High Temperature Superconductivity Market Readiness Review

Office of Electricity Delivery and Energy Reliability

Investigation of the status of HTS technology, the requirements of key applications and barriers to future success

Navigant Consulting, Inc. 77 South Bedford Street, Suite 400 Burlington, MA 01803 (781) 270-0101 <u>www.navigantconsulting.com</u>

NAVIGANT

August 2006

Content of Report

This report was prepared by Navigant Consulting Inc.^[1] This report was prepared for the US Department of Energy, Office of Electricity Delivery and Energy Reliability. The report summarizes our findings from an evaluation of various technical, cost and market-related factors pertaining to high temperature superconductor materials, wire and devices. The work presented in this report represents our best efforts and judgments based on the best information available at the time that we prepared this report. Navigant Consulting, Inc. is not responsible for the reader's use of, or reliance upon, the report, nor any decisions based on the report. NAVIGANT CONSULTING, INC. DOES NOT MAKE ANY REPRESENTATIONS, OR WARRANTIES, EXPRESSED OR IMPLIED. Readers of the report are advised that they assume all liabilities incurred by them, or third parties, as a result of their reliance on the report, or the data, information, findings and opinions contained in the report.

^[1] "Navigant" is a service mark of Navigant International, Inc. Navigant Consulting, Inc. (NCI) is not affiliated, associated, or in any way connected with Navigant International, Inc. and NCI's use of "Navigant" is made under license from Navigant International, Inc.

Acknowledgements

Navigant Consulting, Inc. wishes to acknowledge and thank the companies listed below for their cooperation and support during the course of this study.

 Long Island Power Authority Oak Ridge National Laboratory • Los Alamos National Laboratory ConEdison • Argonne National Laboratory Southern California Edison • Office of Electricity Delivery and Southwire **Energy Reliability** Nexans • Office of Naval Research Sumitomo Electric • Air Force Research Laboratory Rockwell American Superconductor • General Electric SuperPower • Rolls Royce Metal Oxide Technology • Praxair • Oxford Industries • Air Products and Chemicals Waukesha • BOC • Electric Power Research Institute

Introduction

The Department of Energy's Office of Electricity Delivery and Energy Reliability (OE) requested a detailed investigation of HTS technology, markets and the barriers to commercial success.

- OE's mission is to lead a national effort to help modernize and expand America's electric delivery system to ensure economic and national security.
- OE's Superconductivity Program has been successful in developing high temperature superconductivity (HTS) technology to a point where it is being applied in important energy demonstrations.
- NCI proposed to support OE by investigating the current status of HTS technology development, the markets for key HTS technologies in order to assist OE in understanding the barriers to long term commercial success.

NCI has analyzed the key issues facing HTS to assess the technology and its ability to support commercial markets.

The Technology

Can HTS technology be developed to provide a compelling set of benefits for important market applications?

- Are the market requirements for technology performance and price well understood?
- Can HTS technology meet any of these targets today?
- Can HTS technology be improved to meet some or all of these targets in the future?
- Do we understand the resource requirements for improving HTS technology to meet the market requirements?
- Does the HTS community believe that the desired results can be achieved?
- Do we understand how long it will take to improve HTS technology to meet the market requirements?

The Market

Can attractive markets be developed by leveraging the benefits of HTS technologies?

- Are there market segments that could benefit from a technology offering higher capacity, higher efficiency, smaller size, or lighter weight?
- Could the benefits of HTS create new applications built on the value it provides?
- Do we understand how long it will take to develop market applications for HTS to a significant size?
- Does HTS technology offer a compelling value proposition for capturing a significant share of these markets in a reasonable timeframe?

Introduction » Key Takeaways

Government support is critical for advancing HTS technology and bringing it to market.

- Significant R&D and technology development work remains to be done.
- The strongest near term markets for HTS are not in utility and energy applications.
 - Military and science applications value the technology attributes most.
 - Other applications, such as transportation are likely to be important.
 - Niche applications will likely be key early markets in energy, but more experimentation is required.
- The Government's HTS program needs to focus on developing the technology to achieve the critical wire performance targets as the top priority.
 - It also needs to fully support development of ancillary technologies such as cryogenics, cryostats and dielectrics and the business models required to properly deploy these technologies in the utility environment.
- The Government's program plan needs to provide long term support for HTS technology through the development and commercialization phases.
- To reduce risk and maximize benefit, the DOE HTS program should include a combination of research, application studies and phased demonstrations.

In addition to wire cost and performance improvement, significant work will be required on devices for utility and energy applications.

- 2G HTS wire cost and performance goals required for early commercial energy and utility applications will not be achieved until after 2010.
- Once HTS wire is on track to achieve the goals, there will be much more work required to design, develop, and test devices that will leverage the benefits of the technology.
 - Experience from the current round of cable demonstration projects will help map out the needs and objectives for additional rounds of cable demonstrations that will target understanding benefits.
 - In other areas, such as fault current limiters and transformers, we need to build devices, test them in the lab and in the field before we understand the real value propositions.
 - In each device area, we will need to perform several rounds of testing and verification before the utility industry will consider these devices in lieu of their traditional solutions.

How large are the markets for these devices and how long will it take to develop them?

- The most attractive attributes of HTS technology appear to be related to the small and light characteristics of devices when used in important energy applications.
- The application benefits of HTS devices will not be fully understood until several demonstrations can be performed in each segment.
 - Experimentation is required in order to understand the impact of key benefits, such as low impedance, fault current limiting, high power density and low losses.
 - Utility planners do not have the knowledge and the tools to adequately account for many of these benefits.
- Business models need to be developed that provide utilities with operations and maintenance support required for cryogenic systems.
- Market development will require continued government support to offset ulletadded cost and risk for early demonstration projects before a real commercial market will develop.

We need to do a better job of engaging the utility customers in order to accelerate the adoption of HTS technology. ICANT CONSULTING

HTS Market Readiness Review – August 2006

HTS Technology Platforms

NCI has analyzed the key issues facing HTS to assess the technology and its ability to support commercial markets.

The Technology

Can HTS technology be developed to provide a compelling set of benefits for important market applications?

- Are the market requirements for technology performance and price well understood?
- Can HTS technology meet any of these targets today?
- Can HTS technology be improved to meet some or all of these targets in the future?
- Do we understand the resource requirements for improving HTS technology to meet the market requirements?
- Does the HTS community believe that the desired results can be achieved?
- Do we understand how long it will take to improve HTS technology to meet the market requirements?

The Market

Can attractive markets be developed by leveraging the benefits of HTS technologies?

- Are there market segments that could benefit from a technology offering higher capacity, higher efficiency, smaller size, or lighter weight?
- Could the benefits of HTS create new applications built on the value it provides?
- Do we understand how long it will take to develop market applications for HTS to a significant size?
- Does HTS technology offer a compelling value proposition for capturing a significant share of these markets in a reasonable timeframe?

HTS Technology Platforms » Key Takeaways

Commercial success for HTS technology in the important energy and utility applications will take longer than previously predicted.

- 2G HTS wire technology does not currently meet any of the application requirements today that will support a commercial market.
- Lab research has proven that 2G HTS wire can achieve the required performance targets, as we currently understand them.
 - The key issues are around whether or not the technology can be transitioned to high volume, low cost manufacturing processes.
- The technology performance requirements for the various applications must be clarified further to ensure successful commercialization and market entry.
- The HTS community believes very strongly that the desired cost and performance targets can be achieved.
- We have a reasonable idea of the time that will be required to achieve the market requirements, but based on past experience it is likely to take longer than most of the current estimates.

Long term government support at or above the current levels will be necessary to commercialize HTS technology.

HTS Technology Platforms » Introduction

Each of the technology platforms – wire, cryogenics and dielectrics – must provide sufficient performance at a price that each HTS application can support.

HTS Technology Platforms			
HTS Wire	Cryogenics	Dielectrics	
 1G wire is being deployed in initial system prototypes, but does not support the performance and price requirements for commercial applications A consensus has developed around the need to move to 2G wire to meet price and performance requirements 2G materials' cost is lower Improved in-field performance at higher temperatures Better mechanical properties In the near-term, cost of HTS wire is a barrier to commercialization. 	 Cryogenics costs are a significant share of total HTS system cost, and will limit the market as a result Systems for larger cable projects can be designed today to be highly reliable, but effective business models for service must be developed More efficient and cost effective cryocoolers are critical to the value proposition for HTS applications Advanced technology cryocoolers need to be scaled up to larger sizes and the efficiency and reliability needs to be proven Application-specific, optimized cryostats are also critical, and their development is needed for cable and other applications. 	 Experience with dielectrics has been mixed, and in some cases has been the source of major technical problems. Most experience has been adopted from traditional dielectric approaches in oil filled devices, with very little focus on cold system dielectrics. Voids in insulation may become particularly vulnerable at cryogenic temperatures. While some research has been done in this area, the ultimate success of HTS technology depends heavily on dielectric systems designed to operate in cryogenic environments 	
		NÁVIGAN	

CONSULTING

HTS Technology Platforms » HTS Wire > Overview of 1G Wire Development

Early HTS development produced BSCCO-based 1G wire, whose manufacturers include American Superconductor and Sumitomo Electric.

- BSCCO wire technology (1G) was successfully developed as part of the DOE HTS program
- Several manufacturers produce 1G wire, almost all of which has gone into demonstration projects that include:
 - Cable demonstrations
 - SuperVAR
 - Navy propulsion motor
- In the US, 1G wire is currently produced for commercial sale by American Superconductor
- Sumitomo Electric continues to develop 1G technology, and has demonstrated performance of 500 A/cm

Superconductor Filaments Matrix

GANT

CONSULTING

Source: American Superconductor

Production 1G HTS wire can deliver about 350 A/cm of performance, at a cost of \$125/kA-m today; the lower limit on cost is about \$80/kA-m.

HTS Technology Platforms » HTS Wire > Overview of 1G Wire Development

The HTS industry currently consumes approximately 1000 km of 1G wire per year.

- The major applications have been underground cable demonstration projects, and rotating equipment prototypes.
- The major suppliers of 1G wire are American Superconductor and Sumitomo Electric.
- 1G wire has been and is being investigated and tested for applications such as fault current limiters, transformers, MRI, maglev trains, specialty magnets and others.
- Due to the high price of wire, which is in the range of \$100-150/kA-m today, the market has not grown significantly.

HTS Technology Platforms » HTS Wire > *Need for 2G Wire*

In recent years, a consensus has developed around the need to move to 2G wire to meet price and performance targets necessary for HTS device commercialization.

- 1G (BSSCO) wire will likely not meet the price and performance goals because:
 - its high silver content will continue to make it too expensive to compete on price against copper;
 - its critical current density is too low due to poor grain alignment; and,
 - its performance in high fields is insufficient for some applications.

In an effort to reduce cost, YBCO-based 2G wire is made in layers with a drastically reduced silver content.

2G (YBCO) could achieve cost and performance goals because:

- the materials cost is lower, using far less silver than 1G wire;
- the layered structure is better suited to longer manufacturing runs and higher process throughput;
- its in-field performance appears to be adequate for use in electric power applications; and
- with continued development, AC losses appear acceptable for use in electric power applications.

Source: American Superconductor

Good YBCO grain alignment is critical to achieving high critical current densities, and has been a priority of wire R&D.

HTS Technology Platforms » HTS Wire > *IBAD and RABiTS*

Two manufacturing approaches, IBAD and RABiTS, are being developed to enable good grain alignment of the YBCO superconductor.

	IBAD/MOCVD (Ion Beam Assisted Deposition / Metal Oxide Chemical Vapor Deposition)	RABiTS/MOD (Rolling-Assisted Biaxially Textured Substrate/ Metal-Organic Deposition)	
Process Description	As a buffer layer is deposited on a substrate, an ion beam is directed at the growing layer producing a specific crystalline orientation. The oriented buffer layer provides the template for the YBCO which is deposited using a metal oxide chemical vapor deposition process.	A substrate is mechanically textured to create a grain alignment template for the buffer and YBCO. The YBCO deposited using a metal-organic deposition process.	
Long Samples (July 2006)	322 meters @ 219 A/cm	94 meters @ 350 A/cm	
Short Samples (July 2006)	464 A/cm	508 A/cm	
Scale-up Focus	High linear tape speeds using multi-pass helical tape handling with tape slit to standard width	Wide tape that is slit to standard width (currently 4cm with plans for 10cm)	
Wire Research Lead	Los Alamos National Laboratory Provides significant support to SuperPower through DOE CRADA programs for additional wire development to assist with manufacturing scale up	Oak Ridge National Laboratory Provides significant support to AMSC through DOE CRADA programs for additional wire development to assist with manufacturing scale-up	
Commercialization Lead	IGC SuperPower Has selected IBAD under a non-exclusive license from LANL, and has several patents for process optimization.	American Superconductor Has applied the RABiTS approach under a non- exclusive license from ORNL, and has several patents related to process optimization.	

Both approaches are designed to increase critical current density and in-field performance through good grain alignment in the YBCO.

CONSULTING

HTS Technology Platforms » HTS Wire > Overview of 2G Wire Development

In May 2006, DOE's 2006 goal of 30 kA-m was exceeded as SuperPower achieved over 70 kA-m with a tape sample over 300 meters long.

DOE HTS Performance Goals Critical Current × Length		
Year	kA-m	
2006	30	
2007	40	
2008	50	
2010	70	
2012	100	
2014	500	
2015	800	
2020	1,000	
Source: DOE		

- The 2006 kA-m goal was surpassed, and researchers and wire manufactures continue to increase critical current and tape length
- Progress toward price and production goals will be critical to demonstrations, and the ultimate success of the technology in the coming years.

HTS Technology Platforms » HTS Wire > Wire Requirements

Wire performance and price requirements vary by application, and will drive the timing of market entry.

Industry Consensus Wire Performance Requirements for Various Utility Device Applications								
Application	J _c (Acm ⁻²)	Field (T)	Temp. (K)	1 _c (A)	Wire Length (m)*	Strain (%)	Bend Radius (m)	Cost (\$/kA- m)*
Power Cable (transmission)	>10 ⁵	0.15	67-77	200 A, 77 K, sf	>500	0.4	2 (cable)	10-50
Synchronous Condenser	10 ^{5‡}	2-3 [‡]	30-77 [‡]	100-500 [‡]	>1,000‡	0.2 [‡]	0.1 [‡]	30-70 [‡]
Fault Current Limiter	10^{4} - 10^{5}	0.1-3	70-77	300‡	>1,000	0.2	0.1	30-70 [‡]
Large Industrial Motor (1,000 hp)	10 ⁵	4-5	30-77	100-500	>1,000	0.2-0.3	0.1	10-25 [‡]
Utility Generator	$J_{e} > 10^{4}$	2-3	50-65	125 at T _{op} , 3 T	>1,000	0.4-0.5	0.1	5-10
Transformer	J _c >10 ⁶ J _e >12,500	0.15	70-77	>100 @ 0.15 T	>1,000	0.3	0.05	10-25 [‡]

Original Data R. Blaugher, et. al., Updated by Gouge, Ashworth - January, 2006,

*Wire mfg, some equipment mfg indicate shorter length is adequate for early applications

‡ Based on NCI assessment

*Cost target for a commercial market to develop. Target cost of wire is likely to be higher today due to rising price of copper and other materials

CONSULTING

HTS Market Readiness Review – August 2006

Today, 2G wire is close to meeting the critical current and in-field performance requirements for some applications.

- Current and magnetic field requirements are close to being met for certain applications in laboratory samples.
- The next step will be proving that these results can be achieved in manufacturing conditions and in long lengths.
- Meanwhile, achieving higher currents at high magnetic fields (2 to 4 T) requires additional breakthroughs or a colder operating environment.

Source: Daley, James G. "Research Needs for HTS Power Delivery Technology." January 31, 2006. http://www.energetics.com/meetings/wire06/pdfs/session1/daley.pdf

HTS Technology Platforms » HTS Wire > *Timing*

Once a marginal level of performance is achieved by HTS wire, demonstration devices can be built, but the cost-performance ratio must be reduced for market entry and commercialization.

Technology	Near-Term Goals	Mid-Term Goals	Long-Term Goals
Attributes	(present – 2007)	(2008 – 2011)	(2012 – 2015)
Critical current	250 A/cm, 77 K, sf	500 A/cm, 77 K, sf	1000 A/cm, 77 K, sf
	125 A/cm, 65 K, 2 T	250 A/cm, 65 K, 2 T	500 A/cm, 65 K, 2 T
Cost/Performance	\$400/kA-m, 77 K, sf	\$50/kA-m, 77 K, sf	\$10/kA-m, 77 K, sf
Ratio	\$800/kA-m, 65 K, 2 T	\$100/kA-m, 65 K, 2 T	\$20/kA-m, 65 K, 2 T
Wire Length	100 m	1000 m	>1000 m
AC Losses	1 – 2 W/m	0.5 – 1.0 W/m	< 0.50 W/m

Source: NCI Analysis, Southwire, DOE.

NAVIGANT

CONSULTING

HTS Technology Platforms » Cryogenics & Cryostats > Overview

Cryogenics reliability and cost are critical elements in the ultimate success and market penetration of HTS technology.

- Cryogenics costs are a significant share of total HTS system cost, and will limit the market as a result
- Systems for larger cable projects can be designed today to be highly reliable, but effective business models for service must be developed
- More efficient and cost effective cryocoolers are critical to the value proposition for HTS applications
- Advanced technology cryocoolers need to be scaled up to larger sizes and the efficiency and reliability needs to be proven
- Application-specific, optimized cryostats are also critical, and their development is needed for cable and other applications.

Source: SHI Cryogenics Group

HTS Technology Platforms » Cryogenics & Cryostats > Timing

Efficiency, reliability and cost of cryogenics are important components of life cycle cost for an HTS device; improving these factors will increase the likelihood HTS devices will be commercially successful.

Technology AttributesNear-Term Goals (present - 2007)Mid-Term Goals (2008 - 2011)		Long-Term Goals (2012 – 2015)		
ics	Carnot Efficiency	12% @ 65 K	20% @ 65 K	30% @ 65 K
Reliability 95% 99%		99%	> 99.9%	
Cı	Cost	\$100/W @ 65K	\$60/W @ 65K	\$25/W @ 65K
ole stats*	Heat Leak 2 W/m 1 W/m		< 0.5 W/m	
Cal Cryos	Cost	\$500/m	\$300/m	\$100/m

* Heat leak and cost goals apply to cryostats for the power cable application. Source: NCI Analysis, Southwire, DOE.

HTS Technology Platforms » Dielectrics > *Overview*

Dielectrics have performed sufficiently for some applications, but improvements in materials and designs appear necessary for others.

- Experience with dielectrics has been mixed, and in some cases has been the source of major technical problems in previous demonstrations.
- Most experience has been adopted from traditional dielectric approaches in oil filled or solid dielectric devices, with very little focus on cold system dielectrics.
- The use of cryogenic cooling fluids (i.e. LN₂) as a dielectric material, especially in high voltage environments and under all operating conditions (transient, fault, etc...) must be thoroughly investigated.
- While some research has been done in this area, the ultimate success of HTS technology depends heavily on dielectric systems designed to operate in cryogenic environments

These are several HTS technology and systems-level challenges toward achieving successful device commercialization.

Application	Critical HTS Technology Challenges	Critical Engineering / Application Challenges
Power Cable	 Reduce heat leak from the cryostat, improve efficiency of cryogenics, reduce AC losses, improve cost-performance ratio of HTS wire Simpler, more robust and cost effective cryostat designs 	 System reliability, splices, designs for low maintenance Thermal and hydraulic issues over long lengths, fault current tolerance Business models for cryocooler maintenance
Synchronous Condenser	• Improve cost-performance ratio of HTS wire at field •Optimization for application,	
Fault Current Limiter• Understand quench characteristics at high voltages and currents		• Electro-mechanical design requirements, cycling characteristics, device lifetime
Industrial Motor• Improve cost-performance ratio of HTS wire at field, improve performance of cryogenics		• System reliability, low cost packaged system
Utility Generator• Improve cost-performance ratio of HTS wire at field, identify suitable dielectric materials, improve cryogenics• Going to larger sizes, syste low cost packaged system		 Going to larger sizes, system reliability, low cost packaged system
Wind Generator • Improve cost-performance ratio of HTS wire at field, improve cryogenics • Small and lightweight, large challenges in offshore mark		• Small and lightweight, larger sizes, design challenges in offshore marine environment
Transformer• Reduce AC losses, improve cost-performance ratio of HTS wire, identify suitable dielectric materials• Larger sizes, low cost packa system reliability • Develop load tap changing		 Larger sizes, low cost packaged system, system reliability Develop load tap changing technology

NAVIGANT

CONSULTING

Several R&D initiatives are being pursued to improve wire performance and reduce cost.

Technology Platform	Research Initiative	National Labs	Wire Mfgs
	Increase critical current (I _c)	Lead	Support
	Improve in-field performance (J _c)	Lead	Support
	Increase engineering current density (J_e) for applications	Support	Support
	Reduce AC losses	Lead	Support
Wire	Improve uniformity of wire in long lengths	Support	Lead
	Develop in-situ monitoring and QC methods	Support	Lead
	Reduce the number of buffer layers	Lead	Support
	Reduce wire manufacturing cost	Support	Lead
	Increase wire production and throughput	Support	Lead

HTS Technology Platforms » Research Initiatives

R&D initiatives to improve cryogenics and dielectrics are being led by industry, with some support from the Labs, but more is needed.

Technology Platform	Research Initiative	National Labs	Industry
	Increase efficiency of cryogenics	Support	Lead
Cryogenics	Increase reliability of cryogenics	Support	Lead
	Lower cost of cryogenics		Lead
Dielectrics	Testing dielectric materials in cryogenic and high voltage environments	Support	Lead

The HTS program currently has a significant level of early stage R&D on conductor and balance of system components.

	Examples of HTS Project Areas			
	Discovery Research	Targeted Research and Development	Technology Maturation and Deployment	
Conductor Research (Wire Technology)	 Magnetic flux pinning Control of nanodefects & interfaces Higher Tc superconductivity Multilayers/Buffers 	 Near-isotropic high-pinning superconductors 	• Isotropic YBCO superconductor	
Conductor Research (Wire Manufacturing)	 Filament Development Tape transposition Dielectric architecture HTS film deposition rate >100 m/hr of 1,000 A/cm tape 	 1,000 A/cm width at 77K Kilometer lengths Production rate 10,000 km/yr 	• 2 nd Generation Wire Manufacture <\$50/kA-m	
SPI (Devices, Applications, & Balance of System)	• High voltage dielectrics	 Cryorefrigeration Pre-commercial high-efficiency superconducting power delivery systems 	• Prototype motors, generators, transformers, FCL devices based on 2G wire	

As currently funded, the DOE program does not support all areas requiring development

VIGANT

CONSULTING

During 2006/2007, three major cable demonstration projects are scheduled to be energized.

Three cable projects will be energized in 2006/2007			
Project	Description and Status		
Albany, NY SuperPower/ National Grid	 3-phase, 48 MVA – 34.5 kV, 800 A, 350 m Phase I - 77 km 1G HTS wire for a 350 m cable, Phase II - 9.7 km 2G HTS wire for 30 m cable segment Bi-2223 wire and cable supplied by Sumitomo, cryogenics by BOC, YBCO to be supplied by SuperPower Phase I Operational Summer 2006, Phase II - YBCO Cable installation and commissioning Summer '07 		
Columbus, OH Ultera/AEP	 3-phase, 69 MVA – 13.2 kV, 3,000 A, 200 m Single core cable, cold dielectric Underground cable w/multiple 90 degree bends, joined in underground vault, built in field 1G HTS wire supplied by AMSC, cryogenics provided by Praxair Planning to be in service for normal operation in Fall 2006 		
Long Island, NY AMSC/LIPA	 3-phase, 574 MVA – 138 kV, 2,400 A, 610 m 155 km of 1G HTS wire 1G HTS wire supplied by AMSC, cryostat supplied by Nexans Cryogenic system designed and managed by AMSC Currently planning to be energized in Summer 2007 		

There have been some highly successful recent demonstration projects that support the potential of HTS devices.

There have been several successful HTS demonstrations		
Project	Description and Key Features	
Carrollton Cable Southwire	 30 m of HTS cable (AMSC 1G wire) to power Southwire's Carrollton complex 3 single phase cables capable of carrying 1250 A (AC) at 12.4 kV Operated successfully >38,000 hours at 100% load, over a period of six years. Cryogenics support provided by Praxair and have operated over 2 years successfully. 	
Industrial Motor Rockwell/AMSC (2000)	 1000 HP industrial motor Motor developed by Rockwell with AMSC 1G wire Partners: Air Products and Chemicals and First Energy also provided support. 	
Navy Motor Navy/AMSC (2003)	 5 MW prototype of marine propulsion motor for a Navy application 36.5 MW propulsion motor contract awarded to AMSC in 2004 	
SuperVAR TVA/AMSC (2004)	 First major grid demonstration of a HTS synchronous condenser ("SuperVAR") 8 MVAR unit operating at 13.8 kV to support transient voltage loads at a steel mill Unit experienced over 5 million events and successfully demonstrated capability during 2000 on-line hours of operation. 	

However, there have been some major failures which underlie the risk associated with technology demonstrations.

HTS demonstrations have shown that technical challenges still exist			
Project	Description and Key Features	Failure Mechanism	
HTS Cable DTE/Pirelli	 First major US HTS cable project AMSC provided 1G HTS wire, Pirelli Cable provided the Cryostat and was the project manager 	 Cryostat leakage and other technical and quality problems plagued the project Never energized 	
HTS Transformer Waukesha/ SuperPower	• 10 MVA transformer	 Dielectric failed at 1 kV and project never brought up to full power 	
Matrix Fault Current Limiter SuperPower	• This project suffered major failures when undergoing component testing that resulted in the project being stopped before full testing.	 Failure of melt-cast BSCCO tubes with high current testing Never subjected to full testing 	
Motor Rockwell	• 1000 HP motor demonstration	 Rotor windings failed undergoing a quench 	

Project failures have not been the result of 1G wire technology, but instead the failure of ancillary technologies/systems.

CONSULTING

It has also been concluded that more design reviews (readiness reviews), would benefit the industry.

- Readiness Reviews were initiated in 2003 as a means of more effectively identifying major areas of risk in projects, developing plans for risk mitigation and sharing experience and lessons learned throughout the industry.
- Important issues that have been a focus of the readiness reviews are:
 - Fault currents in cables
 - Thermal contraction of cables
 - Cryostats (mostly focused on cables)
 - High voltage, dielectric materials
 - Quenching in HTS coils
- Everyone interviewed by NCI has indicated that the readiness reviews have been very beneficial and will increase the likelihood of success of the next round of projects.
- The current approach using 3 Phases of reviews appears to be adequate for addressing these needs going forward.

HTS Market

NCI has analyzed the key issues facing HTS to assess the technology and its ability to support commercial markets.

The Technology

Can HTS technology be developed to provide a compelling set of benefits for important market applications?

- Are the market requirements for technology performance and price well understood?
- Can HTS technology meet any of these targets today?
- Can HTS technology be improved to meet some or all of these targets in the future?
- Do we understand the resource requirements for improving HTS technology to meet the market requirements?
- Does the HTS community believe that the desired results can be achieved?
- Do we understand how long it will take to improve HTS technology to meet the market requirements?

The Market

Can attractive markets be developed by leveraging the benefits of HTS technologies?

- Are there market segments that could benefit from a technology offering higher capacity, higher efficiency, smaller size, or lighter weight?
- Could the benefits of HTS create new applications built on the value it provides?
- Do we understand how long it will take to develop market applications for HTS to a significant size?
- Does HTS technology offer a compelling value proposition for capturing a significant share of these markets in a reasonable timeframe?

HTS Market » Key Takeaways

The most important near term energy and utility markets appear to be fault current limiters and synchronous condensers.

- Due to the relative clarity and strength of their value propositions, the strongest early markets for HTS are likely to be fault current limiters and synchronous condensers. Mass markets such as cable, transformers and generators that value low impedance and energy density will emerge much later.
- New applications in energy and utilities are likely to value the small and light characteristics such as off-shore wind turbines. Other new applications may emerge when there is more opportunity to experiment with the technology.
- We do not fully understand how long it will take to develop these markets, but it is likely to take 5-10 years of niche applications and experimentation in most segments before broader, mass markets develop.
- It is not clear today if HTS offers a compelling value proposition in many of the important applications that will demand higher volumes of wire and as a result more application studies, demonstrations and government support will be required to develop these markets.

It is likely to take 5-10 years of application studies, experimentation and demonstrations before broader markets develop.

HTS Market » Market Applications

There are many potential applications for HTS. Each potential application will utilize the unique performance attributes of HTS.

	Examples of Potential HTS Applications								
Utility/ Energy	Weapons/ Defense	Transportation	Industrial	Medical/ Health	Science				
 Power Cables Synchronous Condensers Fault Current Limiters Utility Generators Wind Generators Transformers 	 Degaussing Cable Navy propulsion motors Reduced antenna length for submarines "E-bombs" (EMP) Directed energy weapons 	 MAGLEV Marine propulsion Railroad engine applications 	 Industrial motors (> 1000 hp) for process industry Magnetic separation Construction/ mining equipment 	• Magnetic Resonance Imaging (MRI)	 High field magnets Current leads 				
	Focus of this report	5							

NAVIGANT

HTS Market » Market Applications > *Performance Attributes*

Market segments that assign the highest value to performance attributes are likely to be the best early markets for HTS.

	Importance of Performance Attributes								
	Small & Light	High Power Density	Low Impedance	High Efficiency	High Field	Overall			
Utility/Energy									
Weapons/Defense									
Transportation									
Industrial									
Medical/Health									
Science			0	0					

Source: NCI Analysis

HTS Market » Market Applications > Cost/Performance

In addition to assigning high value to HTS attributes, it is likely that market segments such as Defense and possibly Science may be prepared to pay the most for the technology.

Note: The size of the ball denotes approximate market size.

HTS Market » Market Applications > Market Entry / Market Size

The Utility/Energy market may be largest long-term opportunity, but will require HTS sales from other segments to drive improvements in the cost-performance ratio before 2020.

	Time Frame							
	2006	2010	2014	2018	2022	2026	2030	
Utility/Energy								
Weapons/Defense								
Transportation								
Industrial								
Medical/Health								
Science								
							•	

Source: NCI Analysis

Est. HTS Wire Sales

HTS technology offers significant benefits over a broad range of applications from power cables to advanced wind generators.

Application	Primary Benefit	Secondary Benefits	Main Weaknesses	Competing Technologies
Power Cable	•High power at lower voltages than conventional solutions	Power flow controlNo EMF outside cable	Higher first cost and maintAC losses	•EHV OH transmission •HS-LS conductor
Synchronous Condenser	 Best dynamic MVAR source Rotating inertia Overload capability No harmonic filtering 		 First cost compared to SVC Experience with cryogenics 	•D-VAR, Statcom, SVC
Fault Current Limiter	Fault Current Limiter •Cost effective alternative to breaker upgrades		•Higher efficiency than other solutions •Recovery under load and reclosing	
Industrial Motors (>1000 hp)	•Lower losses (50% for 1G motors, >50% 2G)	•Reduced weight and size	•Higher starting and fault currents	 Induction; permanent magnet
Utility Generator (>300 MW)	•Higher efficiency	•Better transient performance	•First cost •Maintenance cost	 Primary: air cooled Secondary: gas/liquid cooled
Wind Generator (5-10 MW)•Smaller size and lower weight mean higher output		 Eliminates gearbox Higher output voltage Maintenance cost 		•Conventional synchronous generators
Transformer	•Overload rating and reliability	Environmental mitigation; Fire safetySize and weight	•Cost •Maintenance	•No direct competition at this time

Source: NCI Analysis, see Appendix: Value Propositions

NAVIGANT

HTS Market » Utility/Energy Applications > *Performance Attributes*

In the utility/energy market, the applications that appear to value performance attributes of HTS most are Fault Current Limiters and Synchronous Condensers.

	Utility/Energy Market - Importance of Performance Attributes							
	Small & Light	High Power Density	Low Impedance	High Efficiency	High Field	Overall		
Power Cable					\bigcirc			
Synchronous Condenser								
Fault Current Limiter*					\bigcirc			
Industrial Motor								
Utility Generator	\bigcirc	\bigcirc						
Wind Generator								
Transformer					0			

Source: NCI Analysis, see Appendix: Value Propositions * Fault current limiters also rely on the inherent quench properties of HTS. Weak Strong

NAVIGANT

HTS Market » Utility/Energy Applications > Cost/Performance

In the utility/energy market the majority of potential applications value low life cycle costs more than specific performance attributes.

CONSULTING

Note: The size of the ball denotes approximate market size.

©2006 Navigant Consulting, Inc. HTS Market Readiness Review – August 2006

HTS Market » Utility/Energy Applications > *Market Entry*

Forecasted dates of market entry are strongly dependent on the status of the HTS technology platforms, but must also consider the success of demonstration projects and the strength of the value proposition.

		Utility/Energy Market - Technology Attribute								
		Wir	e		Dielectrics	Cryo	genics	Cryo	ostats	
	Critical Current	Cost/ Performance Ratio	Wire Length	AC Losses	Performance	Carnot Efficiency	Reliability/ Cost	Heat Leak	Cost	Est. Date of Market Entry**
Power Cable		\bullet							igodol	2014
Synchronous Condenser										2011
Fault Current Limiter										2014
Ind. Motor		\bullet								2016
Utility Generator										2020
Wind Generator										2014
Transformer (Med. / Large)	•/•	•/•	•/•	•/•	•/•	•/•	•/•	•/•	•/•	2014/17

** The forecasted date of market entry considers technology status, past demonstration projects, and the strength of the value proposition.

Note: The technology development status corresponds to the near-, mid- and longterm goals identified in the HTS Technology Platform section.

Effective technology commercialization strategies require successfully completing the four product stages below.

Although there may be feedback to earlier stages, generally, these stages must occur in sequence, and individual stages should not be skipped in an attempt to accelerate the process.

For each HTS application NCI used the technology commercialization framework to forecast market entry.

	Technology Dev	elopment	Product De	evelopment	Market Business Devel	lopment
1 Research & Development		2 Initial System	Demonstratio	on Commercial	3 Market Entry	4 Market Penetration
	·	Prototypes	Prototypes	Prototype		
Description of Typical Activities	 Research on component technologies General assessment of market needs and product specifications General magnitude of economics 	•Initial system prototypes for debugging	•Ongoing development to reduce costs or for other needed improvements	 Full size system in "commercial" operating environment Communicate program results to early adopters/selected niches 	 Initial commercial orders Early movers or niche segments Product reputation is initially established Business concept implemented 	 Follow-up orders based on need and product reputation Broad(er) market penetration Infrastructure developed Full-scale manufacturing
Key Transition Factors	 Major technical issues identified and solutions defined Adequate info to define system Clear path to acceptable economics Performance acceptable with market needs Initial estimates of market size and attractiveness 	 All major system components prototyped Basic functionality demonstrated 	 Requirements for commercial scale system understood Demonstrated progress towards cost/performance goals System capability matched to customer needs 	 System demo in full commercial operation (size, continuous operation, real world) Demonstrate that future economics are attractive and adequate market size Reasonable match to market needs Acceptable market and technical risk/uncertainty Market attractiveness consistent with manufacturer investment 	 Successful operation in varied applications (technical risk) Economic hurdle for widespread markets achievable Market size and needs exceed hurdle Market attractiveness consistent with manufacturer investment 	•Market share established •Sales growth rate achieved •Broad-based markets

NAVIGANT

HTS Market » Technology Commercialization > Power Cable

For example, HTS cables are likely to enter the market on a commercial basis around 2014, after additional demonstration stages.

Technology Development		Product Dev	velopment	/Market Business Develo	opment
1 Research & Development	2 Initial System	Demonstratio	n	3 Market Entry	4 Market Penetratio
	Prototypes	Prototypes	Prototype	,	
ongoing	2005	2008	2011	2014	2017
 Understand major technical issues, demonstrate key technical concepts Develop solutions to major technical issues Define system requirements Project Examples DTE Cable Project Southwire Carrollton Project 	 Initial system prototypes using 1G HTS wire Debug components Demonstrate technology in field environment. Project Examples Southwire/AEP LIPA/AMSC Albany/ SuperPower 	 Refine initial system with experience from prototypes Demonstrate value proposition in the field Projects Full scale demonstration using 2G wire Full functionality Progress toward cost goals for major components 	 Full size system in "commercial" operating environment Demonstrate future economics, acceptable market and technical risk Gov. support for industry standards Projects Commercial cable project without backup option 	 Formal business model Early movers Demonstrate value for broader market opportunities Projects Customer driven cable project, without government support 	•Market penetration accelerates •Focus on lowering system costs •Increasing diversity of product offering

NAVIGANT

NCI projected the technology commercialization timeline for other utility/energy HTS applications.

Te	chnology Dev	velopment	Product Deve	elopment	Market/ Business Develo	pment
	esearch &	2	Demonstration	1	3 Market	4 Market
Dev	velopment	Initial System Prototypes	Refined Prototypes	Commercial Prototype	Entry	Penetration
Power Cable	ongoing	2006	2008	2011	2014	2017
Synchronous Condensers	ongoing	2004	2006	2009	2011	2014
Fault Current Limiter	ongoing	2007	2010	2012	2014	2017
Industrial Motors	ongoing	2004	2006	2011	2016	2019
Utility Generators	ongoing	2008	2012	2016	2020	2023
Wind Generator	ongoing	2008	2010	2012	2014	2017
Transformers	ongoing	2003	2008	2011	2014	2017

Source: NCI Analysis, see Appendix: Technology Commercialization Timeline

NAVIGANT

HTS Market » Market Model Assumptions > *Timing*

NCI created a detailed market model for three scenarios forecasting the long term potential of HTS devices, based on the technology commercialization assumptions developed during the study.

- The following market model assumes that DOE continues to support the development of HTS technology at or above the current levels.
- It has also been assumed that as soon as HTS wire technology is developed that will support the performance required for particular devices and applications that development of these devices is pursued.
- We have also assumed that the various devices are successfully developed over timeframes considered reasonable for power equipment of this type.
- The resulting model portrays three scenarios; a high, medium and low case, all of which assume that HTS devices are developed on the same timeframe.
 - The differences in assumptions used for the three scenarios relate to the following three areas, which are described in more detail in the appendix.
 - Power demand growth rates and growth rates for the markets for the various devices.
 - Market penetration rates for new technologies, and ultimate market shares for new technologies.

HTS Market » Forecast > Methodology

NCI used a market penetration model to estimate when and how many HTS devices will penetrate their respective markets.

The objective of this analysis is to estimate the potential size of the HTS market.

HTS Market » Forecast > Methodology

For each HTS market segment, NCI developed a market penetration model based on industry interviews and a literature review.

1 Installed Conventional Devices	• The size of the market that HTS devices will enter is a key factor for forecasting the size of the HTS market.
2 Annual Growth Rate	• The annual growth rate determines the number of new installations each year.
3 Replacement Rate	• The replacement rate determines the number of new devices that replace existing devices.
4 Total Annual Market	• The annual market is the sum of devices attributed to market growth and the replacement market.
5 HTS Market Penetration	• Certain technology and industry factors are used to estimate when HTS market entry will occur and the rate of HTS technology adoption.
6 Annual HTS Market	• The annual HTS market is the product of the total addressable market and the HTS market penetration rate.

Additional details about the model are located in the Appendix. $\mathbb{N} \wedge \mathbb{V}$

The size of the US market for utility/energy devices in all scenarios is considerably smaller than the ROW market.

	Low Scenario		Medium Scenario		High Scenario	
	Addressable Market in 2030	HTS Market in 2030	Addressable Market in 2030	HTS Market in 2030	Addressable Market in 2030	HTS Market in 2030
Power Cable (miles)	236	23	316	78	409	204
Synchronous Condensers (25 MVA)	14	2	17	8	20	10
Fault Current Limiter (unit)	258	25	304	150	355	177
Industrial Motors (5000 hp)	23	0	106	25	215	107
Utility Generators (300 MW)	22	0	35	4	51	25
Wind Generator (5 MW)	94	14	160	79	303	227
Medium Transformers (30 MVA)	1,506	71	1,933	476	2,432	608
Large Transformers (300 MVA)	139	0	178	40	225	112

The ROW market for HTS utility/energy devices is larger than the US market as the infrastructure in the ROW must keep up with growing

demand.	Low Scenario			Scenario	High Scenario	
	Addressable Market in 2030	HTS Market in 2030	Addressable Market in 2030	HTS Market in 2030	Addressable Market in 2030	HTS Market in 2030
Power Cable (miles)	1,563	149	2,285	563	3,217	1,608
Synchronous Condensers (25 MVA)	66	10	105	52	151	75
Fault Current Limiter (unit)	1,271	121	1,632	805	2,068	1,034
Industrial Motors (5000 hp)	1,409	29	2,179	514	3,183	1,589
Utility Generators (300 MW)	187	0	383	48	626	303
Wind Generator (5 MW)	281	43	481	237	909	681
Medium Transformers (30 MVA)	9,149	434	12,989	3,201	17,919	4,479
Large Transformers (300 MVA)	845	2	1,199	268	1,654	825

The Medium scenario is our best estimate of the HTS market, in terms of market timing and market size.

	Low Scenario		Medium Scenario		High Scenario	
	Addressable Market in 2030	HTS Market in 2030	Addressable Market in 2030	HTS Market in 2030	Addressable Market in 2030	HTS Market in 2030
Power Cable (miles)	1,799	172	2,600	641	3,626	1,813
Synchronous Condensers (25 MVA)	80	12	121	58	171	82
Fault Current Limiter (unit)	1,529	146	1,936	954	2,422	1,211
Industrial Motors (5000 hp)	1,431	29	2,285	539	3,398	1,697
Utility Generators (300 MW)	209	0	418	52	677	327
Wind Generator (5 MW)	374	58	642	316	1,212	908
Medium Transformers (30 MVA)	10,655	506	14,922	3,678	20,351	5,087
Large Transformers (300 MVA)	984	2	1,377	307	1,879	937

This page intentionally left blank

©2006 Navigant Consulting, Inc. HTS Market Readiness Review – August 2006

HTS AC cables provide high power density for constrained rights of way.

Summary Value Proposition

Provides the highest power density of any technology, except for HTS cable operated at DC. Cables are being designed to be direct buried in narrow rights of way, or to be direct replacements in existing duct banks, reducing space and permitting requirements. In addition, HTS cable will avoid thermal backfill associated with thermal management of conventional underground cable.

Characteristics of HTS Technology in Application

- Higher current carrying capacity through a smaller right of way (3 to 5 times that of conventional technology)
- Higher electrical efficiency than conventional technologies
- Very low impedance (VLI) of cable (very low resistance due to superconductive wire, low reactance due to compact geometry)
- Very low to no electromagnetic field outside cable due to concentric neutral. Triaxial cable configuration has all three phases and the neutral in a concentric design
- Eliminates the use of oil in some conventional cables
- AC losses of up to 3 Watts per meter of cable with current HTS, requires significant cooling, and limits power transfer capability.

Situations Where Application Could be Attractive

- Cables can be retrofit into existing ductwork to dramatically increase capacity convert conventional "distribution" lines to "transmission" lines
- High capacity substation connection or "bus extension" into load centers in highly dense areas
- VLI cable could be used with a phase angle regulator (PAR) to control power flow

Source: US DOE

Primary Benefit	• Higher power density, and high capacity at lower AC voltage, in some cases enabling transmission capacity at distribution voltage
Secondary Benefits	Flexibility in locating capacity/sourcePower flow control with VLI cable/PARLow or no EMF outside cable
Main Weaknesses	Higher costAC lossesHigher maintenance
Competing Technologies	 Conventional EHV OH transmission Conventional UG transmission OH high-strength, low-sag conductor

HTS cables can deliver higher power through smaller rights of way than conventional alternatives.

A the backs	AC				
Attribute	HTS Cable	OH ACSR	OH HTLS	UG XLPE/OF	
Installed Cost	High	Low	Low	High	
Current Carrying Capacity	High	Medium	High	Medium	
Right of Way	Small	Large	Large	Medium	
Losses	Low	Medium	High	Medium	
EMF	Low	High	High	Medium	
Impedance	Low	High	High	Medium	

However, the high cost of HTS cable requires that significant value be derived from other benefits.

OH ACSR = Overhead Aluminum Conductor Steel Reinforced OH HSLS = Overhead High Temperature Low Sag XLPE/OF = Cross-Linked Polyethylene / Oil Filled

Appendix » Value Proposition > *Synchronous Condenser*

An HTS synchronous condenser will provide cost competitive, voltage and transient stability support with early production 2G wire.

Summary Value Proposition

An HTS synchronous condenser (HTSSC) with 1G wire is currently available for purchase for voltage stability, transient stability, and industrial power quality , (flicker) applications with 1G wire at ~\$150/kAm. Two additional units will be shipped to TVA for voltage support at an industrial customer, and according to the manufacturer additional applications are in discussion. With 2G wire and I_c~1000 A/cm width and costs <\$35/kAm, the HTSSC could produce dynamic reactive compensation that is competitive with SVCs and in large sizes may be competitive with capacitors plus reactors.

Characteristics of HTS Technology in Application

- Competitive in \$/kVAr now with STATCOMs and D-VARs, and eventually with SVCs, and even with capacitors plus reactors with 2G wire.
- Potential for high reliability (>99%) like any generator compared to <99% for D-VARTM and STATCOM
- Inertia provides some real power to allow control of transients (like flicker) and provide some short outage duration ride-through
- Low losses of 1.5% due to operation at distribution voltages of 13.4 kV to 24 kV (no intermediate transformer losses), high part load efficiency.
- 2.5X peak output during a transient at 50% voltage. Transient output increases with decrease in system voltage to 50% voltage sag. 4X output possible in ¹/₂ second with fast exciter lasting for seconds.
- The device can generate or absorb reactive power to increase service reliability and maximize transmission capacity

Situations Where Application Could be Attractive

- Located near industrial facilities with significant electrical loads due to large induction motors and arc furnaces that create reactive power and voltage swings
- Near long transmission lines that suffer from voltage drop and stability issues.
- Urban locations where there are power quality problems.

Source:	TVA	

Primary Benefit	 Competitively priced voltage and transient stability support, even with depressed bus voltage Flicker control Exciter driven peak reserve output Mechanical inertia providing real power
Secondary	 High transient overload capability Harmonic filtering not required Low losses Lower thermal fatigue than
Benefits	conventional synchronous condensers
Main	 Cost compared to SVC Maintenance issues with Cryocooler
Weaknesses	(unfamiliar technology to utilities)
Competing Technologies	 Statcom D-VAR[™] SVC

HTS Synchronous Condensers appear to be a promising option for dynamic voltage regulation, which is increasingly important for ensuring grid reliability.

Attribute	HTS Synchronous Condenser	Conventional Synchronous Condenser	D-VAR TM	StatCom*	SVC**	Capacitor
Capital \$/kVAR	100-110 (35-85 future)	45-60	150-200	100-110	40-60	8-13
Operating Cost	Medium	High	Medium	Medium	Medium	Low
Size (footprint)	Small	Large	Small	Medium	Large	Small
Losses	Low	Medium	Medium	Medium	Medium	Low
Maintenance	High	High	Medium	Medium	High	Low
Speed of Response	Instantaneous	Instantaneous	Fast	Fast	Fast	Slow/stepped
Voltage Support	Excellent	Excellent	Moderate	Moderate	Moderate	Poor

*StatCom - Static Synchronous Compensator; regulates voltage at its terminal by controlling the amount of reactive power injected into or absorbed from the power system.

**SVC - Static VAr Compensator - Shunt device composed of capacitors and reactors

On the basis of cost, SuperVARTM appears to be very cost effective with other products, in addition to offering the other benefits.

©2006 Navigant Consulting, Inc. HTS Market Readiness Review – August 2006

There are a broad range of static and dynamic reactive compensation devices available on the market today.

Functional Characteristics	HTS Synchronous Condensers	D-VAR TM	STATCOM	SVC	Capacitors
Solution Type	Steady-state and Dynamic	Steady-state and Dynamic	Steady-state and Dynamic	Steady-state and Dynamic	Steady-state
Range of Costs (\$/kVAr capacitance)	\$60 to \$100 (1G) \$40 to 80 (2G)	\$150 to \$200	\$110 to \$110	\$40 to \$60	\$8 to \$13
Inherent Transient Overload Rating*	Up to 4x nominal	3x	Slight (1.25x)	No	No
Real Power Output	Seconds of real power using machine inertia	Optimal with SMES	None	None	None
Losses**	1.5%	2.5%	2.5%	2.5%	1.0%
Output Dependent on Bus Voltage	<i>Increases with voltage to 50%</i>	Decreases linearly with voltage	Decreases linearly with voltage	Decreases with the square of voltage	Decreases with the square of the voltage
Ease of Installation	Simple	Simple	Complex	Complex	Simple
Harmonic Compensation Required	No	Application dependent	Yes	Yes	Application Dependent
Response to severe (deep) voltage dips	Sub-cycle	Sub-cycle	Sub-cycle	No	No
Discrete Control of Output	Slow (<1 sec)	Fast (1/4 cycle)	Fast (1/4 cycle)	Fast (1/4 cycle)	No
Create Over Voltage Spikes	No	No	No	No	Yes

*SuperVARTM instantly jumps to 2X at 50% V and begins to drop until the exciter kicks in and pushes the output to 4X **losses includes losses of step up transformers

Appendix » Value Proposition > *Fault Current Limiter*

Fault current limiters could defer expensive breaker upgrades.

Summary Value Proposition

A practical fault current limiter implemented at transmission voltage is one of the holy grails of electric power system engineering. As power systems become more highly networked and as more and more generation comes online, controlling fault current to within levels that existing equipment can tolerate is critical.

Characteristics of HTS Technology in Application

- Inherent quench characteristics of HTS material limit fault current while operating at very low loss under normal conditions
- 2G wire is better suited for this application: 1G wire quench is at 10 times Ic, while 2G wire quench is at 2-3 times Ic [1]
- Controls fault currents to levels that existing circuit breakers can operate
- Prevents equipment damage from high through fault currents, including transformers and cables

Situations Where Application Could be Attractive

- Avoid replacement of multiple circuit breakers of insufficient capability
- Locations where faults result in high circuit breaker maintenance or failure

Source: SuperPower

Primary Benefit	• Limits fault current to levels that existing equipment can tolerate
Secondary Benefits	 Higher efficiency than conventional solutions
Main Weaknesses	Recovery under loadReclosing
Competing Technologies	 Solid state fault current limiting breaker Vacuum fault interruptor

NAVIGANT

CONSULTING

1. Yi-Yuan Xie, SuperPower, 2G HTS Conductors for Fault Current Limiter Applications, 2006 HTS Wire Workshop

Effective fault current control is one of the capabilities most eagerly awaited by utilities throughout the US.

Attribute	HTS FCL	SSFCL CB*	80 kA CB**
Cost	Very High	High	High
Mode of Operation	Limits current	Limits current	Interrupts current
Electrical Efficiency	High	Low	High
Response Speed	Sub-cycle	Sub-cycle	2 cycles
Physical Size	Medium	Large	Large
Maintenance	High	Medium	Low

*SSFCL CB – Solid State Fault Current Limiting Circuit Breaker

** 80 kA CB - Non-FCL, SF6 80 kA circuit breaker,

Appendix » Value Proposition > *Industrial Motor*

HTS industrial motors will need to be competitively priced and provide a strong efficiency benefit in addition to high reliability.

Summary Value Proposition

HTS industrial motors will have half the losses of industrial induction motors, have a smaller footprint and weight (which will reduce structural costs in new facilities). In new coal fired power plant applications that use motor driven boiler feed pumps, this could increase plant output and heat rate by 3% or more. Efficiency improvements in older coal fired units could be even greater.

Characteristics of HTS Technology in Application

- HTS motors will have 50% lower losses than new, high efficiency induction motors
- HTS motor economics for industrial application are sensitive to wire costs and are competitive when 2G wire costs are \$10-35/kAm and when cryocooler costs are reduced from today
- Attractive for applications that value small and light characteristics mining equipment, vertically installed pumps, compressors, and other applications where space and structural costs are an issue
- HTS motors can provide VArs depending on remote dispatch and exciter operation.

Situations Where Application Could be Attractive

- HTS motors could provide costs reductions for new PC w/FGD &SCR and IGCC by increasing output, reducing motor losses and improving heat rate, and reducing structural costs due to the lower weight and smaller size.
- Mining equipment where motor size is currently a constraint for equipment design.

Source: Reliance Electric (Rockwell)

Primary Benefit	 50% less losses for 1G motors and >50% less losses for all HTS 2G motors Capable of providing VArs depending on exciter operation while providing torque
Secondary Benefits	 Reduced weight and size resulting in reduced structural costs for new facilities
Main Weaknesses	Higher in-rush currents during faultsIncreases system fault currents
Competing Technologies	Induction motors

HTS motors offer significant reductions in size and weight, as well as gains in efficiency as compared to conventional motor technologies.

Attribute	HTS Industrial Motors	Conventional Induction Motors	Conventional Synchronous Motors
Cost	High	Low	Medium
Synchronous Reactance	Low	Medium	Medium
Total Harmonic Distortion	Low	Medium	Medium
Vibration and Noise	Low	High	Medium
Size/weight	Small/Light	Large/Heavy	Large/Heavy
Maintenance	Low ¹	Medium	Medium
Losses	Low	High	Medium

1 – Assuming Cryogenics are very reliable and low maintenance

NAVIGANT

Appendix » Value Proposition > Utility Generator

The best applications for HTS generators will be for >300 MW, baseload operation or smaller units for cogen or industrial plants.

Summary Value Proposition

HTS generators for large coal and nuclear power plants will provide 0.5-1.0% lower losses than conventional hydrogen cooled generators used in these applications. For other baseload plant applications HTS generators may also be attractive due to lower losses. An additional benefit may be the ability to up-rate these generators more easily in the future, should there be opportunities. Reliability and life should be very attractive due to the cooled rotor and lack of thermal cycling.

Characteristics of HTS Technology in Application

- The generation system may save the cost and efficiency of a GSU transformer if the generator can be operated at a higher voltage. (Hull, 3)
- Reduced vibration and noise will be benefits as HTS systems have no iron teeth in the rotor or armature (AMSC, 1)
- Applications will need to target baseload power plants, where hydrogen cooled generators are used today. Will not be attractive where air cooled units are used.
- HTS generators will offer improved reliability by eliminating temperature fluctuations in rotor coils (Wolsky, GE)
- World total purchases of 60-100 generators per year in the 100 MVA to 400 MVA range and 100-150 units per year in the >500 (Wolsky, GE, NCI)

Situations Where Application Could be Attractive

• HTS generators will be attractive in new power plants where design features can be leveraged to lower other costs (e.g. elimination of GSU).

Source: General Electric

Primary Benefit	• Higher efficiency than conventional H2 or air cooled generators
Secondary Benefits	Higher output from an existing unitBetter transient performance
Main Weaknesses	First costMaintenance cost
Competing Technologies	• Depending on size, can be hydrogen cooled, air cooled or gas and liquid cooled generators

Generators will benefit from lower electrical losses, leading to increased efficiency and output from a given plant.

Attribute	HTS Generator	Conventional H2 Cooled	Conventional Air Cooled
First Cost	High	High	Medium
Life Cycle Cost	Medium	Medium	Medium
Cycling Capability	Poor	Moderate	Strong
Size	Medium	Large	Large
Maintenance	High	Medium	Low
Losses	Low	Medium/Low	Medium

Wind turbine generators may allow larger units than otherwise possible with conventional technology.

Summary Value Proposition

HTS generators for wind turbines would allow larger wind turbines for off-shore applications, because of their smaller size and lower weight. This may allow wind turbine of 5-10 MW in size. Additional benefits may be possible when used in a DC application.

Characteristics of HTS Technology in Application

- The generation system may save the cost and efficiency of a GSU as the generator may be operated at a higher voltage. (Hull, 3)
- Reduced vibration and noise as HTS systems have no iron teeth in the rotor or armature (AMSC, 1)
- Improved reliability by eliminating temperature fluctuations in rotor coil (Wolsky, GE)
- World market for large wind turbines for off-shore applications is likely to exceed 5000 MW per year. Sales of units larger than 5 MW for off shore application could run 500-1000 per year within 10 years.
- Better reliability and lower maintenance with the elimination of the gearbox

Situations Where Application Could be Attractive

• Low speed, multi pole generators of 5-10 for deep water, offshore wind farms may be an attractive application. Target areas with class 6 wind, and high capacity factor opportunities.

Source: **top left**: <u>http://www.bbc.co.uk</u>; **top right**: <u>http://www.hornsrev.dk</u>; **bottom**: <u>http://www.nationmaster.com</u> [eingesehen 03.08.2005]

Primary Benefit	• Smaller size and lower weight will allow significantly higher output from existing towers
Secondary Benefits	 Ability to rotate more slowly may eliminate the need for a gearbox Higher operating voltage – no T/F
Main Weaknesses	First costMaintenance costs
Competing Technologies	• Conventional synchronous generators with gear boxes

The smaller size and weight of HTS generator may make an attractive market for offshore wind energy generators.

Attribute	HTS Wind Generator	Conventional Wind Generator
First Cost	Higher	Lower
Size	Smaller	Larger
Weight	Lighter	Heavier
Maintenance	Lower	Higher
Losses	Lower	Higher

Appendix » Value Proposition > *Transformer*

Efficiency, size and weight improvements for large HTS transformers could make them attractive for replacement high load growth areas.

Summary Value Proposition

The HTS transformer's efficiency and reliability could offer utilities and generators life-cycle cost improvements and risk reduction. Overload performance and part-load efficiency could also offer utilities much needed flexibility for system operations and load growth. Smaller size and weight could enable a utility to quickly move units around to support greater energy security and reliability.

Characteristics of HTS Technology in Application

- 50% reduction in size and weight compared to conventional transformers due to the high power density of HTS wire (AMSC and Waukesha).
- Increased efficiency
- Higher reliability through the elimination of hotspots
- High overload capacity thermal management
- Elimination of oil and associated environmental and safety hazards
- Lower impedance (AMSC)
- · Could be inherently fault current limiting with development

Situations Where Application Could be Attractive

- Generator step-up applications where higher efficiency and reliability means more MWh delivered to the market
- High growth areas, or areas with non-uniform load duration curves where part-load efficiency and overload performance could be valuable
- The overload rating, coupled with smaller size and lighter weight, could facilitate standardization on fewer sizes

Source: Intermagnetics General Corporation and Waukesha

Primary Benefit	• Higher efficiency and reliability
Secondary Benefits	Fire safetyEnvironmental mitigation costsSize and weight
Main Weaknesses	• Cost • Maintenance
Competing Technologies	• No direct competition at this time

Increased efficiency for transformers, as well as short term overload capability make HTS attractive.

Attribute	HTS Transformer	Conventional Transformer		
First Cost	Higher	Lower		
Size	Smaller	Larger		
Maintenance	Higher	Lower		
Losses	Lower	Higher		
Overload Rating	Higher	Lower		
Fire Safety	Better	Worse		
Environmental Mitigation	Better	Worse		

Appendix » Technology Commercialization Timeline > *Power Cable*

HTS cables are likely to enter the market on a commercial basis around 2013, but additional stages of demonstration will be required.

Technology D	evelopment	Product Dev	velopment	Market/ Business Development		
1 Research &	2	Demonstratio	n	3 Market	4 Market	
Development	Initial System Prototypes	Refined Prototypes	Commercial Prototype	Entry	Penetratio	
ongoing	2005	2008	2011	2014	2017	
 Understand major technical issues, demonstrate key technical concepts Develop solutions to major technical issues Define system requirements Project Examples DTE Cable Project Southwire Carrollton Project 	 Initial system prototypes using 1G HTS wire Debug components Demonstrate technology in field environment. Project Examples Southwire/AEP LIPA/AMSC Albany/ SuperPower 	 Refine initial system with experience from prototypes Demonstrate value proposition in the field Projects Full scale demonstration using 2G wire Full functionality Progress toward cost goals for major components 	 Full size system in "commercial" operating environment Demonstrate future economics, acceptable market and technical risk Gov. support for industry standards Projects Commercial cable project without backup option 	 Formal business model Early movers Demonstrate value for broader market opportunities Projects Customer driven cable project, without government support 	•Market penetration accelerates •Focus on lowering system costs •Increasing diversity of product offering	

NAVIGANT

An HTSSC was field tested at TVA in 2004-2005, and refined prototypes will be delivered to TVA in 2007.

Technology D	Development	Product De	velopment	Market/ Business Development			
1 Research &	2	Demonstratio	n	3 Market	4 Market		
Development	Initial System Prototypes	Refined Commercial Prototypes Prototype		Entry	Penetration		
ongoing	2004	2006	2009	2011	2014		
 Understand major technical issues and develop solutions Test in controlled, lab environment. Define system requirements Project Examples Rockwell/AMSC 1000 HP motor Rockwell/AMSC 1600 HP motor Rockwell 7.5 hp HTS motor w/2G 	 Initial system prototypes Debug components Demonstrate technology in field Project Examples AMSC demonstration at TVA of first 8 MVA HTSSC (SuperVARTM) 	 Refine initial systems with experience from prototypes Demonstrate cost, and reliability and additional market value. Projects 12 MVA SuperVARTM, 1G wire for TVA Additional applications under discussion 	•Demonstrate additional market value •Refine business model Projects •An HTSSC using 2G wire	 Formal business model Sales to early movers Demonstrate value for broader market 	 Market penetration accelerates Full product line – 10-50 MVA – based on 2G wire Focus on lowering system cost 		

NAVIGANT

A transmission level FCL must be prototyped and demonstrated, and could enter the commercial market by 2013.

Technology D	Development	Product Dev	velopment	Market/ Business Development			
1 Research &	2	Demonstratio	n	3 Market	4 Market		
Development	Initial System Prototypes	Refined Prototypes	Commercial Prototype	Entry	Penetration		
ongoing	2007	2010	2012	2014	2017		
 Understand major technical issues, Demonstrate key technical concepts Develop solutions to major technical issues Define system requirements Project Examples July 2004: Proof- of-concept pre- prototype Matrix FCL (SuperPower) 2007: Alpha prototype at 138 kV single phase (non- grid) 	 Initial system prototypes, including new coil using 2G wire Debug components Demonstrate technology in field Project Examples 2007-08: Beta prototype at 138 kV 3-phase, in AEP system 	 Refine initial system prototype May modify coil design, topology and control to improve response and recovery under load (RUL) Demonstrate value proposition Projects Full scale demonstration Full scale demonstration Full functionality Progress toward cost goals for major components 	•Full size system in "commercial" operating environment •Demonstrate that future economics will be attractive •Acceptable market and technical risk Projects •Commercial project without backup option	 Formal business model Early movers Demonstrate value for broader market Projects Customer driven project, without government support 	 Market penetration accelerates Focus on lowering system cost Increase diversity of product offerings 		

NAVIGANT

Appendix » Technology Commercialization Timeline > *Industrial Motors*

HTS industrial motors will require an extended period of prototype testing, benefiting from work on propulsion motors and SuperVar.

Technology Development		Product De	velopment	Market/ Business Development		
1 Research &	2	Demonstratio	n	3 Market	4 Market	
Development	Initial System Prototypes	Refined Prototypes	Commercial Prototype	Entry	Penetration	
ongoing	2004	2006	2011	2016	2019	
 Understand major technical issues and develop solutions Test in controlled, lab environment. Define system requirements Project Examples Rockwell/AMSC 1000 HP motor Rockwell/AMSC 1600 HP, 1800 RPM motor tested in 2001 w/1G Rockwell 7.5 hp, 1800 RPM motor tested in 2005 w/2G 	 Initial system prototypes Debug components Demonstrate technology in the field Project Examples AMSC 3.5 MW motor AMSC 5 MW Navy Motor program AMSC/TVA 8 MVA SuperVar 	 Refine initial systems with experience from prototypes Demonstrate cost and reliability potential. Projects Full scale (2000 hp) demo w/ full functionality Progress toward cost goals for components and 2G wire 	 Full size system in "commercial" operating environment Demonstrate future economics will be attractive Acceptable market and technical risk. Projects Commercial project without backup option 	 Formal business model Early movers Demonstrate value for broader market Projects Customer driven project, without government support 	 Market penetration accelerates Focus on lowering system cost Increase diversity of product offerings 	

NAVIGANT

Appendix » Technology Commercialization Timeline > *Utility Generator*

Large HTS Generators are not likely to receive much interest until 2G wire is mature and there is significant experience with other devices.

Technology Development		Product Dev	velopment	Market/ Business Development		
1 Research &	2	Demonstratio	n	3 Market	4 Market	
Development	Initial System Prototypes	Refined Prototypes	Commercial Prototype	Entry	Penetratio	
ongoing	2008	2012	2016	2020	2023	
 Understand major technical issues and develop solutions Tests in controlled lab environments. Studies to define system requirements Project Examples GE Generator Program Military programs 	•Develop scale prototypes •Develop 2G wire for high field applications •Assess cost and performance of components • Projects •Testing of coils and components •Verify 2G wire performance in high field	 Demonstrate cost and reliability potential smaller prototypes or experience from motors/ SuperVAR Projects Demonstration of generator benefits, likely based on a smaller unit (< 50 MW) 	•Full size system in "commercial" operating environment •Demonstrate future economics will be attractive •Acceptable market and technical risk. Projects •Full size generator project (>300 MW)	•Formal business model •Early movers •Demonstrate value for broader market Projects •Customer driven project, without government support or with limited government support.	Market penetration accelerates •Focus on lowering system cost	

NAVIGANT

Appendix » Technology Commercialization Timeline > *Wind Generator*

An HTS wind generator would require a new technology development initiative, but it would leverage other rotating machinery efforts.

Technology Development		Product Dev	velopment	Market/ Business Development		
1 Research &	2	Demonstratio	n	3 Market	4 Market	
Development	Initial System Prototypes	Refined Prototypes	Commercial Prototype	Entry	Penetration	
ongoing	2008	2010	2012	2014	2017	
 Understand major technical issues and develop solutions Test in controlled lab environments Studies to define system requirements Project Examples Feasibility studies Systems studies of off-shore wind 	 Develop scale prototypes Develop 2G wire for high field applications Assess cost and performance benefits. Projects Testing of coils and components Develop scale wind turbine and conduct testing 	 Refine initial systems prototypes Demonstrate cost and reliability potential. Projects Full scale (5-10 MW) demo w/ full functionality Progress toward cost goals for components and 2G wire 	 Full size "commercial" system Demonstrate future economics will be attractive Acceptable market and technical risk. Projects Commercial off- shore wind project, leverage government programs and incentives for renewable energy 	•Formal business model •Early movers •Demonstrate value for broader market Projects •Customer driven projects, without government support	•Market penetration accelerates •Driving toward lower system costs	

NAVIGANT

Appendix » Technology Commercialization Timeline > *Transformers*

HTS transformers will require improvements in the performance and cost of HTS wire before they can enter the commercial market in 2014.

Technology D	evelopment	Product Dev	velopment	/Market Business Devel	opment	
1 Research &	2	Demonstratio	n	3 Market	4 Market	
Development	Initial System Prototypes	Refined Prototypes	Commercial Prototype	Entry	Penetration	
ongoing	2003	2008	2011	2014	2017	
 Understand major technical issues, Demonstrate key technical concepts Develop solutions to major technical issues Define system requirements Project Examples 1997: Phase I, 1 MVA HTS transformer tested developed and tested (Waukesha and SuperPower) 	 Initial system prototypes, including new coil using 2G wire Debug components Demonstrate technology in field Project Examples 2003: Phase II, 5/10 MVA Alpha prototype developed and tested (Waukesha and SuperPower) 	 Refine initial system prototypes Demonstrate value proposition Projects Phase III, 30 MVA Beta prototype developed and tested (Waukesha and SuperPower) Full functionality Progress toward cost goals for major components 	•Full size system in "commercial" operating environment •Demonstrate that future economics will be attractive •Acceptable market and technical risk Projects •Commercial Project without backup option	•Formal business model •Early movers •Demonstrate value for broader market Projects •Customer driven project, without government support	 Market penetration accelerates Focus on lowering system cost Increase diversity of product offerings 	

NAVIGAN

NCI used a market penetration model to estimate when and how many HTS devices will penetrate their respective markets.

The objective of this analysis is to estimate the potential size of the HTS market.

HTS Market » Forecast > Methodology

For each HTS market segment, NCI developed a market penetration model based on industry interviews and a literature review.

1 Installed Conventional Devices	• The size of the market that HTS devices will enter is a key factor for forecasting the size of the HTS market.
2 Annual Growth Rate	• The annual growth rate determines the number of new installations each year.
3 Replacement Rate	• The replacement rate determines the number of new devices that replace existing devices.
<mark>4</mark> Total Annual Market	• The annual market is the sum of devices attributed to market growth and the replacement market.
5 HTS Market Penetration	• Certain technology and industry factors are used to estimate when HTS market entry will occur and the rate of HTS technology adoption.
6 Annual HTS Market	• The annual HTS market is the product of the total addressable market and the HTS market penetration rate.

The initial size of the market that HTS devices will enter is a key factor for forecasting the size of the HTS market.

©2006 Navigant Consulting, Inc.

HTS Market Readiness Review – August 2006

- The data for the market installed base of devices is obtained from multiple sources.
- In many cases data was available only for the U.S. In these instance a factor of 3.2 was used to estimate the size of the rest of the world installed base of devices. This factor is the 2004 ratio of electric generation in the U.S. to the rest of the world.

The annual growth rate determines the number of new installations each year.

- In order to determine the total annual market it is necessary to identify the number of devices required to meet the forecasted market growth.
- The incremental market growth between two consecutive years and replacements is the size of the new market.
- The number of devices in the electric power industry is linked to growth in end-use electricity consumption or electric generation capacity.
- The growth rates contained in this report are based on the Energy Information Administration's <u>Annual Energy Outlook 2006 with</u> <u>Projections to 2030</u>, published in February 2006 and the <u>International</u> <u>Energy Outlook 2006</u>, published in June 2006.
 - the Low scenario corresponds to EIA's Low Macroeconomic Growth Case,
 - the Base Case scenario corresponds to EIA's Reference Case, and
 - the High scenario corresponds to EIA's High Macroeconomic Growth Case.

The replacement rate determines the number of new devices that replace existing devices.

- The second aspect for determining the total annual market is to identify the number of replacement devices ordered in a given year.
- The replacement rate is assumed to be one half of one divided by the device lifetime.
- However, in some markets the replacement rate is considered to be zero because it was viewed as extremely unlikely that an HTS device would replace the conventional device even after the conventional device failed.

The annual market is the sum of devices attributed to market growth and the replacement market.

©2006 Navigant Consulting, Inc. HTS Market Readiness Review – August 2006

Certain technology and industry factors are used to estimate when HTS market entry will occur and the rate of HTS technology adoption.

1 Installed Conventional **Devices** 2 Annual **Growth Rate** 3 • Replacement Rate 4 **Total Annual** Market 5 HTS Market Penetration 6 Annual **HTS Market** ©2006 Navigant Consulting, Inc.

HTS Market Readiness Review – August 2006

- The time of market entry of HTS devices depends on the performance of the HTS wire, whether or not HTS wire provides a new capability, and the cost of device components.
- Market penetration depends on the
 - date of market entry ("Market entry" is defined as the first product that does not require government funding)
 - how quickly the new technology is adopted, and
 - the ultimate share of the addressable market.
- To simplify the analysis one market penetration scenario was developed for all market segment in each scenario.
- The NCI market model incorporates the S-shape curve used in the Mulholland Report exp[(t-c)/a]

$$F(t) = b \frac{\exp[(t-c)/a]}{\exp[-(t-c)/a] + \exp[(t-c)/a]}$$

- The parameters are as follows:
 - *t* is the time measured in years
 - *b* is the asymptotic maximum value of HTS market penetration
 - *c* is the midpoint in time when half the market is captured (F = b/2)
 - *a* is the width of the curve, determining how quickly HTS devices capture market share. 76% of the final market share is captured between $t_1 = c a$ and $t_2 = c + a$. Therefore, 2a is the number of years between 12 percent of the final market share and 88 percent.

The annual HTS market is the product of the total addressable market and the HTS market penetration rate.

©2006 Navigant Consulting, Inc. HTS Market Readiness Review – August 2006

This page intentionally left blank

©2006 Navigant Consulting, Inc. HTS Market Readiness Review – August 2006

Key Parameters Market Size

				Growth Ra	ate for the Un	ited States	Growth Rate for the Rest of the World			
	Est. 2005 US Sales	Est. 2005 Rest of the World Sales	Replacement Rate	Low Scenario	Medium Scenario	High Scenario	Low Scenario	Medium Scenario	High Scenario	
Power Cable	210 miles	1020 miles	1.25% of UG	1.2%	1.6%	2.0%	2.3%	3.0%	3.7%	
Synchronous Condensers	13 – 25 MVA units	50 – 25 MVA units	2%	0.6%	0.9%	1.2%	1.4%	2.3%	3.1%	
Fault Current Limiter	450 units	1,400 units	5%	1.2%	1.6%	2.0%	2.3%	3.0%	3.7%	
Industrial Motors	94 – 5,000 hp units	1,250 – 5,000 hp units	0%	0.2%	0.8%	1.4%	2.3%	3.0%	3.7%	
Utility Generators	28 – 300 MW units	220 – 300 MW units	0%	0.6%	0.9%	1.2%	1.4%	2.3%	3.1%	
Wind Generator	37 – 5 MW units	110 – 5 MW units	0%	6.3%	6.3%	6.3%	5.0%	6.3%	8.0%	
Medium Transformers	1,300 – 30 MVA units	3,900 – 30 MVA units	Included	1.2%	1.6%	2.0%	2.3%	3.0%	3.7%	
Large Transformers	120 – 300 MVA units	360 – 300 MVA units	Included	1.2%	1.6%	2.0%	2.3%	3.0%	3.7%	
mia aut Cousulting I				02				NAVI	GAN1	

Key Parameters Market Timing and Share

	Market Entry		Years t F	Years to 10% of Ultimate HTS Market		Years to 50% of Ultimate HTS Market			Ultimate HTS Market Share (%)			
	Low Scenario	Medium Scenario	High Scenario	Low Scenario	Medium Scenario	High Scenario	Low Scenario	Medium Scenario	High Scenario	Low Scenario	Medium Scenario	High Scenario
Power Cable	2016	2014	2012	5	3	2	15	10	8	25	25	50
Synchronous Condensers	2014	2011	2009	5	3	2	15	10	8	25	50	50
Fault Current Limiter	2016	2014	2012	5	3	2	15	10	8	25	50	50
Industrial Motors	2020	2016	2014	5	3	2	15	10	8	25	25	50
Utility Generators	2030	2020	2018	5	3	2	15	10	8	10	25	50
Wind Generator	2014	2014	2012	5	3	2	15	10	8	25	50	75
Medium Transformers	2018	2014	2012	5	3	2	15	10	8	25	25	25
Large Transformers	2025	2017	2015	5	3	2	15	10	8	25	25	50

©2006 Navigant Consulting, Inc. HTS Market Readiness Review – August 2006

Appendix » Forecast Assumptions > *Power Cable*

The market for utility cable appears to be a niche opportunity, focused on alleviating congestion in dense urban areas.

- There are 2 major segments for the HTS cable market
 - 1. underground transmission cables; and,
 - 2. conversion of overhead to underground transmission cables*
- There is approximately 5,200 miles of underground transmission cable installed in the U.S. in 2004,¹ and approximately 400,000 miles of overhead transmission cable.²
- Recently, undergrounding cable has been given new consideration to reduce the frequency of major power outages and NIMBY concerns.³ Therefore, we assume that 1% of the overhead cable market will be captured by the underground market.
- Assuming a growth rate of 1.6%⁴ and a replacement rate of 1.25% for underground transmission cable.
- However, only one-quarter of this market would require the higher density provided by HTS cables compared to their conventional counterparts.
- Based on the preceding discussion, the first commercial HTS cable can be expected in the 2014 timeframe.
- The rest of the world market is estimated to be 3 times the size of the U.S. market with an annual growth rate of 3.0%,⁵ and have a similar timeline for market entry and adoption.

*. Non-HTS transmission cable is defined as greater than 69 kV. HTS "distribution" cables may operate at lower voltages, yet may carry the same power as conventional "transmission" cables.

1. UDI Platts Directory of Electric Power Producers & Distributors Mailing List 2006 for only the United States and excludes holding companies. 2. Data for overhead transmission miles of voltage >71 kV obtained from, Edison Electric Institute, Statistical Yearbook of the Electric Utility Industry/2005.

3. Johnson, Brad. "Out of Sight, Out of Mind: A study on the costs and benefits of underground overhead power lines." Edison Electric Institute. January 2004. Wise, Kristi and Cyril Weiter, "Going Underground: A Growing Reality for Transmission Line Routing." TECHBriefs 2003 No. 3 Burns and McDonnell, 2003.

4. Energy Information Administration. <u>Annual Energy Outlook with Projections to 2030</u>. February 2006.

5. Energy Information Administration. International Energy Outlook 2006. June 2006.

The HTS synchronous condenser is modeled as a substitute for existing FACTS devices.

- An HTS synchronous condenser can be considered an improved FACTS (Flexible Alternating Current Transmission Systems) device.
- There are approximately 40,000 MVAr of FACTS devices installed worldwide as of January 2000.¹
- The net worldwide installed power generation capacity in 2000 was 3400 GW.² Therefore, for every GW of generation capacity there is approximately 12 MVAr of FACTS.
- This ratio is also applicable in the United States. Therefore, in 2004 there was 922 GW of generation capacity,³ which corresponds to approximately 11,000 MVAr of FACTS.
- The annual growth rate of FACTS devices corresponds to forecasted growth rate for the growth of electric capacity, 0.9% in the U.S.³ and 2.3% for the world^{4.} As a result of the enhancement FACTS provide the power delivery system, a 2% adder is included.
- The HTS synchronous condenser can effectively address 50% of this market.

2. International Energy Agency. World Energy Outlook 2002. 2002. pg 412. http://www.worldenergyoutlook.org/

^{1.} Habur, Klaus and Donal O'Leary, "FACTS – Flexible Alternating Current Transmission Systems For Cost Effective and Reliable Transmission of Electrical Energy, World Bank. <u>http://www.worldbank.org/html/fpd/em/transmission/facts_siemens.pdf</u>.

^{3.} Energy Information Administration. <u>Annual Energy Outlook with Projections to 2030</u>. February 2006. <u>http://www.eia.doe.gov/oiaf/aeo/excel/aeotab 9.xls</u>. 4. International Energy Agency. <u>World Energy Outlook 2004</u>. 2004. pg 192, 432. <u>http://www.worldenergyoutlook.org/</u>

Appendix » Forecast Assumptions > *Fault Current Limiter*

Today, there are no fault current control products on the market, but utilities have expressed strong interest in the capabilities of such a product.

- The major segments for HTS fault current limiters are the transmission substations that have fault current problems.
- An HTS fault current limiter is a new product that addresses a need not otherwise met.
- The number of transmission level substations in the U.S. is 10,287.¹
- The percentage of substations upgraded in a particular year is 5% of those with fault current problems.
- One fault current limiter is required per substation with fault current problems.
- When a substation is upgraded either with conventional technology or HTS fault current limiters it will no longer need another upgrade in the time horizon of this analysis.
- The annual growth rate of new transmission substations is equivalent to the average annual growth rate for end-use electricity consumption, 1.6%.²
- The rest of the world is assumed to be 3 times the U.S. market with an average annual growth rate of 3.0%.³
- The fault current limiter can effectively address 50% of this market.
- 1. Albert, Réka, István Albert and Gary Nakarado. "Structural Vulnerability of the North American Power Grid." January 2004. http://arxiv.org/PS_cache/cond-mat/pdf/0401/0401084.pdf.
- 2. Energy Information Administration. Annual Energy Outlook 2006 with Projections to 2030. February 2006.
- 3. Energy Information Administration. International Energy Outlook 2006. June 2006.

NAVIGANT

Appendix » Forecast Assumptions > *Industrial Motors*

HTS synchronous motors will compete with large (>1000 hp) high efficiency induction motors in the industrial motor market.

- There are approximately 11,000 industrial motors greater than 1,000 hp in operation in the U.S. in 1996.¹
- These motors consume 90,307 GWh per year and operate about 7,436 hours per year.¹
- Because owners of this class of motor generally operate their equipment for a significant fraction of the year, this would an opportunity where improved efficiency can yield sufficient value to justify an HTS solution.
- The U.S. industrial motor market is expected to grow at the rate of growth at the same level as electric consumption in the industrial sector, 0.8%.²
- Market entry is estimated to occur in 2016, followed by slowly increasing market share as HTS wire costs decline.
- There is no replacement market for HTS industrial motors as conventional motors will likely be rewound with conventional wire.
- The addressable market by HTS is 25% of the total industrial motor market.
- The rest of the world market is 3 times the U.S. market and grows at an average annual rate of 3.0%.

3. Energy Information Administration. International Energy Outlook 2006. June 2006.

^{1.} Xenergy. United States Industrial Motor Systems Market Opportunities Assessment. December 1998.

^{2.} Energy Information Administration. Annual Energy Outlook 2006 with Projections to 2030. February 2006.

Appendix » Forecast Assumptions > *Utility Generator*

The market opportunity for HTS generators is likely to be limited to large, base load units.

- In the U.S. the 2003 installed generation capacity was 922 GW; in the rest of the world the 2003 installed generation capacity is (total U.S.) 2788 GW.¹
- The U.S. growth rate for total generation capacity is forecasted to be 0.9%, while the rest of the world growth rate for total generation capacity is forecasted to be 2.3%.¹
- The addressable HTS market is only the new generation capacity that is expected to run as base load units, which are assumed to be 50% of the market. And, of the base load units, 50% would use HTS generators.

1. Energy Information Administration. International Energy Outlook 2006. June 2006.

Offshore HTS wind generators may be an opportunity to leverage two key attributes of HTS technology – small and light.

- At the end of 2005, world wide there is 59 GW of installed wind energy capacity of which 9.1 GW is located in the U.S.¹
- In 2004, there are a total of 10 offshore wind energy projects representing 587 MW of capacity,² with 90 MW of new offshore capacity in 2005.³ In 2010 the forecast is for 4 GW of offshore wind projects out of 24 GW of wind energy installations in world,³ or approximately 20%. This percentage is applied to the forecasted wind energy installations over the forecast period.
- IEA's World Energy Outlook forecasts wind energy installations to increases at average annual rates of 6.7% from 2005 to 2030.⁴ This growth rates apply to the U.S. and world markets, where the U.S. is one-fourth of the world market.
- The addressable HTS market is 50% of all offshore HTS wind farms.

^{4.} International Energy Agency. World Energy Outlook 2004. January 2004. http://www.worldenergyoutlook.org/.

^{1.} World Wind Energy Association (WWEA). <u>http://www.wwindea.org/pdf/press/PR_Statistics2005_070306.pdf</u>.

^{2.} British Wind Energy Association. "Offshore Wind." http://www.bwea.com/offshore/worldwide.html.

^{3.} BTM Consult ApS. International Wind Energy Development World Market Update 2005: Forecast 2006-2010. March 2006

Appendix » Forecast Assumptions > *Transformer*

The market for transformers will not begin to evolve until several working prototypes are successfully field tested for an extended period of time.

- There are 2 major segments for the HTS transformer market
 - 1. ~30 MVA transformers at distribution substations; and,
 - 2. >300 MVA transformers at transmission substations and as generator step-up units
- The total U.S. medium power transformer market is approximately 1300 units annually.¹
- Assuming that the U.S. medium power transformer market size is between 20 and 150 MVA and the large power transformer market is > 150 MVA.
- Based on the relative population of each transformer size in the national inventory,² the annual market for large power transformers is 120 units.
- At an average annual growth rate of 1.6%, equal to U.S. end-use electricity consumption.³
- However, only one-quarter of this market would require the reduced size and weight and improved reliability provided by HTS transformers compared to their conventional counterparts.
- Based on the preceding discussion, the first commercial ~30 MVA transformer can be expected in the 2014 timeframe with improvements in dielectric technology enabling larger transformers to enter in the market in 2017
- The rest of the world market is 3 times the U.S. market and grows at an average annual rate of 3.0%.⁴
- 1. Golner, Tom. "Transformer Conductor Requirements" 2006 Wire Development Workshop. http://www.energetics.com/meetings/wire06/pdfs/session2/golner.pdf

2. Mulholland, Joseph, Thomas Sheahen and Ben McConnell. <u>Analysis of Future Prices and Markets for High Temperature Superconductors</u>. June 2003. pg 8-3.

3. Energy Information Administration. <u>Annual Energy Outlook with Projections to 2030</u>. February 2006.

4. Energy Information Administration. International Energy Outlook 2006. June 2006.

NAVIGANT

Contacts

NAVIGANT

Stan Blazewicz | Director 77 South Bedford Street, Suite 400 Burlington, MA 01803 781.270.8433 office 617.501.7280 mobile SBlazewicz@navigantconsulting.com

NAVIGANT

Forrest Small | Associate Director 77 South Bedford Street, Suite 400 Burlington, MA 01803 781.270.8455 office 603.475.4460 mobile FSmall@navigantconsulting.com

NAVIGANT

David J. Walls | Director 77 South Bedford Street, Suite 400 Burlington, MA 01803 781.270.8436 office 617.953.1220 mobile DWalls@navigantconsulting.com

NAVIGANT

Steven Tobias | Senior Consultant 77 South Bedford Street, Suite 400 Burlington, MA 01803 781.270.8342 office STobias@navigantconsulting.com

NAVIGANT

CONSULTING

Electrivation

Dale Bradshaw, President 8781 Allie Dan Ct. Ooltewah, TN 37363 423-238-4052 office 423-304-9284 mobile dtbradshaw@electrivation.com