Demonstration of a Pre-Commercial Long-Length HTS Cable System Operation in the Power Transmission Network

DOE Peer Review Update
August 2-4, 2005
Washington, DC
LIPA Project Overview

- Long Island Power Authority – Holbrook Substation
- Electrical Characteristics
 - Design Voltage/Current – 138kV/2400A ~ 574MVA
 - Design Fault Current – 69,000A @ 12 line cycles (200ms)
- Physical Characteristics
 - Length ~ 610m
 - HTS Conductor Length ~155km
 - Cold Dielectric Design
- Hardware Deliverables
 - Three ~610 m Long Phase Conductors
 - Six 161kV Outdoor Terminations
 - One 161kV Splice (Laboratory Test)
 - No splices for grid installation required
 - One Refrigeration System + Laboratory Pulse Tube System
- Installation/Commissioning – Fall 2006
LIPA HTS Cable System
LIPA HTS Cable Concept

- Outer Cable Sheath
- Outer Cryostat Wall
- Inner Cryostat Wall
- LN$_2$ Coolant
- Protection Layer
- Copper Shield Stabilization
- HTS-Shield
- High Voltage Dielectric
- HTS Tape
- Former

LIPA
American Superconductor
Long Island Power Authority
AIR LIQUIDE
Nexans
Project Status: System Design

- Pre-operation Cool Down Modeling Complete
- Normal Operation
 - Steady State Operation
 - With Main Refrigerator: Modeling Complete
 - With Back Up Refrigerator: Modeling Complete
 - System Fault Tolerance
 - Thermal Margin Verified With Major & Through Fault
 - Contingency Operation
 - Loss of cable cryostat Vacuum Modeling Complete
 - Loss of main and standby coolant Pumps Modeling Complete
 - Loss of main and standby Refrigerators Modeling Complete
- Post-operation Warm-up Modeling Complete
Project Status: Cable Subsystem, Nexans

- **Cable**
 - Design Complete
 - Fabrication Process Verified
 - AC Losses Verified
 - Dielectric Material Selected and Verified
 - Component High Voltage Test Completed

- **Cryostat**
 - Design Complete
 - ASME Code Applied
 - Fabrication Process Verified
 - Hydraulic Characteristics Verified
 - Thermal Losses Verified
Project Status: Cable Subsystem, Nexans

- Termination
 - Design Complete
 - Prototype Fabricated
 - Bushing High Voltage Test Completed
 - Bushing Seal Verified

- 30m System Test
 - Test Facility Complete
 - Prototype Installed
 - Ic Retention Verified
 - Hydraulic Parameter Verified
 - Cryostat Performance Verified
 - Partial Discharge Observed At Lower Than Expected Voltage Level
 - Investigation/Re-design in Progress
Project Status: Refrigerator Subsystem, Air Liquide

- Re-use of Detroit refrigerator from previous Pirelli SPI Cable Program
- Upgrades to system are necessary to adapt it to LIPA project and will include:
 - Upgraded cooling capacity (+38%) for primary and back up systems
 - New system for the cable cool down
 - New buffer for fault reaction and recovery
 - Telemetry to allow remote monitoring and control
 - New 9 000 Gal tank for LN2 supply
- Will be operated 6 months prior to cable commissioning
Project Status: Refrigerator Subsystem, Air Liquide

- Refrigerator
 - Optimization of the new process (primary and back up) complete
 - Detailed definition of the new process lines complete
 - Preliminary lay out drawing complete
 - Definition of the new components in progress
 - Equipment specifications in progress
 - Final lay out in progress
Project Status: HTS Wire, AMSC

Bismuth based, multi-filamentary high temperature superconductor wire encased in a silver matrix and laminated with brass to increase mechanical strength and provide a hermetic seal.

Brass Lamination

Specifications:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average thickness:</td>
<td>0.36-0.44 mm</td>
</tr>
<tr>
<td>Minimum width:</td>
<td>4.0 mm</td>
</tr>
<tr>
<td>Maximum width:</td>
<td>4.45 mm</td>
</tr>
<tr>
<td>Min. double bend diameter (RT):</td>
<td>70 mm³</td>
</tr>
<tr>
<td>Max. Rated tensile stress (RT):</td>
<td>175 MPa</td>
</tr>
<tr>
<td>Max. Rated wire tension (RT):</td>
<td>20 kg</td>
</tr>
<tr>
<td>Max. Rated tensile stress (77K):</td>
<td>200 MPa</td>
</tr>
<tr>
<td>Max. Rated tensile strain (77K):</td>
<td>0.30%</td>
</tr>
</tbody>
</table>
| Hermeticity | 30 atm LN2 for 16 hours

Customer Options:

<table>
<thead>
<tr>
<th>Minimum amperage (Ic)</th>
<th>Average engineering current density (Jc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>115 A</td>
<td>6,700 A/cm² ii</td>
</tr>
<tr>
<td>125 A</td>
<td>7,300 A/cm² ii</td>
</tr>
<tr>
<td>135 A</td>
<td>7,900 A/cm² ii</td>
</tr>
<tr>
<td>145 A</td>
<td>8,500 A/cm² ii</td>
</tr>
</tbody>
</table>

Continuous piece length: Up to 800 m
Insulation options: PTFE or Kapton wrap
Splice options: Spliced wire is available in longer lengths

1 Greater than 95% Ic retention
2 77K, self-field, 1μV/cm
3 Jc is a calculated value based upon average thickness and width
4 Thickness inspection after pressurized LN2 test

Designed for use in applications where the wire is exposed to pressurized liquid cryogens
Project Status: HTS Wire, AMSC

• Length Requirements:
 - 105 pieces x 680 meters each = 71,400 meters
 - 120 pieces x 700 meters each = 84,000 meters
 - Total production wire volume = 155,400 meters

• Status as of July 31, 2005
 - HTS insert wire manufacturing is 100% complete
 - Lamination and testing is in progress (~25% complete)
 - Finished wires will ship in September and October 2005

AMSC commercial HTS wire manufacturing meets large volume cable requirements
Plans for GFY ‘06

• System Analysis
 - Update fault and contingency studies

• Cable and Terminations
 - Complete qualification of termination for 161kV
 - Complete 30 meter cable system electrical qualification testing
 - Fabricate 610 meter cable
 - Fabricate 6 Terminations

• Refrigerator
 - Complete upgrade
 - Install at Holbrook site
 - Operate and qualify 3-6 months prior to cable install

• System
 - Install cable and terminations
 - Install data and control system and interconnects to SCADA
 - Prepare for energization
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Factory/Site Tested</th>
<th>Sample Tested</th>
<th>Full Scale Type Test</th>
<th>Subscale Test</th>
<th>Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage Withstand</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightning Impulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lightning Impulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Carrying Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Loads</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Losses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dielectric Losses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryostat Losses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AC Losses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cryostat Losses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refrigerator</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flow capacity/pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical Current</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemmeticity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>splice resistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>splice hermeticity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>splice integrity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pressure Drop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faults</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Fault response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thru-fault response</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material Properties used in model</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n/a</td>
</tr>
<tr>
<td>Installation Methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Termination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>