electron state in t he spi ne 

ikR. 
/k) ¢k ( r ) ( l/y"N) ~ 4>(r - Rj)e J 

j 

where $ is an atomi c orbi tal of the metal atom . Thus (7) becomes 

( 1 IN ) 3 12 r ~ ¢ 0)1- ( _ R ) ( ) i (kl\- (k-q ) R . } 
Q J 4..1 r 1 . ¢ - R. e Jr lj , k J -1< 

- i qR ]0)(­
!=' V m 

x v (rl ,r2 ) 1: " C ql$ V (Rml ) e¢>odr1dt2d'f 
1m,l,v 

If we ass ume zer o di fferent i al overlap for the met al atom orbitals and 

orthogonality of the molecular orb itals on di ff erent molecules we have: 

j
Q = (1/N)311f"£l~ (r R )/2 / qR V(r1 , r )

1 
-

j 2 

* -iqR 1 
x SC~l ¢ ~ (Rml ) e m ¢o(Rm1 ) drldr2d~E 

m,l, v 

Now 

pv (r 2 , Rml ) ( l /V':i)Iv~ (Rm1 )",0 (Rm1 )dr dr4 · 3
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So that 

Q = V2/N3/jJ'i; ldrl-Rj) 12V(rl,r2) I: sV~ p (r ,R )
cql V 2 mI
 

. j m,l ,v 


iq(Rj -R ) 
X e m dr drl 2 

And pv(r2 , Rml ) can be written p (r -R -R ) where RI i s the site 
V 2 m I 

vector in the uni t cell. Subs titut ing 

r r .. R , and r' = r - R
l j	 2 j 

and noting t hat V(r l ,r ) -+V(r ,r ') we have
2 

3/2 " rr 2 f' * i q (R.-R )
Q =V2/N 	 L.J)J I:/ <I>( r )! V(r,r' ).)c~IPV(r/+Rj-Rm-Rl)e J mdrdr'. 

1, V . j,m 

Letting R	 :::: R - R . we gett m J 

3/2 "~~ 2 r; v~~ -iqRt
Q :::: V2/N £J I<I> ( r ) I V ( r , r') C qI pV(r' ,R t 1 ) e drdr I 

Iv jt 

Si nce the i ntegrand is independent of j fo r all N j-values, we have 

fina l l y 

. rr" 2 i~ -iqRt
Q = ~ (27N)JJ ~ I¢(r)j V(r,r' )Sc~lPV( r ' ,Rtl)e drdr'. 

t lv 

The sum over uni t ce l l s , t, can be truncated after a smal l numb er 

of cell s since t he i nter act i on of the charge dens ity !¢( r )12 with 

the t r ansition densi t y p fa lls off as a dipole interaction with 
V 

distance Ir - r " . 
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The interaction between electrons on the spine and the dye molecul es 

will l ead to electr on scattering in first order. To second order the 

interact i on results in an electron self-energy plus a coupl ing between 

spine e lectrons. Thus one elect r on polarizes the array of dye mole­

cules while the other interacts with t he polari za t i on . In order for a 

superconductingphase to appear th is coup ling of electrons must result 

in an attractive interaction suf f iciently large to overcome the direct 

Coulomb repulsion . Since this is a second order eff ect the square of 

the above matrix elements Q wi ll be required . 

The scat t ering matrix elements, exci ton ene rgies , etc . , were. cal­

culated for a variety of t he dyes shown in Figur e 5. The dyes were 

placed symmetrically about a met al atom in a plane perpendi cular to 

the spine with t he ni t r ogen atom of the dye located 2.0 ~ from the 

metal a tom. See Figure 7. Larger dye-metal atom separations resulted 

in much weaker i nteractions. (See Chapter 5.) The spacing between 

metal a toms along the spine was :3 .1~O ~ which is sufficient ly large to 

accommodate paral l el l ayers of dye molecules. The number of unit cells 

used in the calculation was 9, and the results were calculated for 

lOvalues of q from 0 to TI. Special calculations wer e performed 

which used longer chains or a greater number of q-values. This was 

not found to affec t the results . (See Chapter 5.) I n calculat ing the 

Coulomb repulsion b etween el ectr ons on the spine , the Mataga expression 

lii/(r i j+a ) wa s used with a = 2 .80 ~ f or t he plat inum atom size. 

Tabl e 5 gives t he scat tering matrix elements , IQI 2 , and t he 

excitation energies, E , using ~ dye mol ecul es per unit cell. Th e q 

phenanthrol ine cyanine case i s included in thi s table even though there 
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TABLE 5. 4-dye Array 

Scatteri ng Matrix E1eJ1lents/ExcitatiOll. EnergieS 

4 dyes per unit cel l 'nlomas-Fermi screening A. = 0.14 i-I 

Dye 
Molecule q + 0.0 0·35 0.70 1.05 1.40 1.74 2 .09 2.44 2.79 3·14 

Pyri dine 
Cyanine 

16.9113 
4.4426 

14.1002 
4.2606 

8 .5764 
3·8232 

4.l4283 
3.3461 

2.3493 
2·9643 

1.3319 
2.6809 

0·7393 
2.4629 

0.4359 
2· 3121 

0.3395 
2.2370 

0·3279 
2.2175 

Pyridine 
Carbocyani ne 

19·2204 
4.0406 

15.6488 
3.8020 

8.899S 
3·2452 

4.2276 
2.6783 

2.1430 
2.2714 

1.2025 
1.9946 

0 .6427 
1.7805 

0 ·3597 
1.6336 

0.2857 
1.5701 

0.2855 
1. 55~ 

Pyri dine 
Dicarbocyanine 

19·3219 
3·7344 

15.4467 
3·4649 

8·3356 
2.8493 

3·7107 
2.2535 

1.8281 
1.8615 

1.0276 
1.6116 

0. 5326 
1.4n8 

0.2836 
1.2733 

0.2303 
1.2228 

0.2381 
1.2186 

\Jl 
----l 

Phenanthroline 
Cyanine 

13·3756 
3.5696 

10.9327 
3·4081 

6·3879 
3·0252 

3·1013 
2.6202 

1.5670 
2·3111 

0.8597 
2.09)2 

0.4530 
1·9203 

0.2509 
1.8034 

0.1940 
1.7454 

O.l9Je 
1.7356 

Dye 
Molecule 4 dyes per unit cell Thomas-Fermi screening A = 0.0 2-1 

Pyridine 
Cyan-ine 

29·4369 
4.8598 

23.0556 
4.5982 

11.8379 
3·9926 

5.1466 
3·3849 

2.7101 
2·9529 

1.6378 
2.6506 

0.8265 
2.4045 

0.4145 
2.2322 

0.3619 
2.1602 

0.4010 
2.1483 

Pyridine 
Carbocyanine 

37.4567 
4.6816 

28.2349 
4·3070 

12.S008 
3.4700 

4.8401 
2.7025 

2.4764 
2.2411 

1.55~ 
1.9551 

0.7255 
1.7024 

0.3124 
1.5234 

0·3039 
1.4725 

0.3784 
1.4778 

Pyridine 
Dicarbocyanine 

41.5883 
4.5564 

30.3959 
4.0987 

12.5827 
3·1021 

4.1407 
2.2505 

2.1072 
1.8118 

1.4073 
1.5685 

0. 6067 
1.3204 

0.2200 
1.1391 

0.2442 
·1.1108 

0.3440 
1.1335 

Phenanthroline 
Cyanine 

24.7443 
,·9522 

18.9611 
3·7110 

9·0973 
3.1616 

3.6037 
2.6321 

.1·.8199 
2.2815 

1.0937 
2.0483 

0. 5115 
1.8532 

0.2267 
1. 7162 

0.2070 
1.6663 

0 .2460 
1.0022 



0-1 

ar e actually only t wo molecule s per unit cello These molec ul es have 

essentially two dyes i n each structure. This i s ver i fi ed by t he large 

values fo r the scattering matrix e l ement s. As i n the subs equent cas es 

the cal culations were performed with and without Thomas-Fermi screeni ng 

due t o neighbor ing chains • . The va lue for the screeni ng length , 0 . 14 A , 

i s t hat appropriate to a ciensity o f chains and plat i num oxidation state 

f ound in KCP-Cl . 

The results given in Table 6 are for art arrangement of dyes i n 

which two molecules are on opposi t e s i des of the met a l atom . This 

results i n scattering matrix element s of hal f the s t rength of the 4-dye 

case while t he excitation energies are shi f ted slightly l ower. 

In the final case 4-dye mol ecules were placed in alt ernat e c ells 

with the ~enter of the nine cel ls occupied. Thi s resulted in symmetric 

va lues of IQI 2 and E about the value q == TI/2 as shown in Table 7. 
q 

Finally one addit i onal function of the dye molecules was i nvesti­

gated. The array of dyes act s as a diel ectr i c background for the 

Coulomb interaction between electrons on the chain. This occurs through 

the higher exci t ations of t he dyes and reduces the Coul omb i nteraction 

by a fac t or of about 2 . The energies of these excitations are much 

larger t han thos e of the excitations deal t with above and thus may be 

t reated in the static limi t. 

In the RPA appr oximation t he screened i nteraction V(q) is giveno 

by 

v (q ) == Vo (q) j (l n O ( q )V0 ( q ) ) 
o 

where rro (q ) is the lowest -order proper polarization propagator. For 
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TABLE 6. 2-dye Array 

Scattering Mat1"ix B1ements/Exci tation Energies 

2 dyes per unit cel l Thomas-Fermi screening ). = 0 .14 X-I 

Dye 
Molecule q + 0.0 0·35 0.70 1.05 1.40 1.74. 2 .09 2 444 2. 79 3 ·14 

Pyridine 
Cyanine 

8 .4551 
3.7845 

7.0497 
. 3.6548 

4.2880 
3·3419 

2.2141 
2·9975 

1.1746 
2. 7167 

0.6659 
2.5030 

0·3696 
2·3353 

0 .217'9 
2.2174 

0.1697 
2.1570 

0 .1639 
2 .1407 

Pyridine 
Carbocyanine 

9.6099 
3.2498 

7.8241 
3·0866 

4.4497 
2.7044 

2 .1138 
2 ·3111 

1.0715 
2 .0218 

0 .6013 
1.8184 

0·3214 
1.6580 

0.1798· 
1.5463 

0 .1429 
1.496<> 

0 .142( 
1~4856 

Pyridine 
Dicarbocyanine 

9.6608 
2· 9179 

7.7232 
2 ·7373 

4.1678 
2 .3226 

1.8553 
1.9155 

0~914o 
1.639> 

0.5138 
1. 4551 

0 .2663 
1·3059 

0 .1418 
1.2012 

0.1151 
1.1598 

0.1191 
1.1543 

\Jl 
\D 

2 dyes per unit cel l Thomas -Fermi screening ~ = 0.0 K-1 

Dye 
Molecule 

Pyridine 
Cyanine 

14 .7173 
4.0563 

11·5270 
3~8696 

5·9186 
3.4366 

2·5732 
2·9996 

1·3550 
2.6841 

0.8189 
2.4573 

0.4132 
2.2691 

0.207a 
2.1353 

0. 1809 
2.0TI2 

0.2005 
2.0664 

Pyridine 
Carbocyanine 

18 .7276 
3.6561 

14.1169 
3.399) 

6.4502 
2.8238 

2.4200 
2.2935 

1.2382 
1·9685 

O. TI95 
1.7594 

0 ·3627 
1.5716 

0.1562 
1.4370 

0.1519 
1.3951 

0.1892 
1.3965 

Pyridine 
Dicarhocyanine 

20.7935 
3 .4329 

15·1975 
3.1249 

6.2912 
2 .4530 

2.0704 
1.8747 

1.0536 
1.5686 

. 0.1036 
1.3894 · 

0·3033 
1.2065 

0. 1100 
1.0719 

0.1221 
1.0457 

0 .1720 
1.0587 



TABLE 7. Empty Cells Array 

Scattering Matrix Elements/Excitati on Ener gies 

4 dyes per unit cell Thomas-Fermi screening A = 0 .14 R- l . 

Dye molecules in alternat e cells only 

Dye 
Molecule q + 0.0 0·35 0. 70 1.05 1.40 1.74 2.09 2 .44 2 .79 3 ·14 

Pyridine 
Cyan:f.ne 

Pyridine 
Carbocyanine 

5.4872 
3·3300 

6.0477 
2 .7999 

4.7035 
3.2487 

5.0407 
2 .6863 

3.2187 
3·0674 

3.2083 
2.4392 

2 .1949 
2.~41 

· 2 • .0401 
2.22~ 

1.8027 
2.822l 

1.6Yl2 
2.1325 

1.8020 
2.8219 

1.6365 
2. 1323 

2 .1918 
2.gJ35 

2.0368 
2.2283 

3.2124 
3·0665 

3·2009 
2.4380 

4.6972 
3·2480 

5·0327 
2 .6853 

5.4872 
3 ·3300 

6.0477 
2.7999 

8' 

Pyridine 
Dicarbocyani ne 

5·9625 
2.4765 

4.8622 
2.3438 

2.~25 
2.0611 

1. ?b21 
1.8322 

1.3976 
1.7360 

1·3970 
1.7359 

1. 7591 
1.8315 

2·91 50 
2 .0595 

4.8535 
2·3L.2? 

'5. <jh..25 
2.4765 

4 dyes per unit cell Thomas-Fermi. scr eeaing A= 0.0 ~-1 

Dye. ao1eculea i n alteTna~e cells only 

Dye 
Molecule 

Pyrid i ne 
Cyanine 

9.1714 
3.5040 

7.2991 
3·3792 

4.1693 
3 ·1121 

2.5219 
2.8942 

2.1380· 
2.8011 

2.1375 
2.8009 

2. 5181 
2.8935 

4.15TT 
3·1109 

7.2845 
3.3781 

9·1714 
3.5040 

Pyri dine 
Carhocyani ne 

Pyri dine 
Dicarbocyanine 

11.3413 
3·0797 

12 ~3744 
2.8450 

8.6003 
2~8897 

9.0240 
2.6048 

4. 3056 
2.4964 

4.0313 
2 .1204 

2·3255 
2.20!.9 

1.9766 
1.7849 

1. rj3g::J 
2.0975 

1.73TI 
1.6896 

1·9889 
2.0973 

1.7379 
1.6895 

2·3215 
2.2011 

1·9729 
1.7840 

4 .2g::J7 
2 .4947 

4.0148 
2.1183 

8 .. 5794 
2.8882 

8 . ~ 
2.6028 

11.3412 
3·0797 

12.3743 
2.8450 



he dye molecules we calculate V (:) ) (q) , the second order term in 

the RPA expansion, f rom the ekpression 

(2)() rrrr ( ). o( ) ( ') iq (x-x') ,V q = JJJJ VO x,xl TI x1 ,x2 Vo x2 ,x e dxdxl dx2dx . 

On (x l ,x2 ) i s gi ven by t h e mutual polari zability of a s i ngl e dye unit, 

xl and· x being res tricted to the same mo lecule. See Figure 8.2 

~ '\../\., 

Vo(q ) = Vo(q ) + Vo(q) I1 (q) Vo (q ) + • •. 

Fi gure 8 Inf inite s eries for Coulomb interaction screened by 

higher excitations. 


Then V (q ) i s given by 
o 

2 
;:::Vo(q) v0 (q )I (1 - V ( ) ( q ) Iv 0 ( q ) ) 

Va l ues for the screened int erac tion depend upon the dyes in the arrays. 

Table 8 present s va lues of V(q) for the case of py~idine cyanine
o 

with 4 dyes per unit c el l and A = 0. 14 g-l . Values of V (q) are 
o 

presented for compar i son . 
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TABLE 8. Coulomb Interaction along Spine 

(Calculat ed using 9 uni t cells) 

Thomas -Fermi Thomas-Fermi 
Plus Higher Excitat ion 

q No Screening Screening Only Screening 
(4 pyridine cyani ne dyes) 

~ - 1('" = O.14~ (:\ = O. 14R-1) 

0.0 16. 7595 6.71132 2·5303 

0·35 13.2219 6 .1 17(-) 2· 3052 

0. 70 6 .4703 4. ·(605 1.8377 

1.05 2 .8737 3 . (~ 128 1.4994 

1.40 3.3654 3c035 1 . 1.4174 

1. 74 3· 9712 2. 7169 1.4233 

2 .09 2.6628 2. )804 1.3797 

2. 44 1.5635 2 .1310 1.3470 

2 .79 2 .2684 2.0931 1.3787 

3.14 3.0384 2.1253 1.4078 
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IV. THEORETICAL DESCRIPT LONS OF SUPERCONDUCTIVITY 

A. PhenomenoloSical Theory 

The theoretical description of superconductivity began with the 

phenomenological London equations122 which sought to describe the 

electrodynamics of the superconducting state and especially to account 

for the Meissner effect.2 An elaboration of these equations was made 

by Ginsburg and Landau. 123 Whereas the London equations treated all 

electrons as belonging to the superconducting phase, the Ginsburg-

Landau equations dealt with the intermediate state which consisted of 

both superconducting and normal regions, the order parameter, 'lr(r) , 

characterizing the degree of superconductivity at each point in the 

material. The essential correctness of the Ginsburg-Landau equations 

has been confirmed by detailed study of the microscopic theory (BCS) 

and have found wide application in the electrodynamics of super­

. ~4
conductors near the transition temperature. 

B. Microscopic Theory 

The first microscopic theory to account for the various experi­

mental observations of superconductors, as mentioned in the introduc­

tory chapter, is the well-known theory of Bardeen, Cooper, and 

Schrieffer.6 Two fundamental breakthroughs which led to the develop­

ment of the BCS theory were first, the theoretical prediction by 

·45Frohlich125 and experimental observation by several workers' of the 
. . l~ . 

isotope effect, and second, the discovery by Cooper that two 
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electrons excited above a Fermi sea and interacting via an arbitrarily 

weak attractive interaction form a bound pair thus mak:1,ng the entire 

Fermi sea unstable to the formation of such pairs. The BCS approach 

is highly intuitive. The isotope effect indicated that the lattice 

played a fundamental role. It was known at the time that the perturba­

tian of the electron states by the phonons when carried to second order 

led to a self-energy correction for an electron through the diagonal 

elements and to electron-electron interaction via phonon exchange 

through the off-diagonal elements. The second order interaction in 

the notation of second quantization is 

o 

IM~ t tH" = (8 ) 
2 2 ck ' +qCk,Ck_l:{k 2::2: ( €,.-€ ) -U)ct tt' I:C k-q q 

where €k is the energy of the electron state t measured from the 

Fermi surface, t and are the creation and annihilation opera­ck ck. . . 
tors for the state k , respectively, and (J)q is the frequency of a 

+longitudinal phonon of wavevector q • Figure 9 shows .the graphical 

representation of this interaction. BCS noted that for I€k±q-€k1 <(J)q 

the interaction was attractive. However, due to the Fermi statistics 

obeyed by the electrons, the field operators acting on the ground 

t tstate wave function, e.g., ck'+qCk,Ck_qCk4Jo ,.could result in either 

positive or negative values depending on the particular occupation of 

states which preceded the field operators. This is analogous to the 

difference in sign between the direct and exchange terms in a Hartree-

Fock treatment of a molecular wave function that results on permuting 

two states in a Slater determinant. 
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Ck , +q 

Figure 9 Phonon exchange 

BCS circumvented this alternation in sign of the matrix elements 

by imposing the restriction that only wave functions·in which occupancy 

of electron states occurred in pairs would be considered in constructing 

the ground state. The choice oC pairs, viz., pairs of opposite spin and 

momentum, was based on the following: 1) interaction between opposite 

spin electrons was stronger due to the lack of the exchange term, and 

2) using pairs of opposite momentum gave the largest number of states 

available for interaction within an energy range (1) from the Fermi c 

surface in the absence of magnetic fields. With these restrictions 

the BCS reduced Hamiltonian encompassed only a small part of the total 

Hamiltonian. However, as seen ~ posteriori, it contained just that 

part which gives rise to the superconducting state. This reduced 

Hamiltonian can be written 

t= .(..," €k,CkCIttk + c_kc_k ) - L.J" Vkk, ck,c_k,c_kct 
k

Hred 
k kk' 

which operates only within the pair sub-space. 
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The trial wave function was constructed by placing electrons in 

pair states with probability or oc(!upancy given by h . Thusk 

l/~) t t -I 
'1' = ~ [ (1 - hk)- ... hk c-kVktJ ~o 

where ~ is the vacuum. The variational method was then applied to o 

determine the function hk which would give the lowest energy for this 

type of wave function. The energy of the occupied states is given by 

W = 2L:Ek~KE 

where the 2 accounts for spin up and spin down electrons. The inter­

action term is 

WI -~ Vkk , [ ~(l - hk )hk , (1 - hk, )} 1/2 . 

Minimization of the total energy, Wo WKE + WI ' leads to the equa­

tion 

1~ . l~[hk (1 - hk ) ] r: Vkk' [hk , (1 - hk , ) ] 
(9) 

1 - 2hk 2Ek 

With the definition 

L\ == ~ Vkk , [hk , (1 -~, )]1/2 
k' 

we have the result 

~ 1/2 [1 - 2 E\ )1/2]
(Ek + 1'\ 
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Noting that 

[~ (1 - h ) ] 1/2 = ~. (10)k 2(€~ +~)172 

and substituting (10) into (9), we obtain the BCS condition deter­

mining the energy gap: 

~, 
'\ = 1: (11 ) 

V, 2 A2)
k' kk 2(€k'+K' 

It is this gap function and the transition temperature related to it 

that we wish to determine for our linear chain - dye systems. 

BCS found an approximate solution to the above gap equation by 

assuming to be a separable potential with a cutoff:Vkk ' 

V I€kI,I €k' I < roc 
=Vkk ' 0 otherwise, 

giving 

211£ -1 /,/11'( 0 )VD. = Jl e (12)
0 c 

in the weak-coupling limit. JIr"(O) is the density of states at the 

Fermi surface. 

The same calculation can be carried out for finite temperatures 

giving an equation similar to (11), but including the probability, 

(1-2fk,) , that states It',-lt' to which It,-k are scattered, are 

unoccupied: 

[~(l _ ~)] 1/2 

=1: Vkk,[~ .. (l - ~,)]1/2 (1- 2f ,) 
1 - 2hk k' 

k 
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Minimization of the free energy with respect to fk gives 

1 

fk :::: ~Ek 1 
e + 

where 

~ == (E~ +~)1/2 

This leads to the integral equation 

I: Vkk"~" . 
(13 )~ = k' 2(€~,+~, )172 tanh (~ /2)[ €~,+~,]1/2) 

13 :::: 1/kT 

which determines the transition temperature; at T = Tc' ~ = 0 

Thus 

kTc = 1.1hhm e ~l/JY(O)V (14)c 

in the weak-coupling limit. Combining (12) and (14) we find 

2.6. (0) /kT == 3 . 50 (15)o c 

which is predicted to be the same for all superconductors based on 

the law of corresponding states. We will use this relationship to 

oestimate T from the calculated gap function at T :::: 0 K • c 

The simple form for the BCS potential combines all the factors 

producing an attractive interaction at the Fermi surface into one 

effective potential well whose depth, V J and width, 2(J)c ' then 

characterize the system. While this method works quite well for 

the so-called "weak-coupling" superconductors, it completely ignores 
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the details of the interaction which leads to Cooper pair formation. 

An investigation of these details is necessary for the strong-coupling 

superconductors because the electron states involved in pair formation 

can no longer be treated as simple Landau quasiparticles since their 

decay rate becomes comparable with their energy. l27 In ad9ition, 

superconductivity has the inherent difficulty of involving a retarded 

interaction. Coupling of the exciton (or phonon) field with the elec­

trons may result in overscreening or underscreening for frequency 

dependent charge distributions. Indeed, overscreening of the Coulomb 

repulsion between electrons is the basic reason for the attractive 

interaction which results in Cooper pair formation. l28 The Hamil­

tonian scheme requires that two-body potentials be instantaneous, 

thus a retarded potential would have to be simulated by a velocity 

dependent potential. 

C. Coinpensation of Dangerous Diagrams 

Soon after the BCS treatment a new approach was developed by 

Bogoliubov which applied a canonical transformation to the Frohlich 

Hamiltonian. This transformation had previously been developed for 

l29Bose-Einstein systems. The new method, which allowed for explicit 

inclusion of the coupling of the electron and phonon fields, is known 

130as the Method of Compensation of Dangerous Diagrams. This method 

will be developed below to. derive the integral equations for the gap 

function and to show that different interpretations of the determining 

. 131-133condition lead to different gap equations. 
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The Bogoliubov compensation of dangerous diagrams approach begins 

with the Frohlich Hamiltonian that describes ~he coupled Fermi and 

Bose fields. In this development we will use phonons for the Bose 

field. The Hamiltonian can be written as the sum of the ion Hamilton­

ian: 

Hiori = L pi/2Ml + V(xl ) . , 
1 

the electron Hamiltonian: 

2 e 
::: ,Hel pi/

2m
" + L:. Ir - r.1LI .. <j i Ji 1 

and the interaction term: 

Hint ~" L: U(ri,xl ) 
i1 

In the notation of second quantization this becomes 

t t t 
H ::: H + Hi t =" €kck +'" (J.) b tb + M ck ck~ (b +b )o n Llk rrckrr LI q q q L: q rr rr q -q 

rr q kk'rr 

q=k'-k 

It is the second order perturbation term of Hint that leads to the 

attractive interaction as noted above. While the BCS method eliminates 

the phonon field and deals only with an electron field with an effec­

tive interaction due to Hint' the Bogoloubov approach deals with both 

fields •. In dealing with the phonon field the basic motivation is to 

transform the electron field operators C and t in such a manner k ck 

that the effect of Hint on the ground state disappears to low order 

in the interaction. 
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The general form of the Bogoliubov transformation is given by: 

t t t
<\;~ = ~Ckt - vkc_k~ :;: ~Ckt - Vkc_k• 

t t t 
~-k =. ~C_k. + vkCkt ~-k :;: ~c_k. +vkCkt 

where ~ + V~ :;: 1 is required to retain the anti-commutation proper­

ties of the operators making the transformation canonical: 

t t[~,at!;l+ :;: ~k; . [~,~;]+ :;: [~,~,]+ =0 

t t t 
[~k'~k']+ :;: 5kk , [f>k,(3k,l+ ;: [~k'~k;l+ :;: 0 

The inverse transformation is easily found to be: 

t t t 
Ckt :;: ~'\: + vk~_k c :;: ~~ + v~_k

kt 

t t t 
c.

kt 
== V -k - v~ :;: - vk<\;k C_k • V-k 

This transformation thus anticipates the pairing of time-reversed 

electron states. With these definitions the Frohlich Hamiltonian 

can be written, (see Appendix): 

a Ct .•B 
H :;: H0 + HI + H2 + HJ. + 'Ha + u 

where 

H ~ t'" ~ Ek(<\;Ctt k + (3_~_k)t + '" roqbqbqo 
k q 

FE: == ~ Mq [(~vk,+~;vk)(¥ ~k'+t3 -k<\;' ) (b;+b _q)] 1 
kk' 

. q=k'-k/O 
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::: ~ t iiii 	 . 2€k~vk(~_k" ~-k~) 

k 


~ 2 2 t tHa ::: (€k(~-vk) - Ek)(<'\.~ + ~-t!-k) 
k 

U '= 'L: 2€kV~ = constant 

k 


t t . tCXH ~ {(~~,-vkvk')(Ok~'~_k'~_k)(bq+b_q)]'2 kk' 
Mq

q=k' -k:jO 

The first step in the method of compensation of dangerous diagrams 

is to note that it is the matrix elements of Hi. which give rise to 

the dangerous terms. These matrix elements have energy denominators 

of the form 

(€(k ) + € (k ) + •.• + € (k )}
l 2 n 

which lead to singularities as each €k-+O, i.e., at the Fermi sur­

face. In the normal state, terms such as these are not dealt with 

because in that case the number of particles is fixed. 

Bogoliubov chose to compensate for these terms by requiring that 

they cancel with certain other terms arising from the other perturba­

tions. It·is the ambiguity of choice of compensating terms which 

leads to the several possible results for the gap equation. We con­

sider first the case treated by Bogoliubov. Figure 10 shows in 

diagram form the compensation condition. We compensate for the 

creation of the pair of quasiparticles by the combined application 

of H~ and ~. In each of the diagrams the starting point is the 

vacuum state 10), and the final state IF) has two quasiparticles 
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time ,. 
~-k 


+ it -k' 2 + = 0iii ~ '1t' H~~ ~~ Dk .'1t . 

Figure 10 Compensation condition for creation of pairs. 

and no phonons, IF) = 11~ ,1~ ;0). The two possible intermediate 
k -k. a 

states generated by Hl are given by the two diagrams on the right. 

In terms of matrix elements we have: 

~B '(""\ (FIH~II)(II~lo) 
(F IHJ.I 0) + L..J = o 

I EO - EX 

On substituting the expressions for ~,it, and R~ and noting that 

2 2 .2 2
EO = U, EI = Ek(~ - vk ) + Ek , (l\.' - vk,) + OOq + U , the above expression 

becomes, (see Appendix), 

2 (~,~ - vk,vk)(~ ...vk +vk'~)
2€k~Vk - 2 L 1M I 2 2 2 2 = 0 .(16) 

k' q €k(~ - vk ) + Ek'(~' - vk ,) +OOq 

2 2If we neglect the renormalization of Ha and set ~ =€k(~ - vk ) , 

then (16) becomes 

1M 12( 2 29 ~,-vk')~ 2 ~,vk' = 0 •2 2 "{€k -L - (~- vk ) L..J~,+~+oo
'q 

j~Vk IMq IEk'+~-I<llqk' k' 

Finally, we define ~k by the leftmost term above, and write ~. and 
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v in terms of the gap function using the definit~onk 

v - 1 1~ = k 
2 

(1/2) (1 + J.~~t4i ) 2 

( ~.~~kt4 ' ) /2) ( ­

We find the equation for the gap function: 

'\:, 1M 
9 

12
t\=L ~~···2'k' ~,+Ek+Wq 

., !;k' +6k, 

Comparison with (11) shows two differences of this result with the 

BCS result: 
4_.4 

M 122 ·2 .".1 
Ek is replaced by ;k = Ek - L 9 (~,-vk') '"...

'. 
'" k' Ek,+Ek+wq " 

and 

1M 12 gV is replaced bykk, 
~, +~+Wq 

The ground state shows qualitatively the same properties in both cases, 

i.e., an energy gap in the excitation spectrum of minimum magnitude 

6 
0 

Suppose that we investigate the destruction of pairs rather than 

their creation in the dangerous diagrams method. That is, we use the 

compensation condition expressed in Figure 11. The analysis proceeds 

as in the previous case except that the energy denominator, EO - Er ' 

now becomes 

I 22 I l 22 22 l 
EO -Er = {2Ek(~ -vk)+U j - (k(~ -vk)+€k'(~' -vk,)+Wq+Uj 

2 2 2 2 
= €k (~ - vk) - €k' (~, - vk' ) - W q 

, 
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time 
~ 

Hl :::: 01iii + Hex + 
ex 

Figure 11 Compensation condition for destruction of pairs. 

which leads to the gap equation 

~_2 

2: .9 
'\/'t\, 1M 12 ~~ 
~<.~ :::: 

J~T 2 
,·1 
"k' Ek'-~+().)q ., ~k'+f\' 

As a final adaptation of the method of compensation of dangerous 

diagrams we now allow for therenormalization of the quasiparticle 

energy through the term Ha. ~k and ~ will be, chosen in such a 

manner that the corrections to the quasiparticle energy Ek ::::1{e~+~ 
~' ex

in Ho will cancel with the second order terms from Hi and H2 • 

This is shown in diagram form in Figure 12. 

time 
~ 

~ 
~ . • 
~Ha ~ 

+ .. ~ 
0; ex 

~ H2 ~,H2 
.. 
~ 

, + 

Hi 

• 
e.kP~k 

~ 
~_k'N 

= 0 

Figure 12 Compensation condition using renormalization. 
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As, a result of this renorm~lization, the denominator for a process 

generated by ~ is no longer singular as the energy approaches the 

Fermi energy. We note that the presence of the Dk quasiparticle in 

the rightmost diagram of Figure 12 prevents the vacuum polarization 

process with kll = k. In developing the expressions for these dia­

grams we choose the initial and final states to contain one quasi-

particle, Ok' The same result would be obtained for ~-k' Then 

IF) ~Io) 

where 10) is the vacuum state for the quasiparticle operators. ~q 

.~~Expressed in terms of matrix elements the compensation condition is: 
.~ 
{~ 

':'lI 
(FI ~I F) + I: f(FI H~I I) (II~IF) (FIR~II)(IIR~IF) l ~ 

I ~ E - E ~ - EiP f = 0 1~ 

"" 
F I l 

Substituting for the operators RR'~' and ~ , the matrix elements 1 

may be expanded as in the above cases (see Appendix). We find for 

EX VPthe second order process, energy terms ~, Er ,and EI given by 

( 2 2
E = €k ~ - vk ) + UF 

EX 2 2 
EI = Ek , ( ~, .,. v ,) + (J.) + U 

. k q 

VP 2 2 2 2 2 2EI = €k(~-vk)+ Ek"(~11 -vk") +Ek,,,(~--vkNJI) + (J.)q + U 

As shoWn in the Appendix, the compensation cOndition reduces to: 

22"", 2 [(Uk'~ -vk ,vk )2 (~~Vk+~Vk,)2]
Ek (~ - vk ) - Ek - .L..t 1M I - = O. 

. q Ek , -\:+(J.)q \:,+\:+(J.)q .k' 

q=k-k' 
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Now \.,yith the definition of the renormalization factor 

1M 12 
:::: 

g
~k €k/I'k ' I'k 1 + L 2:c; 

k' ( (J)q + Ek ., ) - E~ 

we have 

L\, {I 1 1
L\ ::;; (1/2 I'k) L 1M 12 ---- + , . 

k' q • E,.. , - E,.. + (J)_ . E,.. , + E,.. + ill_ 

thus including both the resonant and nonresonant denominators which 

occurr ed separatel y in the previous treatment s . We see, therefore , 

that all the different interpreta t i ons of the method of compensation 

of dangerous diagrams eliminate the singular energy denominators for 

processes described by H~ , but lead to different expressions for 

the gap equation. 

A further signi f icant development carri ed out by Bogoliubov was 

t he inc lusion of the ins tantaneous Coulomb repul sion in the Hami l­

tonian. 134 It was found that the Coulomb repulsion lowers the transi­

tion temperature to a smaller extent than woul d be anticipated on the 

basis of t he BeS theory . Thus f or a Coulomb pseudopotential of 

strength Vc t he BCS theory gi ves 

L,:; 2~ill e-1j./Y (O)(V-VC) 
c 

whereas Bogoliubov found 

6 2fulc exp {-l/vr (0+-1+VC:~(Ef/ ill )1) 
This r esult was confinned with the devel opment of the Green fs f unct ion 

technique which also gave a natural definition to the cutoff f r equency 

ill in the Coulomb pseudopotentia l. 135 The Green 's f unction technique 
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has the advantage that it may easily be extended beyond the second 

order of perturbation theory. This allows us to deal with strong-

coupling superconductors which occur in the case of the excitonic 

mechanism as well as for many phonon superconductors. 

D. Green t s Function Method - Gor 'kov 

Initial development of the Green's function method was carried 

out by Gor'kov. 136 It had been known for some time that a perturba­

tion expansion of the electron-phonon Hamiltonian did not lead to 

superconductivity to any order in the expansion even though formally 

the expansion parameter (or coupling constant) was small. This is 

due to the strong scattering between states near the Fermi surface 

and was confirmed in the BCS gap equation by the appearance of the 

. -l/gcoupling constant in the form e which has an essential singu­

larity as g ~ O. We have reviewed thus far two methods for re­

solving this dilemma. BCS used a variational approach within the 

space which allows for the pairing of electrons. Bogoliubov com­

pensates to low order in perturbation theory for the dangerous terms 

leading to the divergent scattering. The Green's function technique 

of Gor'kov follows' along the first of these two by explicitly taking 

into account the formation of Cooper pairs. This is a feature common 

to the subsequent Green's function treatments. 

Gor'kov develops the simplest case with a model Hamiltonian 

describing only the Fermions which interact via an instantaneous four 

Fermion interaction: 

H f {- (ljrt~ /2ll11jr) + (g/2)(ljrt( ljrt ljr )ljr )} dx 
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If we were to treat only the kinetic energy term and possib l y a one-

electron potential in zeroth oreier, we would obtain zerot h order 

Green's f unctions for th e particles in plane wave states 

1 
GN(p,ru)

o 	
(l) - E + iru5 

P 

However , th is· does not allow for the pairing interaction to be t aken 

into account and does not l ead t o a superconducting ground s t ate . 

Rather than deal ing with this in a perturbation approach , the tota l 

Hamil tonian is used to des cribe th e ground state. In t he equations 

of mot ion for the field operators ther e then ar ise terms such as 

(*t~ )~ (x) , which s~bsequently occur in the equation for t he Green's 

function as the time-ordered product 

t t(T(I!ro;( xl )1V(3 (x2 )\If I( x3 )ljfo (x4))) . 

If this term i s approximat ed by combining creation and destruction 

operators, t he resulting expression, 

(T(~a~~ ) (T(Ijr(3~;) - (T(to;o/;)(T (~(3~;) , 

gives rise to the direct and exchange t erms of the Hartree-Fock 

approximat ion . Gor'kov showed that one may account for the creation 

and destruct ion of pairs of particles by i ncluding the add i tional t erm 

(NI T (~a~(3 )1 N+ 2) (N + 2/ T(W ;\jr~)1 N) 

The change in particle number by ±2 on creation or destruction of a 

pair is shown explicitly . Thus we are again dealing with a sys tem 

having a variable number of particles as in the Bes and Bogoliubov 

cases. 
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Both result s are in agreement with the BCS theory. The lifetimes f or 

these s tat es , determined by the imagi nary part of the Green's f unct i on, 

were not calculated. 

While the Gor'kov paper i s i mport ant in that i t was t he fi r s t t o 

treat t he superconducting problem using the Green' s f unction technique , 

it is based ona simplified four-Fermion i nteraction thus neglecting 

phonon f ield (or exciton, a s in the present study). Because of th i s 

simplicity , t he true Green's function could be det ermined for this 

model syst em . 

E. Gr een's Function Method - Eliashberg 

Inc l us ion of the phonon fi el d us i ng the Green 's function approach 

137was fi r st carried out by Eliashb erg. The interaction between the 

t wo fields was treat ed according to the full interaction Hami l tonian 

(unsimplified), and on account of this, the t rue Green's func t ion 

could not be determined direct ly, but r ather approximated by summing 

an infini t e perturbat ion ser i es according to the Feynman- Dyson method . 

We should note , however, that it is not t he fact that a certain class 

of Feynman diagrams are summed to all orders t hat gives ris e to t he 

superconducting ground state solution. Rather one s t art s at t he out set 

with a bare Green's function , G (p,w) , whi ch already descri bes, along
o 

with F; (p,m) , t he superconduct ing gr ound state. Thus we are not con­

tradicting the asserti on t hat t he superconducting ground s tate cannot 

be achieved by perturbation t heory to any order. We are impr ovi ng 

upon a zeroth order superconducting ground state. We now have t he 

apparatus neces sar y to describe the detai ls of i ndividual superconduc t i ng 
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materials t hrough the phonon's Cree.n' s function D (q, m).
o 

Severa l account s of the E1 iashberg method have been pub1i shed . 138 

The original paper int roduced unwieldy ll--component vectors 

1jr = (ljrl /2,Ijr-l /2,1jr~1/2,wi/2) i n order t o t reat t he ·pair f ormat ion. 

Contemporary work by Nambu139 on t he gauge invariance introduced the 

widel y us ed spinor notation i n wh i ch the new fiel d operators are two-

component operators that pair time reversed s t ates: 

l' = C;t ) , and its Hermi t ian adjoint:k ( c 
P~ == (C~t ). 

-kt c-kt 
The simplicity of the Feynman di ag ram t echnique i s pres erved by using 

the P operators e The result i s a 2x2 matrix equation wh i ch treat s k 

the normal and Pair Green 's funct i ons equally . We shall not require 

the spinor notat ion in the detailed t r eatment of the method by 

Kirzhnits , et . al., and shal l continue to use the separat e f unctions , 

G(p,ill) and Ft (P'ru) , for the s ingle particle and pair propagators, 

respect ivel y . 

Eliashberg's approach is along the f ol lowing lines. We begin 

with the Hami l tonian for t he coupl ed electron-phonon sys tem. 

H Ho + Hint 

H == . 1jr (x ) [H 1 ( x) - I-L] W ( x ) dx + H h 
o (j e cr pf t 

H. t == f ljr t (x )ljJ (x )¢ (x)dx
l.n a- v 

i k.x 
IVa- ex) :::: 0 - 1/ 2 L: ake 

k 

1/ 2 x¢ (x) == 0 - '"' ex (b + b t )eiq ..LJ q q - q 
q <Clm 


ex2 
A tls /k
q o q 0 
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where Hel (x) is t he one-electron Hamiltonian and H is t he non­
ph 

interact i ng phonon Hamiltonian. The chemical potential is included 

in H as a Lagr ange mUltipl i er - we are deal ing again wi t h a systemo 

of variab l e number of particles . 

The Hamiltonian for the non- i nter acting e lectrons , H , isel 

diagonal in t he ~-representation, and the Gr een 's f unction applicable 

to the normal state is given by 

I
NG (p ,ill) o 

m - c + i CJJ5 
p 

as noted i n connection wi t h Gor 'kov 's t reatment . To devel op the non-

interacting Green' s f unc tion f or the superconduct i ng state, GO (p ,ill ) , 

Eliashberg i ncluded a certain porti on of the e l ect ron-phonon inter ­

action i n a redefined zeroth - order Hamiltoni an, H = H1 + Hph ' o e . 

by carrying out a unitary transformation from the operators IVkt 'lVkt 
to new operators x and X • U ,If = X 

A 
• Bogo1iubov, as s een 

o l' Of3'1'Q f--' 

above , had shown that such a transformation would yield the super-

conduct ing ground state provided 1) t he Xo,X operator s satisfiedl 

the ant i -commutat ion r elations for Fermi operat ors, and 2) that 

certain "dangerous" terms wer e el i minated f r om t he Hamiltonian to 

l ow order . Es sentia lly t he same requi rements were applied by 

Eliashberg , although the s econd requirement was given more clearly 

by requiring that Hel be di agonal in t he X-representat ione The 

first of t hese requirements allows Wick's theor em to be applied to 

time ordered products of ~ operator s even though the ground state 

is not their vacuum state as i t is f or the X operators. The second 

requirement allows us to calculate the zeroth order Green's f unction, 
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G (p ,m) ::= -1 (TxXt) , from its equation of mot i on just as simply as 
o 

we found G
N (p , m) • On the other 11and , we may cont i nue to use the 
o 

normal s tate operators '4r by applying the inver se t ran sformation to 

the zeroth-order Hamiltonian : 

~t-....... 
 IV*U-lH UIjrX Hel X e1 

As a result the new zeroth-order Hami l tonian U-1H 
e1 

U is no longer 

diagonal in the Ijr-representation, and the equations of motion f or Ijr 

and Ijr 
t ar e coupled gi ving , a s in t he Gortkov treatment, single 

particle and pair propagators, G (p,m) and Ft (p ,m) . o o 

'While the non-interacting pr opagators are easily evaluated, the 

full propagators , G(p,m) and Ft (p,m) , depend upon the full 

Hamiltonian and must be approxi mated. The Feynman-Dyson perturba ­

tion series allows this approximation to be carried ,to infi ni t e order 

for a certain c l as s of diag rams. 

One first determines t he equation of mo tion for G(xt,x't ' ) , 

or for Ft (xt,x't') , from the expression for t he time derivative, 

say fo r ex.ample, 

i ~ H (xt ,x't') = fi(t-t')fi (x-x') + ~ ~ Hxt)d ( X/t/~ 

by substituting for the time derivative of the field operator: 

i ~ t [ \jJ t ,Hel ] 

The self-energy in t he resulting equat ion for Gt t(xt , x ' t ' ) is given 
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in terms of th·e 	vertex function, 

r (xt ,x' t ') = (T¢ (xt)* (xt)*t (x ' t ' ) , 

which arises f r om the coupling of the elec t ron and phonon f i elds i n 


Hint. The expression for Gtt (xt, x't' ) becomes 


[i o~ - H(O) (x) + I-1J 	Gtt(xt,x' t' ) - o( t - t')o(x -x') 

= jdO:dy lZl (xt ,yO: )G H(YT ,x't' ) + Z2(xt ,yO: )F it (yo: ,x't')l 
== -i (T¢(xt)~( xt )~t(x't' ) 

The total vertex function is shown i n di agram f orm in Figure 13. The 

r = • + + 	 + + 

(a) 	 (b ) (c) (d) 

Figure 13 Total vertex function . 

Feynman-Dyson series for the s e l f- energy may be ob t ained by using the 

series for the vertex funct i on along with t he f ul l propagators, 

G(xt,x't' ) and D (xt,x 't ~) , giving the express i on : 

~(xt,x't' ) fdYdO:D (xt,y-r) G(xt,y-r) r(y-r,x' t ' ) . 
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This i s shown i n Figure 14-. By us ing the full propagators Dyson's 

Equation gi ves the sum o f t he cont r ib ut ions of each order to the 

==~ O+ ~ +~ + 
E(xt,x't' ) == r: (l)(xt,x ' t ') + ••. 

Fi gure 14 Feynman~Dyson series for the proper self-energy. 

self-energy. In order to sol ve the two equations f or G(Plw) and 

~(p,W) , the Fourier transforms f or a trans1ational ly i nvar iant sys­

tem, several approximations are intr oduced . Fi rst, E1iashberg aSserts 

that the t otal vertex func t ion may be appr oxi mated by the simple 

vertex r ( l ) (see diagram (a) in Figure 13). This had been shown to 

140be possible f or the normal s ta t e by Migdal . Second, t he phonon 

propagator is assumed to be t he same in t he s uperconduc ting state as 

in the normal state . Thus the phonon propagator determined by Migdal 

may be used in t his case al so. Wi t h t hese two appr oximations we have 

two simultaneous equations for the f unc tions G(p,w) and ~( p,w) • 

. t
Because of the coupling of ~ and ~ the matri x e~pressions for 

r: and G cons ist of two parts, one involvi ng E1 ' the self-energy 

for singl e particles , whil e t he s econd i nvol ves L , t he self-energy
2 

for pairs. Dyson's equation is t hen the pair of equat i ons: 

2:1 (p,w) == i 4 ~G(k,m') D(p-k,m-w' )d3kdm' 
(27T ) J \ ­

i t .2:2 (p , w ) == - ------4 .fF (k,m' ) D(p-k,w-m' )d3kdW' • 
(27r ) . 
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We shall see that the second of these leads to the starting point 

for the Kirzhnits' method which follows. 

substituting the Fourier transforms of the expressions for G 

(or Ft ) into the above expressions gives the self-energies. L.l 

amounts to a renormalization of the energy of the electron states 

while L2 determines the gap in the excitation energies as well as 

tbeir damping rate. On solving the resulting equations, Eliashberg 

determines the gap function, C(m), to be 

ReE (ro) 1 1 91 2 :ill (0)
2

C(ill) = 1 qaq 9 dq= 
(l;..f(ill)/ill) o 1 + A ill o q 

llr.: 
"~"lxJ C(illl (s»)d~ ( 1 . 1) :::::)
:;l~~~ . 

~~2 + tP I ill (~) - ill + illq + ~ (s )+ ill + illq . I::.,o 1 1111 ·-.... 
'II'I~ ~I 

Ilrn~;;;;, 
II'~~;~ 
I~~:;t where 

2
t::. = (k ) + C (k )'-fS2 

o 0 

The details of the phonon spectrum are accounted for by the function 
cl- illg(O) 

E1iashberg noted the difference between the above gap q ill 
q 

equation and that of Bogoliubov, a difference which only occurs for 

large ill, the region fn which the diagrams are no longer "dangerous". 

Because the Eliashberg method sums certain terms in the perturba­

tion series to all orders rather than only to second order as in the 

Bogoliubov method, it is expected to give better agreement with experi­

ment. Such agreement, found in the work of Scalapino, et. al.,14l and 

McMillan, et al.,142 on the tunneling results in superconductors, sup­

ports the .strong-coupled theory. The Eliashberg formalism has also 
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l3 h 

been employed by Morel and Anderson ) who used an Einstein phonon 

spectrum and i ncluded t he Coulomb repulsion. They found good order-

of-magnitude agreement for ca l culat ed t r ansition temperat ures a1 ­

though their r esults for the isotope effect conflicted with experi ­

ment f or certain metals . 

143Swihart compared results for the energy gap us ing t hree 

different kernels in the gap equation~ 1) the Bar deen-Pines poten­

144tial (see Eq. (8)), 2) the Bogol iubov potential, and 3) the 

E1iashberg potential . He found t ha t al l three r es ulted in a gap 

function at the Debye energy which agreed with the anomalous 

tunneling behavior of Pb i f the Coulomb i n'teraction was included. 

However , only the behavior of t he gap f unc tion ca l culated from the 

Eliashberg potential conformed to data on the critical field for 

Hg and Pb . Such dat a depend strongly on the form of the gap at the 

Fermi surface . 

The Eliashb erg method has also been emp loyed for estimating 

transition temperatures of strong-coupl ed super conduc t ing metal s 

and a lloys by MCMil l an .26 Final ly i t should be mentioned that t hi s 

method has been applied to the excitonic mechanism for super con­

28duct ivity by Allender, Bray, and Bardeen for two-dimensional 

meta l-semiconductor systems . 

F. Dielectric Response Method 

Recently another Green's f uncti on method has been developed 

which incorporates the infinite sunnnation in orders of 'perturbation 

t heory using the Feynman-Dyson method , but which results i n a simpli­

fied kernel in the energy gap integr al equation t hrough the use of 
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the spect ral weight func tion and by setting the temperature of t he 

system to the as-yet-to-be-determi ned superconducting trans ition 

temperature. Thi s i s t he met hod of Kirzhnits, Maksinov, and Khomski i .29 

We shall derive t he Kirzhni t s gap equation i n det ail and show how it 

i s modifi ed f or our one-dimensional system . 

The method of Kirzhnits , et . a1. , takes th~ approach common to 

t he El i a shberg method in t hat we begin with Gr een's funct i ons which 

al r eady de scribe t he "non-interacting" superconduct ing state. That 

is, the only interactions inc luded in zeroth order ar e the inter­

actions which result in Cooper pai r f ormat i on. Thus we begin as in 

the Eliashberg method with a s ingle particle propagator, G ( P ,CD) ,
o 

and an anomalous propagator , Ft( p,CD) . In the Eliashber g equations 
o 

we improved upon t he zeroth order Green's functions by summing a 

perturbation series for the self-energies of the single parti cle 

and the pair propagators . We noted that the first leads to a r e-

normalization of the excitation energy while the second leads to the 

gap in the ener gy spectrum. The Kir zhnits approach ignores this 

r enormal i zation and deals only with the anomalous propagator. A 

j us t ification for thi s will be given bel ow. 

The self- consis t ent equation f or t he true anomalous propagator, 

Ft (P, CD ) , is based on the fir s t - order term in the perturbat i on 

expansion using Wick's theorem . A sum over di agrams is then obtained 

by replacing the non- interact ing pr opagator , F
t 

(p,CD) , by F
t 

(p ,CD) . 
o 

For the zero-temperature expression we have 

Ft (p,CD) ;::: +i 4 Go(p,w)Goc -p,-w)r(l) ((d3kdm/V(p-k,m-wl)Ft (k,m/)
(2rr ) JJ \ 

x r (p -k ,CD-CD') .. (17) 
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The Feynman diagram for t his equation is shown in Figure 15 and differs 

. V(p-k,ru-ru' ) 

t-.-4 = ~~)
t .

F t (p ,m) G (p ,ru) F (k, ru') G ( -p ,-m)
o 0 

Fi gure 15 Feynman diagram for anoma lous propagator equation. 

from that f or E(p, ru) (see Fi gure 14) by t he addition of the single 

particl e propagators Go(p,m) and G ( -p,-ru ) • We introduce immedi ­o 

ately the two assumptions used by E1 i ashberg . First , the propagator 

for the effective interaction, V(q , ru) , is assumed to be the same in 

the superconducting state as in the normal state. Second, the total 

vertex function is replaced by the simple vertex, r(1), which may 

be included i n the expression fo r V(q,ru). In l i ght of t his second 

assumption we have neg l ected diagrams such as that of Figure 16 which 

requires a ver t ex of greater complexity. 

V(p-k,m-ru') 

Go (p,ru) 

G(k,m') r( p ,ru,k,ru') 

Figure 16 Higher order t erm for anOmalous propagator. 
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In a second paper on the Green's function method in super­

conductivity, Eliashberg computed the temperature Green's functions 

«) (p, im) and :Y t (p, im ) ; this was a simple extension of the n . n 

original work. In the Kirzhnits method, however, the use of the 

finite temperature formalism is an essential feature, and in 

particular, Kirzhnits begins by setting the temperature equal to 

the critical temperature. This results in a considerable simpli­

fication. As the critical temperature is approached the anomalous · 

self-energy tends to zero so that the Ringle particle Green's func­

tion for the superconducting state may be replaced by its normal 

state counterpart: 1I ~ ' 

:!~~ 
!I~; 

z 	 iiib
;e<9 (p, im ) 	 :::'J 

n im ..; ,111'1-. 

l	 l~'~ 
l lli ~ '~ n p 

'd:~t.j
\u~ 0tt2 	 ,­where ;p = (p 12m) - €F. The renormalization factor z 

p 
can be 	 r 

;.~ 

-~-

determined by computing the self-consistent single par·ticle propa­

gator. As noted above, we ignore this renormalization setting 

. 29 
z = 1 This is consistent with the weak-coupling approximation.
p 

The second essentially new feature of the Kirzhnits method is 

145 .
the use of the Lehmann or spectral representation for the effective 

interaction and for the anomalous propagator. The representation for 

the effective interaction, 

V(q,m) v (q)/ €(q,m) , 	 (18 ) 
o 

derives from that of the charge-to-charge response function which 
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satisfies t he causality principl e : 

1 f 00 1 J .( 1 1 ) 1 + 1mE( q,m) E ( q , Cl) ) . E+ m - i B + E - m+ i B dE 
o 

We define p(q,E) - (l/TI ) Im( l /E( q,E » , giving the following finite 

temperature spectral representation f or the effect ive i nteraction 

2
V(q, im ) = Vo (q ) fl _/ P(q~E) dE ] , (19 ) n l 0 m + E2 n 

where V (q ) i s the bare Coulomb interaction. It has been noted byo 

several authors that the spectral densi t y f unct ion for t he di electric 

response function is related to t he f orm factor for e l ect r on scat ­

. i 1 146ter~ng n a meta : 

p (q,E) = Vo(q )[S(q,E) - S(q,-E)] 

Similarl y , the anomalous propaga t or has the spectral representation: 

f co f( p,x )dx
IF

t 
(p, i m ) n 

- co i m - x n 

We may wri t e the f init e temperat ur e form of (17) at T Tc ' viz. , ' 

d3k 
.~t (p, i m ) = - <0 (p ,im ) ~ ( - p , - i m ) T '" I , V ( P - k , i m - i m )n n n c ~ (27r) n m 

t . 
X g (k ,im )m 

in the following manner using t hese spectral representat i ons: 

f (p,x )00 1 f d 
3 

kf 
 dx ( i m )2 _ . 2 TeL: ~-3 V (p -k ) fOO dyf (k ,y) 

i m -x n !:.p m (27r) 0 i m - y

-00 n -00 m 

(20) 

00 f 1 1· I ] 
X 1 ... £ p ( p~i<, E »). + . dE 

~ E+1m -im E-im +1mf O n m n m 
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The gap f uncti on is given in terms of the wave-vector dependent part 

of the spectral representat i on : 

co 

¢( p ) :::: (21 ) 21 ~ pl f . f( p,x) dx 
o 

We derive the integral equation f or t he gap function by first s impl i ­

fying (20). 

We fi rst apply the standard procedur e f or fr equency sums in the 

f i nite temperature scheme by using t he r elation 

co 
1 g (m)dm ! 

T I: g ( i w ) c n 27Ti t3 cWn=-oo C e +1 

where 1/ kT and the contour C i s shown in Figure 17.~ c c 

c 

Fi gure 17 Contour for f requency sums . 
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t3 (1) 

The function 1/ (e c + l ) provides the f irst order poles at each 

im In the present case we h<lve 
n 

00 r 1 J[ 00 (1 J' ~ T 1 - p ( q , E) J + 1 dE 
c ~ _iillm - y£ IE + iilln - i illm E - iw + iillmn 

dm 1 I' CXJ ' f 1 1 ~ J:::: - _1_ 1 - p(q,E) ' , + , dE 
27fi;; f3 cill ill - E+iill_ -ill E-iill_+ill Jy. ;; 


where q :::: p - k . The first term , 

dw 1 
- (l/27fi) .[ 

13 CD 
CD- y e c + 1 

is evaluated by deforming the contour to that shown in Figure 18( a ). 

Picking up t he c ontribution from the pole at (1):::: y , which is circ led 

clockwise , gives 

1 
:::: 

Scy 
e +1 

-t3 y /2 t3 y /2 t3 y /2
2 (1/ 2 ) e C + (1/2) e C - (1/2) e c 

:::: 

(3 cy /2 -t3 cy /2 
e +e 

(1 / 2) [1 - t anh(ScY/ 2 )] 

The second and third terms , 
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-- ---

dm I } 1 
1_- ( l /27ri) f j 

c e + 1 IJ) - y ( m - E - im 
n n 

are evaluated wi t h the de f ormed contour of Figures 18(b) and (c) . 

".. .... , 
., " ,.. ... --- It,/ ,,)<;,, -r~ '" \ I 

(~, ­1(1):= - E+ i m \I . \ I E+imn'\ ,. ,.,,)-, \ , "'-'-'--
\ 

,, -. ,-, 
I\ t ~_'rJ 

, (1):::y I \ \ (l)=Y, 
~ , /

~, ., / ,. " .... .,.. " " ' ­' ­
(c)(a) (b) 

Figure 18 Deformed contours for f r equency sums 

Picking up the contribut ions f rom both poles gives 

Res f_l ±1 ] 1 ±1 J 
+ Res l fl m .
l e - + 1 ·e c + 1 ill - Y (l}:::±E+1 ill
n · ill=y 

n 

where the upper ( l ower) sign refers t o t he second (third) term. Thus 

we have 

1 { 1 1 ~. . . } 1 1 

~ cY Y _ i m + E + fl c ( E+ i m ) 
e + 1 y - i m - E n e n +1 E + i m ... yn n 

1 1 


A C:"E+imn ) 1 ...E+im _Y
~c + ne 
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it3 cilln 
The correct ana lytic continuat ion is obtained by setting e -1 , 

giving 

1{ 1 + 1 1 1 { -1 -1 J 
+ (3 + (3 E!3 y -~ E c

y ce c +1 e c - 1 iill - Y - E e + 1 e - 1 . iill - Y + E n 	 n 

We arrange the terms in braces as follows : 

-0 Y/2 t3 E/2 
1 1 2 (1/2)e c 2 (1/2)e c 

+ 	 . (22 ) 
~cY -13 E 13 y/2 -13 y ; 2 + -13 E/2 ~ E!2c 	 c c c e + 1 e C ... 1 e +e e e-

Adding and s ubtracting 

y E 2 
(1/2 )!c /2 (1/2)e-f3 c / 

~ Y; 2 -13 y 72 + -(3 E72 t3 E72 
e 

c 
+e 

c ' 	 _ e ce C 

(22) becomes 

t3 y /2 -(3 Y/2 13 E/2 -~ cE/2c 	 c e ~ e 	 e c + e 

... (1/2) 	 8 y/2 -t3 Y/2 - (1/2) !3 cE/2 -~ c E!2 
·c + e c 

e 	 e- e 

- (1/2 )[coth( t3 E/2) + tanh (t3 y/2»)c · c 

Similarly , 

-1 - 1 
+ :::::: =(1/2 )[ coth(!3 E/2) - tanh(t3 Y/2 )]!3 y -(3 E c c 


e 
c 

+ 1 e 
c 

+1 
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Collecting t his t ogether, (20) hecomes 

3I £(p ,x)dx f d f OO1 k - 2 2 V (q) dyf(k,y)7. 

im - x ( i m) .. sp (2n )~ 0 
-00 n n -00 

X { (1/2) [1 - tanh (rlcy /2) 1 - (1/2)1 p( q , E) (23 ) 

Coth ((3 E!2)+tanh (13 y/2) coth ((3 E/2)-t.anh ((3 Y/2) .] .}c c c C dEX + .[ 
i m .. y - E iw .. y + E n n 


Having noted above that L (k, m) and Ft (k,w) , which is derived
2
 

from it, are even f unctions of w, we find 


. t f "' f ~ k,Y)dY
teJ/' (k, i c.Lk ) 

-00 1 W - ym 

t . ! f : k,Y)dY 
•:g' (k ,- i W ) (24 ). m 

"00 -HlJ " yrn 

f oo -~ (k,-Y)dY 
(y -+ -y) 

l.CD - Y 
- 00 m 

Then f (k,y ) - f (k,-y ) is an od d function of y so tha t in (23) 

00 

f j 
00 

dyf (k ;y )(1 /2) [ 1 - tanh (~ Y/2)] dyf(k,y)tanh(~ y/2)c c 
-00 o 
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Similarl y, 

no 
E 2 

- (1/2 )[ p (q,E)dE j dyf (k , y ) [ Coth(t3c / )+tanh(B cY/2) 

0 . 00 im - y - En 

coth(~cE/ 2 )-tanh (~cY/2) ] 
+ 

im - Y + E 
n 

00 00 

- (1/2)f P(q, E)dEj dyf(k,y ) 

o 0 

X f[coth (t3cE/2 )-t anh (B cY/2)] [' _ _1 
, 1m -y+E n~]n 

[coth (t3 E/2 )+ tanh (t3 y /2) ] [ __1 1_ J}c c 
i m -y-En 

An expression similar to that in braces in t he equation above appears 

147in E1iashberg's treatment of the finite temperature case. 

E1iashberg claims that the expression in braces simplifies to 
. 
2tanh (~cy /2 ) [ _ _1 '1 _1 

im - y - E n ­n 

with error of order (T /m)2 where m == 2sp , s being the speed 
c 0 o 0 

of sound and p the Fermi momentum . Thi s approximation has been 
o 

l 48 used by Allender , et . a1. ,28 and may be seen in the f ollowing manner. 

We note fi rst that t he coth (t3 E/2 ) terms are non-singular in T 
c c 

The tanh (t3 y/2) terms can be arranged as follows: c 

1 
1, r 1_ + 1 1tanh (t3 cY/2) '-. ­

, 1m - y - E 1m + y + E 
n n n " n 
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This fol lows from (21]) s ince 

1 
::: p -

1 + - 7fi f) ( x ) . (26 ) 
x± i5 

x 

Thus we have 

if d3k 	 If 100

f(p,x ) :: - (1/27fi) 3 V (q)j dyf(k,y)tanh (~ y/2) . 
(211" ) 0 0 c (x-io)- ·Sp 

_ 1 ~ 
2 2 ( 

(x+io ) - E: , 

00 (1 j 1 1 ~ 

.Jp 

+ 	 p (q,E)dE 2 2 ­1o (x-i5) - Sp Ix-i5- y -E x-i5+y+E j 

1 ~ 1 DJ (27)_1 
(x+io)2 - s2 l x+if)-y-E

p 

Although Kirzhni ts , et . a1 . omit the details of their derivation, it 

appears t hat at t hi s poin t (26) is applied to the above expres si on to 
I 

develop th e kernel , K( x,y,p,k ), for the integral equation . We shal l 

briefly show the s teps i nvol ved i n t his development. However , we t ake 

a different approach in arriving at the gap equat i on and shall show 

this following t he digression . 

In t he Kirzhnits method we appl y (26) and write 

1 f 1 · 1 J 1 [_1_ 	 1 J
2 	 2 227fi (x-io )2 - r.. ( x+io)2 - s2 = 27fi x2.1='2-sgn (x)io x -Sp+sgn (x) io --p 	 p 'Jp 

sgn(x)o(x
2 

- ~ ) 

(1/2\ Spl )sgn(x)[o(x-I sp l )+o(x+1 sp l )] 

(28 ) 
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Adding and sub tracting 

1 1 
. 2) _._-­

t anh (13 cY/ [ iO)n • Y • E n-J 

gives 

2tanh ( f.3 cY/ 2) [iO) .1y _ E i O) +lY+ E J 
. n n 

1 }_ +{_1 
+ t anh (f.3cy/2) rL O)n: - n~}]EY n ~ n 

Since the variable y in the s econd line is restri cted to va l ues 

near zero, the contribution of these t erms vani shes in the l owest 

order approximation in y . Thus (23) becomes 

= J OO f( p ,x )dx 
f7t (p, i ill )

n 
iill - x 

-00 n 

- 1 f d) k 00 

(iO)n )2 _ s~ (27r )3 V0 (q ) £dy f (k ,y )tanh (13 cy/2) 

X [1 +JM ~ __l 
1 

p( q,E )dE 
n- n~ iill -y -Eo n 

We may now develop f rom the above equation an expr ess ion for 

the weight function , f (p ,x ), whi ch can be used in (21) t o deter ­

mine t he gap f unc t ion. The weight function can be determined from 

the di scontinuity of the propagator acros s the real axis : 

f(p,x ) (l /27ri)[ $t (P , x-i5) - tcyt (p, x+io) ] (25 ) 
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. 1JI9where we have us ed the identi ty: 

o(g(x) ) = ~ Ig/ (X )! - lh( X-X ) where g(x) o .LJ n n n 
n 

Similar ly, 

II 111 1 1 p P 1 
- 2 2 · . 2 2 = 2 2 o(x-A) + - . o( x-I s I ) . 
2rri (x-io ) - ~p x-A -i~ (x+i o ) *Sp x-A+io ~ -~ x -A 21spl p 

Thus 

.11- 1 ~ . 1 1 ' 1 { 1 __1­ 1 lJ-2-2~­
27fi ..(x-io )2 - ~2l x-i5-y-E x- io+y+E ~ (x+i o ) -s (x+i o-y-E X+io+y+E~

'p p 

p ( P P t 1 

{ 5( X-y -E)-5 (X+Y+E)} + l - , 5( x -1 ~I ) 


x... _ ~ x-y-E x+y+E' 21 spl 


Combining t his with (28) and not ing that the gap function is given by 

the integral of f or positive values of x only, we have 

f (p, x) 

where 

1 00 

K(x,y,p,k ) = V (q) -- o (x- / s I)1 dEp( q ,E) 
o 

[ 21 ~ I p 0 

X j 5(x -I ~ I )f~ __P_) + o( x - y -E) ~ 
2! 21 spl l -y-E x+y+E x - ~ I 

00 

o(x- I s I ) I 1 ( P . P)1 = V0 ( q ) P 1 - dEp (q , E ) + . " 
21spl 0 E+y+x E+y-x .} 

p(q,x-y)e(x-y) J 
+ P 2 2 

x - Sp 
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which is Eq. (8) in the paper by Kirzhnits, et. al.29 

At th is point an i ntegration may be performed with respect to 

x as indicated in (21 ) giving t he gap equation . Instead we return 

now to our approach and proceed f rom (27 ) by int egr ating immedi ately 

with r espect to x along the contour shown in Figure 19. The con­

tribution to the integral along t he pos itive imagi nary axis vanishes 

as Q ~ o . For the f irs t t erm we have 

1 1 1 dxf· [ j 11 
dx 2 2 ~2 == ­

27fi C .(x-io )-~p ( x+i~ ) -Sp 2rri C 

in the second term the poles are not enclosed by the contour . There 

are two possible cases. Thes e ar e shown in Figures 19(a) and ( b )~ 

For ~ > 0 we have -p 

Res 
[ 

1 J 1/2~p . 
. x + Sp - i 8' x=Sp+io 

For S < 0 we have 

= -1/2~ .. Res[-X-_-S-_ 

1 
__-i-JX~_F +i5 

p 
'P 

Thus the first t erm gives 1/2' r:: pI . I n the s econd term we have 

1 1 . ~ 1 1 . ~f ( 
27fi C dx l (X- i5)2 - <,2 Ix-i5- y -E - x- i5+y+E j

p 

1 L+i5~Y-E X+i~Y+E n 
Again in t he second term the pol es are not enclosed by the contour. 

Figures 19(c) and (d ) show t he two cases to be considered. 
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Then from the def inition of the gap function we have 

f 
00 

d3k 1 l j OOp( Q, E)dE ~ 
<t>(p) ::: - 3 . dyf(k ,y)t anh(~ cY/2)Vo( Q ) 1 - 2 • (29 ) 

(27r ) 0 . 0' Sp I + y + E 

We now wish to show explicitly t he gap function <t>(k) under the 

integral. 

Kirzhnits notes that from t he explicit expression for the pair 

propagator 1n terms of t he anomalous self- energy, t he spectral weight 

function may be written in the general form as 

I L\ (p ,x ) J Re6 (p ,x ) l' p 
f (p ,x) ::: Re -- 2 2 = B(x -I Sp l ) + - I~ ( p,x) 2 2['ITi (x-if» - e: 21l=' , 7T x - S' p :'p P 

This f ollows from (26) and the fact that T = T From this we can 
c 

see that the Kirzhnits gap function gives only the real part of the 

gap. In addition, the spectral weight function has a delta function 

singularity at each ISpl • Thus the maj or contribution in the inte­

gral with respec t to y wil l occur at y::: Isk i . Rep l acing y by 

I~kl t hroughout (29) negl ect s the di fferenc e t erm: 

00 

f d3k f OO { r 1 p( q ,E)dE ~ 
- 3 vo (q ) dyf (k,y tanh (r3 Y/2) 1 - 2 .' c

(27r ) 0 0 E+y+ ISpl 

[ 100 p ( q, E ) dE ~ }. 
-tanh (~cl sk i /2) 1 - 2 

o E + ISkI+ Isp I 

which is regular in T Kir zhnits claims that "this term leads onlyc 

to a numerical f actor of the order of unity in the pre-exponential 

,,29factor in the expres s ion f or T Thus, t he final form for the 
c 
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Kirzhnits ga~ equation in t hree dLnensions is 

J
d3k ¢(k) 

¢(p) :::: - V (q) - - tanh (J\ 1Sk l /2 ) [ 1 - 2 1 p( q,E)dE J 
(27r )3 0 21 ~kl o E + ISkI+ISp I 

We may note that the equation hns the same form as the finite tempera­

ture Be S equation at T = T i f we def ine the effective interaction 
c 

by 

r f
CC P ( q , E) dE ] 

U(p , k ) :::: Vo (q ) 
1 - 2 0 E + ISk I + ISpI 

giving 

f 
d3k ¢(k ) . 

<p(p) - --3 U(p,k ) tanh (t3 1ski /2) (30 ) 
(27r) 21 SkI c 

Although U(p,k ) is s imil ar t o the effective interaction for electr on 

scattering [ see Eqs. (18) arid (19)] in that both involve the bare 

interaction V (q ) and the scattering matrix elements, IQI 2::.: o 

V (q)p (q,E ) , (see Chapter III ») they differ in the form of the0 ­

energy integral. Ginsbur g has pOint ed out that t his di f f erence i s 

"associated with the f act t hat superconductivity does not reduce t o 

the scattering of two electrons on each other with the exchange of 

phononse,,150 We have not ed this above in connection with the inab ility 

to describe the s uperconducting sta t e in a power s eries expansion in 

the (small ) e lectron-phonon coupling constant . 

The temp erature dependence in (30) occurs in the hyperbolic 

tangent f unc t ion. The same funct i onal dependence on t emp erature is 

found by Eliashberg in the f inite t emperature case,and by BCS, cf. 

(11) and (13 ). E1 i ashberg r emarks: "Thanks to t.his, the usual rela­

tion bet ween Tc and 6 (T=0 ) i s preserved (Eq . (15) .,,147 We take 
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advantage of t his in the numerical computational procedure thus elimi ­

nating the computation of Iski -1 tanh(~cl Sk l/2) ~ ~c/2 i n the limit 

as Iski approaches the Fermi f;ur fa ce . Equation (30) b ecomes 

j d3k U(p,k ) ~( k) 
¢ (p ) = 

(27T)3 2 ~ (~~ + ¢~ ) 
In t he development of the gap equation it is generally assumed 

that the material is isotropic or that one is dealing with a "dirty" 

superconductor. 151 . This allows t he int egration over k-space to be 

replaced by an immediate integration over the angular variables plus 

an integration over t he energy: 

3 

j _d_k_7. .... j N(s)dS
(21T).) 

In th e present treatment of one -dimensional conducting syst ems, such 

a simplifi cation is not applicable . However, in the present case, 

only the variat i on of ¢(p ) with respect to p is important, so z 

that in this case also we are l eft with an integration over one 

variable : 

1T U(p ,k) ¢ (k) 
::: 

1f dk----­¢( p ) -(27Tf (31 ) 

-Tr 2 ~ ( s~ + $~ ) 
In the metal -atam-dye arrangement s we wil l be considering, there is a 

reflect ion pl ane of symmetry normal t o the z-axi s . Thus we have 

~k ::: S-k and U( p,k )::: U( -p,-k ) giving ¢(p) ::: ¢(-p), so that we 

may write (31) as 

-1 7T ¢(k) 
¢ (p) ::: - (47T) dk ~ 2 2' {U(p ,k) + U(p ,-k ) } • (32)1 

o (Sk + ¢k) 
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The methods for calculatin! ~ the quantit ies which _enter the one -

dimensiona l f onn f or the effect t ve pot ential , viz. the Coulomb inter­

action , either screened -by higher excitat ions , v (q) , or unscreened 
o 

Vo (q) , the scattering matrix element , IQ I2 , and the excitation 

energy , E , are given in Chapter III . As noted there , the matrix q 

elements for the spectral density , have a delta-function dependence 

on the energy: 

p (p-k,E ) == p( p-k ) 5(E - E )
q 

Using this we may write the fina l f orm for the gap equat ion as used 

for numerical calculation : 

-1 71" dk¢ (k) _ { 2!Q(p_k)1 2 

¢l (p) = - ( 471" ) 1 .~ 2 2 ' V0 (p -k) 
E _ + ISpl + ISttI + V0 ( p + k ) o ( Sk +¢k ) p k 

21 Q(p+k ) r 2 J 
(33)-E + - - ,. 

p+k I~ I + I SkI 

- 108 ­



V. RESULTS AND CONCLUSIONS 

A. Numerical Method 

Numerical computation of the gap equation based on several of 

the descriptions given in Chapter IV have been carried out. 

Swihart used the Bardeen-Pines potential in the BCS equation (13). 

to determine the temperature dependence of the·energy gap, the ratio 

of the energy gap to the critical temperature, and several other 

152parameters in the weak-coupling case. At the same time Culler, 

et. a1. found numerical solutions for the 'gap equation using the 

Eliashberg equation. 153 Results of these calculations differed in form 

for 6(ro) near the-Fermi level. This has been discussed subse­

143quent1y by Sw1,.hart. ' More recent numerical calculations using the 

, 26 154 155 E1iashberg equation have also been reported. ' " Numerical ca1­

cu1a~iona using the Kirzhnits equation have not been previously published. 

In the present method we assume that if a solution to the inte­

gral equation (32) exists it may be found by an iteration procedure: 

7T 
dk ' 

<Pi+1(P) = - "4 11 
I <Pi (k)[U(p,k) + lJ(p,-k)] (34 } 

7r 0 ~ (s2(k) + 4>i(k») . 
Although the kernel of the integral is non-singular, a large contri­

bution occurs for values of k in the region near ~ where s(k) 

vanishes. We treat the region within ±ko of ~ separately by 

dividing the interval [O,7T] into two regions: (R'1 == [~-ko,~+ko] 

and in"2= [O,~-ko]U[~+ko,7T] . Thus we have the inhomogeneous 
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equation for p € ~2 

<l>i+l(P) = f(p) -4n1£ dk <l>i(k)[U(p,k) +U(p,-k)] (35 )i 

"2 ~(s2(k)+$~(k») • 

where 

1 dkf
f(p) - - 47T ~ . 1 $ i (k )[U(p ,k) + U(p , -k ) 1 


. R 1 (s2 (k ) + <l> ~ (k ») , ' 


Repeated iteration of (35) gives a converged solution in . R that
2 

is used in a subsequent iteration in ~l. In this manner iterations 

in the sensitive region, Rl , are based on converged solutions in 

152R • This proc·edure was used by Swihart who also used the
2 

Tolmachev "quasi-linearization" method. 134 Initial studies showed 

the latter method to be unnecessary to achieve convergence for the 
III ~ " 

~I!I~Kirzhnits equation. 
',I, 

illr.~ 

1!1r.; 

The procedure of iterating in R2 to convergence before each 

iteration in Rl was continued until the function was found to have 

converged in Rl also. This was followed by a final 'series of itera­

tions in which new values of <1>. l(P) were calculated for both regions.
1+ 

The criterion for final convergence was 

-4 
( 1 IN) 1: I<I> i +1 (p j) - <I> i (p j ) I < MAX(<I>. ,l(P,» X 10 (36)1+ J ' 

j 

The integration was carried out by using Simpson's Rule. , In the 

region near the Fermi level, however, this method was , found to be inade­

~ 22 . iquate because of the denominator: E(k) = , s (k) + <I> i (k) In a small 
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region within ±B of ~ Simpson's Rule was replaced by an analytic 

integration in the following manner. The grid of points in ~l was 

chosen such that 

N2 .. N1 = 4N .. 2 , (37) 

where Nl is the number of points from zero to kF " k _ and N2 is o

the number of pOints from zero to ~ + ko See Figure 20. In this 

manner a pOint, N ,fell at the Fermi level with weight 4 in the o 

Simpson's Rule method. The analytic correction is then given by 

k_-+B 
-~. dk 


1 B
f . <1>. (k)[U(p,k)+U(p,-k)] .. '3 [K(N " 1).. 41T o
 
~ - 5 ~ ( \';2 (k) + <I>i (k ») 1 


+ 4K(N ) + K(N + 1)]o o 

where K(I) is the value of the integrand at I, and B is the dis­

tance between points in ~l . The analytic integral may be approxi­

mated by setting k =~ in the slowly varying functions of k-, giving 

dk 
- ~ <l>i(~)[U(p,~)+U(p,-~)l j[1T 

(38 ) 

o ~ (\';2(k) +<I>i(~) )' 

Following the results of Abarbane196 for a platinum chain system, we 

use a cosine band shape with band width E o 

~(k) = (Eo/2) (cos(~) .. cos(k)) 

For k near the Fermi level we have 

S(k) ~. (Eo/2) (k - ~) sin(~) 
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~1 

Figure 20. Grid for numeric~l integration. 

From this approximation the analytic contribution at the Fenni level, 

(,8) becomes 

m: 
~~. _ ;. $ i (k )[U(p,~ )+U(p, _~)1 . 1 in Eosin(~)/2+~oII-in(~) /2)2+¢li (~)) I 
Ir:~.

F ~I, : 

Eo sin (~) <Pi (~) 

In general the grid consisted of Nl = 20 points in the first 

section of R2 ' N2 - Nl = 30 points in Rl ' and = 10 addi­N, -N2 

tional points in the second section of ~2. Grids with as few as 

40 points with various distributions in ~l and 6t subj ect to .2 

restriction (,7) gave the same transition temperature to within 2%. 
~~ 

Initial trial solutions, ¢ (1) , were chosen to be constant. o 

The uniqueness of the converged gap function was examined by using 

values of the constant both larger and smaller than the resulting 

*A minimum of 10 points in each region was also imposed. 
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gap at the Fermi level. It was found that the solutions coincided 

and the transition temperatures agreed to better than 0.1% using 

the convergence criterion (36). 

B. Parameters 

Parameters for the standard model system for comparison . of 

transition temperatures and for investigation of uniqueness andsta­

bility are given in Table 9 • . The parameters fall into two categories. 

In the first category are those parameters that determine the effec­

tive interaction between electrons on the spine through the dielectric 

response function (18). The results for the standard model 'and for the 

other systems have been given in Tables 5 - 7 for the scattering matrix 

elements and the excitation energies as a function of the wave vector. 

In addition, the Coulomb interaction along the spine is given in Table 8 

II"for the bare inter'action, the Thomas-Fermi screened interaction, and 1t~1 

I;n: 
Ilii 

for the particular case of Thomas-Fermi screening as well as screening 

by the higher excitations of four pyridine cyanine molecules per unit 

cell as given in the standard model system. 

The band width and Fermi level parameters in the second category 

are treated as independent of those in the first category for the pur­

pose of determining the effect of their variation on the transition 

temperature. Certain parameters are related, however. The Thomas-

Fermi screening length is weakly dependent on the density of states at 

the Fermi level. The organometallic compound K2Pt(CN)4ClO.32·2.6H20 

has served as the reference for most of the spine-relat.ed parameters. 

0-1The Thomas-Fermi screening ' length used in the calculation', 0.14 A , 
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TABLE 9 Parameters for Standard Model 

Parameters for calculation of effective interaction 

Dye molecule 

Number of dyes per unit cell 

Number of unit cells 

Number of q values 

Platinum - nitrogen distance (in plane) 

t-' 
t-' Platinum - platinum distance (along chain) 
-+="" 

Platinum atom size 


Thomas-Fermi screening length 


Screening from higher . excitations 


Parameters . for calculation of transition temperature 

Band width 

Fermi level (~/TI) 

System. 

Pyridine Cyanine 


4 


9 


10 

2.0 R 

3.4 K 

2.8 R 
0.14 R- I 

yes 

3.0 	e.v. 

5/6 



is the one appropriate to this compound as determined in Chapter II. 

This introduces some inconsistency since the lattice constants of 

KCP-CI are too small to accommodate the large dye molecules which we 

envision in the unit cell. The enlarged structure would have some 

unknown, smaller value for the screening length. The transition 

temperatures were calculated without Thomas-Fermi screening in order 

to make the appropriate comparison. 

The band width is directly related to the platinum-platinum 

distance along the spine. The band structures determined by 

Abarbanel were for the compound PtC1= at a variety of trial p1atinum­

platinum· separations. 96 At a separation of 2.8 Rthe band width was 

found to be 2.5 e.v., but at 3.25 Rit was found to be 1.2 e.v. The 

exact bandwidth for KCP-C1 is unknown although as noted in Chapter II 

it should be of the order of that for PtCI= at 2.89 R. Calculations 

have been made using the two band width values, 3.0 and 2.5 e.v., for . . 

each of the ligand systems. These values thus represent the largest 

band widths to be expected. It may be noted from Table 9 that the 

platinum-platinum distance for the standard model system suggests 

that a smaller value of the band width should be ·used. The separa­

tion used in the calculation, 3.4 R, was chosen to allow for the 

Van der Waals contact distance between parallel layers of cyanine 

dyes. As seen in the next section, however, the transition tempera­

ture is relatively insensitive to the band width over this range of 

Pt-Pt separation. A conservative estimate can then be obtained 

using these larger band widths. 
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One other standard parameter bears explaining, namely, . the Fermi 

level. The value 5/6 is that appropriate again to the model compound 

for the spine and reflects the partial oxidation of these compounds. 

Because of this unfilled band these compounds show metallic behavior. 

C. Results and Discussion 

In Table 10" we have selected eight cases giving a representative· 

variation of the parameters for the model system and list the calculated 

transition temperatures. Figures 21(a) - (h) show the form of the kernel 

(33) (the term in braces) for each of these cases. The ~qu:i.potentia1 

lines are plotted using the following color scheme: red=+4.0, 

red-orange=+3.0, or8nge=+2.0, yellow=+l.O, white=O.O, green=-l.O, 

blue-green=-2.0, blue=-3.0, pink=-4.0 all itt electron volts. The 

attractive regions, a function of electron states p and k, can 

easily be seen. Several observations may be made. High transition 

temperatures result when the attractive interaction occurs for a large 

range of electron states and correspondingly for a deep potential. Neg­

lect of Thomas-Fermi screening, Case #5, results in a high transition 

temperature even though the attractive region is significantly smaller 

than in the standard,mode1 and thus shows the importance of the depth 

of the attractive potential. The sharply reduced effective interaction 

in this particular case of empty alternate cells, Case *7, results in 

no attractive region along the diagonal, p = k , and gives no solution 

to the gap equation. 
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TABLE 10 Transition Temperatures for Variations of the Standard 

Case 

#1 

#2 

#3 

#4 

#5 

#6 

#7 

#8 

Model System 

Variation 

All standard parameters 

No screening by higher excitations 

Band width = 2.5 e.v. 

Fermi level = 4/5 

Thomas-Fermi screening neglected 

2 molecules per unit cell 

Alternate cells empty 

Pherianthroline cyanine molecule 

Transition 
Temperature 

(oK) 

3060 

13 

3249 

2863 

2517 

6 

3021 
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( a) 

Figure 21 Kernel of integral in the gap equat i on 

6(~) = 0.46 e.v. 

Figure 22(a ) Gap f unction 
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We have plotted the corresponding gap function for each of these 

ca~es, except Case #7, in Figures 22(a) - (h). Each figure shows the 

calculated value of the gap function at the Fermi surface. 

Table 11 shows the transition temperatures calculated for the 

arrays with 4 dyes per unit cell. Variation with band width, Fermi 

level, screening from higher excitations, and Thomas-Fermi screening 

is shown. The inclusion of screening from the higher excitations of 

the n-electron system is found to be of primary importance in obtaining 

high transition temperatures. The standard reference model has a 

transition temperature of 306ooK; neglecting this screening gives a 

Coulomb potential that dominate~ the attractive interaction for nearly 

all values of p and k and results in a transition temperature so close 

to zero that one might not expect to find a superconducting state. 

Thomas-Fermi screening is found to have only a moderate effect 

on the transition temperature. Thus larger lattices required to accom­

modate the dyes would not rule out superconductivity caused by the 

lack of screening by neighboring chains. The close proximity of the 

dye molecules to the chain compared with the interchain distance 

results in the screening from higher excitations of the n-electron 

system being more important than interchain Thomas-Fermiscreening. ­

Thomas-Fermi screening has the positive effect of reducing the direct 

interaction between electrons on the spine. It also has the negative . 

effect of reducing the overall interaction of the spine electrons with 

the dipole induced on the dye molecule. Thus inclusion of Thomas-

Fermi screening generally results in a slight increase in T ,but 
c 

in several cases the balance of these two effects results in a 
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N% Gl NoCooP· r~·~N~ 

Pyridine Cynanine (A) Pyridine Carbocyanine (B) Pyridine Dicarbocyanlrne (C) 

A =0.0 X-I. A = 0.14 i-I 
Fenni Band A B C A B ~ 

.....,a Level Width
f\) I T T T I-..:J 

T (oK) 
C 	 C C C C c 

5/6 ,.0 e.v. 0 0 816 13 1028 1534 

v 
0 	

5/6 2·5 0 0 1033 57 1259 1765 

4/5 3.0 0 0 364 0 541 1057 

5/6 3·0 . 2517 4915 6117 3060 4270 4839 
,...., 
v 

0 	
5/6 2·5 2'765 5213 6441 3249 ' 4494 5084 

4/5 3·0 2319 4682 5897 2863 l~o63 4611 

TABLE 	 11. Transition Temperatures f~r Arrays with Four Dyes per Unit Cell 



decrease in the transition temperature. The accuracy of these calcu­

lations from first principles, it should be noted, is insufficient 

to support conclusions for these mixed trends in the Thomas-Fermi 

screening based on, for example, chain length of the dye. 

The length of the chain in the various cyanine dye molecules does 

correlate with the transition temperature if other factors are fixed. 

The longer chain length results in a larger transition dipole and a 

smaller transition energy. Both these results favor a stronger effec­

tive interaction with the spine electrons. 

As noted in Chapter III in the Case of two phenanthroline cyanine 

dye molecules per unit cell, we expect results similar to the case of 

four pyridine cyanine dyes. No solutions were found for the models 

that neglected screening from the higher excitations. With the inclu­

sion of this screening, the transition temperatures were found to be 

essentially the same as those for pyridine cyanine. Although the 

scattering matrix elements are smaller for the phenanthroline than 

for the pyridine cyanine, this is compensated by a smaller energy for 

the excited state as well as increased TI-electron screening fram the 

extra ring structure close to the metal atom chain. See Figure 23. 

The transition temperatures were found to be 302loK and 33lloK, with 

and without Thomas-Fermi screening, respectively. In both cases 

standard values for the band width and Fermi level were used. 

In Table 12 we present the calculated transition temperature 

for the arrays that contain 2 dye molecules per unit cell. An 

attractive interaction is found only under optimum conditions. 
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Figure 23 Unit cell with two phenanthroline cyanine dyes. 
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oD~oP r@o-P ~~. 

\tJ 
Pyridine Cyanine (A) Pyridine Carbocyanine (B) Pyridine Dicarhocyanine (C) 

A = 0.0 X-1 A = 0.14 X-l 

Fermi Band A B C A B C 
Level Width T (oK) T T T T T 

c c c c c c 
...... 

\..N 5/6 3.0 e.v. 0 0 0 0 0 0 
0 

v 
0 5/6 2.5 

4/5 3·0 

5/6 3·0 0 0 104 6 562 1054 

-v 
0 

5/6 2·5 . 

4/5 3·0 

TABLE 12 Transition Temperatures for Arrays with Two Dyes per Unit Cell . 



In the cases primarily considered,we envision each cell being 

occupied by two or more dye molecules. For this reason we calculated 

the effective interaction caused by the dyes using a platinum-platinum 

distance of 3.4 R. On considering the case in which we attach dyes 

in alternate cells only, we found no solutions except in the cases 

of pyridine carbocyanine (l7°K) and dicarbocyanine (155°K), parameters 

for the reference system being used in both cases. It may be possible 

to choose ligands for the empty cells that require less space along 

the spine axis. Such ligands would not be expected to contribute to 

the attractive interaction, but would allow the platinum-platinum 

distance to be reduced and thus make the overall model more consistent 

with the known reference spine compound, KCP-Cl. 

One of the synthetic requirements assumed thus far is the ability 

to complex the dye to the metal atom thereby bringing the excitonic 

medium into intimate contact with the conducting spine. In the cal­

culation of the effective interaction, we have assumed that the exchange 

contribution of the spine electrons with those in the molecular orbitals 

of the dyes is small compared with the direct interaction. For the 

carbon spine this can be arranged by having the dyes lie in the plane 

perpendicular to the spine thereby making the spine 'IT orbital ortho­

gonal to the 'IT orbital of the nearby nitrogen atom. In the case of 

the transition metal atom chain; the radial extent of the d 2 con-
z 

duction band is small compared with the other d orbitals on the 

metal, giving little overlap with the dye molecular orbitals. Neglect 

of exchange is then consistent with the Zero-Differential-Overlap approxi­

mation used in calculating the molecular orbitals. 
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We have modeled systems in which the dye molecules are removed 

from the metal atom and find that the interaction falls off rapidly 

with the platinum-nitrogen dist~nce. At 3.0 i separation finite 

transition temperatures were found for pyridine carbocyanine (526°K 

with Thomas-Fermi screening; 77°K without) and for pyridine di­

carbocyanine (1015°K with Thomas-Fermi screening; 7700 K without). 

No solutions were found if screening due to higher excitations was 

neglected. This places a great emphasis on the necessity to syn­

thesize compounds having the dye molecules complexed directly to 

the metal atom. Ligand structures such as shown in Figure 2 position 

the dye molecule too far from the conducting spine and cannot be . 

expected to give an attractive interaction with the dye molecules we 

have considered • . 

The effect of variation of the band width and Fermi level may be 

determined from Table 11. Variation of the band width over the fuil 

range from 1.0 e.v. to 3.0 e.v. has been done and the results are 

presented in Table 13 for the standard system. 

TABLE I; Variation of Transition Temperature w1thBand Width 

Band width (e.v.): 1.0 1·5 2.0 2.5 3·0 

T 4033°K 3698°K 3456°K 3249°K 30600
K c 

Calculated transition temperatures thus appear to be relatively insen­

sitive to the band width in the region of interest. 

Checks were made to determine if the 9 unit cells and 10 q values 

in the standard model system were sufficient to give transition tempera­

tures which were independent of the number of unit cells and q values. 
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Representative results are shown in Table 14 using 10 q values with 

various numbers of unit cells with four pyridine dicarbocyanine mole­

cules per unit cell. Results using 20 q values and 17 unit cells 

are shown in parentheses in Table 14. As can be seen from the table, 

use of the small number of unit cells and q values may account for 

a variation in T of the order of 20%. 
c 

TABLE 14 Variation of Transition Temperature with Number of Unit 

Cells and q Values 


Number of unit cells: ~ 11 12 12 11 

v 816°K BlioK 886°K . 928°K 942oK (886°K) 
T (A = 0.0) 

0 

"'-Ic 0 o
v 61rtOK 6083°K 6030 K 5998°K 5993°K (5862 K)

0 

We may comment now on several of the objections raised against 

the possibility of high temperature excitonic superconductivity as 

noted in .Chapter I. Perhaps the most apparent conclusion is that 

structures with metal atom chains complexed with certain dye molecules 

can give rise to a large attractive interaction between spine electrons. 

Lack of Thomas-Fermi screening on the level found in metals does not 

result in Coulomb domination of the excitonic interaction as Kuper 

suggested.23 

The possibility of aPeierls instability still remains one of 

competing mechanisms. The transition temperatures of the order of 

103 oK obtained in the present calculations are expected to be larger 

than characteristic temperatures for a Peierls transition. Such a 

competition may occur in Nb Sn and similar compounds (known as A-15
3

156. compounds) that have a linear chain structure. A theoretical 
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treatment of these mechanisms has been carried out by Gutfreund, et. 

a1.,157 who conclude that in principle either mechanism may dominate. 

Calculation of the Peierls transition temperature along the lines 

given by Gutfreund, et. ale could be carried out, b~t comparison of 

order of magnitude results for T 
p 

with current ones for T c would 

not likely support a definitive conclusion. 

Among the objections noted in the first chapter, the most elusive 

seems to be that of the general stability of the lattice for negative 

values of the static dielectric function. Cohen and Anderson27 and 

28Allender, Bray, and Bardeen have claimed that the strength of the 

electron-exciton coupling is not limited by this requirement ­

inclusion of Umklapp processes being the necessary feat~re to remove 

158the limitation. Pines and Nozieres have discussed this problem 

using a jellium model for which the lattice structure is neglected, 

thus Umklapp processes are not relevant. They find that negative 

values for the static dielectric function would be accompanied by 

density waves in the jellium background. A simple calculation by 

using (19) and the values for the Coulomb interaction, scattering 

matrix elements, and transition energy for the standard reference 

system, for example, gives a value Re(l!E(q=O,(1):::O) = -2 • ' Thus 

this question of lattice stability is significant, but as yet it is 

not known if Umklapp processes and other lattice features would allow 

for a stable lattice under these conditions. Perhaps this comment 

by Ginsburg should be noted: l59 "One should keep in mind that even 

[V(q,m) = V (q)/E(q,m) (18)] is not always applicable since it does o 
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not take into account the anisotropy and inhomogeniety of the crystal 

(generally, the dielectric permeability Eij(m,q) is a tensor), and, 

more important, in an inhomogeneous system (crystal), this tensor 

describes the electromagnetic properties of the medium only for waves 

with wavelength A.» a fI 

.From the results of our present calculations, or estimations 

since they rely on parameters tEl.ken in some cases from systems that 

model only a portion, (for example, the spine), of the total system, 

we may reasonably conclude that excitonic superconductivity can be 

expected from structures that conform to the basic requirements of 

the Little model. Of primary importance is the close proximity 

(complexation appears to be the only possibility) ot the excitonic 

system. to the spine. Also important is the use of dye molecules with 

a large transition dipole for a low-lying excited state and which 

provide for dielectric screening in the region near the spine. 

The particular dye molecules we have used in the models have 

not yet been complexed to the metal atoms. If this is possible, 

three problem areas remain to be solved by ingeneous synthesis. 

First, the metal-atom ~ ligand system must stack in chains. With­

out this, no delocalization of the electrons on the metal atoms can 

take place. Second, the spacing between metal atoms along the chain 

must be sufficiently small for banding to occur. And, finally, a 

partial oxidation of the spine must be achievable without destroying 

the ligand system. Thus far, partial oxidation ot platinum chain 

160systems has been carried out for a few ligand systems. . These are 

formidable synthetic challenges. 
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APPENDIX 

APPLICATION OF THE BOGOLIUBOV TRANSFORMATION 


TO THE FROHLICH HAMILTONIAN 


The Frohlich Hamiltonian for the coupled electron-phonon system 

is given by 

r: 
 t . t t
r: . t r:H :::: . €kCk Ck + ill b b + M ck· ck ' (b + b )
~ ~ q q q q ~ ~ q -q 

k~ q k,k' ,(]' 

where q:::: k' - k ,the prime on the sunttnation sign indicates the 

k :::: k' term is omitted, and is the unrenormalized electronEk 

state energy with Ek = E-k for an isotropic system. The Bogoliubov 

transformation takes the general form 

t (\: t 
:;~ = ~Ckt - vkc.k, ~Ckt - vkc-k, 


t t t
t3_ :;:f3 -k = ~C_k, + VkCkt k '\c -kt + vkck t 
2 . 2and ~ +vk = 1 is imposed to preserve the anti-commutation properties 

for the quasiparticle operators: 

t t t
[~,~,]+ = °kk' [~,~,]+ :::: [~,~,]+ ::::; . 0 

t t t 
[f3k ,f3k ,l+ . :::: °kk' [l3k ,t3k ,]+ ::::; [f3k ,f3k ,]+ ::::; 0 

Combina~ions of a and 13 operators anti-commute. The inverse 
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transformation is given by: 

t t t 
== ~CXk + vk~_k C ~~ + vkf3_kck t kt 

t t t 

C-

kt 
= V-k - vk<\: c_k • = V-k - vk~ 


The general product of a creation and destruction op~rator for spin-up 

electrons transforms as: 

t t . t 
ck t ck 't = ('it~ + vI! -k ) ( ~,~, + v k ,13 -k ' ) 

t t t t 
= ~~,~~, + vk~'~_kak' + ~vk''\:~_k' + vkvk'~_~_k' 

and for spin-down electrons: 

C~kt-k'+ = (¥~k - Vkilk)('1t'~-k' - Vk'~') 
. t t t t 

= ~'\:'~ .t! -k' - vk'\: ,~13 -k' - '\:vk'~ -k~' + vkvk ,~~~ 

Thus the terms of the Frohlich Hamiltonian become 

Ekckcrcka = L €k!C~tCkt + C~k~C_k. lL t 

kcr k 

~ !2t tt 2 t 
= £.J Ek ~<\:~+~vk(¥-k+~-k~) + v~_I!_k 

k 

2t t t 2 tl 
+ ~f3-k~-k - ~vk(~_k~ +~~-k) + vk~Dk f 

~ I 2 2 t t · t t 2\ 
= LJ Ek (~-vk)(ak~+~_t!_k)+2~vk(¥_k+t3_k~)+2vk 

k 
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and 

, 
t

"" 	M ck · , (bt+b q)LJ q (j 
ck (j . q ­

k k, . 'a 
, 

= .~ Mq(ctrk't + C~k'r_k~)(b!+b_q) 
k,k ,a 

, 
~ ... tit 	 tt t = LJ . Mq(bq+b_q ) ~~,~ak,+vk~'~_k~'+'itvk'¥_k,+vkvk,(3_i!_k' 
k,k' 

t 
+~~,f3_k,f3_k - ~vk'~'~_k 

t t t! - ~,vkf3_k~+vkvk'~'~ 

=L 
, 

I	 tt t 
Mq (t;<vk , + ~,vk) (~(3 -k' + f3 -k~') (bq + b _q) 


k,k' 


t t t ~ 
+ (~~, -vkvk')('1tak,+f3_k'~_k)(bq+b_q)l 

Collecting, we may write this as 

H = He+H~+~+~+~+U 

where 

~ t t ~ t 
He == LJ ~(~Dk +~-k~-k) + LJ CDq b q bq 


k q 

, Itt_.f:1. 	 ~ t ~Hi == 	 LJ Mq (~vk,+~,vk)(O:i!_k'+~_k O:k,)(bq+b_q)~ 


k,k' 


, 

~ == L Mq I(~~, -vkvk ' )(a~~, + ~~k'~ _k)(b!+ b _q)! 


k,k' 
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tIi == l: 2€k~vk (Ct~t3 ~k + p.,-k~k)
k 

~( 2 2 ) t t~ == L.J €k(~ -vk ) - ~ (~~+f3_~_k) 

k 


2E = constant •u =l: k
Vk 

2 


k 


Compensation of dangerous diagrams for the creation of a pair 

of quasiparticles gives the condition 

(FI~lo) + E (FIH~II)(I1H~10) 
I 1':0 - EI = 0 

where 10) is the vacuum state with energy U, II) the intermediate 

state generated by H~ , and the final state IF) has a pair of quasi­

particles, Ok and f3-k (see Figure 10). The energy of the inter­

mediate state is given by 

' / ~ 2 2 t t '" t(1 IH II) :r::: (I +-I Ek " (~" - vk" ) (Ctk"Ctk" + f3 _kill' -k" ) + L.J illqbqbq + UII) . 
k q 

This gives the same energy for II) = 11 , II!). ,; 1ill ) and 
f-'_k qak


I1) = /1 ,II!). ; 1 ), name1y : 

~, I-'_k illq 

2 2 2 2 
EI = Ek(~ -vk ) + Ek'(~' -vk ,) + illq + U 

2 2 2 2The energy denominator is then - {Ek (~ - v k) + Ek , ( ~, - v k') + illq } • 
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For the matrix elements we have 

(F lili 10) = {1~,1~ 1E 2€k"'\IV (~lIil ~k" + il_k~.) 10) 
-k k" 

= 2Ek "'\."Vk " Bk,k" 

, 
(IIH~lo) = ' (\)! ,1t3 I ;1(JJ E Mq!(~"Vk'''+~.wVk/l) 

k -k q k"k N ' 

t t ' t l 
X (~IIt3 -k'" + t3 -k"~"') (bq + b_q) llo) 

= M , q (u.it"VkN' + ~"'Vk") ok" , kBk'" , k' , 

, 
( ' 1 I' ~ j( , t t(F I~II) = la. ' 13 L.J Mq I ~"~,,, - vk"vk ,,,) (Dk"~'" + t3 -k~ -k") 

-'k -k k" k'", 

(b t + b ) I 11 , 1R ; 1 ill , ) 
X q -q ~ ~-k' q 

= M (u. flU. ", - vk"vk ",) Ok" k' Bk ", k 
q K K " 

Similarly 

(lex.. ,1R /£2I l rv ,1(3 ;1(JJ )(1a. ,1R ·1 IHa,o)
k ~-k. ~' -k , ~ -k' ~-k" ill 1 

q 

= IMq ('\II'\ .... - vk"vk- )Bk" ,k~"" ,k,ll Mq('\HVk", + '\_vk" )~II ,k,~,,,,kl 

Thus both intermediates give the same value and the compensation 
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condition becomes 

, 

IMg 12(~,~ - vk,vk)(~,vk + ~vk')


2€k~Vk - 2 ~ 2 2 r) 2 = 0 

k' . €k('it -Vk ) + Ek,(uk' -vk ,) + illq 

Rearranging the terms gives 

, 
2J 2 2 2 2 l 

JMg 1 I (~, - vk ' )~Vk + (~- Vk)~,Vk' _ 
€k'1t Vk - ~ 2 2 2 2 - 0 

k' €k (~ - vk) + €k' (~, - vk') + illq 

We denote €k ('it2 .. vk
2 

) by Ek and define the renormalized quasi-

particle energy by 

Sic; '" Ek _ ~ IMgl({, -v~,) 
k' ~K+Ek,+illq 

Defining the gap function by 

2 . _Sk) 2 
(1/2) then v ­~ = k( l+~s~+~' 

and 

= (1/2) ~ (1 + :k ) (1 _ Sk .)ll/2~Vk 

~Sk+~ ~s~+~ J 
s2} 1/2 

= (1/2) 1 - 2 k 2
{ Sk + .6k 

~ 
= (1/2) _~2 

1 sk +.6k 
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The compensation condition becomes 

, 
o = Sk 'it v - (~- v~) 2: ~ l'it,vk ,

k 
k' ~ + Ek , +mq ' 

s ~. c: ' ~ , 1M 12 
= (1/2) kit , - (1/2) ·k it , 9, 2: 

~ 2 2 J 2 2 k' ,2 2 ESk+f\ 'Hk+f\Sk,+f\, ~+ k,H.lq 

giving the gap equation 

1M 12~, 51 

I\. = 2: ~. 2 1\.2; E + ~, + illqK k' Sk'+K k 

Compensation of .dangerous diagrams using the renormalization 

term HR gives the condition 

(F IRa IF) +2: (FI~ II) (I:~IF) +(F IH~ II) (I IH~ IF) _ 
I EF - E E VP - 0 , . I F -EI 

where the initial and final states are IF) = 11 ) • Diagrams for 
~ 

these terms are given in Figure 12. The energies of the initial 

state, intermediate exchange state, and intermediate vacuum polariza­

tion state are 

"'" 2 2 tEF = (1<\: In .11~) (10.. I. L.J Ek" (~" - vk " Pk"Q;k" + U 110..) 
- k k" -k 

2 2 
= €k (~ - vk ) + U 

2 
SEX ::: (1 " .; 1 l "'" Ek " (u. 11 - V~II )~/I~II + "'" mqbqtb + U 110.. ; 1m )
10k, m L.J l( L.J q . Ok' q 

q k" q 

2 2 
= €k'(~' - vk ,) + ().)q + U 
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vp_( . ~ 22 t t 
Er - l~,lDkIl,l~_k.."l(1)ql £...J Ek ,(,\, -vk,)(~~,+f3_k~_k) 

k' 

+ ~ ill b tb + U lla. ,1n. ,lA ;100 )£...J q qq. it kD ..... -k,,.,, q 
q 

2 2 2 2 2 2 
= Ek(~-vk)+Ek"(~II-vk") + Ek"N(~",-vkN') + (1)q + U 

For the matrix elements we have 

"( 2 2 . ) ttl(F I~ IF) ; (1<llt1~ Ek' ("k' - vk ,) - ~, (akAk' + f3 _k,f3 -k') 1<llt) 
k 

J 2 · 2 I= l Ek , ( ~, - vk ,) - ~., ok' ,k ' 

(1 I~ IF) ; (\1..,; 1m I ~' MqI("k""k- - vk"VkN, )(c\II<\N' + ~N,(l_k") 
1< q k" k"' . 

X (b~ + b _q) 11<llt) 

= Mq(,\II~oW - vk"vkoW) ok' ,k"Ok,koW 

and 

" 
(IIH~IF) = (lex. ,lex. 11,1[3 ..,,;1(1) I L Mq(~,vkN" +,\"..,vk ,,) 

. 1<1< -k q k' ,k"'" 

t ttl
X (~,f3_k'''' +f3_k'~"" )(bq+b_q)l~) 

= Mq ('-\,vk '''''' + '1t""vk ,,) ok' , k" 5k'''k'''' 
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Collecting this together with the energy denominators gives the 

compensation condition 

, 22 
1Mgl (~,uk - vk,vk )2 2 ~ 

Ek(~ - vk)-Ek + £..J 2 2 2 2 
E (u. -V, ) - E ,(u., -V,)-CDk' k Kkk K k q 

IM l2 (~"Vk'" + ~",vk " ) _ 
+~ ~ 

q 
.' 2 2 2 - 0 . 

-Ek " ('-1t" - vk" ) - Ek ",( ~", - vkN,) - CDqk" ,k'" 
k"lk 
k'-Ik" 

The last term can be made independent of k by adding and subtracting 

from the equation 

~. IMg 12 (,\VkN'+ ,\_vk ), 
£..J 2 2 2 2 
klN/k -Ek(~ - vk ) - Ek"'(~N' - VklN } - illq 

This gives 

( 
2_ 2) _ _~ ,/Mgf('-1t,~ - vk ,vk )2 " /Mg /2(~Vk' + ~,vk)

Ek ~ vk Ek £..J ' " +£..J ' = 0 
k " Ek , - Ek + {l)q k' Ek , + Ek + CDq 

where we have let k..-w .... k' in the final term and dropped the constant 

term. Renormalization makes a negligible contribution in the energy 

denominators, therefore we have used Ek and Ek , • 

Using the previous definitions for the gap ~ in terms of ~ 

and v we .findk 

(~'~-VkVk,)2 = ~{1 + SkSk' - L\L\, ,} 
~ (S~+ti) (~, +ti, )' . 
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and 

(~,vk + ~Vk,)2 = i {I _ SkSk' - L\L\, } 
~ (J:"2 + 2) (2 2 i~k .6k Sk' +.6k' ) 

Using these in the compensation condition gives 

, ( [ SkSk ' - L\L\,] 12 2 1. 2) 1 + .. i 
k k 

E (,\: - ) - ~ - 2 ~ IMq I t ~ (S~ +~)(r;~, +~) ~, - ~ +OlqV 

SkSk' - ~~,] 1 ~ = 0 • 

[ 
I- 1 - ~(S~+~)(F,~d~') \d~+illJ 

Making use of the synunetry about the Fermi surface, tenns odd in ~, 

vanish in the sum giving 

, . 2 {I 1 J2 2 _1 M 
Ek (u. - Vk ) - Ek 2 ~ I q I E _ E + ill E , + ~ + (1)q . 

it k" k' k q k . 

1 ~~ 2 1 1. J\,
+ - . , 1M I . { + } = 0 . 

2 2 · 2' q 2~ ~ ~ +L\ k' {F.kdL\, Ek , - Ek + illq ~, + ~ + illq 

We are led to make the definition of the renonnalization factor Y byk 

, 1M 12 gwhereSk == €k/Yk I'k == 1 + ~ 

( (1) q + 1\ ~ )2 

- E2
k' k 

Thus we have 
. , . 2 

Sk _ . _ 1 ~ 21Mq I Ek . ': L\: . ~ 2 L\, 
Ek i Ek 2 L.J ' 2 2 + I L.J IMq I I 

~~+~ . k (Ek,+illq ) - Ek 2 ~S~+~ k' ~~,+~, 

X 1 + 1 1 0 • 
{ 

Elt-' - E1c + (1)n E1c , + Elt- + illIt 
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0 

2 " 2 2~ ~ ~' Multiplying through by ~k -I- t\ and setting ~ = Sk + ~ gives 

L\' ~,r) :::1 1 J 
€kSk - (S~+~)')'k + -L IMq 1< ~ 2 2 ' E, -E +ill + ~,+~ +illt2 k ' ~ , + ~- , k k q q-k K 

Noting that €k = Sk')'k we may rearrange this to give the self-consistent 

gap equation 

, 2 ~, ~ 1 + ~l_l oL\ = (1/2 :>'k) L IMql J 2 2 'lE., -~+m Ek'+~+illqf
k' ., ~k' + .6k, q-k 
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GLOSSARY 


BCS Bardeen, Cooper, and Schrieffer. The BCS theory was the 

first successful microscopic theory of superconductivity. 

The theory accounted for the properties common to super­

conductors: infinite conductivity, Meissner effect, criti ­

cal field, persistent current, flux quantization, specific 

heat and isotope effect. 

CI Configuration Interaction. CI is a method for obtaining a 

more accurate ground-state wave function by adding excited­

state functions to a trial ground-state function. Applica­

tion of the variational principle determines the degree of 

admixture of excited states. 

ISM Interrupted Strand Model. This model seeks to explain the 

optical and conduction properties of one-dimensional systems 

by accounting for the effects of the finite chain length 

because of interruptions along the metal-atom chain. 

KCP Potassium Cyanoplatinate. KCP-Br and KCP-CI denote the 

square-planar cyanide complexes of platinum that are partially 

oxidized by bromine and chlorine, respectively. 

K;S Magnus Green Salt. MGS consists of chains of alternating, 

square-planar, complexes of platinum with ammonia and with 

chloride ions. 

MVP Mixed Valency Planar, also Mixed Valency Platinum. MVP 

denotes the square-planar complexes of platinum with cyanide 

or oxalate ligands that have been partially oxidized because 

of cation deficiency or an excess of halogen. 
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RPA Random Phase Approximation. Also known as the sum of ring 

diagrams, 	 the RPA seeks to approximate the true interaction 

between fermions by accounting for the lowest-order polari ­

zation process in the many body system, the creation and 

propagation of a particle-hole pair. 

WL 	 Weak Localization. The WL model seeks to explain the con­

duction properties of certain one-dimensional systems that 

have a random distribution of charges or dipoles along the 

periodic poten.tial. Because of the non-periodic potential 

of the random distribution, electron states along the chain 

are localized. 

ZDO-SCF-MO - Zero Differential Over1ap-Self-Consistent Field-Molecular 

Orbital. The ZDO procedure for determining molecular orbitals 

is an approximation that includes electron... e1ectron Coulomb 

repulsion except for those Cases which depend on overlapping 

charge distributions of atomic orbit~ls on different atoms. 
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