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Abstract

The XXZ spin Hamiltonian H = — & STST +8%8Y + 878D s
simulated for quantum spins. The XY "r{lodel (A =0) has a Kosterlitz-
Thouless phase transition at Tpp = 0.45 + 0.05, slightly above which
the specific heat has a finite peak. The vortex density has a non-zero
value in the low-temperature limit, probably due to quantum
fluctuations. The critical temperature holds up at least to A =-0.8.
The Ising transition temperature Tising is measured for Ising-like
antiferromagnets A <—1 and is found to drop off to zero in a
manner consistent with the reciprocal-logarithmic  behavior T,
a— 1{logl— A — 1|, as proposed for the classical model.

1. Introduction

A variety of motivations exist for studying the XXZ
Hamiltonian :

H = — ) (SISf+Sisy+AsisH) 0]
i,5)

in two dimensions. The first is, of course, the desire to model
essentially two-dimensional magnetic materials. De J ongh
and Miedema [1] review the basic magnetic properties of a
number of such compounds. They find quite a few of these
to be s=1 and on square lattices. Further, the ratio of the
interplane coupling to the intraplane coupling is typically quite
small — on the order of 1078.

The XXZ model may also be used as a lattice-gas model for
two-dimensional fluids [2, 3]. Imagine a quantum lattice gas of
hard-core bosons. Notice, incidentally, that the use of a lattice
is not necessarily an artiticial construction designed to represent
a continuum. Indeed, in solid-state physics, lattices are usually
the more physical situation (as in the case of a film adsorbed on
a periodic substrate such as Grafoil). Allowing the bosons to
hop from a site to any of the nearest neighbors gives

KE = =% Wy, +yly). )]
G0
Interactions between bosons may be modeled by the term

PE. =Y V(i—1) > Y Vynn. (3)
(L0
For our purposes, it will be sufficient to include only nearest-
neighbor terms in this sum, corresponding to short-range
interactions. Since we are only going to allow O or 1 bosons on
each site, due to their hard cores, 2 = (\,!/T)2 = 0. The two-state
nature of the operators and the commutativity of bosons
suggests a mapping onto spin-3 operators. Indeed, this was first
done by Matsubara and Matsuda [2] who assigned yh »s57 =

S*+iS¥ and n=yly->57+ 3 recovering the XXZ
Hamiltonian. Here the XY interaction plays the part of the
kinetic energy, the ZZ interaction is the potential, and a
magnetic field in the z direction corresponds to the chemical
potential. Thus, the spin- XXZ model can be thought of as
either an array of spins or as a fluid and the languages of the
two models are often used interchangeably.

The spin4 XXZ model happens also to. be a strong-coupling
approximation to an electron-exciton model which arises in the
study of excitonic superconductivity [4]. Here, the model
consists of a two-dimensional system of fermions, with spin-up
and spin-down electrons wich are allowed to hop between
nearest-neighbor sites, and there is a strong on-site -attraction
between particles. In the strong-coupling limit, spin-up electrons
and spin-down electrons will want to sit upon the same sites.
Hence, in the ground state, some fraction of the sites will be
empty while the others will be fully occupied with an up-down
pair. The fraction will of course depend on the density of
electrons. In this limit, the ground state is highly degenerate —
the energy being independent of the configuration of the pairs.
The mapping of the Hubbard mode! to quantum spins is
through the usual transformation n;—~ 87+ 4. Since pairs are
allowed to hop from site to site in this model, the spin
Hamiltonian will include a term
—Jyy & (S8 + 8787 =

.0 J
= — XY (SFSF + SPSP).
2 p
The degeneracy of the Hamiltonian with respect to the way the
pairs are placed upon the lattice is lifted to second order in the
hopping term of the Hamiltonian. For example, if a pair sits
next to a vacancy, one member of the pair may hop virtually to
the neighboring site and back again, lowering the energy of this
isolated pair. If, on the other hand, that site is occupied, then
this hopping process is blocked. Hence, pairs do not like to
occupy neighboring sites, giving rise to an antiferromagnetic
term in the spin Hamiltonian of the form J, (IEJ , S#S7. Further-

more, the relevant matrix elements and energy denominators are
such that J, > J, so that the resulting Hamiltonian will always
be an Ising-like antiferromagnet [4].

Finally, a study of the XXZ model is of interest in the
general theory of phase transitions since, by varying A, the

" Hamiltonian can be made to exhibit behaviors of various

universality classes. Consider, for example, the classical limit of
the spin Hamiltonian

Physica Scripta 32




.

328 E. Loh,Jr., D. J. Scalapino and P. M. Grant

H=—3%8"8, , (4)
4.0
where the S are n-component vectors of unit magnitude and the
“im is over nearest neighbors. In two dimensions, n plays a
tucial role. When n = 1, for example, the model becomes the
two-dimensional Ising model, which Onsager has shown to have
a phase transition at a finite temperature [5, 6]. Meanwhile,
if n > 3 the spins fail to achieve long-range order at any finite
temperature. The intermediate case, n = 2, also lacks long-range
order [7]. Yet Stanley and Kaplan [8] concluded from high-
temperature series expansions that the system underwent a
phase transition in which the susceptibility diverged.

This ‘paradox’ was resolved by Kosterlitz and Thouless [9]
by introducing topological long-range order, a low-temperature
phase in which vortices are bound to antivortices. The phase is
characterized by algebraic decay of the spin-spin correlation
functions, as opposed to the exponential decays typical of high
temperatures. As the temperature is increased more and more
bound pairs are formed until, finally, at the critical temperature
T,, the pairs are allowed to ‘boil’ apart allowing free vortices.
The two-dimensional XY model also exhibits a sharp peak in
the specific peak just above T, [10, 11]. Our XXZ model is
rich in phenomenology, exhibiting behaviors that are
characteristic of these different universality classes: n =1
MNZD,r=20N<1D,andn=3 (A= 1).

Unfortunately, little work has been done on the general XXZ
model for quantum spins. After Kosterlitz and Thouless [9]
described topological long-range order in 1973, much work was
done to describe the phase in greater detail for classical planar
Jpins. In particular, some numerical work [10, 11] was done to
measure the critical temperature for this model and to check
estimates of exponents. The specific heat was found to have a
finite peak just above the transition.

As one moves from planar spins to classical 3-component
spins, however, increasing the z-z coupling strength can
eventually destroy the Kosterlitz-Thouless phase transition and
lead to Ising order. At the isotropic point H = — Z §; * S, there
is no order at any finite temperature. Some predictions [12, 13,
14] and numerical results exist for characterizing the crossover
behavior between these different phases. It is predicted [12, 14]
that the transition temperatures for both the Ising and
Kosterlitz-Thouless phases should disappear logarithmically with
the antisotropy for nearly isotropic systems:

T, a 1/logx — 11. (%)

This behavior is consistent with, but not necessarily confirmed
by, numerical work [15, 16] for both sorts of anisotropy. It is
worth noting that the very low-temperature behavior of the
slightly Ising-like systems is not consistent with spin-wave
theory [17] indicating the need either to include more
complicated objects in the theoretical calculations (such as
instantons) or indicating problems with the numerical results.
The classical XXZ model has also been simulated with an
additional quartic term aZ(S®)* as a model of a supersolid,
* having both Kosterlitz-Thouless and Ising order [18].
C) Much less is known about the corresponding quantum
mechanical spin-} problem. In particular, since it is expected
that the quantum and classical Hamiltonians both belong to the
same universality classes, the quantum system is often ignored.
High-temperature series expansions have been found [19] for
the anisotropic Heisenberg model. Most other work is for
A=0 — the XY model. Rogiers, et al. [20] used high

temperature series expansions to estimate critical temperatures
and exponents in this case. Both Pearson [21] and Suzuki and
Miyashita [22] have variational estimates of the ground-state
energy. Extrapolations from finite-size lattices also provide
approximate values for the ground-state energy in addition to
other quantities such as the susceptibility, vortex density,
energy, specific heat, and entropy [23, 24, 25]. On the basis
of such calculations, attempts have been made to characterize
the ground state and the phase transition in the quantum XY
model. A wide variety of real-space Ttenormalization group
approaches, characterized by uncontrolled approximations, have
also been applied to this problem [26]. Unfortunately, they
have been both inconclusive and contradictory. Finally, Monte-
Carlo results exist for this model. This work is based on
factoring the partition function trace (¢ *¥) into many identical
factors (e"2TH)L where =L - At and Ar is taken to be small.
No previous simulations exist for non-zero values of A, but
Suzuki, et al. [27] studied the case A = O using very small values
of L(L = 1, 2), which casts doubt on the validity of their resuits
at low temperatures (large §). De Raedt; et al. [28] studied the
L =1 model both analytically and by simulation and they
simulated systems up to L = 8 as well. They found a divergent
in-plane structure factor but a small out-of-plane susceptibility.
In addition, several critical exponents were measured. Among
their results, however, are the surprising — and we believe
incorrect — conclusions that the specific heat diverges, in
contrast with the classical-spin model [10, 11] and that the
vortex density vanishes at zero temperature, as opposed to a
finite value due to zero-point fluctuations suggested by exact
small-lattice extra-polations [23] .

In this paper, the quantum XXZ mode! is simulated for
different values of A. In section 2, the simulation technique is
described. Section 3 reports results and a summary is given in
section 4.

2. Simulation techniques

Direct applications of Monte Carlo techniques to qunatum
mechanical systems are not possible since the matrix elements
(Yle PHIY) are in general difficult, if not impossible, to evaluate.
In the early sixties, Handscomb [29, 30] proposed that one
write the partition function trace as a power series in $H. Since
traces of powers of H are sometimes easily evaluated, his
method had useful applications to several interesting quantum
mechanical problems, including the isotropic Heisenberg ferro-
magnet [30] and, more recently, antiferromagnets as well
[31]. The overwhelming majority of applicable techniques,
however, centers around a path-integral representation of the
partition function. Such algorithms {27, 32, 33, 34, 35, 36]
typically expand the exponential as a product of many identical
factors and then use the Trotter formula to approximate the
essential matrix elements. The net effect of this expansion is to
introduce an imagninary time, mapping a d-dimensional
quantum mechanical problem into a (d + 1)-dimensional
classical one. '

Let us start, then, by writing the path-integral representation
of the partition function trace:

Z=Tre P =¥ Wple ™y )yle 4™y, 7.
v

Wy -ile ™™y, (6)




where =L - Ar, the trace has been written out explicitly as a
sum, and complete sets of states have been inserted between all
adjacent exponentials. This expression for the partition function

involves sums over L different d-dimensional states and so has ,

incorporated the new imaginary-time dimension. We must now
evaluate the matrix elements of the factors e 2™ For
sufficiently small values of A7, one may approximate

~-ATH

e ~ ¢ -ATHyy,

—A‘rHle—ATH2 e

(M

where H=H; + H, + ...+ H,,. Suzuki [32] has labelled this
approximation the generalized Trotter formula and shows that
the approximation becomes increasingly better as Ar 0, as we
certainly hope it would. The reason this relation is simply an
approximation is that the terms H,,H,,..., H,, do not, in
general, commute with each other. It is up to us to choose these
subhamiltonians cleverly and several choices have been
suggested in the literature [27, 33, 34].

The breakup we use here is the checkerboard decomposition
[35,37], which has been found to be useful for one-dimensional
systems with short-range interactions. Write exp(—A7H) ~ exp
(—A7H,)exp(—AtH,) where

H=—3 (SKSf+Sysy + AS7SF) = Hy +H,.
1,5

(8)

Here, H, and H, are each composed of cell Hamiltonians, each
cell involving only four sites. This breakup is pictured in Fig. 1.
Snce both H, and H, are made up of terms which commute
amongst themselves, their exponentials may be broken up into
exponentials of the four-site subhamiltonians without further
approximation. These exponentials may be broken up in block
diagonal form, the largest blocks being exponentiated
numerically. Thus, matrix elements of exp(—8H) may be
evaluated simply by breaking up the exponential into imaginary-
time slices. Time slices act alternately on the two sets of
plaquettes. The picture, then, is one of a (2 + 1)-dimensional
structure filled with cubes that connect certain plaquettes on
one time slice with the corresponding ones on the next slice.
While it is clearly difficult to display a three-dimensional nest of
cubes on a two-dimensional piece of paper, Fig. 2 attempts to
do just that. This new lattice is surprisingly sparse; only one
quarter of its volume is occupied by cubes. Each site in the
(2 + 1)-dimensional lattice belongs to two cubes, one corres-
ponding to H; and the other corresponding to H,.

The system is now  described by a (2 + 1)-dimensional
configuration of spins which gives the evolution of the plane
of spins through imaginary time. The overall weight of a
particular path (that is, a particular (2 + 1)-dimensional
configuration) is simply the product of all the matrix elements
corresponding to the varjous cubes. Unfortunately, the matrix
elements are not all positive — or even real! — and consequently
the product is not necessarily positive, though sometimes it is,
due to certain conservation properties. In many cases, this
difficulty can be overcome by picking the appropriate
representation for the quantum spins. If one quantizes the spins
along the z-direction, then all of the matrix elements for the
XXZ Hamiltonian

H = —Z(S*S* + §Y8Y + A$%5%)

are real and non-negative. Alternatively, it is sometimes useful
to quantize the spins in the x-direction (to measure the response
to spin twists about the z-axis, as will be described later). This
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Fig. 1. Breakup of the two-dimensional lattice. The Hamiltonian is
broken up into two pieces, H, and H,. For each piece, the cell
components commute amongst themselves.
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Fig. 2. (2 + 1)-dimensional lattice. Each site is a vertex for exactly two
cubes. The space is one-quarter filled.

quantization gives exclusively non-negative matrix elements
only for [A| <1, however, and has bad convergence properties
as [A[—~1.

It is worth digressing for a moment to try to gain a feeling
for what these imaginary-time paths mean. Let us take the z-
quantization for now. If the spins actually represented hard-core
bosons, as described earlier, we would say that we have chosen
an occupation-number representation. The (2 + 1)-dimensional
lattice, then, depicts the paths of some number of bosons in
imaginary-time. The matrix element that corresponds to a given
cube is nothing more than the many-particle propagator for
bosons to evolve from one cube face to the face on the next
time slice. It is helpful to assign world lines to the bosons and
try to visualize them in (2 + 1)-dimensional space. Of course,
the particles are actually indistinguishable, so that calculation of
the matrix elements implicitly sums over all permutations
among the particles and an unambiguous assignment of world
lines to a configuration of occupation numbers is impossible.

Even if all matrix elements were non-negative, allowing us to
interpret them as probabilities, it is important to realize that
many of them can be zero. Indeed, it is impossible to get a new
configuration with non-zero overall weight from an old one by
flipping only one spin. The Monte-Carlo moves that are used to
update the lattice, then, are four-site moves. Three moves are
employed. One move takes a boson ‘world line’ from evolving
via a given cube to evolving through its neighbor cube in the x
direction. Similarly, one might grab a world line and “pull’ it in
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the y direction. Such moves are analogous to those introduced
by Hirsch et al. [37] for lattices with only one space dimension.
\Finally, there is a move which takes two adjacent lines which
C/‘)twist about each other and reassign them so that they twist in

the opposite direction. These moves can be described more
precisely by considering a 2 x 2 square of sites in the (2 + 1)-
dimensional lattice which does not serve as a face for any cube.
If this square is either in the x-7 plane or in the y-r plane, then
the move takes a boson world line from one of its edges to the
other. If, however, the plaquette lies in the x-p plane, then the
world lines must be thought of as passing through the square,
instead of evolving along its edges. If two world lines pass
through opposite corners of the square, then the third Monte-
Carlo move simply forces the lines to pass through the other
two corners. This effectively interchanges the world lines.

These moves span only a part of the configuration space
[38], so that the Monte-Carlo simulation is not fully ergodic. In
particular, the winding number of the world lines as well as the
total number (i.e., the total magnetization) of world lines
themselves are conserved. These restrictions, however, are
unimportant in the thermodynamic limit where we are
accustomed to having micro-canonical, canonical, and grand-
canonical ensembles produce the same results for physical
quantities despite the fact that some quantity (such as
magnetization) may be held fixed. Marcu and Wiesler [39] have
studied this question for quantum Monte-Carlo simulation in
one dimension.

A large, but limited, number of observables may be measured

-by this approach. To be measurable, an operator must either
)ave zero matrix elements if and only if the exponential of the
cell subhamiltonian does, or, it must be a product of such
operators. If the spins are quantized in the z-direction,
therefore, it is possible to measure energy, specific heat, vortex
density, vortex correlation, and (S*S?) correlations, as well as
the dependence of these correlation functions on imaginary
time 7.

The problem was run on an IBM 3081 computer with Ar
usually set to 0.25. Dependence of measurements on AT was
tested and found to be quite small. Measurements were made
15,000 times with 2 sweeps of the lattice between measure-
ments. Ten such runs were used to generate each point along
with its error bar. Thus, each point represents
10 x 15,000 x 2 = 300,000 sweeps of the lattice. Runs on
lattices as large as 24 x 24 = 576 sites were performed, in
contrast with exact diagonalizations, which stop around 18
sites. In the 7 direction, we have used as many as L = 40 slices
(for T=0.1 with Ar = 0.25). Suzuki’s work used only L = 1
and 2. Generating measurements of the desired observables at
T=0.5 (L=28) for a 16 x 16 lattice with a prescribed set of
boundary conditions takes just over three hours.

-

3. Results
3.1 XY Model

C‘?uantizing the spins along the z-axis allows a large number of
feasurements to be performed. The energy per site is plotted in
Fig. 3 for A = 0, with error bars much smaller than the width of
the lines. At high temperatures, our data fit closely to the high-
temperature  form Fa—1/47. At low temperatures,
E—>~—0.543 £0.002 which agrees with estimates from both
variational and exact diagonalization calculations. The statistical
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Fig. 3. Energy per site as a function of temperature for an 8 X 8 lattice
of quantum spins with A = 0. Results for the ground-state energy and a
simple high-temperature expansion are shown for comparison,
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Fig. 4. Specific heat per site as a function of temperatur for 4 X 4 and
8 X 8 lattices of quantum spins with A = 0. Points are found directly by
measuring fluctuatings in energy. The inset shows the dependence of the
peak height on size for 4 X 4 through 24 X 24 lattices.

error in our calculations is much smaller (10™*). The quoted
error is due to extrapolations in A7, §, and lattice size.

In Fig. 4, the specific heat per spin, computed by measuring
fluctuations in the energy, is shown for an 8 x 8 lattice, again
with A =0. Numerical differentiation of the energy curve
produces the same results. ‘The -specific heat peak occurs at
T=0.5. To test the dependence of this peak on lattice size,
measurements were repeated on different lattices. The peak
height clearly saturates in the thermodynamic limit at about
C/Nkg = 0.65, as shown in the inset. This is in contrast to the
work of deRaedt et al. [28] who suggested a logarithmic
divergence of the specific heat peak. Such a divergence would
seem surprising, however, in light of the fact that the peak °
height does not diverge even in the classical-spin limit.

Since we expect the phase transition in this system to be
driven by the unbinding of vortex pairs, it would be of interest
to study the vortex density as a function of temperature. The
vortex-density operator used here is Swendsen’s [40] operator

1

" 12” (1—0¥0% — oY a3)(1 — 050§ — a3 0)),
Pplaqueltes
©)

where ¢* and ¢” are the x and y Pauli spin matrices. The sum is
over all plaquettes and the subscripts refer to sites on the
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Fig. 5. Swendson’s vortex density for quantum spins versus temperature
for A=0. The vortex density is non-zero at T=0 and exhibits a
noticeable increase just below the critical temperature.

vertices of each plaquette numbered in sequential order as one
circles around. The vortex density is plotted in Fig. 5. It comes
in to a non-zero value at T'= 0, which qualitatively agrees with
previous exact-diagonalization extrapolations and is to be
expected from quantum zero point fluctuations. It is worth
noting that V(7T') begins to grow noticeably at 7= 0.35 — 0.40,
which is just below where we estimate the phase transition to
occur.

The helicity modulus y has been proposed as a useful
quantity for investigating Kosterlitz-Thouless phase transitions
in the classical two-dimensional problem [41] and has been
used successfully for this purpose in numerical studies [11]. For
a spin system, the modulus is proportional to the spin-wave
stiffness and characterizes the change in the free energy when a
slow, in-plane, twist of the spins is made. In models of two-
dimensional systems of bosons, it is proportional to the
superfluid density. In the classical spin system, the modulus has
a universal jump at the critical temperature [42]. Thus, we
expect that the temperature-derivative of y should provide a
clear signal of T,. Fortunately, this derivative is easy to measure
since it is no more than the increase in the internal energy due
to a twist.

If a phase twist is forced across the system — so that one
edge of the system is held at 9 = 0 while the other end is held at

® = & — then the resultant phase gradient ¢ = ®/NV, results in
an increase in the free energy

AF 1

ol 10
~ = 3 (10

for small phase gradients, where v is th helicity modulus, V, is
the width of the system, and N = NNV, is the total size of the
system. Since, in Monte-Carlo simulations, one measures the
total internal energy instead of the free energy, the increase in
energy is related to the helicity modulus by

ap = XA _ 12 ,
ap 2 ag
When a phase twist of ® =  is placed across the system in the

x-direction, then ¢ = n/N,, or,

_ ™ 3B N,
AT, Nx

X NN, 1

(12)
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Fig. 6. Increase in the total internal energy due to a phase twist of 7
on a quantum system at A = 0. Since this quantity is proportional to the
derivative of the helicity modulus, the spike signals a Kosterlitz-Thouless
phase transition.

Hence, the increase in the total internal energy due to a fixed
twist is related to the derivative of the helicity modulus and
should show a large spike at the transition temperature,

This energy increase is shown in Fig. 6 for 4 x 4 and 8 x 8
lattices of quantum spins with A = 0. The phase twist has been
forced on the system by quantizing spins along the Xx-axis,
locking spins at x = 0 to lie along the + x axis while the spins
at x = N, are locked along the —x axis. The peak of the energy
increase occurs at T = 0.45 + 0.05, which gives us an estimate of
the transition temperature, and is seen to increase with lattice
size. Surprisingly, however, the helicity-modulus derivative
increases with lattice size even far below the phase transition
where size no longer plays a part in the classical-spin limit. The
low-temperature limit of AE is plotted against lattice size in
Fig. 7. This linear increase of AE with lattice wdith might be
due to the formation of a domain wall. In this case, perhaps the
phase twist 7 gets spread out over some length L rather than the
entire lattice dimension N, . Then,

1 3(8y)

AE a — (L) LN, aN,, (13)

2 op

resulting in a linear increase, as observed. If a domain wall is
indeed forming, it is not clear whether that is an artifact of the
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Fig. 7. Increase in the total internal energy due to a phase twist of n
on quantum systems near 7" = 0 for A = 0.
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simulation technique or if it is a physical characteristic of the
quantum system.

3.2 XXZ Model

In Fig. 8., the derivative of the helicity modulus is plotted for
several different values of . The derivative peak occurs at the
same temperature for all three values A = 0.0, —0.6, —0.8, to
within the accuracy of the calculations. This is consistent with
results from the classical-spin model where the transition
temperature does not drop off until very close to the isotropic
case A = — 1. Unfortunately, it is difficult to explore the region
for slightly XY-like Heisenberg systems because many matrix
elements vanish, making successive Monte-Carlo configurations
highly correlated.

Finally, the quantum XXZ model may be studied in the Ising
regime A <— 1. Fig. 9 shows the staggered susceptibility of
different sized lattices for A = — 1.6. The susceptibility appears
to diverge independent of lattice size as the system is cooled
but saturates at different size-dependent values as T drops below
Trsing. To getreliable estimates of the transition temperature, we
have used a finite-size scaling analysis of the numerical data
[43]. For an Ising transition, the correlation functions are
known to drop off as r™e™/¢ above Ty, for large r, where
7 is the correlation-function exponent while £ is the correlation
length. In two dimensions, therefore, the suceptibility should go
as
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Fig. 8 Increase in the total internal energy due to a phase twist of 7 on
quantum systems at A = 0.0, —0.6, —0.8 measured on 8 X 8 lattices. All
three peaks are essentially at the same place.
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where L is the linear dimension of the system. Therefore,
x+L""? should be a unique function g(L/£) of L/&. Since n =
0.25 and & ® [T — Tpgp,|™" with v = 1 for the 2-d Ising model,
the only parameter left to choose is Ty,,,. The appropriate
choice of Tigy,,, of course, is the one which causes all plots of
x+L""? against L/t to lie on top of each other for different
lattice sizes L. Values of Ty, calculated in this manner are
plotted in Fig. 10 against — 1/log(~X — 1). The data appears to
be consistent with predictions [12, 14] of this reciprocal
logarithmic behavior for small anisotropy (—A—1) for (—=A—1)
< 0.5. On the other hand, this reciprocal-logarithmic variation
has dramatic behavior for only very small anisotropy (—A — 1) <
0.01, suggesting that verification of this prediction must be
investigated at values of A much closer to —1.

4. Summary

The spin-+ XXZ model is expected to have the same universality
classes as the classical model. At A =0, we find a Kosterlitz-
Thouless transition at Tgp = 0.45 = 0.05 from helicity modulus
measurements. We find the specific heat per site to have a peak
just above Txpr whose height saturates at a finite value Cyay/
Nkg = 0.65 with increasing lattice size. The finite specific heat
peak height occuring at a temperature slightly greater than the
transition temperature is characteristic of a Kosterlitz-Thouless
transition. In contrast, previous simulation work on the
quantum XY model suggested a logarithmic divergence of the
specific-heat peak height. The vortex density, which is tied to
the mechanism which drives the Kosterlitz-Thouless transition,
rapidly starts to increase just below our estimate of the tran-
sition temperature. Its ground-state value appears to be non-zero
due to quantum fluctuations in agreement with previous exact-
diagonalizations but in disagreement with other simulation
work.

We have performed the first simulations of the quantum
model for A# 0, locating the phase boundaries for several
negative (antiferromagnetic) values of A. The transition
temperature seems to be nearly independent of the anisotropy
for 0<—A<0.8. The system becomes Ising-like for —A > 1.
Our results are consistent with predictions of a reciprocal-
logarithmic disappearance of the transition temperature with

FETEPE BPAPEPEN PRI SRR IR

l

—

0.0

[

o SR
o WO o

(5

=
~

8T

—A

hili i i iti m Trsi loted against — 1/log(—A —
Fig. 9. St d out-of-plane susceptibility for the quantum XXZ model Fig. 10. Ising transition te perature Trging P gains (
ig. 9. Staggered out-of-p P , 3 1). Work on the classical spin model predicts a straight-line behavior for

with A = — 1.6. Datais shown for4 X 4,6 X 6,8 X 8,12 X 12,and 16 X
16 lattices. Lines are drawn simply to guide the eye.
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anisotropy, although data taken much closer to A=—1 is
needed in order to make a more meaningful confirmation.

In addition to further simulation near the antiferromagnetic

isotropic point, other interesting work remains to be done on
the quanfum XXZ model. There is room for much better

algorithms as well as for a more complete understanding of

the helicity-modulus. Even with the present algorithms, it
should be possible to measure the modulus directly-and also to
produce better data for the ferromagnetic regime A > 0. Finally,
simulations of quantum Hamiltonians exhibiting supersolid
phases — with both Kosterlitz-Thouless and Ising order — are
of extreme interest. Such Hamiltonians could be understood as

models of two-dimensional Bose films, the supersolid phases

then corresponding to a solid with nonzero superfluid density.
Supersolids have already been observed in simple classical spin
models {18].
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