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1.  INTRODUCTION

Superconducting power cables have been of considerable interest since the discovery of the
high Tc superconducting materials [1-7]. Most projects use conductors made of typically
the (Bi,Pb)2Sr2Ca2Cu3O10+x (Bi2223) material. Attractive is the larger amount of current
and energy that can be transferred using superconductors compared to copper cables and
the energy savings that can be obtained with the superconductor. There is a loss associated
with the transport of an ac in superconductors even though dc can be conducted virtually
without loss. It is this loss onto which this chapter focuses. It should be noted that this
chapter is rather a summary of our work than a review of the literature on the subject.
The basis of all applications of a superconductor in engineering is a composite conductor,
containing the superconductor itself, and in the most simple case a metallic matrix. In more
complicated conductors the matrix may consist of several metals, resistive barriers and
mechanical reinforcements. Depending on the requirements for use single conductors may
need to be bundled, either straight or twisted, or transposed for use in power cables. Due to
the layered nature of the Bi2223 material it is usually fabricated in the form of a tape.
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Three different kinds of losses occurring in the conductor must be distinguished. These are
losses originating from a) eddy current losses in the matrix, b) hysteresis losses in the
superconductor itself, and c) losses from coupling of the different strands or filaments of
the composite conductor. Depending on the application normally c) poses the largest
challenges to engineers. In a power cable additional losses in the cryostat and shield and
losses due to the interaction of the conductors must be considered.
In this chapter first the losses from the tape conductor used to build up the superconducting

cable are considered. Then the conductors are combined to a superconducting power cable,
and loss mechanisms there are discussed. This chapter is not trying to review power cables
in general, but give a description of the current generation of power cables (shown in figure
1) from our point of view, summarising previous work on the subject.  These cables consist
of several layers wound onto a central former that carries the coolant for the cable. The
layers themselves are wound with tape conductors that contain the superconducting
material, usually in the form of many filaments. The layers are electrically insulated from
each other by a layer of for example Mylar tape, and soldered together at the ends of the
cable. Three phase cables are not treated in this chapter.

2. AC LOSS IN SUPERCONDUCTING TAPES

2.1 Critical State Model and Hysteresis Losses

A superconductor is usually thought of a conductor without electric resistance. However,
this is only true if the whole of the superconductor is not exposed to magnetic fields above
its lower critical field Hc1, bearing in mind that demagnetisation effects will enhance the
local magnetic field depending on the shape of the superconductor. Below Hc1 the
superconductor behaves as an ideal diamagnet with a susceptibility of -1 [8]. This
statement is also valid in the sense of Silsbee’s rule for applied transport current - which
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Figure 1.  Schematic view of a four layer cable conductor.
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states that as long as the self field of the transport current applied is below Hc1 it will be
carried without loss in a surface sheath of thickness λ, the magnetic penetration depth. In
practice, this regime is usually meaningless, as the values of current to be carried and fields
encountered usually exceed Hc1 manifold. This is in particular true for the anisotropic high
temperature superconductors that have very low values of Hc1.
A typical value of Hc1 for YBCO at 77K is around 5000A/m, H || c. For Bi2223 Hc1 is not
exactly known, but is significantly smaller than for YBCO [9].

If the applied magnetic field H exceeds Hc1, which is usually the case, an ac can no longer
be carried without loss. The magnetic field has penetrated the superconductor in the form
of quantified magnetic flux lines. If a transport current (ac or dc) is applied in this case,
losses occur due to the movement of the magnetic flux lines causing dissipation. In case the
fluxons cannot move freely in the specimen, it has a finite critical current density jc. For
electrical engineering purposes the microscopic origins of jc are usually ignored, and so we
shall be content that the superconductor has a well-defined critical current density jc, at
which it develops a certain voltage, for example 1 µV/cm. In case of a sharp transition,
below jc its dc resistivity is 0, and above jc its dc resistivity is its flux flow resistivity (more
gradual transitions: see section 3.2). In order to avoid other complications for practical
purposes we also assume that the reversible magnetisation Mrev=0 and Hc1=0, which is
implied for the rest of this work, unless otherwise mentioned. This leads to the hysteretic
response of the superconductor to an applied magnetic field that is usually described as the
critical state or Bean state [10].
In the slab geometry (slab of width 2a extending infinitely along y and z directions) the
slope of the local magnetic field is given by the Maxwell equation curl H = j = jc. Thus an
applied field H parallel to the z direction leads to dH/dx = jc. Corresponding to the
penetration of the magnetic field a current density j=|jc| flows where the magnetic field has
penetrated (positive on one side, negative on the other). Is the direction of the field ramp
reversed, then the current of opposite polarity penetrates from the specimen borders. A
characteristic field H* = jc a (full penetration field) can be defined, which is the magnetic
field at which the flux front penetrates to the centre of the slab [11].
One notes that the currents behave anti-symmetric, and the fields symmetric with respect to
the middle of the specimen. A slab carrying a transport current reverses the role of current
and field: all of the current is going the same direction, producing anti-symmetric field
distributions. Like the magnetic fields, currents penetrate from the outside to inside.

2.2 Slab in parallel magnetic field

Let the applied field be H=H0 sin(ωt). Then the flux in the specimen can be reconstructed
from the critical state model. Typically the energy loss per unit volume per cycle (ω=1 for
convenience) is schematically obtained from
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In the quasistatic approach the second term is neglected (dj/dt=0). This leads to a power
loss per volume of  (now f = frequency = ω/2π)
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where 2a is the width of the slab, valid for H0< H*=jc a . The loss increases with the cube
of the applied magnetic field. If  H0>H* the loss/volume is composed of  two terms, that of
equation 3 for H0= H*, and

(4)       P/V =  f µ0 jc a (H0-H*)

This loss corresponds to the saturation of the shielding in the specimen and only depends
linearly on field. It also depends linearly on the size of the slab, which is one of the reasons
for finely subdividing superconductors that are used in changing external magnetic fields
(more see [12]).

2.3 Slab carrying transport current in a magnetic field

In this case the slab is carrying a current I =Ii sin(ωt) , and is exposed to an in phase parallel
magnetic field B = Btot sin(ωt) = µ0 Htot sin(ωt). This has been treated [13] using the critical
state model. Recently measurements in Bi2223 tapes have shown that these expressions
give a good estimate of the ac loss [14] for fully coupled, non-twisted, multifilamentary
tapes. The loss P per cycle per volume V is given by (f is the frequency = ω/(2π))
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Hereby P is the total power loss and i=Ii/Ici, β=Htot/H*, and Bp=µ0 H*.

2.4 Strip in perpendicular field

In a single-phase cable conductor without a gap between tapes (as shown in figure 1) all of
the magnetic fields are oriented parallel to the conducting tape. However, in case of
imperfect orientation or when there is a gap between tapes or in the presence of other
current carrying conductors magnetic fields may be present that are oriented perpendicular
to the surface of the tape. The power loss can be determined using a similar integration
technique to the one described above  [15]. However, the flux profiles are different and
non-linear due to the demagnetisation field occurring at the strip edges. The power
loss/length is given by [15]

 (8) P/l = 4 µ0 f jc t a
2 H0  h(H0/Hc)                      for H0 < Hc

 (9) P/l = 4 π µ0 f a
2 jc t   (H0 – 1.386 Hc)           for H0 >> Hc

The strip has the width 2a, and thickness t, and Hc=jc t /π, and the function h(x) = (2/x)
ln(cosh x ) – tanh x. For H0<<Hc the loss is proportional to H0

4.

2.5 Strip or ellipse carrying a transport current

Now the strip is carrying a transport current I=I0 sin (ωt). If Ic is the critical current of the
strip, the power loss/length is

(10)   P/l= f µ0 Ic
2 g(I0/Ic) / π

Where g(x) = (1-x) ln(1-x) + (1+x) ln(1+x) –x2. This is usually referred to as the Norris
strip formula [16]. For low currents I0<<Ic it behaves as

(11) P/l = f µ0 I0
4 / (6π  Ic

2 )

The ac loss behaviour of a strip of not rectangular but elliptical cross-section is
significantly different. In particular at low I0/Ic values the strip has significantly lower
losses. The Norris ellipse formula [16] gives the power loss as

(12)  P/l= f µ0 Ic
2 e(I0/Ic) / (2π)
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Where the function e(x) =  (2-x) x + 2 (1-x) ln(1-x). This expression is valid for ellipses of
all aspect ratios, thus also for a round wire. However, it turns out that losses for a strip of
finite thickness tend to be significantly higher than that of the Norris strip (determined
numerically [17]).

2.6 Tube carrying transport current (monoblock model)

Now we look at the case of a solid tube carrying a transport current. This case is relevant
for a cable since (unless special measures are taken) typically the outer layers fill up with
current first, corresponding to a solid tube. When a current is applied it penetrates
homogeneously from the outer radius R to the inside radius r. The magnetic field created is
oriented tangentially to the surface, and perpendicular to the current. If (R-r)<<R then the
field profile created by the current is linear and resembles half of the critical state model for
a slab. As the current is increased from 0 to Ic a flux front penetrates from R to r. The
magnetic field at and inside of the flux front is 0, and the slope dH/dρ = jc (where ρ denotes
the radial co-ordinate). The calculation of the loss takes place in a similar fashion to the
slab case by integrating the flux at its maximum value (see above).
The resulting loss/length is [18]

(13)   âh)]âh)ln(12(1âh)âh[(2f
h
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where β=I0/Ic, and h=1-(r/R)2.
For a solid rod (h=1) the result is identical to the Norris elliptical formula given above. The
function in the square brackets is for most of the range of β proportional to β3. Thus for a
given current I0 the power loss P ∝ I0

3/Ic . In connection with a power cable this solid tube
model is usually referred to as the monoblock model [18].

2.7 Measurement of ac loss in tapes

The ac loss of a transport current can most easily be measured in a 4-probe configuration.
Thereby the voltage drop over the specimen is measured directly with voltage contacts, the
leads of which are lead straight away perpendicularly several tape widths from the tape
before being twisted [19].
The current and its phase can be measured using either a Rogowski coil or a non-inductive
shunt resistance. The voltage can either be measured phase sensitively with a Lock-In
amplifier (more detail see section 3.6.2), or the whole waveform of the voltage is recorded
on a digital oscilloscope, where it can be folded with the current directly to give the power
loss [20]. Commercial power meters are usually useless as the voltages that need to be
measured are in the nV to µV regime, thus very small.
It must be noted that – unless compensation is used – the demands on the sensitivity and
accuracy of the Lock-In amplifier are enormous. Even a small phase error can easily
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produce erroneous results [21]. A phase measurement to better than 0.01 degrees is needed
in order to measure the ac loss at I/Ic=0.1 with an error of about +/- 20%. To add
compensation, however, generally adds complexity to the system, and thus additional
sources of error, so that many laboratories work in fact without compensation.
Losses incurred by a magnetic field are usually measured by measuring the magnetic
moment m of the specimen as a function of applied magnetic field H. The power loss per

cycle is then given by the area of the enclosed loop ∫= mdHP .

The magnetic moment can be measured either by using commercial magnetometers, by ac
susceptometry, or indirectly with Hall probes that measure the magnetic field above the
specimen. At power frequencies typically ac susceptometry is used.
The combined effect of transport currents and magnetic fields can be measured with a
rather elaborate version of a standard set-up, using non-inductively placed voltage tabs.
Non-electrical methods of loss measurements usually involve measuring the heat generated
by the power loss. This can be done by measuring the temperature rise of an adiabaticly
placed specimen [22,23], or by measuring the boiloff of the coolant used (liquid nitrogen or
helium)[24]. An alternative method is the resonance method (see below), which however
has never been used with single tapes.

3. POWER CABLES

3.1 Self and mutual inductances

The geometry of the cable conductor is schematically presented in figure 1. In the
following the self and mutual inductance of layers are determined per unit length conductor
(also see [25]). The thickness of the individual layer is regarded infinitesimal. Furthermore
the winding with discrete tapes is approximated by a continuos current sheet.

3.1.1 Layer self inductances

For a single layer configuration the magnetic flux density B, is deduced by the use of
Ampere’s law, to the following (14) and (15). (14) applies for r<ri, where there is an axial
field and (15) for r>ri, where there is a tangential field.
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pi

0
inner L

Iì
B

⋅⋅
== for  r<ri

(15)
i

0
outer rð2

Iì
B

⋅⋅⋅⋅
⋅⋅

== for  r>ri



8

Lpi is the winding pitch of the layer given from the winding angle α (tan(α)=2·π·ri/Lpi), I is
the current through the layer, ri is the radii of the layer and µ0 is the vacuum permeability
(4·π·10-7 H/m).
The self inductance is found by calculating the enclosed magnetic field energy, Wm [J/m].
Wm is found by first calculating the magnetic field energy density, wm  [J/m3], given by
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Resultantly the magnetic field energy per unit length conductor is given by
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where the first expression is the field energy per unit length conductor stored in the volume
inside the cable conductor. The second expression is the field energy per length conductor
stored in the volume outside the cable conductor. D is the distance between the layer and
the centre of the return path.
The self inductance, L [H/m], is found from

(18)                            2
m IL

2

1
W ⋅⋅⋅⋅==

leading to:

(19)                        
ð2

r

D
ln

ì
L

rð
ìL i

02
pi

2
i

0 ⋅⋅










⋅⋅++
⋅⋅

⋅⋅==

3.1.2. Layer mutual inductances

The mutual inductances between an inner layer i and an outer layer j, Mi,j, can be found by
the general expression

(20) jiji,
2
jj

2
iim IIMIL½IL½W ⋅⋅⋅⋅++⋅⋅⋅⋅++⋅⋅⋅⋅==

where Li and Lj are the self inductance of layer i and j. Ii and Ij are the currents in layer i
and j.
The total enclosed magnetic field energy, Wm, is the sum of three contributions: The energy
stored in the volume inside the two layers, Wmi, the energy stored in the volume between
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the layers, Wmb, and the energy stored in the volume from the outer layer to the return path,
Wmo. The energy stored within each layer is neglected, as the layer thickness is regarded
infinitesimal.
By the use of Ampere’s law the stored energy is found as before:
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where ai and aj are constants (+1 or -1) taking into account the relative winding directions.
If the two layers are wound in the same direction around the former the sign of the
constants are the same. In the case of opposing twist the constants are each others negation.
The total magnetic energy is given by

(24)  mombmim WWWW ++++==

The mutual inductance between layer i and j can be calculated by the use of (21) through
(24). In the situation where the layers are considered of infinitesimal thickness the mutual
inductances per unit length conductor are given by
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3.2 Current Distribution

The current distribution in power cables is governed by various parameters:
• the self and mutual inductance of the superconducting layers,
• the joint resistances of the strands and conductors used,
• the usually highly non-linear current – voltage characteristic of the conductor.
Which parameter will be the dominant one will in general depend on what the operating
current in relation to the critical current of the conductor is. The current distribution and its
dependence on operating conditions will ultimately determine the ac loss that the cable
produces (also see [26]).
The calculation involves using the layer self and mutual inductances Li and Mij,
respectively. The layers are considered as being in parallel electrically. Current transfer
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between layers is only allowed at the ends of the cable. The voltages Vi and currents Ii in
each layer are then governed by the following equation

(26)   
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If all of the voltages and currents are of sine shape (which occurs when all layer currents
are below the layer critical current) then this equation can be expressed in complex
notation [25,27] as
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The Ri term in equ. 26 and 27 takes the joint resistance and the AC-loss of the individual
layer into account, ω is the angular frequency (2·π·f) and j is the imaginary unit.
Here Mij=Mji is the mutual inductance between layers i and j,, Li is the self inductance of
layer i. Both inductances depend on the layer radii ri and the winding pitch Lpi .Vi is the

voltage and 
•

iI  is the time derivative of the current Ii in each layer. For a long cable (no

contact resistance) the resistive term Ri(Ii) is usually given by

(28)  
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n
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where Ici is the layer critical current. Practically the constant is equal to 1 µV/cm times the
length of the cable. The inclusion of the sign term ensures that the resistive part of the layer
voltage becomes negative if the current is negative. The overall current is given by

(29)    I =  ΣIi

and the cable critical current is

(30)             ∑∑== ci
c
c II
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Since the layers are connected in parallel all the voltages Vi are identical, resulting in a set
of layer current values Ii for a given configuration. However, equation 26 does not have a
simple general solution due to the current dependent resistive term.

3.2.1 All Layer currents Ii<Ici

For very large values of n → ∞ the second term in equation 26 can be dropped for Ii<Ici. In
this case it is more useful to invert equation 26 and write it in a differential form. This
leads to
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Thus for each time step ∆t the change ∆Ii of the current in layer i is given by equation 31.
The total layer current is always

(32)      ∑∑
==

==
t

0t
ii ÄII

As the total current I is imposed on the cable, we always have I = ΣIi, and therefore also

(33)    dI/dt = ΣdIi/dt.

Equation 31 (or for sinussoidal wave shape, equ. 27 and its inversion) holds if all of the
layer currents Ii are below the critical layer current Ici. In this case the layer currents follow
the wave shape of the external current with a proportionality factor determined by the
matrix in equation 31.

3.2.2 Layer current saturation Ii≥Ici

If the critical current of a layer is reached, its current Ii can no longer increase (or decrease
if Ii = - Ici). Then, for Ri>> Li dIi/dt the voltage Vi in equation 26 is now produced by the
resistive term and the inductive term Li dIi/dt = 0 can be neglected (ideally because dIi/dt
becomes zero in case of a sharp resistive transition with n→∞). Therefore equation 31 is no
longer sufficient to describe the system, since ∆Ii=0 is required in this case. If dIi/dt=0, then
of course all terms that contain dIi/dt become zero. Therefore an approximate solution of
the problem can be obtained by solving the following sub-problem, for example if layer 1
is saturated
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where the saturated layer i=1 is removed from the problem by reducing the dimension of
the matrix by one: the corresponding row and column is cut out.
This now produces a new distribution of the dIi/dt, the sum of which still has to equal the
external current change dI/dt applied to the system. The difference to before saturation is
that the layer i no longer contributes to the overall current changes, since Ii=+/-Ici. In other
words, the extra current ∆I=dI/dt ∆t is now distributed between i-1 layers. This continues
until the next layer j saturates. Now two layers (i and j) carry the critical current, and
columns and rows j are removed from the matrix, reducing its dimension by one again.
This procedure successively continues until all of the layers are saturated, and the cable has
reached its critical current.
Evidently this introduces non-linearity into the problem. There is now a ‘phase lag’
between saturated and non-saturated layers, and the local flux in the cable becomes non-
sinusoidal, even if  the total applied current has the sine shape.
In order to be able to more specifically describe the effect of saturation we assume that the
imposed current I follows a saw-tooth shape of the frequency f. The maximum current is I0

which decreases linearly to –I0 in a half period. The external voltage switches polarity
every half cycle. If the cable inductance was constant over the cycle (it is not) the voltage
wave form was rectangular. Now several different cases must be distinguished.
1. The very first up ¼ cycle. The total current starts from zero to increase to I0. Depending

on the inductance matrix both positive and negative values of the layer currents are
allowed. As the first layer saturates the inductance matrix is modified according to the
rules given above. At I0 = cable Ic value all layer currents are positive, regardless of the
inductance matrix.

2. The first down ½ cycle. The cable current runs from I0 to –I0. This corresponds to the
periodic case – this happens every time the current has reached its maximum. Now  -
depending on the size of the current Ii with respect to Ici – several cases must be
distinguished:
a) All Ii<Ici. If the inductance matrix produces only positive currents for positive

voltage then saturation of a layer never occurs because all the layer currents
decrease along with the external current.

b) Some or all Ii=Ici. If the inductance matrix only produces positive currents for
positive voltage then the saturation condition is immediately relieved as soon as I
begins to decrease. Saturation will reoccur as –I0 is approached.

c) Some or all Ii=Ici. If the inductance matrix produces negative currents for positive
voltage (inverse condition) then the saturation condition may not immediately
relieved as I begins to decrease. Those layers that carry Ici and also have the inverse
condition remain saturated until sufficient current has re-diffused into the other
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layers, relieving the inverse condition. Then saturation will again reoccur as –I0 is
approached.

3. The next up ½ cycle. The cable current runs from -I0 to I0. This corresponds to the
periodic case and the currents are the inverse of case 2.

3.2.3 General case

For the small n values typically found in high Tc superconducting tape conductors (around
20 or smaller) a general solution of the equation 26 has to be found. This can be done by
using standard numerical integration techniques or packages. One example is given below.

3.3  Ac Loss

The loss in a superconducting power cable has a number of sources:

1. The cryogenic or cooling loss. This is the loss that is generated by the need to cool the
superconductor to below its critical temperature.

2. The eddy current loss in the metallic parts surrounding the superconductor that carries
the current.

3. Hysteresis losses in the superconductor itself.
4. Dielectric losses.

A superconducting cable carrying a dc has no eddy current losses. Depending on the level
of current and the current voltage characteristics of the superconductor some loss will also
occur in it, even though an ideal superconductor transports a dc without loss.
A large amount of work has been carried out on current distributions and ac losses in
superconducting cables [28]. However, most of this work has relevance to cables used to
wind magnets, being exposed to a significant external magnetic field. The ac loss of power
transmission cables has recently become the focus of attention in connection with the high
temperature superconductors [1-7]. Transmission cables are only subject to their own
magnetic field, rather than an external one. Within the cable, the current distributes
according to the cable self and mutual inductances, usually not homogeneously (see
above). It has been realised that low loss is obtained with homogeneous current distribution
[2], but expressions for obtaining the loss are missing to date.
In this section the results on the current distribution developed above is used to develop a
model that computes ac losses for currents up to the cable critical current. Currently not
included are current redistributions within one layer and the effect of a gap between tapes
in a single layer.

The problem of calculating the ac loss is separated into two sub problems, namely 1) the
case when the peak current in each layer is below its critical current, and 2) one or more of
the layers have reached their critical current. If n= ∞ (where n is the exponent in equation
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28) the two contributions can be computed separately, and then – in an engineering like
approximation - added up.

3.3.1  Ii<Ici for all layers

In the low current regime none of the layers of the cable is saturated. All of the layer
currents are below their respective critical currents. Thus each layer can be described
simply as a current sheet Ilayer =Ii sin(ωt) that has an in phase parallel magnetic field B =
Btot sin(ωt) applied to it. For n=∞ this magnetisation loss Pmag per cycle per volume V is
simply given by the equations 5-7.
These losses are referred to as magnetisation losses. Hereby Pmag is the total power loss,
i=Ii/Ici, β=Btot/Bp, and Bp=Ici/(4πri), where ri is the median radius of the i-th layer. The total
magnetic field perpendicular to the current that the layer sees is given by

(35)    (( ))iaiii0tot sináHcosáHìB ++== ϕ

Here αi is the lay angle of layer i, Hϕι is the tangential magnetic field, and Hai the axial
magnetic field that the layer i experiences due to the other layers. These magnetic fields
and the lay angle are  given by
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This magnetisation loss has a power 3 dependence on both current and magnetic field in
the validity range of equation 5 and 6, and a linear dependence for magnetic fields in the
range of equation 7.
The total loss in the cable is obtained by summing up the losses in each layer, taking into
account that the coverage of the layer with superconductor may be less than perfect, since
there is always a gap between the tapes that make up a layer. This loss is an equivalent to
the more well known UCD loss (uniform current density [2]), except that the current  does
not necessarily need to be uniform. For layers that do not carry current but are simply
exposed to a magnetic field equ. 5 - 7 lead to the standard critical state loss expressions for
a superconducting slab in parallel field.
If n<∞ then the above expressions have to be modified accordingly. Typically the loss
tends to increase as compared to the Bean (n=∞) case [29].

3.3.2   Ii>Ici in one or more layers
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The current in a saturated layer stays constant at the critical current while the magnetic
field produced by the other layers increases. This produces losses not included in equations
5-7. These losses can be computed by calculating the layer voltage and current for each
time step ∆t from I0 to –I0. This has to be done for the one whole cycle.
For n=∞ (Bean case) the computation of the current distribution has been outlined already
above. This procedure determines Ii and dIi/dt for each layer, and thus in equation 26 all
voltages in the non-saturated layers where Ri=0 (all the Mij and Li values are known). The
voltage in all of the non-saturated layers is equal, and identical to the external voltage V0

applied to drive the current. V0 does, however, change each time a layer saturates. In
contrast, in the saturated layers only the voltages from the terms containing dIi/dt ≠ 0 can
be computed directly. The 'resistive' voltage Ii Ri is not directly determinable: the current Ii

is known, but not a priori Ri. However, since all of the layers are connected in parallel all
of the layer voltages must be identical. Thus the resistive voltage is simply the difference
between V0 (which is calculated from a non-saturated layer) and the sum of the voltages
coming from the non-zero dIi/dt. This way a complete voltage and current waveform can be
computed for an arbitrary external input current wave shape.
For a finite n equation 26 has to be integrated numerically, which also leads to the
complete waveforms of current and voltage. In both cases the overall energy loss per length
per cycle is then simply obtained by time integration over half a period
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where t1 is the time of maximum, and t2 = t1 + 1/2f is the time of following minimum
current. Equation 39 has been implemented numerically and is used to calculate the ac loss
results in the next section.

Generally speaking the above formalism develops into the monoblock model (see section
2.6) for an infinite number of layers having infinite pitch. In contrast to the magnetisation
losses in the previous paragraph these losses should be called saturation losses, since they
arise form the current saturation of a layer. Evidently the physical loss mechanism is the
same for the two regimes – it is the drag of the moving flux lines. However, in the low
current regime (section 3.3.1) they move within a layer, and in the high current regime
(section 3.3.2) they move through a layer. Evidently in a cross-over regime both
mechanisms occur. In the case of unequal current distribution and high n-value they are
most easily distinguished.

3.4. Discussion and Comparison to Experiments

First a general comment to the division of the loss regimes in two. It is clear that the
physical mechanism of loss is the movement of flux lines in the superconductor. Thus in
principle it is physically not correct to add the two contributions, as they have the same
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physical mechanism. However, since the saturation loss is typically much larger than the
magnetisation loss, from an engineering point of view in many practical cases it even
makes sense to neglect the magnetisation loss at high currents.

In the first example a cable is shown where the current tends to flow towards the outside of
the cable. The calculation shows this, and the loss calculated is very similar to the one
obtained from the monoblock model. In example 2 only magnetisation loss occurs due to a
forced equal (or almost equal) current distribution. A distinction between the two different
regimes described here may in fact be not so easily done, in particular if the saturation
losses are small and comparable to the magnetisation losses. This is the case in the third
example shown here, where a full numerical solution of equ. 26 was carried out using a
low n value.

3.4.1  Example 1: 10 layer cable

A 10 layer cable with alternating (switching winding direction) but otherwise constant
winding pitches is regarded first (Southwire cable #3, from [30]). Shown in figure 2 is the
calculated current distribution (layer thickness was estimated from difference between
former and outside diameter) as a function of total cable current when the current is first
increasing from zero. Initially almost all of the current is concentrated on the outer layer
(#1) of the cable. When this layer saturates more current is driven into layer 2, and so on
until the cable is completely filled with current. This current saturation of the layers is
shown in figure 2. It shows the current in each layer as a function of time for a linearly
increasing external current. The external current increases continuously, while the layer
currents exhibit discontinuities in the slope whenever a layer reaches its critical current.
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Figure 2. Layer current as function of external current calculated for cable SW3. The fact
that layer current saturation does not occur exactly at 100% is due to discretisation in the
numerical calculation procedure.
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This is a result of the fact that
the current supplied to the
cable has to be distributed to
one layer less, thus increasing
the dIi/dt of all layers.
The corresponding losses at
77K have been calculated and
are shown in figure 3 together
with data taken from ref. [30].
It should be noted that the
original critical current of the
cable model was given as
1600A, whereas it had
degraded down to a critical
current of 1000A (all dc,
1µV/cm) by the time the
electrical loss measurement

was carried out. The agreement between calculation and loss is quite good, but not perfect.
In particular at low currents below the saturation of the first layer the measured loss is
significantly underestimated. For high current the calculated loss is similar in magnitude to
the monoblock loss, but with a slightly lower power exponent (n=2.86). Experimental
losses appear to be of the same order of magnitude as the calculated ones, but have a even
lower power exponent (n=2.63) than the current calculation and the monoblock model
(n=3). Better agreement could have been obtained by using the critical current as fitting
parameter. It can also be seen that the magnetisation losses (if extrapolated from below
150A to higher currents) are at least one order of magnitude smaller than the saturation
losses.

3.4.2 Example 2: Four layer cable

This cable is a 3m long cable model that
has 4 layers with alternating pitch of
0.3m, wound at the Technical University
[25]. Current was fed into each layer
separately which introduces resistance
into the current path that tends to
equalise current distributions. The DC
characteristics of the cable conductor has
also been investigated but is not
considered here.

The current in the individual layer has been monitored with torroidal Rogowski coils
placed around layer 4 (inner layer), layer 3 and 2 and so forth. The measured current
distribution as a function of the total current at 50 Hz is shown in figure 4. In Table 1 the
calculated current distribution is shown in two cases; with and without joint resistances.
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Figure 4.  Measured relative current vs. total current.
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Figure 3. Calculated and measured losses in cable model SW3.



18

The current distributions are calculated by the use of equ.27 where the inductances are
scaled with the length of the cable conductor. The current distribution calculated without
regard to joint resistances corresponds to a long cable conductor, e.g. the case we want to
investigate. It is noticed that in this case a current is induced in layer 2 which actually is
running backwards! The calculation is in both cases only valid for low currents where the
AC-loss are negligible:
(40)  Ri = Rjoint,i       for     I<<IC

Good agreement is found
between calculated and
measured current distribution
for currents lower than 1000
Arms. At 1000 Arms the current
begin to redistribute as the
outermost layer is carrying the
critical current. It appears that
the measured current
distribution between layers is
substantially more uniform than

the case would have been with smaller joint resistances or with a longer cable conductor.
Figure 5 shows the measured loss at 77K in the case where these series resistances are
present. Thus over almost the whole range of current shown in the figure the measurements
really should reflect the magnetisation loss occurring in the cable. The calculated curve
thus contains only the magnetisation loss up to about 1000A. Also shown is the loss curve
for equal current distribution. The agreement between measured and calculated loss is quite
good in the low current regime. For currents higher than about 600A rms. the measured
losses are higher than the predicted ones, indicating that some current redistribution or

saturation occurs, possibly
even among tapes in a layer.

3.4.3 Example 3: Eight layer
cable

This cable is a 10 m long 8
layer cable that was
constructed with the intention
of having equal or close to
equal current distribution
using a specific winding
pattern [31]. The ac loss data

at 77K is shown in figure 6, together with the theoretical curves calculated using a full
solution of equation 26. The measured transport critical current (3240A at 1µV/cm) was
used for the loss calculation under the assumption that the critical current of all layers is
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Figure 5. Comparison of calculated and measured ac loss for 4
layer cable model.

Layer
#

Rjoint  [µΩ]
measured @
50 Hz

Calculated layer
current
for Ri=Rjoint,i

Ilayer/Itot    [p.u.]

Calculated layer
current
for Ri =0
Ilayer/Itot , [p.u.]

4 17.2 0.20 0.06
3 18.0 0.13 -0.19
2 17.6 0.27 0.43
1 13.5 0.40 0.70

Table 1. Calculated current distributions. The joint resistances
are measured.
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equal. A power exponent of n=8 (measured value for the tapes) was used for the saturation
loss curve. Also shown is the curve for equal current in all layers, in which case only
magnetisation loss is produced. The match between calculation and data is very good. The
cross-over of the magnetisation and saturation losses occur at around 1700A. At high
currents it can be seen that the magnetisation loss becomes linear with current, while the

saturation loss increases
quite rapidly and
dominates. The
experiment shows (and
theory predicts) that the
magnetisation loss at low
currents follows the I3

behaviour, switching to a
lower exponent for higher
currents. However, the
calculated magnetisation
loss at low current is
larger than the measured
one (about a factor of 3 at
300A), and the transition
from power 3 to power 1
in the calculated curve

occurs at a lower current than predicted. This may indicate granular effects, as the local
current density could be higher than the transport one used here, lowering magnetisation
losses and pushing the transition point to higher currents. It should also be noted, though,
that the error bars on the losses at low currents are quite large due to the fact that resistive
joint contributions have been subtracted.

3.5 The ac loss due to eddy currents in the metallic parts of a superconducting cable

The ac losses occurring in the metallic parts
of a single phase cable are evaluated. There
are tree principal contributions: the former
tube carrying the superconducting tapes, the
outside vacuum vessel, and the silver tapes
containing the superconductor. In case of the
use of pure metals like Al or Cu the losses in
the former can be a significant contribution
to the overall losses of the cable. Ac losses
in the outside vacuum tube are negligible.
The eddy losses in the silver tapes are small,
as long as they are isolated from each other
(including layer isolation).
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3.5.1. Former

A loss will develop in the former due to ac eddy currents that are generated in it due to the
presence of a magnetic field arising from currents within the superconductor. The former
sits inside of the superconducting winding, acting as the secondary winding of a
transformer, the primary of which is the superconductor. In figure 7 the geometry of the
problem is described. For the rest of the calculation we assume T<<R, and skin depth=∞.
The superconductor in the i th layer (for simplicity only one layer is shown) produces in its
center the axial homogeneous magnetic field

(41)
p

i
i

i L

I
H ==

parallel to the y direction. Here Ii=Iio sin(ωt) is the current in the i th layer with a twist pitch
Li

p (ω=2πf, f=50Hz). The twist pitch must be associated with a sign according to the
helicity of the winding, positive for clockwise, and negative for counterclockwise winding.
Due to the length of the solenoid (the cable) the layer diameter does not enter the magnetic
field generated. The field H responsible for ac loss in the former is

(42)  ∑∑==
i

iHH'          and       H = H'/sin(ω t)

This field is zero, if each layer has a counterpart with opposite helicity, assuming equal
currents in both. In general this is not the case (see above). As the current distribution
between layers may also change as a function of total current in the cable the loss in the
former may well be a non-monotonic function of the total cable current with one or more
maxima. Changes in the layer current distribution due to the mutual inductance between
the former and the layers should be expected, and must be looked at in further work.
The induced electric field E is acting along the former circumference. The voltage Uind
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is generated along the circumference and is induced by the change of flux φ inside the
former. Its peak value Uind

m is given by the terms in front of the cosine. The peak value of
current in the former is given by
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where Re is the electrical resistance of the former for current flow along the circumference.
For a given former length l and a resistivity ρ we find Re = ρ l’/A, where A=l*T and l’=2π
R. Here T is the former thickness.
Thus the induced current in the former becomes
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The effective power loss per length is then given by



21
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There is a very strong (cubic) dependence on the former radius, while the thickness enters
only linearly. Materials with high resistivity ρ are preferable.
As example materials for the former we consider pure Cu (or pure Al, which has almost
identical resistivity), and non-magnetic stainless steel (SS). Resitivities at 77K are 0.21
(Cu), 0.25 (Al) and approximately 70 µΩcm (SS). In practice it is recommended to actually
measure the resistivity (77K) of the former used, and use that resistivity in equation 47.
This is in particular important for the pure materials, since small additions of impurities
can significantly change the resistivity at 77K. In practice losses of about 1W/m are
obtained for a 1 mm thick Cu former of 30mm diameter in a field of 1000 A/m. Thus if
there is a magnetic field at the former Cu should not be used as a material. It should be
noted that the skin effect would tend to lower losses, so that equation 47 is to be regarded
as an upper limit (see [32]). For formers made of braided materials the losses are expected

to be much lower, as the resistance between the
braids must be overcome by the induced
currents.

3.5.2. Vacuum Tube

The geometry is given in figure 8. The situation
is different from the former, as the magnetic
field is now tangential to the tube, depending
on the total current It in the cable as

(48)       
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The current distribution in the layers does not
matter. The induced current is now flowing along the length l of the sheath with opposite
polarity on the inside and outside. The flux change driving the eddy current is occurring in
the area d times l, and is thus significantly smaller than for the former. In order to simplify
the calculation a constant value (in fact the maximum value) for the induced voltage is
used, stemming from the use of the borders of  the area d times l only. This approximation
will lead to an overestimation of the losses as the real induced voltage varies with position
in the loop. The calculation proceeds in a similar manner as above, leading to
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Figure 8. Geometry of outer tube. The
former, the tapes and insulation are not
shown.
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In this case it suffices to give one numerical value. As example (worst case) we take:
stainless steel as material (thus ρ=70µΩcm), d=0.2mm, It= 2000A, ν=50Hz, r=0.04m. For
these values the power loss per length is 7.1x10-6 W/m, thus completely negligible
compared to the losses in the superconductor or the possible losses in the former. Even if
pure Cu tubing of 0.4mm thickness was used, the losses would merely grow to a value of
order 0.01 W/m, still very small. A corrugated tube would show losses that are slightly
higher than those given here due to the fact that there is more material per length of tube
compared to a smooth one. Thus losses higher by a factor of 2 or 3 can be expected.

3.5.3 Superconducting tape /  silver matrix

A silver tape (containing the superconductor) experiences both radial and axial magnetic
fields, depending on in which layer it is situated. The currents that can flow depend now on
the tape and layer insulation.

If there is neither tape nor layer
insulation the tapes touch each
other, and current can circulate
around the circumference of the
layer. Thus the situation for the
inner layers is similar to that of
the former, being exposed to the
axial field created by currents in
the outer layers. Thus the loss
would be of similar magnitude
as for the Cu former shown in
figure 7, and equation 47 can be
used to get a rough loss estimate,
calculating H from the total
current It. The loss would be
expected to be proportional to
It

2. Indeed this behaviour is
experimentally found in a

number of studies.
If the layers would be isolated from each other, then the length scale for currents would
depend on whether the tapes in one layer touch themselves or not. If they do, then again
currents around the circumference are possible, depending on the frequency with which
these touches occur. A loss calculation would be difficult in this case. If the tapes do not
touch then the situation is identical to the one for isolated tapes (see below).
If the tapes themselves are isolated from each other, then only local eddy currents in each
tape are possible. Both the axial and the tangential field induce currents, as shown in figure
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H t
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t 
Figure 9. The geometry of isolated tapes experiencing both
tangential and axial magnetic fields. On the right a single tape
is shown. The transport current is parallel to Ha. Induced
current system 1 is due to the tangential, system 2 due to axial
magnetic field.
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9. For simplicity the effect of the lay angle is neglected. This can be done because the
currents are local, and the tapes are not electrically connected.
The ac loss now has two components. For the loss caused by the tangential field in one
layer we can use directly equation 49, putting the layer radius as r, and using the tape
thickness dt. Using the parameters from the previous section with the resistivity of silver
(ρAg=0.3µΩcm) one arrives at a power loss of about 3x10-3 W/m per layer (worst case).
In order to evaluate the loss due to the axial magnetic field we have to modify equation 47
to account for the rectangular shape of the tape. This leads to
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Here N is the number of tapes. Again an approximation was used for the induced voltage,
taking the maximum value at the outer perimeter of the tape, leading to an overestimation
of the losses. If typical tape dimensions are inserted into equ.10 (tape width 3mm, tape
thickness 0.2mm, ρAg=0.3µΩcm, Ha=104 A/m, N=33/layer) the loss due to eddy currents in
the silver is 10-3 W/m/layer. This estimate is a worst case, because it assumes that all tapes
are exposed to the full magnetic field produced at 2kA, which is not the case.
Thus the total loss due to eddy currents in the silver for insulated tapes is expected to be
less than 4x10-3 W/m/layer at a current of 2kA in the cable. Since this loss value for

isolated tapes are rather small, a more
exact calculation is not deemed
necessary at this point.

3.5.4 Ac loss in case of a conducting
connection between sheaths

However, a large loss can arise if there
is an electrical connection between
sheaths at the ends of the cable, for
example the former and the inner wall
of the cryostat, or the inner and outer
wall of the cryostat (see figure 10).
This problem is known also in
conventional cables [33]. The loss is
due to the tangential magnetic field Ht

caused by the total transport current I of the cable. This magnetic field is always present
independent of the winding pattern of the layers. Unlike the loss caused in one sheath alone
the flux enclosed between two sheaths is much larger, and a large loss is expected.
Let the cable carry a total current of I0 at its peak at the frequency f. The power loss in two
sheaths with radii ri, wall thicknesses ti << ri and resistivities ρi is approximately given by

Ht

Ht

Induced I
r2

r1

Figure 10. Geometry for inducing currents in two
different sheaths 1 and 2, which are electrically
connected at the cable ends.
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Hereby it is assumed that r2>r1, and that the cable transport current flows inside of sheath 1.
If sheath 1 is to be the former, a good approximation for r1 would be the layer radius of the
winding. The skin effect is not taken into account, and it doesn’t need to be (see below). If
this loss is calculated for an inner sheath (for example the former) of 30mm diameter, and
an outer sheath of 50mm diameter, both 1mm thick and made of stainless steel (high
resistivity of 70µΩcm), then the resulting power loss is about 0.34W/m, a large loss
comparable in magnitude to thermal losses and losses in the superconductor! Other
examples could be given, but the conclusion is quite evident: there must not be a metallic
connection between the different sheaths of the cable at the ends, to be exact at both ends.
Welding or soldering at one termination is allowed, as the current circulation is interrupted
that way.

3.6 Ac loss measuring methods

The measurement of ac losses in superconducting cables is complicated, which is why
there have been several methods developed to achieve this goal.
In the thermal method the heat created by the loss is used to determine the power loss. This
can be done by measuring the gaseous boiloff of the liquid cryogen - liquid helium or
nitrogen - used. Hereby the operating temperature of the cable is very close to that of the
surrounding liquid. The sensitivity of this method in particular in liquid nitrogen is poor
since the losses and boiloff are small; measurements on cables have been performed [34]
using this method. If the cable is thermally insulated from the liquid then the loss can be
measured directly by placing thermometers along the cable that measure the temperature
increase caused by the losses [7,35,36]. Critical is the thermal insulation which can be
achieved using vacuum or some insulating substance. The thermal methods work well and
give true ac losses, but tend to be very tedious to use.
In the electrical four probe method the voltage in phase with the current is directly
measured and multiplied with the current to give the power loss [1-6]. The problem with
this method is that the inductive (out of phase) components of the measured voltage is
much larger (100 to 1000 times) than the resistive component. This creates the need for
compensation and very accurate phase angle measurements. Furthermore, induced voltages
from other parts of the circuit may falsify the measurements, in particular in three phase
configurations.
There also is a third method, the resonant current experiment (RESCUE, [37]). Hereby the
superconducting cable whose losses are to be measured is simply short circuited by a
capacitor. The circuit thus formed contains an inductor (the cable itself) and a capacitor,
and can be made to resonate. Then a resonant current is induced in this circuit, the decay of
which is used to determine the losses in the superconducting cable.
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3.6.1 Thermal methods

A non-electrical method that is used for determining the ac loss in superconducting cables
is the thermal method. In this method the heat developed by the ac loss is measured,
usually by measuring a temperature difference between two thermometers. The principle is
illustrated in figure 11, shown for the case where the coolant - in most cases liquid nitrogen

- is allowed to flow.
Hereby two
thermometers are
needed, located at
different positions l1 and
l2 along the length of the
cable. The thermometers
then measure the
difference in temperature
∆T between the two

points, and the ac loss per length P is given by P = ∆T c v A/(l2-l1) , where A is the cross
section of the cooling channel in which the coolant of heat capacity c is flowing with the
velocity v. A variant of this method can be used in stagnant coolant [35], in which case the
cable is thermally isolated over a certain stretch, while being cooled elsewhere. One
thermometer is then placed there, and another into the coolant. When current is flowing the
temperature will increase in the part of the cable that is thermally isolated. Both methods
can be calibrated using a dc current in the cable or a heater assembly.
A third method measures the gas volume evaporated by the heat generated in the cable
[34]. This is obviously only usable in a boiling coolant. This method is not very sensitive.
The advantages of all thermal measurements are the possibility to measure under
conditions where electrical methods are not applicable, for example in three phase
conditions, and the possibility to measure when both transport losses and losses due to a
magnetic field are present. The general disadvantage is that they are complicated to carry

out and can be
lengthy, even
though only
basic quantities
are measured.
Electrical noise
can play a role,
and the
sensitivity is
reduced
compared to
electrical
measurements.

Figure 11. Thermal measurement method.

(1)

n

n+1

(3)

(2)

R'c,n R''c,n

Iref n-1Zs

Figure 12. Representation of the connections to the tapes in a one layer cable
conductor. Shown are the connection to a single tape (1) and to a ring contact (2)
and to the normal metal joints (3).
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3.6.2 Electrical Four probe methods

Single layer cable

The high temperature superconducting cable prototypes are generally, irrespective of the
actual cable design, based on a centrally located conductor. This conductor consists of
superconducting tapes (typically the Bi2Sr2Ca2Cu3O10+x, Ag sheathed tapes) wound spirally
around a former.  More than one layer of tapes is generally needed  in order to obtain a high
critical current and sufficiently low ac losses. One important issue when using electrical
four probe methods using phase sensitive (lock-in) detection is the choice of potential
probe positions. These should be placed in such a way that the true loss can be derived
from the measurement. For single layer models these can be placed in at least three ways:
(1) directly on a selected tape, (2) on all tapes using ring contacts or (3) on the normal
metal current leads. These three ways of placing the voltage probes are illustrated in figure
12. Schematically depicted is a cable conductor where, however, only three tapes are
actually shown. The tapes are represented as  a series connection of inductors and current
dependent resistors. Each tape has in each end a separate contact resistance, R´c,n  and
R´´c,n,  to the point of current injection. The ring contact is drawn as a spatially extended
resistor along which the tapes are connected through individual contact resistances. In

order for the single tape contacts (1) to be
used successfully, the voltage drop over
the probed tape should be representative
for the voltage drop over all tapes both in
magnitude and in phase angle (with
reference to the total current) at the chosen
frequency. Obviously this requires  that
the properties (critical current, position,
self and mutual inductance) of the tape
itself are representative but it is also
required that the contact resistances to the
current leads are representative. If these
requirements are not fulfilled
unrepresentative loss-voltage levels will
be measured, or even worse: the current
through the tape under consideration
might be shifted in phase with respect to
the total current resulting in remarkable
errors in the phase sensitive detection
scheme. The contact resistance (of the
order of micro-ohms) becomes important
because of the short sample length (i.e.
low inductive and resistive voltages over
the superconductor). The most common
reason for differences in tape quality is
degradation due to handling. The

requirements to even tape properties and even contact resistances often turn out to be only
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Figure 13. Magnification of the derivative of the in-
phase AC-voltage measured at the joints as a
function of the total current. (a) as-fabricated
conductor with 16 tapes, (b) after controlled
damage of 4 tapes. The dashed curves are  guides to
the eye. The intersection with the ordinate axis
gives the effective contact resistance. The inserts
show the full data sets.
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partially fulfilled resulting in large errors at currents below the critical current. Probing a
single tape, only, is thus not a reliable way of measuring. Ideally all the tapes should be
probed. It might be anticipated that a ring contact (2) which is connected to all tapes (in a
single layer conductor) along the conductor’s circumference is an appropriate solution for
averaging out differences in voltage. Such a ring contact may work given the ring itself has
a resistance (per unit length) which is much smaller than the resistances to all the tapes,
effectively yielding a star-configuration. It is also required that the resistances between the
ring and the tapes are all of the same size. If the currents that will flow in the ring due to
uneven potentials creates voltages along the ring comparable to the voltages over the tapes
the measured voltage will depend on where precisely the voltage leads are attached to the
ring contact.  Therefore a practical ring contact constituted by a wire connected to all tapes
of a cable conductor round its circumference either by soldering or by silver paint is not
reliable in the general case.
A third way of placing the voltage tabs is to put them on the normal metal joints to which
the superconducting tapes are usually soldered at a point where the current density changes
linearly with the magnitude of the current. In this case it is reasonable to expect the
measurement to be insensitive to the variations in of tape quality and contact resistances.
Only one would have to subtract from the measured voltage the ohmic contribution
stemming from the effective contact resistance constituted by the resistance of  the metallic
joints themselves and the  resistance of the connections to the tapes. Here we present data
that shows that this measurement method works in many cases, but also that it has its
limitations.
The data shown in the following were all acquired by measuring the AC-voltage using a
lock-in amplifier. The signal used for reference was phase-calibrated against the voltage
from a torroidal coil (Rogowski coil) placed around the lead carrying the current to the
sample. The uncertainty on the phase determination was less than 0.025°. The current
dependent values of the corrected reference phase were used to extract the resistive part of
the recorded AC-voltages, i.e. the voltage in-phase with the total current.  The experimental
data shown here are from the measurement of a representative single layer conductor. This
sample was made from 16 Bi-2223 HTS tapes placed  parallel to the long axis of the
former, an Etronax tube with a diameter  of 14.5 mm. Full coverage on the surface of the
former was achieved. The total length of the superconductor was 118.5 cm. The tapes were
soldered on to two short Copper tubes mounted at the ends of he former. The critical
current Ic of the sample was measured to 187 A (at 77.3 K, using the 1 µV/cm criterion).
When determining the effective contact resistance of the current joints we have found it
useful to calculate and plot the derivative of the in-phase part of the recorded AC voltage,
V=, as function of the total current Itot. Due to the skin effect it is necessary to determine the
contact resistance for each applied frequency, i.e. the DC contact resistance derived from
DC current-voltage curves can not be used in the AC case.  If the loss component of the
superconductor’s impedance is denoted Rs(I) and the effective contact resistance Rc , the
derivative of the in-phase  voltage (i.e. the differential AC-resistance) is given by:
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Assuming that the AC-losses in the superconductor are very low (Rs << Rc) at I ≈ 0 the
contact resistance can derived from a plot of I/V ∂∂ == versus I as the intersection of the data
with the ordinate axis (at  I = 0). An example of a recording at 48 Hz is shown in Fig. 13a.
The dashed curve, a guide to the eye, indicates the position of the intersection with the
ordinate axis. The limiting value for the effective contact resistance is in this case thereby
determined to Rc = 15.92 µΩ with an uncertainty of about  ± 0.05 µΩ. The scatter in the
data at currents below 15 A we believe is due to a too low time constant used for the phase
sensitive voltage measurement. However, as the results discussed below indicate it could
also be due to a re-distribution of the current. In order to systematically investigate the
influence of variations in tape quality on the measurements we on purpose buckled 4 of the
16 tapes on the sample cable conductor in one end. From the DC V-I curves we observed a
reduction from Ic of 187.0 A to 179.6 A corresponding to a reduction of about 1.8 A for
each of the damaged tapes. This is a reasonable value taking the total tape length of
118.5 cm into account. The resulting differential AC-resistance curve equivalent to the one
in Fig. 13a is shown in Fig. 13b.  The limiting value of the contact resistance is determined
to Rc = 16.42 ±0.05 µΩ when extrapolating a smooth curve through the data for currents
higher than ≈ 10 A. This value is  somewhat higher than for the un-damaged conductor.
This may be due to and enhancement of the apparent resistance of the solder-joints caused
by a redistributed current flow, i.e. the current in the damaged tapes is fractionally smaller

than in the rest of the tapes. Another explanation is that the places where the 4 tapes have
been buckled add an ohmic contribution to the measured voltages. We regard the latter
explanation as the most plausible also illustrating the weakness with this technique: any
ohmic (= resistive and current independent) contribution from the cable conductor itself
will be subtracted. Ohmic contributions could originate from eddy current losses in
surrounding metal (e.g. in the former) and from coupling losses in the silver matrix of the
HTS tapes or if the tapes touch electrically losses from currents flowing from tape to tape

Cable conductor      

Return leads     Supply     

LIA-1   
A

B

LIA-2   
A

B

Ref.

Ref.

Integrator     

Voltmeter for 
current monitoring     

Ref signal       

(RC3)      

 (RC1)     

R      

(RC2)     

Figure 14. Schematic of the electric circuit for measuring AC-losses in cable conductors. Two lockin
amplifiers measure the cable voltage and the signal from a precision Rogowski coil, RC2. The amplified
and integrated signal of Rogowski coil RC1 supplies the lock-ins with a reference signal and is used for
current monitoring. An inductive compensation circuit consists of the Rogowski coil, RC3, and a
resistive voltage divider, R.
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through the silver. In Fig. 13b at currents lower than 10 A the differential resistance is seen
to increase rapidly with increasing current. This we attribute to a current re-distribution
away from an even distribution effectively increasing the joint resistance. A rough estimate
of how big an influence it would have if the 4 damaged tapes are without current can be
calculated taking the total joint resistance in the undamaged case as Rc = Rc,n / N, where
Rc,n  is the joint resistance of each tape and N is the number of tapes.  This yields
Rc,n = 254.7 µΩ. If N = 12 the result is Rc,n(12) = 21.2 µΩ. Though this is a crude estimate
it makes sense when compared with Fig. 13b if it is assumed that no current flows in the 4
damaged tapes at very low currents where the resistance of the good tape is practically
zero.

Multi layered cable

In multilayered cable conductors generally the tapes at the lower layers are not accessible
for voltage measurements. Therefore in the example following all of the contacts have been
made on the joints to the layers, also focussing specifically on voltage lead position, phase
errors, inductive compensation and location of current return leads. The investigations have
been carried out on a 10 m long superconducting cable conductor model containing 8
layers manufactured by NKT. The conductor has been wound on a commercial winding
machine, adapted for use with the superconducting Ag-alloy sheathed Bi-2223 tapes. In
each end of the cable the superconducting tapes are soldered onto a cylindrical copper joint.
The critical current at a voltage criterion of 1µV/cm is 3240 A at 77 K.

The cable conductor was tested immersed in liquid nitrogen (LN2) in a 10 meter long bath
type cryostat made from non-metallic materials. A tight lid was placed over the bath. The
liquid nitrogen was replenished automatically when a certain minimum level was reached.
The electrical circuit is shown in figure 14. Current is supplied from a transformer with
only one secondary winding (the test circuit itself). The primary winding of this
transformer is fed by a variable transformer (not shown) allowing control of the voltage
and the current. The variable transformer is connected directly to the grid. Two copper
cables placed on each side of the cryostat returns the current to the transformer. In order to
detect if the geometry of the current return path has any effect on the measured loss two

return lead positions were tested, see
figure 15. In both cases the two return
leads were separated by a distance of
400 mm and placed with equal
distance to the cable conductor. In the
(two fold) symmetric case (SYM) the
return leads were placed in the same
plane as the cable conductor. In the
asymmetric case (ASYM) the leads
were placed in a plane 140 mm below
the conductor.
The voltage taps were placed at the
ends of the copper joints. This

140 mm

 200 mm
 Symmetric return lead
 position (SYM)

 Asymmetric return lead
 position (ASYM)

 200 mm

 Cable conductor

 Return lead
 240 mm2 Cu

Figure 15. The two configurations of the return leads
under investigation.
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position of the voltage taps secures meaningful measurements as the overall voltage is
measured avoiding any spurious and current dependent voltages produced by possible
current redistribution effects as a function of current in the joints (see above). The
measured voltage is thus a sum of the voltage over the superconductor itself and the
voltage over the copper joints. The latter contains contributions from the resistance of the
copper in the joints and from the contact resistance between the superconducting tapes and
the copper. The loss added to the measurement by the joint resistance has to be removed in
order to deduce the actual AC-loss of the superconductor. Three sets of voltage leads, L1,
L2 and L3, were connected to the voltage taps. The leads were positioned at distances from
the conductor of  1 mm, 15 mm and 30 mm, respectively, thus creating three different pick-
up loops.
The measurement set-up consists of two identical lock-in amplifiers, LIA-1 and LIA-2, and
three torroidal coils (Rogowski coils), RC1, RC2 and RC3. RC1 is a commercial Rogowski
coil with an amplifier and an integrator. The high quality output of the integrator of RC1 is
used for the current measurement (using a digital AC-voltmeter) and as external reference
signal for the two lock-in amplifiers. However, there is a small current dependent phase
shift in the output of the integrator. The purpose of RC2 and RC3 is to provide signals
which are shifted precisely 90.00° with respect to the current. These signals can then be
used to determine the actual phase shift of RC1 enabling a post-acquisition correction.
Additionally they can be used for inductive compensation. RC2 and RC3 have been
produced in the laboratory without any metallic parts other than the wire. The cable voltage
(and phase) is measured with LIA-1, and the reference voltage and phase from RC2 is
measured with LIA-2. RC3 is used for inductive compensation. The magnitude of the
compensation signal is made variable using a variable resistor.

The measurements were
performed by simultaneously
measuring the voltage and the
phase angle from the voltage
leads (LIA-1) and from RC2
(LIA-2) cf. figure 14. The
correct phase for the loss
measurement was found by
correcting the measured phase
of the cable-voltage (from
LIA-1) with the phase error of
RC1, which was measured
with the second lock-in
amplifier (LIA-2).
Subsequently the data were
corrected for the difference in
internal phase error of the two
lock-in amplifiers.
The difference in internal
phase error was found by
connecting both lock-in
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amplifiers (LIA-1 and LIA-2) to RC2. The result of this procedure was a significant
improvement of the phase accuracy - especially at low currents, where it is particularly
important to eliminate errors since losses are small and phase angles are close to 90
degrees. The loss was calculated by multiplying the derived in-phase rms-voltage with the
measured rms-current.

As the inductive component of the
measured voltage typically is much
larger (100 to 500 times) than the
resistive component the use of an
inductive compensation circuit was
evaluated. All measurements were
performed both with and without the
use of inductive compensation. The
compensation circuit was adjusted so
that the phase angle was brought
down to about 86° at low currents. If
the resistive voltage component, i.e.
the in-phase voltage, equals 0.1 mV

at a phase angle of 89.9° (typical values) then the inductive compensation voltage required
for bringing down the phase to 86° is 55.8 mV. The error in resistive voltage introduced by
an inductive compensation with a phase error of ± 0.01° is in this case
55.8 mV × cos(90 ± 0.01) = ± 0.0097 mV, equivalent to ±10 % of the resistive component.
However, as it will appear later in this paper the final result of the AC-loss measurements
presented is actually insensitive to small linear errors in the compensation circuit. The
reason for this is that we extract the non-linear losses of the superconductor from the
measured data and disregard linear resistive losses, primarily stemming from the copper
joints.
Our inductive compensation circuit is made of RC3 connected to a resistive voltage divider
cf. figure 14. This circuit is coupled in series with the voltage signal from the cable
conductor. The phase error produced by the presence of the variable resistor (voltage
divider) depends strongly on the value of the resistor. Its value should preferably be much
smaller than the input impedance of the lock-in amplifier (10 MΩ), but also much higher
than that of the Rogowski coil, RC3. A voltage divider of 5 kΩ was used for the
investigations in this paper.
The LIA manufacturer specifies a relative phase precision of 0.01°, but only an absolute
accuracy of <1°. A phase error of ± 0.02° (as we use two LIAs) in the uncompensated
signal at 89.9° will correspond to an error of ± 20 %. Compensated data with phase angles
at 86° (or below) are not sensitive towards systematic phase errors in the system, e.g. an
error of ± 0.02° corresponds to less than ± 1 % at 86°. In figure 16 the total loss vs. current
is shown for all the loops and lead configurations tested. It is noticed that the
measurements carried out using voltage leads L1 with asymmetric current return lead
position differ significantly from the rest of the data. The position of the return leads is
clearly affecting the voltage in measurement loop L1, while it only has little effect on the
rest of the data. Why the data acquired with the loop L1 and the asymmetric return lead
placement (ASYM) with and without compensation differ significantly from the data

R m
L1 SYM 1.24 µΩ 3.30
L1 C SYM 1.18 µΩ 3.26
L2 SYM 1.33 µΩ 3.27
L2 C SYM 1.08 µΩ 3.33
L3 SYM 1.36 µΩ 3.20
L3 C SYM 1.03 µΩ 3.30
L1 ASYM ÷ ÷
L1 C ASYM ÷ ÷
L3 ASYM To much scatter in data
L3 C ASYM 1.02 µΩ 3.34

      Table 2. Fitted joint resistances for 8 layer cable.
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acquired using the other loops and configurations is not clear. In single tape conductors an
effect of the lead extension on the loss has been observed as a result of the demagnetisation
effect produced by the shape of the conductor [19]. If the same reason holds here, then
some asymmetry of the current flow might be responsible for the deviation of the results of
the L1/L1-C ASYM data from the data obtained with all other voltage- and current return
lead configurations. The speculative cause of this could possibly be an asymmetric current
saturation in one of the layers of the cable caused by the magnetic field of the asymmetric
return lead position. Possibly the L1 loop is more sensitive to the resulting local
inhomogeneity of the magnetic field than the loops further away. In the symmetric return
lead position there is a significantly reduced magnetic field at the location of the conductor,
thus possibly reducing this effect.

The joint resistance is frequency dependent due to the skin effect. Hence, the DC value (0.7
µΩ) can not be used for correction of the loss measurements. The joint resistance, Rj, is
found by fitting the measured loss, P, at low currents with the expression

(53)  P = A·Im+Rj·I
2

where the first term on the right hand side represents the AC-loss in the cable conductor (A
and m are constants) and the second term represents the resistive loss in the joint. I is the
rms current. It is well acknowledged that eddy current losses are 10-100 times lower than
the hysteresis loss [38]. This leaves only the resistive losses of the joints. As the fitting
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only is possible when m and Rj actually are constant the data is checked for this
relationship. This is done by plotting the measured loss divided by the current squared vs.
the current (P/I2 vs. I). The constant m is no longer constant when the data stops being
linear in a double logarithmic co-ordinate system at high currents. In table 2 the deduced
joint resistances, Rj, are shown together with the found constants m. In all cases m is found
to be close to 3.3. In the case of loop L1 ASYM and L1-C ASYM the joint resistances are
not calculated as the data appear to be affected by the current and voltage lead positions as
discussed earlier in this paper. The joint resistance is also not found for the L3 ASYM data,
as these data contain so much scatter at low currents that a meaningful fit could not be
made. From the numbers presented in table II it appears that the joint resistances
determined from the data obtained with the uncompensated loops and symmetric return
lead placement are consistent with a mean value of about 1.3 µΩ. The relative difference
between the highest and the lowest joint resistance is found to be only about 10 %. For the
data obtained with the compensated loops the consistency is somewhat worse. Here the
relative difference is about 20 %. The highest value (which is close to the values derived
without inductive compensation) is found for the smallest loop size, L1, and the lowest
value is found for the largest loop size, L3. It looks as if more inductive compensation
causes lower apparent joint resistance (more inductive compensation is needed for bigger
loops as the inductive pick-up increases with the loop area). The reason for this, we
believe, is that the compensation circuit not only produces an inductive voltage of sign
opposite to the voltage over the cable conductor, but also produces a, however small,
resistive voltage of sign opposite to the resistive voltage over the cable. A voltage in-phase
with the cable current can be produced by the current in the compensation circuit which
causes self-induction in the coil. The complex current in the compensation circuit is
-dϕext/dt × (R + jωL)-1, where ϕext is the flux in the coil produced by the current in the
cable, L is the self-inductance of the coil, R is the total resistance of the compensation
circuit, and ω is the angular frequency. Since -dϕext/dt = jωMIcab, the voltage over the
voltage divider becomes proportional to (ωL + jR). Here M is the mutual inductance
between the cable conductor and RC3; Icab is the amplitude of the current in the cable. Thus
if R is not much larger than ωL, a significant in-phase component will be present. For the
phase angle to be less than 0.02° from 90° the corresponding R/ωL ratio should be higher
than tan(89.98°) ≈ 3000.  The estimated inductance of RC3 is L = 4 ± 2 mH. Thus the
R/ωL ratio is about 5 kΩ / 50 Hz × 2π × 4 ± 2 mH ≈ 2600-8000. The found reduction of
approximately 0.2 µΩ in the apparent joint resistance for the L3 C loop data corresponds to
a phase shift in the compensation circuit of 0.02°.
However, we are not directly interested in the joint resistance itself, but actually want to
subtract losses scaling with I2 from the data. The result can be seen in figure 17 where AC-
loss data are presented for each data set after correction for the loss with the found
(apparent) joint resistances. There is virtually no difference between data obtained for the
same loop with or without inductive compensation. For comparison the AC-loss calculated
using the monoblock model is also shown:
Even though the AC-loss data obtained with L2 SYM, L2C SYM, L3 SYM and L3-C
SYM appear to be consistent, it can not be excluded that elevating the voltage leads further
above the conductor surface will give slightly higher AC-loss data - even in case of
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symmetric return lead placement (which is only two-fold symmetric).  The conductor loss
at 2 kA is found to be 0.6 ± 0.15 W/m.

3.6.3 Resonance method

The circuit diagram for the parallel resonance circuit is shown in figure 18. It consists of
the cable, represented by its inductance L1 and its current dependent resistance (due to the
ac loss) Rac. The resistance of current leads and contacts is represented by R, in series with
an optional inductor L2, having a resistance R2. The resonance circuit is completed by the
capacitance C1, which typically will consist of many capacitors in parallel. The circuit is
charged up to the critical current by a dc source over the switch S1 in the closed state (S2

closed). The dc voltage on the cable could actually be measured at the cable at this point to
determine its dc critical current. When the switch S1 is opened, the current has no way to

go as to charge the capacitor C1, and oscillations will start. The magnitude of the ac current
is then measured by the Rogowski coil, the output of which is measured as a function of
time using an oscilloscope. Alternatively the voltage on the capacitor can be measured. In
this mode of operation the energy in the circuit 1/2 Ltot Io

2 is supplied by a dc source, where
Ltot is the total circuit inductance and Io the initial current.
In a second mode of operation the switch S2 is initially open, S1 closed. The dc source now
charges the capacitor C1 up to a certain pre-set voltage, which determines the energy 1/2 C1

Vo
2 in the system. Then S1 is opened, and the oscillations are started by closing the switch

S2. In this second mode voltage and current will oscillate as [39]

(54)      I = I0 e
-δt sin (ωrt)

(55)      V = V0 e
-δt cos (ωrt)

where δ = Rtot/2Ltot= (R+Rac(I))/2Ltot, and ωr
2

 = (2πfr)
2 = ω0

2
 − δ2, fr being the resonance

frequency. The undamped frequency is given by ω0 = (LtotC1)
-1/2.  Rtot and Ltot are the total

resistance and inductance in the circuit, respectively. A periodic oscillation is only

Figure 18. Resonance circuit with superconducting cable.
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expected if δ<ω0. The damping of the current is caused by the energy loss in the system -
mainly in the Ohmic resistance and the ac loss in the superconductor. In the first mode of
operation the sin in equation 1 is replaced by a cos, and vice versa in equation 2. It should
be noted that the superconductor is a non linear element, so that the sinusoidal shape of the
oscillations no longer holds for vanishingly small resistive losses in comparison with the
losses in the superconductor.

When cos (ωrt)=1 all of the energy is stored in the capacitor. Then the energy E(t) in the
system as function of time
can be expressed as function
of the peak voltage Vp

(56)   E(t) = 1/2 C Vp
2

Then the power loss Pac

=dE/dt, leading to

(57)   Pac = C Vp dVp/dt

This is also true for a non-
linear oscillation. The
expected amplitude of the
envelope (the maxima of the
sine curve) is plotted
schematically as a function
of time in figure 19. As the

resistance of the superconductor (its ac loss) depends strongly on the current (typically Rac

∝ I2) a non-linear curve is expected in a log-linear plot. However, once the current I0 has
decayed to a sufficiently
small value compared to the
critical current of the
superconductor one would
expect its power loss to be
negligible compared to the
loss in the Ohmic resistors
in the circuit. Thus for
longer times the decay
curve should become a pure
exponential decay, allowing
the determination of the size
of the Ohmic resistance R
in the circuit. Since R is
independent of current it is
possible to extrapolate the
loss due to it down to

0 5 10 15 20 25 30

0.1

1 non-exponential 

due to superconductor

 total

 ohmic part (exponential decay)re
la

tiv
e 

A
m

pl
itu

de

time [arb. units]

Figure 19. Principle of operation. The amplitude A of the
oscillation decays with time due to losses in the superconductor and
joint resistances.

0 5 10 15 20

-4

-2

0

2

4

6

f=1634 Hz
C=0.011 F, L=0.849 µ H

R
dc

= 52.5 µ Ω

R
ac

= 406 µ Ω

ca
pa

ci
to

r 
vo

lta
ge

 (
V

)

time (ms)

Figure 20. Experiemntal decay of Voltage in test curcuit.



36

smaller times. Thus the voltage due to the superconductor is simply the difference between
the two curves. The RESCUE method has thus an intrinsic calibration.

For a single layer laboratory scale cable conductor the self inductance is of the order of
1µH/m. The capacitance desirable to obtain a resonance frequency of 50Hz (the frequency
of interest for applications) is about 1F, a very large value. To achieve a capacitor bank
with 1F many thousands of capacitors used for electric motors would have to be put in
parallel (this is a true ac application, and thus electrolytic capacitors cannot be used in a
straight forward fashion). This is possible and would also provide the necessary current
carrying capability, but costly and not too practicable. If the requirement for the resonance
frequency is eased to 500 Hz then a capacitor of 10mF is sufficient. An easier way to lower
the resonance frequency into the vicinity of 50 Hz is to add an extra inductor. For example
9 (22) turns of  copper wire or braid with a diameter of 0.6m have an inductance of 40(400)
µH [40], bringing back the resonance frequency to around 100Hz. With an extra inductor
L2 care has to be taken to minimise its Ohmic resistance, possibly by also placing it into
liquid nitrogen. It should be noted that the frequency dependence of the hysteretic losses in
the superconductor is linear up to frequencies around 1kHz [41]. Thus there is no absolute
need to push down the resonance frequency to 50Hz. A drawback of adding extra
inductance is the additional resistance added in the circuit. A variant of the method
described above using a specially wound superconducting coil of high inductance to
measure the ac loss of specimens inserted into it has been described in the literature [42].
In the future quasi-continuous operation of the proposed method could be achieved by
developing a small electronic circuit that keeps the oscillation amplitude constant.  This
could be done by for example by measuring the voltage on the capacitors, and adding
energy using well dosed short pulses (of known energy) at the voltage maximum in order to

achieve the same amplitude as
the previous oscillation. These
compensation techniques are
well-known and often used in
electronics. The ac loss is then
given by the energy input into
the circuit for a given amplitude.
A capacitor bank was
constructed containing 100
capacitors in parallel with the
nominal capacitance of 100 µF
each. The measured total
capacitance (using an RC
circuit) after construction turned
out to be 11.0 mF. A
superconducting cable model
constructed from Bi2223 tapes

was used for experiments. It is 1.1m long, and consists of a single layer of 32 tapes
helically wound onto a fibreglass former. Its dc critical current (77K, self field) on first
cooldown was 420 A (1µV/cm criterion), with a rather broad transition. Some damage

100 1000
0.01

0.1

1

10

100

 RESCUE, at 1634Hz

 electrically, extrapolated from 80Hz

 

 

ac
 p

ow
er

 lo
ss

 (
W

)

peak current (A)

Figure 21. Ac loss determined by RESCUE and comparison
with electrical method.
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occurred during subsequent cooldowns, degrading the critical current to about 320A.
However, the ac loss measured by the 4-probe method does not show the typically expected
sharp increase of the ac loss at the degraded critical current as it is seen for example in
single tapes.
For the tests reported here the capacitor bank was placed directly above an open bucket
type cryostat, keeping the connections short. An additional inductor was not used, so that
the circuit inductance was rather low - and thus the resonance frequency rather high. A dc
current supply was used to charge the circuit. The voltage on the capacitor bank as a
function of time was measured using a LeCroy digital oscilloscope. It is shown in figure 20
for an initial charging current of 500A. A dc circuit resistance of  52.5µΩ can be calculated
from the dc voltage before the oscillations start. The resonance frequency is 1634Hz,
leading to a circuit inductance of Ltot=0.849 µH. The Ohmic circuit resistance is calculated
to be Rtot = 406 µΩ at the resonance frequency. This value includes all contacts, leads and
the internal resistance of the capacitor bank. The non-linear decay of the current
schematically shown in figure 19 could be observed experimentally, but only for the first
few oscillations and much smaller in magnitude than indicated in the figure. In order to
obtain a more accurate notion on the superconductor contribution the whole decay curve
was fitted to equation 55. For this purpose the data prior to the first peak in voltage was cut
off, and the rest fitted. The fit and the data cannot be distinguished in the figure. The result
of the fit is a time dependent resistance in form of a 3rd. order polynomial. This time
dependent resistance can be remapped into a current dependent resistance using the
measured time dependence of the current. The resulting loss in the superconductor can be
obtained in two ways: either the deduced apparent resistance is multiplied by the square of
the rms current value obtained from figure 20, or equation 55 is used. Both methods agree,
and give the curve shown in figure 21. Using the four probe method a loss of 0.3W was
measured at a current of 300A (rms) and 80Hz, corresponding to 6W at 1600Hz (if the loss
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