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TRANSFER SALTS OF TMTCF

IBM Research Laboratory, 5600 Cottle Road, San Jose, California 95193, U.S.A.

Résumé — Nous présentons un modéle unifié
faits expérimentaux obtenus sous hautes et

4 une particule capable d’expliquer plusieurs
basses températures et/ou pressions. Une

attention spéciale a été portée sur la pature et 'origine des interactions entre chaines
permettant d’expliquer un grand nombre des propriétés physiques de ces matériaux.

Abstract — We present a unified single-particle 'model capable of explaining a number of

experimental facts pertaining to the high

and low temperature/pressure regimes of

(TMTCF),X. Special attention is paid to the nature and source of the interchain interaction
in determining the overall physical properties of these materials.

1. Introduction.— Tetramethyltetrachalcogenafulvalene, TMTCF (C = S, Se, Te), forms a number of
simple 2:1 salts with a wide variety of monovalent inorganic ions. These materials exhibit a rich
spectrum of physical phenomena as a function of temperature and pressure. Among the outstanding
features are their high room temperature conductivity, the occurrence of a metal-insulator transition
due to spin density wave condensation (antiferromagnetism) or anion ordering, and, in certain of the
selenium compounds, the onset of superconductivity at low temperature and moderate pressure[1].

Fig. 1. Perspective view of the (TMTCF),X crys-
tal structure.

— 93 —

In this paper we present a unifying frame-
work for the electronic properties of
(TMTCF),X based on simple one-electron
concepts. ‘We divide the problem into two
separate but related areas: a high temperature
regime characterized by an open, quasi-planar
Fermi contour, and a low temperature regime
dominated by spin and/or anion order sym-
metry breaking of the high temperature band
structure. In both cases we will show that
interchain interactions play a significant role.

Figure 1 depicts the general features of the
(TMTCF),X cation lattice. The view is
down the long axis of the central cation as
seen in perspective with respect to the per-
pendicular bisector plane through the mid-
point of the C=C interfulvalene bond of the
central cation. We show a single sheet of
stacks generated by translation along the b-
direction. The cation sheets are separated by
anion planes with each anion located at a cor-
ner of the indicated unit cell. Figure 1 also
contains the six most probable interaction
directions for electronic overlap in
(TMTCF),X.
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Two are in the stacking, or a, direction and four are in the interstack, or b, direction. For the
interstack directions shown, we designate I1 as the interaction between the closest neighbor, I2 as
that in the negative b-direction and slightly. more removed, and I3, generated by a pure b-axis
translation, as that for the third nearest neighbor. The fourth nearest neighbor interaction, 14, is
between the central cation and its neighbor in the (~1, 1) direction. The 11 and I2 interactions
form a sheet of alternating cations in the b-direction and would seemingly comprise the plane of
strongest interchain coupling. Each inter-selenium distance is approximately equal to a van der
Waals radius of 3.8/&, being slightly smaller for I1, slightly larger for I2, and about 10 percent
larger for I3. I4 is about 20 percent greater than van der Waals. Note that the closest, I1, has
essentially one Se-Se contact with the central cation while 12 has two. Figure 1 shows the
(TMTCF),X stack to be slightly dimerized with two cations per unit cell. This small amount of
dimerization may seem surprising in a conducting charge transfer salt due to the concomitant gap
introduced in the electronic structure; however, because of the 2:1 stoichiometry, this gap is not at
the Fermi energy. In analogy to the interchain case, we refer to the two possible intermolecular
interactions as S1 and S2, ordered with respect to increasing separation. Note that we have not
considered any interactions in the c-axis direction. Direct calculation indicates these are small
compared to the b-axis interaction{2]. For our purposes here, we will consider only the two-
dimernisional aspects of the (TMTCF),X band structure. Also, we neglect any effect of the anions
on the energy band dispersion which we take to arise solely from the various cation interactions just
described. The anions play a central perturbative role in determining cell symmetry and in band gap
production.

2. Model dispersion equation.— The complete crystal secular equation arising from a Bloch-adapted
non-orthogonal LCAO basis set is

p) { ) ei;-EAH,(p’j'.pj)-ES,(p'j',pj)l}c,,,. =0, (1)
pj Lt ’

where the matrix element of a general operator @ (€ = H or S, the unit operator) is given by
[ . - g -
0T 0 = [ & 9, + R=7,) 0 0,G-7) . @

The vectors k and R, have their usual meaning as crystal momentum and unit cell translation,
respectively, with / an integer triad designating a particular translation direction. The non-vanishing
off-diagonal elements of S, the overlap matrix, follow from the non-orthogonality, of the LCAQO
basis set {qz‘,(r—'rj)} where p indexes a given atomic orbital and J is the vector position of that
grbital in the direct lattice unit cell. Thus, considering only the cation components of (TMTCF),X,
7; would span four seleniums, ten carbons and 12 hydrogens, twice, for a total of 52 atomic
positions. Taking Se 4s, Se 4p, C 2s, C 2p and H 1s as the relevant bonding orbitals then yields a
basis set of 136 elements, or, 76 occupied bands when all electrons are accounted for. It is, of
course, possible to attack Eq. (1) directly and solve for all 76 bands, but clearly, some simplifica-
tions are necessary if one is to gain any useful insights into the overall electronic structure of these
systems. We therefore make the following assumptions: (1) we replace the methy! groups by
hydrogen, i.e., we make TMTCF into TCF; (2) we assume that we have already solved for the
isolated molecular orbital states and now employ these as the new basis set {wp(r—'rj)}, and, finally;
(3) that we use the highest occupied molecular orbital (HOMO) as the only state which will be
relevant to transport in the solid. Immediately we have reduced the number of bands to be
considered to two. We justify our individual assumptions on the following grounds: (1) that the
intermolecular overlaps are dominated by the chalcogenide atomic orbitals; (2) the intermolecular
interactions are weak compared to intramolecular, and; (3) the isolated cation molecular orbitals are
well separated from each other with respect to the conduction band width, Equation (1) then
reduces to a simple tight-binding dispersion relation involving six transfer integrals representing the
six interactions of Fig. 1:

E(k) = 2[t;3 cos keb + ty, cos k-(;—g)] + T, (3a)

- -

T(k) = tg, + tg; e-ikea + ty, e~ikeb + t;; e-ike(a-b) . (3b)
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Since the intermolecular overlaps are < 10~2, we have omitted them in deriving Eqgs. (3). Equa-
tions (3) provide a complete analytical description of the 2D band structure of (TMTCF)ZX which
can be psed as the basis for the derivation of further electronic and transport properties. The
vectors a and b are the unit cell parameters of Fig. 1 represented in a cartesian coordinate system.
Anticipating that we will be dealing with a quarter-empty conduction band and that the numerical
calculations will show t11 <<t ® Y5 and tg R tg,, further simplification is possible. Near Eg,
we may set tyy = t;; = O, and define the effective transfer integrals tf = t13 + t»/2 and
tg = (tgy + tgo)/2. Eqs. (3) then yield for the total dispersion

E(K) = 2(t; cos kebitg cos L ked) . (4)

This equation represents the greatest possible simplification. At the expense of sacrificing all zone
boundary splittings it will nevertheless replicate quite well the 2D band structure near the Fermi
energy, Ep.

3. Transfer integral calculation.— Each of the transfer integrals in Eqgs. 3 was taken to be half the
magnitude of the splitting of the monomér HOMO level for a dimer cation pair formed in the
appropriate interaction direction. The phase of a particular transfer integral was determined from
the sign of the associated dimer overlap integral. The dimer splitting was calculated in the Mulliken-
Wolfsberg-Helmholtz (MWH)[3] approximation in which the Hamiltonian matrix elements of Egs.
(1) and (2) are assumed proportional to the overlap integral as follows:

Hy(p'{'\0) = K (0" ,0) (B, + E/2, (5)

where E .., E, are the one-electron "ionization potentials" and Si(0'j',pj) the overlap matrix
compute& ﬁirectfy from the basis set via Eq. (2). K is an empirical scaling paraméter which we took
equal to 1.75 in common with other workers using this method. It is also common practice to
choose atomic Slater-type-orbitals (STO’s) as the analytic form of the basis set used to calculate
S,(p'j'.p}) and to take either calculated or experimental values for the one-electron ionization
potentials E oj in the construction of H,(p'j",pj) via Eq. (5). The total STO wavefunction is given by

Ppoa® = Ry(D) ¥;(0,6) Q)
where

. Rnl(r) = 2 Cn,\ [(2n)‘)!]—1/2 (2{)‘)n)\+1/2 =1 gfar ) . pon
Al

Here Y,,,(8,¢) is the usual normalized spherical harmonic. Equation (7) expresses the radial part of
¢ a5 2 linear combination of normalized STO’s where the coefficients C,, and exponents §) are
variationally computed by self-consistent-field (SCF) techniques to mirimize the total atomic
electronic energy. Tables of C,, and {y for the elements can be found in several standard reference
works[4]. In an earlier paper[5], we had used a basis set consisting of only one STO (single-{) for
each valence orbital on each atom in the TMTCF molecule. The use of single-{ basis sets is a
common practice among users of the MWH method for reasons of obvious computational efficiency.
However, for (TMTCF)2X, the intermolecular distances over which the electronic interactions of
interest occur are large, and although the magnitude of the wavefunction and associated overlap
integral are small, the long range details of the basis set are crucial. That is, the SCF procedures
used to compute C“x and {, tend to concentrate charge density at normal orbital radii. Thus, if
only one STO is used to approximate a given valence orbital, the effect of the SCF optimization
results in a { that puts as much charge as possible on the shell radius and which does not represent
properly the true diffuse character of the orbital wavefunction. This shortcoming is resolved by
employing Eq. (7) in its multi-{ form. Therefore, one might expect multi-STO’s to provide a much
better representation for the calculation of intermolecular overlaps in organic molecular crystals. In
fact, the muiti-{ STO’s for Se 4s and Se 4p approximate numerical Hartree-Fock results to within a
few percent for distances out to 5 A from the nuclear center.
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The resulting transfer integral values for (TMTSF)

below{7].
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The results of choosing multi-{ vs. single-{
STO’s on the interatomic selenium 4s - 4s o
overlap are shown in Fig. 2. Little difference
is observed in the 1-2 A region of ugual intra-
molecular bonding, but beyond 3 A, the re-
gion of intermolecular separation, the single-{
magnitudes fall 3-16 times below those values
obtained from a multi-{ basis set, with con-
comitant effects on the associated transfer
integrals. Similar results are obtained for
other chalcogenide and carbon ¢ and 7 over-
laps. All previous MWH calculations. on
charge transfer salts used single-{ wave func-
tions. It now appears that band dispersions
obtained therefrom are far too small, both in
the stacking and interchain directions. If one
proceeds on the assumption that the optimal
basis set to use in MWH calculations is the
one which most closely approximates one-
electron atomic Hartree-Fock values, then it
is critical that multi-{ STO’s be employed[6].

oX and (TMTTF),X are shown in Tables I and II

Table 1. Transfer integrals and band structure parameters for (TMTSF),X compounds of known

crystal structure. All energies are in meV (x10~3 eV).

X s1 %2 W 2 ot w4t/ tg-tsy Ep
ReO, 390 338 -150 -54.5 43.2 118 364 197 18 52 255
cio, 393 339 153 -54.4 451 115 366 216 17 54 260
FSO, 386 339 149 -53.8 454 11.8 363 221 16 47  .260
NO, 407 374 -142 -513 465 124 391 239 16 33 285
PFg (4K) 422 337 -180 -452 450 143 380 239 16 85 279
2Fs 425 374 -13.9 -450 415 110 400 214 19 51 283
PFg (300K) 395 334 -9.5 -362 415 99 365 262 14 61 273
AsFg 397 340 -7.6 -29.9 389 95 369 263 14 57 279
Mean 402 347 -13.6 -463 433 115 374 231 16 55 272
9%RMS 37 49 25 20 59 13 37 101 11 27 12

Table I1. Transfer integrals and band structure parameters for (TMTTF),X compounds of known
crystal structure. All energies are in meV (x 10-3 eV).

X 1 %2 1 2 M3t s 4t/ tg—tgy Ep
Br 256 223 -12.8 -367 269 88 240 100 24 33 163
BF, 261 194 8.0 -285 244 73 228 127 18 67 159
SCN 214 211 -48 -189 171 67 213 88 24 3 151
ReO, 214 185 -12 -185 179 58 200 114 17 29 147
Mean 236 203 -6.7 -257 21.6 72 220 107 21 33 155
%RMS 11 8 74 34 22 18 79 159 18 80 73

J— 96 o
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The average anisotropy tg/t; is approximately 16 for (TMTSF)5X and 21 for (TMTTF),X. The
magnitudes of the six principal transfer integrals supports our derivation of Eq. (4). The main
source of the interchain interaction is from ty3, arising between third nearest neighbors, which has
relatively little variation over the range of compounds studied, especially for (TMTSF),X. ty,, the
second nearest neighbor coupling, contributes 50% of its value to tg, but because of its opposite
phase actually reduces the effective interchain band dispersion near Egp. Surprisingly, t7;, between
first nearest neighbor cations, is only around 30% of tjp and tf4, the reason being that I1 has only
one close chalcogenide pair contact whereas I2 and I3 have two. Furthermore, the I3 juxtaposition
optimizes the po-pe overlap in the interchain direction and is between translationally equivalent
neighbors. It is therefore this overlap that one should optimize vis-a-vis I1 and I2 in a given
structure to increase interchain interaction. Interestingly, this is indeed the case for the supercon-
ducting (BEDT-TTF),ReQ, compound[8]. The central role of the I3 interaction has also been
established experimentally by Wudl, et al..[9], through x-ray diffraction studies of the electron
density distribution in (TMTSF),AsF.

4. High temperature band structure.— Figure
PO 3 shows the band structure and Fermi con-
(TMTSF), AsF, #2000 tour for (TMTSF),AsF¢ and is representative
--77-800 of all TMTCF compounds. The shape of the
e, ] Fermi contour is almost indistinguishable be-
tween the various Table I-II materials. The
position of Ep as measured from the top of
........... eey ALty ) the transport band for each compound is giv-
}-2".1{‘"' i en in Tables I-Il. The open circles indicate
”f‘;g*gﬂ,, the result obtained from Eqs. (3) and the six
o (TMTSF),AsF transfer integrals from Table
1, while the solid line arises from substituting
tg and ty into Eq. (4). The open squares de-
note the direct diagonalization of Eq. (1)
summed to all cation neighbors shown in Fig.
r X " " r 1. The overall agreement with the simple
©, 0 (n/a, 0) (m/a, n/b) (0, n/b) (0, 0) model of Eq. (4) is very good, especially in
Fig. 3. Band structure of (TMTSF),AsF. the vicinity of Ep. Also indicated, in Fig. 3
are the dependencies of various band struc-
ture features on the six transfer integrals of

Egs. (3).

12 (tg= 15y}
L -2 (-1, 1

2iigy* 159
Yt 400 |

Since the simple model of Eq. (4) fits so well, we use it to derive the plasma tensor components at
Ep by integration of the Boltzman equation[10]. The resulting expressions referred to reciprocal
lattice trigonal coordinates are

2 8e%a%t
(ﬁ wg)a.a. = v N Il(ts/tl’ EF/2ts) y (83)
and
2 16e%b%t,2
(H @) pepe = Ve L 1y(tg/t; Ep/2tg) (8b)
where
1.1 2 1/2
IL,(A;B) = = | [1-(B=Acosu)] du , (8¢)
1 T Jo
and
. 2 (" sin %u du
1,(A;B) = 2 fo . (8d)

1/2
[1—=(B=A cos u)2]
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Here V is the unit cell volume. Note that Eqs. (8) imply ¢,/0) « (tg/ tI)2 unlike that for coherent
transport on a closed Fermi contour where aa/ 0y, is linear in the transfer integral ratio. Thus one
cannot differentiate coherent from diffusive transport for open Fermi contours. Equations (8) can
now be used to analyze the (TMTSF),PF¢ optical data of Jacobsen, ef al[11). We find tg = 321
meV and t; = 27 meV in excellent agreement with the calculation given the uncertainty in the
Drude analysis.

5. Dimensionality in (TMTCF),X.— These relatively large values of interchain coupling and
concomitant small anisotropies for all of the (TMTSF),X compounds, now substantiated by both
calculation and experiment, impact various ways of looking at the question of quasi-one-
dimensionality and attendant fluctuations in these materials. Shultz, et gl.[12], have developed a
Ginzburg-L2andau theory for superconducting fluctuations in (TMTSF),X which contains a parame-
ter B = 2o tlz/ @ which is the 3D to 1D fluctuation crossover temperature. Our value of t; would
lead to B = 14000K, well above the vicinity of the superconducting transition implying that mean
field theory might be more appropriate. Horowitz, Gutfreund and Weger[13] have derived an
expression giving the range of interstack coupling for which Fermi contour nesting can occur and yet
mean field conditions still apply:

1/2
€ Tp/T
4T,,(T‘;?) <2 g 3e0[ ;’MF] . 9

Here Tp is the SDW MI transition temperature, Ty the Fermi temperature as measured from the top
of the conduction band, |of a band filling factor equal to 0.79 for a quarter-empty 1D tight binding
band, and €, = Vppp/2 = (\/_gvr/s)ts, a scaling factor resulting from a density-of-states-like
integration over the same tight binding band. The lower limit of Eq. (9) expresses the 1D boundary
on 2ty above which mean field theory applies and the upper limit gives the energy below which
nesting can be expected. For (TMTSF),AsF¢, ¢ = 2377K (205 meV), Tg = 3190K (275 meV)
and Tp = 12K, yielding 36K- and 492K for these two limits, respectively, whereas 2t; = 603K
(2x26 meV) suggesting that the selenium compounds are very 2D and nesting should not occur.
Since the SDW transition does indeed seem driven by a Fermi instability, the nesting criterion of
Horowitz, et al., may be too conservative. On the other hand, for (TMTTF),Br, in which ¢ =
1545K (133 meV), T = 1891K (163 meV) and Tp = 19K, the Eq. (9) upper and lower limits are
62K and 523K, respectively, with 2y = 232K (2x10 mev). Thus, for the sulfur compounds, as for
selenium, the criterion supports a mean field approach to their properties above Tp.

Weger[14] has devised an operational definition of metallic quasi-one-dimensionality based on the
mean time a carrier spends in coherent transport along the stack before it is scattered or hops to a
neighboring chain. If this time is long compared to the interchain hopping rate, then interchain
phase coherence is established, perpendicular quasi-momentum becomes a good quantum number,
and we have 2D or 3D transport. On the other hand, if this time is short, phase coherence is
inhibited and quasi-1D behavior results. Weger’s "golden rule” is contained in the following
inequality:

EF > ﬁ/'fs > tI . 10

If #/7g satisfies Eq. (10) at a given temperature and/or pressure, then quasi-1D behavior may be
expected, i.e., coherent transport on the stacks, diffusive between them. The uncertainty-principle-
like upper limit, Eg > #/71g, assures coheregt transport on the stacks, otherwise the Fermi contour is
washed out. Using the expression o = wp7/47 , calculating wp from Table I with Egs. (8), and
literature[15) values for conductivity, we obtain #/7g ~ 588 meV for (TMTSF)4PF at 300K.
Thus, at room temperature, the chain carrier lifetime energy for the selenium salts is greater than
both t; and Eg. According to Eq. (10) and the experimental conductivity data, quasi-1D conduction
begins around 200K with the 1D - 2D crossover at about 55K. In contrast, the sulfur compounds,
typified by (TMTTF),Br{16], with #/7g ~ 840 meV at 300K and 210 meV at the 100K conductivi-
ty maximum, appear to have no quasi-1D region, let alone 1D — 2D crossover, whatsoever at
ambient pressure. This result is in agreement with Coulon, et al.[16]. However, Parkin, et al.[17],
have shown that the conductivity of the (TMTTF),X compounds increases rapidly under applied
pressure. Setting A/7g = Ep, the threshold conductivity for diffusive-1D coherent crossover for
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(TMTTF),Br is calculated to be ~1300 (Qcm)“1 which is reached at room temperature under ~5
kbar of pressure. Likewise, putting #/7g = t; yields ¢ ~ 21000 (Scm)™? as the 1D-2D crossover
point. This level of conductivity occurs in (TMTTF),Br near T = 100K at P = 26 kbar. Thus, the
conclusion of Parkin, et al[17], that the transport behavior of the sulfur salts under pressure
approaches that of the selenjum compounds at ambient, is supported by the calculations.

Finally, Tables I and II list the 1D dimerization gap relevant to the electron-electron umklapp
coupling constant gy of g-ology. Our values of the dimerization gap energy do not correlate well
with the crystallographic definition of dimerization as used by Emery, et al.[18), in their theory
relating g3 to the MI transition temperature and critical pressure for superconductivity in
(TMTCF),X. Since it would appear that cation juxtaposition is at least as important as the
magnitude of nearest neighbor interchalcogenide distances in determining g, through the dimeriza-
tion energy gap, the role of electron-electron umklapp scattering in setting Ty and P, must be
re-examined. Such re-examination should also address the rather large dispersion in the dimerization
gap when interchain coupling is present and its implication for application of 1D g-ology type
theories.

6. Low temperature band structure.— We now consider the effects of low temperature-induced
changes in the high temperature translation group of (TMTCF),X. Two distinct, but possibly
related, symmetry breaking mechanisms are known to occur experimentally. A magnetic superlattice
of standing SDW'’s or simple antiferromagnetic (AF) ordering{19] is observed when X is centrosym-
metric, and, when X is non-centrosymmetric, the anions order (AO) on a superlattice commensurate
with the high temperature crystal structure. For the AF case, no data are currently available on the
period of the magnetic superlattice; however, for reasons to be discussed shortly, it is likely to be
doubly periodic in all high temperature unit cell directions. For AO, x-ray data indicate doubling of
the high temperature unit cell in one, several or all directions at sufficiently low temperature{20].
Here we will only discuss the consequences of commensurate doubling of the direct lattice in the a
and/or b directions, or, in terms of reciprocal space translations, the three symmetries Q = (1/2, 0),
(1/2, 1/2) and (0, 1/2).

Figure 4 shows an idealized cation arrange-
ment in Q = (1/2, 1/2) symmetry. Each

2b oval contains a single dimer and its net spin.
b The basic unit of the low temperature model
O D | D is thus a TMTCF dimer instead of a molecule
as at high temperature. We base this Ansatz

til on the belief that the principal perturbation

under broken symmetry will be between di-
mer species rather than within them.- The
CED> | different site energies are given by ¢, ¢, aris-
ing from AF and/or anion ordering. The in-
terdimer transfer integrals associated with any
displacive distortions induced by the anion
order are t||': t"', t, and t,". Under AF or-
1 dering, ¢, €', represent site exchange poten-
<> R tials seen by a passing carrier of given
spin[21]. For the AO case, ¢, ¢, represent
- the Madelung potential of the anion lattice.
t t' In the examples to follow, we have omitted
1 1 cation distortion, i.e., we take t = t"' and
Fig. 4. ‘Idealized schematic of the 2x2 ordered t, = t,". This simplification Ol’ course af-
lattice of (TMTSF),X. fects the algebraic dependence of various
band structure features, but does not change
the qualitative aspects of the induced broken
symmetry.
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Figure 4 then results in simple fourth order secular equation in the three parameters A = (e—¢')/2,

and t Figure 5 summarizes the solutions to this equation for each of the three symmetries
taking t = 10 in the spirit of Table I, and A = 2t 1» chosen for illustrative purposes only. Like
Fig. 3, t e energy axes on Fig. 5 show the dependence of the major band structure features on the
model parameters. The k-vector axes are not to scale, but the Brillouin zone insets are.
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Fig. 8.  Mode! band structures for the three most

highly commensurate two-dimensional broken

symmetries: (a) Q = (1/2, 0); (b) Q = (1/2,

1/2); () Q = (0, 1/2).
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Q = (1/2, 0): Depending on the ratio of
the Madelung and/or AF exchange parameter
A and the b-axis bandwidth 4t , either a
semimetal (2A < 4t,) or an indirect gap sem-
iconductor (24 > 4t ) can be obtained. Fig- -
ure 2a explicitly shows 24 = 4t,, ie., a zero
bandgap semiconductor. The Brillouin zone
detail, however, illustrates the more likely
semimetallic case (A/2t, = 2/3) and the in-
herent hole-electron pockets. It is known
that (TMTSF),NO; undergoes Q = (1/2, 0)
AO at 40K, exhibiting a conductivity
anomaly[22] and a drop in thermopower{15]
at this temperature. Its properties remain
metallic down to 12K where a non-magnetic
MI transition of unknown (probably AQ) ori-
gin occurs. These properties between 40-12K
are incorporated .in our model. Neither su-
perconductivity nor SDW activity appear to
be present in (TMTSF),NO4[22] consistent
with the unfavorable nesting situation and
decreased density of states in the semimetallic
state.

Q = (1/2, 1/2): Here is a natural model
for the AF insulating state found for the cen-
trosymmetric anion compounds. Note that an
insulator invariably results with direct gap 24,
however weak the exchange interaction. Q =
(1/2, 1/2) is the only symmetry of our three
that yields an insulator for every finite value
of 2A. Figure 5b is then the band structure
for AF-ordered (TMTCF)ZX (C = Se, X =
PF¢, AsFg, SbF6, TaFg; C = §, X = Br,
PF¢) and anion ordered (TMTCF) X (C =
Se, X = ReQy, (NO3?); C = 8§, X = ClOy,
ReO,), below the MI temperature. The band
gap should not be removable by pressure
without further symmetry changes. - Thus, if
pressure could somehow be applied below the
MI transition, one should not be able to re-
store the metallic state. Since the gap is cre-
ated is created by the removal of a virtual
crossmg near X, we expect for 24 << 4t,
m* << 1 with attendant high mobility. The
constant energy contours for the electron-
hole band extrema form a closed
<<trench>> about the X-V direction and
are characterized by effective masses my and
m, reduced from their high temperature val-
ues by approximately A/2t | mear X and
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A/2t, at V, respectively. Chaikin, et al.[23], have estimated 2A ~ 4 meV for (TMTSF),PF in
its insulating AF state. Using Table I values for t, t,, gives about 1/300 and 1/30 for the two
reduction factors. The Q = (1/2, 1/2) moclel is thus qualitatively consistent with the
magnetoresistance[23) and nonlinear[24] data on X = PF¢ below the MI transition.

Q = (0, 1/2): A finite 2A does not introduce any gaps near Ep — the number of Fermi
contours actually increases from two to four preserving the metallic ground state. X-ray studies
show that slowly cooled (TMTSF),ClO, displays this symmetry below 22K due to ClO, anion
ordering[25] and also remains metallic. An analysis of nesting tendencies in Q = (0, 1/2) symmetry
reveals no possibility of creating a commensurate superlattice for a reasonable 2A. We believe this
feature stabilizes the Q = (0, 1/2) state against SDW formation leaving open the path to supercon-
ductivity. Slowly cooled, or <<relaxed>>, (TMTSF),ClO, exhibits a depressed spin-lattice
relaxation rate right down to the superconducting transition[26] in agreement with the model,
whereas rapidly cooled, or <<quenched>>, samples display an SDW induced MI transition and no
superconductivity[27]. Finally, we point out that the discussion of nesting in this symmetry also
applies to the recently discovered superconductor (BEDT-TTF)4(ReQ,),[8] where there are two
cation stacks per unit cell and the ReQy, anions alternate in rotational position perpendicular to the
stacking axis.

7. Concluding remarks.— We have computed the high temperature single particle electronic structure
of (TMTCF),X and for C = Se find the average stack bandwidth 4tg = 1.5 eV with mean
interchain bandwidth 4t; = 92 meV and resultant anisotropy of 16. For C = S, the values are 0.88
eV, 43 mev and 21, respectively. To the degree that the results can be checked, the agreement with
current experiment is excellent. We showed that within the semi-empirical MWH method used in
charge transfer salt calculations, use of an extended basis set is crucial to obtain the correct
intermolecular overlap behavior. The implications of our findings on dimensionality in (TMTCF)2X
are as follows: (1) the conditions necessary for application of mean field theory to both the selenium
and sulfur compounds are satisfied — it is questionable whether a Ginzburg-Landau theory of 1D
superconducting fluctuations well above the 3D transition temperature can be justified; (2) in terms
of Weger’s criteria for quasi-1D vis-ag-vis 2D coherent or diffusive transport, we find selenium
systems to have a 1D-2D crossover at about 60K at 1 bar, while the transport of the sulfur materials
is diffusive in all directions at all temperatures above Tpp at ambient pressure, exhibiting 1D
coherent conductivity and a 1D-2D crossover only at higher pressures; (3) the dimerization gap for
C = Se and S does not seem to correlate well with T)y and P, as required by a quasi-1D g-ology
picture involving electron-electron umklapp scattering. For the electronic structure of the
(TMTCF),X salts at low temperature, we present a set of models based on symmetry breaking of
the high temperature structure by antiferromagnetic or anion ordering. In three simple instances of
known low temperature anion orderings, we are able to accommodate much, if not all, of the
observed behavior in those compounds, and propose a possible magnetic superlattice configuration
for the antiferromagnetic compounds.
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