X-RAY ABSORPTION IN POLYMERIC CONDUCTORS

H. Morawitz, W. D. Gill, P. Grant and G. B. Street
IBM Research Laboratory
San Jose, California 95193

D. Sayers
North Carolina State University
Raleigh, North Carolina 27607

ABSTRACT: A discussion of the results of x-ray absorption experiments on the polymeric conductors brominated \((SN)_x\) and polyacetylene doped with \(AsF_5\) will be given. The use of x-rays with energies exceeding the K-edge of \(Br(13.5\text{KeV})\) and \(As(11.9\text{KeV})\) allows studies of the short range order from the backscattering effect of the surrounding atomic arrangement on the ejected 1s electron. Additionally, the shift of the K absorption edge can provide a measure of charge transfer from the SN or acetylene units of the polymer to the incorporated bromine or \(AsF_5\) molecular units. Structural information is derived from the oscillatory part of the extended x-ray absorption (EXAFS). The experiments make use of the highly polarized x-ray beam from the Stanford Linear Accelerator to study the orientational dependence of the x-ray absorption, which allows the determination of the alignment of the incorporated bromine in \((SN)_x\). The short range order in the vicinity of the \(Br\) and \(As\) atoms is obtained by Fourier transformation of the experimental data, from which average coordination numbers and neighbor distances are then determined. The temperature dependence of these parameters will be given in the regions \(300\leq T\leq 500\text{K}\) and tentative conclusions regarding the relative concentration of \(Br_2\) and \(Br_3\) molecules at different temperatures are discussed.

*Partially supported by NSF Grant No. DMR77-08695 and by NSF Grant No. DMR77-07692, in cooperation with the Stanford Linear Accelerator Center and the U.S. Department of Energy.

I. INTRODUCTION
In attempts to polymer polyacetylene \((SN(\text{Br}))_x\) have been derivatives of \((SN)\) a 10% increase in of the plasma edge.

Although Raman molecular nature of deduce information fibers,\(^4\),\(^5\) ambiguous \(Br_2\) and \(Br_3\) species as a mixture of \(Br_2\) and diffuse x-ray lines with a period conducting b direct dimensional superlattice.

Another very important transformed into a reduction. Currently obtained by treating experiments on \((SN)\) from the electron. Center.
I. INTRODUCTION

In attempts to enhance the transport properties of the conducting polymer polysulfurtride, \((SN)_x\), halogenated polymers of the type \((SN(\text{Br})_y)_x\) have been synthesized in several laboratories.\(^{1,2}\) These halogen derivatives of \((SN)_x\) show an order of magnitude increase in conductivity, a 10% increase in superconducting transition temperature \(T_c\) and a redshift of the plasma edge\(^3\) relative to pristine \((SN)_x\).

Although Raman experiments have been performed to determine the molecular nature of bromine present in the \((SN)_x\) matrix and to attempt to deduce information about the location of the bromine relative to the \((SN)_x\) fibers,\(^4,5\) ambiguity exists in the assignment of the observed modes to \(\text{Br}_2\) and \(\text{Br}_3\) species. IR studies are consistent with bromine being present as a mixture of \(\text{Br}_3^-\) and \(\text{Br}_2^-\) species.\(^5a\) Electron diffraction experiments\(^3\) and diffuse x-ray measurements\(^6\) indicate the presence of superlattice lines with a period twice the chain axis repeat unit of \((SN)_x\) in the conducting b direction. The diffuse streaks arising from this one dimensional superlattice disappear below 140°K.

Another very interesting organic polymer, polyacetylene,\(^7\) can be transformed into a highly conducting material by both oxidation and reduction. Currently the most extensively investigated derivative is obtained by treatment of \((\text{CH})_x\) with \(\text{AsF}_5\).\(^8\) We report on several sets of experiments on \((SN)_x\) and \(\text{AsF}_5\) treated \((\text{CH})_x\)\(^9,10\) using synchrotron radiation from the electron-positron storage ring of the Stanford Linear Accelerator Center.
The central idea is to use excitation of Br and As K electrons to the continuum to study the variation of the x-ray absorption at and above the K edge to gain information about charge transfer from the \((\text{SN})_x\) and \((\text{CH})_x\) chains to the \(\text{Br}_n\) and \(\text{AsF}_5\) molecules, as well as to deduce changes in the final state of the \(\text{Br}_2\) and \(\text{AsF}_5\) molecules after reaction with the respective polymer. For a description of the use of x-ray absorption to determine the short range order of a given atom, whose K or L shell is excited, we refer to several recent review articles.\(^{11}\) The techniques required to reduce the oscillatory structure in the absorption cross-section above the edge have been extensively discussed and refined in the past years.\(^{12-16}\) Potentially novel EXAFS effects arise in our studies from the linear form of the \(\text{Br}_3^-\) molecules and for larger units of Br aligned with the \((\text{SN})_x\) b axis. Multiple scattering of the outgoing photoelectron on its path from the source atom to the backscattering shell and back are important for all but the nearest neighbor shell. Some of these complications make the extraction of coordination numbers in \((\text{SN(\text{Br})}_y)_x\) ambiguous.

In addition to the data reduction of the EXAFS oscillations, we have begun to study the edge region itself as a means for determining charge transfer and for identifying molecular species. Self-consistent field Hartree-Fock calculations on \(\text{AsF}_5\) molecules have been performed to calculate the excitonic levels, consisting of a 1s hole and one electron in a previously unoccupied electronic state of negative energy relative to the ionization energy. Specifically we have found one exciton state of valence character (inner well) with a binding energy of \(-5.0\text{eV}\) and two Rydberg states (out of whether \(r^{2}, r^{2}\) predominately outside the atom. We expect the incorporation into

II. EXPERIMENTAL

The samples were which were cleaved brominated and the kapton window the samples. These to the x-ray polar axis perpendicular allowing the angle the anisotropy of samples with the b Br-S and Br-N dist.

and room temperatur;

Helitran system as a function of t

of \(\text{Br}_2\) in gaseous \(\text{S}_4\text{N}_3^+ \text{Br}^-\) as st:

EXAFS analysis of their backscatteri
K electrons to the n at and above the he (SN)_x and (CH)_x uce changes in the n with the ray absorption to K or L shell is The techniques cption ssed and refined arise in our x-ray scattering shell shell. Some of numbers in lations, we have ermining charge nsistent field rformed to and one electron energy relative exciton state of -5.0eV and two

Rydberg states (outer well) with binding energies of -2.0 and -1.8eV.17 The distinction into inner and outer well states18 is made on the basis of whether \(r^2 \cdot \rho_{r^2}^{AS-F}\) i.e., whether the bound electron resides predominantly outside or inside the fluorine cage surrounding the arsenic atom. We expect that the Rydberg levels will be most sensitive to incorporation into a matrix such as (CH)_x.

II. EXPERIMENTAL DETAILS

The samples were sheets of fibers of (SN)_x, approximately 100\(\mu\)m thick, which were cleaved from crystals with dimensions 2x3x3mm\(^3\). They were brominated and then mounted on a cold finger in a sample holder equipped with kapton windows. The fiber axis (crystal b axis) lay in the plane of the samples. These were usually mounted with the crystal b axis parallel to the x-ray polarization vector. The sample could be rotated about an axis perpendicular to the x-ray polarization vector and the sample b axis allowing the angle between these directions to be varied by \(\pm 30^\circ\) to study the anisotropy of the absorption. We also performed measurements on samples with the b axis normal to the x-ray polarization vector to study Br-S and Br-N distances. Most of the data were collected between 86\(^\circ\)K and room temperature, however, some data were obtained at 5\(^\circ\)K with a Helitran system. For comparison of the edge structure and the EXAFS region as a function of the chemical forms of the bromine, we measured samples of Br\(_2\) in gaseous form and several other samples, such as KBr and \(S_4N_3\cdot Br_3\)20 as standards for Br\(_-\) and Br\(_-\) ion and to determine from the EXAFS analysis of \(S_4N_3\cdot Br_3\) the strength of the Br-S shells in (SN)_x from their backscattering effect. The standard high-resolution EXAFS I beamline
at the Stanford Synchrotron Radiation Laboratory was used, with a typical run at a fixed orientation and temperature requiring 20-25 minutes of running time.

(CH)ₓ films were prepared by the methods described by Shirakawa.¹⁸ The films were exposed to AsF₅ and the composition determined from the uptake of AsF₅. X-ray measurements of pristine (CH)ₓ indicate a highly disordered polymeric material in which even individual fibers are poorly crystalline.¹⁹ Only a few preliminary experiments have been performed on (CH(AsF₅)ₓ) (y~0.1) at room temperature and at 86⁰K.¹⁰ In order to have reference data, several spectra on an AsF₅ gaseous sample were taken at pressures of 30 micron.

III. (SN)ₓ AND BROMINATED (SN)ₓ STRUCTURE AND EXAFS RESULTS

The unit cell of pristine (SN)ₓ contains two, almost flat, translationally inequivalent, centrosymmetrically related S₂N₂ units. The inequivalent chains lie in the 10½ plane and alternate along the c axis, while chains of the same type are adjacent to each other along the a axis.

One of the key questions to be resolved in the treatment of (SN)ₓ with bromine concerns the way in which the bromine is incorporated into the (SN)ₓ crystals. Although a considerable amount of disorder is introduced by bromination, making a standard x-ray structure determination impossible, the unit cell parameters are changed only slightly in the a and c direction, while the b axis spacing remains the same.³ In addition, a one-dimensional superlattice of 2b periodicity is observed, suggesting
EXAFS for Brominated \((\text{SN})_x\) with
\(E \perp b\) and for \(\text{S}_4\text{N}_3\text{Br}_3\)

FIGURE 1.

- **a)** Brominated \((\text{SN})_x\)
- **b)** \(\text{S}_4\text{N}_3\text{Br}_3\)
TABLE I. SUMMARY OF TRANSFORM RESULTS FOR BROMINATED \((SN)_x\)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Position</th>
<th>Amplitude</th>
<th>Position</th>
<th>Amplitude</th>
<th>(A_2/A_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Br}_2) Gas</td>
<td>1.93</td>
<td>203</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>(\text{Br}) on ((SN)_x) (86 K)</td>
<td>2.15 (2.50)</td>
<td>363</td>
<td>4.60 (4.95)</td>
<td>103</td>
<td>0.28</td>
</tr>
<tr>
<td>(\text{Br}) on ((SN)_x) (170 K)</td>
<td>2.15 (2.50)</td>
<td>275</td>
<td>4.62 (4.97)</td>
<td>68</td>
<td>0.25</td>
</tr>
<tr>
<td>(\text{Br}) on ((SN)_x) (300 K)</td>
<td>2.13 (2.48)</td>
<td>162</td>
<td>4.58 (4.93)</td>
<td>42</td>
<td>0.26</td>
</tr>
</tbody>
</table>

\(\text{Br}_2\) Gas \ Measured \text{Br-Br} = 2.28 Å \ Therefore \(\delta = 2.28 - 1.93 = 0.35\) Å

Table II

<table>
<thead>
<tr>
<th></th>
<th>300° K</th>
<th>150° K</th>
<th>86° K</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Neighbor Coordination Number (N_1)</td>
<td>0.7±0.1</td>
<td>0.7±0.1</td>
<td>0.7±0.1</td>
</tr>
<tr>
<td>Ratio of second Neighbor (N_2/N_1)</td>
<td>0.34±0.2</td>
<td>0.56±0.2</td>
<td>0.41±0.2</td>
</tr>
</tbody>
</table>

Footnote: Apart from the multiple scattering corrections discussed in the text, a very recent reexamination of EXAFS amplitudes for bromine gas standards has been made, which may affect the values given. (S. Haald and E. Stern, reprint 1979)

The physical situation or as in our case, \((SN)_x\) fibers, or photopolymer, investigated in chemically modified the substrate with the local bonding. The structure of the in the substrate, theoretically also charge-transfer, \(Cc\) transferred from the conduction electron change in transport

The oscillatory

150°K and 86°K are decreasing single of this oscillator.
one dimensional ordering along the \(b \) direction. As the dimensions of the \(\text{Br}_3^- \) molecular ion are close to \(2b \) (8.86Å, and 8.9Å, respectively), it is suggestive that the superlattice arises from \(\text{Br}_3^- \) ions aligned parallel to the chains. As for the presence of expanded \(\text{Br}_2 \) molecules in \((\text{SN})_x\), we note that x-ray absorption studies of graphite exposed to bromine\(^{21}\), a system, which is analogous to brominated \((\text{SN})_x\)—albeit in a 2 dimensional rather than 1 dimensional fashion—have shown that the \(\text{Br}_2 \) units expand to optimize the molecule-graphite interaction from 2.28Å to 2.43Å.

The physical situation, a molecule intercalated between graphite planes or as in our case, a \(\text{Br}_3^- \) or \(\text{Br}_2 \) molecule between \((\text{SN})_x\) chains or outside \((\text{SN})_x\) fibers, resembles the molecule-surface system, extensively investigated in chemisorption.\(^{22}\) We expect some mixing of orbitals from the substrate with the orbitals of the molecule leading to charge transfer and local bonding. (The other extreme, the disruption of the molecular structure of the intercalated molecule, to a uniform stack of bromine, is theoretically also conceivable, stabilized in the solid state by charge-transfer, Coulomb and dispersion forces.) The amount of charge transferred from the \((\text{SN})_x\) chains controls the band filling of the conduction electron \(\pi \) band, which is thought to be responsible for the change in transport properties in the rigid band model.\(^{23}\)

The oscillatory part of the x-ray absorption spectra obtained at 300°F, 150°F and 86°F are shown in Figure 1 after subtracting out the monotonically decreasing single atom absorption cross section. The Fourier transforms of this oscillatory function, which contain information about near neighbor
FIGURE 2.

Transforms of Brominated \((SN)_x\)
\(K^3\) Transforms from 3.7 to 13.7 \(\text{Å}^{-1}\)

![Graph showing transforms at 300 K, 170 K, and 86 K]

There are various ways to consider scattering. For forward scattering, especially for very strong, caustic first neighbor shell, scattering by the chain linear molecular ion scattering contributes to the other and base numbers estimated by principle, multiple to 50%. More detailed on quantitative calculations on pure.

It is clear from form of bromine in neighbor spacing of...
shells and coordination numbers are shown in Figure 2. The first nearest neighbor shell at 2.15 Å, to which a phaseshift correction of .34 Å has to be added, clearly indicates Br⁻ ions. The entire set of results on first and second nearest neighbor shells are collected in Table I. We have assumed the standard expansion for the oscillatory part of the absorption cross-section $\chi(h)^{12-16}$

$$\chi(k) = \frac{1}{k} \sum \frac{N_i}{R_i^2} |f(k, \pi)| (\sin (2kR_i + \theta(k))) e^{-2\sigma_k^2} e^{-2R_i^2/\lambda}$$

(1)

There are various ways of determining the phaseshift $\theta(k)$, namely by comparison with a reference compound or by some atomic calculation. As forward scattering of the outgoing and returning electron wave-front is very strong, caution is required in using a phaseshift obtained for the first neighbor shell for the second neighbor shell as well. Multiple scattering by the central Br atom on the way from an end bromine in a linear molecular ion such as Br⁻ to the other end gives additional scattering contributions beyond the single path from the one end bromine to the other and back. In Table II we have collected the coordination numbers estimated by using only the Br₂ gas phaseshift of -.34 Å. In principle, multiple scattering could change the estimate of Table II by up to 50%. More detailed estimates of the multiple scattering effects based on quantitative calculations are being pursued in analogy to model calculations on purely 1D systems.²⁴

It is clear from the data given in Tables I and II that the predominant form of bromine in (SN)ₙ is Br⁻ or a more extended chain with a nearest neighbor spacing of 2.5 Å. This does not exclude the presence of some Br₂
molecules with some charge transfer allowing expansion of the Br-Br
diatonic gas phase spacing of 2.28Å to 2.5Å in analogy to the
bromine-graphite system, however, the existence of the second nearest
neighbor bromine shell at 5Å is incontrovertible evidence for the dominant
presence of Br- or larger Br\textsubscript{n} units.

We have also performed measurements with the x-ray polarization
perpendicular to the b axis of our samples to study the arrangement of
the bromine relative to the (SN)\textsubscript{x} chains. We expect the sulphur
backscattering to dominate transverse excitation of the Br K-shell electron
into continuum states and some chemical arguments favor preferred
interaction between S and Br neighbors. It was also thought very useful
to perform x-ray absorption experiments on the compound S\textsubscript{4}N\textsubscript{3}+ Br\textsubscript{3}- to
obtain information about the resolution of the EXAFS measurements of the
2 unequal Br-Br bond lengths of 2.43 and 2.68Å deduced from the x-ray
structure. Despite cooling the powdered S\textsubscript{4}N\textsubscript{3}+ Br\textsubscript{3}- samples to 5°K to
minimize the thermal smearing of the peak (Debye-Waller factor) we resolve
only a single peak centered at 2.5Å. In this compound, the region from
3.1-3.6Å contains too many bromine-sulphur shells of small coordination
numbers to show any sharp structure.

In our measurement of (SNBr\textsubscript{0.4}\textsubscript{+})\textsubscript{x} with the x-ray polarization vector
perpendicular to the b axis, oscillations of the absorption cross-section
were only detectable to a k=5Å-1, indicating backscattering from a low Z
element (i.e., sulphur). As the phase-shift has nonlinear functional
behavior for small k, we estimated a correction of -1.3Å to the transform
peak centered at 2.0
bonding Br-S contact
several different Br
indicates that the e

IV. EDGE STRUCTURE I

In addition to the analysis of EXAFS
structure and the co
provides additional
For K shell excitati
contribute to the ab
of the x-ray absorpt
molecular excitonic
(antibonding) orbita
energy, the edge
vector parallel, 30°

The origin corre
binding energy. Bes
familiar from gas ph
from the Rydberg ser
peak dominates the e
with this interpreta
molecular Br\textsubscript{3}- ion, s
peak centered at 2.08 Å. This distance of 3.3 Å is consistent with a weakly bonding Br-S contact. As this peak is quite broad, it seems likely that several different Br-S distances occur in the (SNBr$_{0.4}$)$_x$ material, and indicates that the environment of the Br$_3^-$ ions is not unique.

IV. EDGE STRUCTURE IN (SNBr$_{0.4}$)$_x$ AND [CH(AsF$_3$)$_y$]$_x$

In addition to extracting bond distances and coordination numbers from the analysis of EXAFS data, the near edge region with its sharp excitonic structure and the contribution from resonant states in the continuum provides additional information on charge transfer and molecular structure. For K shell excitation only final states of angular momentum l=1, contribute to the absorption cross-section, due to the dipole character of the x-ray absorption process. For the bromine-(SN)$_x$ system, the molecular excitonic states are made up of appropriately phased 4p (antibonding) orbitals. In Figure III we show, referenced to a common zero of energy, the edge structure for (SNBr$_{0.4}$)$_x$ for the x-ray polarization vector parallel, 30° and 90° to the b axis.

The origin corresponds to an energy of 13.452keV above the K shell binding energy. Besides the very prominent white line peak, which is familiar from gas phase studies, we see a second peak, which may arise from the Rydberg series np(n=5,6,...). Interestingly enough, the second peak dominates the excitonic features in the c phase, which is consistent with this interpretation as the 4p^+_x, 4p^+_y orbitals are occupied in the molecular Br$_3^-$ ion, so the lowest empty states are 5p^+_x, 5p^+_y combinations.
Br K\(_\alpha\) Edge Structure in Brominated (SN\(_x\))\(_x\) (300°K) E \parallel b, E 30°b, E \perp b

\[\mu\text{ (Arbitrary Units)} \]

-20 0 20 40 60 80 100 120 140 160 180 200

FIGURE 4.

Br K\(_\alpha\) Edge Structure in Brominated (SN\(_x\))\(_x\) and Bromine Standards

\[\mu\text{ (Arbitrary Units)} \]

-20 0 20 40 60 80 100 120 140 160 180 200

In Figure 4 we have \((\text{SNBr}_0\cdot4)\cdot x, 5°K\) with \(E \parallel b\) and \(E \perp b\). As the Br\(_2\) excitation energy is compared to the 4p of S\(_3\) and Br\(_3\) compared to the 4p, molecular calculations are planned to resolve the differences in charge distribution and shifts in the energies. Using these orbital potentials, the Hartree-Fock calculations for the Ag spin states are used to determine the electronic structures of the Ag molecules. Coulomb barriers also affect the electronic structure of these molecules.
In Figure IV we have compared the edge structure of Br₂, S₄N₃⁺ Br⁻ and the (SNBr₀.4)ₓ with \(\varepsilon \parallel \mathbf{b} \), and \(\varepsilon \perp \mathbf{b} \) (\(\varepsilon \) polarization vector of the x-ray beam). As the Br₂ excitation clearly involves 4p antibonding states to form the exciton, the parentage of the first feature in all the edges is apparent (apart from shifts of order a few eV due to different inner potentials and charge distribution). The most intriguing aspect of the reference S₄N₃⁺ Br⁻ compound is the dominance of the higher lying Rydberg states compared to the 4p antibonding state (seen only as a shoulder). Detailed molecular calculations on the excitonic (core-hole-np Rydberg level) states are planned to resolve this point.

H. Morawitz and P. Bagus have performed detailed self-consistent field Hartree-Fock calculations on AsF₅ molecules to interpret the edge structure of the AsF₅ doped polyacetylene polymer. These calculations allow the determination of the ionization energy of AsF₅, corresponding to removal of 1 electron from the 1s shell. In addition, the calculation on the ionized AsF₅⁺ (1 core hole) system with full relaxation identifies potential excitonic states corresponding to virtual orbitals of negative energy. Using these states with an additional electron placed into one of these orbitals allows the determination of the wavefunctions, energies and oscillator strengths of the corresponding excitonic states of the AsF₅ molecule.

The AsF₅ molecule is an interesting example of a cage molecule in which Coulomb barrier effects of the five surrounding F⁻ ions arranged in a bi-pyramidal structure may spatially confine electrons excited from a
core level of the central As to the continuum. In addition, even for states, whose wavefunctions extend beyond the fluorine cage, the central core hole acts as spherically symmetric Coulomb potential leading to a Rydberg series. Indeed, we have identified in our calculations a valence type (inner well) excitonic state of E' symmetry with a binding energy of -5.0eV relative to the ionization limit and two Rydberg-like states with binding energy of -2.1eV and -1.8eV of E' and A'' symmetry. This calculated feature correlates well with structure in the very large excitonic peak observed in the AsF$_5$ gas phase edge structure. It should be noted here that we expect large matrix effects on the extended Rydberg states upon incorporation of AsF$_5$ in a matrix with potentially larger local fields. Preliminary edge data on AsF$_5$ in (CH)$_x$ show a considerable enhancement of the strength of the edge factors relative to the K-edge step height, which measures the individual atom absorption increase.

V. SUMMARY AND CONCLUSIONS

In this paper we have discussed the first use of x-ray absorption experiments to determine molecular structure, orientation and charge transfer of bromine in (SN)$_x$ and AsF$_5$ in (CH)$_x$. As the incorporated molecules have a profound influence on the physical properties of these polymeric conductors, a detailed answer to these questions is essential for the development of other new conducting polymers as well as for the clarification of the mechanisms responsible for the striking behavior of these materials.

We have demonstrated longer bromine chains to the conducting b studies of the exci features in a quant in the (CH)$_x$ matrix features and to det incorporation in a
addition, even for the case, the central accidental leading to a calculation a valence with a binding energy of arg-like states with symmetry. This calculated large excitonic peak should be noted here Rydberg states upon larger local fields. The enhancement of edge step height, which

x-ray absorption ision and charge the incorporated properties of these identations is essential as well as for the triking behavior of

We have demonstrated that near neighbor distance determination for bromine suggests that the bromine in (SNBr₀.₄)ₓ is in the form of Br₃⁻ or longer bromine chains and confirms the orientation of the bromine parallel to the conducting b axis. In addition, we have performed theoretical studies of the excitonic region for the case of AsF₅ in order to use these features in a quantitative manner to determine possible chemical changes in the (CH)ₓ matrix, to ascertain charge transfer from the shift of edge features and to determine changes in oscillator strengths after incorporation in a matrix such as (CH)ₓ.
REFERENCES

13. E. A. Stern, Ph

14. F. W. Lytle, D.

15. P. A. Lee and J

16. C. A. Ashley ar

17. H. Morawitz and

18. B. Cadioli, U.

Phys. Lett. 17.

19. J. J. Mayerle

21. E. A. Stern, D

Phys. Rev. Let:

Rev. B17, 4069

22. See for exampl

Conf. Sol. Sur

23. W. D. Gill, P

B. Street, in

24. J. J. Rehr and

25. Boon-Keng Tao

26. B. M. Kincaid

17. H. Morawitz and P. Bagus (to be published).

19. J. J. Mayerle (private communication).

23. W. D. Gill, P. M. Grant, R. H. Geiss, R. L. Greene, J. F. Kwak and G. B. Street, in these proceedings.

Lecture Notes in Physics

Edited by J. Ehlers, München, K. Hepp, Zürich
R. Kippenhahn, München, H. A. Weidenmüller, Heidelberg
and J. Zittartz, Köln
Managing Editor: W. Beiglböck, Heidelberg

Quasi One-Dimensional Conductors II

Edited by
S. Baretić, A. Bjeliš, J. R. Cooper and B. Leontić

Springer-Verlag
Berlin Heidelberg New York 1979