Abstract Submitted for the MAR09 Meeting of The American Physical Society

Sorting Category: 05.5 (C)

Electronic Properties of Rocksalt Copper Monoxide PAUL MICHAEL GRANT, W2AGZ Technologies — Rocksalt copper monoxide, although not yet synthetically realized in bulk form, can be studied computationally as a proxy for the family of layered HTSC copper oxides. We report results for a series of tetragonal CuO rocksalt structures with c/a lattice parameter ratios ranging from 1.0 to 1.5, employing the plane-wave pseudopotential method with exchange/correlation LDA+U. As expected, we obtain a metallic state for U = 0 at all values of c/a given that the nominal valence electron configuration for Cu in copper monoxides is 3d⁹ yielding a partially occupied conduction band. However, completely unexpected was our finding similar metallic properties in rocksalt CuO for all physically plausible values of U (up to 10 eV) and c/a between 1.0 to approximately 1.2. Only for c/a > 1.2 do our calculations reveal the opening of a Mott-Hubbard charge-transfer gap. We interpret our results¹ as supporting the original motivations of Bednorz and Mueller that high temperature superconductivity in the layered copper oxide perovskites may begin with their tendency to exhibit Jahn-Teller strong electron-phonon coupling². ¹P. M. Grant, J. Phys: CS **129** (2008) 01242.

²J. G. Bednorz and K. A. Mueller, Rev. Mod. Phys. **60** (1988) 585.

X

Prefer Oral Session Prefer Poster Session Paul Michael Grant w2agz@pacbell.net W2AGZ Technologies

Date submitted: 21 Nov 2008

Electronic form version 1.4

Electronic Structure of Rocksalt Copper Monoxide: A Proxy for High Temperature Superconductivity Paul M. Grant

W2AGZ Technologies Visiting Scholar, Stanford University (2005-2008)

Aging IBM Pensioner

Financial Support From: IBM Retiree Pension Fund Prior to 1990

After Imada, et al, RMP 70, 1039 (1998)

Cubic Rocksalt Divalent TMOs

TMO	3d Config	Properties
MnO	5	MH-CTI (5.6)
FeO	6	MH-CTI (5.9)
CoO	7	MH-CTI (6.3)
NiO	8	MH-CTI (6.5)
CuO	9 X	X Doesn't Exist!

See Imada, Fujimore, Tokura, RPM 70 (1988)

Tenorite (Monoclinic CuO)

Experimental Equipment (Software)

- QUANTUM-ESPRESSO Suit of Codes
 - DFT (LDA+U) plus electron-phonon
 - Graphics by Tone Kolalj (XCrysDen)
 - www.quantum-espresso.org
- "Dial-in" Parameters
 - $G^2 = 40 \text{ Ry}$ $\rho = 320 \text{ Ry}$
 - Convergence $\leq 10^{-6}$ Ry
 - "Smearing" = Methfessel-Paxton
 - Psuedopotentials: Ultrasoft, XC = Perdew-Zunger Cu: $3d^{9}4s^{2}$ O: $2s^{2}2p^{4}$

Experimental Equipment (Hardware)

3-Cluster Home Network: AMD64 dual 3.5 GHz, 12 GB + IBM-X41 +...

Diego Grant's Sony Playstation 3

Tenorite "Test"

Chemical: U=0

AF: U=6

Proto-TMO AF Rock Salt

Proto-TMO AF Rock Salt

Basic Asymmetric AF Cell

Cubic

Rocksalt CuO - a = 3.905 Angstroms, PP = Cu.pz-3d9_4s2-rrkjus.UPF Ground State Energy vs c/a & U(ev)

c/a

Rocksalt CuO - a = 3.905 Å, PP = Cu.pz-3d9_4s2-rrkjus.UPF

Total Magnetization vs c/a & U(eV)

c/a

Af-CuO: FS Spin Up

<u>U = 0</u>

1.0

1.1

<u>c/a</u> 1.115

1.2

<u>U = 6</u>

Spin Composition of Cu 3d pDOS as fn(Hubbard): c/a = 1.36

t-CuO Density-of-States

Non-Magnetic Cubic Rocksalt CuO -- Electron-Phonon Properties --

Conclusions & Homework

Conclusions

- c-rs-CuO is metallic and thus a proxy for HTSC cuprates.
- e-p $\lambda \sim 0.6 0.7$ consistent with T_C ~ 20 - 50 K.
- t-rs-CuO becomes a MH-CTI for c/a >~ 1.3.
- c/a < 1.3, t-rs-CuO is "selfdoped" metal.
- DFT (LDA+U) + proxy structures a useful exploratory tool for nanomaterial discovery.

<u>Homework</u>

- Compute e-p coupling λ as f(c/a,U) for t-rs-CuO.
- Compute T_N , μ^* , BCS prefactor, then T_C .
- Compute isotope shift.
- Calculate optical & transport properties as f(c/a).
- Investigate larger values of a-lattice constant
- PAW instead of USPP

DFT & (LDA + U)

$$E_{\text{LDA+U}}\left[n(\mathbf{r})\right] = E_{\text{LDA}}\left[n(\mathbf{r})\right] + E_{\text{HUB}}\left[\left\{n_m^{l\sigma}\right\}\right] - E_{\text{DC}}\left[\left\{n^{l\sigma}\right\}\right]$$

 Implemented in LMTO by Anisimov, et al, JPCM 2, 3973 (1990)

- Applied to NiO, MnO, FeO, CoO and La₂CuO₄

- Plane-Wave Pseudopotential Implementation by Cococcioni and de Gironcoli, PRB 71, 035105 (2005)
 - Applied to FeO and NiO
 - Download open-source package from http://www.pwscf.org

0_3905_1_pmg_sne1

0_3905_136_pmg_sne1

3_3905_136_pmg_sne1

