
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 137.78.7.61

This content was downloaded on 23/10/2013 at 04:26

Please note that terms and conditions apply.

Finite Hubbard Model with Phonon Coupling

View the table of contents for this issue, or go to the journal homepage for more

1986 Phys. Scr. 34 245

(http://iopscience.iop.org/1402-4896/34/3/012)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1402-4896/34/3
http://iopscience.iop.org/1402-4896
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Physica Scripta. Vol. 34, 245-247, 1986. 

Finite Hubbard Model with Phonon Coupling 
W.-H. Steeb, J.  A. Louw and C. M. Villet 

Rand Afrikaans University, Department of Physics, PO Box 524, Johannesburg 2000, Republic of South Africa 

and 

A. Kunick 

Kraftwerkunion, Rechenzentrum, 8520 Erlangen, West Germany 

Received January 24, 1986; accepted March 26, 1986 

Abstract 

The spectrum of the two point Hubbard model with phonon coupling is 
studied. In particular the connection with quantum chaos is discussed. 

Barma and Bari [l] studied the Hubbard model coupled to 
lattice vibrations for an infinite linear chain. Starting from 
the Hubbard model they expanded the hopping integral to 
first order in the phonon operators. The thermodynamic and 
transport properties for this model can only be obtained 
approximately. In the present paper we discuss a finite 
Hubbard model with phonon coupling. To be precise, a two 
point model coupled with one phonon mode is discussed. 
Finite dimensional Hubbard models without phonon coupl- 
ings have been widely studied in literature [2-4]. The model 
under consideration is given by 

+ k 1 (c:,c2u + C h U ) ( b +  + b), (1) 

where 6, b+ are the Bose annihilation and creation operators 
for the vibrational mode, respectively. The cif;, ciU are the 
Fermi annihilation and creation operators and niu = c,f;ciU. 
The quantity t is the hopping integral and U is the on-site 
Coulomb repulsion. The third is the oscillatory energy and 
the fourth term describes the interaction. The two-site 
Hubbard model with vibronic coupling has been investigated 
by several authors [5-71. Kral [5] and Rice [7] studied this 
model in connection with TCNQ salts. 

We study the spectrum of this Hamiltonian in dependence 
on k. In particular the connection with “quantum chaos” 
[4, 8-13] is discussed. 

A large number of authors (compare [4, 8-13] and refer- 
ences therein) have studied the interrelation between classical 
Hamiltonian systems which show chaotic behaviour above a 
threshold value E, and the corresponding quantum system. 
Various approaches have been applied to “define” what we 
understand by “quantum chaos”. Among others, there are 
the method of avoiding energy-level crossings and the distri- 
butions of nearest-neighbour spacings. When we consider the 
method of distribution of the nearest-neighbour spacings we 
find that in the regular case (i.e., the classical system is 
integrable) the energy eigenvalues are distributed randomly, 
leading to a Poisson-type distribution function Ell]. A regular 
spectrum (“quantum chaos”) occurs when energy levels are 

U 

correlated, resulting in a repulsion of adjacent levels [12]. The 
nearest neighbour-spacings distribution function peaks at a 
finite value and exhibits the typical feature of a Wigner distri- 
bution. In this case the classical system shows chaotic behav- 
iour. A warning is in order: In literature the impression is 
given that a Wigner distribution is the “hallmark” of quan- 
tum chaos. While rigorous proofs exist for integrable systems 
[l 11, no such proofs exist for the non-integrable systems. 
Based on a “plausible assumption” about the spatial distribu- 
tion of the wave function for chaotic Hamiltonians, Peschukas 
[ 121 was able to derive the level spacings distribution in the 
irregular spectrum, and he showed that it is close to a Wigner 
distribution. The possibility cannot be excluded that strongly 
non-separable but integrable systems rise to highly non- 
Poisson, and maybe Wigner-like distribution. These remarks 
indicate that the question of chaos in quantum mechanics is 
still far from being solved. In the given model (1) we have the 
additional problem that there is no classical analog (compare 
[4, 131 for the discussion of this point). Thus we study the 
spectrum of Hamiltonian (1) in dependence on k and ask 
whether or not there is level repulsion. 

First of all let us briefly discuss the (well-known) case 
without the phonon coupling. The two point Hubbard model 
is given by 

2 

The Hamiltonian HH commutes with the number operators 
f ie  = ,(nit + n i l )  and with the spin operator in z-direction 
,$ = (l/2) Z:=] (nir - t ~ , ~ ) .  In the following we study the half- 
filled case, i.e., Ne = 2. Consider first the subspace with 
S, = 0. The Hamiltonian is invariant under spin reversal 
(t e 1) and under lattice site reversal (1 S 2). Consequently, 
we can decompose the four dimensional space in invariant 
subspaces, namely SI = {I”]), IY,)} S, = {lY3)} and 
S3 = (IY4)) where 

From the subspace SI we obtain the eigenvalues 

2t - (“’ 4t2 I” f E = - +  - + 4  
t 
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or 

- E ,  
U 

The 
and 

function lY3) is eigenfunction with eigenvalue E = 0 
IYd) is eigenfunction with eigenvalue E = U. Consider 

now the subspace with S, = 1. The only state is lY5) = 
chc$IO) and H I Y 5 )  = 0. Analogously, for the subspace 
S, = - 1 with lY6) = ~ ~ ~ $ 1 0 )  we find H I Y 6 )  = 0. 

Let us now study the Hamiltonian (1). Consequently, we 
have a product space. We set In) = (n!)-1’2(b+)n/O) with 
b10) = 0 and (010) = 1. For S, = 0 the basis in the product 
space is now given as 

s; = {IY1)ln), IY2)ln), n = 0, 1, 2, . . . }  (54  

s; = {IYJJn), n = 0, 1, 2, . * .> (5b) 

s; = { l Y 4 ) l n ) ,  n = 0, 1, 2, . . . } .  (54 

fW1)ln) = 2tl\Y,)ln) + (U + nw)l’YI>In) 

The we obtain 

+ 2k(n + 1)”21Y~)ln + 1) 

+ 2kn1”lY2)1n - 1 )  (6b) 

HW2)In) = 2 t IY l )b )  + nolY2>ln> 

+ 2k(n + 1)1i21Yl )In + 1) 

+ ~ ~ P Z I ’ ~ J Y ’ , ) I T I  - 1). (6b) 

l ~ I ) l O L  I%)IO), IY,)l1), IY2)I1), * * * * Consequently, for 
The order of the basis in the subspace S; is given by 

the subspace S,’ we find the infinite matrix representation 

U 2t 0 2k 0 0 . I .  

f?;o) 2t 0 2k 0 2; 0 

0 0  2 $ E  u + 2 w  

0 0 2@ 2t 2w . . .  
, . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . .  

(7) 

In the subspace Si we have the energy levels nw ( n  = 0, 
1,2,  . . . )and  in the subspace Si we find U + no (n = 0, 1, 
2, . . .). In both cases the eigenvalues do not depend on k.  For 
the subspace with S, = 1 we have the eigenstate chc$IO)(n) 
with eigenvalues no. Analogously, for S, = - 1 we find the 
eigenvalue no. Here, too, the eigenvalues do not depend on k.  

Let us now discuss the spectrum. We have only to discuss 
the subspace S,‘. The spectrum is discrete and bounded from 
below. For k = 0 the eigenvalues are given by 

E,, no U ( :;Ii2 - = - + - +  4 + -  . 
t t 2t - 

For the infinite matrix (7) we have calculated numerically the 
eigenvalues. We have truncated the infinite matrix, where we 
have neglected the matrix elements for n, m > 1200. Then we 
have solved the eigenvalues of the 1200 x 1200 matrix. Due 
to the truncation it is obvious that the higher eigenvalues are 

4 

3 

2 

1 

0 

- 4  

I 
-*i Y 
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Fig. 1 .  Energy eigenvalues as a function of k for U = 5, t = 1, w = 0.5. 

not sufficiently accurate. In our consideration we take into 
account the first 100 eigenvalues. If k is not large compared 
to U ,  t ,  and w we can expect that these eigenvalues are 
sufficiently accurate. For fixed values of U ,  t ,  and w we have 
calculated the eigenvalues in dependence on k .  In Fig. 1 we 
have plotted the eigenvalues as a function of k for U = 5, 
t = 1, and w = 0.5. Figure 2 shows the eigenvalues as a 
function of k for U = 1, t = 1, and w = 0.5. In both figures 
we have included the eigenvalues from the other subspaces. 
Let us first discuss the case U = 5 ,  t = 1, o = 0.5 and 
0 s k s 0.5. As expected the eigenvalues decrease with 
increasing k .  In the subspace S; the eigenvalues are not 
degenerate. The second excited state of the subspace S,‘ crosses 
the eigenvalue 0 (eigenvalue 0 is threefold). “Quantum 
chaos” is indicated if in the subspace under consideration 

-3 I 
-4: 

0 0.1 0.2 0.3 0.4 0.5 k 

Fig. 2. Energy eigenvalues as a function of k for U = 1 ,  t = 1, w = 0.5. 
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there is a r eds ion  of adjacent levels. In the present case it References 
makes only ̂ sense to stud; this question in the subspace S,’. 
Our numerical results show that there is no repulsion with 
increasing k. However, for the first 20 energy levels in the 
subspace S,’ we have no crossing for the range 0 5 k 5 0.5. 
For the case U = 1, t = 1 and w = 0.5, and 0 5 k 5 0.5 
the eigenvalues in the subspace S,’ again decrease with 
increasing k. The eigenvalues in the subspace S,‘ are not 
degenerate. However, we find crossings for the higher energy 
levels. In this sense the system (subspace S,’) does not show 
“quantum chaos”. The lowest eigenvalue is in the subspace 
S,’. The lowest eigenvalue which does not belong to S,’ is 
again 0 (three times degenerate). For k = 0 three eigenvalues 
of the subspace S; are below E = 0. When we decrease U and 
w more and more eigenvalues of the subspace S;  are below 
E = 0. 
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