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A critical temperature T c of a superconducting transition is calculated for a 
rather general form of the electron-electron interaction. It is shown that even 
if both the energy and momentum dependence of the interaction is included, the 
equation determining T c coincides formally with the corresponding equation of 
the BCS theory. The kernel of this equation is a smooth real function of its 
variables; it is expressed through p(k, E), the spectral density of the inverse 
dielectric function of the system. The expression for Tc is written in terms of 
p(k, E); this enables us to analyze the dependence of the critical temperature 
on the properties of the metal in a normal state. Some simple models illustrating 
the results are considered, and a discussion of the limits on T~ is given. 

1. I N T R O D U C T I O N  

Since 1957 the theory of superconductivity has made great progress in 
the description of this phenomenon.  A simple approach starting from the 
work by Bardeen, Cooper,  and Schrieffer ~ (BCS) proved rather effective. In 
this approach the pairing interaction is taken to be instantaneously (fre- 
quency independent) attractive in a narrow region near the Fermi surface. 
The success of so simple a model may seem at first rather surprising; in fact, 
the actual electron-electron interaction in a metal has a strong and non- 
monotonous  energy dependence (resonances in the region of the absorption 
lines), and it has a nonzero imaginary part,  the Coulomb "tai l"  stretches far 
from the Fermi level. Also, the interaction depends in general on two variables 
- - t h e  frequency and the momentum.* 

Moreover,  from the condition of the stability of the system one may 
conclude that the interaction on the Fermi surface cannot be attractive. 2 

*In contrast to the BCS model, the actual interaction is local in coordinate space (due to the 
screening of the Coulomb interaction at distances of interatomic order) ; due to a large differ- 
ence between the phonon and electron frequencies, the interaction is greatly retarded. 
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The further steps in the development of the theory of superconductivity 
were aimed mainly at a correct account of these factors. 

This trend was initiated by Bogoliubov's paper 3 and proved rather 
successful 4-7 for the description of a superconducting state including the 
strong coupling superconductors. The corresponding equations, however, 
turned out to be rather different in form from the BCS ones ; as a result the 
simplicity of the latter was lost. In particular, the kernel of the corresponding 
integral equation was complex and depended on two variables--the fre- 
quency and the momentum. The derivation of these equations required 
rather complicated investigations of the analytic properties of the corre- 
sponding quantities. Finally, certain difficulties arose in the attempts to 
correctly describe the Coulomb interaction, s'9 

The main purpose of the present paper is to make the equations of the 
theory of superconductivity for a general form of the interaction as close to 
the usual BCS equations as possible. We shall consider a wide class of inter- 
actions with space and time dispersion, damping, etc. Our second purpose is 
to try to get a consistent description of the Coulomb interaction without its 
replacement by a constant, as is usually done. And, finally, we tried to express 
the superconducting characteristics (particularly the critical temperature) 
through the quantities which can be obtained from an experimental study of 
a normal metal. 

Our approach is based on the description of the electron-electron 
interaction in terms of the effective dielectric response function eeff(q, co). 
The effective interaction depends in general on two variables--the total and 
the transferred four momenta. In many cases, however (for example, for a 
purely phonon interaction, in a highly compressed substance, etc.), the most 
important is the dependence of the interaction on the momentum transfer 
q, co. Restricting our consideration to this case we may write the effective 
interaction in the form 

V(q, co) = 4~zeZ/q2eeff(q, o9) (1) 

The function 1/eeff(q , 09) is the "charge-to-charge" linear response func- 
tion, and it is just this quantity that enters the electron scattering in a metal.* 

As a response function 1/e satisfies the causality principle ; therefore, we 
can write for it the spectral representation of the Kramers-Kronig type : 

fo o 1/~(q, ~o) = i - [dE2p(q, E)/(E 2 - o~ 2 - i~)] (2) 

The positive spectral density 

p(q, E) = - ( l / x )  Im [l/e(q, E)] 

*We shall deal further only with the dielectric constant defined by (1) and, therefore, the subscript 
eft will be omitted. 
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is directly connected with the form factor S(q, E)  for the electron scattering 
in the metal 

S(q, E) = (qZ/4~e2)p(q ,  E)  

The stability condition implies 2 that 1/e(q, 0) _> 0; hence, according to (1), 
V(q, 0) > 0. 

Our formalism is based on the use of the spectral representation (2) and 
corresponding representations for other quantities. We have thus managed 
to simplify the calculations considerably ; they are reduced to simple and, to 
a great extent, automatic operations. In such a way we obtain finally the 
equation directly for the spectral densities. It is this equation that is very 
similar in form to the usual BCS equation. 

It is essential that the kernel of this equation is determined not by the 
initial interaction (1) or (15) but by some new "pairing" interaction (14) 
which has already all the properties of the BCS model interaction. The "pair- 
ing" interaction is expressed directly through the spectral density p of the 
inverse dielectric function (2). All the quantities entering the final expression 
for T~ can be expressed through the p [see (38) and (39)]. The dependence of a 
critical temperature on different characteristics of the initial system (energy 
of the eigenmodes, their damping, the coupling strength, etc.) can be investi- 
gated in the general form within the framework of this approach. 

Besides the above-mentioned neglect of the dependence of the inter- 
action on the total four momenta there are two other restrictions imposed. 
First of all we consider only the "homogeneous system"; the influence of the 
lattice periodicity is taken into account only to the extent that it may be 
included into ~(q, ~o) of the form (2). The second restriction is the use of the 
weak-coupling approximation. Some relations for a general case are given 
in the first version of the present paper, a° The details of some of the calcula- 
tions can also be found there. 

2. DERIVATION OF MAIN RELATIONS 

Restricting ourselves to the calculation of a critical temperature, we shall 
use the technique of the temperature Green functions at T = T~. Introducing 
in the usual way the electron Green function G and the condensate function 
F, we shall take the G function in the following form* : 

G(k, ion,)= 1/(ico, - {k) (3) 

*The results obtained below are also valid for a more general form of the G function, namely, 
for the quasiparticle approximation G(k, leo,)= zk/(im . - {k)" It should be noted that the 
possibility of using the quasiparticle approximation for the electrons in a wide energy range 
can be justified only for a weak interaction. When the interaction is strong, the G function has a 
quasiparticle character only in the immediate vicinity of ev, and the analysis of the effect of 
the quasiparticle damping on T~ requires an additional investigation. 
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where ~k = (k2/2m) - se, and s r is the Fermi energy. At T = T~ the con- 
densate function F satisfies the well-known equation 

F(p, ion.) = - G(p, im. )G(-  p, - im.)T~ ~m f Ed3k/(2n)3] 

x V(p - k, ico. - iC.m)F(k, iO_)m) (4) 

from which T~ can be determined. 
Then, in contrast to the usual method 4 we use the spectral representa- 

tion for V and F in order to make an explicit summation in frequencies 
in (4). The temperature analog of relation (2) may be written for the V 
function as 

V(q, i~o.) (5) 
J0 o. +E2I 

The spectral representation of the F function is' given by 

V(p, it..) = [f(p, x) dx]/(io). - x) (6) 
oo 

The spectral density f(p, x) may be shown to have the following property: 

f(p, x) -- - f (p ,  - x) 

Substitution of (5-6) into (4) and summation in frequencies with the aid of 
the formula 

2. T ~ f ( ~ o . ) = ½  t a n - - R e s i f  c o . = ( 2 n +  1)nT~ 
. • 2T~ 

where co i are the poles of the function f(co), leads to the following equation 
for f(p, x) : 

f L o f(p, x) = - [d3k/(2n) 3] dy tanh (y/2T~)K(p, k, x, y)f(k, y) (7) 

where 

_ 4~e2 ~(x_[~,l)Fl_fOo 
K(p, k, x, y) dEp(p k,E) 

(p-  k)2( 21~.1 L Jo 

x E + x + y  E + y -  

+ P x2 ~p(p  - k, x - y)O(x - y) (8) 
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Using the explicit expression of the F function in terms of the anomalous 
self-energy part ~ A(k, o9), one can write down the expression forf(p, x) in the 
following form.* 

1 1 
f(p, x) - Re A(p, x)6( x _ I~pl) + - Im A(p, X)Px2 2 (9) 

21gp[ it - iv 

Equation (7) is an integral equation over two variables. If the interaction 
is localized near the Fermi surface, then, as is well known, S dak/(27t) 3 x 
[p(p - k, E)/(p - k) 2] does not depend on p, and, consequently, A(p, m) is 
independent of p. Integrating (7) over p and using (8) and (9) we get in this 
case a usual "one-dimensional" Eliashberg equation for Re A(co). 

When the Coulomb interaction is taken into account we cannot neglect 
the spatial dependence of all the quantities. Nevertheless, in the case of weak 
coupling Eq. (7) can be similarly reduced to a "one-dimensional" form. 

To do this we introduce the function 

fo *(p) = 21gpl f(p,  x) dx (10) 

Integrating both sides of (7) over x we have 

qb(p) = -- f d3k 4zce2 (~dytanh~TfO~,y) 
(2n) 3 (P - k) z Jo 

dEp(p -_k, E!] 
x [ 1 - 2  fo E + y + l i p [ j  (11) 

On the right-hand side of (11) we shall take the term singular at T~ ~ 0 by 
adding and subtracting in the integral the quantity 

F f d E p(p - k, E) ] 

- Jo + + I J" 
tanh 

Taking into account (10) we obtain 

f d3k 4r~e 2 tanh (~k/2T~) °0 ~/Ep(p - k, E) . . . .  
@(p) = - J 

(2~)3 (p- ~ k)  2 2 ~  k [1 - 2 fo ~ - + ~ - ~  IT~I]~'tK) (12) 
where on the right-hand side we have omitted the term regular in T~: 

f cl3k 47ze2 ~ ~tanh i F 1  oo dEp(p - k, E)l f 
(27z)3 (p --~)2 Jo dyf(k, y) [ 2T~L - 2  Jo E-+ y-+-]-~p~J 
- ( y  -~ I~1)~ 

J 
*It is easy to see that Eq. (7) with the kernel K(p, k, x, y) corresponds to a general form (9) of the 
spectral density. 
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It can be shown that this term leads only to a numerical factor of the order 
of unity in the preexponential factor in the expression for T~. 1° 

It is essential that as seen from (9) and (10) the function qb, defined by 
Eq. (12), practically coincides with the real part of the energy gap 
Re A(co = 4p). The difference between these quantities is always small near 
the Fermi surface, and therefore in Eq. (12) it makes a contribution non- 
singular with respect to T~. 

In subsequent calculations it is convenient using the isotropy of the 
problem to change the argument from the momentum to 4(P). We introduce 
the level density N(4) = d3p/d4 and the designations 

4roe 2 
#(4, 4') = N(4)(p k) 2 

v(4, 4', E) = N(4) 4rce2p(p k, E) 
(p - k) 2 

where the line means the averaging over the angle between the vectors p and 
k. Changing from the variable cos 0 to q2 = (p _ k)2 = p2 _ 2p k cos 0 + k 2 
we have 

4~e2N(4), P(4) -4- P(4') 
#(4, 4') - ~ m IP(4) -- P(4')[ 

47re2N(4) ['p~) +p(¢') 
v(G 4') - P(4)P(4~ ,JIp~¢)-p(¢')l p(q, E) 

Here P(4) = x/2rn(4 + ev). Equation (12) can be finally rewritten in the 
following form 

f+2 0(4) = - d4'[tanh(~'/2T~)/24']g(4, 4')0(4') (13) 

K(4, 4') = #(4, 4') - 2 f o  [dgv(4, 4', E)/(E + 141 + 14'1)] (14) 

Equation (12) or (13) is the basic integral equation determining T~. It is 
obtained in the weak-coupling approximation with arbitrary suppositions 
of the space and time dependence of the interaction. 

Equation (13) for the function ~(~) = Re A(co = [4[) coincides in its form 
with the BCS equation. In this equation the frequency and the momentum 
are not independent variables but are connected by the relation co = [GI. 
This answers the question in the language of which variable (energy or 
momentum) the superconductivity equation should be formulated. 

The kernel K(4, 4') of Eq. (13) is expressed directly through the spectral 
density of the initial interaction p = - ( l / n ) I m  (l/e). It is essential that K 
differs from the initial interaction (1). To make this difference more evident 
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we shall write the latter in new terms: 

V(~, ~', oo - co') = #(~, ~') - f o  {dE2v(~ '  ~'' E) /[E2 - (~o - co') 2 - i6~} (15) 

The main difference of K from V is that in K only the "positive-frequency" 
part of the initial interaction remains. Due to this fact the kernel K becomes 
a smooth, real function of its arguments. Under the change from V to K the 
resonances vanish, and we get the smooth "steps" instead. There is another 
interesting feature in K : in contrast to V the kernel K depends not on the 
difference co - co' but falls off separately in each variable. These features are 
typical of the usual BCS approximation. The argument presented above may 
be, therefore, considered to be the basis for the usual scheme for a wide class 
of interactions. 

It is also clear from what has been said that some attempts to " improve" 
the BCS scheme are incorrect. For  example, in the paper by Hurault  11 the 
resonances in the initial interaction are replaced by narrow peaks localized 
far from the Fermi surface. 

The physical origin of the difference of K from V (isolation of the 
positive-frequency part) may be explained as follows. While the initial inter- 
action corresponds to an exchange of a phonon, the "pairing" interaction 
corresponds to a simultaneous creation from a vacuum of two electrons and 
a phonon (or the corresponding annihilation). This is particularly clear in a 
method of compensation 3 of a dangerous diagram. 

The analogy of Eq. (13) with the usual BCS equation can be made 
complete, if we reduce it to the form where the kernel is localized near the 
Fermi surface. As is known 3 this corresponds to the effective suppression of 
the long-range (Coulomb) part of the interaction and to an introduction of 
the Coulomb pseudopotential. 3'5'1° It is of importance that the resulting 
interaction can already have a character of the attraction on the Fermi 
surface ~ = ~' = 0 in spite of the condition V(q,  0) > 0 (see above). We shall 
not make this transformation now and shall return to this problem later. 

3. CALCULATION OF A CRITICAL TEMP ERA TU RE 

Let us consider Eq. (13) which determines T c. As in the usual BCS 
model T~ contains a small exponential factor and preexponent. 

In the latter we will ignore the factors of the order of unity. 
Equation (13) contains a logarithmic singularity in T c at T~ - ,  0. It is 

sufficient that the logarithmic and the T~-independent terms be kept in this 
equation. Substituting in (13) the identity 

K(~, ~')O(~') : K(~, 0)aP(0) + [K(~, ~')~(~') - K(~, 0)@(0)] 
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and introducing the new function ;((~) = 0(4)/0(0) In (T~/0), where 0 is as yet 
an arbitrary frequency (of the order of mean phonon frequencies), we have 

T~ ~ 0 exp (l/x(0)) (16) 

Z(~) = K(¢, 0) + /~¢,[K(~, ~')Z(¢')] (17) 

Here the following designation is introduced : 

Axf(x) = dx In (]x[/O)(d/d]x[) f (x) 
oo  

Let us divide the kernel K(4, 4') into the part Kp h localized near the Fermi 
surface and the long-range part K~: 

K(¢, ¢') = Kph(~, ~') + K~(¢, ¢') (18) 

The possibility of such a representation of K(4, ~') and the physical meaning 
of Kph and K~ are discussed in the next section. 

Correspondingly, )~ = Zph + Zc, where )~c is introduced by the condition 

)G(~) = K~(4, 0) + ~[¢,[K~(¢, ¢')X~(~')] (19) 

Designating 

where 

in ~ = 

we have 

$¢,[K~(0, 4')Zc(~')l = -Kc(0, 0)In (~/0)Z~(0) 

-[1/2K¢(0, 0))~¢(0)] f+~_ d4 In [4[(d/d[~J)[Kc(O, ~)Z¢(4); (20) 

)G(0) = Kc(0, 0)/[1 + Ko(0, 0) In (C/0)] (21) 

As is shown below ~ ~ ~v and in (C/0) is large and, therefore, )G(0) is 
small. It follows from the previous expressions that 

Zph(~) = Kph(~, 0) + K¢(~, 0)/]¢,Zph(~') + -4~,Kph(~, ~')Xc(0) 

+ A¢'[Kph(~, ~'))~ph(4')l 

Applying the operation .~¢, to this relation and introducing 

AeK~(4, 0) = - Kc(0, 0) In (4/0) 

where ~ g ~, we have 
.4~Kph(~, 0) 

A#ph(0 = 1 + K~(0, 0)in (~/0) 
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Hence, 

go(o, O)~{[Kph(~ , 0) -t- Kph(O, ~)3 
Zph(0) = Kph(0, 0) + 

1 + K¢(0, 0) In (~/0) 

-I- /~[Kph(0 , ~)Kph(~ , 0)] 

The condition 

A¢Kph(O, ~) = 0 

will determine the value of 0 : 

f+2 In 0 = - [1/2Kph(0, 0)] d~ in [~l(d/dl~l)gph(O, ~) (22) 

Then, finally, we have 

Kc(0, 0) - -] (23) 
T~ - 0 e -  I/g g = - Kph(0, 0) + 1 + K~(0, 0)In (~/0)_] 

From the right-hand side we discard the factor 

exp { - ~ z ~ [ K p h ( 0  , ~)Kph(~ , 0)]/g 2} 

which is of the order of unity, as is easily seen by substituting the formulas 
for K~(~, ~') and Kph(~, 4') obtained in the next section. 

4. THE CHOICE OF THE EFFECTIVE INTERACTION 

Up to now we have made no special assumptions concerning the form 
of the effective interaction (1), but considered it in a general form. Now we 
somewhat specialize the form of this function. We are considering the 
systems where besides purely Coulomb interaction between the conduction 
electrons there is an additional interaction caused by the phonons, excitons, 
and so on.* 

We shall limit ourselves to the longitudinal excitations. Their frequencies 
~%(q) and dampings F~(q) are given by the equation e(q, o)~ + iF~)= 0. 
Suppose that the phonon frequencies are small compared to the electron 
plasma frequency ~o e = (4pave2/3Tcm) 1/2 and the Fermi energy ~v: 0<< 
(C0e, ~). 

Here 0 is the effective phonon frequency introduced in the previous 
section. 

Let us discuss now the form of the spectral density and the effective 
interaction, taking the dielectric function in the form 

~(q, ~o) = e~(q, ~o) + eph(q , CO) -- 1 

~c = 1 + 4roe c ~ph = 1 + 4~Z~ph (24) 
*We shall speak for brevity only of the phonons. 
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Here ec is the part of polarizability entirely connected with the conduc- 
tion electrons, and %h is the remaining polarizability describing both a purely 
phonon effect and the effect of the interference of phonon excitations with 
the conduction electrons. Using relation (1) one may rewrite similarly the 
effective interaction : 

V(q, co) = V~(q, co) + Vph(q , CO) 

V~(q, CO) = 4~e2/q2ec(q, CO) Vph = (4neZ/q 2) [1/e(q, CO)] -- [1/ec(q, co)] (25) 

The kernel K(~, 4') of the integral equation (13) may be rewritten in the same 
way. It is evident from (25) that Vph and therefore Kph falls offat  characteristic 
phonon frequencies. 

The quantities V~ and Vph may be represented separately in the spectral 
form. For the Coulomb interaction we have 

I f o  ~ d E 2 p c ( q ' E )  ] (26) 
V~(q, CO) = (47zeZ/q 2) 1 - E 2 _ CO2 _ i6 

where 

Similarly 

where 

Pc(q, CO) = -(1/Tr) Im [1/ec(q, CO)] 

Vph(q , CO) = -- (4~eZ/q 2) [ dE2 Pph(q, E)/( E2 -- CO2 _ i6)] (27) 

where 

copzl(q) = co2{1 + [qZ/z2(q)]} 

)42(q) = (:42/2){ 1 + [(Pv/q) - (qZ/4P~)]} In l(2pv + q)/(2pv - q)l 

:4(0) = :4 = ~ c o e / V e  is the Debye momentum,  and V v = prim is the velocity 
on the Fermi surface. Expression (28) for the spectral density of the Coulomb 
interaction represents correctly the complete screening of the interaction at 
E << q V v and a plasma character of the Coulomb system in the other limit- 
ing case E >> q V  e. At arbitrary E and q, (28) does not  describe some details 

Pph(q, E) = p -- Pc = --(1/Tz)Im [1/e(q, E)] - [1/ec(q, E)] 

To calculate the Coulomb part of the effective interaction Vcc or, more 
precisely, Kc(~ , ~'), one can use the following simple interpolation formula 
for Pc(q, E): 

~c(q, E) = c o ~ 6 [ E  2 - COil(q)] (28) 
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of the properties of the Coulomb system. However, the calculations of Ref. 12 
show that the use of (28) for Pc(q, E) gives quite satisfactory results for many 
physical characteristics of the electron system. 

For [~l, I~'l << er with the aid of (12), (13), and (37) we obtain 

Kc(4' ~') = coe + 14[ + 14'1 In -c~ + (141 + [~ 1) in (29) 

with a logarithmic accuracy. Here a = eZ/TzVv is a Coulomb coupling 
constant. 

The logarithmic singularity which appears in (29) is insignificant: it is 
due to an incomplete screening of the Coulomb interaction at co = 
14t + 14'1 ~a 0, and the nearer we are to the Fermi surface the smaller is the 
singularity. In particular, at the very Fermi surface Kc is finite: 

Kc(0, 0) = (~/2)In (l/a) - # (30) 

Note that the result (30) is of a general character and does not depend on a 
concrete approximation of Pc in the form (28). When 141 > eF or 14'1 > er we 
have 

Kc(4, ~') = (e/r') In [(r + r')/lr - r'l] (31) 

where 

r = x / 1  + (~/ee) r' = x /1  + (~'/eF) 

It is seen from the expressions obtained that even at coe << eF the Coulomb 
part of Kc(4, 4') falls off at great distances ~ eF from the Fermi surface. This 
fact is also due to the absence of screening of the Coulomb interaction at 
high frequencies. 

Using (29) and (31) we can calculate now the effective frequency 
given by (20): 

~ ,.~ ~,fo~l/3 

By (21) the total Coulomb contribution to the coupling constant g has the 
form 

L(0) - p* --/1/[1 +/~ In (~FO~l/3/O)I (32) 

This is just the above-mentioned Coulomb pseudopotential. 
Let us discuss now the phonon part of the interaction localized near the 

Fermi surface. We shall rewrite it in the form 

g p h ( 4  , ~ ' )  = - - 2  [dE Vph(~ , ~¢, g ) / ( g  + 141 + I¢'1)3 (33) 
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where 

/~2pw 

Vph(¢, ¢', E) = ~ | (dq/q) Pph(q, E) (34) 
JIg-g'l/Vv 

Note that from (27) we get the following relation for the coupling constant 
with the phonons 2: 

f 
2 p F  

Kph(O, 0) -= - 2 = e (dq/q) {[1/e(q, 0)] - [l/go(q, 0)]} (35) 
,/0 

The quantity Pph is nonzero only if E < Co, where Co << me is the charac- 
teristic phonon frequency. In this region, however, as is seen from (28), 
Pc(q, E) = 0. One can, therefore, set 

- 1/n Im [1/~(q, E)] E < ~o 

Pph(q, E) = 0 E > 4o 

0 < ~o << me, eF 

Thus Pph can be expressed in terms of the total spectral density p. Consider 
the two regions of integration in (34) and (35): q V  v < 4o and q V  v >> 4o. The 
contribution of the first is negligibly small due to a complete screening of 
the interaction at q --+ 0, while in the second region Pvh can be written in the 
form 

Pph(q, E) = --(l/n) Im {1/[gph(q, E) + (x2/q2)]} e(q, 0) = gph(q, 0) 

jr_ (~2/q2) 

Hence it is seen that the main contribution to the integral over q is given by 
the region z < q < 2pF. When estimating with a logarithmic accuracy, one 
can take the quantities p(q, E) and i/e(q, 0) at q _~ 2pv. 

Hence we have 

Vph(~, ~', E) = #p(2pv, E) £o 
/ p h ( { ,  ~') = - 2 #  [dE p(2pv, E)/(E + I{i + [{'[)] (36) 

The quantity Kph(0, 0) determining, according to (23), the phonon 
contribution to T~ is given by the simple formula [see (35)] 

/~ : --  Kph(0 , 0) : #{ 1 - [1/e(Zpv, 0)]} (37) 

It is seen from (37) that the condition 1/~(q, 0) > 0 requires that the quantity 
2 be always smaller than # (the phonon attraction is smaller than the Coulomb 
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repulsion) and reach the maximum value equal to p at e(2pv, 0) ~ oe. It is, 
therefore, clear that the very existence of superconductivity in the case con- 
sidered is connected with the suppression of the Coulomb repulsion in the 
Coulomb pseudopotential (32). 

Using expressions (22) and (36) we see that the mean phonon frequency 
which determines the preexponent in T~ (23) is given by the expression 

in 0 -- (dE/E)o(2pF, E)In E~ (dE/E)p(2pF, E) (38) 

It is thus seen that the preexponent in T~ is determined by the logarithmic 
average of the phonon frequencies over the phonon spectrum. In particular, 
this mean frequency does not necessarily coincide with the Debye frequency 
since the contribution of different phonons in 0 depends on their coupling 
with the electrons. 

Note that it is just this quantity (38) that determines the thermo- 
dynamical properties of a "hot"  lattice. In particular, we have the relation 
dO/dP = ct(P)/c(P), where ~ is the thermal expansion coefficient, c is the heat 
capacity, and P is the pressure. 

The final expression for T~, taking into account (23), (32), and (37), takes 
the form 

T~ = 0 exp 1 

and 0 is given by (38). 

# 1 e(2pF, 0 - 1 + # In (ev~t/a/O) 

(39) 

5. DISCUSSION 

As an example of the use of the results obtained we shall consider a 
practically important case, when the phonon frequency spectrum consists 
of a number of discrete branches. 

Neglecting the phonon damping we may write* 

eph(2pv, 09) = 1 + ~ Ef~/(092~ - 092 _ i6)] 
V 

wherefv are the coefficients that can be connected with the oscillator strengths, 
and 09o~ are "bare" phonon frequencies. At q = 2pv the polarizability 
~c - z2/4pv z << 1 and eph -- e. Hence the equation eph(2pr, 09) = 0 determines 
the eigenvalues of the system. If the phonon damping is small, the spectral 

*It can be shown that the damping does not change significantly the results obtained below. 
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density p can be written in the following form: 

p = ~{1 - X E L l ( o g v  - ~02)]} 
v 

Introducing dimensionless constants of the phonon coupling 

we obtain from (36) and (37) 

Z =/.l Z a~ =/.l{~ (f~/co2~)/E1 + Z (f~/c°2vll} (40) 
v v v 

It follows from (38) that the mean logarithmic frequency is 

In 0 = ~ ~ In e;~/~ a~ 
v 

Using these expressions we get from (39) 

2- 1 ÷ ~ln(sv~l/3/0) 

It is seen from (41) that, generally speaking, the existence of high frequencies 
oJ~ in the system can lead to the increase of T~, but only if the coupling of the 
electrons with these oscillations is rather strong. 

This is just the situation with the so-called generalized "jellium" 
model, 1~ illustrating the possibility of increasing T~ when some additional 
polarization modes with a high oscillator strength are introduced in the 
system (see Refs. 10 and 15). 

It should be noted, however, that even if the phonon frequencies and 
the coupling constants 2 and/~ are considered as independent parameters, 
the increase of 0 does not always cause the growth of T~. 

In fact, it is seen from (39) and (32) that with the increase of 0,/~* also 
increases, and, therefore, the exponent decreases. Sooner or later this effect 
will exceed the increase of the preexponential factor. To estimate the limiting 
value of 0 m~ at which T~ has its maximum value T max, note that from the 
stability condition Us(q, 0) >_ 0 we get that 2 _</~ [see (37)~. Then consider- 
ing the most favorable case Z =/~ and optimizing expression (41) with 
respect to 0 we have~ 

0 max = 8 F e - - 2 / 2  

T ~  ax = 8 F e- 3/Z (42) 

tThe authors are grateful to L. N. Bulaevskii who has pointed out to us the possibility of obtain- 
ing an upper limit on T~, from expression (39). 
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Expression (42) for the maximum critical temperature is obtained in the 
weak-coupling approximation, and therefore the numerical estimates on the 
basis of (42) are not reliable enough. If we still try to estimate T max by this 
formula taking 2 -~ 1/2 and e v -~ 10 eV, we obtain T m"x ~_ 300 K, which is 
rather an optimistic result. 

In a similar way the estimates of T~ for the case of strong coupling were 
obtained in Ref. 13. These estimates give the values of T~ ax smaller by an 
order of magnitude. It should be mentioned, however, that the numerical 
results are rather sensitive to many details of the description of the system 
due to the exponential dependence of T~ on the parameters; in the case of 
strong coupling it is rather difficult to estimate the accuracy of the formulas 
for T~ used in Ref. 13, particularly with respect to a description of the 
Coulomb effects (for more details see Ref. 14). Therefore the question of the 
maximum value of T max seems to be open. 
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