Physica C 235-240 (1994) 1325-1326 North-Holland

Dependence of T_c on Debye temperature Θ_D for various cuprates

Hassel Ledbetter

National Institute of Standards and Technology, Boulder, Colorado 80303, U.S.A.

I extend the T_c - Θ_D relationship established by Ledbetter and coworkers for La-O and Y-O, and by Dominec for Bi-O, to include TI-O and Hg-O compounds. In BCS-McMillan materials, Θ_D occurs both in the preexponential factor in the expression $T_e \sim \Theta_D \exp(-\lambda^{-1})$ and in McMillan's expression for the electron-phonon parameter $\lambda = C/M < \omega^2 >$, where $< \omega > ~ \Theta_D$. In BCS materials, T_e increases with decreasing Θ_D , that is with lattice softening. In all five cuprate superconductors listed above, the opposite occurs: T_e increases with lattice stiffening. From these results, I draw two principal conclusions. First, T_e depends on phonons because it depends on Θ_D , the quintessential phonon parameter. Second, the T_e - Θ_D relationship for high- T_e oxide superconductors differs dramatically from that for conventional BCS materials.

Despite enormous study, both experimental and theoretical, two key questions remain unresolved. In high- T_c oxide superconductors, do phonons affect T_c ? If yes, then how? Similar to BCS-McMillan, or otherwise?

To determine whether phonons enter the problem, we can focus on the Debye characteristic temperature Θ_D , which relates to phonon frequencies through $k\Theta_D = \hbar\omega_D$, where ω_D denotes the maximum phonon frequency and k and \hbar take their usual meanings. Similarly, we could focus on the Einstein temperature $\Theta_E = (3/4)\Theta_D$.

In previous studies, Ledbetter and coworkers [1-2] showed for La and Y cuprates that T_c depends on Θ_D , increasing approximately linearly with increasing Θ_D . Thus, contrary to conventional superconductors, <u> T_c increases with lattice stiffening</u>, not lattice softening. Dominec [3] found a similar relationship for Bi cuprates, although results for these compounds show considerable scatter.

Here, as shown in fig. 1, I extend this analysis to include Tl and Hg cuprates. Two Tl-O lines appear because there are two crystal structures. The point corresponding to 1201 Tl-O is conspicuously low, suggesting that its slight modification (by composition or pressure) might raise T_e enormously.

In all cases, we determined Θ_D from elastic constants measured by high-pressure diffraction [4],

0921-4534/94/\$07.00 1994 - Elsevier Science B.V. SSDI 0921-4534(94)01226-1

PHYSICA G

Figure 1. T_c variation with Debye temperature for five cuprate classes. Against BCS-McMillan behavior, T_c increases with lattice <u>stiffening</u>.

calculated from lattice-dynamics models [5], or measured acoustically [1-2]. We avoided using specific-heat Θ_D values because they show such wide variations, as reviewed by Junod [6].

Excluding the La cuprates, the results in fig. 1 show a monotonic increase of T_e with increasing Θ_D and a possible convexity or bending-over at higher T_e values. Thus, the general trend agrees with the within-group trend. That the La cuprates fall below the general curve is not too surprising. These cuprates show different thermodynamic properties than the rest. For example, they show much higher pressure derivatives dT_e/dP [7]. In terms of the usual BCS expression for T_e (see abstract), these materials behave as though the $exp(-\lambda^{-1})$ term has little importance.

If we accept that $T_e \sim \Theta_D$, then certain other relationships must follow. For example, invoking the Grüneisen-parameter definition: $\gamma =$ dln Θ_D /dlnV, then T_e must vary with volume according to $T_e \sim V^{\gamma}$, similar to a relationship found experimentally by Schilling and coworkers [8] that $T_e \sim V^{-1.2}$.

In sum, for high-T_c oxide superconductors, I reach two principal conclusions: (1) T_c depends on Θ_D , thus on phonons. (2) The T_c- Θ_D relationship differs strongly from that for conventional BCS-McMillan superconductors. The similar behavior of five cuprate groups provides useful information for developing higher-T_c materials and for testing proposed models.

REFERENCES

- H. Ledbetter, S. Kim, and A. Roshko, Physica C, 190 (1991) 129.
- 2. Same authors, Z. Phys. B, 89 (1992) 275.
- J. Dominec, Phys. Stat. Sol. (b), 169 (1992) K83.
- B. Hunter, J. Jorgensen, J. Wagner, P. Radaelli, D. Hines, and R. Von Dreele, Physica C, 221 (1994) 1.
- A. Kulkarni, F. de Wette, J. Prade, U. Schröder, and W. Kress, Phys. Rev. B, 43 (1991) 5451.
- A. Junod, in Physical Properties of High-Temperature Superconductors II, World Scientific, Singapore, 1990.
- J. Schilling and S. Klotz, in Physical Properties of High-Temperature Superconductors III, World Scientific, Singapore, 1992.
- A.-K. Klehe, J. Schilling, J. Wagner, and D. Hinks, Physica C, 232 (1994) 313.
- S. Kim helped in many ways with this study.