From HTS Material Optimization to System Manufacturing – First Commercial FCLs from Nexans SuperConductors

Joachim Bock,
Achim Hobl, Mark Rikel

Nexans SuperConductors GmbH
Chemiepark Knapsack
50351 Hürth, Germany
• Introduction
• Material aspects of Bi-2212 (bulk and precursor)
• FCL systems
 – Function
 – System manufacturing
 – Projects realized and first field tests
• New projects in progress and new installation planned
• Conclusions
• Introduction
 • Material aspects of Bi-2212 (bulk and precursor)
 • FCL systems
 – Function
 – System manufacturing
 – Projects realized and first field trials
• New projects in progress and new installations planned
• Conclusions
Nexans SuperConductors
Materials – Components - Systems

From R&D to systems
10'1987
01'1995
01'1998
05'1998
10'1999
10'2000

Hoechst
ZF Frankfurt Höchst and GBA Knapsack

Hoechst
Corporate Research & Technology

HOECHST RESEARCH & TECHNOLOGY

Aventis
Research & Technologies

Alcatel High Temperature Superconductors

chemistry
physics
material sc.
electrical eng.
mechanical eng.

Nexans SuperConductors

Joachim Bock, MRS Spring 2011
Nexans SuperConductors in new premises 2010

Office building and assembly hall

bldg. 2728

- Assembly of Fault Current Limiter systems
- Building height allowing crane hook of 7 m
- Optimisation of the production

Joachim Bock, MRS Spring 2011
Nexans SuperConductors
HTS system provider

Office building and assembly hall

Address remained unchanged:
Chemiepark Knapsack, D-50351 Hürth

Workshop and test field

Production annex

Joachim Bock, MRS Spring 2011
• Introduction
• Material aspects of Bi-2212 (bulk and precursor)
• FCL systems
 – Function
 – System manufacturing
• Projects realized and first field trials
• New projects in progress and new installations planned
• Conclusions

Joachim Bock, MRS Spring 2011
Materials and conductor types for industrial HTS applications

Bi-2212/ Bi-2223 tape
1st generation

Y-123 cc-tape
2nd generation

Bi-2212 bulk

Y-123 bulk

Joachim Bock, MRS Spring 2011
Production of HTS-bulk

BSCCO-2212 Melt Cast Processing

Highly efficient and very flexible process

Melting

Mixing

Casting

Annealing

Joachim Bock, MRS Spring 2011
Microstructure of Melt Cast Processed BSCCO-2212

- Highly non-uniform **as-cast** microstructure
 (governed by directional solidification under conditions of thermal gradient)

 /* 5 mm diameter rod */

- Rather uniform **final** microstructure
 (with rather good quality Bi-2212 phase)
Nanostructure adjusted for high Jc and Resistivity

No long-range texture

- $J_c(77 \, K, \text{ sf}) \sim 1 \, \text{kA/cm}^2$
- $J_c(4.2 \, K, \text{ sf}) \sim 50 \, \text{kA/cm}^2$

- High resistivity
 - $\rho(300 \, K) \sim 5 \, \text{m}\Omega\cdot\text{cm}$

(Left) A high-angle GB with the tilt angle reduced from 45 to 17° due to lattice plane bending and (Right) a GB free bent grain (bending due to array of edge dislocations). TEM study by F. Kametani (NHMFL, Tallahassee) [compiled from D.C. Larbalestier et al, presentation at WAMSDOO 2008].

MCP Bulk BSCCO-2212 very suitable for FCL applications

Joachim Bock, MRS Spring 2011
Equilibrium precursor*

... designed for Partial Melt Processing of Ag-sheathed conductors

- same phase composition and particle size at RT and close to melting
- controlled particle size $d_{50} \sim 1-1.5 \mu m$
- < 100 ppm C (in a granular material)
- sharpest melting transition

Standard cation stoichiometry:

$\text{Bi}^{2+}1.16(3)\text{Sr}^{2+}1.94(3)\text{Ca}^{2+}0.90(3)\text{Cu}^{2+}2.00(3)$

1 to 3 wt.% second phases

Highest reproducibility
Optimization of various wires (2010)
J. Jiang, E.E. Hellstrom, D.C. Larbalestier (ASC, NHFML)

- NG = Nexans granulate
- NStd = Nexans standard powder
- SCI = SCI Engineered Materials

Joachim Bock, MRS Spring 2011
HTS High-Field Insert Magnets

K Marken, S. Heung, Z Melhem (OST), H Wejers (NHFML),

2003 (NHFML, OST)
First 25T SC Coil:
20 T with LTS +
5T with Bi2212

2008 (22 T), 2010 (22.5 T):
Latest Developments in High Filed Magnets:

\[
22.5T = 20T \text{ with LTS} + \\
2.5T \text{ with Bi2212}
\]

Rutherford Cable

S C Kim (Nexans Korea), S-S Oh (KERI)

2008:
\(30\) strands Rutherford cable – Ic > 4,000 A @4.2K

Dipole Magnet for VHFSMC

A Godeke (LBNL), Y. Huang (OST),

2009, 2010:
Dipole SC-08 Magnet with
Ic ~ 2600 A (4.2 K, sf)

Wind @ LBNL + React @ OST

NSC Bi-2212 precursor inside
• Introduction
• Material aspects of Bi-2212 (bulk and precursor)
• FCL systems
 – Function
 – System manufacturing
 – Projects realized and first field trials
• New projects in progress and new installations planned
• Conclusions
Function of the FCL

<table>
<thead>
<tr>
<th>current</th>
<th>normal operation</th>
<th>short-circuit</th>
<th>recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Mathias Noe

Joachim Bock, MRS Spring 2011
Operating behaviour of the FCL

- **ultrafast**
 reacts in 1-2 milliseconds

- **automatic**
 no external trigger necessary, self-recovering

- **wear-free**
 service only for cooling system

Superconductor Fault Current Limiters are intrinsically safe!
12-100 (ASL 1)
first commercial system
Field tested for ~8 months

12-800 (Vattenfall)
first system in a power station
Field tested Nov. 2009- Dec. 2010

12-400 (ASL 2)
second system for UK (bifilar)
Presently under installation
Project 1: 12-100 Realisation

• first FCL-System realised by NSC
• first commercial system worldwide
ASL, Newcastle
ENW, Bamber Bridge

Live on grid
10-2009 to 06-2010

Project 1: 12-100
Field test

Nexans SuperConductors
Project 2: Vattenfall Brown Coal Power Plant

Block Q in Boxberg
Power to the consumer
Power to the consumer
Auxiliary Power
Not limited short circuit currents

Joachim Bock, MRS Spring 2011

Nexans SuperConductors
High Short Circuit Currents
- high mechanical and thermal forces

No “fuses” on the MV power distribution level
- equipment and grid must be short-circuit proof
- high investment for equipment “oversizing”
From metal oxide powder to HTS-components

Melt Cast Process
Nexans proprietary process

BiSrCaCuO powder

BSCCO-2212 tubes

Fault Current Limiter Components

Nexans SuperConductors

Joachim Bock, MRS Spring 2011
Connection for adaptation
- **Current** in parallel
- **Voltage** in series

Basic design of the FCL

- Fault Current Limiter connected in series with the grid
- Current and voltage adjustable by modular construction

Joachim Bock, MRS Spring 2011
Nexans is mastering the full chain.
High voltage and high current testing of complete FCL-system

Testing scheme:
• 75 kV lighting impulse
• 28 kV withstand voltage (1 min)

• 63 kA (peak) maximum
• 3-phase full loads (4 shots)
Location in Boxberg power plant

Standort im KW Boxberg

Standort:
Am Brecherturm Y 4UEF der Bekohlung für Block Q und R.
First FCL worldwide in a power plant

- Installation 10/ 2009
- Commissioning 02.11.2009
- End of field-test 12/ 2010
- second field-test starts IV/ 2011

- Significant savings for extension and new construction
- Improved safety for personnel and equipment

Joachim Bock, MRS Spring 2011

Nexans SuperConductors
Project 3: 12-400 for ASL

Customer has ordered second system!

Test at IPH

Joachim Bock, MRS Spring 2011
Project 3: 12-400 for ASL

In UK around 270 substations (MV up to 33 kV) are at or above max. rating

Ainsworth Lane (Scottish Power)
Outline

• Introduction
• Material aspects of Bi-2212 (bulk and precursor)
• FCL systems
 – Function
 – System manufacturing
 – Projects realized and first field trials
• New projects in progress and new installations planned
• Conclusions
New developments: FCL systems based on cc-tape

12-600 (ENSYSTROB)
first MV system with cc-tape
This project has received funding from German government under grant 03KP102A

24-1000 (ECCOFLOW)
first system for two different customers
This project has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement No. 241285
Nexans and 13 European partners have reached an EU-project: ECCOFLOW cc-tape based FCL 24-1000

- 15 partners involved
- 5 utilities
- Coordinated by Nexans

First multipurpose system for two sites and applications
Project 24-1000 ECCOFLOW
1st site for installation

Palma de Mallorca

High voltage
transformer feeder
FCL
busbar coupler
Medium voltage

Juan de Dios

Joachim Bock, MRS Spring 2011

Nexans SuperConductors
Project 24-1000 ECCOFLOW
2nd site for installation

VSE grid
Košice, Slovakia

Available space 6,5 x 15 m

Joachim Bock, MRS Spring 2011
110-kV-substation (suburban area)

Conventional 110-kV-Cable

40 MVA

10-kV-substation (city center)

110-kV-substation (suburban area)

40 MVA

10-kV-HTS cable

10-kV-substation (city center)

Supply of city center by MV HTS cable

Joachim Bock, MRS Spring 2011

Nexans SuperConductors
Study showed project is
• technically feasible
• economically reasonable
Possible start 06-2011
First HTS cable with stand alone FCL
Conclusions

• **Full chain mastered from production of HTS material to final FCL system (for bulk)**

• **First commercial FCL systems realized** (w/o any public funding)

• **Successful grid operations also with the first HTS system in a power station worldwide**

• **Market entry with bulk already achieved**

• **New development projects started**
 → based on cc-tape
 → multipurpose device
 → new solutions for urban areas
First FCL worldwide in a power plant

Power safety at its best

Thank you for listening!

Nexans SuperConductors