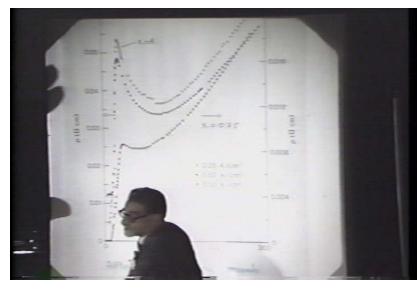
### SCDC Cables

### Pitfalls and Potential

(or vice versa)


Paul M. Grant W2AGZ Technologies

http://www.w2agz.com/doe-wdw07.htm

DOE Wire Development Workshop, Panama City, FL 17 January 2006

## "Be There or Be Square" 20th Anny of Woodstock, APS Denver, 5 March 2007









## HTSC SCDC Cable Anthology

#### A Proposal for DC Superconducting Power Transmission Line

2006

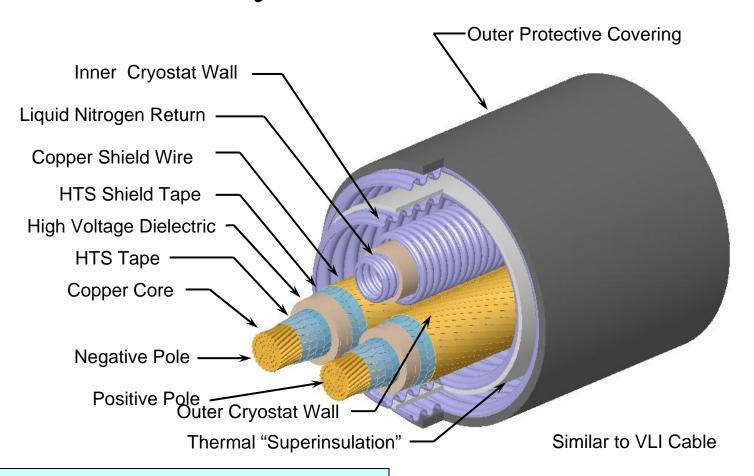
Satarou Yamaguchi, Makoto Hamabe, Atsushi Sasaki, Isamu Yamamoto, Fawakinwa Tosin, Keiju Matsui, Masayuki Yukimoto, Eiji Mizuno, Kimio Yamada, Atsuo Iiyoshi, Akira Ninomiya, Haruhiko Okumura, Tsutomu Hoshino, Nagato Yanagi, Joel Schultz, Yasuhide Ishiguro, Kuniaki Kawamura

Feasibility of Electric Power Transmission by DC Superconducting Cables

2005

P. Chowdhuri, Fellow, IEEE, C. Pallem, Student Member, IEEE, J.A. Demko and M.J. Gouge

A dc transmission cable prototype using high-temperature superconductors

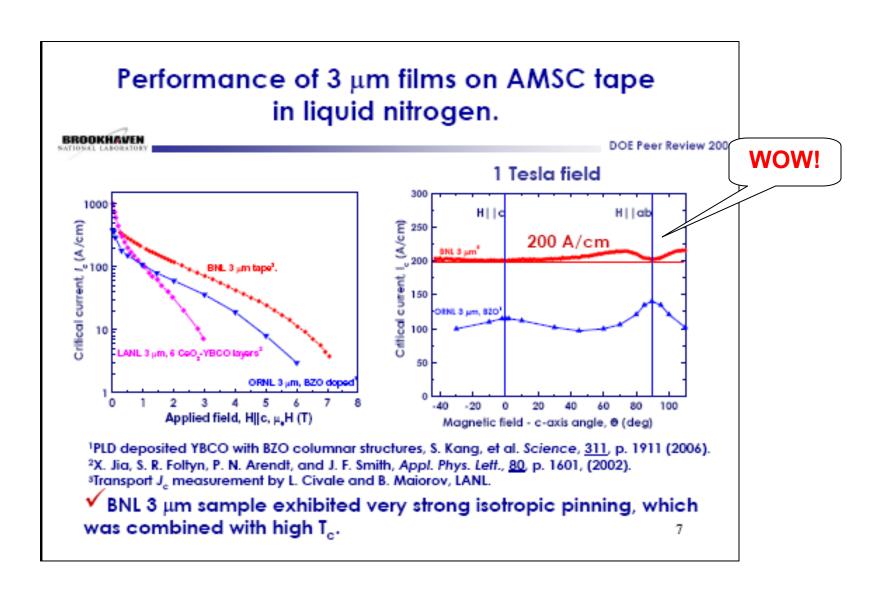

T P Bealest, C M Friendt, W Segirt, E Ferrerot, F Vivaldis and L Ottonello8

A Techno-Economic Design Study of High-Temperature Superconducting **Power Transmission Cables** 

S. P. Ashworth, P. Metra, R. J. Slaughter

1994

# Typical DC Cable (Ground Return) Cross Section




**Courtesy: Mike McCarthy, AMSC** 

## SCDC Cable Technology Pitfalls & Potential

- Pitfalls
  - None (except possibly wire cost)
  - Caveat
    - Needs demonstration at high current (> 10 kA)
- Potential
  - High
    - No other way to deliver massive amounts of electricity in a small eco-friendly package
  - Caveat
    - Alternative may be parallel conventional HVDC cables "corridor-ed" via directional drilling

## "Best of Show, PR 2006"



## SCDC Cable Applications Pitfalls & Potential

#### Pitfalls

- Is there a "commercial" market? (SOS)
  - IOUs...investment in very high capacity transmission unlikely...too many other alternatives (e.g., FACTS, HVDC)
  - Merchant Transmission...maybe, but MT in the US seems at a standstill.
  - B2B's and inter-RTO connections don't need huge "bandwidth" for stabilization and isolation
  - SCDC cables not mentioned in the NCI Report

#### Potential

- Energy efficiency and other "public interest" long term investment
- Caveat
  - Highly dependent on volatile political and social whims and agendas





Wire  $C/P = 100 \ \text{kA} \times \text{m}$ HTSC Cost = \$87 M

#### **Specifications**

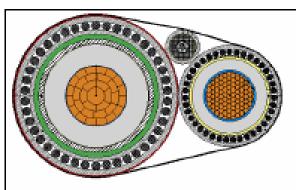
#### 2-1000 MW HVDC Bipolar Circuits

Circuit 1: 130 miles, Greene County → Bronx County
Circuit 2: 140 miles, Albany County → New York County
Fook Circuits - ( 500 kV 1000 A Binder (2 cebles ce )

Each Circuit: +/- 500 kV, 1000 A Bipolar (2 cables ea.)

#### **Financials**

\$750 M (\$400 M "VC", \$350 M "Futures")


Loan Payment (4%, 40 yrs, 750 M\$) = 35 M\$/yr
Labor, Overhead, Maintenance = 5 M\$/yr
Tariff = 0.5 \$\frac{4}{kWh}\$

Profit (NOI) @ 50% Capacity = 4 M\$/yr
Profit (NOI) @ Full Capacity = 48 M\$/yr

Why didn't it go forward?







HVDC Cable Cross-Section

## Pirelli (Prysmian) Energy Cables

\$190 M

#### Sayerville, NJ → Levittown LI, NY

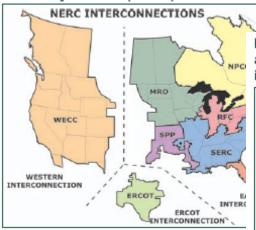
- 600 MW (+/- 250 kV, 1200 A)
- 65 miles (105 km)
- \$400 M
- 2007

| <u>inancials</u> |        |  |  |
|------------------|--------|--|--|
| 0 yrs @ 4%:      | \$ 20M |  |  |
| .OM:             | 1 M    |  |  |
| NOI (100%):      | 5 M    |  |  |

| T<br>77 K | C/P<br>\$/kA×m | Cost<br>(\$M) |
|-----------|----------------|---------------|
| Cu        | 7              | 1.8           |
| HTSC      | 100            | 25.1          |

B2B, Lamar, Colorado





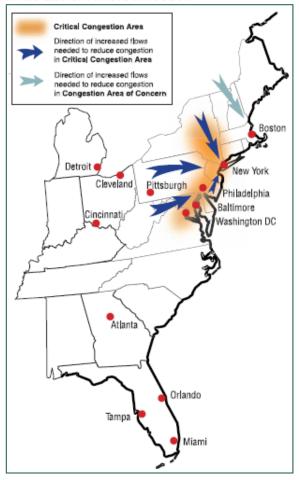

| Customer:          | Xcel Energy                                                                        |
|--------------------|------------------------------------------------------------------------------------|
| Location:          | Lamar / Colorado / USA                                                             |
| Power Rating:      | 210 MW continuous                                                                  |
| AC Systems         | 230 kV AC 60 Hz (West Lamar / Colorado),<br>345 kV AC 60 Hz (East Finney / Kansas) |
| DC Voltage         | 63,6kV                                                                             |
| Type of Thyristor: | Direct-light-triggered 8kV                                                         |

7 B2B's in US, 4 between ERCOT and the World, all < 500 MW. Is HTSC really needed?

## NATIONAL ELECTRIC TRANSMISSION CONGESTION STUDY

Figure ES-1. Map of North American Electric Reliability Council (NERC) Interconnections




Source: NERC, 2006.

The HTSC community did not participate in this study!

Figure ES-3. One Critical Congestion Area and Three Congestion Areas of Concern in the Western Interconnection

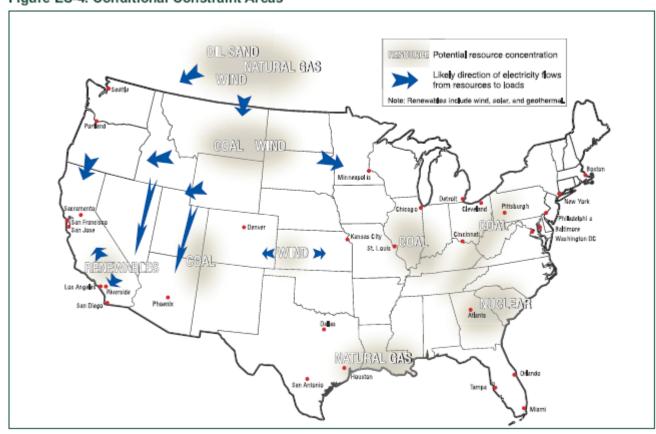



Figure ES-2. Critical Congestion Area and Congestion Area of Concern in the Eastern Interconnection



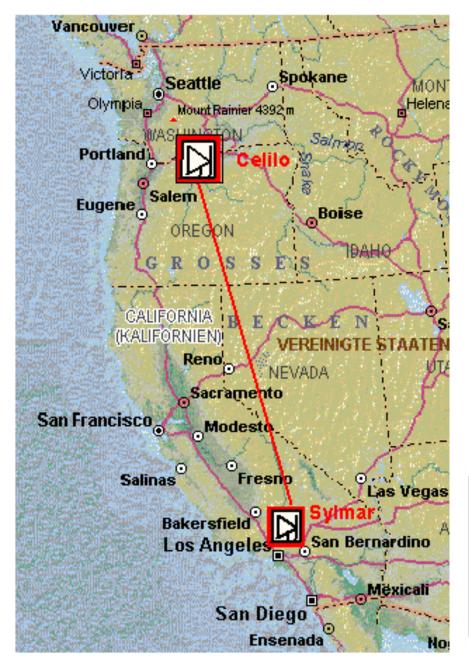

## Future Challenges

Figure ES-4. Conditional Constraint Areas



### Recommendations to DOE-OE

Commission a review of the NETC Study by the HTSC community (Forrestal, companies, nat labs) to assess potential (and pitfalls!) for deployment of high capacity SCDC cables (and ac) in relief of present and future transmission constraints.



#### HVDC Pacific InterTie

| Customer:          | Bonneville Power Administration |
|--------------------|---------------------------------|
| Location:          | The Dalles, Oregon/USA          |
| Power Rating:      | 2000 MW                         |
| AC systems:        | 230 kV, 60 Hz                   |
| DC Voltage:        | ± 500 KV DC                     |
| Type of thyristor: | 8KV LTT                         |

- Authorized by JFK in 1961
- Specs
  - 841 miles
  - 2 GW
  - 500 kV bipolar
  - 2 kA (4 cm diameter Al)

| Customer:             | Los Angeles Department of Water and Power,<br>California, USA |
|-----------------------|---------------------------------------------------------------|
| Location:             | Sylmar Converter Station East, Los Angeles                    |
| Configuration:        | Bipole                                                        |
| Power Rating:         | 550 (825) MW                                                  |
| AC systems:           | 230 kV, 60 Hz                                                 |
| DC Voltage:           | ± 500 KV DC                                                   |
| Thyristor:            | 8 KV                                                          |
| Number of thyristors: | 936                                                           |

# U.S. Electricity Production/Loss Summary

|                  | TkWh | % in T&D Loss<br>and In-Plant<br>Use | Revenue<br>@<br>\$0.10/kWh<br>(B\$) | No. of 500 MW<br>Power Plant<br>Equivalents | Capital Cost<br>@ \$800/kW<br>(B\$) |
|------------------|------|--------------------------------------|-------------------------------------|---------------------------------------------|-------------------------------------|
| Total            | 3.24 |                                      | 324                                 | 740                                         | 296                                 |
| T&D<br>Losses    | 0.28 | 8%                                   | 28                                  | 63                                          | 25                                  |
| In-Plant<br>Used | 0.15 | 5%                                   | 15                                  | 35                                          | 14                                  |

From 1997 DOE PR

# Superconductivity and Efficiency

|              | 1994 | 2014<br>@ 2%/yr | 2014 Plants Saved 0.2% Penetration 4× Efficiency |
|--------------|------|-----------------|--------------------------------------------------|
| Total        | 740  | 360             |                                                  |
| T&D Losses   | 63   | 31              | 11                                               |
| In-House Use | 35   | 17              | 6                                                |

From 1997 DOE PR

## National Ticket 20??



Prez



SecEn



Veep