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The discontinuities of Tc in Niobium under pressure are examined by means of the pseudopoten-
tial plane-wave implementation of the electron-phonon coupling calculated from density-functional
perturbation theory. Both low- and high-pressure discontinuities of Tc have their origin in the Kohn
anomalies and are caused by the low-frequency phonons, but the mechanism leading to the disconti-
nuities is different in the two cases. The low-pressure anomaly is associated with a global decrease of
the nesting factor in the whole Brillouin Zone and not to a visible change in the band structure. The
high-pressure anomaly is instead connected with a well-pronounced change in the band structure.

PACS numbers: 71.15.Mb, 71.18.+y, 63.20.Kr, 74.62.Fj

I. INTRODUCTION

Niobium is a superconductor with a quite high crit-
ical temperature, Tc= 9.25 K, for a simple metal. The
experiments under pressure by Struzhkin et al.1 show dis-
continuities of Tc at about 5 GPa and at 50-60 GPa. The
low-pressure discontinuity manifests itself as an increase
of Tc by about 1 K. The high-pressure anomaly is associ-
ated with a decrease of the critical temperature. To date,
the nature of these pressure-induced discontinuities is not
clear. Previous theoretical studies2,3,4,5 agree in attribut-
ing the high-pressure anomalies to some visible change in
the band structure. The low-pressure discontinuity of Tc,
however, remains mysterious. The goal of this work is to
give more information about the nature and the origin of
the anomalous behavior of Tc in niobium under pressure.
In particular, we want to understand the role of Kohn
anomalies6 of the phonon spectra. Kohn anomalies are
known to drastically change the critical temperature in
superconductors and are believed to play a role in all
body-centered cubic (bcc) metals Nb, Mo, V, Ta.7

Therefore, we look to the details of the electronic struc-
ture and dynamical properties of Nb at eight pressures
in the range from -16 GPa to 78 GPa. We show that
Kohn anomalies are responsible for both discontinuities,
but the origin of the low-pressure Kohn anomaly is dif-
ferent from that of the high-pressure one. Both can be
identified by a closer study of the Fermi-surface nesting
and of the band structure.

The accurate calculation of the electron-phonon cou-
pling λ and of the spectral function α2F is crucial for our
problem. To this end we use density-functional perturba-
tion theory8,9 (DFPT) in a pseudopotential plane-wave
approach. The Eliashberg function and the nesting fac-
tor require an integration of the double delta over the
Fermi surface, which needs to be done with a high nu-
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merical accuracy. We give a few advices for an efficient
calculation of the electron-phonon coupling. Some of the
technical details, however, can be used in general for cal-
culations of other properties which require an accurate
numerical integration with the delta function.

This paper is organized as follows: In the next Section
we remind the physical definitions and give some details
of the calculation of electron-phonon interaction coeffi-
cients using Vanderbilt’s ultrasoft pseudopotentials.10 In
Sec. III, we give the technical details (Subsec. A) and
present results for several properties under pressure: the
lattice constant and bulk modulus (Subsec. B), the band
structure and Fermi surface (Subsec. C), the phonon fre-
quencies and linewidths (Subsec. D), and the Eliashberg
function and electron-phonon coupling constant (Subsec.
E). In Sec. IV, we discuss the origin of the anomalies,
and we summarize in Sec. V. In the Appendix, we give
numerical details for the calculation of the Eliashberg
function.

II. ELECTRON-PHONON COUPLING

A. Definitions

The Hamiltonian for the electron-phonon interaction
is given in second quantization by

Hel−ph =
∑

kqν

g
qν,mn
k+q,k c

†m
k+qc

n
k (b†−qν + bqν) (1)

where c†mk+q and cnk are the creation and the annihilation
operators for the quasiparticles with energies εk+q,m and
εk,n in bands m and n with wavevectors k+q and k, re-
spectively; b†qν and bqν are the creation and the annihila-
tion operators for phonons with energy ωqν and wavevec-
tor q; the matrix element gqν,mn

k+q,k describes the electron-

phonon coupling. The coupling constants gqν,mn
k+q,k define

the spectral function, α2F (ω), its first reciprocal momen-
tum, λ, and the superconducting electron-phonon cou-
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pling constant, λqν , by the following set of equations:

α2F (ω) =
1

N(εF )

∑

mn

∑

qν

δ(ω − ωqν)
∑

k

|gqν,mn
k+q,k |2

×δ(εk+q,m − εF )δ(εk,n − εF ), (2)

λ = 2

∫
α2F (ω)

ω
dω =

∑

qν

λqν , (3)

λqν =
2

N(εF )ωqν

∑

mn

∑

k

|gqν,mn
k+q,k |2

×δ(εk+q,m − εF )δ(εk,n − εF ). (4)

The quantity N(εF ) is the density of states at the Fermi
energy, εF , per both spins.

We introduce, after Allen,11 the phonon linewidth γqν :

γqν = 2πωqν

∑

mn

∑

k

|gqν,mn
k+q,k |2

×δ(εk+q,m − εF )δ(εk,n − εF ) (5)

which enters the Eliashberg function, α2F , and the
electron-phonon coupling constant, λqν , as follows:

α2F (ω) =
1

2π N(εF )

∑

qν

γqν

ωqν
δ(ω − ωqν), (6)

λqν =
γqν

π N(εF ) ω2
qν

. (7)

B. Matrix elements of the electron-phonon

interactions

Within DFPT8,9 the electron-phonon matrix elements
can be obtained from the first-order derivative of the
self-consistent Kohn-Sham12 (KS) potential, VKS , with
respect to atomic displacements, ~usR for the s−th atom
in lattice position R, as:

g
qν,mn
k+q,k =

(
~

2ωqν

)1/2

〈ψk+q,m|∆V qν
KS |ψk,n〉, (8)

where ψk,n is the n−th valence KS orbital of wavevector
k and

∆V qν
KS =

∑

R

∑

s

∂VKS

∂~usR
· ~uqν

s

eiqR

√
N

(9)

is the self-consistent first order variation of the KS po-
tential, N is the number of cells in the crystal, and ~uqν

s

is the displacement pattern for phonon mode ~vqν
s :

~uqν
s =

~vqν
s√
Ms

(10)

The latter is obtained from the diagonalization of the

dynamical matrix, Φαβ
ss′ (q):

∑

s′β

Φ
αβ
ss′(q)√
MsMs′

v
qν
s′β = ω2

qνv
qν
sα . (11)

Ms is the mass of atom s, α, β denote cartesian coordi-
nates.

C. Matrix elements with ultrasoft pseudopotentials

The use of ultrasoft (US) pseudopotentials (PPs)10 al-
lows in many cases a significant reduction of the needed
plane-wave kinetic energy cutoff, as compared with stan-
dard norm-conserving pseudopotentials.13,14,15 This en-
ables a more efficient calculation, at the price of introduc-
ing additional terms originating from the augmentation
charges employed in this scheme.10 A detailed description
of DFPT with US PPs has been given elsewhere by Dal
Corso.16 Here, we only briefly describe terms appearing
in the electron-phonon coupling.

With US PPs the KS orbitals, ψk,n, satisfy a general-
ized eigenvalue problem

(
−∇2

2
+ VKS − εk,nS

)
ψk,n = 0 (12)

where the overlap matrix, S, is given by

S(r1, r2) = δ(r1 − r2) +
∑

snm

qnm

×βn(r1 − Rs)β∗
m(r2 − Rs). (13)

The charge correction qnm, in the above formula, is de-
fined with the augmentation functions, Qnm(r−Rs), as
follows

qnm =

∫
d3r Qnm(r − Rs), (14)

and the projector functions βn(r − Rs) are specific for
the type of atom at the position Rs, and are obtained
from the atomic calculations.

The valence charge density is then computed as

ρ(r) =
∑

k,i

(|ψi(r)|2 +
∑

smn

Qmn(r − Rs)〈ψk,i|βm〉〈βn|ψk,i〉)

=
∑

k,i

∫ ∫
d3r1d

3r2ψ
∗
k,i(r1)K(r; r1, r2)ψk,i(r2), (15)

where the sum over k and i runs on occupied KS orbitals,
the kernel

K(r; r1, r2) = δ(r − r1)δ(r − r2) +
∑

snm

Qnm(r − Rs)

×βn(r1 − Rs)β∗
m(r2 − Rs) (16)

has been introduced for later convenience.
The KS selfconsistent potential in the US-PP scheme

reads

VKS(r1, r2) = VNL(r1, r2)

+

∫
d3r Veff (r) K(r; r1, r2). (17)
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The effective potential, Veff , contains the local, the
Hartree and the exchange-correlation (xc) terms

Veff (r) = Vloc(r) +

∫
d3r1

ρ(r1)

|r1 − r| + Vxc(r), (18)

while the nonlocal term generalizes the usual Kleinman-
Bylander14 form allowing several projectors for a given
angular momentum component

VNL(r1, r2) =
∑

snm

D0
nm βn(r1 − Rs)β∗

m(r2 − Rs). (19)

When augmentation charges vanish (Qnm = 0) the above
formulas reduce to the standard norm-conserving formu-
lation.

In order to generalize Eq. (8) to the case of US PPs,
one needs to compute first order perturbation theory in
presence of overlap matrix, S, as below

g
qν,mn
k+q,k = 〈ψk+q,m|∆V qν

KS − εk,n∆S|ψk,n〉, (20)

where

∆S =
∑

R

∑

s

∂S

∂~usR
· ~uqν

s

eiqR

√
N
, (21)

and ∆V qν
KS is given by Eq. (9).

The derivative of the Kohn-Sham potential is given
in Ref. [16] and for gradient-corrected functionals in
Ref. [17].

III. RESULTS FOR NIOBIUM UNDER

PRESSURE

A. Technical details

The calculations of the ground-state electronic and
vibrational properties of Nb were performed using the
Local-Density Approximation (LDA) and an ultrasoft
pseudopotential. A kinetic energy cut-off of 45 Ry
(270 Ry) was chosen for the expansion into plane waves
of the wavefunctions (density). Such high cut-offs were
necessary to obtain accurate values for some ”strategic”
low-frequency phonons, located mostly near the Γ-point.
In fact, even small errors in this region of the spectrum
lead to large relative errors in the estimate of the α2F
function and of λ.

The integration over the Brillouin zone (BZ) requires
special techniques to account for the Fermi surface. We
used the broadening technique proposed in Ref. [18] with
a smearing parameter of 0.03 Ry (which was tested19

to reproduce well the experimental spectra). The grids
for the electronic BZ integration (k-grid) and for the
phononic BZ integration (q-grid) have been chosen ac-
cording to the Monkhorst-Pack scheme.20

Details of the numerical quadrature used to evaluate
the double-delta term appearing in Eq.(2), together with
convergence tests, are given in the Appendix.

All calculations were performed using the quantum-

espresso
21 suite of codes.

a V/V0 P B

6.34 1.10 -16.6 134
6.24 1.05 -9.5 162
6.14 1.00 -0.6 192
6.04 0.95 10.0 220
5.94 0.91 22.9 249
5.84 0.86 38.8 308
5.74 0.82 56.7 354
5.64 0.78 78.4 424

TABLE I: The lattice constant a (in a.u.), the correspond-
ing volume ratio V/V0, the pressure P (in GPa), and bulk
modulus B (in GPa) calculated for BCC niobium crystal at
several pressures. The experimental lattice constant22 is 6.24
a.u. and the bulk modulus23 is 170 GPa.

B. Structural properties

Niobium in the body-centered cubic structure was
studied at eight values of the lattice parameter from
6.34 a.u. to 5.64 a.u in steps of 0.1 a.u. These lattice pa-
rameters correspond to pressures ranging from -16.6 GPa
to 78.4 GPa. The results are reported in TABLE I.
The calculated static equilibrium lattice constant (zero-
point motion and thermal effects not included) is about
6.14 a.u., slightly underestimating (as it usually happens
within LDA) the experimental value22 of 6.24 a.u. The
calculated bulk modulus at the theoretical equilibrium
lattice is 192 GPa, versus a room-temperature exper-
imental value23 of 170 GPa and a calculated value of
162 GPa at the experimental lattice parameter of 6.24
a.u. The calculated bulk modulus is very sensitive to
the volume: it varies by more than a factor three in the
considered range of pressures.

C. Band structure and Fermi surface

The evolution of the band structure as a function of
pressure is presented in FIG. 1, showing no qualitative
change in the electronic states at the Fermi surface up to
about 38.8 GPa. From 56.7 GPa to 78.4 GPa, we observe
some changes along the Γ-H and Γ-N lines.

A 3D picture of the Fermi surface at ambient pres-
sure and 56.7 GPa is drawn in FIG. 2. The lower en-
ergy band forms the octahedron centered at the Γ-point.
With increasing pressure, this octahedron shrinks and
it becomes surrounded by six little ellipsoids when the
previously described band-structure changes on the Γ-
H line appear. Around N-point, the Fermi surface forms
ellipsoids that are disconnected at lower pressure and be-
comes connected by necks to the four neighboring ellip-
soids above 56.7 GPa. In addition, a complicated open
sheet structure, often referred as ”jungle gym”, extends
from Γ to the H points in the BZ.



4

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

en
er

gy
  [

eV
]

-1

0

1

-1

0

1

-1

0

1

Γ H P Γ N Γ H P Γ N

-16.6

-9.5

-0.6

10.0

22.9

38.8

56.7

78.4

FIG. 1: The band structures of niobium at several pressures
(in GPa).

FIG. 2: Fermi surfaces from two bands (the lower energy
band in the left panels and the higher energy band in the
right panels) at ambient pressure (top panels) and at 56.7
GPa (bottom panels). Pictures obtained with the XCrySDen
package.24

Our results are in good agreement with the detailed
studies of Anderson et al.4 for the band structure and of
Ref. [5] for the Fermi surface.

D. Phonon frequencies and linewidths

The phonon spectra are presented in FIG. 3. We ob-
serve an overall increase in phonon frequencies with pres-
sure, especially at H, P and N high-symmetry points.
Close to the Γ-point along the Γ-H symmetry line, very
low frequency phonon modes with an anomalous pressure
dependence can be observed. At both the experimental
and the calculated equilibrium lattice constants, the two
transverse modes (T1 and T2 in the following) display
a very flat dispersion close to Γ-point. At variance with
all other modes in the BZ, the T1 and T2 modes along
Γ-H line soften with pressure (between ≈10 to ≈55 GPa
in our calculations). This anomalous, non-monotonic,
dispersion relation eventually disappears and become a
smooth curve at the highest pressure we have considered.

The phonon linewidths γqν have a weak dependence
upon pressure (see FIG. 4), with two important excep-
tions: i) at low pressure, large variations in phonon
linewidth occur for the T2 and L modes near the N high-
symmetry point, and ii) at high pressure (above ≈55
GPa), a significant reduction in linewidth is observed in
many parts of the BZ, especially along the Γ-H direction.

P N(εF ) λ ∼ T exp
c

-16.6 11.41 1.91 -
-9.5 10.80 1.60 -
-0.6 10.12 1.41 9.2
10.0 9.69 1.65 10.0
22.9 9.16 1.47 9.8
38.8 8.55 1.29 9.7
56.7 7.71 1.10 9.5
78.4 6.55 0.86 8.8

TABLE II: The parameters of niobium under pressure, P (in
GPa): the electronic density of states at the Fermi surface
N(εF ) (states per spin and per Ry), the electron-phonon cou-
pling constant λ, and the experimental critical temperature
T exp

c from Ref. [1].

E. Eliashberg function and electron-phonon

coupling constant

By integrating the calculated phonon linewidths and
frequencies we can obtain Eliashberg α2F (ω) function,
Eq. (6), that we present in FIG. 5 for the three phonon
branches separately. As a general feature, all peaks in
α2F (ω) move to higher frequency with pressure, as ex-
pected from the global positive frequency shift with pres-
sure visible in FIG. 3. For the T1 and T2 modes the
height of the main peak decreases with pressure, while
for the L mode the maximal height of the peak appears
at the equilibrium lattice constant.

Our calculated λ and the density of states at the stud-
ied pressures are presented in TABLE II. The pressure
behavior of the electron-phonon coupling constant is sim-
ilar to what could be expected from the experimental
pressure dependence for Tc: λ shows a positive jump at
low pressure and decreases significantly at high pressure.

A good review of theoretical works on the electron-
phonon coupling in Nb at ambient pressure is given by
Solanki et al. in Ref. [25], where the reported values of
the electron-phonon coupling constant range from 0.59,
obtained4 from augmented plane-wave method (APW),
to 1.52, obtained26 later from the same method. More
recently, Savrasov27 obtained a value of 1.26, Bauer et

al.28 obtained a value of 1.33, while our results for λ at
ambient pressure is 1.41.

We notice that the main reason for the spread in the
reported values of λ is the difference in calculated values
for N(εF ), entering the definition of λ in the denomina-
tor (Eqs. (2)-(4)). In fact a large value of 14.1 (states
per spin and per Ry) for the DOS and a small value of
0.59 for λ have been reported in Ref. [4], while a value
of 8.89 for the DOS and λ=1.52 have been reported in
Ref. [26]. Consistent with this trend, our calculated DOS
of 10.12 at ambient pressure is somewhat lower than the
DOS of 10.21 obtained by Savrasov,27, while other au-
thors obtained ∼ 11 (Ref. [2]), 11.77 (Ref. [29]), and 9.84
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(Ref. [30]).
The experimental values of λ obtained from the elec-

tronic tunneling spectroscopy31,32 are 1.04 and 1.22,
while Haas-van Alphen data30 yield λ = 1.33.

IV. DISCUSSION

After examination of the phonons and the electron-
phonon coupling, we notice that the decrease of λ at
high pressure can be easily related to the decrease of the
α2F (ω) peak and to its shift toward higher frequencies
for all modes.

The origin of the increase of λ at low pressure between
≈0 GPa and ≈10 GPa is instead more difficult to trace.
We found out that it is mainly determined by the anoma-
lous dispersion of the T1 and T2 modes close to Γ-point
(see FIG. 3) in the frequency region below 1 THz, that de-
termines a low-frequency peak in the Eliashberg function
of the T1 mode above 10 GPa. This peak is instead ab-
sent at ambient pressure and reappears for an expanded
lattice only at about -16 GPa.

It has been shown33 for the Eliashberg model that the
contribution to Tc from acoustic modes close to the Γ-
point vanishes. For the low-frequency modes which are
associated to Kohn anomalies, however, we can expect
important contribution to Tc because phonon softening
may occur with a finite phonon linewidth. Therefore,
the region near Γ can give a very large contribution to
the electron-phonon coupling in niobium for all studied
pressures (see TABLE II).

Let us now consider the band structure. In order to
explain low-pressure anomalies in Tc, Struzhkin et al.1

proposed the existence of necks between the ellipsoids
around N and the ”jungle gym” open sheet extending
from Γ to H along the Γ-Σ line at a pressure below
5 GPa, and the disappearance of these features at the
higher pressures. Our calculations do not support this
suggestion. The detailed analysis of the Fermi surface
reported by Ostanin et al.2 gives results close to ours.
Previous theoretical5,25,26,34,35,36 and experimental5,37,38

investigations of the Fermi surface also did not detect any
changes at low pressure.

One can, therefore, connect the high-pressure decrease
in electron-phonon coupling to changes in the band struc-
ture, while the origin of the low-pressure anomaly re-
mains unclear. Therefore, we need a different tool in
order to detect tiny features of the Fermi surface.

We propose to look closer at Fermi surface nesting by
plotting the dispersion of the nesting factor:

Xq =
∑

k

δ(εk − εF )δ(εk+q − εF ). (22)

Large nesting factors correspond to large regions of the
Fermi surface being connected by the nesting vector, q,
and are expected to correspond to large electron-phonon
couplings.
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FIG. 6: The nesting factor, Xq, of the Fermi surface in nio-
bium at eight studied pressures (in GPa), for selected high-
symmetry lines (top panel) and high-symmetry points (bot-
tom panel).

FIG. 7: The isosurface of the nesting factor in the whole
BZ, Xq = 1.0 (arbitrary units), for niobium at pressures of
-0.6 GPa (left panel) and 10.0 GPa (right panel). Pictures
obtained with the XCrySDen package.24

In FIG. 6, the factor Xq is reported as a function of
pressure. This quantity has been computed numerically
using the smearing technique with the broadening of 0.03
Ry. The maximal nesting takes place at the Γ-point with
much smaller maxima at the high-symmetry points H,
P and N, and in the middle of the lines: Γ-H, H-P, P-
Γ and Γ-N. The nesting factor decreases monotonically
with increasing pressure in the whole BZ except around
ambient pressure (0-10 GPa). At the equilibrium lattice
constant, a large damping of the nesting factor moves
the whole nesting curve below its value at 38.8 GPa and
makes it even similar to the curve drawn for the pressure
of 56.7 GPa.

The damping of the nesting factor close to ambient
pressure occurs in the whole BZ, as we can see in FIG. 7
in comparison to nesting for a pressure of 10.0 GPa. This
damping explains the jump in the total electron-phonon
coupling constant which happens below and above the
ambient pressure (see TABLE II).
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V. SUMMARY

We investigated the origin of the two discontinuities
of the superconducting critical temperature, observed in
Niobum at low pressure, about 5 GPa, and at high pres-
sure, about 60 GPa.1 For this purpose, we developed
computational tools for the accurate calculation of the
electron-phonon coupling.

We find that the anomalous behavior of Tc in Nb un-
der pressure originates in Kohn anomalies close to the
Γ-point in the BZ, so the measured discontinuities are
caused by low-frequency phonons. In agreement with
previous authors,2,3,4,5 we find that the high-pressure dis-
continuity of Tc is associated to a visible change in the
band structure. As for the low-pressure discontinuity,
we notice that such anomaly shows up as a general de-
crease of the nesting factor without any visible change in
the shape of the Fermi surface. Such a decrease is uni-
form in the whole BZ, explaining why previous calcula-
tions, Refs. [2,3], did not detect any anomaly in the elec-
tronic structure of Nb near ambient pressure. The total
electron-phonon coupling constant varies with pressure
as expected from the measured critical temperatures.

In conclusion, both discontinuities of Tc in niobium,
at low and high pressures, can be reproduced when
the electron-phonon spectral function is calculated accu-
rately, and the anomalies can be explained by the closer
look into the details of the Fermi-surface nesting and the
band structure.
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APPENDIX A: IMPLEMENTATION DETAILS

AND TEST CALCULATIONS

The electron-phonon coupling constant λ and the
spectral function α2F (ω) are defined by a double-delta
integration on the Fermi surface (Eqs. (2) and (4)).
The accurate calculation of these integrands requires a
very dense sampling in both the electronic (k) and the
phononic (q) grids. One can use either the broaden-
ing technique39 or the tetrahedron method.40 We choose
the former to perform the quadrature on the Fermi sur-
face, and the latter to evaluate the electron-phonon and
phonon densities of states as functions of the vibrational
frequencies. In the broadening scheme, a finite energy
width is attributed to each state. For any function f
which has to be integrated with the double-delta, one
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FIG. 8: The density of states and the double-delta integrand
on the Fermi surface of Nb.

can use the formula

I =

∫
dk

∫
dq f(k,q) δ(ǫk − ǫF )δ(ǫk+q − ǫF )

≃ Ω2
BZ

NkNq

∑

k

∑

q

f(k,q)
1√
2πσ

exp

(
− (ǫk − ǫF )2

σ2

)

× 1√
2πσ

exp

(
− (ǫk+q − ǫF )2

σ2

)
, (A1)

where σ is the broadening, Nk and Nq the number of k-
and q-points, ΩBZ the volume of the BZ. For infinitely
dense grids of k- and q-points, convergence of the in-
tegrand is achieved when σ approaches zero. For finite
grids, however, one has to find a range of σ values yield-
ing close results for the integrands at different grids. In
metals like Nb the presence of Kohn anomalies in the
phonon spectra sets additional requirements for the ac-
curacy. Thus, it is expected that the aforementioned in-
tegrands have to be calculated at very dense k-point and
q-point grids.

Since the electron-phonon coupling matrix elements
are smooth functions of k and q, we resort to an interpo-
lation procedure. For a chosen k- and q-vector grid, we
calculate matrix elements gqsα,mn

k+q,k , defined as in Eq. (8)
but with respect to the displacement of a single atom s
along cartesian component α. For each q-vector we make
a linear interpolation in k-space of the matrix elements
to a denser k-vector grid. We then perform the integra-
tion, using the denser grid and gaussian broadening as in

Eq. (A1), of auxiliary phonon linewidths γ̃αβ
ss′ (q), defined

as:

γ̃
αβ
ss′ (q) =

∑

mn

∑

k

(gqsα,mn
k+q,k )∗gqs′β,mn

k+q,k

×δ(εk+q,m − εF )δ(εk,n − εF ). (A2)
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FIG. 9: The phonon linewidth γqν for two selected q-vectors.
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FIG. 11: The total electron-phonon coupling λ of Nb for dif-
ferent q-grids as a function of broadening σ.
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FIG. 12: The Eliashberg function for Nb at calculated equi-
librium lattice constant (6.14 a.u.).

These are related to the γqν of Eq. (5) through the rela-
tion

γqν = 2πωqν

∑

sα

∑

s′β

(uqν
sα)∗γ̃αβ

ss′ (q)uqν
s′β . (A3)

Symmetry is exploited to reduce the number of k- and
q-points used in the calculation. A convenient way to
achieve such a goal is to perform symmetrization. Let
us denote with Tαβ the symmetry operators of the small
group of q (i.e. the subgroup of crystal symmetry that
leaves q unchanged). We restrict summation on k-points
to the irreducible BZ calculated with respect to the small
group of q. Then symmetrization is performed, sepa-
rately for each q-vector, as follows:

γ̃
αβ
ss′ (q) =

∑

α′β′

Tαα′

T ββ′

γ̃
α′β′

T (s)T (s′)(q)

×exp
(
i~q · (~τs − ~τT (s) − ~τs′ + ~τT (s′))

)
.(A4)

In the above formula, atom s with atomic position ~τs
transform into atom T (s) with atomic position ~τT (s) af-
ter application of operation T . The symmetrized matrix
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at each q is subsequently rotated, using the remaining
crystal symmetries that are not in the small group of q,
and the symmetrized matrices at all q-vectors in the star
of q are thus obtained with minimal computational ef-
fort. The same procedure can be applied to dynamical
matrices, Eq. (11).

Once the electron-phonon coupling matrix of Eq. (A2)
are calculated on a q-vector grid, it is possible to perform
Fourier interpolation and to interpolate to a finer grid. In
this way, the integration in the q space needed to calcu-
late α2F (ω), Eq. (2), and λ, Eq. (3), can be accurately
performed with a reasonable computational effort.

Let us turn now to some numerical experiments.
FIG. 8 shows the density of states for Nb (left panel)
and the double-delta integrand of a constant function
(right panel) at the Fermi surface for a selected q-vector,
as a function of the broadening σ and of the Monkhorst-
Pack20 k-point grid. For large enough σ the results for
different grids – except the (8,8,8) grid which is too coarse
– converge to the same values, which however depend on
σ. For small enough σ different grids yield different re-
sults. Since we are interested in the σ → 0 limit, we have
to choose a grid of an affordable size that yields con-
verged results for a σ as small as possible. A reasonable
choice is the (64,64,64) grid with σ=0.02 Ry, yielding a
DOS at the Fermi energy about 10.1 states per spin and
per Ry. The convergence of the double-delta function is
a little bit slower than that of a single-delta.

The phonon linewidths, γqν , for two selected phonons
qν are displayed in FIG. 9. The self-consistent calcula-

tions were performed i) at the k-grids of (16,16,16) and
(32,32,32), interpolated to a denser (64,64,64) grid; ii) at
the (24,24,24) k-grid, interpolated to (72,72,72); iii) at
the (48,48,48) k-grid, interpolated to (96,96,96). The in-
tegration weights for the k-space quadrature, i.e. the
gaussians centered around the single-particle energies,
were obtained from the accurate self-consistent calcula-
tion at the corresponding dense grids. As one can see
in FIG. 9, the convergence in k-points is obtained quite
easily even for the SCF calculation at the grid (16,16,16).

In order to obtain the spectral function α2F (ω) one
needs to perform the q-space quadrature of the phonon
linewidths; Eq. (6). For the phonon and the electron-
phonon densities of states at given frequency ω, we em-
ploy the tetrahedron method within the scheme proposed
by Blöchl.41 FIG. 10 (upper panel) shows the Eliashberg
function, α2F , of Nb for q-grid (8,8,8), without interpo-
lation and interpolated into denser grids. This has been
done for a fixed broadening, σ=0.03 Ry. The lower panel
of the same figure shows the α2F function at the q-grid
of (8,8,8) interpolated to (20,20,20)-point grid for several
broadenings σ.

In FIG. 11, we report the variation of total electron-
phonon coupling constant λ with the broadening σ for
three q-meshes.

In FIG. 12, we present the electron-phonon density of
states for niobium under ambient pressure. We fit the
curve of the spectral function with cubic splines42 for a
finer plot.
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