

U.S. Department of Electricity Delivery and Energy Reliability

Recent HTS Activities in the US

IEA HTS Executive Committee Meeting Milan, Italy June 19, 2014

Debbie Haught Program Manager Office of Electricity Delivery and Energy Reliability (OE)

Overview

Major HTS wire manufactures

- AMSC (YBCO 2G coated conductors)
- SuperPower (YBCO 2G coated conductors)
- STI (YBCO 2G coated conductors)
- Oxford Instruments Superconducting Technology (Bi-2212 wires)
- Hyper Tech (MgB₂ wires)

DOE Projects

- Office of Electricity OE: Smart Grid HTS-FCL transformer
- Office of Energy Efficiency and Renewable Energy EERE: Offshore wind generator
- Advanced Research Projects Agency Energy ARPA-E: wires for wind generators, superconducting magnetic energy storage
- Office of Science: High Energy Physics HEP, Fusion Energy Sciences FES, Small Business Innovative Research SBIR: wires and magnets

Other Federal Agencies

• DHS, Army, Air Force, Navy, NSF, NASA, NIH

State Agencies

NYSERDA

Application Optimized Amperium Wire

Focus on Operating Conditions and Mechanical Requirements

Sec. 2 Low Temperature/High Field DC Applications

Wind Turbines/Generators

- Brass and SS lamination for cables and FCLs
- Optimized for I_c in self-field and AC loss
- Mechanicals for cable-wind tolerance

New 1.2 μm HTS layer + Optimized Heat Treatment (HT) for Higher Current

- Copper lamination for rotating machines
- I_c optimized for (30K, 1.5-2 T)
- Mechanicals for high c-axis strength

IEA HTS ExCo Meeting 2014

New 1.2 µm HTS Wires Optimized for Application Specific Operating Conditions

High temperature, low field applications

1.2 μm Coil Wire

Low temperature , perpendicular field applications

N. Strickland Callaghan Innovation (previously IRL)

Amperium Wire Architectures

Application specific mechanical packaging

IEA HTS ExCo Meeting 2014

Amperium® Wire Summary

• Resistive FCL Wire

- Single and double HTS architectures
- Range of currents: ~250A and ~500A

Cable Wire

- Short length wires demo'd with RABiTS c
- $1.2\mu m$ HTS + HT Optimization for I_c >160A
- Low ac loss at low current with Non Magnetic Substrate
- Resilient to simulated cable winding

Coil Wire

- 1.2 μm HTS + HT Optimization for 20-30% boost in I $_c$ 30K, 1-2T
- Compatible with high I_c long length production process
- Tolerant to c-axis stress up to 40 MPa Not prone to delamination

SuperPower's ReBCO superconductor SuperPower's A Furukawa Compare with artificial pinning structure provides a solution for demanding applications

- Hastelloy[®] C276 substrate
 - -high strength
 - high resistance
 - non-magnetic
- Buffer layers with IBAD-MgO
 - Diffusion barrier to metal substrate
 - Ideal lattice matching from substrate through ReBCO

MOCVD grown ReBCO layer with BZO nanorods

- Flux pinning sites for high in-field $I_{\rm c}$
- Silver and copper stabilization
- Configurations can be tailored to specific applications
 - Substrate thickness
 - Ag/Ag alloy and copper thickness
 - HTS composition (Advanced pinning (AP) / Cable formulation (CF)

Microstructure of production MOCVD <u>SuperPower</u> HTS wires with standard 7.5% Zr doping

5 nm sized, few hundred nanometer long BZO nanocolumns with ~ 35 nm spacing created during in situ MOCVD process with 7.5% Zr

Technology development programs are focused on next level of product improvements

Thinner substrates offer improved current density while still providing strong mechanical support

- Current 2G HTS production material based on either 50 or 100μm Hastelloy[®] C276 substrate
 - For standard Cu thickness of 40μ m total, the conductor thickness of current production 2G HTS conductor is ~ 0.095mm.
- Thinner Hastelloy[®] C276 of 25, 30 and 38µm thicknesses are being evaluated
 - For standard Cu thickness of 40µm total on a 25µm Hastelloy[®] C276 substrate, conductor thickness is reduced to ~70µm
 - This implies a 36% increase in current density
- Available second half of 2014

Baseline is 40 micron thick copper stabilizer

Precision process control led to highly uniform performance

$I_{\rm c}$ uniformity along length, 4mm tape (4-probe transport measurement) 160 Ic(A, 77K, s.f.) 150 140 n-value 130 120 110 100 90 80 70 60 50 40 30

Meeting 2014

*I*_c uniformity along length (TapeStar), 12mm tape

- Magnetic, non-contact measurement
- High spacial resolution, high speed, reel-to-reel
- Monitoring I_c at multiple production points after MOCVD
- Capability of quantitative 2D uniformity inspection

20 10

0

0

SUPERCONDUCTOR TECHNOLOGIES INC. Leading Superconducting Innovation

Attacking large opportunity with Conductus® wire strategic initiative

High Temperature Superconducting (HTS) Technology Development

Key competitive advantage

1987

HTS Product Release

Only company to successfully commercialize HTS products for RF electronics. Established leadership with best-inclass HTS products

HTS Manufacturing High Volume

Advanced proprietary HTS deposition process in full scale manufacturing production. 6,000 systems deployed with Verizon Wireless and AT&T

Technology Transfer and Partnerships

Wireless Product Business **Resonant** uc Cryogenic Cooler Business

2012 and Beyond

IEA HTS ExCo Meeting 2014

g Conductus[®] HTS Wire Production, Ss New Manufacturing Facility in Austin, TX

> Manufacturing of second generation (2G) HTS wire with industry leading performance

> > C

CONDUCTUS

Today

Superconducting Wire

22/ST

HTS Materials Cost Reduction Over Time

STI's Conductus Wire - Three Step Approach

•SDP – Solution deposition planarization

- Atmospheric wet coating which provides an amorphous ceramic overlayer
- Low-cost solution process
- o Diffusion barrier and planarization layer
- No need to polish metal substrate tape
- o Compatible with many alloys

•IBAD + Epi MgO – Ion beam assisted deposition

- The thinnest, fastest template formation
- Requires only 50 nm MgO layers for crystallinity
- Fast process
- o In-situ process in a 2 chamber deposition system

•RCE-CDR – Reactive coevaporation / cyclic deposition and reaction

- STI has developed the RCE-CDR technique for >15 years in wireless filters and
- shown it to be a low-cost & high-yield production technique for HTS deposition
- Enables growth directly on MgO layer and can be used with optional buffer
- o In-situ process in a single deposition system
- o Elemental raw material low cost
- Large-area deposition

Low-Cost HTS Coated Conductor Scale Up

• STI's Coated Conductor is inexpensive, high-yield, and scalable

- Piece lengths and current continue to increase
- Great compositional uniformity
- Conductus wire production in 2014 Project funded to capacity of 750,000m/yr
 - $\circ~$ SDP and IBAD production systems Complete
 - 1000M RCE System is being built now Production ramp in 2H2014

HTS Fault Current Limiting Transformer

- **Goal:** Design, develop, manufacture and install a SmartGrid-compatible SFCL Transformer on a live grid utility host site
- 28 MVA 3-phase FCL medium power utility transformer (69 kV / 12.47 kV)
- To be situated within Southern California Edison's Smart Grid site in Irvine, CA – expecting 2 years of grid operation
- First transformer to use significant amounts of 2G superconducting wire

UNIVERSITY of HOUSTON

SPX WAUKESHA

- ✓ Conductor design and winding technology have advanced to the point where phase winding will begin in the first half of 2014.
- ✓ Transformer design is completed. Vendors are being sourced or have already been signed to deliver components.

DHS' Resilient Electric Grid (REG) ConEd System

- Sponsored by DHS as a way to increase urban grid resiliency
 - Successfully tested proving 50% fault current reduction
 - Rated 13.8kV, 95MVA, 4000A
- Phase 1: Develop & prove fault current limiting cable technology
 - Completed
- Phase 2: In grid demonstration cable
 - In process

Project Hydra Cable in Type Test

Meeting 2014

Commercialization requires a significant installation

^{>hoto} courtesy US DOE Oak Ridge National Laboratory

Phase II Hydra Project Summary

- HTS FCL Cable passed all Industry Qualification tests
- 25 meter cable test results validated FCL performance model predictions
- Equipment procurement and manufacture progressing
- Below grade construction package out for bid
- Construction expected to start in early 2014, followed by equipment installation and commissioning tests
- Operational demonstration will connect two Con Edison substations enabling 13.8kV asset sharing in the power network

IEA HTS ExCo Meeting 2014

Applied Materials SCFCL at Central Hudson

- Applied Materials' SCFCL was recently installed on the <u>Central Hudson grid New York (under a NYSERDA Grant</u>)
 - Commissioning planned for early June
 - Press release has been issued
- 115/14.4kV Substation in Downtown Poughkeepsie, NY (22MVA @ peak)
 - Experiences ~10 faults per year

Applied Materials Confidential

System Layout – Central Hudson

Refrigeration Units (2)

- N+1 Redundant
- Environmental enclosure
- Modular system

Reactor (+CT/PT)

- Installed by Central Hudson
- AMAT monitoring T3 (and T1 for reference)

Superconducting Unit

- Tested at KEMA
- Redundant safety features
- Environmental Cover
- Optimized boil-off

Varian Semiconductor Equipment

Applied Materials Confidential

10+ MW Wind Turbine Generator Team

Advanced Research Projects Agency – ARPA-E

Launched in 2009, ARPA-E aims to advance high-potential, high-impact energy technologies that are too early for private-sector investment.

REACT – Rare Earth Alternatives in Critical Technologies

Develop cost-effective alternatives to rare earths for motors and generators and encourage existing technologies to use them more efficiently.

GRIDS – Grid-Scale Rampable Intermittent Dispatchable Storage

Develop flexible, large-scale storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than \$100 per kilowatt hour.

Low-Cost Superconducting Wire for Wind Generators

Goal: 4X 2G HTS conductor performance improvement for high power wind generators operating at 30K, 2.5T.

 New pilot MOCVD system set up in UH Energy Research Park to rapidly scale up new technology advances to long-length manufacturing.

Program: ARPA-E REACT Award: \$ 4 Million USD Duration: Feb '12 – Dec '14 Lead: Univ. Houston Prof. Venkat Selvamanickam vselvama@Central.UH.EDU Partners: SuperPower, NREL **TECO-Westinghouse**, Tai-Yang Research

- Quadrupling performance at 30 K, 2.5 T for commercialization of 10 MW wind generators to reduce wire cost by 4x.
- Advances will also lead to highperformance HTS for other highfield devices.

UNIVERSITY of HOUSTON

TECO ⁽²⁾ Westinghouse

IEA HTS ExCo Meeting 2014

4x HTS conductor can enable commercial feasibility of devices

Metric	Now	End of project
Critical current at 30 K, 2.5 T (A/12 mm) (device operating condition)	750	~3,000
Wire price at device operating condition (\$/kA-m)	144	36
Estimated HTS wire required for a 10 MW generator (m)	65,000	16,250
Estimated HTS wire cost for a 10 MW generator \$ (,000)	7,020	1,755

Technical Approach

- Quadruple the critical current performance to **<u>3,000 A</u>** at 30 K, 2.5 T:
 - Doubling the lift factor [lc (T, H) / lc (77K, s.f.)] in l_c of coated conductors at 30 K, 2.5 T by engineering nanoscale defect structures in the superconducting film.
 - Additional near doubling of critical current by thicker supercon0ducting films while maintaining the efficacy of pinning by nanostructures.

IVERSITY of HOUSTON

TECO Westinghouse

Increased nanoscale defect density in high Zr content wires

- All good critical current results reported so far have been with less than 10 mol.% of second phase addition.
- High Zr content (> 15%) wires developed to increase nanoscale defects

NIVERSITY of HOUSTON

TECO ⁽²⁾ Westinghouse

BZO spacing in 7.5%Zr sample : 35 nm BZO spacing in 15%Zr sample : 17 nm Average size of BZO ~ 5 nm in both

Two-fold improvement in Ic developed in ARPA-E program with 15% Zr-added 2G wire

- ✓ 15% Zr-added wire at 30 K, 2.5 T, B||c: I_c > 1500 A, J_c = 13.6 MA/cm², Pinning force = 340 GN/m³
- ✓ Lift factor at 30K, 3 T,
 B||c improved by
 >100% to ~ 4.4

VERSITY of HOUSTON

TECO Westinghouse

Superconducting Wires for Direct-Drive Wind Generators

Goal: 4X 2G HTS conductor J_c improvement over state-of-the-art wire for high power wind generators

Technical Approach: Combine optimized pinning design (BNL) with a low-cost, long-length wire process (AMSC)

Impact: Enabling motors and generators with significant performance and cost advantage over the permanent magnet technology, and reduce the use of rare-earth materials by over 1000 times and overall system cost.

Program: ARPA-E REACT Award: \$1.5 Million USD Duration: Jan '12 – June '14 Plus-Up: \$975 K USD extended to Dec. '15 Lead: Brookhaven NL Dr. Qiang Li <u>qiangli@bnl.gov</u> Partner: AMSC

Achieved program target of 1,600 A/cm-width at 30K, 1.5T, B//c

Performance of superconducting wires

Magnetic Field (T)

BNL scientist Qiang Li discusses nextgeneration superconducting wires with US Energy Secretary Ernest Moniz at February 2014 ARPA-E Energy Innovation Summit ✓ Developed analytical probes at BNL to provide quantitative guidance for improving *I_c* in R&D and production wires at AMSC.

- ✓ Over 200% *I*_c enhancement achieved in commercial production wire.
- ✓ Over 400% *I*_c enhancement achieved with optimized pinning landscape.

IEA HTS ExCo Meeting 2014

http://www.bnl.gov/newsroom/ne ws.php?a=24697

HTS Superconducting Magnetic Energy Storage (SMES)

Goal: Develop HTS cable design and fabricate high-power, low-cost cable for SMES hybrid with battery for renewable energy storage.

HTS SMES stores energy just like a battery (chemical) or capacitor (electric field) but in magnetic field.

Advantages:

- Ultra High power density (>1-100 MW)
- > 95 % round-trip efficiency
- > 100 k charge/discharge cycle, no degradation, very safe

Disadvantages:

- Low energy density (30-100 W-hr/kg),
- higher costs per W-hr/kg

Program: ARPA-E OPEN 2012

Award: \$2,7 Million USD

Duration: Feb '13 – Feb '16

Lead: Tai-Yang Research Company, Dr. Chris Rey

cmrey@tai-yang.com

Partners: North Carolina State, Univ. Houston

TYRC's HTS SMES project targets and progress

SMES Target Design		gn 📃	l _{op} (kA)	B _{0p} (Г)	E _{stored} (MJ)	V _{disch}	_{arge} (kV)	Н	TS cable type
			10-25	10-1	2	60/100/250		1-5	AI	stabilized
Industry	Energy (MJ)	Power (MW)	r Weight (kg)	Volume (m ³)		Foot Print a. x L] (m x m)	B-field (T)	Cost/kW (\$/kW-h		Cost/kW (\$/kW)
	60	5	1,000	9.42		2 x 3	> 12	3,000		1,000

completed

in-progress

TYRC's HTS SMES current progress:

- ✓ Compaction tests
 completed
- ✓ Cable bend diameter
- Al conduit weld qualification
- Sub-scale prototype
 Q3 2015

Air Force STTR: TYRC is also performing 1MJ SMES design study for high energy laser (\$ 750K USD, 2 years)

Superconducting Magnet Energy Storage System with Direct Power Electronics Interface

Goal: Develop a competitive, fast response, grid-scale MWh SMES system by demonstrating a small scale 1.7 MJ prototype with direct connection Si-based power electronics converter.

Program: ARPA-E GRIDS Award: \$4.6 Million USD Duration: Oct '10 – June '14 Lead: ABB Dr. VR V. Ramanan <u>Vr.v.ramanan@us.abb.com</u> Partners: Brookhaven NL, SuperPower, Univ. Houston

SMES system advantages:

BROOKHAVEN SUPERPOMER To SUH

- Energy storage & dynamic compensation;
- Fast dynamic response & nearly infinite cycling capability of HTS coil;
- No moving parts or reacting chemicals;
- Solid state operation; Very long lifetimes and environmentally benign.

SMES system components and status

Wire: 2G wire with high Ic.

Magnet: 20 kW, 1.7 MJ SMES demonstrator (ultrahigh field at 4.2 K).

Converter: Modular, scalable direct medium voltage grid connection concept.

- ✓ 9.2 km of 12 mm-wide 2G HTS conductor delivered
- $\checkmark\,$ Novel bypass switch built and successfully tested
- ✓ Advanced quench protection system built and successfully tested
- Power electronics converters built and successfully tested
- Coils for magnet built; final tests under way
- Full system integration tests in June

SMES: From civilian to dual use applications

REBCO layer wound high field coil delivers World record 35.4 T field

Conductor insulation facility

Whittington et al. Patent disclosed (2013)

- Wet layer-wound, epoxy filled
- No splices
- Thin walled polyester heat- shrink tube insulated conductor (patent)

Trociewitz *et al.* APL 99 ,202506 (2011) Patent Hilton *et al.* on insulation US 8,530,390 B2 (2013) Patent Trociewitz *et al.* on terminals US 8,588,876 B1 (2013)

The National High Magnetic Field Laboratory (NHMFL) at FSU is developing a 32T *User* magnet

Specification		17 T / 32 mm
Bore	32 mm	bore REBCO
Uniformity 1 cm DSV	5 x 10 ⁻⁴	coils
Total inductance	254 H	45 T (050
Stored energy	8.6 MJ	15 T / 250 mm bore
Ramp to 32 T	1 hour	LTS magnet
Cycles	50,000	

- ✓ Have developed and continue to refine REBCO coil technology for 32 T high-field all-SC magnets
- ✓ Developed unique REBCO conductor specification, partly at 4.2 K. Delivery nearly complete (~90% of 12.3 km)
- ✓ Specified and ordered LTS outer magnet + cryostat. Expect delivery in 2014
- ✓ Tested full-featured prototype Inner REBCO coil
- $\checkmark\,$ Initial design of Quench Protection system for 32 T
- Full-featured prototype Outer REBCO coil Feb 2014. Construction of final REBCO coils 2014-2015. Testing of real REBCO coils 3Q 2015. Full field 4Q 2015.

IEA HTS ExCo Meeting 2014

US Air Force is evaluating HTS components for EV aircraft

SC Motor

- VoltAir's two next-gen lithium-air batteries would power two highly efficient superconducting motor...
- The **necessary cooling** of these engines to reach superconducting temperature can be realised with low-cost and **environmentally friendly liquid nitrogen**.

MV-Class Power Transmission Cables

 2.3 MW DC (~20 MW @ 	co-axial cable at 76K 20K)		Cu wire @ 60C (x322)	YBCO cable @ 20K	Improve factor
		Weight	1,585 lbs/m	~3 lbs/m	530x
	YBCO @ 20K 0.97 lb/m	Heat loss	7,000 W/m	3.8 W/m (cryo cool + LN2)	1,840x
Cu Wire MCM 750 Gauge Cable @ 60° C 1,429 lb/m	CryoflexTubing Heat Loss @ 20-77K ~ 0.5 W/m 1 lb/m	X- section area	2,170 cm2	5 cm2	230x
					S. AIR FORCE

DOE Energy Frontier Research Center: Center for Emergent Superconductivity (CES)

Mission: To discover new hightemperature superconductors and improve the performance of known superconductors by understanding the fundamental physics of superconductivity.

Program:	DOE EFRC
Award:	\$ 22.5 Million USD
Duration:	Aug '09 – Aug '14
Director:	Dr. J. C. Seamus Davis
Lead:	Brookhaven NL
Partners:	Argonne NL,
	U. Illinois U-C

Examples of Recent Achievements:

- A Grand Unified Theory of Exotic Superconductivity
- Scientists Discover Hidden Magnetic Waves in HTS
- Scientists Chart the Emergence of HTS
- Superconducting Magnet Researchers Develop Exciting New HTS Technology
- Key Advance in Understanding 'Pseudogap' Phase in HTS

New fabrication method could advance technologies ranging from grid-scale energy storage to medical imaging devices.

Major findings:

- Layered structure "CeO $_2$ Cap Layer" gives higher T $_c$ & J $_c$
- Lower processing temp PLD at 400°C
- Same J_c on CeO₂/YSZ single crystals and RABiTS
- $J_c > 1 \text{ MA/cm}^2$ at 4.2K self field ~ 10^5 A/cm^2 at 31T

Bi-2212 round wire for high field applications

Key requirements for material:

- High current under ultra high field
- High strength and strain limit
- Ability to twist, cable and transpose
- Resistance to quench, compatible insulation
- Long piece-length to wind coils
- Cost

Challenges for Bi-2212 round wire

• Achieving short sample J_E in long lengths

Fermilab

- Increasing wire piece-length
- Enhancing wire strength
- Reducing cost

- Established Bi-2212 round wire process by the Powder-in-tube method and easy to scale up.
- ✓ Established reliable Bi-2212 powder sources
- ✓ Various wire configurations to fit different

- \checkmark Wire is twistable and ac loss reduced
- ✓ 5x longer piece-length process under developing
- ✓ High strength wire development is funded

Office of

Science

Continuous improvement through process modifications

Office of

Science

 ✓ Advances including "Core Densification + Over-Pressure HT" led to J_E > 600 A/mm² at 4.2 K, 20 T.

For Bi-2212 round wires, > 0.5mm diameter, operating between 4.2 to 20 K, in 20 to 50 T field, with silver stabilizer and isotropic performance:

Conductor Property	Delivered value today	In 2 years	In 5 years
Current density J _E @ 4,2K, 20T	~ 500 A/mm ²	~ 700 A/mm ²	~ 700 A/mm ²
Length	200 – 1,000 m	400 – 1,000 m	> 3,000 m
Strength	110 MPa	150 - 200 MPa	> 200 MPa
Selling price range \$/kA.m @ 4.2K, 20T	330 - 550	200 - 400	100 - 150

Hyper Tech MgB₂ conductor strand designs-Different % SC and % Cu

Product #	# filaments	Fill factor (%)	Copper (%)	Cross section
18-MS	18	8	32	
24-NM	24	17	16	
30-NM	30	20	12	
36-CM	36	15	15	

Demonstrated multistrand MgB₂ cable:

10° pitch angle

e 20° pitch angle

2nd generation MgB₂ under development at Hyper Tech

Designed a 5 MW MgB₂-based generator and developing a radiation treatment background magnet

Generator design is expandable from 5-20 MW

Specifications

Power (MW) 5.0
RPM 10
Configuration Synchronous
Voltage (kVrms) 1,350
Number of Poles 24
Output Frequency (Hz) 2.0
Diameter (M) 4.87
Length (M) 1.74
Weight (Tons) 76.5
Superconductor MgB ₂
Rotor Coolant LHe/GHe
Stator ConductorCopper
Stator Coolant Water or EGW

IEA HTS ExCo Meeting 2014

Gradient and

RF send/receive coils

Image Guided Conduction Cooled Radiation Treatment Background Magnet

Gantry supporting 3 Co-60 treatment sources

Magnet structural

supports (3)

Current and projected J_E and \$ / kA.m:

Property of importance	Delivered value today-1 st gen	In 3 years 2 nd gen	In 5 years 2 nd gen
Temperature range	4-30K	4-30K	4-30K
Field range	6T-0T	8T-0T	8T-0T
Conductor current	4K-1T-1400A/mm2	4K-1T-2800A/mm2	4K-1T-2800A/mm2
density (Je)	4K-4T-400A/mm2	4K-4T-1400A/mm2	4K-4T-1400A/mm2
Based on	4K-6T-200A/mm2	4K-6T-800A/mm2	4K-6T-800A/mm2
temperature and	20K-0T-2000A/mm2	20K-0T-5000A/mm2	20K-0T-5000A/mm2
field on wire	20K-1T-600A/mm2	20K-1T-2000A/mm2	20K-1T-2000A/mm2
	20K-2T-320A/mm2	20K-2T-1200A/mm2	20K-2T-1200A/mm2
	20K-3T-120A/mm2	20K-3T-600A/mm2	20K-3T-600A/mm2
Conductor form	Round 0.25-2 mm	Can be custom size	Can be custom size
Conductor length	6-10km	40-60km	80km
Conductor shape	Round or rectangular		
Delivered selling	4K-1T-\$5/kAm	4K-1T-\$0.5-\$1.5/kAm	4K-1T-\$0.4/kAm
price range \$/kAm	4K-4T-\$16/kAm	4K-4T-\$1.5-4.5/kAm	4K-4T-\$1.3/kAm
Varies based on	4K-6T-\$30/kAm	4K-6T-\$3.0-9.0/kAm	4K-6T-\$2.5/kAm
	4K-6T-\$30/kAm 20K-0T-\$3.30/kAm	4K-6T-\$3.0-9.0/kAm 20K-0T-0.37/kAm	4K-61-\$2.5/kAm 20K-0T-0.35
diameter,	·		
diameter, temperature and	20K-0T-\$3.30/kAm	20K-0T-0.37/kAm	20K-0T-0.35
diameter, temperature and field on wire	20K-0T-\$3.30/kAm 20K-1T-\$10/kAm	20K-0T-0.37/kAm 20K-1T-\$0.75-2/kAm	20K-0T-0.35 20K-1T-\$0.70/kAm
Varies based on diameter, temperature and field on wire some examples For 1 mm round wire	20K-0T-\$3.30/kAm 20K-1T-\$10/kAm 20K-2T-\$20/kAm	20K-0T-0.37/kAm 20K-1T-\$0.75-2/kAm 20K-2T-\$1.5-5/kAm 20K-3T-\$3-10/kAm Range is 2 nd gen (low	20K-0T-0.35 20K-1T-\$0.70/kAm 20K-2T-\$1.3/kAm
diameter, temperature and field on wire some examples	20K-0T-\$3.30/kAm 20K-1T-\$10/kAm 20K-2T-\$20/kAm	20K-0T-0.37/kAm 20K-1T-\$0.75-2/kAm 20K-2T-\$1.5-5/kAm 20K-3T-\$3-10/kAm	20K-0T-0.35 20K-1T-\$0.70/kAm 20K-2T-\$1.3/kAm 20K-3T-\$2.5/kAm

U.S. DEPARTMENT OF ENERGY IEA HTS ExCo Meeting 2014 Improvement in Hyper Tech's manufacturing speed (CTFF)
 Lower material costs due to increased manufacturing volume

3) Commercialization of 2^{nd} generation MgB₂ wire performance

Office of I	Search Energy.gov	
SERVICES	INFORMATION CENTER MISSION ABOUT US O	OFFICES
		SMART GRID
	A	Grid Modernization
	A A A A A A A A A A A A A A A A A A A	SmartGrid.gov
	A	Smart Grid Information Clearinghouse
	AA	Smart Grid Primers
	A part	REPORTING
		Situation Reports
-	and the part	Energy Assurance Daily
		Electric Disturbance Events (OE-417)
Bringin	g the Grid Into the 21st Century	Transmission Project Reporting
READ MORE		

Office of Electricity Delivery and Energy Reliability <u>http://energy.gov/oe/</u>

US Department of Energy <u>http://energy.gov/</u>

