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The year 1957 witnessed what might have been the most important theoretical advance in 
condensed matter physics of the past century.  Bardeen, Cooper and Schreiffer1 were able 
to show, based on an elegantly simple proof by Cooper that the degenerate Fermi gas 
could be gapped by weak lattice vibration-mediated attractive electron-electron 
interactions, that the transition temperature of superconductors could be semi-
quantitatively given by the expression, exp( 1/ )C DT aθ λ= − .  Here CT  is the critical 
temperature, Dθ the phonon Debye temperature, λ  the dimensionless electron phonon 
coupling constant, and a a “gap scaling factor” of order 1-3.  Strictly speaking, this 
simple “BCS relation” holds only for λ < 1, and D Fk Eλ θ , where FE  is the Fermi 
energy.  However, Migdal and Eliashberg2 later showed modifications of this relation that 
included higher order attraction terms as well as electron-electron repulsion could 
accomodate “strong coupling” values of λ in the range 1 – 2 and thus successfully 
account for the relatively high transition temperatures of the A15 compounds and perhaps 
the HTSC cuprates as well.  The message of BCS is clear: a superfluid state is mediated 
by the pairing of fermions in a boson field, and its condensation temperature scales both 
with the characteristic temperature of the boson and the strength of its coupling to the 
fermions.  It is possible that attempts to increase CT  by engineering a rise in the electron-
phonon λ , given the known range of Debye temperatures available, may give rise to 
unphysical material constraints.3   Even other possible “boson flavors,” e.g., “magnons or 
“spin waves” or “resonating bonds,” may not possess characteristic energies large enough 
to get CT  to room temperature with realistically achievable coupling constants.  On the 
other hand, various sorts of charge polarization bosons, such as excitons, have 
characteristic energies on the order of 1 eV and in principle could manifest in properly 
designed structures superconducting transition temperatures on the order of 300 K, even 
under extremely weak electron-exciton coupling.  This opportunity did not go unnoticed 
and was suggested (before BCS!) by Fritz London4 as possible in macro-organic 
molecules, and analytically addressed post-BCS by Davis, Gutfreund and Little,5 
Ginzburg,6 and Allender, Bray and Bardeen,7 and was even the subject of a science 
fiction short story in 1998.8 
 
In this lecture, we will review the several model approaches taken in the past in light of 
their possible incorporation in modern density functional theory employing today’s 
powerful and widely available computational hardware and software applied to novel  
structures now accessible by “nano-assembly” and “nano-machining” technologies.  We 
will address one of the “devils in the details” of all such models, the required spatial 
separation of electron transport from the polarization portions of any hypothetical 



material embodiment, which often contain quasi-one-dimensional metal chains subject to 
gapping of their Fermi through commensurate structural distortion.  As the title of the 
lecture hints, there may exist in the wisdom of the ancients some rituals to exorcise this 
devil.   
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“Bill Little’s BCS”
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CT a e λ μ−= Θ
Where

Θ  E it  Ch t isti  T t  (  22 000 K)
Fk Eλ Θ �

Θ = Exciton Characteristic Temperature (~ 22,000 K)

λ = Fermion-Boson Coupling Constant (~ 0.2)

μ* = Fermion-Fermion Repulsion (?)

a = “Gap Parameter, ~ 1-3”

Tc = Critical Temperature, ~ 300 K
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Electron-Exciton Interaction
Exciton c-a Operators

Electron-Exciton 
C liCoupling



Davis – Gutfreund – Little (1975)
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Almost Periodic Functions
Definition I:  Set of all summable trigonometric series:
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Definition II:  Existence of an infinite set of "translation
numbers," { }, such that:
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Rigid Ion ApproximationRigid Ion Approximation
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Plane Wave RepresentationPlane Wave Representation
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APF “Band Structure”
“Electronic Structure of Disordered Solids and Almost Periodic Functions,” 
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Fibonacci Chains
“M t C l  Sim l ti  f F mi s  Q sip i di  Ch i s ” 

1 2| 3 4 5G G G n≡ = ∞

“Monte-Carlo Simulation of Fermions on Quasiperiodic Chains,” 

P. M. Grant, BAPS March Meeting (1992, Indianapolis)
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